Make print-file-var.exp test attribute visibility hidden, dlopen, and main symbol
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4 56#include "namespace.h"
7f6aba03 57#include "cli/cli-style.h"
4de283e4
TT
58
59#include "psymtab.h"
40bc484c 60#include "value.h"
4de283e4
TT
61#include "mi/mi-common.h"
62#include "arch-utils.h"
63#include "cli/cli-utils.h"
268a13a5
TT
64#include "gdbsupport/function-view.h"
65#include "gdbsupport/byte-vector.h"
4de283e4 66#include <algorithm>
2ff0a947 67#include <map>
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
14f9c5c9 115
22cee43f 116static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
22cee43f 119
d12307c1 120static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 121
76a01679 122static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 123 const struct block *);
14f9c5c9 124
4c4b4cd2
PH
125static int num_defns_collected (struct obstack *);
126
d12307c1 127static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 128
e9d9f57e 129static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
130 struct type *, int,
131 innermost_block_tracker *);
14f9c5c9 132
e9d9f57e 133static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 134 struct symbol *, const struct block *);
14f9c5c9 135
d2e4a39e 136static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 137
a121b7c1 138static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
139
140static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 141
d2e4a39e 142static int numeric_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int integer_type_p (struct type *);
14f9c5c9 145
d2e4a39e 146static int scalar_type_p (struct type *);
14f9c5c9 147
d2e4a39e 148static int discrete_type_p (struct type *);
14f9c5c9 149
a121b7c1 150static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 151 int, int);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 192
d2e4a39e 193static int equiv_types (struct type *, struct type *);
14f9c5c9 194
d2e4a39e 195static int is_name_suffix (const char *);
14f9c5c9 196
73589123
PH
197static int advance_wild_match (const char **, const char *, int);
198
b5ec771e 199static bool wild_match (const char *name, const char *patn);
14f9c5c9 200
d2e4a39e 201static struct value *ada_coerce_ref (struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static LONGEST pos_atr (struct value *);
204
3cb382c9 205static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 206
d2e4a39e 207static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
14f9c5c9 211
108d56a4 212static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
213 struct type *);
214
215static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
0d5cff50 218static int find_struct_field (const char *, struct type *, int,
52ce6436 219 struct type **, int *, int *, int *, int *);
4c4b4cd2 220
d12307c1 221static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 222 struct value **, int, const char *,
2a612529 223 struct type *, int);
4c4b4cd2 224
4c4b4cd2
PH
225static int ada_is_direct_array_type (struct type *);
226
72d5681a
PH
227static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
714e53ab 229
52ce6436
PH
230static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
234 struct expression *,
235 int *, enum noside);
52ce6436
PH
236
237static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
852dff6c
JB
261
262static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
263
264static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
4c4b4cd2
PH
267\f
268
ee01b665
JB
269/* The result of a symbol lookup to be stored in our symbol cache. */
270
271struct cache_entry
272{
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
fe978cb0 276 domain_enum domain;
ee01b665
JB
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285};
286
287/* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296#define HASH_SIZE 1009
297
298struct ada_symbol_cache
299{
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305};
306
307static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 308
4c4b4cd2 309/* Maximum-sized dynamic type. */
14f9c5c9
AS
310static unsigned int varsize_limit;
311
67cb5b2d 312static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
313#ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315#else
14f9c5c9 316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 317#endif
14f9c5c9 318
4c4b4cd2 319/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 320static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 321 = "__gnat_ada_main_program_name";
14f9c5c9 322
4c4b4cd2
PH
323/* Limit on the number of warnings to raise per expression evaluation. */
324static int warning_limit = 2;
325
326/* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328static int warnings_issued = 0;
329
330static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332};
333
334static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336};
337
c6044dd1
JB
338/* Maintenance-related settings for this module. */
339
340static struct cmd_list_element *maint_set_ada_cmdlist;
341static struct cmd_list_element *maint_show_ada_cmdlist;
342
343/* Implement the "maintenance set ada" (prefix) command. */
344
345static void
981a3fb3 346maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 347{
635c7e8a
TT
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
c6044dd1
JB
350}
351
352/* Implement the "maintenance show ada" (prefix) command. */
353
354static void
981a3fb3 355maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
356{
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358}
359
360/* The "maintenance ada set/show ignore-descriptive-type" value. */
361
491144b5 362static bool ada_ignore_descriptive_types_p = false;
c6044dd1 363
e802dbe0
JB
364 /* Inferior-specific data. */
365
366/* Per-inferior data for this module. */
367
368struct ada_inferior_data
369{
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
f37b313d 374 struct type *tsd_type = nullptr;
3eecfa55
JB
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
f37b313d 379 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
380};
381
382/* Our key to this module's inferior data. */
f37b313d 383static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
384
385/* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393static struct ada_inferior_data *
394get_ada_inferior_data (struct inferior *inf)
395{
396 struct ada_inferior_data *data;
397
f37b313d 398 data = ada_inferior_data.get (inf);
e802dbe0 399 if (data == NULL)
f37b313d 400 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
401
402 return data;
403}
404
405/* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408static void
409ada_inferior_exit (struct inferior *inf)
410{
f37b313d 411 ada_inferior_data.clear (inf);
e802dbe0
JB
412}
413
ee01b665
JB
414
415 /* program-space-specific data. */
416
417/* This module's per-program-space data. */
418struct ada_pspace_data
419{
f37b313d
TT
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
ee01b665 426 /* The Ada symbol cache. */
f37b313d 427 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
428};
429
430/* Key to our per-program-space data. */
f37b313d 431static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
432
433/* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438static struct ada_pspace_data *
439get_ada_pspace_data (struct program_space *pspace)
440{
441 struct ada_pspace_data *data;
442
f37b313d 443 data = ada_pspace_data_handle.get (pspace);
ee01b665 444 if (data == NULL)
f37b313d 445 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
446
447 return data;
448}
449
4c4b4cd2
PH
450 /* Utilities */
451
720d1a40 452/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 453 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479static struct type *
480ada_typedef_target_type (struct type *type)
481{
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485}
486
41d27058
JB
487/* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491static const char *
492ada_unqualified_name (const char *decoded_name)
493{
2b0f535a
JB
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
41d27058
JB
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510}
511
39e7af3e 512/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 513
39e7af3e 514static std::string
41d27058
JB
515add_angle_brackets (const char *str)
516{
39e7af3e 517 return string_printf ("<%s>", str);
41d27058 518}
96d887e8 519
67cb5b2d 520static const char *
4c4b4cd2
PH
521ada_get_gdb_completer_word_break_characters (void)
522{
523 return ada_completer_word_break_characters;
524}
525
e79af960
JB
526/* Print an array element index using the Ada syntax. */
527
528static void
529ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 530 const struct value_print_options *options)
e79af960 531{
79a45b7d 532 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
533 fprintf_filtered (stream, " => ");
534}
535
e2b7af72
JB
536/* la_watch_location_expression for Ada. */
537
538gdb::unique_xmalloc_ptr<char>
539ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540{
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545}
546
f27cf670 547/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 549 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 550
f27cf670
AS
551void *
552grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 553{
d2e4a39e
AS
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
4c4b4cd2 558 *size = min_size;
f27cf670 559 vect = xrealloc (vect, *size * element_size);
d2e4a39e 560 }
f27cf670 561 return vect;
14f9c5c9
AS
562}
563
564/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 565 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
566
567static int
ebf56fd3 568field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
569{
570 int len = strlen (target);
5b4ee69b 571
d2e4a39e 572 return
4c4b4cd2
PH
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
61012eef 575 || (startswith (field_name + len, "___")
76a01679
JB
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
14f9c5c9
AS
578}
579
580
872c8b51
JB
581/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
588
589int
590ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592{
593 int fieldno;
872c8b51
JB
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
598 return fieldno;
599
600 if (!maybe_missing)
323e0a4a 601 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 602 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
603
604 return -1;
605}
606
607/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
608
609int
d2e4a39e 610ada_name_prefix_len (const char *name)
14f9c5c9
AS
611{
612 if (name == NULL)
613 return 0;
d2e4a39e 614 else
14f9c5c9 615 {
d2e4a39e 616 const char *p = strstr (name, "___");
5b4ee69b 617
14f9c5c9 618 if (p == NULL)
4c4b4cd2 619 return strlen (name);
14f9c5c9 620 else
4c4b4cd2 621 return p - name;
14f9c5c9
AS
622 }
623}
624
4c4b4cd2
PH
625/* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
14f9c5c9 628static int
d2e4a39e 629is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
630{
631 int len1, len2;
5b4ee69b 632
14f9c5c9
AS
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
4c4b4cd2 637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
638}
639
4c4b4cd2
PH
640/* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
14f9c5c9 642
d2e4a39e 643static struct value *
4c4b4cd2 644coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 645{
61ee279c 646 type = ada_check_typedef (type);
df407dfe 647 if (value_type (val) == type)
4c4b4cd2 648 return val;
d2e4a39e 649 else
14f9c5c9 650 {
4c4b4cd2
PH
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
c1b5a1a6 655 ada_ensure_varsize_limit (type);
4c4b4cd2 656
41e8491f
JK
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
9a0dc9e3 663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 664 }
74bcbdf3 665 set_value_component_location (result, val);
9bbda503
AC
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
14f9c5c9
AS
670 return result;
671 }
672}
673
fc1a4b47
AC
674static const gdb_byte *
675cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
676{
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681}
682
683static CORE_ADDR
ebf56fd3 684cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
685{
686 if (address == 0)
687 return 0;
d2e4a39e 688 else
14f9c5c9
AS
689 return address + offset;
690}
691
4c4b4cd2
PH
692/* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
a2249542 696
77109804
AC
697/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
a0b31db1 699static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 700
14f9c5c9 701static void
a2249542 702lim_warning (const char *format, ...)
14f9c5c9 703{
a2249542 704 va_list args;
a2249542 705
5b4ee69b 706 va_start (args, format);
4c4b4cd2
PH
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
a2249542
MK
709 vwarning (format, args);
710
711 va_end (args);
4c4b4cd2
PH
712}
713
714e53ab
PH
714/* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
c1b5a1a6
JB
718void
719ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
720{
721 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 722 error (_("object size is larger than varsize-limit"));
714e53ab
PH
723}
724
0963b4bd 725/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 726static LONGEST
c3e5cd34 727max_of_size (int size)
4c4b4cd2 728{
76a01679 729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 730
76a01679 731 return top_bit | (top_bit - 1);
4c4b4cd2
PH
732}
733
0963b4bd 734/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 735static LONGEST
c3e5cd34 736min_of_size (int size)
4c4b4cd2 737{
c3e5cd34 738 return -max_of_size (size) - 1;
4c4b4cd2
PH
739}
740
0963b4bd 741/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 742static ULONGEST
c3e5cd34 743umax_of_size (int size)
4c4b4cd2 744{
76a01679 745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 746
76a01679 747 return top_bit | (top_bit - 1);
4c4b4cd2
PH
748}
749
0963b4bd 750/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
751static LONGEST
752max_of_type (struct type *t)
4c4b4cd2 753{
c3e5cd34
PH
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758}
759
0963b4bd 760/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
761static LONGEST
762min_of_type (struct type *t)
763{
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
768}
769
770/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
771LONGEST
772ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 773{
c3345124 774 type = resolve_dynamic_type (type, NULL, 0);
76a01679 775 switch (TYPE_CODE (type))
4c4b4cd2
PH
776 {
777 case TYPE_CODE_RANGE:
690cc4eb 778 return TYPE_HIGH_BOUND (type);
4c4b4cd2 779 case TYPE_CODE_ENUM:
14e75d8e 780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
76a01679 784 case TYPE_CODE_INT:
690cc4eb 785 return max_of_type (type);
4c4b4cd2 786 default:
43bbcdc2 787 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
788 }
789}
790
14e75d8e 791/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
792LONGEST
793ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 794{
c3345124 795 type = resolve_dynamic_type (type, NULL, 0);
76a01679 796 switch (TYPE_CODE (type))
4c4b4cd2
PH
797 {
798 case TYPE_CODE_RANGE:
690cc4eb 799 return TYPE_LOW_BOUND (type);
4c4b4cd2 800 case TYPE_CODE_ENUM:
14e75d8e 801 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
76a01679 805 case TYPE_CODE_INT:
690cc4eb 806 return min_of_type (type);
4c4b4cd2 807 default:
43bbcdc2 808 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
809 }
810}
811
812/* The identity on non-range types. For range types, the underlying
76a01679 813 non-range scalar type. */
4c4b4cd2
PH
814
815static struct type *
18af8284 816get_base_type (struct type *type)
4c4b4cd2
PH
817{
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
76a01679
JB
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
4c4b4cd2
PH
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
14f9c5c9 825}
41246937
JB
826
827/* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832struct value *
833ada_get_decoded_value (struct value *value)
834{
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850}
851
852/* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857struct type *
858ada_get_decoded_type (struct type *type)
859{
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864}
865
4c4b4cd2 866\f
76a01679 867
4c4b4cd2 868 /* Language Selection */
14f9c5c9
AS
869
870/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 871 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 872
14f9c5c9 873enum language
ccefe4c4 874ada_update_initial_language (enum language lang)
14f9c5c9 875{
cafb3438 876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 877 return language_ada;
14f9c5c9
AS
878
879 return lang;
880}
96d887e8
PH
881
882/* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886char *
887ada_main_name (void)
888{
3b7344d5 889 struct bound_minimal_symbol msym;
e83e4e24 890 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 891
96d887e8
PH
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
3b7344d5 899 if (msym.minsym != NULL)
96d887e8 900 {
f9bc20b9
JB
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
77e371c0 904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 905 if (main_program_name_addr == 0)
323e0a4a 906 error (_("Invalid address for Ada main program name."));
96d887e8 907
f9bc20b9
JB
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
e83e4e24 913 return main_program_name.get ();
96d887e8
PH
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918}
14f9c5c9 919\f
4c4b4cd2 920 /* Symbols */
d2e4a39e 921
4c4b4cd2
PH
922/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
14f9c5c9 924
d2e4a39e
AS
925const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
14f9c5c9
AS
948};
949
b5ec771e
PA
950/* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
4c4b4cd2 954
b5ec771e
PA
955static char *
956ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 957{
4c4b4cd2
PH
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
d2e4a39e 960 const char *p;
14f9c5c9 961 int k;
d2e4a39e 962
4c4b4cd2 963 if (decoded == NULL)
14f9c5c9
AS
964 return NULL;
965
4c4b4cd2
PH
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
14f9c5c9
AS
968
969 k = 0;
4c4b4cd2 970 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 971 {
cdc7bb92 972 if (*p == '.')
4c4b4cd2
PH
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
14f9c5c9 977 else if (*p == '"')
4c4b4cd2
PH
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
1265e4aa 982 mapping->encoded != NULL
61012eef 983 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
984 ;
985 if (mapping->encoded == NULL)
b5ec771e
PA
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
4c4b4cd2
PH
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
d2e4a39e 996 else
4c4b4cd2
PH
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
14f9c5c9
AS
1001 }
1002
4c4b4cd2
PH
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
14f9c5c9
AS
1005}
1006
b5ec771e
PA
1007/* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010char *
1011ada_encode (const char *decoded)
1012{
1013 return ada_encode_1 (decoded, true);
1014}
1015
14f9c5c9 1016/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
d2e4a39e
AS
1020char *
1021ada_fold_name (const char *name)
14f9c5c9 1022{
d2e4a39e 1023 static char *fold_buffer = NULL;
14f9c5c9
AS
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
d2e4a39e 1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1028
1029 if (name[0] == '\'')
1030 {
d2e4a39e
AS
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1033 }
1034 else
1035 {
1036 int i;
5b4ee69b 1037
14f9c5c9 1038 for (i = 0; i <= len; i += 1)
4c4b4cd2 1039 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1040 }
1041
1042 return fold_buffer;
1043}
1044
529cad9c
PH
1045/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047static int
1048is_lower_alphanum (const char c)
1049{
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051}
1052
c90092fe
JB
1053/* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
29480c32
JB
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
c90092fe 1060
29480c32
JB
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065static void
1066ada_remove_trailing_digits (const char *encoded, int *len)
1067{
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
5b4ee69b 1071
29480c32
JB
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
61012eef 1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1079 *len = i - 2;
61012eef 1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1081 *len = i - 1;
1082 }
1083}
1084
1085/* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088static void
1089ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090{
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
0963b4bd 1096 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105}
1106
1107/* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1109 replaced by ENCODED. */
14f9c5c9 1110
f945dedf 1111std::string
4c4b4cd2 1112ada_decode (const char *encoded)
14f9c5c9
AS
1113{
1114 int i, j;
1115 int len0;
d2e4a39e 1116 const char *p;
14f9c5c9 1117 int at_start_name;
f945dedf 1118 std::string decoded;
d2e4a39e 1119
0d81f350
JG
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
29480c32
JB
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
61012eef 1128 if (startswith (encoded, "_ada_"))
4c4b4cd2 1129 encoded += 5;
14f9c5c9 1130
29480c32
JB
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
4c4b4cd2 1134 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1135 goto Suppress;
1136
4c4b4cd2 1137 len0 = strlen (encoded);
4c4b4cd2 1138
29480c32
JB
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1141
4c4b4cd2
PH
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1148 {
1149 if (p[3] == 'X')
4c4b4cd2 1150 len0 = p - encoded;
14f9c5c9 1151 else
4c4b4cd2 1152 goto Suppress;
14f9c5c9 1153 }
4c4b4cd2 1154
29480c32
JB
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
61012eef 1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1160 len0 -= 3;
76a01679 1161
a10967fa
JB
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
61012eef 1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1167 len0 -= 2;
1168
29480c32
JB
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
61012eef 1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1173 len0 -= 1;
1174
4c4b4cd2 1175 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1176
f945dedf 1177 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1178
29480c32
JB
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
4c4b4cd2 1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1182 {
4c4b4cd2
PH
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
d2e4a39e 1191 }
14f9c5c9 1192
29480c32
JB
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
4c4b4cd2
PH
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
14f9c5c9
AS
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
29480c32 1202 /* Is this a symbol function? */
4c4b4cd2
PH
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
5b4ee69b 1206
4c4b4cd2
PH
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1213 {
f945dedf 1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
14f9c5c9
AS
1224 at_start_name = 0;
1225
529cad9c
PH
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
61012eef 1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1230 i += 2;
529cad9c 1231
29480c32
JB
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
529cad9c
PH
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1254 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
4c4b4cd2
PH
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
29480c32
JB
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
4c4b4cd2
PH
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
cdc7bb92 1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1319 {
29480c32 1320 /* Replace '__' by '.'. */
4c4b4cd2
PH
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
14f9c5c9 1326 else
4c4b4cd2 1327 {
29480c32
JB
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
4c4b4cd2
PH
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
14f9c5c9 1334 }
f945dedf 1335 decoded.resize (j);
14f9c5c9 1336
29480c32
JB
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
f945dedf 1340 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1341 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1342 goto Suppress;
1343
f945dedf 1344 return decoded;
14f9c5c9
AS
1345
1346Suppress:
4c4b4cd2 1347 if (encoded[0] == '<')
f945dedf 1348 decoded = encoded;
14f9c5c9 1349 else
f945dedf 1350 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1351 return decoded;
1352
1353}
1354
1355/* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360static struct htab *decoded_names_store;
1361
1362/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1367 GSYMBOL).
4c4b4cd2
PH
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1370 when a decoded name is cached in it. */
4c4b4cd2 1371
45e6c716 1372const char *
f85f34ed 1373ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1374{
f85f34ed
TT
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
615b3f62 1377 &gsymbol->language_specific.demangled_name;
5b4ee69b 1378
f85f34ed 1379 if (!gsymbol->ada_mangled)
4c4b4cd2 1380 {
f945dedf 1381 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1382 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1383
f85f34ed 1384 gsymbol->ada_mangled = 1;
5b4ee69b 1385
f85f34ed 1386 if (obstack != NULL)
f945dedf 1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1388 else
76a01679 1389 {
f85f34ed
TT
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
76a01679 1395 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1396 decoded.c_str (), INSERT);
5b4ee69b 1397
76a01679 1398 if (*slot == NULL)
f945dedf 1399 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1400 *resultp = *slot;
1401 }
4c4b4cd2 1402 }
14f9c5c9 1403
4c4b4cd2
PH
1404 return *resultp;
1405}
76a01679 1406
2c0b251b 1407static char *
76a01679 1408ada_la_decode (const char *encoded, int options)
4c4b4cd2 1409{
f945dedf 1410 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1411}
1412
8b302db8
TT
1413/* Implement la_sniff_from_mangled_name for Ada. */
1414
1415static int
1416ada_sniff_from_mangled_name (const char *mangled, char **out)
1417{
f945dedf 1418 std::string demangled = ada_decode (mangled);
8b302db8
TT
1419
1420 *out = NULL;
1421
f945dedf 1422 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450}
1451
14f9c5c9 1452\f
d2e4a39e 1453
4c4b4cd2 1454 /* Arrays */
14f9c5c9 1455
28c85d6c
JB
1456/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479void
1480ada_fixup_array_indexes_type (struct type *index_desc_type)
1481{
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
0d5cff50 1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509}
1510
4c4b4cd2 1511/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1512
a121b7c1 1513static const char *bound_name[] = {
d2e4a39e 1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516};
1517
1518/* Maximum number of array dimensions we are prepared to handle. */
1519
4c4b4cd2 1520#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1521
14f9c5c9 1522
4c4b4cd2
PH
1523/* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
14f9c5c9
AS
1525
1526/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1527 level of indirection, if needed. */
1528
d2e4a39e
AS
1529static struct type *
1530desc_base_type (struct type *type)
14f9c5c9
AS
1531{
1532 if (type == NULL)
1533 return NULL;
61ee279c 1534 type = ada_check_typedef (type);
720d1a40
JB
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1265e4aa
JB
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1542 else
1543 return type;
1544}
1545
4c4b4cd2
PH
1546/* True iff TYPE indicates a "thin" array pointer type. */
1547
14f9c5c9 1548static int
d2e4a39e 1549is_thin_pntr (struct type *type)
14f9c5c9 1550{
d2e4a39e 1551 return
14f9c5c9
AS
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554}
1555
4c4b4cd2
PH
1556/* The descriptor type for thin pointer type TYPE. */
1557
d2e4a39e
AS
1558static struct type *
1559thin_descriptor_type (struct type *type)
14f9c5c9 1560{
d2e4a39e 1561 struct type *base_type = desc_base_type (type);
5b4ee69b 1562
14f9c5c9
AS
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
d2e4a39e 1567 else
14f9c5c9 1568 {
d2e4a39e 1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1570
14f9c5c9 1571 if (alt_type == NULL)
4c4b4cd2 1572 return base_type;
14f9c5c9 1573 else
4c4b4cd2 1574 return alt_type;
14f9c5c9
AS
1575 }
1576}
1577
4c4b4cd2
PH
1578/* A pointer to the array data for thin-pointer value VAL. */
1579
d2e4a39e
AS
1580static struct value *
1581thin_data_pntr (struct value *val)
14f9c5c9 1582{
828292f2 1583 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1585
556bdfd4
UW
1586 data_type = lookup_pointer_type (data_type);
1587
14f9c5c9 1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1589 return value_cast (data_type, value_copy (val));
d2e4a39e 1590 else
42ae5230 1591 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1592}
1593
4c4b4cd2
PH
1594/* True iff TYPE indicates a "thick" array pointer type. */
1595
14f9c5c9 1596static int
d2e4a39e 1597is_thick_pntr (struct type *type)
14f9c5c9
AS
1598{
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1602}
1603
4c4b4cd2
PH
1604/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1606
d2e4a39e
AS
1607static struct type *
1608desc_bounds_type (struct type *type)
14f9c5c9 1609{
d2e4a39e 1610 struct type *r;
14f9c5c9
AS
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
4c4b4cd2 1620 return NULL;
14f9c5c9
AS
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
61ee279c 1623 return ada_check_typedef (r);
14f9c5c9
AS
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
61ee279c 1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1630 }
1631 return NULL;
1632}
1633
1634/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
d2e4a39e
AS
1637static struct value *
1638desc_bounds (struct value *arr)
14f9c5c9 1639{
df407dfe 1640 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1641
d2e4a39e 1642 if (is_thin_pntr (type))
14f9c5c9 1643 {
d2e4a39e 1644 struct type *bounds_type =
4c4b4cd2 1645 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1646 LONGEST addr;
1647
4cdfadb1 1648 if (bounds_type == NULL)
323e0a4a 1649 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1650
1651 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1652 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1653 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1655 addr = value_as_long (arr);
d2e4a39e 1656 else
42ae5230 1657 addr = value_address (arr);
14f9c5c9 1658
d2e4a39e 1659 return
4c4b4cd2
PH
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1662 }
1663
1664 else if (is_thick_pntr (type))
05e522ef
JB
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
14f9c5c9
AS
1685 else
1686 return NULL;
1687}
1688
4c4b4cd2
PH
1689/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
14f9c5c9 1692static int
d2e4a39e 1693fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1694{
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696}
1697
1698/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1699 size of the field containing the address of the bounds data. */
1700
14f9c5c9 1701static int
d2e4a39e 1702fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1703{
1704 type = desc_base_type (type);
1705
d2e4a39e 1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
61ee279c 1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1710}
1711
4c4b4cd2 1712/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
4c4b4cd2 1716
d2e4a39e 1717static struct type *
556bdfd4 1718desc_data_target_type (struct type *type)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
4c4b4cd2 1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1723 if (is_thin_pntr (type))
556bdfd4 1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1725 else if (is_thick_pntr (type))
556bdfd4
UW
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1732 }
1733
1734 return NULL;
14f9c5c9
AS
1735}
1736
1737/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
4c4b4cd2 1739
d2e4a39e
AS
1740static struct value *
1741desc_data (struct value *arr)
14f9c5c9 1742{
df407dfe 1743 struct type *type = value_type (arr);
5b4ee69b 1744
14f9c5c9
AS
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
d2e4a39e 1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1749 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1750 else
1751 return NULL;
1752}
1753
1754
1755/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1756 position of the field containing the address of the data. */
1757
14f9c5c9 1758static int
d2e4a39e 1759fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1760{
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762}
1763
1764/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1765 size of the field containing the address of the data. */
1766
14f9c5c9 1767static int
d2e4a39e 1768fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1774 else
14f9c5c9
AS
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776}
1777
4c4b4cd2 1778/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
d2e4a39e
AS
1782static struct value *
1783desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1784{
d2e4a39e 1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1786 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1787}
1788
1789/* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
14f9c5c9 1793static int
d2e4a39e 1794desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1795{
d2e4a39e 1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1797}
1798
1799/* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
76a01679 1803static int
d2e4a39e 1804desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1805{
1806 type = desc_base_type (type);
1807
d2e4a39e
AS
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1812}
1813
1814/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
d2e4a39e
AS
1817static struct type *
1818desc_index_type (struct type *type, int i)
14f9c5c9
AS
1819{
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
14f9c5c9
AS
1825 return NULL;
1826}
1827
4c4b4cd2
PH
1828/* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
14f9c5c9 1831static int
d2e4a39e 1832desc_arity (struct type *type)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839}
1840
4c4b4cd2
PH
1841/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
76a01679
JB
1845static int
1846ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1847{
1848 if (type == NULL)
1849 return 0;
61ee279c 1850 type = ada_check_typedef (type);
4c4b4cd2 1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1852 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1853}
1854
52ce6436 1855/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1856 * to one. */
52ce6436 1857
2c0b251b 1858static int
52ce6436
PH
1859ada_is_array_type (struct type *type)
1860{
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866}
1867
4c4b4cd2 1868/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1869
14f9c5c9 1870int
4c4b4cd2 1871ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1872{
1873 if (type == NULL)
1874 return 0;
61ee279c 1875 type = ada_check_typedef (type);
14f9c5c9 1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1880}
1881
4c4b4cd2
PH
1882/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
14f9c5c9 1884int
4c4b4cd2 1885ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1886{
556bdfd4 1887 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1888
1889 if (type == NULL)
1890 return 0;
61ee279c 1891 type = ada_check_typedef (type);
556bdfd4
UW
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1895}
1896
1897/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1898 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1899 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1900 is still needed. */
1901
14f9c5c9 1902int
ebf56fd3 1903ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1904{
d2e4a39e 1905 return
14f9c5c9
AS
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1911}
1912
1913
4c4b4cd2 1914/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1915 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1917 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1920 a descriptor. */
d2e4a39e
AS
1921struct type *
1922ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1923{
ad82864c
JB
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1926
df407dfe
AC
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
d2e4a39e
AS
1929
1930 if (!bounds)
ad82864c
JB
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
14f9c5c9
AS
1941 else
1942 {
d2e4a39e 1943 struct type *elt_type;
14f9c5c9 1944 int arity;
d2e4a39e 1945 struct value *descriptor;
14f9c5c9 1946
df407dfe
AC
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
14f9c5c9 1949
d2e4a39e 1950 if (elt_type == NULL || arity == 0)
df407dfe 1951 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1952
1953 descriptor = desc_bounds (arr);
d2e4a39e 1954 if (value_as_long (descriptor) == 0)
4c4b4cd2 1955 return NULL;
d2e4a39e 1956 while (arity > 0)
4c4b4cd2 1957 {
e9bb382b
UW
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1962
5b4ee69b 1963 arity -= 1;
0c9c3474
SA
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
4c4b4cd2 1967 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
4c4b4cd2 1989 }
14f9c5c9
AS
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993}
1994
1995/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
d2e4a39e
AS
2000struct value *
2001ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2002{
df407dfe 2003 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2004 {
d2e4a39e 2005 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2006
14f9c5c9 2007 if (arrType == NULL)
4c4b4cd2 2008 return NULL;
14f9c5c9
AS
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
ad82864c
JB
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2013 else
2014 return arr;
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2019 be ARR itself if it already is in the proper form). */
2020
720d1a40 2021struct value *
d2e4a39e 2022ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2023{
df407dfe 2024 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2025 {
d2e4a39e 2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2027
14f9c5c9 2028 if (arrVal == NULL)
323e0a4a 2029 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2031 return value_ind (arrVal);
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
d2e4a39e 2035 else
14f9c5c9
AS
2036 return arr;
2037}
2038
2039/* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2041 packing). For other types, is the identity. */
2042
d2e4a39e
AS
2043struct type *
2044ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2045{
ad82864c
JB
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
17280b9f
UW
2048
2049 if (ada_is_array_descriptor_type (type))
556bdfd4 2050 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2051
2052 return type;
14f9c5c9
AS
2053}
2054
4c4b4cd2
PH
2055/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
ad82864c
JB
2057static int
2058ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2059{
2060 if (type == NULL)
2061 return 0;
4c4b4cd2 2062 type = desc_base_type (type);
61ee279c 2063 type = ada_check_typedef (type);
d2e4a39e 2064 return
14f9c5c9
AS
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067}
2068
ad82864c
JB
2069/* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072int
2073ada_is_constrained_packed_array_type (struct type *type)
2074{
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077}
2078
2079/* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082static int
2083ada_is_unconstrained_packed_array_type (struct type *type)
2084{
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087}
2088
2089/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092static long
2093decode_packed_array_bitsize (struct type *type)
2094{
0d5cff50
DE
2095 const char *raw_name;
2096 const char *tail;
ad82864c
JB
2097 long bits;
2098
720d1a40
JB
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
720d1a40 2113 gdb_assert (tail != NULL);
ad82864c
JB
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123}
2124
14f9c5c9
AS
2125/* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
4c4b4cd2 2141
d2e4a39e 2142static struct type *
ad82864c 2143constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2144{
d2e4a39e
AS
2145 struct type *new_elt_type;
2146 struct type *new_type;
99b1c762
JB
2147 struct type *index_type_desc;
2148 struct type *index_type;
14f9c5c9
AS
2149 LONGEST low_bound, high_bound;
2150
61ee279c 2151 type = ada_check_typedef (type);
14f9c5c9
AS
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
99b1c762
JB
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
e9bb382b 2162 new_type = alloc_type_copy (type);
ad82864c
JB
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
99b1c762 2166 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
4a46959e
JB
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2176 else
14f9c5c9
AS
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2179 TYPE_LENGTH (new_type) =
4c4b4cd2 2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2181 }
2182
876cecd0 2183 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2184 return new_type;
2185}
2186
ad82864c
JB
2187/* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2189
d2e4a39e 2190static struct type *
ad82864c 2191decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2192{
0d5cff50 2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2194 char *name;
0d5cff50 2195 const char *tail;
d2e4a39e 2196 struct type *shadow_type;
14f9c5c9 2197 long bits;
14f9c5c9 2198
727e3d2e
JB
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2207 type = desc_base_type (type);
2208
14f9c5c9
AS
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
b4ba55a1
JB
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
14f9c5c9 2215 {
323e0a4a 2216 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2217 return NULL;
2218 }
f168693b 2219 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
0963b4bd
MS
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
14f9c5c9
AS
2225 return NULL;
2226 }
d2e4a39e 2227
ad82864c
JB
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2230}
2231
ad82864c
JB
2232/* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
4c4b4cd2 2236 type length is set appropriately. */
14f9c5c9 2237
d2e4a39e 2238static struct value *
ad82864c 2239decode_constrained_packed_array (struct value *arr)
14f9c5c9 2240{
4c4b4cd2 2241 struct type *type;
14f9c5c9 2242
11aa919a
PMR
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
828292f2 2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2252 arr = value_ind (arr);
4c4b4cd2 2253
ad82864c 2254 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2255 if (type == NULL)
2256 {
323e0a4a 2257 error (_("can't unpack array"));
14f9c5c9
AS
2258 return NULL;
2259 }
61ee279c 2260
50810684 2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2262 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
df407dfe 2271 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
df407dfe 2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
4c4b4cd2 2286 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2287}
2288
2289
2290/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2291 given in IND. ARR must be a simple array. */
14f9c5c9 2292
d2e4a39e
AS
2293static struct value *
2294value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2295{
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
d2e4a39e
AS
2299 struct type *elt_type;
2300 struct value *v;
14f9c5c9
AS
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
df407dfe 2304 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2305 for (i = 0; i < arity; i += 1)
14f9c5c9 2306 {
d2e4a39e 2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
0963b4bd
MS
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
14f9c5c9 2312 else
4c4b4cd2
PH
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
323e0a4a 2320 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2321 lowerbound = upperbound = 0;
2322 }
2323
3cb382c9 2324 idx = pos_atr (ind[i]);
4c4b4cd2 2325 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
4c4b4cd2
PH
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2331 }
14f9c5c9
AS
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2337 bits, elt_type);
14f9c5c9
AS
2338 return v;
2339}
2340
4c4b4cd2 2341/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2342
2343static int
d2e4a39e 2344has_negatives (struct type *type)
14f9c5c9 2345{
d2e4a39e
AS
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
4e962e74 2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2354 }
14f9c5c9 2355}
d2e4a39e 2356
f93fca70 2357/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2359 the unpacked buffer.
14f9c5c9 2360
5b639dea
JB
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
f93fca70
JB
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
14f9c5c9 2366
f93fca70 2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2368
f93fca70
JB
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371static void
2372ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376{
a1c95e6b
JB
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
a1c95e6b
JB
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
4c4b4cd2 2387 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2388 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2389 unsigned char sign;
a1c95e6b 2390
4c4b4cd2
PH
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
f93fca70 2393 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2394
5b639dea
JB
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
14f9c5c9 2401 srcBitsLeft = bit_size;
086ca51f 2402 src_bytes_left = src_len;
f93fca70 2403 unpacked_bytes_left = unpacked_len;
14f9c5c9 2404 sign = 0;
f93fca70
JB
2405
2406 if (is_big_endian)
14f9c5c9 2407 {
086ca51f 2408 src_idx = src_len - 1;
f93fca70
JB
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2411 sign = ~0;
d2e4a39e
AS
2412
2413 unusedLS =
4c4b4cd2
PH
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
14f9c5c9 2416
f93fca70
JB
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
4c4b4cd2
PH
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
086ca51f
JB
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2431 }
14f9c5c9 2432 }
d2e4a39e 2433 else
14f9c5c9
AS
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
086ca51f 2437 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
f93fca70 2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2442 sign = ~0;
14f9c5c9 2443 }
d2e4a39e 2444
14f9c5c9 2445 accum = 0;
086ca51f 2446 while (src_bytes_left > 0)
14f9c5c9
AS
2447 {
2448 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2449 part of the value. */
d2e4a39e 2450 unsigned int unusedMSMask =
4c4b4cd2
PH
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
14f9c5c9 2454 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2455
d2e4a39e 2456 accum |=
086ca51f 2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2458 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2459 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2460 {
db297a65 2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
4c4b4cd2 2466 }
14f9c5c9
AS
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
086ca51f
JB
2469 src_bytes_left -= 1;
2470 src_idx += delta;
14f9c5c9 2471 }
086ca51f 2472 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2473 {
2474 accum |= sign << accumSize;
db297a65 2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2476 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2477 if (accumSize < 0)
2478 accumSize = 0;
14f9c5c9 2479 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
14f9c5c9 2482 }
f93fca70
JB
2483}
2484
2485/* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494struct value *
2495ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498{
2499 struct value *v;
bfb1c796 2500 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2501 gdb_byte *unpacked;
220475ed 2502 const int is_scalar = is_scalar_type (type);
d0a9e810 2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2504 gdb::byte_vector staging;
f93fca70
JB
2505
2506 type = ada_check_typedef (type);
2507
d0a9e810 2508 if (obj == NULL)
bfb1c796 2509 src = valaddr + offset;
d0a9e810 2510 else
bfb1c796 2511 src = value_contents (obj) + offset;
d0a9e810
JB
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
d0a9e810
JB
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2526 staging.data (), staging.size (),
d0a9e810
JB
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
d5722aa2 2529 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
d0a9e810
JB
2541 }
2542
f93fca70
JB
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
bfb1c796 2546 src = valaddr + offset;
f93fca70
JB
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
0cafa88c 2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2551 gdb_byte *buf;
0cafa88c 2552
f93fca70 2553 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
f93fca70
JB
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
bfb1c796 2561 src = value_contents (obj) + offset;
f93fca70
JB
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
bfb1c796 2584 unpacked = value_contents_writeable (v);
f93fca70
JB
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
d5722aa2 2592 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2593 {
d0a9e810
JB
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
d5722aa2 2597 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2598 }
d0a9e810
JB
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2603
14f9c5c9
AS
2604 return v;
2605}
d2e4a39e 2606
14f9c5c9
AS
2607/* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2610 floating-point or non-scalar types. */
14f9c5c9 2611
d2e4a39e
AS
2612static struct value *
2613ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2614{
df407dfe
AC
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
14f9c5c9 2617
52ce6436
PH
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
88e3b34b 2626 if (!deprecated_value_modifiable (toval))
323e0a4a 2627 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2628
d2e4a39e 2629 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2630 && bits > 0
d2e4a39e 2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2633 {
df407dfe
AC
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2636 int from_size;
224c3ddb 2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2638 struct value *val;
42ae5230 2639 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2642 fromval = value_cast (type, fromval);
14f9c5c9 2643
52ce6436 2644 read_memory (to_addr, buffer, len);
aced2898
PH
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
972daa01 2656 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2657
14f9c5c9 2658 val = value_copy (toval);
0fd88904 2659 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2660 TYPE_LENGTH (type));
04624583 2661 deprecated_set_value_type (val, type);
d2e4a39e 2662
14f9c5c9
AS
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667}
2668
2669
7c512744
JB
2670/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
52ce6436
PH
2681static void
2682value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684{
2685 LONGEST offset_in_container =
42ae5230 2686 (LONGEST) (value_address (component) - value_address (container));
7c512744 2687 int bit_offset_in_container =
52ce6436
PH
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
7c512744 2690
52ce6436
PH
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
50810684 2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
a99bc3d2
JB
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2a62dfa9 2710 }
52ce6436 2711 else
a99bc3d2
JB
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
7c512744
JB
2715}
2716
736ade86
XR
2717/* Determine if TYPE is an access to an unconstrained array. */
2718
d91e9ea8 2719bool
736ade86
XR
2720ada_is_access_to_unconstrained_array (struct type *type)
2721{
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724}
2725
4c4b4cd2
PH
2726/* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2728 thereto. */
2729
d2e4a39e
AS
2730struct value *
2731ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2732{
2733 int k;
d2e4a39e
AS
2734 struct value *elt;
2735 struct type *elt_type;
14f9c5c9
AS
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
df407dfe 2739 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
b9c50e9a
XR
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
14f9c5c9 2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2750
2497b498 2751 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2772 }
b9c50e9a 2773
14f9c5c9
AS
2774 return elt;
2775}
2776
deede10c
JB
2777/* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
14f9c5c9 2788
2c0b251b 2789static struct value *
deede10c 2790ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2791{
2792 int k;
919e6dbe 2793 struct value *array_ind = ada_value_ind (arr);
deede10c 2794 struct type *type
919e6dbe
PMR
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
aa715135 2804 struct value *lwb_value;
14f9c5c9
AS
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2807 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2809 value_copy (arr));
14f9c5c9 2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817}
2818
0b5d8877 2819/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
0b5d8877 2823static struct value *
f5938064
JG
2824ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
0b5d8877 2826{
b0dd7688 2827 struct type *type0 = ada_check_typedef (type);
aa715135 2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2829 struct type *index_type
aa715135 2830 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
5b4ee69b 2846
aa715135
JG
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2850 return value_at_lazy (slice_type, base);
0b5d8877
PH
2851}
2852
2853
2854static struct value *
2855ada_value_slice (struct value *array, int low, int high)
2856{
b0dd7688 2857 struct type *type = ada_check_typedef (value_type (array));
aa715135 2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2865 LONGEST low_pos, high_pos;
5b4ee69b 2866
aa715135
JG
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2877}
2878
14f9c5c9
AS
2879/* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2882 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2883
2884int
d2e4a39e 2885ada_array_arity (struct type *type)
14f9c5c9
AS
2886{
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
d2e4a39e 2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2896 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2899 {
4c4b4cd2 2900 arity += 1;
61ee279c 2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2902 }
d2e4a39e 2903
14f9c5c9
AS
2904 return arity;
2905}
2906
2907/* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2910 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2911
d2e4a39e
AS
2912struct type *
2913ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2914{
2915 type = desc_base_type (type);
2916
d2e4a39e 2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2918 {
2919 int k;
d2e4a39e 2920 struct type *p_array_type;
14f9c5c9 2921
556bdfd4 2922 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
4c4b4cd2 2926 return NULL;
d2e4a39e 2927
4c4b4cd2 2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2929 if (nindices >= 0 && k > nindices)
4c4b4cd2 2930 k = nindices;
d2e4a39e 2931 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2932 {
61ee279c 2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2934 k -= 1;
2935 }
14f9c5c9
AS
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
14f9c5c9
AS
2945 return type;
2946 }
2947
2948 return NULL;
2949}
2950
4c4b4cd2 2951/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
14f9c5c9 2956
1eea4ebd
UW
2957static struct type *
2958ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2959{
4c4b4cd2
PH
2960 struct type *result_type;
2961
14f9c5c9
AS
2962 type = desc_base_type (type);
2963
1eea4ebd
UW
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2966
4c4b4cd2 2967 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
4c4b4cd2 2972 type = TYPE_TARGET_TYPE (type);
262452ec 2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2976 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
14f9c5c9 2979 }
d2e4a39e 2980 else
1eea4ebd
UW
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
14f9c5c9
AS
2988}
2989
2990/* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
14f9c5c9 2995
abb68b3e 2996static LONGEST
fb5e3d5c 2997ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2998{
8a48ac95 2999 struct type *type, *index_type_desc, *index_type;
1ce677a4 3000 int i;
262452ec
JK
3001
3002 gdb_assert (which == 0 || which == 1);
14f9c5c9 3003
ad82864c
JB
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3006
4c4b4cd2 3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3008 return (LONGEST) - which;
14f9c5c9
AS
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
bafffb51
JB
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
262452ec 3028 if (index_type_desc != NULL)
28c85d6c
JB
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
262452ec 3031 else
8a48ac95
JB
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
262452ec 3040
43bbcdc2
PH
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3045}
3046
3047/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3050 supplied by run-time quantities other than discriminants. */
14f9c5c9 3051
1eea4ebd 3052static LONGEST
4dc81987 3053ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3054{
eb479039
JB
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
14f9c5c9 3060
ad82864c
JB
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3063 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3064 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3065 else
1eea4ebd 3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3067}
3068
3069/* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
14f9c5c9 3074
1eea4ebd 3075static LONGEST
d2e4a39e 3076ada_array_length (struct value *arr, int n)
14f9c5c9 3077{
aa715135
JG
3078 struct type *arr_type, *index_type;
3079 int low, high;
eb479039
JB
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3087
4c4b4cd2 3088 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
14f9c5c9 3093 else
aa715135
JG
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
f168693b 3099 arr_type = check_typedef (arr_type);
7150d33c 3100 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
4c4b4cd2
PH
3113}
3114
bff8c71f
TT
3115/* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3118
3119static struct value *
bff8c71f 3120empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3121{
b0dd7688 3122 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3123 struct type *index_type
3124 = create_static_range_type
bff8c71f
TT
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
b0dd7688 3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3128
0b5d8877 3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3130}
14f9c5c9 3131\f
d2e4a39e 3132
4c4b4cd2 3133 /* Name resolution */
14f9c5c9 3134
4c4b4cd2
PH
3135/* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
14f9c5c9 3137
d2e4a39e 3138static const char *
4c4b4cd2 3139ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3140{
3141 int i;
3142
4c4b4cd2 3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3144 {
3145 if (ada_opname_table[i].op == op)
4c4b4cd2 3146 return ada_opname_table[i].decoded;
14f9c5c9 3147 }
323e0a4a 3148 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3149}
3150
3151
4c4b4cd2
PH
3152/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3159 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3160
4c4b4cd2 3161static void
699bd4cf
TT
3162resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
14f9c5c9 3164{
30b15541
UW
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
699bd4cf 3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3172}
3173
4c4b4cd2
PH
3174/* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
14f9c5c9 3182
d2e4a39e 3183static struct value *
e9d9f57e 3184resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
14f9c5c9
AS
3187{
3188 int pc = *pos;
3189 int i;
4c4b4cd2 3190 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
52ce6436 3194 int oplen;
14f9c5c9
AS
3195
3196 argvec = NULL;
3197 nargs = 0;
e9d9f57e 3198 exp = expp->get ();
14f9c5c9 3199
52ce6436
PH
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
14f9c5c9
AS
3202 switch (op)
3203 {
4c4b4cd2
PH
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
4c4b4cd2
PH
3208 else
3209 {
3210 *pos += 3;
699bd4cf 3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3214 break;
3215
14f9c5c9 3216 case UNOP_ADDR:
4c4b4cd2 3217 *pos += 1;
699bd4cf 3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3219 break;
3220
52ce6436
PH
3221 case UNOP_QUAL:
3222 *pos += 3;
2a612529 3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3224 parse_completion, tracker);
4c4b4cd2
PH
3225 break;
3226
52ce6436 3227 case OP_ATR_MODULUS:
4c4b4cd2
PH
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
4c4b4cd2
PH
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
4c4b4cd2
PH
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
52ce6436
PH
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
14f9c5c9
AS
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
4c4b4cd2
PH
3252 struct value *arg1;
3253
3254 *pos += 1;
699bd4cf 3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3256 if (arg1 == NULL)
699bd4cf 3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3258 else
699bd4cf
TT
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
4c4b4cd2 3261 break;
14f9c5c9
AS
3262 }
3263
4c4b4cd2 3264 case UNOP_CAST:
4c4b4cd2
PH
3265 *pos += 3;
3266 nargs = 1;
3267 break;
14f9c5c9 3268
4c4b4cd2
PH
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
14f9c5c9 3282
4c4b4cd2
PH
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
14f9c5c9 3289
4c4b4cd2
PH
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
40c8aaa9
JB
3293 *pos += 1;
3294 nargs = 2;
3295 break;
14f9c5c9 3296
4c4b4cd2
PH
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
14f9c5c9 3305
4c4b4cd2 3306 case OP_LONG:
edd079d9 3307 case OP_FLOAT:
4c4b4cd2 3308 case OP_VAR_VALUE:
74ea4be4 3309 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3310 *pos += 4;
3311 break;
14f9c5c9 3312
4c4b4cd2
PH
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
4c4b4cd2
PH
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
14f9c5c9 3319
4c4b4cd2
PH
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
67f3407f
DJ
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
4c4b4cd2
PH
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
4c4b4cd2 3334 case TERNOP_SLICE:
4c4b4cd2
PH
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
52ce6436 3339 case OP_STRING:
14f9c5c9 3340 break;
4c4b4cd2
PH
3341
3342 default:
323e0a4a 3343 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3344 }
3345
8d749320 3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3347 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
4c4b4cd2 3350 argvec[i] = NULL;
e9d9f57e 3351 exp = expp->get ();
4c4b4cd2
PH
3352
3353 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
14f9c5c9 3359 case OP_VAR_VALUE:
4c4b4cd2 3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3361 {
54d343a2 3362 std::vector<struct block_symbol> candidates;
76a01679
JB
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3369 &candidates);
76a01679
JB
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
d12307c1 3378 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
76a01679
JB
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
76a01679 3385 case LOC_COMPUTED:
76a01679
JB
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
d12307c1 3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
323e0a4a 3408 error (_("No definition found for %s"),
76a01679
JB
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
54d343a2 3413 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3414 {
06d5cf63 3415 i = ada_resolve_function
54d343a2 3416 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3418 context_type, parse_completion);
76a01679 3419 if (i < 0)
323e0a4a 3420 error (_("Could not find a match for %s"),
76a01679
JB
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
323e0a4a 3425 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3427 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3433 tracker->update (candidates[i]);
76a01679
JB
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
424da6cf 3440 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
e9d9f57e 3443 exp = expp->get ();
76a01679 3444 }
14f9c5c9
AS
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
4c4b4cd2 3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3451 {
54d343a2 3452 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3453 int n_candidates;
3454
3455 n_candidates =
76a01679
JB
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3459 &candidates);
ec6a20c2 3460
4c4b4cd2
PH
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
06d5cf63 3465 i = ada_resolve_function
54d343a2 3466 (candidates.data (), n_candidates,
06d5cf63
JB
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3469 context_type, parse_completion);
4c4b4cd2 3470 if (i < 0)
323e0a4a 3471 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3477 tracker->update (candidates[i]);
4c4b4cd2 3478 }
14f9c5c9
AS
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3503 {
54d343a2 3504 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3505 int n_candidates;
3506
3507 n_candidates =
b5ec771e 3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3509 NULL, VAR_DOMAIN,
4eeaa230 3510 &candidates);
ec6a20c2 3511
54d343a2 3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
4c4b4cd2
PH
3515 if (i < 0)
3516 break;
3517
d12307c1
PMR
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
e9d9f57e 3521 exp = expp->get ();
4c4b4cd2 3522 }
14f9c5c9 3523 break;
4c4b4cd2
PH
3524
3525 case OP_TYPE:
b3dbf008 3526 case OP_REGISTER:
4c4b4cd2 3527 return NULL;
14f9c5c9
AS
3528 }
3529
3530 *pos = pc;
ced9779b
JB
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3537}
3538
3539/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3541 a non-pointer. */
14f9c5c9 3542/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3543 liberal. */
14f9c5c9
AS
3544
3545static int
4dc81987 3546ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3547{
61ee279c
PH
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
14f9c5c9
AS
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
d2e4a39e 3556 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3557 {
3558 default:
5b3d5b7d 3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3564 else
1265e4aa
JB
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
14f9c5c9
AS
3579
3580 case TYPE_CODE_ARRAY:
d2e4a39e 3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3582 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3583
3584 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
14f9c5c9 3588 else
4c4b4cd2
PH
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596}
3597
3598/* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3601 argument function. */
14f9c5c9
AS
3602
3603static int
d2e4a39e 3604ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3605{
3606 int i;
d2e4a39e 3607 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3608
1265e4aa
JB
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
4c4b4cd2 3620 if (actuals[i] == NULL)
76a01679
JB
3621 return 0;
3622 else
3623 {
5b4ee69b
MS
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
df407dfe 3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3627
76a01679
JB
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
14f9c5c9
AS
3631 }
3632 return 1;
3633}
3634
3635/* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640static int
d2e4a39e 3641return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3642{
d2e4a39e 3643 struct type *return_type;
14f9c5c9
AS
3644
3645 if (func_type == NULL)
3646 return 1;
3647
4c4b4cd2 3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3650 else
18af8284 3651 return_type = get_base_type (func_type);
14f9c5c9
AS
3652 if (return_type == NULL)
3653 return 1;
3654
18af8284 3655 context_type = get_base_type (context_type);
14f9c5c9
AS
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663}
3664
3665
4c4b4cd2 3666/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3667 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
14f9c5c9
AS
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
14f9c5c9 3677
4c4b4cd2 3678static int
d12307c1 3679ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3680 int nsyms, struct value **args, int nargs,
2a612529
TT
3681 const char *name, struct type *context_type,
3682 int parse_completion)
14f9c5c9 3683{
30b15541 3684 int fallback;
14f9c5c9 3685 int k;
4c4b4cd2 3686 int m; /* Number of hits */
14f9c5c9 3687
d2e4a39e 3688 m = 0;
30b15541
UW
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3693 {
3694 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3695 {
d12307c1 3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3697
d12307c1 3698 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3699 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
14f9c5c9
AS
3705 }
3706
dc5c8746
PMR
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3711 if (m == 0)
3712 return -1;
dc5c8746 3713 else if (m > 1 && !parse_completion)
14f9c5c9 3714 {
323e0a4a 3715 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3716 user_select_syms (syms, m, 1);
14f9c5c9
AS
3717 return 0;
3718 }
3719 return 0;
3720}
3721
4c4b4cd2
PH
3722/* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
14f9c5c9 3728static int
0d5cff50 3729encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3730{
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
5b4ee69b 3738
d2e4a39e 3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3740 ;
d2e4a39e 3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3742 ;
d2e4a39e 3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
5b4ee69b 3747
4c4b4cd2
PH
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
14f9c5c9
AS
3757 return (strcmp (N0, N1) < 0);
3758 }
3759}
d2e4a39e 3760
4c4b4cd2
PH
3761/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
d2e4a39e 3764static void
d12307c1 3765sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3766{
4c4b4cd2 3767 int i;
5b4ee69b 3768
d2e4a39e 3769 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3770 {
d12307c1 3771 struct block_symbol sym = syms[i];
14f9c5c9
AS
3772 int j;
3773
d2e4a39e 3774 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3775 {
d12307c1
PMR
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
d2e4a39e 3781 syms[j + 1] = sym;
14f9c5c9
AS
3782 }
3783}
3784
d72413e6
PMR
3785/* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
491144b5 3787static bool print_signatures = true;
d72413e6
PMR
3788
3789/* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794static void
3795ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797{
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826}
3827
4c4b4cd2
PH
3828/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
14f9c5c9
AS
3832
3833/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3834 to be re-integrated one of these days. */
14f9c5c9
AS
3835
3836int
d12307c1 3837user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3838{
3839 int i;
8d749320 3840 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3843 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3844
3845 if (max_results < 1)
323e0a4a 3846 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3847 if (nsyms <= 1)
3848 return nsyms;
3849
717d2f5a
JB
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852canceled because the command is ambiguous\n\
3853See set/show multiple-symbol."));
a0087920 3854
717d2f5a
JB
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
a0087920 3861 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3862 if (max_results > 1)
a0087920 3863 printf_filtered (_("[1] all\n"));
14f9c5c9 3864
4c4b4cd2 3865 sort_choices (syms, nsyms);
14f9c5c9
AS
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
d12307c1 3869 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3870 continue;
3871
d12307c1 3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3873 {
76a01679 3874 struct symtab_and_line sal =
d12307c1 3875 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3876
a0087920 3877 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
323e0a4a 3880 if (sal.symtab == NULL)
7f6aba03
TT
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
323e0a4a 3883 else
9d636d67
TT
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
4c4b4cd2
PH
3889 continue;
3890 }
d2e4a39e 3891 else
4c4b4cd2
PH
3892 {
3893 int is_enumeral =
d12307c1
PMR
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3897 struct symtab *symtab = NULL;
3898
d12307c1
PMR
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3901
d12307c1 3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3903 {
a0087920 3904 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
a0087920
TT
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
d72413e6 3910 }
76a01679 3911 else if (is_enumeral
d12307c1 3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3913 {
a0087920 3914 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3916 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3919 }
d72413e6
PMR
3920 else
3921 {
a0087920 3922 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
a0087920
TT
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
d72413e6 3931 else
a0087920
TT
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
d72413e6 3935 }
4c4b4cd2 3936 }
14f9c5c9 3937 }
d2e4a39e 3938
14f9c5c9 3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3940 "overload-choice");
14f9c5c9
AS
3941
3942 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3943 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3944
3945 return n_chosen;
3946}
3947
3948/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3949 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
4c4b4cd2 3955 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
4c4b4cd2 3959 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3962 prompts (for use with the -f switch). */
14f9c5c9
AS
3963
3964int
d2e4a39e 3965get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3966 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3967{
d2e4a39e 3968 char *args;
a121b7c1 3969 const char *prompt;
14f9c5c9
AS
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3972
14f9c5c9
AS
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
0bcd0149 3975 prompt = "> ";
14f9c5c9 3976
89fbedf3 3977 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3978
14f9c5c9 3979 if (args == NULL)
323e0a4a 3980 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3981
3982 n_chosen = 0;
76a01679 3983
4c4b4cd2
PH
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
14f9c5c9
AS
3986 while (1)
3987 {
d2e4a39e 3988 char *args2;
14f9c5c9
AS
3989 int choice, j;
3990
0fcd72ba 3991 args = skip_spaces (args);
14f9c5c9 3992 if (*args == '\0' && n_chosen == 0)
323e0a4a 3993 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3994 else if (*args == '\0')
4c4b4cd2 3995 break;
14f9c5c9
AS
3996
3997 choice = strtol (args, &args2, 10);
d2e4a39e 3998 if (args == args2 || choice < 0
4c4b4cd2 3999 || choice > n_choices + first_choice - 1)
323e0a4a 4000 error (_("Argument must be choice number"));
14f9c5c9
AS
4001 args = args2;
4002
d2e4a39e 4003 if (choice == 0)
323e0a4a 4004 error (_("cancelled"));
14f9c5c9
AS
4005
4006 if (choice < first_choice)
4c4b4cd2
PH
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
14f9c5c9
AS
4013 choice -= first_choice;
4014
d2e4a39e 4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4016 {
4017 }
14f9c5c9
AS
4018
4019 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4020 {
4021 int k;
5b4ee69b 4022
4c4b4cd2
PH
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
14f9c5c9
AS
4028 }
4029
4030 if (n_chosen > max_results)
323e0a4a 4031 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4032
14f9c5c9
AS
4033 return n_chosen;
4034}
4035
4c4b4cd2
PH
4036/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4039
4040static void
e9d9f57e 4041replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4042 int oplen, struct symbol *sym,
270140bd 4043 const struct block *block)
14f9c5c9
AS
4044{
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4046 symbol, -oplen for operator being replaced). */
d2e4a39e 4047 struct expression *newexp = (struct expression *)
8c1a34e7 4048 xzalloc (sizeof (struct expression)
4c4b4cd2 4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4050 struct expression *exp = expp->get ();
14f9c5c9
AS
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
3489610d 4054 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
e9d9f57e 4066 expp->reset (newexp);
d2e4a39e 4067}
14f9c5c9
AS
4068
4069/* Type-class predicates */
4070
4c4b4cd2
PH
4071/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
14f9c5c9
AS
4073
4074static int
d2e4a39e 4075numeric_type_p (struct type *type)
14f9c5c9
AS
4076{
4077 if (type == NULL)
4078 return 0;
d2e4a39e
AS
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4c4b4cd2
PH
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
d2e4a39e 4092 }
14f9c5c9
AS
4093}
4094
4c4b4cd2 4095/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4096
4097static int
d2e4a39e 4098integer_type_p (struct type *type)
14f9c5c9
AS
4099{
4100 if (type == NULL)
4101 return 0;
d2e4a39e
AS
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4c4b4cd2
PH
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
d2e4a39e 4114 }
14f9c5c9
AS
4115}
4116
4c4b4cd2 4117/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4118
4119static int
d2e4a39e 4120scalar_type_p (struct type *type)
14f9c5c9
AS
4121{
4122 if (type == NULL)
4123 return 0;
d2e4a39e
AS
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4c4b4cd2
PH
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
d2e4a39e 4136 }
14f9c5c9
AS
4137}
4138
4c4b4cd2 4139/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142discrete_type_p (struct type *type)
14f9c5c9
AS
4143{
4144 if (type == NULL)
4145 return 0;
d2e4a39e
AS
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4c4b4cd2
PH
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
872f0337 4153 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4154 return 1;
4155 default:
4156 return 0;
4157 }
d2e4a39e 4158 }
14f9c5c9
AS
4159}
4160
4c4b4cd2
PH
4161/* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
14f9c5c9
AS
4164
4165static int
d2e4a39e 4166possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4167{
76a01679 4168 struct type *type0 =
df407dfe 4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4170 struct type *type1 =
df407dfe 4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4172
4c4b4cd2
PH
4173 if (type0 == NULL)
4174 return 0;
4175
14f9c5c9
AS
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
d2e4a39e 4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
d2e4a39e 4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
d2e4a39e 4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4201
4202 case BINOP_CONCAT:
ee90b9ab 4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4204
4205 case BINOP_EXP:
d2e4a39e 4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
14f9c5c9
AS
4213
4214 }
4215}
4216\f
4c4b4cd2 4217 /* Renaming */
14f9c5c9 4218
aeb5907d
JB
4219/* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231/* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
0963b4bd 4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250enum ada_renaming_category
4251ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254{
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
14f9c5c9 4262 {
aeb5907d
JB
4263 default:
4264 return ADA_NOT_RENAMING;
aeb5907d
JB
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
14f9c5c9 4293 }
4c4b4cd2 4294
aeb5907d
JB
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306}
4307
a5ee536b
JB
4308/* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
52ce6436 4311
a5ee536b
JB
4312static struct value *
4313ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4314 const struct block *block)
a5ee536b 4315{
bbc13ae3 4316 const char *sym_name;
a5ee536b 4317
bbc13ae3 4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
a5ee536b 4321}
14f9c5c9 4322\f
d2e4a39e 4323
4c4b4cd2 4324 /* Evaluation: Function Calls */
14f9c5c9 4325
4c4b4cd2 4326/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4329
d2e4a39e 4330static struct value *
40bc484c 4331ensure_lval (struct value *val)
14f9c5c9 4332{
40bc484c
JB
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4335 {
df407dfe 4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4339
a84a8a0d 4340 VALUE_LVAL (val) = lval_memory;
1a088441 4341 set_value_address (val, addr);
40bc484c 4342 write_memory (addr, value_contents (val), len);
c3e5cd34 4343 }
14f9c5c9
AS
4344
4345 return val;
4346}
4347
4348/* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4351 values not residing in memory, updating it as needed. */
14f9c5c9 4352
a93c0eb6 4353struct value *
40bc484c 4354ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4355{
df407dfe 4356 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4357 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4364
4c4b4cd2 4365 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4367 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4370 {
a84a8a0d 4371 struct value *result;
5b4ee69b 4372
14f9c5c9 4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4374 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4375 result = desc_data (actual);
cb923fcc 4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
5b4ee69b 4381
df407dfe 4382 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4383 val = allocate_value (actual_type);
990a07ab 4384 memcpy ((char *) value_contents_raw (val),
0fd88904 4385 (char *) value_contents (actual),
4c4b4cd2 4386 TYPE_LENGTH (actual_type));
40bc484c 4387 actual = ensure_lval (val);
4c4b4cd2 4388 }
a84a8a0d 4389 result = value_addr (actual);
4c4b4cd2 4390 }
a84a8a0d
JB
4391 else
4392 return actual;
b1af9e97 4393 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
8344af1e
JB
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
14f9c5c9
AS
4407
4408 return actual;
4409}
4410
438c98a1
JB
4411/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416static CORE_ADDR
4417value_pointer (struct value *value, struct type *type)
4418{
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
224c3ddb 4421 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428}
4429
14f9c5c9 4430
4c4b4cd2
PH
4431/* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
14f9c5c9 4436
d2e4a39e 4437static struct value *
40bc484c 4438make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4439{
d2e4a39e
AS
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4444 int i;
d2e4a39e 4445
0963b4bd
MS
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
14f9c5c9 4448 {
19f220c3
JK
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4457 }
d2e4a39e 4458
40bc484c 4459 bounds = ensure_lval (bounds);
d2e4a39e 4460
19f220c3
JK
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4474
40bc484c 4475 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481}
14f9c5c9 4482\f
3d9434b5
JB
4483 /* Symbol Cache Module */
4484
3d9434b5 4485/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4486 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
ee01b665 4495/* Initialize the contents of SYM_CACHE. */
3d9434b5 4496
ee01b665
JB
4497static void
4498ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499{
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502}
3d9434b5 4503
ee01b665
JB
4504/* Free the memory used by SYM_CACHE. */
4505
4506static void
4507ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4508{
ee01b665
JB
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511}
3d9434b5 4512
ee01b665
JB
4513/* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4515
ee01b665
JB
4516static struct ada_symbol_cache *
4517ada_get_symbol_cache (struct program_space *pspace)
4518{
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4520
66c168ae 4521 if (pspace_data->sym_cache == NULL)
ee01b665 4522 {
66c168ae
JB
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4525 }
4526
66c168ae 4527 return pspace_data->sym_cache;
ee01b665 4528}
3d9434b5
JB
4529
4530/* Clear all entries from the symbol cache. */
4531
4532static void
4533ada_clear_symbol_cache (void)
4534{
ee01b665
JB
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4540}
4541
fe978cb0 4542/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4543 Return it if found, or NULL otherwise. */
4544
4545static struct cache_entry **
fe978cb0 4546find_entry (const char *name, domain_enum domain)
3d9434b5 4547{
ee01b665
JB
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
ee01b665 4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4554 {
fe978cb0 4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4556 return e;
4557 }
4558 return NULL;
4559}
4560
fe978cb0 4561/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4566
96d887e8 4567static int
fe978cb0 4568lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4569 struct symbol **sym, const struct block **block)
96d887e8 4570{
fe978cb0 4571 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
96d887e8
PH
4580}
4581
3d9434b5 4582/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4583 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4584
96d887e8 4585static void
fe978cb0 4586cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4587 const struct block *block)
96d887e8 4588{
ee01b665
JB
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
1994afbf
DE
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
3d9434b5
JB
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
08be3fe3 4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4606 GLOBAL_BLOCK) != block
08be3fe3 4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4608 STATIC_BLOCK) != block)
3d9434b5
JB
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
224c3ddb
SM
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4617 strcpy (copy, name);
4618 e->sym = sym;
fe978cb0 4619 e->domain = domain;
3d9434b5 4620 e->block = block;
96d887e8 4621}
4c4b4cd2
PH
4622\f
4623 /* Symbol Lookup */
4624
b5ec771e
PA
4625/* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4629 for Ada lookups. */
c0431670 4630
b5ec771e
PA
4631static symbol_name_match_type
4632name_match_type_from_name (const char *lookup_name)
c0431670 4633{
b5ec771e
PA
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
c0431670
JB
4637}
4638
4c4b4cd2
PH
4639/* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642static struct symbol *
4643standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645{
acbd605d 4646 /* Initialize it just to avoid a GCC false warning. */
6640a367 4647 struct block_symbol sym = {};
4c4b4cd2 4648
d12307c1
PMR
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
a2cd4f14 4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4c4b4cd2
PH
4654}
4655
4656
4657/* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660static int
d12307c1 4661is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4662{
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
d12307c1
PMR
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4669 return 1;
4670
4671 return 0;
4672}
4673
4674/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4675 struct types. Otherwise, they may not. */
14f9c5c9
AS
4676
4677static int
d2e4a39e 4678equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4679{
d2e4a39e 4680 if (type0 == type1)
14f9c5c9 4681 return 1;
d2e4a39e 4682 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
d2e4a39e 4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4689 return 1;
d2e4a39e 4690
14f9c5c9
AS
4691 return 0;
4692}
4693
4694/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4695 no more defined than that of SYM1. */
14f9c5c9
AS
4696
4697static int
d2e4a39e 4698lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4699{
4700 if (sym0 == sym1)
4701 return 1;
176620f1 4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
d2e4a39e 4706 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4c4b4cd2
PH
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4716 int len0 = strlen (name0);
5b4ee69b 4717
4c4b4cd2
PH
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4722 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4727
4728 case LOC_STATIC:
4729 {
4730 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4731 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4732 return (strcmp (name0, name1) == 0
4733 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4734 }
4735
d2e4a39e
AS
4736 default:
4737 return 0;
14f9c5c9
AS
4738 }
4739}
4740
d12307c1 4741/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4743
4744static void
76a01679
JB
4745add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
f0c5f9b2 4747 const struct block *block)
14f9c5c9
AS
4748{
4749 int i;
d12307c1 4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4751
529cad9c
PH
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4c4b4cd2
PH
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
d12307c1 4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4764 return;
d12307c1 4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4766 {
d12307c1 4767 prevDefns[i].symbol = sym;
4c4b4cd2 4768 prevDefns[i].block = block;
4c4b4cd2 4769 return;
76a01679 4770 }
4c4b4cd2
PH
4771 }
4772
4773 {
d12307c1 4774 struct block_symbol info;
4c4b4cd2 4775
d12307c1 4776 info.symbol = sym;
4c4b4cd2 4777 info.block = block;
d12307c1 4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4779 }
4780}
4781
d12307c1
PMR
4782/* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4c4b4cd2 4784
76a01679
JB
4785static int
4786num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4787{
d12307c1 4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4789}
4790
d12307c1
PMR
4791/* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4793
d12307c1 4794static struct block_symbol *
4c4b4cd2
PH
4795defns_collected (struct obstack *obstackp, int finish)
4796{
4797 if (finish)
224c3ddb 4798 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4799 else
d12307c1 4800 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4801}
4802
7c7b6655
TT
4803/* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4c4b4cd2 4808
7c7b6655 4809struct bound_minimal_symbol
96d887e8 4810ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4811{
7c7b6655 4812 struct bound_minimal_symbol result;
4c4b4cd2 4813
7c7b6655
TT
4814 memset (&result, 0, sizeof (result));
4815
b5ec771e
PA
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4821
2030c079 4822 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4823 {
7932255d 4824 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4c4b4cd2 4835
7c7b6655 4836 return result;
96d887e8 4837}
4c4b4cd2 4838
2ff0a947
TT
4839/* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845static std::vector<struct bound_minimal_symbol>
4846ada_lookup_simple_minsyms (const char *name)
4847{
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867}
4868
96d887e8
PH
4869/* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4c4b4cd2 4874
96d887e8
PH
4875static void
4876add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
96d887e8 4879{
96d887e8 4880}
14f9c5c9 4881
96d887e8
PH
4882/* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
14f9c5c9 4884
96d887e8
PH
4885static int
4886is_nondebugging_type (struct type *type)
4887{
0d5cff50 4888 const char *name = ada_type_name (type);
5b4ee69b 4889
96d887e8
PH
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891}
4c4b4cd2 4892
8f17729f
JB
4893/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900static int
4901ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902{
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
0d5cff50
DE
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934}
4935
4936/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956static int
54d343a2 4957symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4958{
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
54d343a2 4969 for (i = 0; i < syms.size (); i++)
d12307c1 4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
54d343a2 4974 for (i = 1; i < syms.size (); i++)
d12307c1 4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4979 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
54d343a2 4987 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4990 return 0;
4991
4992 return 1;
4993}
4994
54d343a2 4995/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
4c4b4cd2 5001
96d887e8 5002static int
54d343a2 5003remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5004{
5005 int i, j;
4c4b4cd2 5006
8f17729f
JB
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
54d343a2
TT
5010 if (syms->size () < 2)
5011 return syms->size ();
8f17729f 5012
96d887e8 5013 i = 0;
54d343a2 5014 while (i < syms->size ())
96d887e8 5015 {
a35ddb44 5016 int remove_p = 0;
339c13b6
JB
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
54d343a2
TT
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5023 {
54d343a2 5024 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5025 {
5026 if (j != i
54d343a2
TT
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5031 remove_p = 1;
339c13b6
JB
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
54d343a2
TT
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5041 {
54d343a2 5042 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5043 {
5044 if (i != j
54d343a2
TT
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5052 remove_p = 1;
4c4b4cd2 5053 }
4c4b4cd2 5054 }
339c13b6 5055
a35ddb44 5056 if (remove_p)
54d343a2 5057 syms->erase (syms->begin () + i);
339c13b6 5058
96d887e8 5059 i += 1;
14f9c5c9 5060 }
8f17729f
JB
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
8f17729f 5076
54d343a2 5077 return syms->size ();
14f9c5c9
AS
5078}
5079
96d887e8
PH
5080/* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
49d83361 5083 defined. */
4c4b4cd2 5084
49d83361 5085static std::string
96d887e8 5086xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5087{
96d887e8 5088 /* The renaming types adhere to the following convention:
0963b4bd 5089 <scope>__<rename>___<XR extension>.
96d887e8
PH
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
76a01679 5092
a737d952 5093 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
14f9c5c9 5096
96d887e8
PH
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5099
96d887e8
PH
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
76a01679 5103
96d887e8 5104 /* Make a copy of scope and return it. */
49d83361 5105 return std::string (name, last);
4c4b4cd2
PH
5106}
5107
96d887e8 5108/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5109
96d887e8
PH
5110static int
5111is_package_name (const char *name)
4c4b4cd2 5112{
96d887e8
PH
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
4c4b4cd2 5118
96d887e8
PH
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
14f9c5c9 5123
96d887e8
PH
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
14f9c5c9 5126
96d887e8 5127 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5128 functions names cannot contain "__" in them. */
96d887e8
PH
5129 if (strstr (name, "__") != NULL)
5130 return 0;
4c4b4cd2 5131
528e1572 5132 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5133
528e1572 5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5135}
14f9c5c9 5136
96d887e8 5137/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5138 not visible from FUNCTION_NAME. */
14f9c5c9 5139
96d887e8 5140static int
0d5cff50 5141old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5142{
aeb5907d
JB
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
49d83361 5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5147
96d887e8 5148 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
14f9c5c9 5151
96d887e8
PH
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
76a01679 5154
96d887e8
PH
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
61012eef 5159 if (startswith (function_name, "_ada_"))
96d887e8 5160 function_name += 5;
f26caa11 5161
49d83361 5162 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5163}
5164
aeb5907d
JB
5165/* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
96d887e8
PH
5170
5171 Rationale:
aeb5907d
JB
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
f26caa11 5184
96d887e8
PH
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
4c4b4cd2 5201
14f9c5c9 5202static int
54d343a2
TT
5203remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
4c4b4cd2
PH
5205{
5206 struct symbol *current_function;
0d5cff50 5207 const char *current_function_name;
4c4b4cd2 5208 int i;
aeb5907d
JB
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
0963b4bd 5213 First, zero out such symbols, then compress. */
aeb5907d 5214 is_new_style_renaming = 0;
54d343a2 5215 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5216 {
54d343a2
TT
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5b4ee69b 5231
aeb5907d 5232 is_new_style_renaming = 1;
54d343a2
TT
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5236 name_len) == 0
54d343a2
TT
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
aeb5907d
JB
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
54d343a2
TT
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
aeb5907d 5247 {
54d343a2 5248 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5249 k += 1;
5250 }
5251 return k;
5252 }
4c4b4cd2
PH
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
76a01679 5256
4c4b4cd2 5257 if (current_block == NULL)
54d343a2 5258 return syms->size ();
76a01679 5259
7f0df278 5260 current_function = block_linkage_function (current_block);
4c4b4cd2 5261 if (current_function == NULL)
54d343a2 5262 return syms->size ();
4c4b4cd2
PH
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
54d343a2 5266 return syms->size ();
4c4b4cd2
PH
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
54d343a2 5273 while (i < syms->size ())
4c4b4cd2 5274 {
54d343a2 5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5276 == ADA_OBJECT_RENAMING
54d343a2
TT
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5280 else
5281 i += 1;
5282 }
5283
54d343a2 5284 return syms->size ();
4c4b4cd2
PH
5285}
5286
339c13b6
JB
5287/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297static void
b5ec771e
PA
5298ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
339c13b6
JB
5301{
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
b5ec771e 5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5321}
5322
ccefe4c4 5323/* An object of this type is used as the user_data argument when
40658b94 5324 calling the map_matching_symbols method. */
ccefe4c4 5325
40658b94 5326struct match_data
ccefe4c4 5327{
40658b94 5328 struct objfile *objfile;
ccefe4c4 5329 struct obstack *obstackp;
40658b94
PH
5330 struct symbol *arg_sym;
5331 int found_sym;
ccefe4c4
TT
5332};
5333
199b4314
TT
5334/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
ccefe4c4 5342
199b4314
TT
5343static bool
5344aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
ccefe4c4 5346{
199b4314
TT
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
40658b94
PH
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5362 return true;
40658b94
PH
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
199b4314 5373 return true;
40658b94
PH
5374}
5375
b5ec771e
PA
5376/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5379
5380static int
5381ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
b5ec771e
PA
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
22cee43f
PMR
5385{
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
b5ec771e
PA
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
22cee43f
PMR
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
22cee43f
PMR
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
b5ec771e
PA
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
22cee43f
PMR
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431}
5432
db230ce3
JB
5433/* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5b4ee69b 5435
40658b94 5436static int
db230ce3
JB
5437compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
40658b94
PH
5439{
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
db230ce3
JB
5442 char c1, c2;
5443
40658b94
PH
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
40658b94 5458 break;
db230ce3 5459
40658b94
PH
5460 string1 += 1;
5461 string2 += 1;
5462 }
db230ce3 5463
40658b94
PH
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
052874e8 5471 if (is_name_suffix (string1))
40658b94
PH
5472 return 0;
5473 else
1a1d5513 5474 return 1;
40658b94 5475 }
dbb8534f 5476 /* FALLTHROUGH */
40658b94
PH
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
db230ce3
JB
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
40658b94 5487 }
ccefe4c4
TT
5488}
5489
db230ce3
JB
5490/* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501static int
5502compare_names (const char *string1, const char *string2)
5503{
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516}
5517
b5ec771e
PA
5518/* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521static const char *
5522ada_lookup_name (const lookup_name_info &lookup_name)
5523{
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525}
5526
339c13b6 5527/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
339c13b6
JB
5531
5532static void
b5ec771e
PA
5533add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
339c13b6 5536{
40658b94 5537 struct match_data data;
339c13b6 5538
6475f2fe 5539 memset (&data, 0, sizeof data);
ccefe4c4 5540 data.obstackp = obstackp;
339c13b6 5541
b5ec771e
PA
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
199b4314
TT
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
2030c079 5549 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5550 {
5551 data.objfile = objfile;
5552
b054970d
TT
5553 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5554 domain, global, callback,
5555 (is_wild_match
5556 ? NULL : compare_names));
22cee43f 5557
b669c953 5558 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5559 {
5560 const struct block *global_block
5561 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5562
b5ec771e
PA
5563 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5564 domain))
22cee43f
PMR
5565 data.found_sym = 1;
5566 }
40658b94
PH
5567 }
5568
5569 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5570 {
b5ec771e 5571 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5572 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5573 symbol_name_match_type::FULL);
b5ec771e 5574
2030c079 5575 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5576 {
40658b94 5577 data.objfile = objfile;
b054970d 5578 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5579 domain, global, callback,
b5ec771e 5580 compare_names);
40658b94
PH
5581 }
5582 }
339c13b6
JB
5583}
5584
b5ec771e
PA
5585/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5586 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5587 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5588
22cee43f
PMR
5589 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5590 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5591 is the one match returned (no other matches in that or
d9680e73 5592 enclosing blocks is returned). If there are any matches in or
22cee43f 5593 surrounding BLOCK, then these alone are returned.
4eeaa230 5594
b5ec771e
PA
5595 Names prefixed with "standard__" are handled specially:
5596 "standard__" is first stripped off (by the lookup_name
5597 constructor), and only static and global symbols are searched.
14f9c5c9 5598
22cee43f
PMR
5599 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5600 to lookup global symbols. */
5601
5602static void
5603ada_add_all_symbols (struct obstack *obstackp,
5604 const struct block *block,
b5ec771e 5605 const lookup_name_info &lookup_name,
22cee43f
PMR
5606 domain_enum domain,
5607 int full_search,
5608 int *made_global_lookup_p)
14f9c5c9
AS
5609{
5610 struct symbol *sym;
14f9c5c9 5611
22cee43f
PMR
5612 if (made_global_lookup_p)
5613 *made_global_lookup_p = 0;
339c13b6
JB
5614
5615 /* Special case: If the user specifies a symbol name inside package
5616 Standard, do a non-wild matching of the symbol name without
5617 the "standard__" prefix. This was primarily introduced in order
5618 to allow the user to specifically access the standard exceptions
5619 using, for instance, Standard.Constraint_Error when Constraint_Error
5620 is ambiguous (due to the user defining its own Constraint_Error
5621 entity inside its program). */
b5ec771e
PA
5622 if (lookup_name.ada ().standard_p ())
5623 block = NULL;
4c4b4cd2 5624
339c13b6 5625 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5626
4eeaa230
DE
5627 if (block != NULL)
5628 {
5629 if (full_search)
b5ec771e 5630 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5631 else
5632 {
5633 /* In the !full_search case we're are being called by
5634 ada_iterate_over_symbols, and we don't want to search
5635 superblocks. */
b5ec771e 5636 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5637 }
22cee43f
PMR
5638 if (num_defns_collected (obstackp) > 0 || !full_search)
5639 return;
4eeaa230 5640 }
d2e4a39e 5641
339c13b6
JB
5642 /* No non-global symbols found. Check our cache to see if we have
5643 already performed this search before. If we have, then return
5644 the same result. */
5645
b5ec771e
PA
5646 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5647 domain, &sym, &block))
4c4b4cd2
PH
5648 {
5649 if (sym != NULL)
b5ec771e 5650 add_defn_to_vec (obstackp, sym, block);
22cee43f 5651 return;
4c4b4cd2 5652 }
14f9c5c9 5653
22cee43f
PMR
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 1;
b1eedac9 5656
339c13b6
JB
5657 /* Search symbols from all global blocks. */
5658
b5ec771e 5659 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5660
4c4b4cd2 5661 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5662 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5663
22cee43f 5664 if (num_defns_collected (obstackp) == 0)
b5ec771e 5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5666}
5667
b5ec771e
PA
5668/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5669 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5670 matches.
54d343a2
TT
5671 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5672 found and the blocks and symbol tables (if any) in which they were
5673 found.
22cee43f
PMR
5674
5675 When full_search is non-zero, any non-function/non-enumeral
5676 symbol match within the nest of blocks whose innermost member is BLOCK,
5677 is the one match returned (no other matches in that or
5678 enclosing blocks is returned). If there are any matches in or
5679 surrounding BLOCK, then these alone are returned.
5680
5681 Names prefixed with "standard__" are handled specially: "standard__"
5682 is first stripped off, and only static and global symbols are searched. */
5683
5684static int
b5ec771e
PA
5685ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5686 const struct block *block,
22cee43f 5687 domain_enum domain,
54d343a2 5688 std::vector<struct block_symbol> *results,
22cee43f
PMR
5689 int full_search)
5690{
22cee43f
PMR
5691 int syms_from_global_search;
5692 int ndefns;
ec6a20c2 5693 auto_obstack obstack;
22cee43f 5694
ec6a20c2 5695 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5696 domain, full_search, &syms_from_global_search);
14f9c5c9 5697
ec6a20c2
JB
5698 ndefns = num_defns_collected (&obstack);
5699
54d343a2
TT
5700 struct block_symbol *base = defns_collected (&obstack, 1);
5701 for (int i = 0; i < ndefns; ++i)
5702 results->push_back (base[i]);
4c4b4cd2 5703
54d343a2 5704 ndefns = remove_extra_symbols (results);
4c4b4cd2 5705
b1eedac9 5706 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5707 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5708
b1eedac9 5709 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5710 cache_symbol (ada_lookup_name (lookup_name), domain,
5711 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5712
54d343a2 5713 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5714
14f9c5c9
AS
5715 return ndefns;
5716}
5717
b5ec771e 5718/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5719 in global scopes, returning the number of matches, and filling *RESULTS
5720 with (SYM,BLOCK) tuples.
ec6a20c2 5721
4eeaa230
DE
5722 See ada_lookup_symbol_list_worker for further details. */
5723
5724int
b5ec771e 5725ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5726 domain_enum domain,
5727 std::vector<struct block_symbol> *results)
4eeaa230 5728{
b5ec771e
PA
5729 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5730 lookup_name_info lookup_name (name, name_match_type);
5731
5732 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5733}
5734
5735/* Implementation of the la_iterate_over_symbols method. */
5736
6969f124 5737static bool
14bc53a8 5738ada_iterate_over_symbols
b5ec771e
PA
5739 (const struct block *block, const lookup_name_info &name,
5740 domain_enum domain,
14bc53a8 5741 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5742{
5743 int ndefs, i;
54d343a2 5744 std::vector<struct block_symbol> results;
4eeaa230
DE
5745
5746 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5747
4eeaa230
DE
5748 for (i = 0; i < ndefs; ++i)
5749 {
7e41c8db 5750 if (!callback (&results[i]))
6969f124 5751 return false;
4eeaa230 5752 }
6969f124
TT
5753
5754 return true;
4eeaa230
DE
5755}
5756
4e5c77fe
JB
5757/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5758 to 1, but choosing the first symbol found if there are multiple
5759 choices.
5760
5e2336be
JB
5761 The result is stored in *INFO, which must be non-NULL.
5762 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5763
5764void
5765ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5766 domain_enum domain,
d12307c1 5767 struct block_symbol *info)
14f9c5c9 5768{
b5ec771e
PA
5769 /* Since we already have an encoded name, wrap it in '<>' to force a
5770 verbatim match. Otherwise, if the name happens to not look like
5771 an encoded name (because it doesn't include a "__"),
5772 ada_lookup_name_info would re-encode/fold it again, and that
5773 would e.g., incorrectly lowercase object renaming names like
5774 "R28b" -> "r28b". */
5775 std::string verbatim = std::string ("<") + name + '>';
5776
5e2336be 5777 gdb_assert (info != NULL);
65392b3e 5778 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5779}
aeb5907d
JB
5780
5781/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5782 scope and in global scopes, or NULL if none. NAME is folded and
5783 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5784 choosing the first symbol if there are multiple choices. */
4e5c77fe 5785
d12307c1 5786struct block_symbol
aeb5907d 5787ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5788 domain_enum domain)
aeb5907d 5789{
54d343a2 5790 std::vector<struct block_symbol> candidates;
f98fc17b 5791 int n_candidates;
f98fc17b
PA
5792
5793 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5794
5795 if (n_candidates == 0)
54d343a2 5796 return {};
f98fc17b
PA
5797
5798 block_symbol info = candidates[0];
5799 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5800 return info;
4c4b4cd2 5801}
14f9c5c9 5802
d12307c1 5803static struct block_symbol
f606139a
DE
5804ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5805 const char *name,
76a01679 5806 const struct block *block,
21b556f4 5807 const domain_enum domain)
4c4b4cd2 5808{
d12307c1 5809 struct block_symbol sym;
04dccad0 5810
65392b3e 5811 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5812 if (sym.symbol != NULL)
04dccad0
JB
5813 return sym;
5814
5815 /* If we haven't found a match at this point, try the primitive
5816 types. In other languages, this search is performed before
5817 searching for global symbols in order to short-circuit that
5818 global-symbol search if it happens that the name corresponds
5819 to a primitive type. But we cannot do the same in Ada, because
5820 it is perfectly legitimate for a program to declare a type which
5821 has the same name as a standard type. If looking up a type in
5822 that situation, we have traditionally ignored the primitive type
5823 in favor of user-defined types. This is why, unlike most other
5824 languages, we search the primitive types this late and only after
5825 having searched the global symbols without success. */
5826
5827 if (domain == VAR_DOMAIN)
5828 {
5829 struct gdbarch *gdbarch;
5830
5831 if (block == NULL)
5832 gdbarch = target_gdbarch ();
5833 else
5834 gdbarch = block_gdbarch (block);
d12307c1
PMR
5835 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5836 if (sym.symbol != NULL)
04dccad0
JB
5837 return sym;
5838 }
5839
6640a367 5840 return {};
14f9c5c9
AS
5841}
5842
5843
4c4b4cd2
PH
5844/* True iff STR is a possible encoded suffix of a normal Ada name
5845 that is to be ignored for matching purposes. Suffixes of parallel
5846 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5847 are given by any of the regular expressions:
4c4b4cd2 5848
babe1480
JB
5849 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5850 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5851 TKB [subprogram suffix for task bodies]
babe1480 5852 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5853 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5854
5855 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5856 match is performed. This sequence is used to differentiate homonyms,
5857 is an optional part of a valid name suffix. */
4c4b4cd2 5858
14f9c5c9 5859static int
d2e4a39e 5860is_name_suffix (const char *str)
14f9c5c9
AS
5861{
5862 int k;
4c4b4cd2
PH
5863 const char *matching;
5864 const int len = strlen (str);
5865
babe1480
JB
5866 /* Skip optional leading __[0-9]+. */
5867
4c4b4cd2
PH
5868 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5869 {
babe1480
JB
5870 str += 3;
5871 while (isdigit (str[0]))
5872 str += 1;
4c4b4cd2 5873 }
babe1480
JB
5874
5875 /* [.$][0-9]+ */
4c4b4cd2 5876
babe1480 5877 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5878 {
babe1480 5879 matching = str + 1;
4c4b4cd2
PH
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* ___[0-9]+ */
babe1480 5887
4c4b4cd2
PH
5888 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5889 {
5890 matching = str + 3;
5891 while (isdigit (matching[0]))
5892 matching += 1;
5893 if (matching[0] == '\0')
5894 return 1;
5895 }
5896
9ac7f98e
JB
5897 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5898
5899 if (strcmp (str, "TKB") == 0)
5900 return 1;
5901
529cad9c
PH
5902#if 0
5903 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5904 with a N at the end. Unfortunately, the compiler uses the same
5905 convention for other internal types it creates. So treating
529cad9c 5906 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5907 some regressions. For instance, consider the case of an enumerated
5908 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5909 name ends with N.
5910 Having a single character like this as a suffix carrying some
0963b4bd 5911 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5912 to be something like "_N" instead. In the meantime, do not do
5913 the following check. */
5914 /* Protected Object Subprograms */
5915 if (len == 1 && str [0] == 'N')
5916 return 1;
5917#endif
5918
5919 /* _E[0-9]+[bs]$ */
5920 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5921 {
5922 matching = str + 3;
5923 while (isdigit (matching[0]))
5924 matching += 1;
5925 if ((matching[0] == 'b' || matching[0] == 's')
5926 && matching [1] == '\0')
5927 return 1;
5928 }
5929
4c4b4cd2
PH
5930 /* ??? We should not modify STR directly, as we are doing below. This
5931 is fine in this case, but may become problematic later if we find
5932 that this alternative did not work, and want to try matching
5933 another one from the begining of STR. Since we modified it, we
5934 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5935 if (str[0] == 'X')
5936 {
5937 str += 1;
d2e4a39e 5938 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5939 {
5940 if (str[0] != 'n' && str[0] != 'b')
5941 return 0;
5942 str += 1;
5943 }
14f9c5c9 5944 }
babe1480 5945
14f9c5c9
AS
5946 if (str[0] == '\000')
5947 return 1;
babe1480 5948
d2e4a39e 5949 if (str[0] == '_')
14f9c5c9
AS
5950 {
5951 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5952 return 0;
d2e4a39e 5953 if (str[2] == '_')
4c4b4cd2 5954 {
61ee279c
PH
5955 if (strcmp (str + 3, "JM") == 0)
5956 return 1;
5957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5958 the LJM suffix in favor of the JM one. But we will
5959 still accept LJM as a valid suffix for a reasonable
5960 amount of time, just to allow ourselves to debug programs
5961 compiled using an older version of GNAT. */
4c4b4cd2
PH
5962 if (strcmp (str + 3, "LJM") == 0)
5963 return 1;
5964 if (str[3] != 'X')
5965 return 0;
1265e4aa
JB
5966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5967 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5968 return 1;
5969 if (str[4] == 'R' && str[5] != 'T')
5970 return 1;
5971 return 0;
5972 }
5973 if (!isdigit (str[2]))
5974 return 0;
5975 for (k = 3; str[k] != '\0'; k += 1)
5976 if (!isdigit (str[k]) && str[k] != '_')
5977 return 0;
14f9c5c9
AS
5978 return 1;
5979 }
4c4b4cd2 5980 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5981 {
4c4b4cd2
PH
5982 for (k = 2; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
14f9c5c9
AS
5985 return 1;
5986 }
5987 return 0;
5988}
d2e4a39e 5989
aeb5907d
JB
5990/* Return non-zero if the string starting at NAME and ending before
5991 NAME_END contains no capital letters. */
529cad9c
PH
5992
5993static int
5994is_valid_name_for_wild_match (const char *name0)
5995{
f945dedf 5996 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5997 int i;
5998
5823c3ef
JB
5999 /* If the decoded name starts with an angle bracket, it means that
6000 NAME0 does not follow the GNAT encoding format. It should then
6001 not be allowed as a possible wild match. */
6002 if (decoded_name[0] == '<')
6003 return 0;
6004
529cad9c
PH
6005 for (i=0; decoded_name[i] != '\0'; i++)
6006 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6007 return 0;
6008
6009 return 1;
6010}
6011
73589123
PH
6012/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6013 that could start a simple name. Assumes that *NAMEP points into
6014 the string beginning at NAME0. */
4c4b4cd2 6015
14f9c5c9 6016static int
73589123 6017advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6018{
73589123 6019 const char *name = *namep;
5b4ee69b 6020
5823c3ef 6021 while (1)
14f9c5c9 6022 {
aa27d0b3 6023 int t0, t1;
73589123
PH
6024
6025 t0 = *name;
6026 if (t0 == '_')
6027 {
6028 t1 = name[1];
6029 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6030 {
6031 name += 1;
61012eef 6032 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6033 break;
6034 else
6035 name += 1;
6036 }
aa27d0b3
JB
6037 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6038 || name[2] == target0))
73589123
PH
6039 {
6040 name += 2;
6041 break;
6042 }
6043 else
6044 return 0;
6045 }
6046 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6047 name += 1;
6048 else
5823c3ef 6049 return 0;
73589123
PH
6050 }
6051
6052 *namep = name;
6053 return 1;
6054}
6055
b5ec771e
PA
6056/* Return true iff NAME encodes a name of the form prefix.PATN.
6057 Ignores any informational suffixes of NAME (i.e., for which
6058 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6059 simple name. */
73589123 6060
b5ec771e 6061static bool
73589123
PH
6062wild_match (const char *name, const char *patn)
6063{
22e048c9 6064 const char *p;
73589123
PH
6065 const char *name0 = name;
6066
6067 while (1)
6068 {
6069 const char *match = name;
6070
6071 if (*name == *patn)
6072 {
6073 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6074 if (*p != *name)
6075 break;
6076 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6077 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6078
6079 if (name[-1] == '_')
6080 name -= 1;
6081 }
6082 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6083 return false;
96d887e8 6084 }
96d887e8
PH
6085}
6086
b5ec771e
PA
6087/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6088 any trailing suffixes that encode debugging information or leading
6089 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6090 information that is ignored). */
40658b94 6091
b5ec771e 6092static bool
c4d840bd
PH
6093full_match (const char *sym_name, const char *search_name)
6094{
b5ec771e
PA
6095 size_t search_name_len = strlen (search_name);
6096
6097 if (strncmp (sym_name, search_name, search_name_len) == 0
6098 && is_name_suffix (sym_name + search_name_len))
6099 return true;
6100
6101 if (startswith (sym_name, "_ada_")
6102 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6103 && is_name_suffix (sym_name + search_name_len + 5))
6104 return true;
c4d840bd 6105
b5ec771e
PA
6106 return false;
6107}
c4d840bd 6108
b5ec771e
PA
6109/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6110 *defn_symbols, updating the list of symbols in OBSTACKP (if
6111 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6112
6113static void
6114ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6115 const struct block *block,
6116 const lookup_name_info &lookup_name,
6117 domain_enum domain, struct objfile *objfile)
96d887e8 6118{
8157b174 6119 struct block_iterator iter;
96d887e8
PH
6120 /* A matching argument symbol, if any. */
6121 struct symbol *arg_sym;
6122 /* Set true when we find a matching non-argument symbol. */
6123 int found_sym;
6124 struct symbol *sym;
6125
6126 arg_sym = NULL;
6127 found_sym = 0;
b5ec771e
PA
6128 for (sym = block_iter_match_first (block, lookup_name, &iter);
6129 sym != NULL;
6130 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6131 {
b5ec771e
PA
6132 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6133 SYMBOL_DOMAIN (sym), domain))
6134 {
6135 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6136 {
6137 if (SYMBOL_IS_ARGUMENT (sym))
6138 arg_sym = sym;
6139 else
6140 {
6141 found_sym = 1;
6142 add_defn_to_vec (obstackp,
6143 fixup_symbol_section (sym, objfile),
6144 block);
6145 }
6146 }
6147 }
96d887e8
PH
6148 }
6149
22cee43f
PMR
6150 /* Handle renamings. */
6151
b5ec771e 6152 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6153 found_sym = 1;
6154
96d887e8
PH
6155 if (!found_sym && arg_sym != NULL)
6156 {
76a01679
JB
6157 add_defn_to_vec (obstackp,
6158 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6159 block);
96d887e8
PH
6160 }
6161
b5ec771e 6162 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6163 {
6164 arg_sym = NULL;
6165 found_sym = 0;
b5ec771e
PA
6166 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6167 const char *name = ada_lookup_name.c_str ();
6168 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6169
6170 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6171 {
4186eb54
KS
6172 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6173 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6174 {
6175 int cmp;
6176
6177 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6178 if (cmp == 0)
6179 {
61012eef 6180 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6181 if (cmp == 0)
6182 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6183 name_len);
6184 }
6185
6186 if (cmp == 0
6187 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6188 {
2a2d4dc3
AS
6189 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6190 {
6191 if (SYMBOL_IS_ARGUMENT (sym))
6192 arg_sym = sym;
6193 else
6194 {
6195 found_sym = 1;
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (sym, objfile),
6198 block);
6199 }
6200 }
76a01679
JB
6201 }
6202 }
76a01679 6203 }
96d887e8
PH
6204
6205 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6206 They aren't parameters, right? */
6207 if (!found_sym && arg_sym != NULL)
6208 {
6209 add_defn_to_vec (obstackp,
76a01679 6210 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6211 block);
96d887e8
PH
6212 }
6213 }
6214}
6215\f
41d27058
JB
6216
6217 /* Symbol Completion */
6218
b5ec771e 6219/* See symtab.h. */
41d27058 6220
b5ec771e
PA
6221bool
6222ada_lookup_name_info::matches
6223 (const char *sym_name,
6224 symbol_name_match_type match_type,
a207cff2 6225 completion_match_result *comp_match_res) const
41d27058 6226{
b5ec771e
PA
6227 bool match = false;
6228 const char *text = m_encoded_name.c_str ();
6229 size_t text_len = m_encoded_name.size ();
41d27058
JB
6230
6231 /* First, test against the fully qualified name of the symbol. */
6232
6233 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6234 match = true;
41d27058 6235
f945dedf 6236 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6237 if (match && !m_encoded_p)
41d27058
JB
6238 {
6239 /* One needed check before declaring a positive match is to verify
6240 that iff we are doing a verbatim match, the decoded version
6241 of the symbol name starts with '<'. Otherwise, this symbol name
6242 is not a suitable completion. */
41d27058 6243
f945dedf 6244 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6245 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6246 }
6247
b5ec771e 6248 if (match && !m_verbatim_p)
41d27058
JB
6249 {
6250 /* When doing non-verbatim match, another check that needs to
6251 be done is to verify that the potentially matching symbol name
6252 does not include capital letters, because the ada-mode would
6253 not be able to understand these symbol names without the
6254 angle bracket notation. */
6255 const char *tmp;
6256
6257 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6258 if (*tmp != '\0')
b5ec771e 6259 match = false;
41d27058
JB
6260 }
6261
6262 /* Second: Try wild matching... */
6263
b5ec771e 6264 if (!match && m_wild_match_p)
41d27058
JB
6265 {
6266 /* Since we are doing wild matching, this means that TEXT
6267 may represent an unqualified symbol name. We therefore must
6268 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6269 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6270
6271 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6272 match = true;
41d27058
JB
6273 }
6274
b5ec771e 6275 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6276
6277 if (!match)
b5ec771e 6278 return false;
41d27058 6279
a207cff2 6280 if (comp_match_res != NULL)
b5ec771e 6281 {
a207cff2 6282 std::string &match_str = comp_match_res->match.storage ();
41d27058 6283
b5ec771e 6284 if (!m_encoded_p)
a207cff2 6285 match_str = ada_decode (sym_name);
b5ec771e
PA
6286 else
6287 {
6288 if (m_verbatim_p)
6289 match_str = add_angle_brackets (sym_name);
6290 else
6291 match_str = sym_name;
41d27058 6292
b5ec771e 6293 }
a207cff2
PA
6294
6295 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6296 }
6297
b5ec771e 6298 return true;
41d27058
JB
6299}
6300
b5ec771e 6301/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6302 WORD is the entire command on which completion is made. */
41d27058 6303
eb3ff9a5
PA
6304static void
6305ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6306 complete_symbol_mode mode,
b5ec771e
PA
6307 symbol_name_match_type name_match_type,
6308 const char *text, const char *word,
eb3ff9a5 6309 enum type_code code)
41d27058 6310{
41d27058 6311 struct symbol *sym;
3977b71f 6312 const struct block *b, *surrounding_static_block = 0;
8157b174 6313 struct block_iterator iter;
41d27058 6314
2f68a895
TT
6315 gdb_assert (code == TYPE_CODE_UNDEF);
6316
1b026119 6317 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6318
6319 /* First, look at the partial symtab symbols. */
14bc53a8 6320 expand_symtabs_matching (NULL,
b5ec771e
PA
6321 lookup_name,
6322 NULL,
14bc53a8
PA
6323 NULL,
6324 ALL_DOMAIN);
41d27058
JB
6325
6326 /* At this point scan through the misc symbol vectors and add each
6327 symbol you find to the list. Eventually we want to ignore
6328 anything that isn't a text symbol (everything else will be
6329 handled by the psymtab code above). */
6330
2030c079 6331 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6332 {
7932255d 6333 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6334 {
6335 QUIT;
6336
6337 if (completion_skip_symbol (mode, msymbol))
6338 continue;
6339
6340 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6341
6342 /* Ada minimal symbols won't have their language set to Ada. If
6343 we let completion_list_add_name compare using the
6344 default/C-like matcher, then when completing e.g., symbols in a
6345 package named "pck", we'd match internal Ada symbols like
6346 "pckS", which are invalid in an Ada expression, unless you wrap
6347 them in '<' '>' to request a verbatim match.
6348
6349 Unfortunately, some Ada encoded names successfully demangle as
6350 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6351 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6352 with the wrong language set. Paper over that issue here. */
6353 if (symbol_language == language_auto
6354 || symbol_language == language_cplus)
6355 symbol_language = language_ada;
6356
6357 completion_list_add_name (tracker,
6358 symbol_language,
6359 MSYMBOL_LINKAGE_NAME (msymbol),
6360 lookup_name, text, word);
6361 }
6362 }
41d27058
JB
6363
6364 /* Search upwards from currently selected frame (so that we can
6365 complete on local vars. */
6366
6367 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6368 {
6369 if (!BLOCK_SUPERBLOCK (b))
6370 surrounding_static_block = b; /* For elmin of dups */
6371
6372 ALL_BLOCK_SYMBOLS (b, iter, sym)
6373 {
f9d67a22
PA
6374 if (completion_skip_symbol (mode, sym))
6375 continue;
6376
b5ec771e
PA
6377 completion_list_add_name (tracker,
6378 SYMBOL_LANGUAGE (sym),
6379 SYMBOL_LINKAGE_NAME (sym),
1b026119 6380 lookup_name, text, word);
41d27058
JB
6381 }
6382 }
6383
6384 /* Go through the symtabs and check the externs and statics for
43f3e411 6385 symbols which match. */
41d27058 6386
2030c079 6387 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6388 {
b669c953 6389 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6390 {
6391 QUIT;
6392 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6393 ALL_BLOCK_SYMBOLS (b, iter, sym)
6394 {
6395 if (completion_skip_symbol (mode, sym))
6396 continue;
f9d67a22 6397
d8aeb77f
TT
6398 completion_list_add_name (tracker,
6399 SYMBOL_LANGUAGE (sym),
6400 SYMBOL_LINKAGE_NAME (sym),
6401 lookup_name, text, word);
6402 }
6403 }
41d27058 6404 }
41d27058 6405
2030c079 6406 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6407 {
b669c953 6408 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6409 {
6410 QUIT;
6411 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6412 /* Don't do this block twice. */
6413 if (b == surrounding_static_block)
6414 continue;
6415 ALL_BLOCK_SYMBOLS (b, iter, sym)
6416 {
6417 if (completion_skip_symbol (mode, sym))
6418 continue;
f9d67a22 6419
d8aeb77f
TT
6420 completion_list_add_name (tracker,
6421 SYMBOL_LANGUAGE (sym),
6422 SYMBOL_LINKAGE_NAME (sym),
6423 lookup_name, text, word);
6424 }
6425 }
41d27058 6426 }
41d27058
JB
6427}
6428
963a6417 6429 /* Field Access */
96d887e8 6430
73fb9985
JB
6431/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6432 for tagged types. */
6433
6434static int
6435ada_is_dispatch_table_ptr_type (struct type *type)
6436{
0d5cff50 6437 const char *name;
73fb9985
JB
6438
6439 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6440 return 0;
6441
6442 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6443 if (name == NULL)
6444 return 0;
6445
6446 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6447}
6448
ac4a2da4
JG
6449/* Return non-zero if TYPE is an interface tag. */
6450
6451static int
6452ada_is_interface_tag (struct type *type)
6453{
6454 const char *name = TYPE_NAME (type);
6455
6456 if (name == NULL)
6457 return 0;
6458
6459 return (strcmp (name, "ada__tags__interface_tag") == 0);
6460}
6461
963a6417
PH
6462/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6463 to be invisible to users. */
96d887e8 6464
963a6417
PH
6465int
6466ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6467{
963a6417
PH
6468 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6469 return 1;
ffde82bf 6470
73fb9985
JB
6471 /* Check the name of that field. */
6472 {
6473 const char *name = TYPE_FIELD_NAME (type, field_num);
6474
6475 /* Anonymous field names should not be printed.
6476 brobecker/2007-02-20: I don't think this can actually happen
6477 but we don't want to print the value of annonymous fields anyway. */
6478 if (name == NULL)
6479 return 1;
6480
ffde82bf
JB
6481 /* Normally, fields whose name start with an underscore ("_")
6482 are fields that have been internally generated by the compiler,
6483 and thus should not be printed. The "_parent" field is special,
6484 however: This is a field internally generated by the compiler
6485 for tagged types, and it contains the components inherited from
6486 the parent type. This field should not be printed as is, but
6487 should not be ignored either. */
61012eef 6488 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6489 return 1;
6490 }
6491
ac4a2da4
JG
6492 /* If this is the dispatch table of a tagged type or an interface tag,
6493 then ignore. */
73fb9985 6494 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6495 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6496 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6497 return 1;
6498
6499 /* Not a special field, so it should not be ignored. */
6500 return 0;
963a6417 6501}
96d887e8 6502
963a6417 6503/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6504 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6505
963a6417
PH
6506int
6507ada_is_tagged_type (struct type *type, int refok)
6508{
988f6b3d 6509 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6510}
96d887e8 6511
963a6417 6512/* True iff TYPE represents the type of X'Tag */
96d887e8 6513
963a6417
PH
6514int
6515ada_is_tag_type (struct type *type)
6516{
460efde1
JB
6517 type = ada_check_typedef (type);
6518
963a6417
PH
6519 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6520 return 0;
6521 else
96d887e8 6522 {
963a6417 6523 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6524
963a6417
PH
6525 return (name != NULL
6526 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6527 }
96d887e8
PH
6528}
6529
963a6417 6530/* The type of the tag on VAL. */
76a01679 6531
963a6417
PH
6532struct type *
6533ada_tag_type (struct value *val)
96d887e8 6534{
988f6b3d 6535 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6536}
96d887e8 6537
b50d69b5
JG
6538/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6539 retired at Ada 05). */
6540
6541static int
6542is_ada95_tag (struct value *tag)
6543{
6544 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6545}
6546
963a6417 6547/* The value of the tag on VAL. */
96d887e8 6548
963a6417
PH
6549struct value *
6550ada_value_tag (struct value *val)
6551{
03ee6b2e 6552 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6553}
6554
963a6417
PH
6555/* The value of the tag on the object of type TYPE whose contents are
6556 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6557 ADDRESS. */
96d887e8 6558
963a6417 6559static struct value *
10a2c479 6560value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6561 const gdb_byte *valaddr,
963a6417 6562 CORE_ADDR address)
96d887e8 6563{
b5385fc0 6564 int tag_byte_offset;
963a6417 6565 struct type *tag_type;
5b4ee69b 6566
963a6417 6567 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6568 NULL, NULL, NULL))
96d887e8 6569 {
fc1a4b47 6570 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6571 ? NULL
6572 : valaddr + tag_byte_offset);
963a6417 6573 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6574
963a6417 6575 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6576 }
963a6417
PH
6577 return NULL;
6578}
96d887e8 6579
963a6417
PH
6580static struct type *
6581type_from_tag (struct value *tag)
6582{
6583 const char *type_name = ada_tag_name (tag);
5b4ee69b 6584
963a6417
PH
6585 if (type_name != NULL)
6586 return ada_find_any_type (ada_encode (type_name));
6587 return NULL;
6588}
96d887e8 6589
b50d69b5
JG
6590/* Given a value OBJ of a tagged type, return a value of this
6591 type at the base address of the object. The base address, as
6592 defined in Ada.Tags, it is the address of the primary tag of
6593 the object, and therefore where the field values of its full
6594 view can be fetched. */
6595
6596struct value *
6597ada_tag_value_at_base_address (struct value *obj)
6598{
b50d69b5
JG
6599 struct value *val;
6600 LONGEST offset_to_top = 0;
6601 struct type *ptr_type, *obj_type;
6602 struct value *tag;
6603 CORE_ADDR base_address;
6604
6605 obj_type = value_type (obj);
6606
6607 /* It is the responsability of the caller to deref pointers. */
6608
6609 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6610 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6611 return obj;
6612
6613 tag = ada_value_tag (obj);
6614 if (!tag)
6615 return obj;
6616
6617 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6618
6619 if (is_ada95_tag (tag))
6620 return obj;
6621
08f49010
XR
6622 ptr_type = language_lookup_primitive_type
6623 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6624 ptr_type = lookup_pointer_type (ptr_type);
6625 val = value_cast (ptr_type, tag);
6626 if (!val)
6627 return obj;
6628
6629 /* It is perfectly possible that an exception be raised while
6630 trying to determine the base address, just like for the tag;
6631 see ada_tag_name for more details. We do not print the error
6632 message for the same reason. */
6633
a70b8144 6634 try
b50d69b5
JG
6635 {
6636 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6637 }
6638
230d2906 6639 catch (const gdb_exception_error &e)
492d29ea
PA
6640 {
6641 return obj;
6642 }
b50d69b5
JG
6643
6644 /* If offset is null, nothing to do. */
6645
6646 if (offset_to_top == 0)
6647 return obj;
6648
6649 /* -1 is a special case in Ada.Tags; however, what should be done
6650 is not quite clear from the documentation. So do nothing for
6651 now. */
6652
6653 if (offset_to_top == -1)
6654 return obj;
6655
08f49010
XR
6656 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6657 from the base address. This was however incompatible with
6658 C++ dispatch table: C++ uses a *negative* value to *add*
6659 to the base address. Ada's convention has therefore been
6660 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6661 use the same convention. Here, we support both cases by
6662 checking the sign of OFFSET_TO_TOP. */
6663
6664 if (offset_to_top > 0)
6665 offset_to_top = -offset_to_top;
6666
6667 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6668 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6669
6670 /* Make sure that we have a proper tag at the new address.
6671 Otherwise, offset_to_top is bogus (which can happen when
6672 the object is not initialized yet). */
6673
6674 if (!tag)
6675 return obj;
6676
6677 obj_type = type_from_tag (tag);
6678
6679 if (!obj_type)
6680 return obj;
6681
6682 return value_from_contents_and_address (obj_type, NULL, base_address);
6683}
6684
1b611343
JB
6685/* Return the "ada__tags__type_specific_data" type. */
6686
6687static struct type *
6688ada_get_tsd_type (struct inferior *inf)
963a6417 6689{
1b611343 6690 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6691
1b611343
JB
6692 if (data->tsd_type == 0)
6693 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6694 return data->tsd_type;
6695}
529cad9c 6696
1b611343
JB
6697/* Return the TSD (type-specific data) associated to the given TAG.
6698 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6699
1b611343 6700 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6701
1b611343
JB
6702static struct value *
6703ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6704{
4c4b4cd2 6705 struct value *val;
1b611343 6706 struct type *type;
5b4ee69b 6707
1b611343
JB
6708 /* First option: The TSD is simply stored as a field of our TAG.
6709 Only older versions of GNAT would use this format, but we have
6710 to test it first, because there are no visible markers for
6711 the current approach except the absence of that field. */
529cad9c 6712
1b611343
JB
6713 val = ada_value_struct_elt (tag, "tsd", 1);
6714 if (val)
6715 return val;
e802dbe0 6716
1b611343
JB
6717 /* Try the second representation for the dispatch table (in which
6718 there is no explicit 'tsd' field in the referent of the tag pointer,
6719 and instead the tsd pointer is stored just before the dispatch
6720 table. */
e802dbe0 6721
1b611343
JB
6722 type = ada_get_tsd_type (current_inferior());
6723 if (type == NULL)
6724 return NULL;
6725 type = lookup_pointer_type (lookup_pointer_type (type));
6726 val = value_cast (type, tag);
6727 if (val == NULL)
6728 return NULL;
6729 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6730}
6731
1b611343
JB
6732/* Given the TSD of a tag (type-specific data), return a string
6733 containing the name of the associated type.
6734
6735 The returned value is good until the next call. May return NULL
6736 if we are unable to determine the tag name. */
6737
6738static char *
6739ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6740{
529cad9c
PH
6741 static char name[1024];
6742 char *p;
1b611343 6743 struct value *val;
529cad9c 6744
1b611343 6745 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6746 if (val == NULL)
1b611343 6747 return NULL;
4c4b4cd2
PH
6748 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6749 for (p = name; *p != '\0'; p += 1)
6750 if (isalpha (*p))
6751 *p = tolower (*p);
1b611343 6752 return name;
4c4b4cd2
PH
6753}
6754
6755/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6756 a C string.
6757
6758 Return NULL if the TAG is not an Ada tag, or if we were unable to
6759 determine the name of that tag. The result is good until the next
6760 call. */
4c4b4cd2
PH
6761
6762const char *
6763ada_tag_name (struct value *tag)
6764{
1b611343 6765 char *name = NULL;
5b4ee69b 6766
df407dfe 6767 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6768 return NULL;
1b611343
JB
6769
6770 /* It is perfectly possible that an exception be raised while trying
6771 to determine the TAG's name, even under normal circumstances:
6772 The associated variable may be uninitialized or corrupted, for
6773 instance. We do not let any exception propagate past this point.
6774 instead we return NULL.
6775
6776 We also do not print the error message either (which often is very
6777 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6778 the caller print a more meaningful message if necessary. */
a70b8144 6779 try
1b611343
JB
6780 {
6781 struct value *tsd = ada_get_tsd_from_tag (tag);
6782
6783 if (tsd != NULL)
6784 name = ada_tag_name_from_tsd (tsd);
6785 }
230d2906 6786 catch (const gdb_exception_error &e)
492d29ea
PA
6787 {
6788 }
1b611343
JB
6789
6790 return name;
4c4b4cd2
PH
6791}
6792
6793/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6794
d2e4a39e 6795struct type *
ebf56fd3 6796ada_parent_type (struct type *type)
14f9c5c9
AS
6797{
6798 int i;
6799
61ee279c 6800 type = ada_check_typedef (type);
14f9c5c9
AS
6801
6802 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6803 return NULL;
6804
6805 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6806 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6807 {
6808 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6809
6810 /* If the _parent field is a pointer, then dereference it. */
6811 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6812 parent_type = TYPE_TARGET_TYPE (parent_type);
6813 /* If there is a parallel XVS type, get the actual base type. */
6814 parent_type = ada_get_base_type (parent_type);
6815
6816 return ada_check_typedef (parent_type);
6817 }
14f9c5c9
AS
6818
6819 return NULL;
6820}
6821
4c4b4cd2
PH
6822/* True iff field number FIELD_NUM of structure type TYPE contains the
6823 parent-type (inherited) fields of a derived type. Assumes TYPE is
6824 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6825
6826int
ebf56fd3 6827ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6828{
61ee279c 6829 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6830
4c4b4cd2 6831 return (name != NULL
61012eef
GB
6832 && (startswith (name, "PARENT")
6833 || startswith (name, "_parent")));
14f9c5c9
AS
6834}
6835
4c4b4cd2 6836/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6837 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6838 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6839 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6840 structures. */
14f9c5c9
AS
6841
6842int
ebf56fd3 6843ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6844{
d2e4a39e 6845 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6846
dddc0e16
JB
6847 if (name != NULL && strcmp (name, "RETVAL") == 0)
6848 {
6849 /* This happens in functions with "out" or "in out" parameters
6850 which are passed by copy. For such functions, GNAT describes
6851 the function's return type as being a struct where the return
6852 value is in a field called RETVAL, and where the other "out"
6853 or "in out" parameters are fields of that struct. This is not
6854 a wrapper. */
6855 return 0;
6856 }
6857
d2e4a39e 6858 return (name != NULL
61012eef 6859 && (startswith (name, "PARENT")
4c4b4cd2 6860 || strcmp (name, "REP") == 0
61012eef 6861 || startswith (name, "_parent")
4c4b4cd2 6862 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6863}
6864
4c4b4cd2
PH
6865/* True iff field number FIELD_NUM of structure or union type TYPE
6866 is a variant wrapper. Assumes TYPE is a structure type with at least
6867 FIELD_NUM+1 fields. */
14f9c5c9
AS
6868
6869int
ebf56fd3 6870ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6871{
8ecb59f8
TT
6872 /* Only Ada types are eligible. */
6873 if (!ADA_TYPE_P (type))
6874 return 0;
6875
d2e4a39e 6876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6877
14f9c5c9 6878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6879 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6881 == TYPE_CODE_UNION)));
14f9c5c9
AS
6882}
6883
6884/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6885 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6886 returns the type of the controlling discriminant for the variant.
6887 May return NULL if the type could not be found. */
14f9c5c9 6888
d2e4a39e 6889struct type *
ebf56fd3 6890ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6891{
a121b7c1 6892 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6893
988f6b3d 6894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6895}
6896
4c4b4cd2 6897/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6899 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6900
6901int
ebf56fd3 6902ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6903{
d2e4a39e 6904 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6905
14f9c5c9
AS
6906 return (name != NULL && name[0] == 'O');
6907}
6908
6909/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6910 returns the name of the discriminant controlling the variant.
6911 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6912
a121b7c1 6913const char *
ebf56fd3 6914ada_variant_discrim_name (struct type *type0)
14f9c5c9 6915{
d2e4a39e 6916 static char *result = NULL;
14f9c5c9 6917 static size_t result_len = 0;
d2e4a39e
AS
6918 struct type *type;
6919 const char *name;
6920 const char *discrim_end;
6921 const char *discrim_start;
14f9c5c9
AS
6922
6923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6924 type = TYPE_TARGET_TYPE (type0);
6925 else
6926 type = type0;
6927
6928 name = ada_type_name (type);
6929
6930 if (name == NULL || name[0] == '\000')
6931 return "";
6932
6933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6934 discrim_end -= 1)
6935 {
61012eef 6936 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6937 break;
14f9c5c9
AS
6938 }
6939 if (discrim_end == name)
6940 return "";
6941
d2e4a39e 6942 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6943 discrim_start -= 1)
6944 {
d2e4a39e 6945 if (discrim_start == name + 1)
4c4b4cd2 6946 return "";
76a01679 6947 if ((discrim_start > name + 3
61012eef 6948 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6949 || discrim_start[-1] == '.')
6950 break;
14f9c5c9
AS
6951 }
6952
6953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6954 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6955 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6956 return result;
6957}
6958
4c4b4cd2
PH
6959/* Scan STR for a subtype-encoded number, beginning at position K.
6960 Put the position of the character just past the number scanned in
6961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6962 Return 1 if there was a valid number at the given position, and 0
6963 otherwise. A "subtype-encoded" number consists of the absolute value
6964 in decimal, followed by the letter 'm' to indicate a negative number.
6965 Assumes 0m does not occur. */
14f9c5c9
AS
6966
6967int
d2e4a39e 6968ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6969{
6970 ULONGEST RU;
6971
d2e4a39e 6972 if (!isdigit (str[k]))
14f9c5c9
AS
6973 return 0;
6974
4c4b4cd2 6975 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6976 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6977 LONGEST. */
14f9c5c9
AS
6978 RU = 0;
6979 while (isdigit (str[k]))
6980 {
d2e4a39e 6981 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6982 k += 1;
6983 }
6984
d2e4a39e 6985 if (str[k] == 'm')
14f9c5c9
AS
6986 {
6987 if (R != NULL)
4c4b4cd2 6988 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6989 k += 1;
6990 }
6991 else if (R != NULL)
6992 *R = (LONGEST) RU;
6993
4c4b4cd2 6994 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6996 number representable as a LONGEST (although either would probably work
6997 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6998 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6999
7000 if (new_k != NULL)
7001 *new_k = k;
7002 return 1;
7003}
7004
4c4b4cd2
PH
7005/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7008
d2e4a39e 7009int
ebf56fd3 7010ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7011{
d2e4a39e 7012 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7013 int p;
7014
7015 p = 0;
7016 while (1)
7017 {
d2e4a39e 7018 switch (name[p])
4c4b4cd2
PH
7019 {
7020 case '\0':
7021 return 0;
7022 case 'S':
7023 {
7024 LONGEST W;
5b4ee69b 7025
4c4b4cd2
PH
7026 if (!ada_scan_number (name, p + 1, &W, &p))
7027 return 0;
7028 if (val == W)
7029 return 1;
7030 break;
7031 }
7032 case 'R':
7033 {
7034 LONGEST L, U;
5b4ee69b 7035
4c4b4cd2
PH
7036 if (!ada_scan_number (name, p + 1, &L, &p)
7037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7038 return 0;
7039 if (val >= L && val <= U)
7040 return 1;
7041 break;
7042 }
7043 case 'O':
7044 return 1;
7045 default:
7046 return 0;
7047 }
7048 }
7049}
7050
0963b4bd 7051/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7052
7053/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7054 ARG_TYPE, extract and return the value of one of its (non-static)
7055 fields. FIELDNO says which field. Differs from value_primitive_field
7056 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7057
4c4b4cd2 7058static struct value *
d2e4a39e 7059ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7060 struct type *arg_type)
14f9c5c9 7061{
14f9c5c9
AS
7062 struct type *type;
7063
61ee279c 7064 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7066
4504bbde
TT
7067 /* Handle packed fields. It might be that the field is not packed
7068 relative to its containing structure, but the structure itself is
7069 packed; in this case we must take the bit-field path. */
7070 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7071 {
7072 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7073 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7074
0fd88904 7075 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7076 offset + bit_pos / 8,
7077 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7078 }
7079 else
7080 return value_primitive_field (arg1, offset, fieldno, arg_type);
7081}
7082
52ce6436
PH
7083/* Find field with name NAME in object of type TYPE. If found,
7084 set the following for each argument that is non-null:
7085 - *FIELD_TYPE_P to the field's type;
7086 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7087 an object of that type;
7088 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7089 - *BIT_SIZE_P to its size in bits if the field is packed, and
7090 0 otherwise;
7091 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7092 fields up to but not including the desired field, or by the total
7093 number of fields if not found. A NULL value of NAME never
7094 matches; the function just counts visible fields in this case.
7095
828d5846
XR
7096 Notice that we need to handle when a tagged record hierarchy
7097 has some components with the same name, like in this scenario:
7098
7099 type Top_T is tagged record
7100 N : Integer := 1;
7101 U : Integer := 974;
7102 A : Integer := 48;
7103 end record;
7104
7105 type Middle_T is new Top.Top_T with record
7106 N : Character := 'a';
7107 C : Integer := 3;
7108 end record;
7109
7110 type Bottom_T is new Middle.Middle_T with record
7111 N : Float := 4.0;
7112 C : Character := '5';
7113 X : Integer := 6;
7114 A : Character := 'J';
7115 end record;
7116
7117 Let's say we now have a variable declared and initialized as follow:
7118
7119 TC : Top_A := new Bottom_T;
7120
7121 And then we use this variable to call this function
7122
7123 procedure Assign (Obj: in out Top_T; TV : Integer);
7124
7125 as follow:
7126
7127 Assign (Top_T (B), 12);
7128
7129 Now, we're in the debugger, and we're inside that procedure
7130 then and we want to print the value of obj.c:
7131
7132 Usually, the tagged record or one of the parent type owns the
7133 component to print and there's no issue but in this particular
7134 case, what does it mean to ask for Obj.C? Since the actual
7135 type for object is type Bottom_T, it could mean two things: type
7136 component C from the Middle_T view, but also component C from
7137 Bottom_T. So in that "undefined" case, when the component is
7138 not found in the non-resolved type (which includes all the
7139 components of the parent type), then resolve it and see if we
7140 get better luck once expanded.
7141
7142 In the case of homonyms in the derived tagged type, we don't
7143 guaranty anything, and pick the one that's easiest for us
7144 to program.
7145
0963b4bd 7146 Returns 1 if found, 0 otherwise. */
52ce6436 7147
4c4b4cd2 7148static int
0d5cff50 7149find_struct_field (const char *name, struct type *type, int offset,
76a01679 7150 struct type **field_type_p,
52ce6436
PH
7151 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7152 int *index_p)
4c4b4cd2
PH
7153{
7154 int i;
828d5846 7155 int parent_offset = -1;
4c4b4cd2 7156
61ee279c 7157 type = ada_check_typedef (type);
76a01679 7158
52ce6436
PH
7159 if (field_type_p != NULL)
7160 *field_type_p = NULL;
7161 if (byte_offset_p != NULL)
d5d6fca5 7162 *byte_offset_p = 0;
52ce6436
PH
7163 if (bit_offset_p != NULL)
7164 *bit_offset_p = 0;
7165 if (bit_size_p != NULL)
7166 *bit_size_p = 0;
7167
7168 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7169 {
7170 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7171 int fld_offset = offset + bit_pos / 8;
0d5cff50 7172 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7173
4c4b4cd2
PH
7174 if (t_field_name == NULL)
7175 continue;
7176
828d5846
XR
7177 else if (ada_is_parent_field (type, i))
7178 {
7179 /* This is a field pointing us to the parent type of a tagged
7180 type. As hinted in this function's documentation, we give
7181 preference to fields in the current record first, so what
7182 we do here is just record the index of this field before
7183 we skip it. If it turns out we couldn't find our field
7184 in the current record, then we'll get back to it and search
7185 inside it whether the field might exist in the parent. */
7186
7187 parent_offset = i;
7188 continue;
7189 }
7190
52ce6436 7191 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7192 {
7193 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7194
52ce6436
PH
7195 if (field_type_p != NULL)
7196 *field_type_p = TYPE_FIELD_TYPE (type, i);
7197 if (byte_offset_p != NULL)
7198 *byte_offset_p = fld_offset;
7199 if (bit_offset_p != NULL)
7200 *bit_offset_p = bit_pos % 8;
7201 if (bit_size_p != NULL)
7202 *bit_size_p = bit_size;
76a01679
JB
7203 return 1;
7204 }
4c4b4cd2
PH
7205 else if (ada_is_wrapper_field (type, i))
7206 {
52ce6436
PH
7207 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7208 field_type_p, byte_offset_p, bit_offset_p,
7209 bit_size_p, index_p))
76a01679
JB
7210 return 1;
7211 }
4c4b4cd2
PH
7212 else if (ada_is_variant_part (type, i))
7213 {
52ce6436
PH
7214 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7215 fixed type?? */
4c4b4cd2 7216 int j;
52ce6436
PH
7217 struct type *field_type
7218 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7219
52ce6436 7220 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7221 {
76a01679
JB
7222 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7223 fld_offset
7224 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7225 field_type_p, byte_offset_p,
52ce6436 7226 bit_offset_p, bit_size_p, index_p))
76a01679 7227 return 1;
4c4b4cd2
PH
7228 }
7229 }
52ce6436
PH
7230 else if (index_p != NULL)
7231 *index_p += 1;
4c4b4cd2 7232 }
828d5846
XR
7233
7234 /* Field not found so far. If this is a tagged type which
7235 has a parent, try finding that field in the parent now. */
7236
7237 if (parent_offset != -1)
7238 {
7239 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7240 int fld_offset = offset + bit_pos / 8;
7241
7242 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7243 fld_offset, field_type_p, byte_offset_p,
7244 bit_offset_p, bit_size_p, index_p))
7245 return 1;
7246 }
7247
4c4b4cd2
PH
7248 return 0;
7249}
7250
0963b4bd 7251/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7252
52ce6436
PH
7253static int
7254num_visible_fields (struct type *type)
7255{
7256 int n;
5b4ee69b 7257
52ce6436
PH
7258 n = 0;
7259 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7260 return n;
7261}
14f9c5c9 7262
4c4b4cd2 7263/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7264 and search in it assuming it has (class) type TYPE.
7265 If found, return value, else return NULL.
7266
828d5846
XR
7267 Searches recursively through wrapper fields (e.g., '_parent').
7268
7269 In the case of homonyms in the tagged types, please refer to the
7270 long explanation in find_struct_field's function documentation. */
14f9c5c9 7271
4c4b4cd2 7272static struct value *
108d56a4 7273ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7274 struct type *type)
14f9c5c9
AS
7275{
7276 int i;
828d5846 7277 int parent_offset = -1;
14f9c5c9 7278
5b4ee69b 7279 type = ada_check_typedef (type);
52ce6436 7280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7281 {
0d5cff50 7282 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7283
7284 if (t_field_name == NULL)
4c4b4cd2 7285 continue;
14f9c5c9 7286
828d5846
XR
7287 else if (ada_is_parent_field (type, i))
7288 {
7289 /* This is a field pointing us to the parent type of a tagged
7290 type. As hinted in this function's documentation, we give
7291 preference to fields in the current record first, so what
7292 we do here is just record the index of this field before
7293 we skip it. If it turns out we couldn't find our field
7294 in the current record, then we'll get back to it and search
7295 inside it whether the field might exist in the parent. */
7296
7297 parent_offset = i;
7298 continue;
7299 }
7300
14f9c5c9 7301 else if (field_name_match (t_field_name, name))
4c4b4cd2 7302 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7303
7304 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7305 {
0963b4bd 7306 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7307 ada_search_struct_field (name, arg,
7308 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7309 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7310
4c4b4cd2
PH
7311 if (v != NULL)
7312 return v;
7313 }
14f9c5c9
AS
7314
7315 else if (ada_is_variant_part (type, i))
4c4b4cd2 7316 {
0963b4bd 7317 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7318 int j;
5b4ee69b
MS
7319 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7320 i));
4c4b4cd2
PH
7321 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7322
52ce6436 7323 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7324 {
0963b4bd
MS
7325 struct value *v = ada_search_struct_field /* Force line
7326 break. */
06d5cf63
JB
7327 (name, arg,
7328 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7329 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7330
4c4b4cd2
PH
7331 if (v != NULL)
7332 return v;
7333 }
7334 }
14f9c5c9 7335 }
828d5846
XR
7336
7337 /* Field not found so far. If this is a tagged type which
7338 has a parent, try finding that field in the parent now. */
7339
7340 if (parent_offset != -1)
7341 {
7342 struct value *v = ada_search_struct_field (
7343 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7344 TYPE_FIELD_TYPE (type, parent_offset));
7345
7346 if (v != NULL)
7347 return v;
7348 }
7349
14f9c5c9
AS
7350 return NULL;
7351}
d2e4a39e 7352
52ce6436
PH
7353static struct value *ada_index_struct_field_1 (int *, struct value *,
7354 int, struct type *);
7355
7356
7357/* Return field #INDEX in ARG, where the index is that returned by
7358 * find_struct_field through its INDEX_P argument. Adjust the address
7359 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7360 * If found, return value, else return NULL. */
52ce6436
PH
7361
7362static struct value *
7363ada_index_struct_field (int index, struct value *arg, int offset,
7364 struct type *type)
7365{
7366 return ada_index_struct_field_1 (&index, arg, offset, type);
7367}
7368
7369
7370/* Auxiliary function for ada_index_struct_field. Like
7371 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7372 * *INDEX_P. */
52ce6436
PH
7373
7374static struct value *
7375ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7376 struct type *type)
7377{
7378 int i;
7379 type = ada_check_typedef (type);
7380
7381 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7382 {
7383 if (TYPE_FIELD_NAME (type, i) == NULL)
7384 continue;
7385 else if (ada_is_wrapper_field (type, i))
7386 {
0963b4bd 7387 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7388 ada_index_struct_field_1 (index_p, arg,
7389 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7390 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7391
52ce6436
PH
7392 if (v != NULL)
7393 return v;
7394 }
7395
7396 else if (ada_is_variant_part (type, i))
7397 {
7398 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7399 find_struct_field. */
52ce6436
PH
7400 error (_("Cannot assign this kind of variant record"));
7401 }
7402 else if (*index_p == 0)
7403 return ada_value_primitive_field (arg, offset, i, type);
7404 else
7405 *index_p -= 1;
7406 }
7407 return NULL;
7408}
7409
4c4b4cd2
PH
7410/* Given ARG, a value of type (pointer or reference to a)*
7411 structure/union, extract the component named NAME from the ultimate
7412 target structure/union and return it as a value with its
f5938064 7413 appropriate type.
14f9c5c9 7414
4c4b4cd2
PH
7415 The routine searches for NAME among all members of the structure itself
7416 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7417 (e.g., '_parent').
7418
03ee6b2e
PH
7419 If NO_ERR, then simply return NULL in case of error, rather than
7420 calling error. */
14f9c5c9 7421
d2e4a39e 7422struct value *
a121b7c1 7423ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7424{
4c4b4cd2 7425 struct type *t, *t1;
d2e4a39e 7426 struct value *v;
1f5d1570 7427 int check_tag;
14f9c5c9 7428
4c4b4cd2 7429 v = NULL;
df407dfe 7430 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7431 if (TYPE_CODE (t) == TYPE_CODE_REF)
7432 {
7433 t1 = TYPE_TARGET_TYPE (t);
7434 if (t1 == NULL)
03ee6b2e 7435 goto BadValue;
61ee279c 7436 t1 = ada_check_typedef (t1);
4c4b4cd2 7437 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7438 {
994b9211 7439 arg = coerce_ref (arg);
76a01679
JB
7440 t = t1;
7441 }
4c4b4cd2 7442 }
14f9c5c9 7443
4c4b4cd2
PH
7444 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7445 {
7446 t1 = TYPE_TARGET_TYPE (t);
7447 if (t1 == NULL)
03ee6b2e 7448 goto BadValue;
61ee279c 7449 t1 = ada_check_typedef (t1);
4c4b4cd2 7450 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7451 {
7452 arg = value_ind (arg);
7453 t = t1;
7454 }
4c4b4cd2 7455 else
76a01679 7456 break;
4c4b4cd2 7457 }
14f9c5c9 7458
4c4b4cd2 7459 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7460 goto BadValue;
14f9c5c9 7461
4c4b4cd2
PH
7462 if (t1 == t)
7463 v = ada_search_struct_field (name, arg, 0, t);
7464 else
7465 {
7466 int bit_offset, bit_size, byte_offset;
7467 struct type *field_type;
7468 CORE_ADDR address;
7469
76a01679 7470 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7471 address = value_address (ada_value_ind (arg));
4c4b4cd2 7472 else
b50d69b5 7473 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7474
828d5846
XR
7475 /* Check to see if this is a tagged type. We also need to handle
7476 the case where the type is a reference to a tagged type, but
7477 we have to be careful to exclude pointers to tagged types.
7478 The latter should be shown as usual (as a pointer), whereas
7479 a reference should mostly be transparent to the user. */
7480
7481 if (ada_is_tagged_type (t1, 0)
7482 || (TYPE_CODE (t1) == TYPE_CODE_REF
7483 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7484 {
7485 /* We first try to find the searched field in the current type.
7486 If not found then let's look in the fixed type. */
7487
7488 if (!find_struct_field (name, t1, 0,
7489 &field_type, &byte_offset, &bit_offset,
7490 &bit_size, NULL))
1f5d1570
JG
7491 check_tag = 1;
7492 else
7493 check_tag = 0;
828d5846
XR
7494 }
7495 else
1f5d1570
JG
7496 check_tag = 0;
7497
7498 /* Convert to fixed type in all cases, so that we have proper
7499 offsets to each field in unconstrained record types. */
7500 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7501 address, NULL, check_tag);
828d5846 7502
76a01679
JB
7503 if (find_struct_field (name, t1, 0,
7504 &field_type, &byte_offset, &bit_offset,
52ce6436 7505 &bit_size, NULL))
76a01679
JB
7506 {
7507 if (bit_size != 0)
7508 {
714e53ab
PH
7509 if (TYPE_CODE (t) == TYPE_CODE_REF)
7510 arg = ada_coerce_ref (arg);
7511 else
7512 arg = ada_value_ind (arg);
76a01679
JB
7513 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7514 bit_offset, bit_size,
7515 field_type);
7516 }
7517 else
f5938064 7518 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7519 }
7520 }
7521
03ee6b2e
PH
7522 if (v != NULL || no_err)
7523 return v;
7524 else
323e0a4a 7525 error (_("There is no member named %s."), name);
14f9c5c9 7526
03ee6b2e
PH
7527 BadValue:
7528 if (no_err)
7529 return NULL;
7530 else
0963b4bd
MS
7531 error (_("Attempt to extract a component of "
7532 "a value that is not a record."));
14f9c5c9
AS
7533}
7534
3b4de39c 7535/* Return a string representation of type TYPE. */
99bbb428 7536
3b4de39c 7537static std::string
99bbb428
PA
7538type_as_string (struct type *type)
7539{
d7e74731 7540 string_file tmp_stream;
99bbb428 7541
d7e74731 7542 type_print (type, "", &tmp_stream, -1);
99bbb428 7543
d7e74731 7544 return std::move (tmp_stream.string ());
99bbb428
PA
7545}
7546
14f9c5c9 7547/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7548 If DISPP is non-null, add its byte displacement from the beginning of a
7549 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7550 work for packed fields).
7551
7552 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7553 followed by "___".
14f9c5c9 7554
0963b4bd 7555 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7556 be a (pointer or reference)+ to a struct or union, and the
7557 ultimate target type will be searched.
14f9c5c9
AS
7558
7559 Looks recursively into variant clauses and parent types.
7560
828d5846
XR
7561 In the case of homonyms in the tagged types, please refer to the
7562 long explanation in find_struct_field's function documentation.
7563
4c4b4cd2
PH
7564 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7565 TYPE is not a type of the right kind. */
14f9c5c9 7566
4c4b4cd2 7567static struct type *
a121b7c1 7568ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7569 int noerr)
14f9c5c9
AS
7570{
7571 int i;
828d5846 7572 int parent_offset = -1;
14f9c5c9
AS
7573
7574 if (name == NULL)
7575 goto BadName;
7576
76a01679 7577 if (refok && type != NULL)
4c4b4cd2
PH
7578 while (1)
7579 {
61ee279c 7580 type = ada_check_typedef (type);
76a01679
JB
7581 if (TYPE_CODE (type) != TYPE_CODE_PTR
7582 && TYPE_CODE (type) != TYPE_CODE_REF)
7583 break;
7584 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7585 }
14f9c5c9 7586
76a01679 7587 if (type == NULL
1265e4aa
JB
7588 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7589 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7590 {
4c4b4cd2 7591 if (noerr)
76a01679 7592 return NULL;
99bbb428 7593
3b4de39c
PA
7594 error (_("Type %s is not a structure or union type"),
7595 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7596 }
7597
7598 type = to_static_fixed_type (type);
7599
7600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7601 {
0d5cff50 7602 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7603 struct type *t;
d2e4a39e 7604
14f9c5c9 7605 if (t_field_name == NULL)
4c4b4cd2 7606 continue;
14f9c5c9 7607
828d5846
XR
7608 else if (ada_is_parent_field (type, i))
7609 {
7610 /* This is a field pointing us to the parent type of a tagged
7611 type. As hinted in this function's documentation, we give
7612 preference to fields in the current record first, so what
7613 we do here is just record the index of this field before
7614 we skip it. If it turns out we couldn't find our field
7615 in the current record, then we'll get back to it and search
7616 inside it whether the field might exist in the parent. */
7617
7618 parent_offset = i;
7619 continue;
7620 }
7621
14f9c5c9 7622 else if (field_name_match (t_field_name, name))
988f6b3d 7623 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7624
7625 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7626 {
4c4b4cd2 7627 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7628 0, 1);
4c4b4cd2 7629 if (t != NULL)
988f6b3d 7630 return t;
4c4b4cd2 7631 }
14f9c5c9
AS
7632
7633 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7634 {
7635 int j;
5b4ee69b
MS
7636 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7637 i));
4c4b4cd2
PH
7638
7639 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7640 {
b1f33ddd
JB
7641 /* FIXME pnh 2008/01/26: We check for a field that is
7642 NOT wrapped in a struct, since the compiler sometimes
7643 generates these for unchecked variant types. Revisit
0963b4bd 7644 if the compiler changes this practice. */
0d5cff50 7645 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7646
b1f33ddd
JB
7647 if (v_field_name != NULL
7648 && field_name_match (v_field_name, name))
460efde1 7649 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7650 else
0963b4bd
MS
7651 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7652 j),
988f6b3d 7653 name, 0, 1);
b1f33ddd 7654
4c4b4cd2 7655 if (t != NULL)
988f6b3d 7656 return t;
4c4b4cd2
PH
7657 }
7658 }
14f9c5c9
AS
7659
7660 }
7661
828d5846
XR
7662 /* Field not found so far. If this is a tagged type which
7663 has a parent, try finding that field in the parent now. */
7664
7665 if (parent_offset != -1)
7666 {
7667 struct type *t;
7668
7669 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7670 name, 0, 1);
7671 if (t != NULL)
7672 return t;
7673 }
7674
14f9c5c9 7675BadName:
d2e4a39e 7676 if (!noerr)
14f9c5c9 7677 {
2b2798cc 7678 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7679
7680 error (_("Type %s has no component named %s"),
3b4de39c 7681 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7682 }
7683
7684 return NULL;
7685}
7686
b1f33ddd
JB
7687/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7688 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7689 represents an unchecked union (that is, the variant part of a
0963b4bd 7690 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7691
7692static int
7693is_unchecked_variant (struct type *var_type, struct type *outer_type)
7694{
a121b7c1 7695 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7696
988f6b3d 7697 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7698}
7699
7700
14f9c5c9
AS
7701/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7702 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7703 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7704 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7705
d2e4a39e 7706int
ebf56fd3 7707ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7708 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7709{
7710 int others_clause;
7711 int i;
a121b7c1 7712 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7713 struct value *outer;
7714 struct value *discrim;
14f9c5c9
AS
7715 LONGEST discrim_val;
7716
012370f6
TT
7717 /* Using plain value_from_contents_and_address here causes problems
7718 because we will end up trying to resolve a type that is currently
7719 being constructed. */
7720 outer = value_from_contents_and_address_unresolved (outer_type,
7721 outer_valaddr, 0);
0c281816
JB
7722 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7723 if (discrim == NULL)
14f9c5c9 7724 return -1;
0c281816 7725 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7726
7727 others_clause = -1;
7728 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7729 {
7730 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7731 others_clause = i;
14f9c5c9 7732 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7733 return i;
14f9c5c9
AS
7734 }
7735
7736 return others_clause;
7737}
d2e4a39e 7738\f
14f9c5c9
AS
7739
7740
4c4b4cd2 7741 /* Dynamic-Sized Records */
14f9c5c9
AS
7742
7743/* Strategy: The type ostensibly attached to a value with dynamic size
7744 (i.e., a size that is not statically recorded in the debugging
7745 data) does not accurately reflect the size or layout of the value.
7746 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7747 conventional types that are constructed on the fly. */
14f9c5c9
AS
7748
7749/* There is a subtle and tricky problem here. In general, we cannot
7750 determine the size of dynamic records without its data. However,
7751 the 'struct value' data structure, which GDB uses to represent
7752 quantities in the inferior process (the target), requires the size
7753 of the type at the time of its allocation in order to reserve space
7754 for GDB's internal copy of the data. That's why the
7755 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7756 rather than struct value*s.
14f9c5c9
AS
7757
7758 However, GDB's internal history variables ($1, $2, etc.) are
7759 struct value*s containing internal copies of the data that are not, in
7760 general, the same as the data at their corresponding addresses in
7761 the target. Fortunately, the types we give to these values are all
7762 conventional, fixed-size types (as per the strategy described
7763 above), so that we don't usually have to perform the
7764 'to_fixed_xxx_type' conversions to look at their values.
7765 Unfortunately, there is one exception: if one of the internal
7766 history variables is an array whose elements are unconstrained
7767 records, then we will need to create distinct fixed types for each
7768 element selected. */
7769
7770/* The upshot of all of this is that many routines take a (type, host
7771 address, target address) triple as arguments to represent a value.
7772 The host address, if non-null, is supposed to contain an internal
7773 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7774 target at the target address. */
14f9c5c9
AS
7775
7776/* Assuming that VAL0 represents a pointer value, the result of
7777 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7778 dynamic-sized types. */
14f9c5c9 7779
d2e4a39e
AS
7780struct value *
7781ada_value_ind (struct value *val0)
14f9c5c9 7782{
c48db5ca 7783 struct value *val = value_ind (val0);
5b4ee69b 7784
b50d69b5
JG
7785 if (ada_is_tagged_type (value_type (val), 0))
7786 val = ada_tag_value_at_base_address (val);
7787
4c4b4cd2 7788 return ada_to_fixed_value (val);
14f9c5c9
AS
7789}
7790
7791/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7792 qualifiers on VAL0. */
7793
d2e4a39e
AS
7794static struct value *
7795ada_coerce_ref (struct value *val0)
7796{
df407dfe 7797 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7798 {
7799 struct value *val = val0;
5b4ee69b 7800
994b9211 7801 val = coerce_ref (val);
b50d69b5
JG
7802
7803 if (ada_is_tagged_type (value_type (val), 0))
7804 val = ada_tag_value_at_base_address (val);
7805
4c4b4cd2 7806 return ada_to_fixed_value (val);
d2e4a39e
AS
7807 }
7808 else
14f9c5c9
AS
7809 return val0;
7810}
7811
7812/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7813 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7814
7815static unsigned int
ebf56fd3 7816align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7817{
7818 return (off + alignment - 1) & ~(alignment - 1);
7819}
7820
4c4b4cd2 7821/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7822
7823static unsigned int
ebf56fd3 7824field_alignment (struct type *type, int f)
14f9c5c9 7825{
d2e4a39e 7826 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7827 int len;
14f9c5c9
AS
7828 int align_offset;
7829
64a1bf19
JB
7830 /* The field name should never be null, unless the debugging information
7831 is somehow malformed. In this case, we assume the field does not
7832 require any alignment. */
7833 if (name == NULL)
7834 return 1;
7835
7836 len = strlen (name);
7837
4c4b4cd2
PH
7838 if (!isdigit (name[len - 1]))
7839 return 1;
14f9c5c9 7840
d2e4a39e 7841 if (isdigit (name[len - 2]))
14f9c5c9
AS
7842 align_offset = len - 2;
7843 else
7844 align_offset = len - 1;
7845
61012eef 7846 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7847 return TARGET_CHAR_BIT;
7848
4c4b4cd2
PH
7849 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7850}
7851
852dff6c 7852/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7853
852dff6c
JB
7854static struct symbol *
7855ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7856{
7857 struct symbol *sym;
7858
7859 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7860 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7861 return sym;
7862
4186eb54
KS
7863 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7864 return sym;
14f9c5c9
AS
7865}
7866
dddfab26
UW
7867/* Find a type named NAME. Ignores ambiguity. This routine will look
7868 solely for types defined by debug info, it will not search the GDB
7869 primitive types. */
4c4b4cd2 7870
852dff6c 7871static struct type *
ebf56fd3 7872ada_find_any_type (const char *name)
14f9c5c9 7873{
852dff6c 7874 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7875
14f9c5c9 7876 if (sym != NULL)
dddfab26 7877 return SYMBOL_TYPE (sym);
14f9c5c9 7878
dddfab26 7879 return NULL;
14f9c5c9
AS
7880}
7881
739593e0
JB
7882/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7883 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7884 symbol, in which case it is returned. Otherwise, this looks for
7885 symbols whose name is that of NAME_SYM suffixed with "___XR".
7886 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7887
c0e70c62
TT
7888static bool
7889ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7890{
739593e0 7891 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7892 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7893}
7894
14f9c5c9 7895/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7896 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7897 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7898 otherwise return 0. */
7899
14f9c5c9 7900int
d2e4a39e 7901ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7902{
7903 if (type1 == NULL)
7904 return 1;
7905 else if (type0 == NULL)
7906 return 0;
7907 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7908 return 1;
7909 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7910 return 0;
4c4b4cd2
PH
7911 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7912 return 1;
ad82864c 7913 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7914 return 1;
4c4b4cd2
PH
7915 else if (ada_is_array_descriptor_type (type0)
7916 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7917 return 1;
aeb5907d
JB
7918 else
7919 {
a737d952
TT
7920 const char *type0_name = TYPE_NAME (type0);
7921 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7922
7923 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7924 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7925 return 1;
7926 }
14f9c5c9
AS
7927 return 0;
7928}
7929
e86ca25f
TT
7930/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7931 null. */
4c4b4cd2 7932
0d5cff50 7933const char *
d2e4a39e 7934ada_type_name (struct type *type)
14f9c5c9 7935{
d2e4a39e 7936 if (type == NULL)
14f9c5c9 7937 return NULL;
e86ca25f 7938 return TYPE_NAME (type);
14f9c5c9
AS
7939}
7940
b4ba55a1
JB
7941/* Search the list of "descriptive" types associated to TYPE for a type
7942 whose name is NAME. */
7943
7944static struct type *
7945find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7946{
931e5bc3 7947 struct type *result, *tmp;
b4ba55a1 7948
c6044dd1
JB
7949 if (ada_ignore_descriptive_types_p)
7950 return NULL;
7951
b4ba55a1
JB
7952 /* If there no descriptive-type info, then there is no parallel type
7953 to be found. */
7954 if (!HAVE_GNAT_AUX_INFO (type))
7955 return NULL;
7956
7957 result = TYPE_DESCRIPTIVE_TYPE (type);
7958 while (result != NULL)
7959 {
0d5cff50 7960 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7961
7962 if (result_name == NULL)
7963 {
7964 warning (_("unexpected null name on descriptive type"));
7965 return NULL;
7966 }
7967
7968 /* If the names match, stop. */
7969 if (strcmp (result_name, name) == 0)
7970 break;
7971
7972 /* Otherwise, look at the next item on the list, if any. */
7973 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7974 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7975 else
7976 tmp = NULL;
7977
7978 /* If not found either, try after having resolved the typedef. */
7979 if (tmp != NULL)
7980 result = tmp;
b4ba55a1 7981 else
931e5bc3 7982 {
f168693b 7983 result = check_typedef (result);
931e5bc3
JG
7984 if (HAVE_GNAT_AUX_INFO (result))
7985 result = TYPE_DESCRIPTIVE_TYPE (result);
7986 else
7987 result = NULL;
7988 }
b4ba55a1
JB
7989 }
7990
7991 /* If we didn't find a match, see whether this is a packed array. With
7992 older compilers, the descriptive type information is either absent or
7993 irrelevant when it comes to packed arrays so the above lookup fails.
7994 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7995 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7996 return ada_find_any_type (name);
7997
7998 return result;
7999}
8000
8001/* Find a parallel type to TYPE with the specified NAME, using the
8002 descriptive type taken from the debugging information, if available,
8003 and otherwise using the (slower) name-based method. */
8004
8005static struct type *
8006ada_find_parallel_type_with_name (struct type *type, const char *name)
8007{
8008 struct type *result = NULL;
8009
8010 if (HAVE_GNAT_AUX_INFO (type))
8011 result = find_parallel_type_by_descriptive_type (type, name);
8012 else
8013 result = ada_find_any_type (name);
8014
8015 return result;
8016}
8017
8018/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8019 SUFFIX to the name of TYPE. */
14f9c5c9 8020
d2e4a39e 8021struct type *
ebf56fd3 8022ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8023{
0d5cff50 8024 char *name;
fe978cb0 8025 const char *type_name = ada_type_name (type);
14f9c5c9 8026 int len;
d2e4a39e 8027
fe978cb0 8028 if (type_name == NULL)
14f9c5c9
AS
8029 return NULL;
8030
fe978cb0 8031 len = strlen (type_name);
14f9c5c9 8032
b4ba55a1 8033 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8034
fe978cb0 8035 strcpy (name, type_name);
14f9c5c9
AS
8036 strcpy (name + len, suffix);
8037
b4ba55a1 8038 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8039}
8040
14f9c5c9 8041/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8042 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8043
d2e4a39e
AS
8044static struct type *
8045dynamic_template_type (struct type *type)
14f9c5c9 8046{
61ee279c 8047 type = ada_check_typedef (type);
14f9c5c9
AS
8048
8049 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8050 || ada_type_name (type) == NULL)
14f9c5c9 8051 return NULL;
d2e4a39e 8052 else
14f9c5c9
AS
8053 {
8054 int len = strlen (ada_type_name (type));
5b4ee69b 8055
4c4b4cd2
PH
8056 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8057 return type;
14f9c5c9 8058 else
4c4b4cd2 8059 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8060 }
8061}
8062
8063/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8064 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8065
d2e4a39e
AS
8066static int
8067is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8068{
8069 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8070
d2e4a39e 8071 return name != NULL
14f9c5c9
AS
8072 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8073 && strstr (name, "___XVL") != NULL;
8074}
8075
4c4b4cd2
PH
8076/* The index of the variant field of TYPE, or -1 if TYPE does not
8077 represent a variant record type. */
14f9c5c9 8078
d2e4a39e 8079static int
4c4b4cd2 8080variant_field_index (struct type *type)
14f9c5c9
AS
8081{
8082 int f;
8083
4c4b4cd2
PH
8084 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8085 return -1;
8086
8087 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8088 {
8089 if (ada_is_variant_part (type, f))
8090 return f;
8091 }
8092 return -1;
14f9c5c9
AS
8093}
8094
4c4b4cd2
PH
8095/* A record type with no fields. */
8096
d2e4a39e 8097static struct type *
fe978cb0 8098empty_record (struct type *templ)
14f9c5c9 8099{
fe978cb0 8100 struct type *type = alloc_type_copy (templ);
5b4ee69b 8101
14f9c5c9
AS
8102 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8103 TYPE_NFIELDS (type) = 0;
8104 TYPE_FIELDS (type) = NULL;
8ecb59f8 8105 INIT_NONE_SPECIFIC (type);
14f9c5c9 8106 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8107 TYPE_LENGTH (type) = 0;
8108 return type;
8109}
8110
8111/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8112 the value of type TYPE at VALADDR or ADDRESS (see comments at
8113 the beginning of this section) VAL according to GNAT conventions.
8114 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8115 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8116 an outer-level type (i.e., as opposed to a branch of a variant.) A
8117 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8118 of the variant.
14f9c5c9 8119
4c4b4cd2
PH
8120 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8121 length are not statically known are discarded. As a consequence,
8122 VALADDR, ADDRESS and DVAL0 are ignored.
8123
8124 NOTE: Limitations: For now, we assume that dynamic fields and
8125 variants occupy whole numbers of bytes. However, they need not be
8126 byte-aligned. */
8127
8128struct type *
10a2c479 8129ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8130 const gdb_byte *valaddr,
4c4b4cd2
PH
8131 CORE_ADDR address, struct value *dval0,
8132 int keep_dynamic_fields)
14f9c5c9 8133{
d2e4a39e
AS
8134 struct value *mark = value_mark ();
8135 struct value *dval;
8136 struct type *rtype;
14f9c5c9 8137 int nfields, bit_len;
4c4b4cd2 8138 int variant_field;
14f9c5c9 8139 long off;
d94e4f4f 8140 int fld_bit_len;
14f9c5c9
AS
8141 int f;
8142
4c4b4cd2
PH
8143 /* Compute the number of fields in this record type that are going
8144 to be processed: unless keep_dynamic_fields, this includes only
8145 fields whose position and length are static will be processed. */
8146 if (keep_dynamic_fields)
8147 nfields = TYPE_NFIELDS (type);
8148 else
8149 {
8150 nfields = 0;
76a01679 8151 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8152 && !ada_is_variant_part (type, nfields)
8153 && !is_dynamic_field (type, nfields))
8154 nfields++;
8155 }
8156
e9bb382b 8157 rtype = alloc_type_copy (type);
14f9c5c9 8158 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8159 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8160 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8161 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8162 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8163 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8164 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8165 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8166
d2e4a39e
AS
8167 off = 0;
8168 bit_len = 0;
4c4b4cd2
PH
8169 variant_field = -1;
8170
14f9c5c9
AS
8171 for (f = 0; f < nfields; f += 1)
8172 {
6c038f32
PH
8173 off = align_value (off, field_alignment (type, f))
8174 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8175 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8176 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8177
d2e4a39e 8178 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8179 {
8180 variant_field = f;
d94e4f4f 8181 fld_bit_len = 0;
4c4b4cd2 8182 }
14f9c5c9 8183 else if (is_dynamic_field (type, f))
4c4b4cd2 8184 {
284614f0
JB
8185 const gdb_byte *field_valaddr = valaddr;
8186 CORE_ADDR field_address = address;
8187 struct type *field_type =
8188 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8189
4c4b4cd2 8190 if (dval0 == NULL)
b5304971
JG
8191 {
8192 /* rtype's length is computed based on the run-time
8193 value of discriminants. If the discriminants are not
8194 initialized, the type size may be completely bogus and
0963b4bd 8195 GDB may fail to allocate a value for it. So check the
b5304971 8196 size first before creating the value. */
c1b5a1a6 8197 ada_ensure_varsize_limit (rtype);
012370f6
TT
8198 /* Using plain value_from_contents_and_address here
8199 causes problems because we will end up trying to
8200 resolve a type that is currently being
8201 constructed. */
8202 dval = value_from_contents_and_address_unresolved (rtype,
8203 valaddr,
8204 address);
9f1f738a 8205 rtype = value_type (dval);
b5304971 8206 }
4c4b4cd2
PH
8207 else
8208 dval = dval0;
8209
284614f0
JB
8210 /* If the type referenced by this field is an aligner type, we need
8211 to unwrap that aligner type, because its size might not be set.
8212 Keeping the aligner type would cause us to compute the wrong
8213 size for this field, impacting the offset of the all the fields
8214 that follow this one. */
8215 if (ada_is_aligner_type (field_type))
8216 {
8217 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8218
8219 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8220 field_address = cond_offset_target (field_address, field_offset);
8221 field_type = ada_aligned_type (field_type);
8222 }
8223
8224 field_valaddr = cond_offset_host (field_valaddr,
8225 off / TARGET_CHAR_BIT);
8226 field_address = cond_offset_target (field_address,
8227 off / TARGET_CHAR_BIT);
8228
8229 /* Get the fixed type of the field. Note that, in this case,
8230 we do not want to get the real type out of the tag: if
8231 the current field is the parent part of a tagged record,
8232 we will get the tag of the object. Clearly wrong: the real
8233 type of the parent is not the real type of the child. We
8234 would end up in an infinite loop. */
8235 field_type = ada_get_base_type (field_type);
8236 field_type = ada_to_fixed_type (field_type, field_valaddr,
8237 field_address, dval, 0);
27f2a97b
JB
8238 /* If the field size is already larger than the maximum
8239 object size, then the record itself will necessarily
8240 be larger than the maximum object size. We need to make
8241 this check now, because the size might be so ridiculously
8242 large (due to an uninitialized variable in the inferior)
8243 that it would cause an overflow when adding it to the
8244 record size. */
c1b5a1a6 8245 ada_ensure_varsize_limit (field_type);
284614f0
JB
8246
8247 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8248 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8249 /* The multiplication can potentially overflow. But because
8250 the field length has been size-checked just above, and
8251 assuming that the maximum size is a reasonable value,
8252 an overflow should not happen in practice. So rather than
8253 adding overflow recovery code to this already complex code,
8254 we just assume that it's not going to happen. */
d94e4f4f 8255 fld_bit_len =
4c4b4cd2
PH
8256 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8257 }
14f9c5c9 8258 else
4c4b4cd2 8259 {
5ded5331
JB
8260 /* Note: If this field's type is a typedef, it is important
8261 to preserve the typedef layer.
8262
8263 Otherwise, we might be transforming a typedef to a fat
8264 pointer (encoding a pointer to an unconstrained array),
8265 into a basic fat pointer (encoding an unconstrained
8266 array). As both types are implemented using the same
8267 structure, the typedef is the only clue which allows us
8268 to distinguish between the two options. Stripping it
8269 would prevent us from printing this field appropriately. */
8270 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8271 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8272 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8273 fld_bit_len =
4c4b4cd2
PH
8274 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8275 else
5ded5331
JB
8276 {
8277 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8278
8279 /* We need to be careful of typedefs when computing
8280 the length of our field. If this is a typedef,
8281 get the length of the target type, not the length
8282 of the typedef. */
8283 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8284 field_type = ada_typedef_target_type (field_type);
8285
8286 fld_bit_len =
8287 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8288 }
4c4b4cd2 8289 }
14f9c5c9 8290 if (off + fld_bit_len > bit_len)
4c4b4cd2 8291 bit_len = off + fld_bit_len;
d94e4f4f 8292 off += fld_bit_len;
4c4b4cd2
PH
8293 TYPE_LENGTH (rtype) =
8294 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8295 }
4c4b4cd2
PH
8296
8297 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8298 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8299 the record. This can happen in the presence of representation
8300 clauses. */
8301 if (variant_field >= 0)
8302 {
8303 struct type *branch_type;
8304
8305 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8306
8307 if (dval0 == NULL)
9f1f738a 8308 {
012370f6
TT
8309 /* Using plain value_from_contents_and_address here causes
8310 problems because we will end up trying to resolve a type
8311 that is currently being constructed. */
8312 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8313 address);
9f1f738a
SA
8314 rtype = value_type (dval);
8315 }
4c4b4cd2
PH
8316 else
8317 dval = dval0;
8318
8319 branch_type =
8320 to_fixed_variant_branch_type
8321 (TYPE_FIELD_TYPE (type, variant_field),
8322 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8323 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8324 if (branch_type == NULL)
8325 {
8326 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8327 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8328 TYPE_NFIELDS (rtype) -= 1;
8329 }
8330 else
8331 {
8332 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8333 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8334 fld_bit_len =
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8336 TARGET_CHAR_BIT;
8337 if (off + fld_bit_len > bit_len)
8338 bit_len = off + fld_bit_len;
8339 TYPE_LENGTH (rtype) =
8340 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8341 }
8342 }
8343
714e53ab
PH
8344 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8345 should contain the alignment of that record, which should be a strictly
8346 positive value. If null or negative, then something is wrong, most
8347 probably in the debug info. In that case, we don't round up the size
0963b4bd 8348 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8349 the current RTYPE length might be good enough for our purposes. */
8350 if (TYPE_LENGTH (type) <= 0)
8351 {
323e0a4a 8352 if (TYPE_NAME (rtype))
cc1defb1
KS
8353 warning (_("Invalid type size for `%s' detected: %s."),
8354 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8355 else
cc1defb1
KS
8356 warning (_("Invalid type size for <unnamed> detected: %s."),
8357 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8358 }
8359 else
8360 {
8361 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8362 TYPE_LENGTH (type));
8363 }
14f9c5c9
AS
8364
8365 value_free_to_mark (mark);
d2e4a39e 8366 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8367 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8368 return rtype;
8369}
8370
4c4b4cd2
PH
8371/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8372 of 1. */
14f9c5c9 8373
d2e4a39e 8374static struct type *
fc1a4b47 8375template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8376 CORE_ADDR address, struct value *dval0)
8377{
8378 return ada_template_to_fixed_record_type_1 (type, valaddr,
8379 address, dval0, 1);
8380}
8381
8382/* An ordinary record type in which ___XVL-convention fields and
8383 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8384 static approximations, containing all possible fields. Uses
8385 no runtime values. Useless for use in values, but that's OK,
8386 since the results are used only for type determinations. Works on both
8387 structs and unions. Representation note: to save space, we memorize
8388 the result of this function in the TYPE_TARGET_TYPE of the
8389 template type. */
8390
8391static struct type *
8392template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8393{
8394 struct type *type;
8395 int nfields;
8396 int f;
8397
9e195661
PMR
8398 /* No need no do anything if the input type is already fixed. */
8399 if (TYPE_FIXED_INSTANCE (type0))
8400 return type0;
8401
8402 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8403 if (TYPE_TARGET_TYPE (type0) != NULL)
8404 return TYPE_TARGET_TYPE (type0);
8405
9e195661 8406 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8407 type = type0;
9e195661
PMR
8408 nfields = TYPE_NFIELDS (type0);
8409
8410 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8411 recompute all over next time. */
8412 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8413
8414 for (f = 0; f < nfields; f += 1)
8415 {
460efde1 8416 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8417 struct type *new_type;
14f9c5c9 8418
4c4b4cd2 8419 if (is_dynamic_field (type0, f))
460efde1
JB
8420 {
8421 field_type = ada_check_typedef (field_type);
8422 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8423 }
14f9c5c9 8424 else
f192137b 8425 new_type = static_unwrap_type (field_type);
9e195661
PMR
8426
8427 if (new_type != field_type)
8428 {
8429 /* Clone TYPE0 only the first time we get a new field type. */
8430 if (type == type0)
8431 {
8432 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8433 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8434 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8435 TYPE_NFIELDS (type) = nfields;
8436 TYPE_FIELDS (type) = (struct field *)
8437 TYPE_ALLOC (type, nfields * sizeof (struct field));
8438 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8439 sizeof (struct field) * nfields);
8440 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8441 TYPE_FIXED_INSTANCE (type) = 1;
8442 TYPE_LENGTH (type) = 0;
8443 }
8444 TYPE_FIELD_TYPE (type, f) = new_type;
8445 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8446 }
14f9c5c9 8447 }
9e195661 8448
14f9c5c9
AS
8449 return type;
8450}
8451
4c4b4cd2 8452/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8453 whose address in memory is ADDRESS, returns a revision of TYPE,
8454 which should be a non-dynamic-sized record, in which the variant
8455 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8456 for discriminant values in DVAL0, which can be NULL if the record
8457 contains the necessary discriminant values. */
8458
d2e4a39e 8459static struct type *
fc1a4b47 8460to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8461 CORE_ADDR address, struct value *dval0)
14f9c5c9 8462{
d2e4a39e 8463 struct value *mark = value_mark ();
4c4b4cd2 8464 struct value *dval;
d2e4a39e 8465 struct type *rtype;
14f9c5c9
AS
8466 struct type *branch_type;
8467 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8468 int variant_field = variant_field_index (type);
14f9c5c9 8469
4c4b4cd2 8470 if (variant_field == -1)
14f9c5c9
AS
8471 return type;
8472
4c4b4cd2 8473 if (dval0 == NULL)
9f1f738a
SA
8474 {
8475 dval = value_from_contents_and_address (type, valaddr, address);
8476 type = value_type (dval);
8477 }
4c4b4cd2
PH
8478 else
8479 dval = dval0;
8480
e9bb382b 8481 rtype = alloc_type_copy (type);
14f9c5c9 8482 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8483 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8484 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8485 TYPE_FIELDS (rtype) =
8486 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8487 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8488 sizeof (struct field) * nfields);
14f9c5c9 8489 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8490 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8491 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8492
4c4b4cd2
PH
8493 branch_type = to_fixed_variant_branch_type
8494 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8495 cond_offset_host (valaddr,
4c4b4cd2
PH
8496 TYPE_FIELD_BITPOS (type, variant_field)
8497 / TARGET_CHAR_BIT),
d2e4a39e 8498 cond_offset_target (address,
4c4b4cd2
PH
8499 TYPE_FIELD_BITPOS (type, variant_field)
8500 / TARGET_CHAR_BIT), dval);
d2e4a39e 8501 if (branch_type == NULL)
14f9c5c9 8502 {
4c4b4cd2 8503 int f;
5b4ee69b 8504
4c4b4cd2
PH
8505 for (f = variant_field + 1; f < nfields; f += 1)
8506 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8507 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8508 }
8509 else
8510 {
4c4b4cd2
PH
8511 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8512 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8513 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8514 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8515 }
4c4b4cd2 8516 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8517
4c4b4cd2 8518 value_free_to_mark (mark);
14f9c5c9
AS
8519 return rtype;
8520}
8521
8522/* An ordinary record type (with fixed-length fields) that describes
8523 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8524 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8525 should be in DVAL, a record value; it may be NULL if the object
8526 at ADDR itself contains any necessary discriminant values.
8527 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8528 values from the record are needed. Except in the case that DVAL,
8529 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8530 unchecked) is replaced by a particular branch of the variant.
8531
8532 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8533 is questionable and may be removed. It can arise during the
8534 processing of an unconstrained-array-of-record type where all the
8535 variant branches have exactly the same size. This is because in
8536 such cases, the compiler does not bother to use the XVS convention
8537 when encoding the record. I am currently dubious of this
8538 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8539
d2e4a39e 8540static struct type *
fc1a4b47 8541to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8542 CORE_ADDR address, struct value *dval)
14f9c5c9 8543{
d2e4a39e 8544 struct type *templ_type;
14f9c5c9 8545
876cecd0 8546 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8547 return type0;
8548
d2e4a39e 8549 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8550
8551 if (templ_type != NULL)
8552 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8553 else if (variant_field_index (type0) >= 0)
8554 {
8555 if (dval == NULL && valaddr == NULL && address == 0)
8556 return type0;
8557 return to_record_with_fixed_variant_part (type0, valaddr, address,
8558 dval);
8559 }
14f9c5c9
AS
8560 else
8561 {
876cecd0 8562 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8563 return type0;
8564 }
8565
8566}
8567
8568/* An ordinary record type (with fixed-length fields) that describes
8569 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8570 union type. Any necessary discriminants' values should be in DVAL,
8571 a record value. That is, this routine selects the appropriate
8572 branch of the union at ADDR according to the discriminant value
b1f33ddd 8573 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8574 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8575
d2e4a39e 8576static struct type *
fc1a4b47 8577to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8578 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8579{
8580 int which;
d2e4a39e
AS
8581 struct type *templ_type;
8582 struct type *var_type;
14f9c5c9
AS
8583
8584 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8585 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8586 else
14f9c5c9
AS
8587 var_type = var_type0;
8588
8589 templ_type = ada_find_parallel_type (var_type, "___XVU");
8590
8591 if (templ_type != NULL)
8592 var_type = templ_type;
8593
b1f33ddd
JB
8594 if (is_unchecked_variant (var_type, value_type (dval)))
8595 return var_type0;
d2e4a39e
AS
8596 which =
8597 ada_which_variant_applies (var_type,
0fd88904 8598 value_type (dval), value_contents (dval));
14f9c5c9
AS
8599
8600 if (which < 0)
e9bb382b 8601 return empty_record (var_type);
14f9c5c9 8602 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8603 return to_fixed_record_type
d2e4a39e
AS
8604 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8605 valaddr, address, dval);
4c4b4cd2 8606 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8607 return
8608 to_fixed_record_type
8609 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8610 else
8611 return TYPE_FIELD_TYPE (var_type, which);
8612}
8613
8908fca5
JB
8614/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8615 ENCODING_TYPE, a type following the GNAT conventions for discrete
8616 type encodings, only carries redundant information. */
8617
8618static int
8619ada_is_redundant_range_encoding (struct type *range_type,
8620 struct type *encoding_type)
8621{
108d56a4 8622 const char *bounds_str;
8908fca5
JB
8623 int n;
8624 LONGEST lo, hi;
8625
8626 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8627
005e2509
JB
8628 if (TYPE_CODE (get_base_type (range_type))
8629 != TYPE_CODE (get_base_type (encoding_type)))
8630 {
8631 /* The compiler probably used a simple base type to describe
8632 the range type instead of the range's actual base type,
8633 expecting us to get the real base type from the encoding
8634 anyway. In this situation, the encoding cannot be ignored
8635 as redundant. */
8636 return 0;
8637 }
8638
8908fca5
JB
8639 if (is_dynamic_type (range_type))
8640 return 0;
8641
8642 if (TYPE_NAME (encoding_type) == NULL)
8643 return 0;
8644
8645 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8646 if (bounds_str == NULL)
8647 return 0;
8648
8649 n = 8; /* Skip "___XDLU_". */
8650 if (!ada_scan_number (bounds_str, n, &lo, &n))
8651 return 0;
8652 if (TYPE_LOW_BOUND (range_type) != lo)
8653 return 0;
8654
8655 n += 2; /* Skip the "__" separator between the two bounds. */
8656 if (!ada_scan_number (bounds_str, n, &hi, &n))
8657 return 0;
8658 if (TYPE_HIGH_BOUND (range_type) != hi)
8659 return 0;
8660
8661 return 1;
8662}
8663
8664/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8665 a type following the GNAT encoding for describing array type
8666 indices, only carries redundant information. */
8667
8668static int
8669ada_is_redundant_index_type_desc (struct type *array_type,
8670 struct type *desc_type)
8671{
8672 struct type *this_layer = check_typedef (array_type);
8673 int i;
8674
8675 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8676 {
8677 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8678 TYPE_FIELD_TYPE (desc_type, i)))
8679 return 0;
8680 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8681 }
8682
8683 return 1;
8684}
8685
14f9c5c9
AS
8686/* Assuming that TYPE0 is an array type describing the type of a value
8687 at ADDR, and that DVAL describes a record containing any
8688 discriminants used in TYPE0, returns a type for the value that
8689 contains no dynamic components (that is, no components whose sizes
8690 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8691 true, gives an error message if the resulting type's size is over
4c4b4cd2 8692 varsize_limit. */
14f9c5c9 8693
d2e4a39e
AS
8694static struct type *
8695to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8696 int ignore_too_big)
14f9c5c9 8697{
d2e4a39e
AS
8698 struct type *index_type_desc;
8699 struct type *result;
ad82864c 8700 int constrained_packed_array_p;
931e5bc3 8701 static const char *xa_suffix = "___XA";
14f9c5c9 8702
b0dd7688 8703 type0 = ada_check_typedef (type0);
284614f0 8704 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8705 return type0;
14f9c5c9 8706
ad82864c
JB
8707 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8708 if (constrained_packed_array_p)
8709 type0 = decode_constrained_packed_array_type (type0);
284614f0 8710
931e5bc3
JG
8711 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8712
8713 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8714 encoding suffixed with 'P' may still be generated. If so,
8715 it should be used to find the XA type. */
8716
8717 if (index_type_desc == NULL)
8718 {
1da0522e 8719 const char *type_name = ada_type_name (type0);
931e5bc3 8720
1da0522e 8721 if (type_name != NULL)
931e5bc3 8722 {
1da0522e 8723 const int len = strlen (type_name);
931e5bc3
JG
8724 char *name = (char *) alloca (len + strlen (xa_suffix));
8725
1da0522e 8726 if (type_name[len - 1] == 'P')
931e5bc3 8727 {
1da0522e 8728 strcpy (name, type_name);
931e5bc3
JG
8729 strcpy (name + len - 1, xa_suffix);
8730 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8731 }
8732 }
8733 }
8734
28c85d6c 8735 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8736 if (index_type_desc != NULL
8737 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8738 {
8739 /* Ignore this ___XA parallel type, as it does not bring any
8740 useful information. This allows us to avoid creating fixed
8741 versions of the array's index types, which would be identical
8742 to the original ones. This, in turn, can also help avoid
8743 the creation of fixed versions of the array itself. */
8744 index_type_desc = NULL;
8745 }
8746
14f9c5c9
AS
8747 if (index_type_desc == NULL)
8748 {
61ee279c 8749 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8750
14f9c5c9 8751 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8752 depend on the contents of the array in properly constructed
8753 debugging data. */
529cad9c
PH
8754 /* Create a fixed version of the array element type.
8755 We're not providing the address of an element here,
e1d5a0d2 8756 and thus the actual object value cannot be inspected to do
529cad9c
PH
8757 the conversion. This should not be a problem, since arrays of
8758 unconstrained objects are not allowed. In particular, all
8759 the elements of an array of a tagged type should all be of
8760 the same type specified in the debugging info. No need to
8761 consult the object tag. */
1ed6ede0 8762 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8763
284614f0
JB
8764 /* Make sure we always create a new array type when dealing with
8765 packed array types, since we're going to fix-up the array
8766 type length and element bitsize a little further down. */
ad82864c 8767 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8768 result = type0;
14f9c5c9 8769 else
e9bb382b 8770 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8771 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8772 }
8773 else
8774 {
8775 int i;
8776 struct type *elt_type0;
8777
8778 elt_type0 = type0;
8779 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8780 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8781
8782 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8783 depend on the contents of the array in properly constructed
8784 debugging data. */
529cad9c
PH
8785 /* Create a fixed version of the array element type.
8786 We're not providing the address of an element here,
e1d5a0d2 8787 and thus the actual object value cannot be inspected to do
529cad9c
PH
8788 the conversion. This should not be a problem, since arrays of
8789 unconstrained objects are not allowed. In particular, all
8790 the elements of an array of a tagged type should all be of
8791 the same type specified in the debugging info. No need to
8792 consult the object tag. */
1ed6ede0
JB
8793 result =
8794 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8795
8796 elt_type0 = type0;
14f9c5c9 8797 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8798 {
8799 struct type *range_type =
28c85d6c 8800 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8801
e9bb382b 8802 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8803 result, range_type);
1ce677a4 8804 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8805 }
d2e4a39e 8806 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8807 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8808 }
8809
2e6fda7d
JB
8810 /* We want to preserve the type name. This can be useful when
8811 trying to get the type name of a value that has already been
8812 printed (for instance, if the user did "print VAR; whatis $". */
8813 TYPE_NAME (result) = TYPE_NAME (type0);
8814
ad82864c 8815 if (constrained_packed_array_p)
284614f0
JB
8816 {
8817 /* So far, the resulting type has been created as if the original
8818 type was a regular (non-packed) array type. As a result, the
8819 bitsize of the array elements needs to be set again, and the array
8820 length needs to be recomputed based on that bitsize. */
8821 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8822 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8823
8824 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8825 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8826 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8827 TYPE_LENGTH (result)++;
8828 }
8829
876cecd0 8830 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8831 return result;
d2e4a39e 8832}
14f9c5c9
AS
8833
8834
8835/* A standard type (containing no dynamically sized components)
8836 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8837 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8838 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8839 ADDRESS or in VALADDR contains these discriminants.
8840
1ed6ede0
JB
8841 If CHECK_TAG is not null, in the case of tagged types, this function
8842 attempts to locate the object's tag and use it to compute the actual
8843 type. However, when ADDRESS is null, we cannot use it to determine the
8844 location of the tag, and therefore compute the tagged type's actual type.
8845 So we return the tagged type without consulting the tag. */
529cad9c 8846
f192137b
JB
8847static struct type *
8848ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8849 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8850{
61ee279c 8851 type = ada_check_typedef (type);
8ecb59f8
TT
8852
8853 /* Only un-fixed types need to be handled here. */
8854 if (!HAVE_GNAT_AUX_INFO (type))
8855 return type;
8856
d2e4a39e
AS
8857 switch (TYPE_CODE (type))
8858 {
8859 default:
14f9c5c9 8860 return type;
d2e4a39e 8861 case TYPE_CODE_STRUCT:
4c4b4cd2 8862 {
76a01679 8863 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8864 struct type *fixed_record_type =
8865 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8866
529cad9c
PH
8867 /* If STATIC_TYPE is a tagged type and we know the object's address,
8868 then we can determine its tag, and compute the object's actual
0963b4bd 8869 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8870 type (the parent part of the record may have dynamic fields
8871 and the way the location of _tag is expressed may depend on
8872 them). */
529cad9c 8873
1ed6ede0 8874 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8875 {
b50d69b5
JG
8876 struct value *tag =
8877 value_tag_from_contents_and_address
8878 (fixed_record_type,
8879 valaddr,
8880 address);
8881 struct type *real_type = type_from_tag (tag);
8882 struct value *obj =
8883 value_from_contents_and_address (fixed_record_type,
8884 valaddr,
8885 address);
9f1f738a 8886 fixed_record_type = value_type (obj);
76a01679 8887 if (real_type != NULL)
b50d69b5
JG
8888 return to_fixed_record_type
8889 (real_type, NULL,
8890 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8891 }
4af88198
JB
8892
8893 /* Check to see if there is a parallel ___XVZ variable.
8894 If there is, then it provides the actual size of our type. */
8895 else if (ada_type_name (fixed_record_type) != NULL)
8896 {
0d5cff50 8897 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8898 char *xvz_name
8899 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8900 bool xvz_found = false;
4af88198
JB
8901 LONGEST size;
8902
88c15c34 8903 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8904 try
eccab96d
JB
8905 {
8906 xvz_found = get_int_var_value (xvz_name, size);
8907 }
230d2906 8908 catch (const gdb_exception_error &except)
eccab96d
JB
8909 {
8910 /* We found the variable, but somehow failed to read
8911 its value. Rethrow the same error, but with a little
8912 bit more information, to help the user understand
8913 what went wrong (Eg: the variable might have been
8914 optimized out). */
8915 throw_error (except.error,
8916 _("unable to read value of %s (%s)"),
3d6e9d23 8917 xvz_name, except.what ());
eccab96d 8918 }
eccab96d
JB
8919
8920 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8921 {
8922 fixed_record_type = copy_type (fixed_record_type);
8923 TYPE_LENGTH (fixed_record_type) = size;
8924
8925 /* The FIXED_RECORD_TYPE may have be a stub. We have
8926 observed this when the debugging info is STABS, and
8927 apparently it is something that is hard to fix.
8928
8929 In practice, we don't need the actual type definition
8930 at all, because the presence of the XVZ variable allows us
8931 to assume that there must be a XVS type as well, which we
8932 should be able to use later, when we need the actual type
8933 definition.
8934
8935 In the meantime, pretend that the "fixed" type we are
8936 returning is NOT a stub, because this can cause trouble
8937 when using this type to create new types targeting it.
8938 Indeed, the associated creation routines often check
8939 whether the target type is a stub and will try to replace
0963b4bd 8940 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8941 might cause the new type to have the wrong size too.
8942 Consider the case of an array, for instance, where the size
8943 of the array is computed from the number of elements in
8944 our array multiplied by the size of its element. */
8945 TYPE_STUB (fixed_record_type) = 0;
8946 }
8947 }
1ed6ede0 8948 return fixed_record_type;
4c4b4cd2 8949 }
d2e4a39e 8950 case TYPE_CODE_ARRAY:
4c4b4cd2 8951 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8952 case TYPE_CODE_UNION:
8953 if (dval == NULL)
4c4b4cd2 8954 return type;
d2e4a39e 8955 else
4c4b4cd2 8956 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8957 }
14f9c5c9
AS
8958}
8959
f192137b
JB
8960/* The same as ada_to_fixed_type_1, except that it preserves the type
8961 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8962
8963 The typedef layer needs be preserved in order to differentiate between
8964 arrays and array pointers when both types are implemented using the same
8965 fat pointer. In the array pointer case, the pointer is encoded as
8966 a typedef of the pointer type. For instance, considering:
8967
8968 type String_Access is access String;
8969 S1 : String_Access := null;
8970
8971 To the debugger, S1 is defined as a typedef of type String. But
8972 to the user, it is a pointer. So if the user tries to print S1,
8973 we should not dereference the array, but print the array address
8974 instead.
8975
8976 If we didn't preserve the typedef layer, we would lose the fact that
8977 the type is to be presented as a pointer (needs de-reference before
8978 being printed). And we would also use the source-level type name. */
f192137b
JB
8979
8980struct type *
8981ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8982 CORE_ADDR address, struct value *dval, int check_tag)
8983
8984{
8985 struct type *fixed_type =
8986 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8987
96dbd2c1
JB
8988 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8989 then preserve the typedef layer.
8990
8991 Implementation note: We can only check the main-type portion of
8992 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8993 from TYPE now returns a type that has the same instance flags
8994 as TYPE. For instance, if TYPE is a "typedef const", and its
8995 target type is a "struct", then the typedef elimination will return
8996 a "const" version of the target type. See check_typedef for more
8997 details about how the typedef layer elimination is done.
8998
8999 brobecker/2010-11-19: It seems to me that the only case where it is
9000 useful to preserve the typedef layer is when dealing with fat pointers.
9001 Perhaps, we could add a check for that and preserve the typedef layer
9002 only in that situation. But this seems unecessary so far, probably
9003 because we call check_typedef/ada_check_typedef pretty much everywhere.
9004 */
f192137b 9005 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9006 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9007 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9008 return type;
9009
9010 return fixed_type;
9011}
9012
14f9c5c9 9013/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9014 TYPE0, but based on no runtime data. */
14f9c5c9 9015
d2e4a39e
AS
9016static struct type *
9017to_static_fixed_type (struct type *type0)
14f9c5c9 9018{
d2e4a39e 9019 struct type *type;
14f9c5c9
AS
9020
9021 if (type0 == NULL)
9022 return NULL;
9023
876cecd0 9024 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9025 return type0;
9026
61ee279c 9027 type0 = ada_check_typedef (type0);
d2e4a39e 9028
14f9c5c9
AS
9029 switch (TYPE_CODE (type0))
9030 {
9031 default:
9032 return type0;
9033 case TYPE_CODE_STRUCT:
9034 type = dynamic_template_type (type0);
d2e4a39e 9035 if (type != NULL)
4c4b4cd2
PH
9036 return template_to_static_fixed_type (type);
9037 else
9038 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9039 case TYPE_CODE_UNION:
9040 type = ada_find_parallel_type (type0, "___XVU");
9041 if (type != NULL)
4c4b4cd2
PH
9042 return template_to_static_fixed_type (type);
9043 else
9044 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9045 }
9046}
9047
4c4b4cd2
PH
9048/* A static approximation of TYPE with all type wrappers removed. */
9049
d2e4a39e
AS
9050static struct type *
9051static_unwrap_type (struct type *type)
14f9c5c9
AS
9052{
9053 if (ada_is_aligner_type (type))
9054 {
61ee279c 9055 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9056 if (ada_type_name (type1) == NULL)
4c4b4cd2 9057 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9058
9059 return static_unwrap_type (type1);
9060 }
d2e4a39e 9061 else
14f9c5c9 9062 {
d2e4a39e 9063 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9064
d2e4a39e 9065 if (raw_real_type == type)
4c4b4cd2 9066 return type;
14f9c5c9 9067 else
4c4b4cd2 9068 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9069 }
9070}
9071
9072/* In some cases, incomplete and private types require
4c4b4cd2 9073 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9074 type Foo;
9075 type FooP is access Foo;
9076 V: FooP;
9077 type Foo is array ...;
4c4b4cd2 9078 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9079 cross-references to such types, we instead substitute for FooP a
9080 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9081 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9082
9083/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9084 exists, otherwise TYPE. */
9085
d2e4a39e 9086struct type *
61ee279c 9087ada_check_typedef (struct type *type)
14f9c5c9 9088{
727e3d2e
JB
9089 if (type == NULL)
9090 return NULL;
9091
736ade86
XR
9092 /* If our type is an access to an unconstrained array, which is encoded
9093 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9094 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9095 what allows us to distinguish between fat pointers that represent
9096 array types, and fat pointers that represent array access types
9097 (in both cases, the compiler implements them as fat pointers). */
736ade86 9098 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9099 return type;
9100
f168693b 9101 type = check_typedef (type);
14f9c5c9 9102 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9103 || !TYPE_STUB (type)
e86ca25f 9104 || TYPE_NAME (type) == NULL)
14f9c5c9 9105 return type;
d2e4a39e 9106 else
14f9c5c9 9107 {
e86ca25f 9108 const char *name = TYPE_NAME (type);
d2e4a39e 9109 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9110
05e522ef
JB
9111 if (type1 == NULL)
9112 return type;
9113
9114 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9115 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9116 types, only for the typedef-to-array types). If that's the case,
9117 strip the typedef layer. */
9118 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9119 type1 = ada_check_typedef (type1);
9120
9121 return type1;
14f9c5c9
AS
9122 }
9123}
9124
9125/* A value representing the data at VALADDR/ADDRESS as described by
9126 type TYPE0, but with a standard (static-sized) type that correctly
9127 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9128 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9129 creation of struct values]. */
14f9c5c9 9130
4c4b4cd2
PH
9131static struct value *
9132ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9133 struct value *val0)
14f9c5c9 9134{
1ed6ede0 9135 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9136
14f9c5c9
AS
9137 if (type == type0 && val0 != NULL)
9138 return val0;
cc0e770c
JB
9139
9140 if (VALUE_LVAL (val0) != lval_memory)
9141 {
9142 /* Our value does not live in memory; it could be a convenience
9143 variable, for instance. Create a not_lval value using val0's
9144 contents. */
9145 return value_from_contents (type, value_contents (val0));
9146 }
9147
9148 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9149}
9150
9151/* A value representing VAL, but with a standard (static-sized) type
9152 that correctly describes it. Does not necessarily create a new
9153 value. */
9154
0c3acc09 9155struct value *
4c4b4cd2
PH
9156ada_to_fixed_value (struct value *val)
9157{
c48db5ca 9158 val = unwrap_value (val);
d8ce9127 9159 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9160 return val;
14f9c5c9 9161}
d2e4a39e 9162\f
14f9c5c9 9163
14f9c5c9
AS
9164/* Attributes */
9165
4c4b4cd2
PH
9166/* Table mapping attribute numbers to names.
9167 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9168
d2e4a39e 9169static const char *attribute_names[] = {
14f9c5c9
AS
9170 "<?>",
9171
d2e4a39e 9172 "first",
14f9c5c9
AS
9173 "last",
9174 "length",
9175 "image",
14f9c5c9
AS
9176 "max",
9177 "min",
4c4b4cd2
PH
9178 "modulus",
9179 "pos",
9180 "size",
9181 "tag",
14f9c5c9 9182 "val",
14f9c5c9
AS
9183 0
9184};
9185
d2e4a39e 9186const char *
4c4b4cd2 9187ada_attribute_name (enum exp_opcode n)
14f9c5c9 9188{
4c4b4cd2
PH
9189 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9190 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9191 else
9192 return attribute_names[0];
9193}
9194
4c4b4cd2 9195/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9196
4c4b4cd2
PH
9197static LONGEST
9198pos_atr (struct value *arg)
14f9c5c9 9199{
24209737
PH
9200 struct value *val = coerce_ref (arg);
9201 struct type *type = value_type (val);
aa715135 9202 LONGEST result;
14f9c5c9 9203
d2e4a39e 9204 if (!discrete_type_p (type))
323e0a4a 9205 error (_("'POS only defined on discrete types"));
14f9c5c9 9206
aa715135
JG
9207 if (!discrete_position (type, value_as_long (val), &result))
9208 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9209
aa715135 9210 return result;
4c4b4cd2
PH
9211}
9212
9213static struct value *
3cb382c9 9214value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9215{
3cb382c9 9216 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9217}
9218
4c4b4cd2 9219/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9220
d2e4a39e
AS
9221static struct value *
9222value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9223{
d2e4a39e 9224 if (!discrete_type_p (type))
323e0a4a 9225 error (_("'VAL only defined on discrete types"));
df407dfe 9226 if (!integer_type_p (value_type (arg)))
323e0a4a 9227 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9228
9229 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9230 {
9231 long pos = value_as_long (arg);
5b4ee69b 9232
14f9c5c9 9233 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9234 error (_("argument to 'VAL out of range"));
14e75d8e 9235 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9236 }
9237 else
9238 return value_from_longest (type, value_as_long (arg));
9239}
14f9c5c9 9240\f
d2e4a39e 9241
4c4b4cd2 9242 /* Evaluation */
14f9c5c9 9243
4c4b4cd2
PH
9244/* True if TYPE appears to be an Ada character type.
9245 [At the moment, this is true only for Character and Wide_Character;
9246 It is a heuristic test that could stand improvement]. */
14f9c5c9 9247
fc913e53 9248bool
d2e4a39e 9249ada_is_character_type (struct type *type)
14f9c5c9 9250{
7b9f71f2
JB
9251 const char *name;
9252
9253 /* If the type code says it's a character, then assume it really is,
9254 and don't check any further. */
9255 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9256 return true;
7b9f71f2
JB
9257
9258 /* Otherwise, assume it's a character type iff it is a discrete type
9259 with a known character type name. */
9260 name = ada_type_name (type);
9261 return (name != NULL
9262 && (TYPE_CODE (type) == TYPE_CODE_INT
9263 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9264 && (strcmp (name, "character") == 0
9265 || strcmp (name, "wide_character") == 0
5a517ebd 9266 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9267 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9268}
9269
4c4b4cd2 9270/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9271
fc913e53 9272bool
ebf56fd3 9273ada_is_string_type (struct type *type)
14f9c5c9 9274{
61ee279c 9275 type = ada_check_typedef (type);
d2e4a39e 9276 if (type != NULL
14f9c5c9 9277 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9278 && (ada_is_simple_array_type (type)
9279 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9280 && ada_array_arity (type) == 1)
9281 {
9282 struct type *elttype = ada_array_element_type (type, 1);
9283
9284 return ada_is_character_type (elttype);
9285 }
d2e4a39e 9286 else
fc913e53 9287 return false;
14f9c5c9
AS
9288}
9289
5bf03f13
JB
9290/* The compiler sometimes provides a parallel XVS type for a given
9291 PAD type. Normally, it is safe to follow the PAD type directly,
9292 but older versions of the compiler have a bug that causes the offset
9293 of its "F" field to be wrong. Following that field in that case
9294 would lead to incorrect results, but this can be worked around
9295 by ignoring the PAD type and using the associated XVS type instead.
9296
9297 Set to True if the debugger should trust the contents of PAD types.
9298 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9299static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9300
9301/* True if TYPE is a struct type introduced by the compiler to force the
9302 alignment of a value. Such types have a single field with a
4c4b4cd2 9303 distinctive name. */
14f9c5c9
AS
9304
9305int
ebf56fd3 9306ada_is_aligner_type (struct type *type)
14f9c5c9 9307{
61ee279c 9308 type = ada_check_typedef (type);
714e53ab 9309
5bf03f13 9310 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9311 return 0;
9312
14f9c5c9 9313 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9314 && TYPE_NFIELDS (type) == 1
9315 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9316}
9317
9318/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9319 the parallel type. */
14f9c5c9 9320
d2e4a39e
AS
9321struct type *
9322ada_get_base_type (struct type *raw_type)
14f9c5c9 9323{
d2e4a39e
AS
9324 struct type *real_type_namer;
9325 struct type *raw_real_type;
14f9c5c9
AS
9326
9327 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9328 return raw_type;
9329
284614f0
JB
9330 if (ada_is_aligner_type (raw_type))
9331 /* The encoding specifies that we should always use the aligner type.
9332 So, even if this aligner type has an associated XVS type, we should
9333 simply ignore it.
9334
9335 According to the compiler gurus, an XVS type parallel to an aligner
9336 type may exist because of a stabs limitation. In stabs, aligner
9337 types are empty because the field has a variable-sized type, and
9338 thus cannot actually be used as an aligner type. As a result,
9339 we need the associated parallel XVS type to decode the type.
9340 Since the policy in the compiler is to not change the internal
9341 representation based on the debugging info format, we sometimes
9342 end up having a redundant XVS type parallel to the aligner type. */
9343 return raw_type;
9344
14f9c5c9 9345 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9346 if (real_type_namer == NULL
14f9c5c9
AS
9347 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9348 || TYPE_NFIELDS (real_type_namer) != 1)
9349 return raw_type;
9350
f80d3ff2
JB
9351 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9352 {
9353 /* This is an older encoding form where the base type needs to be
9354 looked up by name. We prefer the newer enconding because it is
9355 more efficient. */
9356 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9357 if (raw_real_type == NULL)
9358 return raw_type;
9359 else
9360 return raw_real_type;
9361 }
9362
9363 /* The field in our XVS type is a reference to the base type. */
9364 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9365}
14f9c5c9 9366
4c4b4cd2 9367/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9368
d2e4a39e
AS
9369struct type *
9370ada_aligned_type (struct type *type)
14f9c5c9
AS
9371{
9372 if (ada_is_aligner_type (type))
9373 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9374 else
9375 return ada_get_base_type (type);
9376}
9377
9378
9379/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9380 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9381
fc1a4b47
AC
9382const gdb_byte *
9383ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9384{
d2e4a39e 9385 if (ada_is_aligner_type (type))
14f9c5c9 9386 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9387 valaddr +
9388 TYPE_FIELD_BITPOS (type,
9389 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9390 else
9391 return valaddr;
9392}
9393
4c4b4cd2
PH
9394
9395
14f9c5c9 9396/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9397 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9398const char *
9399ada_enum_name (const char *name)
14f9c5c9 9400{
4c4b4cd2
PH
9401 static char *result;
9402 static size_t result_len = 0;
e6a959d6 9403 const char *tmp;
14f9c5c9 9404
4c4b4cd2
PH
9405 /* First, unqualify the enumeration name:
9406 1. Search for the last '.' character. If we find one, then skip
177b42fe 9407 all the preceding characters, the unqualified name starts
76a01679 9408 right after that dot.
4c4b4cd2 9409 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9410 translates dots into "__". Search forward for double underscores,
9411 but stop searching when we hit an overloading suffix, which is
9412 of the form "__" followed by digits. */
4c4b4cd2 9413
c3e5cd34
PH
9414 tmp = strrchr (name, '.');
9415 if (tmp != NULL)
4c4b4cd2
PH
9416 name = tmp + 1;
9417 else
14f9c5c9 9418 {
4c4b4cd2
PH
9419 while ((tmp = strstr (name, "__")) != NULL)
9420 {
9421 if (isdigit (tmp[2]))
9422 break;
9423 else
9424 name = tmp + 2;
9425 }
14f9c5c9
AS
9426 }
9427
9428 if (name[0] == 'Q')
9429 {
14f9c5c9 9430 int v;
5b4ee69b 9431
14f9c5c9 9432 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9433 {
9434 if (sscanf (name + 2, "%x", &v) != 1)
9435 return name;
9436 }
272560b5
TT
9437 else if (((name[1] >= '0' && name[1] <= '9')
9438 || (name[1] >= 'a' && name[1] <= 'z'))
9439 && name[2] == '\0')
9440 {
9441 GROW_VECT (result, result_len, 4);
9442 xsnprintf (result, result_len, "'%c'", name[1]);
9443 return result;
9444 }
14f9c5c9 9445 else
4c4b4cd2 9446 return name;
14f9c5c9 9447
4c4b4cd2 9448 GROW_VECT (result, result_len, 16);
14f9c5c9 9449 if (isascii (v) && isprint (v))
88c15c34 9450 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9451 else if (name[1] == 'U')
88c15c34 9452 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9453 else
88c15c34 9454 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9455
9456 return result;
9457 }
d2e4a39e 9458 else
4c4b4cd2 9459 {
c3e5cd34
PH
9460 tmp = strstr (name, "__");
9461 if (tmp == NULL)
9462 tmp = strstr (name, "$");
9463 if (tmp != NULL)
4c4b4cd2
PH
9464 {
9465 GROW_VECT (result, result_len, tmp - name + 1);
9466 strncpy (result, name, tmp - name);
9467 result[tmp - name] = '\0';
9468 return result;
9469 }
9470
9471 return name;
9472 }
14f9c5c9
AS
9473}
9474
14f9c5c9
AS
9475/* Evaluate the subexpression of EXP starting at *POS as for
9476 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9477 expression. */
14f9c5c9 9478
d2e4a39e
AS
9479static struct value *
9480evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9481{
4b27a620 9482 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9483}
9484
9485/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9486 value it wraps. */
14f9c5c9 9487
d2e4a39e
AS
9488static struct value *
9489unwrap_value (struct value *val)
14f9c5c9 9490{
df407dfe 9491 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9492
14f9c5c9
AS
9493 if (ada_is_aligner_type (type))
9494 {
de4d072f 9495 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9496 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9497
14f9c5c9 9498 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9499 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9500
9501 return unwrap_value (v);
9502 }
d2e4a39e 9503 else
14f9c5c9 9504 {
d2e4a39e 9505 struct type *raw_real_type =
61ee279c 9506 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9507
5bf03f13
JB
9508 /* If there is no parallel XVS or XVE type, then the value is
9509 already unwrapped. Return it without further modification. */
9510 if ((type == raw_real_type)
9511 && ada_find_parallel_type (type, "___XVE") == NULL)
9512 return val;
14f9c5c9 9513
d2e4a39e 9514 return
4c4b4cd2
PH
9515 coerce_unspec_val_to_type
9516 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9517 value_address (val),
1ed6ede0 9518 NULL, 1));
14f9c5c9
AS
9519 }
9520}
d2e4a39e
AS
9521
9522static struct value *
50eff16b 9523cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9524{
50eff16b
UW
9525 struct value *scale = ada_scaling_factor (value_type (arg));
9526 arg = value_cast (value_type (scale), arg);
14f9c5c9 9527
50eff16b
UW
9528 arg = value_binop (arg, scale, BINOP_MUL);
9529 return value_cast (type, arg);
14f9c5c9
AS
9530}
9531
d2e4a39e 9532static struct value *
50eff16b 9533cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9534{
50eff16b
UW
9535 if (type == value_type (arg))
9536 return arg;
5b4ee69b 9537
50eff16b
UW
9538 struct value *scale = ada_scaling_factor (type);
9539 if (ada_is_fixed_point_type (value_type (arg)))
9540 arg = cast_from_fixed (value_type (scale), arg);
9541 else
9542 arg = value_cast (value_type (scale), arg);
9543
9544 arg = value_binop (arg, scale, BINOP_DIV);
9545 return value_cast (type, arg);
14f9c5c9
AS
9546}
9547
d99dcf51
JB
9548/* Given two array types T1 and T2, return nonzero iff both arrays
9549 contain the same number of elements. */
9550
9551static int
9552ada_same_array_size_p (struct type *t1, struct type *t2)
9553{
9554 LONGEST lo1, hi1, lo2, hi2;
9555
9556 /* Get the array bounds in order to verify that the size of
9557 the two arrays match. */
9558 if (!get_array_bounds (t1, &lo1, &hi1)
9559 || !get_array_bounds (t2, &lo2, &hi2))
9560 error (_("unable to determine array bounds"));
9561
9562 /* To make things easier for size comparison, normalize a bit
9563 the case of empty arrays by making sure that the difference
9564 between upper bound and lower bound is always -1. */
9565 if (lo1 > hi1)
9566 hi1 = lo1 - 1;
9567 if (lo2 > hi2)
9568 hi2 = lo2 - 1;
9569
9570 return (hi1 - lo1 == hi2 - lo2);
9571}
9572
9573/* Assuming that VAL is an array of integrals, and TYPE represents
9574 an array with the same number of elements, but with wider integral
9575 elements, return an array "casted" to TYPE. In practice, this
9576 means that the returned array is built by casting each element
9577 of the original array into TYPE's (wider) element type. */
9578
9579static struct value *
9580ada_promote_array_of_integrals (struct type *type, struct value *val)
9581{
9582 struct type *elt_type = TYPE_TARGET_TYPE (type);
9583 LONGEST lo, hi;
9584 struct value *res;
9585 LONGEST i;
9586
9587 /* Verify that both val and type are arrays of scalars, and
9588 that the size of val's elements is smaller than the size
9589 of type's element. */
9590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9591 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9592 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9593 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9594 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9595 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9596
9597 if (!get_array_bounds (type, &lo, &hi))
9598 error (_("unable to determine array bounds"));
9599
9600 res = allocate_value (type);
9601
9602 /* Promote each array element. */
9603 for (i = 0; i < hi - lo + 1; i++)
9604 {
9605 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9606
9607 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9608 value_contents_all (elt), TYPE_LENGTH (elt_type));
9609 }
9610
9611 return res;
9612}
9613
4c4b4cd2
PH
9614/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9615 return the converted value. */
9616
d2e4a39e
AS
9617static struct value *
9618coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9619{
df407dfe 9620 struct type *type2 = value_type (val);
5b4ee69b 9621
14f9c5c9
AS
9622 if (type == type2)
9623 return val;
9624
61ee279c
PH
9625 type2 = ada_check_typedef (type2);
9626 type = ada_check_typedef (type);
14f9c5c9 9627
d2e4a39e
AS
9628 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9629 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9630 {
9631 val = ada_value_ind (val);
df407dfe 9632 type2 = value_type (val);
14f9c5c9
AS
9633 }
9634
d2e4a39e 9635 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9636 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9637 {
d99dcf51
JB
9638 if (!ada_same_array_size_p (type, type2))
9639 error (_("cannot assign arrays of different length"));
9640
9641 if (is_integral_type (TYPE_TARGET_TYPE (type))
9642 && is_integral_type (TYPE_TARGET_TYPE (type2))
9643 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9644 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9645 {
9646 /* Allow implicit promotion of the array elements to
9647 a wider type. */
9648 return ada_promote_array_of_integrals (type, val);
9649 }
9650
9651 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9652 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9653 error (_("Incompatible types in assignment"));
04624583 9654 deprecated_set_value_type (val, type);
14f9c5c9 9655 }
d2e4a39e 9656 return val;
14f9c5c9
AS
9657}
9658
4c4b4cd2
PH
9659static struct value *
9660ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9661{
9662 struct value *val;
9663 struct type *type1, *type2;
9664 LONGEST v, v1, v2;
9665
994b9211
AC
9666 arg1 = coerce_ref (arg1);
9667 arg2 = coerce_ref (arg2);
18af8284
JB
9668 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9669 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9670
76a01679
JB
9671 if (TYPE_CODE (type1) != TYPE_CODE_INT
9672 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9673 return value_binop (arg1, arg2, op);
9674
76a01679 9675 switch (op)
4c4b4cd2
PH
9676 {
9677 case BINOP_MOD:
9678 case BINOP_DIV:
9679 case BINOP_REM:
9680 break;
9681 default:
9682 return value_binop (arg1, arg2, op);
9683 }
9684
9685 v2 = value_as_long (arg2);
9686 if (v2 == 0)
323e0a4a 9687 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9688
9689 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9690 return value_binop (arg1, arg2, op);
9691
9692 v1 = value_as_long (arg1);
9693 switch (op)
9694 {
9695 case BINOP_DIV:
9696 v = v1 / v2;
76a01679
JB
9697 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9698 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9699 break;
9700 case BINOP_REM:
9701 v = v1 % v2;
76a01679
JB
9702 if (v * v1 < 0)
9703 v -= v2;
4c4b4cd2
PH
9704 break;
9705 default:
9706 /* Should not reach this point. */
9707 v = 0;
9708 }
9709
9710 val = allocate_value (type1);
990a07ab 9711 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9712 TYPE_LENGTH (value_type (val)),
9713 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9714 return val;
9715}
9716
9717static int
9718ada_value_equal (struct value *arg1, struct value *arg2)
9719{
df407dfe
AC
9720 if (ada_is_direct_array_type (value_type (arg1))
9721 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9722 {
79e8fcaa
JB
9723 struct type *arg1_type, *arg2_type;
9724
f58b38bf
JB
9725 /* Automatically dereference any array reference before
9726 we attempt to perform the comparison. */
9727 arg1 = ada_coerce_ref (arg1);
9728 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9729
4c4b4cd2
PH
9730 arg1 = ada_coerce_to_simple_array (arg1);
9731 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9732
9733 arg1_type = ada_check_typedef (value_type (arg1));
9734 arg2_type = ada_check_typedef (value_type (arg2));
9735
9736 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9737 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9738 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9739 /* FIXME: The following works only for types whose
76a01679
JB
9740 representations use all bits (no padding or undefined bits)
9741 and do not have user-defined equality. */
79e8fcaa
JB
9742 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9743 && memcmp (value_contents (arg1), value_contents (arg2),
9744 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9745 }
9746 return value_equal (arg1, arg2);
9747}
9748
52ce6436
PH
9749/* Total number of component associations in the aggregate starting at
9750 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9751 OP_AGGREGATE. */
52ce6436
PH
9752
9753static int
9754num_component_specs (struct expression *exp, int pc)
9755{
9756 int n, m, i;
5b4ee69b 9757
52ce6436
PH
9758 m = exp->elts[pc + 1].longconst;
9759 pc += 3;
9760 n = 0;
9761 for (i = 0; i < m; i += 1)
9762 {
9763 switch (exp->elts[pc].opcode)
9764 {
9765 default:
9766 n += 1;
9767 break;
9768 case OP_CHOICES:
9769 n += exp->elts[pc + 1].longconst;
9770 break;
9771 }
9772 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9773 }
9774 return n;
9775}
9776
9777/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9778 component of LHS (a simple array or a record), updating *POS past
9779 the expression, assuming that LHS is contained in CONTAINER. Does
9780 not modify the inferior's memory, nor does it modify LHS (unless
9781 LHS == CONTAINER). */
9782
9783static void
9784assign_component (struct value *container, struct value *lhs, LONGEST index,
9785 struct expression *exp, int *pos)
9786{
9787 struct value *mark = value_mark ();
9788 struct value *elt;
0e2da9f0 9789 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9790
0e2da9f0 9791 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9792 {
22601c15
UW
9793 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9794 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9795
52ce6436
PH
9796 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9797 }
9798 else
9799 {
9800 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9801 elt = ada_to_fixed_value (elt);
52ce6436
PH
9802 }
9803
9804 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9805 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9806 else
9807 value_assign_to_component (container, elt,
9808 ada_evaluate_subexp (NULL, exp, pos,
9809 EVAL_NORMAL));
9810
9811 value_free_to_mark (mark);
9812}
9813
9814/* Assuming that LHS represents an lvalue having a record or array
9815 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9816 of that aggregate's value to LHS, advancing *POS past the
9817 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9818 lvalue containing LHS (possibly LHS itself). Does not modify
9819 the inferior's memory, nor does it modify the contents of
0963b4bd 9820 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9821
9822static struct value *
9823assign_aggregate (struct value *container,
9824 struct value *lhs, struct expression *exp,
9825 int *pos, enum noside noside)
9826{
9827 struct type *lhs_type;
9828 int n = exp->elts[*pos+1].longconst;
9829 LONGEST low_index, high_index;
9830 int num_specs;
9831 LONGEST *indices;
9832 int max_indices, num_indices;
52ce6436 9833 int i;
52ce6436
PH
9834
9835 *pos += 3;
9836 if (noside != EVAL_NORMAL)
9837 {
52ce6436
PH
9838 for (i = 0; i < n; i += 1)
9839 ada_evaluate_subexp (NULL, exp, pos, noside);
9840 return container;
9841 }
9842
9843 container = ada_coerce_ref (container);
9844 if (ada_is_direct_array_type (value_type (container)))
9845 container = ada_coerce_to_simple_array (container);
9846 lhs = ada_coerce_ref (lhs);
9847 if (!deprecated_value_modifiable (lhs))
9848 error (_("Left operand of assignment is not a modifiable lvalue."));
9849
0e2da9f0 9850 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9851 if (ada_is_direct_array_type (lhs_type))
9852 {
9853 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9854 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9855 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9856 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9857 }
9858 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9859 {
9860 low_index = 0;
9861 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9862 }
9863 else
9864 error (_("Left-hand side must be array or record."));
9865
9866 num_specs = num_component_specs (exp, *pos - 3);
9867 max_indices = 4 * num_specs + 4;
8d749320 9868 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9869 indices[0] = indices[1] = low_index - 1;
9870 indices[2] = indices[3] = high_index + 1;
9871 num_indices = 4;
9872
9873 for (i = 0; i < n; i += 1)
9874 {
9875 switch (exp->elts[*pos].opcode)
9876 {
1fbf5ada
JB
9877 case OP_CHOICES:
9878 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9879 &num_indices, max_indices,
9880 low_index, high_index);
9881 break;
9882 case OP_POSITIONAL:
9883 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9884 &num_indices, max_indices,
9885 low_index, high_index);
1fbf5ada
JB
9886 break;
9887 case OP_OTHERS:
9888 if (i != n-1)
9889 error (_("Misplaced 'others' clause"));
9890 aggregate_assign_others (container, lhs, exp, pos, indices,
9891 num_indices, low_index, high_index);
9892 break;
9893 default:
9894 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9895 }
9896 }
9897
9898 return container;
9899}
9900
9901/* Assign into the component of LHS indexed by the OP_POSITIONAL
9902 construct at *POS, updating *POS past the construct, given that
9903 the positions are relative to lower bound LOW, where HIGH is the
9904 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9905 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9906 assign_aggregate. */
52ce6436
PH
9907static void
9908aggregate_assign_positional (struct value *container,
9909 struct value *lhs, struct expression *exp,
9910 int *pos, LONGEST *indices, int *num_indices,
9911 int max_indices, LONGEST low, LONGEST high)
9912{
9913 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9914
9915 if (ind - 1 == high)
e1d5a0d2 9916 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9917 if (ind <= high)
9918 {
9919 add_component_interval (ind, ind, indices, num_indices, max_indices);
9920 *pos += 3;
9921 assign_component (container, lhs, ind, exp, pos);
9922 }
9923 else
9924 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9925}
9926
9927/* Assign into the components of LHS indexed by the OP_CHOICES
9928 construct at *POS, updating *POS past the construct, given that
9929 the allowable indices are LOW..HIGH. Record the indices assigned
9930 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9931 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9932static void
9933aggregate_assign_from_choices (struct value *container,
9934 struct value *lhs, struct expression *exp,
9935 int *pos, LONGEST *indices, int *num_indices,
9936 int max_indices, LONGEST low, LONGEST high)
9937{
9938 int j;
9939 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9940 int choice_pos, expr_pc;
9941 int is_array = ada_is_direct_array_type (value_type (lhs));
9942
9943 choice_pos = *pos += 3;
9944
9945 for (j = 0; j < n_choices; j += 1)
9946 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9947 expr_pc = *pos;
9948 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9949
9950 for (j = 0; j < n_choices; j += 1)
9951 {
9952 LONGEST lower, upper;
9953 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9954
52ce6436
PH
9955 if (op == OP_DISCRETE_RANGE)
9956 {
9957 choice_pos += 1;
9958 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9959 EVAL_NORMAL));
9960 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962 }
9963 else if (is_array)
9964 {
9965 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9966 EVAL_NORMAL));
9967 upper = lower;
9968 }
9969 else
9970 {
9971 int ind;
0d5cff50 9972 const char *name;
5b4ee69b 9973
52ce6436
PH
9974 switch (op)
9975 {
9976 case OP_NAME:
9977 name = &exp->elts[choice_pos + 2].string;
9978 break;
9979 case OP_VAR_VALUE:
9980 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9981 break;
9982 default:
9983 error (_("Invalid record component association."));
9984 }
9985 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9986 ind = 0;
9987 if (! find_struct_field (name, value_type (lhs), 0,
9988 NULL, NULL, NULL, NULL, &ind))
9989 error (_("Unknown component name: %s."), name);
9990 lower = upper = ind;
9991 }
9992
9993 if (lower <= upper && (lower < low || upper > high))
9994 error (_("Index in component association out of bounds."));
9995
9996 add_component_interval (lower, upper, indices, num_indices,
9997 max_indices);
9998 while (lower <= upper)
9999 {
10000 int pos1;
5b4ee69b 10001
52ce6436
PH
10002 pos1 = expr_pc;
10003 assign_component (container, lhs, lower, exp, &pos1);
10004 lower += 1;
10005 }
10006 }
10007}
10008
10009/* Assign the value of the expression in the OP_OTHERS construct in
10010 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10011 have not been previously assigned. The index intervals already assigned
10012 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10013 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10014static void
10015aggregate_assign_others (struct value *container,
10016 struct value *lhs, struct expression *exp,
10017 int *pos, LONGEST *indices, int num_indices,
10018 LONGEST low, LONGEST high)
10019{
10020 int i;
5ce64950 10021 int expr_pc = *pos + 1;
52ce6436
PH
10022
10023 for (i = 0; i < num_indices - 2; i += 2)
10024 {
10025 LONGEST ind;
5b4ee69b 10026
52ce6436
PH
10027 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10028 {
5ce64950 10029 int localpos;
5b4ee69b 10030
5ce64950
MS
10031 localpos = expr_pc;
10032 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10033 }
10034 }
10035 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10036}
10037
10038/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10039 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10040 modifying *SIZE as needed. It is an error if *SIZE exceeds
10041 MAX_SIZE. The resulting intervals do not overlap. */
10042static void
10043add_component_interval (LONGEST low, LONGEST high,
10044 LONGEST* indices, int *size, int max_size)
10045{
10046 int i, j;
5b4ee69b 10047
52ce6436
PH
10048 for (i = 0; i < *size; i += 2) {
10049 if (high >= indices[i] && low <= indices[i + 1])
10050 {
10051 int kh;
5b4ee69b 10052
52ce6436
PH
10053 for (kh = i + 2; kh < *size; kh += 2)
10054 if (high < indices[kh])
10055 break;
10056 if (low < indices[i])
10057 indices[i] = low;
10058 indices[i + 1] = indices[kh - 1];
10059 if (high > indices[i + 1])
10060 indices[i + 1] = high;
10061 memcpy (indices + i + 2, indices + kh, *size - kh);
10062 *size -= kh - i - 2;
10063 return;
10064 }
10065 else if (high < indices[i])
10066 break;
10067 }
10068
10069 if (*size == max_size)
10070 error (_("Internal error: miscounted aggregate components."));
10071 *size += 2;
10072 for (j = *size-1; j >= i+2; j -= 1)
10073 indices[j] = indices[j - 2];
10074 indices[i] = low;
10075 indices[i + 1] = high;
10076}
10077
6e48bd2c
JB
10078/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10079 is different. */
10080
10081static struct value *
b7e22850 10082ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10083{
10084 if (type == ada_check_typedef (value_type (arg2)))
10085 return arg2;
10086
10087 if (ada_is_fixed_point_type (type))
95f39a5b 10088 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10089
10090 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10091 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10092
10093 return value_cast (type, arg2);
10094}
10095
284614f0
JB
10096/* Evaluating Ada expressions, and printing their result.
10097 ------------------------------------------------------
10098
21649b50
JB
10099 1. Introduction:
10100 ----------------
10101
284614f0
JB
10102 We usually evaluate an Ada expression in order to print its value.
10103 We also evaluate an expression in order to print its type, which
10104 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10105 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10106 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10107 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10108 similar.
10109
10110 Evaluating expressions is a little more complicated for Ada entities
10111 than it is for entities in languages such as C. The main reason for
10112 this is that Ada provides types whose definition might be dynamic.
10113 One example of such types is variant records. Or another example
10114 would be an array whose bounds can only be known at run time.
10115
10116 The following description is a general guide as to what should be
10117 done (and what should NOT be done) in order to evaluate an expression
10118 involving such types, and when. This does not cover how the semantic
10119 information is encoded by GNAT as this is covered separatly. For the
10120 document used as the reference for the GNAT encoding, see exp_dbug.ads
10121 in the GNAT sources.
10122
10123 Ideally, we should embed each part of this description next to its
10124 associated code. Unfortunately, the amount of code is so vast right
10125 now that it's hard to see whether the code handling a particular
10126 situation might be duplicated or not. One day, when the code is
10127 cleaned up, this guide might become redundant with the comments
10128 inserted in the code, and we might want to remove it.
10129
21649b50
JB
10130 2. ``Fixing'' an Entity, the Simple Case:
10131 -----------------------------------------
10132
284614f0
JB
10133 When evaluating Ada expressions, the tricky issue is that they may
10134 reference entities whose type contents and size are not statically
10135 known. Consider for instance a variant record:
10136
10137 type Rec (Empty : Boolean := True) is record
10138 case Empty is
10139 when True => null;
10140 when False => Value : Integer;
10141 end case;
10142 end record;
10143 Yes : Rec := (Empty => False, Value => 1);
10144 No : Rec := (empty => True);
10145
10146 The size and contents of that record depends on the value of the
10147 descriminant (Rec.Empty). At this point, neither the debugging
10148 information nor the associated type structure in GDB are able to
10149 express such dynamic types. So what the debugger does is to create
10150 "fixed" versions of the type that applies to the specific object.
10151 We also informally refer to this opperation as "fixing" an object,
10152 which means creating its associated fixed type.
10153
10154 Example: when printing the value of variable "Yes" above, its fixed
10155 type would look like this:
10156
10157 type Rec is record
10158 Empty : Boolean;
10159 Value : Integer;
10160 end record;
10161
10162 On the other hand, if we printed the value of "No", its fixed type
10163 would become:
10164
10165 type Rec is record
10166 Empty : Boolean;
10167 end record;
10168
10169 Things become a little more complicated when trying to fix an entity
10170 with a dynamic type that directly contains another dynamic type,
10171 such as an array of variant records, for instance. There are
10172 two possible cases: Arrays, and records.
10173
21649b50
JB
10174 3. ``Fixing'' Arrays:
10175 ---------------------
10176
10177 The type structure in GDB describes an array in terms of its bounds,
10178 and the type of its elements. By design, all elements in the array
10179 have the same type and we cannot represent an array of variant elements
10180 using the current type structure in GDB. When fixing an array,
10181 we cannot fix the array element, as we would potentially need one
10182 fixed type per element of the array. As a result, the best we can do
10183 when fixing an array is to produce an array whose bounds and size
10184 are correct (allowing us to read it from memory), but without having
10185 touched its element type. Fixing each element will be done later,
10186 when (if) necessary.
10187
10188 Arrays are a little simpler to handle than records, because the same
10189 amount of memory is allocated for each element of the array, even if
1b536f04 10190 the amount of space actually used by each element differs from element
21649b50 10191 to element. Consider for instance the following array of type Rec:
284614f0
JB
10192
10193 type Rec_Array is array (1 .. 2) of Rec;
10194
1b536f04
JB
10195 The actual amount of memory occupied by each element might be different
10196 from element to element, depending on the value of their discriminant.
21649b50 10197 But the amount of space reserved for each element in the array remains
1b536f04 10198 fixed regardless. So we simply need to compute that size using
21649b50
JB
10199 the debugging information available, from which we can then determine
10200 the array size (we multiply the number of elements of the array by
10201 the size of each element).
10202
10203 The simplest case is when we have an array of a constrained element
10204 type. For instance, consider the following type declarations:
10205
10206 type Bounded_String (Max_Size : Integer) is
10207 Length : Integer;
10208 Buffer : String (1 .. Max_Size);
10209 end record;
10210 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10211
10212 In this case, the compiler describes the array as an array of
10213 variable-size elements (identified by its XVS suffix) for which
10214 the size can be read in the parallel XVZ variable.
10215
10216 In the case of an array of an unconstrained element type, the compiler
10217 wraps the array element inside a private PAD type. This type should not
10218 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10219 that we also use the adjective "aligner" in our code to designate
10220 these wrapper types.
10221
1b536f04 10222 In some cases, the size allocated for each element is statically
21649b50
JB
10223 known. In that case, the PAD type already has the correct size,
10224 and the array element should remain unfixed.
10225
10226 But there are cases when this size is not statically known.
10227 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10228
10229 type Dynamic is array (1 .. Five) of Integer;
10230 type Wrapper (Has_Length : Boolean := False) is record
10231 Data : Dynamic;
10232 case Has_Length is
10233 when True => Length : Integer;
10234 when False => null;
10235 end case;
10236 end record;
10237 type Wrapper_Array is array (1 .. 2) of Wrapper;
10238
10239 Hello : Wrapper_Array := (others => (Has_Length => True,
10240 Data => (others => 17),
10241 Length => 1));
10242
10243
10244 The debugging info would describe variable Hello as being an
10245 array of a PAD type. The size of that PAD type is not statically
10246 known, but can be determined using a parallel XVZ variable.
10247 In that case, a copy of the PAD type with the correct size should
10248 be used for the fixed array.
10249
21649b50
JB
10250 3. ``Fixing'' record type objects:
10251 ----------------------------------
10252
10253 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10254 record types. In this case, in order to compute the associated
10255 fixed type, we need to determine the size and offset of each of
10256 its components. This, in turn, requires us to compute the fixed
10257 type of each of these components.
10258
10259 Consider for instance the example:
10260
10261 type Bounded_String (Max_Size : Natural) is record
10262 Str : String (1 .. Max_Size);
10263 Length : Natural;
10264 end record;
10265 My_String : Bounded_String (Max_Size => 10);
10266
10267 In that case, the position of field "Length" depends on the size
10268 of field Str, which itself depends on the value of the Max_Size
21649b50 10269 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10270 we need to fix the type of field Str. Therefore, fixing a variant
10271 record requires us to fix each of its components.
10272
10273 However, if a component does not have a dynamic size, the component
10274 should not be fixed. In particular, fields that use a PAD type
10275 should not fixed. Here is an example where this might happen
10276 (assuming type Rec above):
10277
10278 type Container (Big : Boolean) is record
10279 First : Rec;
10280 After : Integer;
10281 case Big is
10282 when True => Another : Integer;
10283 when False => null;
10284 end case;
10285 end record;
10286 My_Container : Container := (Big => False,
10287 First => (Empty => True),
10288 After => 42);
10289
10290 In that example, the compiler creates a PAD type for component First,
10291 whose size is constant, and then positions the component After just
10292 right after it. The offset of component After is therefore constant
10293 in this case.
10294
10295 The debugger computes the position of each field based on an algorithm
10296 that uses, among other things, the actual position and size of the field
21649b50
JB
10297 preceding it. Let's now imagine that the user is trying to print
10298 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10299 end up computing the offset of field After based on the size of the
10300 fixed version of field First. And since in our example First has
10301 only one actual field, the size of the fixed type is actually smaller
10302 than the amount of space allocated to that field, and thus we would
10303 compute the wrong offset of field After.
10304
21649b50
JB
10305 To make things more complicated, we need to watch out for dynamic
10306 components of variant records (identified by the ___XVL suffix in
10307 the component name). Even if the target type is a PAD type, the size
10308 of that type might not be statically known. So the PAD type needs
10309 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10310 we might end up with the wrong size for our component. This can be
10311 observed with the following type declarations:
284614f0
JB
10312
10313 type Octal is new Integer range 0 .. 7;
10314 type Octal_Array is array (Positive range <>) of Octal;
10315 pragma Pack (Octal_Array);
10316
10317 type Octal_Buffer (Size : Positive) is record
10318 Buffer : Octal_Array (1 .. Size);
10319 Length : Integer;
10320 end record;
10321
10322 In that case, Buffer is a PAD type whose size is unset and needs
10323 to be computed by fixing the unwrapped type.
10324
21649b50
JB
10325 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10326 ----------------------------------------------------------
10327
10328 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10329 thus far, be actually fixed?
10330
10331 The answer is: Only when referencing that element. For instance
10332 when selecting one component of a record, this specific component
10333 should be fixed at that point in time. Or when printing the value
10334 of a record, each component should be fixed before its value gets
10335 printed. Similarly for arrays, the element of the array should be
10336 fixed when printing each element of the array, or when extracting
10337 one element out of that array. On the other hand, fixing should
10338 not be performed on the elements when taking a slice of an array!
10339
31432a67 10340 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10341 size of each field is that we end up also miscomputing the size
10342 of the containing type. This can have adverse results when computing
10343 the value of an entity. GDB fetches the value of an entity based
10344 on the size of its type, and thus a wrong size causes GDB to fetch
10345 the wrong amount of memory. In the case where the computed size is
10346 too small, GDB fetches too little data to print the value of our
31432a67 10347 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10348 past the buffer containing the data =:-o. */
10349
ced9779b
JB
10350/* Evaluate a subexpression of EXP, at index *POS, and return a value
10351 for that subexpression cast to TO_TYPE. Advance *POS over the
10352 subexpression. */
10353
10354static value *
10355ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10356 enum noside noside, struct type *to_type)
10357{
10358 int pc = *pos;
10359
10360 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10361 || exp->elts[pc].opcode == OP_VAR_VALUE)
10362 {
10363 (*pos) += 4;
10364
10365 value *val;
10366 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10367 {
10368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 return value_zero (to_type, not_lval);
10370
10371 val = evaluate_var_msym_value (noside,
10372 exp->elts[pc + 1].objfile,
10373 exp->elts[pc + 2].msymbol);
10374 }
10375 else
10376 val = evaluate_var_value (noside,
10377 exp->elts[pc + 1].block,
10378 exp->elts[pc + 2].symbol);
10379
10380 if (noside == EVAL_SKIP)
10381 return eval_skip_value (exp);
10382
10383 val = ada_value_cast (to_type, val);
10384
10385 /* Follow the Ada language semantics that do not allow taking
10386 an address of the result of a cast (view conversion in Ada). */
10387 if (VALUE_LVAL (val) == lval_memory)
10388 {
10389 if (value_lazy (val))
10390 value_fetch_lazy (val);
10391 VALUE_LVAL (val) = not_lval;
10392 }
10393 return val;
10394 }
10395
10396 value *val = evaluate_subexp (to_type, exp, pos, noside);
10397 if (noside == EVAL_SKIP)
10398 return eval_skip_value (exp);
10399 return ada_value_cast (to_type, val);
10400}
10401
284614f0
JB
10402/* Implement the evaluate_exp routine in the exp_descriptor structure
10403 for the Ada language. */
10404
52ce6436 10405static struct value *
ebf56fd3 10406ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10407 int *pos, enum noside noside)
14f9c5c9
AS
10408{
10409 enum exp_opcode op;
b5385fc0 10410 int tem;
14f9c5c9 10411 int pc;
5ec18f2b 10412 int preeval_pos;
14f9c5c9
AS
10413 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10414 struct type *type;
52ce6436 10415 int nargs, oplen;
d2e4a39e 10416 struct value **argvec;
14f9c5c9 10417
d2e4a39e
AS
10418 pc = *pos;
10419 *pos += 1;
14f9c5c9
AS
10420 op = exp->elts[pc].opcode;
10421
d2e4a39e 10422 switch (op)
14f9c5c9
AS
10423 {
10424 default:
10425 *pos -= 1;
6e48bd2c 10426 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10427
10428 if (noside == EVAL_NORMAL)
10429 arg1 = unwrap_value (arg1);
6e48bd2c 10430
edd079d9 10431 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10432 then we need to perform the conversion manually, because
10433 evaluate_subexp_standard doesn't do it. This conversion is
10434 necessary in Ada because the different kinds of float/fixed
10435 types in Ada have different representations.
10436
10437 Similarly, we need to perform the conversion from OP_LONG
10438 ourselves. */
edd079d9 10439 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10440 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10441
10442 return arg1;
4c4b4cd2
PH
10443
10444 case OP_STRING:
10445 {
76a01679 10446 struct value *result;
5b4ee69b 10447
76a01679
JB
10448 *pos -= 1;
10449 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10450 /* The result type will have code OP_STRING, bashed there from
10451 OP_ARRAY. Bash it back. */
df407dfe
AC
10452 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10453 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10454 return result;
4c4b4cd2 10455 }
14f9c5c9
AS
10456
10457 case UNOP_CAST:
10458 (*pos) += 2;
10459 type = exp->elts[pc + 1].type;
ced9779b 10460 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10461
4c4b4cd2
PH
10462 case UNOP_QUAL:
10463 (*pos) += 2;
10464 type = exp->elts[pc + 1].type;
10465 return ada_evaluate_subexp (type, exp, pos, noside);
10466
14f9c5c9
AS
10467 case BINOP_ASSIGN:
10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10469 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10470 {
10471 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10473 return arg1;
10474 return ada_value_assign (arg1, arg1);
10475 }
003f3813
JB
10476 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10477 except if the lhs of our assignment is a convenience variable.
10478 In the case of assigning to a convenience variable, the lhs
10479 should be exactly the result of the evaluation of the rhs. */
10480 type = value_type (arg1);
10481 if (VALUE_LVAL (arg1) == lval_internalvar)
10482 type = NULL;
10483 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10484 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10485 return arg1;
f411722c
TT
10486 if (VALUE_LVAL (arg1) == lval_internalvar)
10487 {
10488 /* Nothing. */
10489 }
10490 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10491 arg2 = cast_to_fixed (value_type (arg1), arg2);
10492 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10493 error
323e0a4a 10494 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10495 else
df407dfe 10496 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10497 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10498
10499 case BINOP_ADD:
10500 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10501 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10502 if (noside == EVAL_SKIP)
4c4b4cd2 10503 goto nosideret;
2ac8a782
JB
10504 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10505 return (value_from_longest
10506 (value_type (arg1),
10507 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10508 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10509 return (value_from_longest
10510 (value_type (arg2),
10511 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10512 if ((ada_is_fixed_point_type (value_type (arg1))
10513 || ada_is_fixed_point_type (value_type (arg2)))
10514 && value_type (arg1) != value_type (arg2))
323e0a4a 10515 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10516 /* Do the addition, and cast the result to the type of the first
10517 argument. We cannot cast the result to a reference type, so if
10518 ARG1 is a reference type, find its underlying type. */
10519 type = value_type (arg1);
10520 while (TYPE_CODE (type) == TYPE_CODE_REF)
10521 type = TYPE_TARGET_TYPE (type);
f44316fa 10522 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10523 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10524
10525 case BINOP_SUB:
10526 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10527 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10528 if (noside == EVAL_SKIP)
4c4b4cd2 10529 goto nosideret;
2ac8a782
JB
10530 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10531 return (value_from_longest
10532 (value_type (arg1),
10533 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10534 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10535 return (value_from_longest
10536 (value_type (arg2),
10537 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10538 if ((ada_is_fixed_point_type (value_type (arg1))
10539 || ada_is_fixed_point_type (value_type (arg2)))
10540 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10541 error (_("Operands of fixed-point subtraction "
10542 "must have the same type"));
b7789565
JB
10543 /* Do the substraction, and cast the result to the type of the first
10544 argument. We cannot cast the result to a reference type, so if
10545 ARG1 is a reference type, find its underlying type. */
10546 type = value_type (arg1);
10547 while (TYPE_CODE (type) == TYPE_CODE_REF)
10548 type = TYPE_TARGET_TYPE (type);
f44316fa 10549 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10550 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10551
10552 case BINOP_MUL:
10553 case BINOP_DIV:
e1578042
JB
10554 case BINOP_REM:
10555 case BINOP_MOD:
14f9c5c9
AS
10556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10557 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
4c4b4cd2 10559 goto nosideret;
e1578042 10560 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10561 {
10562 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10563 return value_zero (value_type (arg1), not_lval);
10564 }
14f9c5c9 10565 else
4c4b4cd2 10566 {
a53b7a21 10567 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10568 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10569 arg1 = cast_from_fixed (type, arg1);
df407dfe 10570 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10571 arg2 = cast_from_fixed (type, arg2);
f44316fa 10572 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10573 return ada_value_binop (arg1, arg2, op);
10574 }
10575
4c4b4cd2
PH
10576 case BINOP_EQUAL:
10577 case BINOP_NOTEQUAL:
14f9c5c9 10578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10579 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10580 if (noside == EVAL_SKIP)
76a01679 10581 goto nosideret;
4c4b4cd2 10582 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10583 tem = 0;
4c4b4cd2 10584 else
f44316fa
UW
10585 {
10586 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10587 tem = ada_value_equal (arg1, arg2);
10588 }
4c4b4cd2 10589 if (op == BINOP_NOTEQUAL)
76a01679 10590 tem = !tem;
fbb06eb1
UW
10591 type = language_bool_type (exp->language_defn, exp->gdbarch);
10592 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10593
10594 case UNOP_NEG:
10595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10596 if (noside == EVAL_SKIP)
10597 goto nosideret;
df407dfe
AC
10598 else if (ada_is_fixed_point_type (value_type (arg1)))
10599 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10600 else
f44316fa
UW
10601 {
10602 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10603 return value_neg (arg1);
10604 }
4c4b4cd2 10605
2330c6c6
JB
10606 case BINOP_LOGICAL_AND:
10607 case BINOP_LOGICAL_OR:
10608 case UNOP_LOGICAL_NOT:
000d5124
JB
10609 {
10610 struct value *val;
10611
10612 *pos -= 1;
10613 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10614 type = language_bool_type (exp->language_defn, exp->gdbarch);
10615 return value_cast (type, val);
000d5124 10616 }
2330c6c6
JB
10617
10618 case BINOP_BITWISE_AND:
10619 case BINOP_BITWISE_IOR:
10620 case BINOP_BITWISE_XOR:
000d5124
JB
10621 {
10622 struct value *val;
10623
10624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10625 *pos = pc;
10626 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10627
10628 return value_cast (value_type (arg1), val);
10629 }
2330c6c6 10630
14f9c5c9
AS
10631 case OP_VAR_VALUE:
10632 *pos -= 1;
6799def4 10633
14f9c5c9 10634 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10635 {
10636 *pos += 4;
10637 goto nosideret;
10638 }
da5c522f
JB
10639
10640 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10641 /* Only encountered when an unresolved symbol occurs in a
10642 context other than a function call, in which case, it is
52ce6436 10643 invalid. */
323e0a4a 10644 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10645 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10646
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10648 {
0c1f74cf 10649 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10650 /* Check to see if this is a tagged type. We also need to handle
10651 the case where the type is a reference to a tagged type, but
10652 we have to be careful to exclude pointers to tagged types.
10653 The latter should be shown as usual (as a pointer), whereas
10654 a reference should mostly be transparent to the user. */
10655 if (ada_is_tagged_type (type, 0)
023db19c 10656 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10657 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10658 {
10659 /* Tagged types are a little special in the fact that the real
10660 type is dynamic and can only be determined by inspecting the
10661 object's tag. This means that we need to get the object's
10662 value first (EVAL_NORMAL) and then extract the actual object
10663 type from its tag.
10664
10665 Note that we cannot skip the final step where we extract
10666 the object type from its tag, because the EVAL_NORMAL phase
10667 results in dynamic components being resolved into fixed ones.
10668 This can cause problems when trying to print the type
10669 description of tagged types whose parent has a dynamic size:
10670 We use the type name of the "_parent" component in order
10671 to print the name of the ancestor type in the type description.
10672 If that component had a dynamic size, the resolution into
10673 a fixed type would result in the loss of that type name,
10674 thus preventing us from printing the name of the ancestor
10675 type in the type description. */
10676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10677
10678 if (TYPE_CODE (type) != TYPE_CODE_REF)
10679 {
10680 struct type *actual_type;
10681
10682 actual_type = type_from_tag (ada_value_tag (arg1));
10683 if (actual_type == NULL)
10684 /* If, for some reason, we were unable to determine
10685 the actual type from the tag, then use the static
10686 approximation that we just computed as a fallback.
10687 This can happen if the debugging information is
10688 incomplete, for instance. */
10689 actual_type = type;
10690 return value_zero (actual_type, not_lval);
10691 }
10692 else
10693 {
10694 /* In the case of a ref, ada_coerce_ref takes care
10695 of determining the actual type. But the evaluation
10696 should return a ref as it should be valid to ask
10697 for its address; so rebuild a ref after coerce. */
10698 arg1 = ada_coerce_ref (arg1);
a65cfae5 10699 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10700 }
10701 }
0c1f74cf 10702
84754697
JB
10703 /* Records and unions for which GNAT encodings have been
10704 generated need to be statically fixed as well.
10705 Otherwise, non-static fixing produces a type where
10706 all dynamic properties are removed, which prevents "ptype"
10707 from being able to completely describe the type.
10708 For instance, a case statement in a variant record would be
10709 replaced by the relevant components based on the actual
10710 value of the discriminants. */
10711 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10712 && dynamic_template_type (type) != NULL)
10713 || (TYPE_CODE (type) == TYPE_CODE_UNION
10714 && ada_find_parallel_type (type, "___XVU") != NULL))
10715 {
10716 *pos += 4;
10717 return value_zero (to_static_fixed_type (type), not_lval);
10718 }
4c4b4cd2 10719 }
da5c522f
JB
10720
10721 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10722 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10723
10724 case OP_FUNCALL:
10725 (*pos) += 2;
10726
10727 /* Allocate arg vector, including space for the function to be
10728 called in argvec[0] and a terminating NULL. */
10729 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10730 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10731
10732 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10733 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10734 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10735 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10736 else
10737 {
10738 for (tem = 0; tem <= nargs; tem += 1)
10739 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 argvec[tem] = 0;
10741
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
10744 }
10745
ad82864c
JB
10746 if (ada_is_constrained_packed_array_type
10747 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10748 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10749 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10750 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10751 /* This is a packed array that has already been fixed, and
10752 therefore already coerced to a simple array. Nothing further
10753 to do. */
10754 ;
e6c2c623
PMR
10755 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10756 {
10757 /* Make sure we dereference references so that all the code below
10758 feels like it's really handling the referenced value. Wrapping
10759 types (for alignment) may be there, so make sure we strip them as
10760 well. */
10761 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10762 }
10763 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10764 && VALUE_LVAL (argvec[0]) == lval_memory)
10765 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10766
df407dfe 10767 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10768
10769 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10770 them. So, if this is an array typedef (encoding use for array
10771 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10772 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10773 type = ada_typedef_target_type (type);
10774
4c4b4cd2
PH
10775 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10776 {
61ee279c 10777 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10778 {
10779 case TYPE_CODE_FUNC:
61ee279c 10780 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10781 break;
10782 case TYPE_CODE_ARRAY:
10783 break;
10784 case TYPE_CODE_STRUCT:
10785 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10786 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10787 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10788 break;
10789 default:
323e0a4a 10790 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10791 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10792 break;
10793 }
10794 }
10795
10796 switch (TYPE_CODE (type))
10797 {
10798 case TYPE_CODE_FUNC:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10800 {
7022349d
PA
10801 if (TYPE_TARGET_TYPE (type) == NULL)
10802 error_call_unknown_return_type (NULL);
10803 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10804 }
e71585ff
PA
10805 return call_function_by_hand (argvec[0], NULL,
10806 gdb::make_array_view (argvec + 1,
10807 nargs));
c8ea1972
PH
10808 case TYPE_CODE_INTERNAL_FUNCTION:
10809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10810 /* We don't know anything about what the internal
10811 function might return, but we have to return
10812 something. */
10813 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10814 not_lval);
10815 else
10816 return call_internal_function (exp->gdbarch, exp->language_defn,
10817 argvec[0], nargs, argvec + 1);
10818
4c4b4cd2
PH
10819 case TYPE_CODE_STRUCT:
10820 {
10821 int arity;
10822
4c4b4cd2
PH
10823 arity = ada_array_arity (type);
10824 type = ada_array_element_type (type, nargs);
10825 if (type == NULL)
323e0a4a 10826 error (_("cannot subscript or call a record"));
4c4b4cd2 10827 if (arity != nargs)
323e0a4a 10828 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10830 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10831 return
10832 unwrap_value (ada_value_subscript
10833 (argvec[0], nargs, argvec + 1));
10834 }
10835 case TYPE_CODE_ARRAY:
10836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10837 {
10838 type = ada_array_element_type (type, nargs);
10839 if (type == NULL)
323e0a4a 10840 error (_("element type of array unknown"));
4c4b4cd2 10841 else
0a07e705 10842 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10843 }
10844 return
10845 unwrap_value (ada_value_subscript
10846 (ada_coerce_to_simple_array (argvec[0]),
10847 nargs, argvec + 1));
10848 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 {
deede10c 10851 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10852 type = ada_array_element_type (type, nargs);
10853 if (type == NULL)
323e0a4a 10854 error (_("element type of array unknown"));
4c4b4cd2 10855 else
0a07e705 10856 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10857 }
10858 return
deede10c
JB
10859 unwrap_value (ada_value_ptr_subscript (argvec[0],
10860 nargs, argvec + 1));
4c4b4cd2
PH
10861
10862 default:
e1d5a0d2
PH
10863 error (_("Attempt to index or call something other than an "
10864 "array or function"));
4c4b4cd2
PH
10865 }
10866
10867 case TERNOP_SLICE:
10868 {
10869 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 struct value *low_bound_val =
10871 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10872 struct value *high_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 LONGEST low_bound;
10875 LONGEST high_bound;
5b4ee69b 10876
994b9211
AC
10877 low_bound_val = coerce_ref (low_bound_val);
10878 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10879 low_bound = value_as_long (low_bound_val);
10880 high_bound = value_as_long (high_bound_val);
963a6417 10881
4c4b4cd2
PH
10882 if (noside == EVAL_SKIP)
10883 goto nosideret;
10884
4c4b4cd2
PH
10885 /* If this is a reference to an aligner type, then remove all
10886 the aligners. */
df407dfe
AC
10887 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10888 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10889 TYPE_TARGET_TYPE (value_type (array)) =
10890 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10891
ad82864c 10892 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10893 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10894
10895 /* If this is a reference to an array or an array lvalue,
10896 convert to a pointer. */
df407dfe
AC
10897 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10898 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10899 && VALUE_LVAL (array) == lval_memory))
10900 array = value_addr (array);
10901
1265e4aa 10902 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10903 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10904 (value_type (array))))
bff8c71f
TT
10905 return empty_array (ada_type_of_array (array, 0), low_bound,
10906 high_bound);
4c4b4cd2
PH
10907
10908 array = ada_coerce_to_simple_array_ptr (array);
10909
714e53ab
PH
10910 /* If we have more than one level of pointer indirection,
10911 dereference the value until we get only one level. */
df407dfe
AC
10912 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10913 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10914 == TYPE_CODE_PTR))
10915 array = value_ind (array);
10916
10917 /* Make sure we really do have an array type before going further,
10918 to avoid a SEGV when trying to get the index type or the target
10919 type later down the road if the debug info generated by
10920 the compiler is incorrect or incomplete. */
df407dfe 10921 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10922 error (_("cannot take slice of non-array"));
714e53ab 10923
828292f2
JB
10924 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10925 == TYPE_CODE_PTR)
4c4b4cd2 10926 {
828292f2
JB
10927 struct type *type0 = ada_check_typedef (value_type (array));
10928
0b5d8877 10929 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10930 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10931 else
10932 {
10933 struct type *arr_type0 =
828292f2 10934 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10935
f5938064
JG
10936 return ada_value_slice_from_ptr (array, arr_type0,
10937 longest_to_int (low_bound),
10938 longest_to_int (high_bound));
4c4b4cd2
PH
10939 }
10940 }
10941 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10942 return array;
10943 else if (high_bound < low_bound)
bff8c71f 10944 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10945 else
529cad9c
PH
10946 return ada_value_slice (array, longest_to_int (low_bound),
10947 longest_to_int (high_bound));
4c4b4cd2 10948 }
14f9c5c9 10949
4c4b4cd2
PH
10950 case UNOP_IN_RANGE:
10951 (*pos) += 2;
10952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10953 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10954
14f9c5c9 10955 if (noside == EVAL_SKIP)
4c4b4cd2 10956 goto nosideret;
14f9c5c9 10957
4c4b4cd2
PH
10958 switch (TYPE_CODE (type))
10959 {
10960 default:
e1d5a0d2
PH
10961 lim_warning (_("Membership test incompletely implemented; "
10962 "always returns true"));
fbb06eb1
UW
10963 type = language_bool_type (exp->language_defn, exp->gdbarch);
10964 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10965
10966 case TYPE_CODE_RANGE:
030b4912
UW
10967 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10968 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
10972 return
10973 value_from_longest (type,
4c4b4cd2
PH
10974 (value_less (arg1, arg3)
10975 || value_equal (arg1, arg3))
10976 && (value_less (arg2, arg1)
10977 || value_equal (arg2, arg1)));
10978 }
10979
10980 case BINOP_IN_BOUNDS:
14f9c5c9 10981 (*pos) += 2;
4c4b4cd2
PH
10982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10984
4c4b4cd2
PH
10985 if (noside == EVAL_SKIP)
10986 goto nosideret;
14f9c5c9 10987
4c4b4cd2 10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10989 {
10990 type = language_bool_type (exp->language_defn, exp->gdbarch);
10991 return value_zero (type, not_lval);
10992 }
14f9c5c9 10993
4c4b4cd2 10994 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10995
1eea4ebd
UW
10996 type = ada_index_type (value_type (arg2), tem, "range");
10997 if (!type)
10998 type = value_type (arg1);
14f9c5c9 10999
1eea4ebd
UW
11000 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11001 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11002
f44316fa
UW
11003 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11005 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11006 return
fbb06eb1 11007 value_from_longest (type,
4c4b4cd2
PH
11008 (value_less (arg1, arg3)
11009 || value_equal (arg1, arg3))
11010 && (value_less (arg2, arg1)
11011 || value_equal (arg2, arg1)));
11012
11013 case TERNOP_IN_RANGE:
11014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11015 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020
f44316fa
UW
11021 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11023 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11024 return
fbb06eb1 11025 value_from_longest (type,
4c4b4cd2
PH
11026 (value_less (arg1, arg3)
11027 || value_equal (arg1, arg3))
11028 && (value_less (arg2, arg1)
11029 || value_equal (arg2, arg1)));
11030
11031 case OP_ATR_FIRST:
11032 case OP_ATR_LAST:
11033 case OP_ATR_LENGTH:
11034 {
76a01679 11035 struct type *type_arg;
5b4ee69b 11036
76a01679
JB
11037 if (exp->elts[*pos].opcode == OP_TYPE)
11038 {
11039 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11040 arg1 = NULL;
5bc23cb3 11041 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11042 }
11043 else
11044 {
11045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11046 type_arg = NULL;
11047 }
11048
11049 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11050 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11051 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11052 *pos += 4;
11053
11054 if (noside == EVAL_SKIP)
11055 goto nosideret;
680e1bee
TT
11056 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11057 {
11058 if (type_arg == NULL)
11059 type_arg = value_type (arg1);
76a01679 11060
680e1bee
TT
11061 if (ada_is_constrained_packed_array_type (type_arg))
11062 type_arg = decode_constrained_packed_array_type (type_arg);
11063
11064 if (!discrete_type_p (type_arg))
11065 {
11066 switch (op)
11067 {
11068 default: /* Should never happen. */
11069 error (_("unexpected attribute encountered"));
11070 case OP_ATR_FIRST:
11071 case OP_ATR_LAST:
11072 type_arg = ada_index_type (type_arg, tem,
11073 ada_attribute_name (op));
11074 break;
11075 case OP_ATR_LENGTH:
11076 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11077 break;
11078 }
11079 }
11080
11081 return value_zero (type_arg, not_lval);
11082 }
11083 else if (type_arg == NULL)
76a01679
JB
11084 {
11085 arg1 = ada_coerce_ref (arg1);
11086
ad82864c 11087 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11088 arg1 = ada_coerce_to_simple_array (arg1);
11089
aa4fb036 11090 if (op == OP_ATR_LENGTH)
1eea4ebd 11091 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11092 else
11093 {
11094 type = ada_index_type (value_type (arg1), tem,
11095 ada_attribute_name (op));
11096 if (type == NULL)
11097 type = builtin_type (exp->gdbarch)->builtin_int;
11098 }
76a01679 11099
76a01679
JB
11100 switch (op)
11101 {
11102 default: /* Should never happen. */
323e0a4a 11103 error (_("unexpected attribute encountered"));
76a01679 11104 case OP_ATR_FIRST:
1eea4ebd
UW
11105 return value_from_longest
11106 (type, ada_array_bound (arg1, tem, 0));
76a01679 11107 case OP_ATR_LAST:
1eea4ebd
UW
11108 return value_from_longest
11109 (type, ada_array_bound (arg1, tem, 1));
76a01679 11110 case OP_ATR_LENGTH:
1eea4ebd
UW
11111 return value_from_longest
11112 (type, ada_array_length (arg1, tem));
76a01679
JB
11113 }
11114 }
11115 else if (discrete_type_p (type_arg))
11116 {
11117 struct type *range_type;
0d5cff50 11118 const char *name = ada_type_name (type_arg);
5b4ee69b 11119
76a01679
JB
11120 range_type = NULL;
11121 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11122 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11123 if (range_type == NULL)
11124 range_type = type_arg;
11125 switch (op)
11126 {
11127 default:
323e0a4a 11128 error (_("unexpected attribute encountered"));
76a01679 11129 case OP_ATR_FIRST:
690cc4eb 11130 return value_from_longest
43bbcdc2 11131 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11132 case OP_ATR_LAST:
690cc4eb 11133 return value_from_longest
43bbcdc2 11134 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11135 case OP_ATR_LENGTH:
323e0a4a 11136 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11137 }
11138 }
11139 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11140 error (_("unimplemented type attribute"));
76a01679
JB
11141 else
11142 {
11143 LONGEST low, high;
11144
ad82864c
JB
11145 if (ada_is_constrained_packed_array_type (type_arg))
11146 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11147
aa4fb036 11148 if (op == OP_ATR_LENGTH)
1eea4ebd 11149 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11150 else
11151 {
11152 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11153 if (type == NULL)
11154 type = builtin_type (exp->gdbarch)->builtin_int;
11155 }
1eea4ebd 11156
76a01679
JB
11157 switch (op)
11158 {
11159 default:
323e0a4a 11160 error (_("unexpected attribute encountered"));
76a01679 11161 case OP_ATR_FIRST:
1eea4ebd 11162 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11163 return value_from_longest (type, low);
11164 case OP_ATR_LAST:
1eea4ebd 11165 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11166 return value_from_longest (type, high);
11167 case OP_ATR_LENGTH:
1eea4ebd
UW
11168 low = ada_array_bound_from_type (type_arg, tem, 0);
11169 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11170 return value_from_longest (type, high - low + 1);
11171 }
11172 }
14f9c5c9
AS
11173 }
11174
4c4b4cd2
PH
11175 case OP_ATR_TAG:
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 if (noside == EVAL_SKIP)
76a01679 11178 goto nosideret;
4c4b4cd2
PH
11179
11180 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11181 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11182
11183 return ada_value_tag (arg1);
11184
11185 case OP_ATR_MIN:
11186 case OP_ATR_MAX:
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
76a01679 11191 goto nosideret;
d2e4a39e 11192 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11193 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11194 else
f44316fa
UW
11195 {
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11197 return value_binop (arg1, arg2,
11198 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11199 }
14f9c5c9 11200
4c4b4cd2
PH
11201 case OP_ATR_MODULUS:
11202 {
31dedfee 11203 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11204
5b4ee69b 11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11206 if (noside == EVAL_SKIP)
11207 goto nosideret;
4c4b4cd2 11208
76a01679 11209 if (!ada_is_modular_type (type_arg))
323e0a4a 11210 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11211
76a01679
JB
11212 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11213 ada_modulus (type_arg));
4c4b4cd2
PH
11214 }
11215
11216
11217 case OP_ATR_POS:
11218 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
76a01679 11221 goto nosideret;
3cb382c9
UW
11222 type = builtin_type (exp->gdbarch)->builtin_int;
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 return value_zero (type, not_lval);
14f9c5c9 11225 else
3cb382c9 11226 return value_pos_atr (type, arg1);
14f9c5c9 11227
4c4b4cd2
PH
11228 case OP_ATR_SIZE:
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11230 type = value_type (arg1);
11231
11232 /* If the argument is a reference, then dereference its type, since
11233 the user is really asking for the size of the actual object,
11234 not the size of the pointer. */
11235 if (TYPE_CODE (type) == TYPE_CODE_REF)
11236 type = TYPE_TARGET_TYPE (type);
11237
4c4b4cd2 11238 if (noside == EVAL_SKIP)
76a01679 11239 goto nosideret;
4c4b4cd2 11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11241 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11242 else
22601c15 11243 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11244 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11245
11246 case OP_ATR_VAL:
11247 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11249 type = exp->elts[pc + 2].type;
14f9c5c9 11250 if (noside == EVAL_SKIP)
76a01679 11251 goto nosideret;
4c4b4cd2 11252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11253 return value_zero (type, not_lval);
4c4b4cd2 11254 else
76a01679 11255 return value_val_atr (type, arg1);
4c4b4cd2
PH
11256
11257 case BINOP_EXP:
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11260 if (noside == EVAL_SKIP)
11261 goto nosideret;
11262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11263 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11264 else
f44316fa
UW
11265 {
11266 /* For integer exponentiation operations,
11267 only promote the first argument. */
11268 if (is_integral_type (value_type (arg2)))
11269 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11270 else
11271 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11272
11273 return value_binop (arg1, arg2, op);
11274 }
4c4b4cd2
PH
11275
11276 case UNOP_PLUS:
11277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11278 if (noside == EVAL_SKIP)
11279 goto nosideret;
11280 else
11281 return arg1;
11282
11283 case UNOP_ABS:
11284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11285 if (noside == EVAL_SKIP)
11286 goto nosideret;
f44316fa 11287 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11288 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11289 return value_neg (arg1);
14f9c5c9 11290 else
4c4b4cd2 11291 return arg1;
14f9c5c9
AS
11292
11293 case UNOP_IND:
5ec18f2b 11294 preeval_pos = *pos;
6b0d7253 11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11296 if (noside == EVAL_SKIP)
4c4b4cd2 11297 goto nosideret;
df407dfe 11298 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11300 {
11301 if (ada_is_array_descriptor_type (type))
11302 /* GDB allows dereferencing GNAT array descriptors. */
11303 {
11304 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11305
4c4b4cd2 11306 if (arrType == NULL)
323e0a4a 11307 error (_("Attempt to dereference null array pointer."));
00a4c844 11308 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11309 }
11310 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11311 || TYPE_CODE (type) == TYPE_CODE_REF
11312 /* In C you can dereference an array to get the 1st elt. */
11313 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11314 {
5ec18f2b
JG
11315 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11316 only be determined by inspecting the object's tag.
11317 This means that we need to evaluate completely the
11318 expression in order to get its type. */
11319
023db19c
JB
11320 if ((TYPE_CODE (type) == TYPE_CODE_REF
11321 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11322 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11323 {
11324 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11325 EVAL_NORMAL);
11326 type = value_type (ada_value_ind (arg1));
11327 }
11328 else
11329 {
11330 type = to_static_fixed_type
11331 (ada_aligned_type
11332 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11333 }
c1b5a1a6 11334 ada_ensure_varsize_limit (type);
714e53ab
PH
11335 return value_zero (type, lval_memory);
11336 }
4c4b4cd2 11337 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11338 {
11339 /* GDB allows dereferencing an int. */
11340 if (expect_type == NULL)
11341 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11342 lval_memory);
11343 else
11344 {
11345 expect_type =
11346 to_static_fixed_type (ada_aligned_type (expect_type));
11347 return value_zero (expect_type, lval_memory);
11348 }
11349 }
4c4b4cd2 11350 else
323e0a4a 11351 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11352 }
0963b4bd 11353 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11354 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11355
96967637
JB
11356 if (TYPE_CODE (type) == TYPE_CODE_INT)
11357 /* GDB allows dereferencing an int. If we were given
11358 the expect_type, then use that as the target type.
11359 Otherwise, assume that the target type is an int. */
11360 {
11361 if (expect_type != NULL)
11362 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11363 arg1));
11364 else
11365 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11366 (CORE_ADDR) value_as_address (arg1));
11367 }
6b0d7253 11368
4c4b4cd2
PH
11369 if (ada_is_array_descriptor_type (type))
11370 /* GDB allows dereferencing GNAT array descriptors. */
11371 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11372 else
4c4b4cd2 11373 return ada_value_ind (arg1);
14f9c5c9
AS
11374
11375 case STRUCTOP_STRUCT:
11376 tem = longest_to_int (exp->elts[pc + 1].longconst);
11377 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11378 preeval_pos = *pos;
14f9c5c9
AS
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11380 if (noside == EVAL_SKIP)
4c4b4cd2 11381 goto nosideret;
14f9c5c9 11382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11383 {
df407dfe 11384 struct type *type1 = value_type (arg1);
5b4ee69b 11385
76a01679
JB
11386 if (ada_is_tagged_type (type1, 1))
11387 {
11388 type = ada_lookup_struct_elt_type (type1,
11389 &exp->elts[pc + 2].string,
988f6b3d 11390 1, 1);
5ec18f2b
JG
11391
11392 /* If the field is not found, check if it exists in the
11393 extension of this object's type. This means that we
11394 need to evaluate completely the expression. */
11395
76a01679 11396 if (type == NULL)
5ec18f2b
JG
11397 {
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11399 EVAL_NORMAL);
11400 arg1 = ada_value_struct_elt (arg1,
11401 &exp->elts[pc + 2].string,
11402 0);
11403 arg1 = unwrap_value (arg1);
11404 type = value_type (ada_to_fixed_value (arg1));
11405 }
76a01679
JB
11406 }
11407 else
11408 type =
11409 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11410 0);
76a01679
JB
11411
11412 return value_zero (ada_aligned_type (type), lval_memory);
11413 }
14f9c5c9 11414 else
a579cd9a
MW
11415 {
11416 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11417 arg1 = unwrap_value (arg1);
11418 return ada_to_fixed_value (arg1);
11419 }
284614f0 11420
14f9c5c9 11421 case OP_TYPE:
4c4b4cd2
PH
11422 /* The value is not supposed to be used. This is here to make it
11423 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11424 (*pos) += 2;
11425 if (noside == EVAL_SKIP)
4c4b4cd2 11426 goto nosideret;
14f9c5c9 11427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11428 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11429 else
323e0a4a 11430 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11431
11432 case OP_AGGREGATE:
11433 case OP_CHOICES:
11434 case OP_OTHERS:
11435 case OP_DISCRETE_RANGE:
11436 case OP_POSITIONAL:
11437 case OP_NAME:
11438 if (noside == EVAL_NORMAL)
11439 switch (op)
11440 {
11441 case OP_NAME:
11442 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11443 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11444 case OP_AGGREGATE:
11445 error (_("Aggregates only allowed on the right of an assignment"));
11446 default:
0963b4bd
MS
11447 internal_error (__FILE__, __LINE__,
11448 _("aggregate apparently mangled"));
52ce6436
PH
11449 }
11450
11451 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11452 *pos += oplen - 1;
11453 for (tem = 0; tem < nargs; tem += 1)
11454 ada_evaluate_subexp (NULL, exp, pos, noside);
11455 goto nosideret;
14f9c5c9
AS
11456 }
11457
11458nosideret:
ced9779b 11459 return eval_skip_value (exp);
14f9c5c9 11460}
14f9c5c9 11461\f
d2e4a39e 11462
4c4b4cd2 11463 /* Fixed point */
14f9c5c9
AS
11464
11465/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11466 type name that encodes the 'small and 'delta information.
4c4b4cd2 11467 Otherwise, return NULL. */
14f9c5c9 11468
d2e4a39e 11469static const char *
ebf56fd3 11470fixed_type_info (struct type *type)
14f9c5c9 11471{
d2e4a39e 11472 const char *name = ada_type_name (type);
14f9c5c9
AS
11473 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11474
d2e4a39e
AS
11475 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11476 {
14f9c5c9 11477 const char *tail = strstr (name, "___XF_");
5b4ee69b 11478
14f9c5c9 11479 if (tail == NULL)
4c4b4cd2 11480 return NULL;
d2e4a39e 11481 else
4c4b4cd2 11482 return tail + 5;
14f9c5c9
AS
11483 }
11484 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11485 return fixed_type_info (TYPE_TARGET_TYPE (type));
11486 else
11487 return NULL;
11488}
11489
4c4b4cd2 11490/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11491
11492int
ebf56fd3 11493ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11494{
11495 return fixed_type_info (type) != NULL;
11496}
11497
4c4b4cd2
PH
11498/* Return non-zero iff TYPE represents a System.Address type. */
11499
11500int
11501ada_is_system_address_type (struct type *type)
11502{
11503 return (TYPE_NAME (type)
11504 && strcmp (TYPE_NAME (type), "system__address") == 0);
11505}
11506
14f9c5c9 11507/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11508 type, return the target floating-point type to be used to represent
11509 of this type during internal computation. */
11510
11511static struct type *
11512ada_scaling_type (struct type *type)
11513{
11514 return builtin_type (get_type_arch (type))->builtin_long_double;
11515}
11516
11517/* Assuming that TYPE is the representation of an Ada fixed-point
11518 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11519 delta cannot be determined. */
14f9c5c9 11520
50eff16b 11521struct value *
ebf56fd3 11522ada_delta (struct type *type)
14f9c5c9
AS
11523{
11524 const char *encoding = fixed_type_info (type);
50eff16b
UW
11525 struct type *scale_type = ada_scaling_type (type);
11526
11527 long long num, den;
11528
11529 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11530 return nullptr;
d2e4a39e 11531 else
50eff16b
UW
11532 return value_binop (value_from_longest (scale_type, num),
11533 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11534}
11535
11536/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11537 factor ('SMALL value) associated with the type. */
14f9c5c9 11538
50eff16b
UW
11539struct value *
11540ada_scaling_factor (struct type *type)
14f9c5c9
AS
11541{
11542 const char *encoding = fixed_type_info (type);
50eff16b
UW
11543 struct type *scale_type = ada_scaling_type (type);
11544
11545 long long num0, den0, num1, den1;
14f9c5c9 11546 int n;
d2e4a39e 11547
50eff16b 11548 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11549 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11550
11551 if (n < 2)
50eff16b 11552 return value_from_longest (scale_type, 1);
14f9c5c9 11553 else if (n == 4)
50eff16b
UW
11554 return value_binop (value_from_longest (scale_type, num1),
11555 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11556 else
50eff16b
UW
11557 return value_binop (value_from_longest (scale_type, num0),
11558 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11559}
11560
14f9c5c9 11561\f
d2e4a39e 11562
4c4b4cd2 11563 /* Range types */
14f9c5c9
AS
11564
11565/* Scan STR beginning at position K for a discriminant name, and
11566 return the value of that discriminant field of DVAL in *PX. If
11567 PNEW_K is not null, put the position of the character beyond the
11568 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11569 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11570
11571static int
108d56a4 11572scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11573 int *pnew_k)
14f9c5c9
AS
11574{
11575 static char *bound_buffer = NULL;
11576 static size_t bound_buffer_len = 0;
5da1a4d3 11577 const char *pstart, *pend, *bound;
d2e4a39e 11578 struct value *bound_val;
14f9c5c9
AS
11579
11580 if (dval == NULL || str == NULL || str[k] == '\0')
11581 return 0;
11582
5da1a4d3
SM
11583 pstart = str + k;
11584 pend = strstr (pstart, "__");
14f9c5c9
AS
11585 if (pend == NULL)
11586 {
5da1a4d3 11587 bound = pstart;
14f9c5c9
AS
11588 k += strlen (bound);
11589 }
d2e4a39e 11590 else
14f9c5c9 11591 {
5da1a4d3
SM
11592 int len = pend - pstart;
11593
11594 /* Strip __ and beyond. */
11595 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11596 strncpy (bound_buffer, pstart, len);
11597 bound_buffer[len] = '\0';
11598
14f9c5c9 11599 bound = bound_buffer;
d2e4a39e 11600 k = pend - str;
14f9c5c9 11601 }
d2e4a39e 11602
df407dfe 11603 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11604 if (bound_val == NULL)
11605 return 0;
11606
11607 *px = value_as_long (bound_val);
11608 if (pnew_k != NULL)
11609 *pnew_k = k;
11610 return 1;
11611}
11612
11613/* Value of variable named NAME in the current environment. If
11614 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11615 otherwise causes an error with message ERR_MSG. */
11616
d2e4a39e 11617static struct value *
edb0c9cb 11618get_var_value (const char *name, const char *err_msg)
14f9c5c9 11619{
b5ec771e 11620 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11621
54d343a2 11622 std::vector<struct block_symbol> syms;
b5ec771e
PA
11623 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11624 get_selected_block (0),
11625 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11626
11627 if (nsyms != 1)
11628 {
11629 if (err_msg == NULL)
4c4b4cd2 11630 return 0;
14f9c5c9 11631 else
8a3fe4f8 11632 error (("%s"), err_msg);
14f9c5c9
AS
11633 }
11634
54d343a2 11635 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11636}
d2e4a39e 11637
edb0c9cb
PA
11638/* Value of integer variable named NAME in the current environment.
11639 If no such variable is found, returns false. Otherwise, sets VALUE
11640 to the variable's value and returns true. */
4c4b4cd2 11641
edb0c9cb
PA
11642bool
11643get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11644{
4c4b4cd2 11645 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11646
14f9c5c9 11647 if (var_val == 0)
edb0c9cb
PA
11648 return false;
11649
11650 value = value_as_long (var_val);
11651 return true;
14f9c5c9 11652}
d2e4a39e 11653
14f9c5c9
AS
11654
11655/* Return a range type whose base type is that of the range type named
11656 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11657 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11658 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11659 corresponding range type from debug information; fall back to using it
11660 if symbol lookup fails. If a new type must be created, allocate it
11661 like ORIG_TYPE was. The bounds information, in general, is encoded
11662 in NAME, the base type given in the named range type. */
14f9c5c9 11663
d2e4a39e 11664static struct type *
28c85d6c 11665to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11666{
0d5cff50 11667 const char *name;
14f9c5c9 11668 struct type *base_type;
108d56a4 11669 const char *subtype_info;
14f9c5c9 11670
28c85d6c
JB
11671 gdb_assert (raw_type != NULL);
11672 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11673
1ce677a4 11674 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11675 base_type = TYPE_TARGET_TYPE (raw_type);
11676 else
11677 base_type = raw_type;
11678
28c85d6c 11679 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11680 subtype_info = strstr (name, "___XD");
11681 if (subtype_info == NULL)
690cc4eb 11682 {
43bbcdc2
PH
11683 LONGEST L = ada_discrete_type_low_bound (raw_type);
11684 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11685
690cc4eb
PH
11686 if (L < INT_MIN || U > INT_MAX)
11687 return raw_type;
11688 else
0c9c3474
SA
11689 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11690 L, U);
690cc4eb 11691 }
14f9c5c9
AS
11692 else
11693 {
11694 static char *name_buf = NULL;
11695 static size_t name_len = 0;
11696 int prefix_len = subtype_info - name;
11697 LONGEST L, U;
11698 struct type *type;
108d56a4 11699 const char *bounds_str;
14f9c5c9
AS
11700 int n;
11701
11702 GROW_VECT (name_buf, name_len, prefix_len + 5);
11703 strncpy (name_buf, name, prefix_len);
11704 name_buf[prefix_len] = '\0';
11705
11706 subtype_info += 5;
11707 bounds_str = strchr (subtype_info, '_');
11708 n = 1;
11709
d2e4a39e 11710 if (*subtype_info == 'L')
4c4b4cd2
PH
11711 {
11712 if (!ada_scan_number (bounds_str, n, &L, &n)
11713 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11714 return raw_type;
11715 if (bounds_str[n] == '_')
11716 n += 2;
0963b4bd 11717 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11718 n += 1;
11719 subtype_info += 1;
11720 }
d2e4a39e 11721 else
4c4b4cd2 11722 {
4c4b4cd2 11723 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11724 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11725 {
323e0a4a 11726 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11727 L = 1;
11728 }
11729 }
14f9c5c9 11730
d2e4a39e 11731 if (*subtype_info == 'U')
4c4b4cd2
PH
11732 {
11733 if (!ada_scan_number (bounds_str, n, &U, &n)
11734 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11735 return raw_type;
11736 }
d2e4a39e 11737 else
4c4b4cd2 11738 {
4c4b4cd2 11739 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11740 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11741 {
323e0a4a 11742 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11743 U = L;
11744 }
11745 }
14f9c5c9 11746
0c9c3474
SA
11747 type = create_static_range_type (alloc_type_copy (raw_type),
11748 base_type, L, U);
f5a91472
JB
11749 /* create_static_range_type alters the resulting type's length
11750 to match the size of the base_type, which is not what we want.
11751 Set it back to the original range type's length. */
11752 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11753 TYPE_NAME (type) = name;
14f9c5c9
AS
11754 return type;
11755 }
11756}
11757
4c4b4cd2
PH
11758/* True iff NAME is the name of a range type. */
11759
14f9c5c9 11760int
d2e4a39e 11761ada_is_range_type_name (const char *name)
14f9c5c9
AS
11762{
11763 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11764}
14f9c5c9 11765\f
d2e4a39e 11766
4c4b4cd2
PH
11767 /* Modular types */
11768
11769/* True iff TYPE is an Ada modular type. */
14f9c5c9 11770
14f9c5c9 11771int
d2e4a39e 11772ada_is_modular_type (struct type *type)
14f9c5c9 11773{
18af8284 11774 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11775
11776 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11777 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11778 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11779}
11780
4c4b4cd2
PH
11781/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11782
61ee279c 11783ULONGEST
0056e4d5 11784ada_modulus (struct type *type)
14f9c5c9 11785{
43bbcdc2 11786 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11787}
d2e4a39e 11788\f
f7f9143b
JB
11789
11790/* Ada exception catchpoint support:
11791 ---------------------------------
11792
11793 We support 3 kinds of exception catchpoints:
11794 . catchpoints on Ada exceptions
11795 . catchpoints on unhandled Ada exceptions
11796 . catchpoints on failed assertions
11797
11798 Exceptions raised during failed assertions, or unhandled exceptions
11799 could perfectly be caught with the general catchpoint on Ada exceptions.
11800 However, we can easily differentiate these two special cases, and having
11801 the option to distinguish these two cases from the rest can be useful
11802 to zero-in on certain situations.
11803
11804 Exception catchpoints are a specialized form of breakpoint,
11805 since they rely on inserting breakpoints inside known routines
11806 of the GNAT runtime. The implementation therefore uses a standard
11807 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11808 of breakpoint_ops.
11809
0259addd
JB
11810 Support in the runtime for exception catchpoints have been changed
11811 a few times already, and these changes affect the implementation
11812 of these catchpoints. In order to be able to support several
11813 variants of the runtime, we use a sniffer that will determine
28010a5d 11814 the runtime variant used by the program being debugged. */
f7f9143b 11815
82eacd52
JB
11816/* Ada's standard exceptions.
11817
11818 The Ada 83 standard also defined Numeric_Error. But there so many
11819 situations where it was unclear from the Ada 83 Reference Manual
11820 (RM) whether Constraint_Error or Numeric_Error should be raised,
11821 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11822 Interpretation saying that anytime the RM says that Numeric_Error
11823 should be raised, the implementation may raise Constraint_Error.
11824 Ada 95 went one step further and pretty much removed Numeric_Error
11825 from the list of standard exceptions (it made it a renaming of
11826 Constraint_Error, to help preserve compatibility when compiling
11827 an Ada83 compiler). As such, we do not include Numeric_Error from
11828 this list of standard exceptions. */
3d0b0fa3 11829
a121b7c1 11830static const char *standard_exc[] = {
3d0b0fa3
JB
11831 "constraint_error",
11832 "program_error",
11833 "storage_error",
11834 "tasking_error"
11835};
11836
0259addd
JB
11837typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11838
11839/* A structure that describes how to support exception catchpoints
11840 for a given executable. */
11841
11842struct exception_support_info
11843{
11844 /* The name of the symbol to break on in order to insert
11845 a catchpoint on exceptions. */
11846 const char *catch_exception_sym;
11847
11848 /* The name of the symbol to break on in order to insert
11849 a catchpoint on unhandled exceptions. */
11850 const char *catch_exception_unhandled_sym;
11851
11852 /* The name of the symbol to break on in order to insert
11853 a catchpoint on failed assertions. */
11854 const char *catch_assert_sym;
11855
9f757bf7
XR
11856 /* The name of the symbol to break on in order to insert
11857 a catchpoint on exception handling. */
11858 const char *catch_handlers_sym;
11859
0259addd
JB
11860 /* Assuming that the inferior just triggered an unhandled exception
11861 catchpoint, this function is responsible for returning the address
11862 in inferior memory where the name of that exception is stored.
11863 Return zero if the address could not be computed. */
11864 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11865};
11866
11867static CORE_ADDR ada_unhandled_exception_name_addr (void);
11868static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11869
11870/* The following exception support info structure describes how to
11871 implement exception catchpoints with the latest version of the
ca683e3a 11872 Ada runtime (as of 2019-08-??). */
0259addd
JB
11873
11874static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11875{
11876 "__gnat_debug_raise_exception", /* catch_exception_sym */
11877 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11878 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11879 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11880 ada_unhandled_exception_name_addr
11881};
11882
11883/* The following exception support info structure describes how to
11884 implement exception catchpoints with an earlier version of the
11885 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11886
11887static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11888{
11889 "__gnat_debug_raise_exception", /* catch_exception_sym */
11890 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11891 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11892 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11893 ada_unhandled_exception_name_addr
11894};
11895
11896/* The following exception support info structure describes how to
11897 implement exception catchpoints with a slightly older version
11898 of the Ada runtime. */
11899
11900static const struct exception_support_info exception_support_info_fallback =
11901{
11902 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11903 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11904 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11905 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11906 ada_unhandled_exception_name_addr_from_raise
11907};
11908
f17011e0
JB
11909/* Return nonzero if we can detect the exception support routines
11910 described in EINFO.
11911
11912 This function errors out if an abnormal situation is detected
11913 (for instance, if we find the exception support routines, but
11914 that support is found to be incomplete). */
11915
11916static int
11917ada_has_this_exception_support (const struct exception_support_info *einfo)
11918{
11919 struct symbol *sym;
11920
11921 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11922 that should be compiled with debugging information. As a result, we
11923 expect to find that symbol in the symtabs. */
11924
11925 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11926 if (sym == NULL)
a6af7abe
JB
11927 {
11928 /* Perhaps we did not find our symbol because the Ada runtime was
11929 compiled without debugging info, or simply stripped of it.
11930 It happens on some GNU/Linux distributions for instance, where
11931 users have to install a separate debug package in order to get
11932 the runtime's debugging info. In that situation, let the user
11933 know why we cannot insert an Ada exception catchpoint.
11934
11935 Note: Just for the purpose of inserting our Ada exception
11936 catchpoint, we could rely purely on the associated minimal symbol.
11937 But we would be operating in degraded mode anyway, since we are
11938 still lacking the debugging info needed later on to extract
11939 the name of the exception being raised (this name is printed in
11940 the catchpoint message, and is also used when trying to catch
11941 a specific exception). We do not handle this case for now. */
3b7344d5 11942 struct bound_minimal_symbol msym
1c8e84b0
JB
11943 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11944
3b7344d5 11945 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11946 error (_("Your Ada runtime appears to be missing some debugging "
11947 "information.\nCannot insert Ada exception catchpoint "
11948 "in this configuration."));
11949
11950 return 0;
11951 }
f17011e0
JB
11952
11953 /* Make sure that the symbol we found corresponds to a function. */
11954
11955 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11956 {
11957 error (_("Symbol \"%s\" is not a function (class = %d)"),
11958 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11959 return 0;
11960 }
11961
11962 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11963 if (sym == NULL)
11964 {
11965 struct bound_minimal_symbol msym
11966 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11967
11968 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11969 error (_("Your Ada runtime appears to be missing some debugging "
11970 "information.\nCannot insert Ada exception catchpoint "
11971 "in this configuration."));
11972
11973 return 0;
11974 }
11975
11976 /* Make sure that the symbol we found corresponds to a function. */
11977
11978 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11979 {
11980 error (_("Symbol \"%s\" is not a function (class = %d)"),
11981 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11982 return 0;
11983 }
f17011e0
JB
11984
11985 return 1;
11986}
11987
0259addd
JB
11988/* Inspect the Ada runtime and determine which exception info structure
11989 should be used to provide support for exception catchpoints.
11990
3eecfa55
JB
11991 This function will always set the per-inferior exception_info,
11992 or raise an error. */
0259addd
JB
11993
11994static void
11995ada_exception_support_info_sniffer (void)
11996{
3eecfa55 11997 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11998
11999 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12000 if (data->exception_info != NULL)
0259addd
JB
12001 return;
12002
12003 /* Check the latest (default) exception support info. */
f17011e0 12004 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12005 {
3eecfa55 12006 data->exception_info = &default_exception_support_info;
0259addd
JB
12007 return;
12008 }
12009
ca683e3a
AO
12010 /* Try the v0 exception suport info. */
12011 if (ada_has_this_exception_support (&exception_support_info_v0))
12012 {
12013 data->exception_info = &exception_support_info_v0;
12014 return;
12015 }
12016
0259addd 12017 /* Try our fallback exception suport info. */
f17011e0 12018 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12019 {
3eecfa55 12020 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12021 return;
12022 }
12023
12024 /* Sometimes, it is normal for us to not be able to find the routine
12025 we are looking for. This happens when the program is linked with
12026 the shared version of the GNAT runtime, and the program has not been
12027 started yet. Inform the user of these two possible causes if
12028 applicable. */
12029
ccefe4c4 12030 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12031 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12032
12033 /* If the symbol does not exist, then check that the program is
12034 already started, to make sure that shared libraries have been
12035 loaded. If it is not started, this may mean that the symbol is
12036 in a shared library. */
12037
e99b03dc 12038 if (inferior_ptid.pid () == 0)
0259addd
JB
12039 error (_("Unable to insert catchpoint. Try to start the program first."));
12040
12041 /* At this point, we know that we are debugging an Ada program and
12042 that the inferior has been started, but we still are not able to
0963b4bd 12043 find the run-time symbols. That can mean that we are in
0259addd
JB
12044 configurable run time mode, or that a-except as been optimized
12045 out by the linker... In any case, at this point it is not worth
12046 supporting this feature. */
12047
7dda8cff 12048 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12049}
12050
f7f9143b
JB
12051/* True iff FRAME is very likely to be that of a function that is
12052 part of the runtime system. This is all very heuristic, but is
12053 intended to be used as advice as to what frames are uninteresting
12054 to most users. */
12055
12056static int
12057is_known_support_routine (struct frame_info *frame)
12058{
692465f1 12059 enum language func_lang;
f7f9143b 12060 int i;
f35a17b5 12061 const char *fullname;
f7f9143b 12062
4ed6b5be
JB
12063 /* If this code does not have any debugging information (no symtab),
12064 This cannot be any user code. */
f7f9143b 12065
51abb421 12066 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12067 if (sal.symtab == NULL)
12068 return 1;
12069
4ed6b5be
JB
12070 /* If there is a symtab, but the associated source file cannot be
12071 located, then assume this is not user code: Selecting a frame
12072 for which we cannot display the code would not be very helpful
12073 for the user. This should also take care of case such as VxWorks
12074 where the kernel has some debugging info provided for a few units. */
f7f9143b 12075
f35a17b5
JK
12076 fullname = symtab_to_fullname (sal.symtab);
12077 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12078 return 1;
12079
4ed6b5be
JB
12080 /* Check the unit filename againt the Ada runtime file naming.
12081 We also check the name of the objfile against the name of some
12082 known system libraries that sometimes come with debugging info
12083 too. */
12084
f7f9143b
JB
12085 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12086 {
12087 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12088 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12089 return 1;
eb822aa6
DE
12090 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12091 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12092 return 1;
f7f9143b
JB
12093 }
12094
4ed6b5be 12095 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12096
c6dc63a1
TT
12097 gdb::unique_xmalloc_ptr<char> func_name
12098 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12099 if (func_name == NULL)
12100 return 1;
12101
12102 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12103 {
12104 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12105 if (re_exec (func_name.get ()))
12106 return 1;
f7f9143b
JB
12107 }
12108
12109 return 0;
12110}
12111
12112/* Find the first frame that contains debugging information and that is not
12113 part of the Ada run-time, starting from FI and moving upward. */
12114
0ef643c8 12115void
f7f9143b
JB
12116ada_find_printable_frame (struct frame_info *fi)
12117{
12118 for (; fi != NULL; fi = get_prev_frame (fi))
12119 {
12120 if (!is_known_support_routine (fi))
12121 {
12122 select_frame (fi);
12123 break;
12124 }
12125 }
12126
12127}
12128
12129/* Assuming that the inferior just triggered an unhandled exception
12130 catchpoint, return the address in inferior memory where the name
12131 of the exception is stored.
12132
12133 Return zero if the address could not be computed. */
12134
12135static CORE_ADDR
12136ada_unhandled_exception_name_addr (void)
0259addd
JB
12137{
12138 return parse_and_eval_address ("e.full_name");
12139}
12140
12141/* Same as ada_unhandled_exception_name_addr, except that this function
12142 should be used when the inferior uses an older version of the runtime,
12143 where the exception name needs to be extracted from a specific frame
12144 several frames up in the callstack. */
12145
12146static CORE_ADDR
12147ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12148{
12149 int frame_level;
12150 struct frame_info *fi;
3eecfa55 12151 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12152
12153 /* To determine the name of this exception, we need to select
12154 the frame corresponding to RAISE_SYM_NAME. This frame is
12155 at least 3 levels up, so we simply skip the first 3 frames
12156 without checking the name of their associated function. */
12157 fi = get_current_frame ();
12158 for (frame_level = 0; frame_level < 3; frame_level += 1)
12159 if (fi != NULL)
12160 fi = get_prev_frame (fi);
12161
12162 while (fi != NULL)
12163 {
692465f1
JB
12164 enum language func_lang;
12165
c6dc63a1
TT
12166 gdb::unique_xmalloc_ptr<char> func_name
12167 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12168 if (func_name != NULL)
12169 {
c6dc63a1 12170 if (strcmp (func_name.get (),
55b87a52
KS
12171 data->exception_info->catch_exception_sym) == 0)
12172 break; /* We found the frame we were looking for... */
55b87a52 12173 }
fb44b1a7 12174 fi = get_prev_frame (fi);
f7f9143b
JB
12175 }
12176
12177 if (fi == NULL)
12178 return 0;
12179
12180 select_frame (fi);
12181 return parse_and_eval_address ("id.full_name");
12182}
12183
12184/* Assuming the inferior just triggered an Ada exception catchpoint
12185 (of any type), return the address in inferior memory where the name
12186 of the exception is stored, if applicable.
12187
45db7c09
PA
12188 Assumes the selected frame is the current frame.
12189
f7f9143b
JB
12190 Return zero if the address could not be computed, or if not relevant. */
12191
12192static CORE_ADDR
761269c8 12193ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12194 struct breakpoint *b)
12195{
3eecfa55
JB
12196 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12197
f7f9143b
JB
12198 switch (ex)
12199 {
761269c8 12200 case ada_catch_exception:
f7f9143b
JB
12201 return (parse_and_eval_address ("e.full_name"));
12202 break;
12203
761269c8 12204 case ada_catch_exception_unhandled:
3eecfa55 12205 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12206 break;
9f757bf7
XR
12207
12208 case ada_catch_handlers:
12209 return 0; /* The runtimes does not provide access to the exception
12210 name. */
12211 break;
12212
761269c8 12213 case ada_catch_assert:
f7f9143b
JB
12214 return 0; /* Exception name is not relevant in this case. */
12215 break;
12216
12217 default:
12218 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12219 break;
12220 }
12221
12222 return 0; /* Should never be reached. */
12223}
12224
e547c119
JB
12225/* Assuming the inferior is stopped at an exception catchpoint,
12226 return the message which was associated to the exception, if
12227 available. Return NULL if the message could not be retrieved.
12228
e547c119
JB
12229 Note: The exception message can be associated to an exception
12230 either through the use of the Raise_Exception function, or
12231 more simply (Ada 2005 and later), via:
12232
12233 raise Exception_Name with "exception message";
12234
12235 */
12236
6f46ac85 12237static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12238ada_exception_message_1 (void)
12239{
12240 struct value *e_msg_val;
e547c119 12241 int e_msg_len;
e547c119
JB
12242
12243 /* For runtimes that support this feature, the exception message
12244 is passed as an unbounded string argument called "message". */
12245 e_msg_val = parse_and_eval ("message");
12246 if (e_msg_val == NULL)
12247 return NULL; /* Exception message not supported. */
12248
12249 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12250 gdb_assert (e_msg_val != NULL);
12251 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12252
12253 /* If the message string is empty, then treat it as if there was
12254 no exception message. */
12255 if (e_msg_len <= 0)
12256 return NULL;
12257
6f46ac85
TT
12258 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12259 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12260 e_msg.get ()[e_msg_len] = '\0';
e547c119 12261
e547c119
JB
12262 return e_msg;
12263}
12264
12265/* Same as ada_exception_message_1, except that all exceptions are
12266 contained here (returning NULL instead). */
12267
6f46ac85 12268static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12269ada_exception_message (void)
12270{
6f46ac85 12271 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12272
a70b8144 12273 try
e547c119
JB
12274 {
12275 e_msg = ada_exception_message_1 ();
12276 }
230d2906 12277 catch (const gdb_exception_error &e)
e547c119 12278 {
6f46ac85 12279 e_msg.reset (nullptr);
e547c119 12280 }
e547c119
JB
12281
12282 return e_msg;
12283}
12284
f7f9143b
JB
12285/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12286 any error that ada_exception_name_addr_1 might cause to be thrown.
12287 When an error is intercepted, a warning with the error message is printed,
12288 and zero is returned. */
12289
12290static CORE_ADDR
761269c8 12291ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12292 struct breakpoint *b)
12293{
f7f9143b
JB
12294 CORE_ADDR result = 0;
12295
a70b8144 12296 try
f7f9143b
JB
12297 {
12298 result = ada_exception_name_addr_1 (ex, b);
12299 }
12300
230d2906 12301 catch (const gdb_exception_error &e)
f7f9143b 12302 {
3d6e9d23 12303 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12304 return 0;
12305 }
12306
12307 return result;
12308}
12309
cb7de75e 12310static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12311 (const char *excep_string,
12312 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12313
12314/* Ada catchpoints.
12315
12316 In the case of catchpoints on Ada exceptions, the catchpoint will
12317 stop the target on every exception the program throws. When a user
12318 specifies the name of a specific exception, we translate this
12319 request into a condition expression (in text form), and then parse
12320 it into an expression stored in each of the catchpoint's locations.
12321 We then use this condition to check whether the exception that was
12322 raised is the one the user is interested in. If not, then the
12323 target is resumed again. We store the name of the requested
12324 exception, in order to be able to re-set the condition expression
12325 when symbols change. */
12326
12327/* An instance of this type is used to represent an Ada catchpoint
5625a286 12328 breakpoint location. */
28010a5d 12329
5625a286 12330class ada_catchpoint_location : public bp_location
28010a5d 12331{
5625a286 12332public:
5f486660 12333 ada_catchpoint_location (breakpoint *owner)
f06f1252 12334 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12335 {}
28010a5d
PA
12336
12337 /* The condition that checks whether the exception that was raised
12338 is the specific exception the user specified on catchpoint
12339 creation. */
4d01a485 12340 expression_up excep_cond_expr;
28010a5d
PA
12341};
12342
c1fc2657 12343/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12344
c1fc2657 12345struct ada_catchpoint : public breakpoint
28010a5d 12346{
28010a5d 12347 /* The name of the specific exception the user specified. */
bc18fbb5 12348 std::string excep_string;
28010a5d
PA
12349};
12350
12351/* Parse the exception condition string in the context of each of the
12352 catchpoint's locations, and store them for later evaluation. */
12353
12354static void
9f757bf7
XR
12355create_excep_cond_exprs (struct ada_catchpoint *c,
12356 enum ada_exception_catchpoint_kind ex)
28010a5d 12357{
28010a5d 12358 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12359 if (c->excep_string.empty ())
28010a5d
PA
12360 return;
12361
12362 /* Same if there are no locations... */
c1fc2657 12363 if (c->loc == NULL)
28010a5d
PA
12364 return;
12365
2ff0a947
TT
12366 /* We have to compute the expression once for each program space,
12367 because the expression may hold the addresses of multiple symbols
12368 in some cases. */
12369 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12370 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12371 loc_map.emplace (bl->pspace, bl);
28010a5d 12372
2ff0a947
TT
12373 scoped_restore_current_program_space save_pspace;
12374
12375 std::string cond_string;
12376 program_space *last_ps = nullptr;
12377 for (auto iter : loc_map)
28010a5d
PA
12378 {
12379 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12380 = (struct ada_catchpoint_location *) iter.second;
12381
12382 if (ada_loc->pspace != last_ps)
12383 {
12384 last_ps = ada_loc->pspace;
12385 set_current_program_space (last_ps);
12386
12387 /* Compute the condition expression in text form, from the
12388 specific expection we want to catch. */
12389 cond_string
12390 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12391 ex);
12392 }
12393
4d01a485 12394 expression_up exp;
28010a5d 12395
2ff0a947 12396 if (!ada_loc->shlib_disabled)
28010a5d 12397 {
bbc13ae3 12398 const char *s;
28010a5d 12399
cb7de75e 12400 s = cond_string.c_str ();
a70b8144 12401 try
28010a5d 12402 {
2ff0a947
TT
12403 exp = parse_exp_1 (&s, ada_loc->address,
12404 block_for_pc (ada_loc->address),
036e657b 12405 0);
28010a5d 12406 }
230d2906 12407 catch (const gdb_exception_error &e)
849f2b52
JB
12408 {
12409 warning (_("failed to reevaluate internal exception condition "
12410 "for catchpoint %d: %s"),
3d6e9d23 12411 c->number, e.what ());
849f2b52 12412 }
28010a5d
PA
12413 }
12414
b22e99fd 12415 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12416 }
28010a5d
PA
12417}
12418
28010a5d
PA
12419/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12420 structure for all exception catchpoint kinds. */
12421
12422static struct bp_location *
761269c8 12423allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12424 struct breakpoint *self)
12425{
5f486660 12426 return new ada_catchpoint_location (self);
28010a5d
PA
12427}
12428
12429/* Implement the RE_SET method in the breakpoint_ops structure for all
12430 exception catchpoint kinds. */
12431
12432static void
761269c8 12433re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12434{
12435 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12436
12437 /* Call the base class's method. This updates the catchpoint's
12438 locations. */
2060206e 12439 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12440
12441 /* Reparse the exception conditional expressions. One for each
12442 location. */
9f757bf7 12443 create_excep_cond_exprs (c, ex);
28010a5d
PA
12444}
12445
12446/* Returns true if we should stop for this breakpoint hit. If the
12447 user specified a specific exception, we only want to cause a stop
12448 if the program thrown that exception. */
12449
12450static int
12451should_stop_exception (const struct bp_location *bl)
12452{
12453 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12454 const struct ada_catchpoint_location *ada_loc
12455 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12456 int stop;
12457
12458 /* With no specific exception, should always stop. */
bc18fbb5 12459 if (c->excep_string.empty ())
28010a5d
PA
12460 return 1;
12461
12462 if (ada_loc->excep_cond_expr == NULL)
12463 {
12464 /* We will have a NULL expression if back when we were creating
12465 the expressions, this location's had failed to parse. */
12466 return 1;
12467 }
12468
12469 stop = 1;
a70b8144 12470 try
28010a5d
PA
12471 {
12472 struct value *mark;
12473
12474 mark = value_mark ();
4d01a485 12475 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12476 value_free_to_mark (mark);
12477 }
230d2906 12478 catch (const gdb_exception &ex)
492d29ea
PA
12479 {
12480 exception_fprintf (gdb_stderr, ex,
12481 _("Error in testing exception condition:\n"));
12482 }
492d29ea 12483
28010a5d
PA
12484 return stop;
12485}
12486
12487/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12488 for all exception catchpoint kinds. */
12489
12490static void
761269c8 12491check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12492{
12493 bs->stop = should_stop_exception (bs->bp_location_at);
12494}
12495
f7f9143b
JB
12496/* Implement the PRINT_IT method in the breakpoint_ops structure
12497 for all exception catchpoint kinds. */
12498
12499static enum print_stop_action
761269c8 12500print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12501{
79a45e25 12502 struct ui_out *uiout = current_uiout;
348d480f
PA
12503 struct breakpoint *b = bs->breakpoint_at;
12504
956a9fb9 12505 annotate_catchpoint (b->number);
f7f9143b 12506
112e8700 12507 if (uiout->is_mi_like_p ())
f7f9143b 12508 {
112e8700 12509 uiout->field_string ("reason",
956a9fb9 12510 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12511 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12512 }
12513
112e8700
SM
12514 uiout->text (b->disposition == disp_del
12515 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12516 uiout->field_signed ("bkptno", b->number);
112e8700 12517 uiout->text (", ");
f7f9143b 12518
45db7c09
PA
12519 /* ada_exception_name_addr relies on the selected frame being the
12520 current frame. Need to do this here because this function may be
12521 called more than once when printing a stop, and below, we'll
12522 select the first frame past the Ada run-time (see
12523 ada_find_printable_frame). */
12524 select_frame (get_current_frame ());
12525
f7f9143b
JB
12526 switch (ex)
12527 {
761269c8
JB
12528 case ada_catch_exception:
12529 case ada_catch_exception_unhandled:
9f757bf7 12530 case ada_catch_handlers:
956a9fb9
JB
12531 {
12532 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12533 char exception_name[256];
12534
12535 if (addr != 0)
12536 {
c714b426
PA
12537 read_memory (addr, (gdb_byte *) exception_name,
12538 sizeof (exception_name) - 1);
956a9fb9
JB
12539 exception_name [sizeof (exception_name) - 1] = '\0';
12540 }
12541 else
12542 {
12543 /* For some reason, we were unable to read the exception
12544 name. This could happen if the Runtime was compiled
12545 without debugging info, for instance. In that case,
12546 just replace the exception name by the generic string
12547 "exception" - it will read as "an exception" in the
12548 notification we are about to print. */
967cff16 12549 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12550 }
12551 /* In the case of unhandled exception breakpoints, we print
12552 the exception name as "unhandled EXCEPTION_NAME", to make
12553 it clearer to the user which kind of catchpoint just got
12554 hit. We used ui_out_text to make sure that this extra
12555 info does not pollute the exception name in the MI case. */
761269c8 12556 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12557 uiout->text ("unhandled ");
12558 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12559 }
12560 break;
761269c8 12561 case ada_catch_assert:
956a9fb9
JB
12562 /* In this case, the name of the exception is not really
12563 important. Just print "failed assertion" to make it clearer
12564 that his program just hit an assertion-failure catchpoint.
12565 We used ui_out_text because this info does not belong in
12566 the MI output. */
112e8700 12567 uiout->text ("failed assertion");
956a9fb9 12568 break;
f7f9143b 12569 }
e547c119 12570
6f46ac85 12571 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12572 if (exception_message != NULL)
12573 {
e547c119 12574 uiout->text (" (");
6f46ac85 12575 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12576 uiout->text (")");
e547c119
JB
12577 }
12578
112e8700 12579 uiout->text (" at ");
956a9fb9 12580 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12581
12582 return PRINT_SRC_AND_LOC;
12583}
12584
12585/* Implement the PRINT_ONE method in the breakpoint_ops structure
12586 for all exception catchpoint kinds. */
12587
12588static void
761269c8 12589print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12590 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12591{
79a45e25 12592 struct ui_out *uiout = current_uiout;
28010a5d 12593 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12594 struct value_print_options opts;
12595
12596 get_user_print_options (&opts);
f06f1252 12597
79a45b7d 12598 if (opts.addressprint)
f06f1252 12599 uiout->field_skip ("addr");
f7f9143b
JB
12600
12601 annotate_field (5);
f7f9143b
JB
12602 switch (ex)
12603 {
761269c8 12604 case ada_catch_exception:
bc18fbb5 12605 if (!c->excep_string.empty ())
f7f9143b 12606 {
bc18fbb5
TT
12607 std::string msg = string_printf (_("`%s' Ada exception"),
12608 c->excep_string.c_str ());
28010a5d 12609
112e8700 12610 uiout->field_string ("what", msg);
f7f9143b
JB
12611 }
12612 else
112e8700 12613 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12614
12615 break;
12616
761269c8 12617 case ada_catch_exception_unhandled:
112e8700 12618 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12619 break;
12620
9f757bf7 12621 case ada_catch_handlers:
bc18fbb5 12622 if (!c->excep_string.empty ())
9f757bf7
XR
12623 {
12624 uiout->field_fmt ("what",
12625 _("`%s' Ada exception handlers"),
bc18fbb5 12626 c->excep_string.c_str ());
9f757bf7
XR
12627 }
12628 else
12629 uiout->field_string ("what", "all Ada exceptions handlers");
12630 break;
12631
761269c8 12632 case ada_catch_assert:
112e8700 12633 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12634 break;
12635
12636 default:
12637 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12638 break;
12639 }
12640}
12641
12642/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12643 for all exception catchpoint kinds. */
12644
12645static void
761269c8 12646print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12647 struct breakpoint *b)
12648{
28010a5d 12649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12650 struct ui_out *uiout = current_uiout;
28010a5d 12651
112e8700 12652 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12653 : _("Catchpoint "));
381befee 12654 uiout->field_signed ("bkptno", b->number);
112e8700 12655 uiout->text (": ");
00eb2c4a 12656
f7f9143b
JB
12657 switch (ex)
12658 {
761269c8 12659 case ada_catch_exception:
bc18fbb5 12660 if (!c->excep_string.empty ())
00eb2c4a 12661 {
862d101a 12662 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12663 c->excep_string.c_str ());
862d101a 12664 uiout->text (info.c_str ());
00eb2c4a 12665 }
f7f9143b 12666 else
112e8700 12667 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12668 break;
12669
761269c8 12670 case ada_catch_exception_unhandled:
112e8700 12671 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12672 break;
9f757bf7
XR
12673
12674 case ada_catch_handlers:
bc18fbb5 12675 if (!c->excep_string.empty ())
9f757bf7
XR
12676 {
12677 std::string info
12678 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12679 c->excep_string.c_str ());
9f757bf7
XR
12680 uiout->text (info.c_str ());
12681 }
12682 else
12683 uiout->text (_("all Ada exceptions handlers"));
12684 break;
12685
761269c8 12686 case ada_catch_assert:
112e8700 12687 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12688 break;
12689
12690 default:
12691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12692 break;
12693 }
12694}
12695
6149aea9
PA
12696/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12697 for all exception catchpoint kinds. */
12698
12699static void
761269c8 12700print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12701 struct breakpoint *b, struct ui_file *fp)
12702{
28010a5d
PA
12703 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12704
6149aea9
PA
12705 switch (ex)
12706 {
761269c8 12707 case ada_catch_exception:
6149aea9 12708 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12709 if (!c->excep_string.empty ())
12710 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12711 break;
12712
761269c8 12713 case ada_catch_exception_unhandled:
78076abc 12714 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12715 break;
12716
9f757bf7
XR
12717 case ada_catch_handlers:
12718 fprintf_filtered (fp, "catch handlers");
12719 break;
12720
761269c8 12721 case ada_catch_assert:
6149aea9
PA
12722 fprintf_filtered (fp, "catch assert");
12723 break;
12724
12725 default:
12726 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12727 }
d9b3f62e 12728 print_recreate_thread (b, fp);
6149aea9
PA
12729}
12730
f7f9143b
JB
12731/* Virtual table for "catch exception" breakpoints. */
12732
28010a5d
PA
12733static struct bp_location *
12734allocate_location_catch_exception (struct breakpoint *self)
12735{
761269c8 12736 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12737}
12738
12739static void
12740re_set_catch_exception (struct breakpoint *b)
12741{
761269c8 12742 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12743}
12744
12745static void
12746check_status_catch_exception (bpstat bs)
12747{
761269c8 12748 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12749}
12750
f7f9143b 12751static enum print_stop_action
348d480f 12752print_it_catch_exception (bpstat bs)
f7f9143b 12753{
761269c8 12754 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12755}
12756
12757static void
a6d9a66e 12758print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12759{
761269c8 12760 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12761}
12762
12763static void
12764print_mention_catch_exception (struct breakpoint *b)
12765{
761269c8 12766 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12767}
12768
6149aea9
PA
12769static void
12770print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12771{
761269c8 12772 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12773}
12774
2060206e 12775static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12776
12777/* Virtual table for "catch exception unhandled" breakpoints. */
12778
28010a5d
PA
12779static struct bp_location *
12780allocate_location_catch_exception_unhandled (struct breakpoint *self)
12781{
761269c8 12782 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12783}
12784
12785static void
12786re_set_catch_exception_unhandled (struct breakpoint *b)
12787{
761269c8 12788 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12789}
12790
12791static void
12792check_status_catch_exception_unhandled (bpstat bs)
12793{
761269c8 12794 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12795}
12796
f7f9143b 12797static enum print_stop_action
348d480f 12798print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12799{
761269c8 12800 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12801}
12802
12803static void
a6d9a66e
UW
12804print_one_catch_exception_unhandled (struct breakpoint *b,
12805 struct bp_location **last_loc)
f7f9143b 12806{
761269c8 12807 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12808}
12809
12810static void
12811print_mention_catch_exception_unhandled (struct breakpoint *b)
12812{
761269c8 12813 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12814}
12815
6149aea9
PA
12816static void
12817print_recreate_catch_exception_unhandled (struct breakpoint *b,
12818 struct ui_file *fp)
12819{
761269c8 12820 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12821}
12822
2060206e 12823static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12824
12825/* Virtual table for "catch assert" breakpoints. */
12826
28010a5d
PA
12827static struct bp_location *
12828allocate_location_catch_assert (struct breakpoint *self)
12829{
761269c8 12830 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12831}
12832
12833static void
12834re_set_catch_assert (struct breakpoint *b)
12835{
761269c8 12836 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12837}
12838
12839static void
12840check_status_catch_assert (bpstat bs)
12841{
761269c8 12842 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12843}
12844
f7f9143b 12845static enum print_stop_action
348d480f 12846print_it_catch_assert (bpstat bs)
f7f9143b 12847{
761269c8 12848 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12849}
12850
12851static void
a6d9a66e 12852print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12853{
761269c8 12854 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12855}
12856
12857static void
12858print_mention_catch_assert (struct breakpoint *b)
12859{
761269c8 12860 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12861}
12862
6149aea9
PA
12863static void
12864print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12865{
761269c8 12866 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12867}
12868
2060206e 12869static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12870
9f757bf7
XR
12871/* Virtual table for "catch handlers" breakpoints. */
12872
12873static struct bp_location *
12874allocate_location_catch_handlers (struct breakpoint *self)
12875{
12876 return allocate_location_exception (ada_catch_handlers, self);
12877}
12878
12879static void
12880re_set_catch_handlers (struct breakpoint *b)
12881{
12882 re_set_exception (ada_catch_handlers, b);
12883}
12884
12885static void
12886check_status_catch_handlers (bpstat bs)
12887{
12888 check_status_exception (ada_catch_handlers, bs);
12889}
12890
12891static enum print_stop_action
12892print_it_catch_handlers (bpstat bs)
12893{
12894 return print_it_exception (ada_catch_handlers, bs);
12895}
12896
12897static void
12898print_one_catch_handlers (struct breakpoint *b,
12899 struct bp_location **last_loc)
12900{
12901 print_one_exception (ada_catch_handlers, b, last_loc);
12902}
12903
12904static void
12905print_mention_catch_handlers (struct breakpoint *b)
12906{
12907 print_mention_exception (ada_catch_handlers, b);
12908}
12909
12910static void
12911print_recreate_catch_handlers (struct breakpoint *b,
12912 struct ui_file *fp)
12913{
12914 print_recreate_exception (ada_catch_handlers, b, fp);
12915}
12916
12917static struct breakpoint_ops catch_handlers_breakpoint_ops;
12918
f06f1252
TT
12919/* See ada-lang.h. */
12920
12921bool
12922is_ada_exception_catchpoint (breakpoint *bp)
12923{
12924 return (bp->ops == &catch_exception_breakpoint_ops
12925 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12926 || bp->ops == &catch_assert_breakpoint_ops
12927 || bp->ops == &catch_handlers_breakpoint_ops);
12928}
12929
f7f9143b
JB
12930/* Split the arguments specified in a "catch exception" command.
12931 Set EX to the appropriate catchpoint type.
28010a5d 12932 Set EXCEP_STRING to the name of the specific exception if
5845583d 12933 specified by the user.
9f757bf7
XR
12934 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12935 "catch handlers" command. False otherwise.
5845583d
JB
12936 If a condition is found at the end of the arguments, the condition
12937 expression is stored in COND_STRING (memory must be deallocated
12938 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12939
12940static void
a121b7c1 12941catch_ada_exception_command_split (const char *args,
9f757bf7 12942 bool is_catch_handlers_cmd,
761269c8 12943 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12944 std::string *excep_string,
12945 std::string *cond_string)
f7f9143b 12946{
bc18fbb5 12947 std::string exception_name;
f7f9143b 12948
bc18fbb5
TT
12949 exception_name = extract_arg (&args);
12950 if (exception_name == "if")
5845583d
JB
12951 {
12952 /* This is not an exception name; this is the start of a condition
12953 expression for a catchpoint on all exceptions. So, "un-get"
12954 this token, and set exception_name to NULL. */
bc18fbb5 12955 exception_name.clear ();
5845583d
JB
12956 args -= 2;
12957 }
f7f9143b 12958
5845583d 12959 /* Check to see if we have a condition. */
f7f9143b 12960
f1735a53 12961 args = skip_spaces (args);
61012eef 12962 if (startswith (args, "if")
5845583d
JB
12963 && (isspace (args[2]) || args[2] == '\0'))
12964 {
12965 args += 2;
f1735a53 12966 args = skip_spaces (args);
5845583d
JB
12967
12968 if (args[0] == '\0')
12969 error (_("Condition missing after `if' keyword"));
bc18fbb5 12970 *cond_string = args;
5845583d
JB
12971
12972 args += strlen (args);
12973 }
12974
12975 /* Check that we do not have any more arguments. Anything else
12976 is unexpected. */
f7f9143b
JB
12977
12978 if (args[0] != '\0')
12979 error (_("Junk at end of expression"));
12980
9f757bf7
XR
12981 if (is_catch_handlers_cmd)
12982 {
12983 /* Catch handling of exceptions. */
12984 *ex = ada_catch_handlers;
12985 *excep_string = exception_name;
12986 }
bc18fbb5 12987 else if (exception_name.empty ())
f7f9143b
JB
12988 {
12989 /* Catch all exceptions. */
761269c8 12990 *ex = ada_catch_exception;
bc18fbb5 12991 excep_string->clear ();
f7f9143b 12992 }
bc18fbb5 12993 else if (exception_name == "unhandled")
f7f9143b
JB
12994 {
12995 /* Catch unhandled exceptions. */
761269c8 12996 *ex = ada_catch_exception_unhandled;
bc18fbb5 12997 excep_string->clear ();
f7f9143b
JB
12998 }
12999 else
13000 {
13001 /* Catch a specific exception. */
761269c8 13002 *ex = ada_catch_exception;
28010a5d 13003 *excep_string = exception_name;
f7f9143b
JB
13004 }
13005}
13006
13007/* Return the name of the symbol on which we should break in order to
13008 implement a catchpoint of the EX kind. */
13009
13010static const char *
761269c8 13011ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13012{
3eecfa55
JB
13013 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13014
13015 gdb_assert (data->exception_info != NULL);
0259addd 13016
f7f9143b
JB
13017 switch (ex)
13018 {
761269c8 13019 case ada_catch_exception:
3eecfa55 13020 return (data->exception_info->catch_exception_sym);
f7f9143b 13021 break;
761269c8 13022 case ada_catch_exception_unhandled:
3eecfa55 13023 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13024 break;
761269c8 13025 case ada_catch_assert:
3eecfa55 13026 return (data->exception_info->catch_assert_sym);
f7f9143b 13027 break;
9f757bf7
XR
13028 case ada_catch_handlers:
13029 return (data->exception_info->catch_handlers_sym);
13030 break;
f7f9143b
JB
13031 default:
13032 internal_error (__FILE__, __LINE__,
13033 _("unexpected catchpoint kind (%d)"), ex);
13034 }
13035}
13036
13037/* Return the breakpoint ops "virtual table" used for catchpoints
13038 of the EX kind. */
13039
c0a91b2b 13040static const struct breakpoint_ops *
761269c8 13041ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13042{
13043 switch (ex)
13044 {
761269c8 13045 case ada_catch_exception:
f7f9143b
JB
13046 return (&catch_exception_breakpoint_ops);
13047 break;
761269c8 13048 case ada_catch_exception_unhandled:
f7f9143b
JB
13049 return (&catch_exception_unhandled_breakpoint_ops);
13050 break;
761269c8 13051 case ada_catch_assert:
f7f9143b
JB
13052 return (&catch_assert_breakpoint_ops);
13053 break;
9f757bf7
XR
13054 case ada_catch_handlers:
13055 return (&catch_handlers_breakpoint_ops);
13056 break;
f7f9143b
JB
13057 default:
13058 internal_error (__FILE__, __LINE__,
13059 _("unexpected catchpoint kind (%d)"), ex);
13060 }
13061}
13062
13063/* Return the condition that will be used to match the current exception
13064 being raised with the exception that the user wants to catch. This
13065 assumes that this condition is used when the inferior just triggered
13066 an exception catchpoint.
cb7de75e 13067 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13068
cb7de75e 13069static std::string
9f757bf7
XR
13070ada_exception_catchpoint_cond_string (const char *excep_string,
13071 enum ada_exception_catchpoint_kind ex)
f7f9143b 13072{
3d0b0fa3 13073 int i;
cb7de75e 13074 std::string result;
2ff0a947 13075 const char *name;
9f757bf7
XR
13076
13077 if (ex == ada_catch_handlers)
13078 {
13079 /* For exception handlers catchpoints, the condition string does
13080 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13081 name = ("long_integer (GNAT_GCC_exception_Access"
13082 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13083 }
13084 else
2ff0a947 13085 name = "long_integer (e)";
3d0b0fa3 13086
0963b4bd 13087 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13088 runtime units that have been compiled without debugging info; if
28010a5d 13089 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13090 exception (e.g. "constraint_error") then, during the evaluation
13091 of the condition expression, the symbol lookup on this name would
0963b4bd 13092 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13093 may then be set only on user-defined exceptions which have the
13094 same not-fully-qualified name (e.g. my_package.constraint_error).
13095
13096 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13097 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13098 exception constraint_error" is rewritten into "catch exception
13099 standard.constraint_error".
13100
13101 If an exception named contraint_error is defined in another package of
13102 the inferior program, then the only way to specify this exception as a
13103 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13104 e.g. my_package.constraint_error.
13105
13106 Furthermore, in some situations a standard exception's symbol may
13107 be present in more than one objfile, because the compiler may
13108 choose to emit copy relocations for them. So, we have to compare
13109 against all the possible addresses. */
3d0b0fa3 13110
2ff0a947
TT
13111 /* Storage for a rewritten symbol name. */
13112 std::string std_name;
3d0b0fa3
JB
13113 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13114 {
28010a5d 13115 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13116 {
2ff0a947
TT
13117 std_name = std::string ("standard.") + excep_string;
13118 excep_string = std_name.c_str ();
9f757bf7 13119 break;
3d0b0fa3
JB
13120 }
13121 }
9f757bf7 13122
2ff0a947
TT
13123 excep_string = ada_encode (excep_string);
13124 std::vector<struct bound_minimal_symbol> symbols
13125 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13126 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13127 {
13128 if (!result.empty ())
13129 result += " or ";
13130 string_appendf (result, "%s = %s", name,
13131 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13132 }
9f757bf7 13133
9f757bf7 13134 return result;
f7f9143b
JB
13135}
13136
13137/* Return the symtab_and_line that should be used to insert an exception
13138 catchpoint of the TYPE kind.
13139
28010a5d
PA
13140 ADDR_STRING returns the name of the function where the real
13141 breakpoint that implements the catchpoints is set, depending on the
13142 type of catchpoint we need to create. */
f7f9143b
JB
13143
13144static struct symtab_and_line
bc18fbb5 13145ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13146 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13147{
13148 const char *sym_name;
13149 struct symbol *sym;
f7f9143b 13150
0259addd
JB
13151 /* First, find out which exception support info to use. */
13152 ada_exception_support_info_sniffer ();
13153
13154 /* Then lookup the function on which we will break in order to catch
f7f9143b 13155 the Ada exceptions requested by the user. */
f7f9143b
JB
13156 sym_name = ada_exception_sym_name (ex);
13157 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13158
57aff202
JB
13159 if (sym == NULL)
13160 error (_("Catchpoint symbol not found: %s"), sym_name);
13161
13162 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13163 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13164
13165 /* Set ADDR_STRING. */
cc12f4a8 13166 *addr_string = sym_name;
f7f9143b 13167
f7f9143b 13168 /* Set OPS. */
4b9eee8c 13169 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13170
f17011e0 13171 return find_function_start_sal (sym, 1);
f7f9143b
JB
13172}
13173
b4a5b78b 13174/* Create an Ada exception catchpoint.
f7f9143b 13175
b4a5b78b 13176 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13177
bc18fbb5 13178 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13179 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13180 of the exception to which this catchpoint applies.
2df4d1d5 13181
bc18fbb5 13182 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13183
b4a5b78b
JB
13184 TEMPFLAG, if nonzero, means that the underlying breakpoint
13185 should be temporary.
28010a5d 13186
b4a5b78b 13187 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13188
349774ef 13189void
28010a5d 13190create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13191 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13192 const std::string &excep_string,
56ecd069 13193 const std::string &cond_string,
28010a5d 13194 int tempflag,
349774ef 13195 int disabled,
28010a5d
PA
13196 int from_tty)
13197{
cc12f4a8 13198 std::string addr_string;
b4a5b78b 13199 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13200 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13201
b270e6f9 13202 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13203 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13204 ops, tempflag, disabled, from_tty);
28010a5d 13205 c->excep_string = excep_string;
9f757bf7 13206 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13207 if (!cond_string.empty ())
13208 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13209 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13210}
13211
9ac4176b
PA
13212/* Implement the "catch exception" command. */
13213
13214static void
eb4c3f4a 13215catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13216 struct cmd_list_element *command)
13217{
a121b7c1 13218 const char *arg = arg_entry;
9ac4176b
PA
13219 struct gdbarch *gdbarch = get_current_arch ();
13220 int tempflag;
761269c8 13221 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13222 std::string excep_string;
56ecd069 13223 std::string cond_string;
9ac4176b
PA
13224
13225 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13226
13227 if (!arg)
13228 arg = "";
9f757bf7 13229 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13230 &cond_string);
9f757bf7
XR
13231 create_ada_exception_catchpoint (gdbarch, ex_kind,
13232 excep_string, cond_string,
13233 tempflag, 1 /* enabled */,
13234 from_tty);
13235}
13236
13237/* Implement the "catch handlers" command. */
13238
13239static void
13240catch_ada_handlers_command (const char *arg_entry, int from_tty,
13241 struct cmd_list_element *command)
13242{
13243 const char *arg = arg_entry;
13244 struct gdbarch *gdbarch = get_current_arch ();
13245 int tempflag;
13246 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13247 std::string excep_string;
56ecd069 13248 std::string cond_string;
9f757bf7
XR
13249
13250 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13251
13252 if (!arg)
13253 arg = "";
13254 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13255 &cond_string);
b4a5b78b
JB
13256 create_ada_exception_catchpoint (gdbarch, ex_kind,
13257 excep_string, cond_string,
349774ef
JB
13258 tempflag, 1 /* enabled */,
13259 from_tty);
9ac4176b
PA
13260}
13261
71bed2db
TT
13262/* Completion function for the Ada "catch" commands. */
13263
13264static void
13265catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13266 const char *text, const char *word)
13267{
13268 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13269
13270 for (const ada_exc_info &info : exceptions)
13271 {
13272 if (startswith (info.name, word))
b02f78f9 13273 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13274 }
13275}
13276
b4a5b78b 13277/* Split the arguments specified in a "catch assert" command.
5845583d 13278
b4a5b78b
JB
13279 ARGS contains the command's arguments (or the empty string if
13280 no arguments were passed).
5845583d
JB
13281
13282 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13283 (the memory needs to be deallocated after use). */
5845583d 13284
b4a5b78b 13285static void
56ecd069 13286catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13287{
f1735a53 13288 args = skip_spaces (args);
f7f9143b 13289
5845583d 13290 /* Check whether a condition was provided. */
61012eef 13291 if (startswith (args, "if")
5845583d 13292 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13293 {
5845583d 13294 args += 2;
f1735a53 13295 args = skip_spaces (args);
5845583d
JB
13296 if (args[0] == '\0')
13297 error (_("condition missing after `if' keyword"));
56ecd069 13298 cond_string.assign (args);
f7f9143b
JB
13299 }
13300
5845583d
JB
13301 /* Otherwise, there should be no other argument at the end of
13302 the command. */
13303 else if (args[0] != '\0')
13304 error (_("Junk at end of arguments."));
f7f9143b
JB
13305}
13306
9ac4176b
PA
13307/* Implement the "catch assert" command. */
13308
13309static void
eb4c3f4a 13310catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13311 struct cmd_list_element *command)
13312{
a121b7c1 13313 const char *arg = arg_entry;
9ac4176b
PA
13314 struct gdbarch *gdbarch = get_current_arch ();
13315 int tempflag;
56ecd069 13316 std::string cond_string;
9ac4176b
PA
13317
13318 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13319
13320 if (!arg)
13321 arg = "";
56ecd069 13322 catch_ada_assert_command_split (arg, cond_string);
761269c8 13323 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13324 "", cond_string,
349774ef
JB
13325 tempflag, 1 /* enabled */,
13326 from_tty);
9ac4176b 13327}
778865d3
JB
13328
13329/* Return non-zero if the symbol SYM is an Ada exception object. */
13330
13331static int
13332ada_is_exception_sym (struct symbol *sym)
13333{
a737d952 13334 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13335
13336 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13337 && SYMBOL_CLASS (sym) != LOC_BLOCK
13338 && SYMBOL_CLASS (sym) != LOC_CONST
13339 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13340 && type_name != NULL && strcmp (type_name, "exception") == 0);
13341}
13342
13343/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13344 Ada exception object. This matches all exceptions except the ones
13345 defined by the Ada language. */
13346
13347static int
13348ada_is_non_standard_exception_sym (struct symbol *sym)
13349{
13350 int i;
13351
13352 if (!ada_is_exception_sym (sym))
13353 return 0;
13354
13355 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13356 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13357 return 0; /* A standard exception. */
13358
13359 /* Numeric_Error is also a standard exception, so exclude it.
13360 See the STANDARD_EXC description for more details as to why
13361 this exception is not listed in that array. */
13362 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13363 return 0;
13364
13365 return 1;
13366}
13367
ab816a27 13368/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13369 objects.
13370
13371 The comparison is determined first by exception name, and then
13372 by exception address. */
13373
ab816a27 13374bool
cc536b21 13375ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13376{
778865d3
JB
13377 int result;
13378
ab816a27
TT
13379 result = strcmp (name, other.name);
13380 if (result < 0)
13381 return true;
13382 if (result == 0 && addr < other.addr)
13383 return true;
13384 return false;
13385}
778865d3 13386
ab816a27 13387bool
cc536b21 13388ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13389{
13390 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13391}
13392
13393/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13394 routine, but keeping the first SKIP elements untouched.
13395
13396 All duplicates are also removed. */
13397
13398static void
ab816a27 13399sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13400 int skip)
13401{
ab816a27
TT
13402 std::sort (exceptions->begin () + skip, exceptions->end ());
13403 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13404 exceptions->end ());
778865d3
JB
13405}
13406
778865d3
JB
13407/* Add all exceptions defined by the Ada standard whose name match
13408 a regular expression.
13409
13410 If PREG is not NULL, then this regexp_t object is used to
13411 perform the symbol name matching. Otherwise, no name-based
13412 filtering is performed.
13413
13414 EXCEPTIONS is a vector of exceptions to which matching exceptions
13415 gets pushed. */
13416
13417static void
2d7cc5c7 13418ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13419 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13420{
13421 int i;
13422
13423 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13424 {
13425 if (preg == NULL
2d7cc5c7 13426 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13427 {
13428 struct bound_minimal_symbol msymbol
13429 = ada_lookup_simple_minsym (standard_exc[i]);
13430
13431 if (msymbol.minsym != NULL)
13432 {
13433 struct ada_exc_info info
77e371c0 13434 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13435
ab816a27 13436 exceptions->push_back (info);
778865d3
JB
13437 }
13438 }
13439 }
13440}
13441
13442/* Add all Ada exceptions defined locally and accessible from the given
13443 FRAME.
13444
13445 If PREG is not NULL, then this regexp_t object is used to
13446 perform the symbol name matching. Otherwise, no name-based
13447 filtering is performed.
13448
13449 EXCEPTIONS is a vector of exceptions to which matching exceptions
13450 gets pushed. */
13451
13452static void
2d7cc5c7
PA
13453ada_add_exceptions_from_frame (compiled_regex *preg,
13454 struct frame_info *frame,
ab816a27 13455 std::vector<ada_exc_info> *exceptions)
778865d3 13456{
3977b71f 13457 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13458
13459 while (block != 0)
13460 {
13461 struct block_iterator iter;
13462 struct symbol *sym;
13463
13464 ALL_BLOCK_SYMBOLS (block, iter, sym)
13465 {
13466 switch (SYMBOL_CLASS (sym))
13467 {
13468 case LOC_TYPEDEF:
13469 case LOC_BLOCK:
13470 case LOC_CONST:
13471 break;
13472 default:
13473 if (ada_is_exception_sym (sym))
13474 {
13475 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13476 SYMBOL_VALUE_ADDRESS (sym)};
13477
ab816a27 13478 exceptions->push_back (info);
778865d3
JB
13479 }
13480 }
13481 }
13482 if (BLOCK_FUNCTION (block) != NULL)
13483 break;
13484 block = BLOCK_SUPERBLOCK (block);
13485 }
13486}
13487
14bc53a8
PA
13488/* Return true if NAME matches PREG or if PREG is NULL. */
13489
13490static bool
2d7cc5c7 13491name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13492{
13493 return (preg == NULL
f945dedf 13494 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13495}
13496
778865d3
JB
13497/* Add all exceptions defined globally whose name name match
13498 a regular expression, excluding standard exceptions.
13499
13500 The reason we exclude standard exceptions is that they need
13501 to be handled separately: Standard exceptions are defined inside
13502 a runtime unit which is normally not compiled with debugging info,
13503 and thus usually do not show up in our symbol search. However,
13504 if the unit was in fact built with debugging info, we need to
13505 exclude them because they would duplicate the entry we found
13506 during the special loop that specifically searches for those
13507 standard exceptions.
13508
13509 If PREG is not NULL, then this regexp_t object is used to
13510 perform the symbol name matching. Otherwise, no name-based
13511 filtering is performed.
13512
13513 EXCEPTIONS is a vector of exceptions to which matching exceptions
13514 gets pushed. */
13515
13516static void
2d7cc5c7 13517ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13518 std::vector<ada_exc_info> *exceptions)
778865d3 13519{
14bc53a8
PA
13520 /* In Ada, the symbol "search name" is a linkage name, whereas the
13521 regular expression used to do the matching refers to the natural
13522 name. So match against the decoded name. */
13523 expand_symtabs_matching (NULL,
b5ec771e 13524 lookup_name_info::match_any (),
14bc53a8
PA
13525 [&] (const char *search_name)
13526 {
f945dedf
CB
13527 std::string decoded = ada_decode (search_name);
13528 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13529 },
13530 NULL,
13531 VARIABLES_DOMAIN);
778865d3 13532
2030c079 13533 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13534 {
b669c953 13535 for (compunit_symtab *s : objfile->compunits ())
778865d3 13536 {
d8aeb77f
TT
13537 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13538 int i;
778865d3 13539
d8aeb77f
TT
13540 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13541 {
582942f4 13542 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13543 struct block_iterator iter;
13544 struct symbol *sym;
778865d3 13545
d8aeb77f
TT
13546 ALL_BLOCK_SYMBOLS (b, iter, sym)
13547 if (ada_is_non_standard_exception_sym (sym)
13548 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13549 {
13550 struct ada_exc_info info
13551 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13552
13553 exceptions->push_back (info);
13554 }
13555 }
778865d3
JB
13556 }
13557 }
13558}
13559
13560/* Implements ada_exceptions_list with the regular expression passed
13561 as a regex_t, rather than a string.
13562
13563 If not NULL, PREG is used to filter out exceptions whose names
13564 do not match. Otherwise, all exceptions are listed. */
13565
ab816a27 13566static std::vector<ada_exc_info>
2d7cc5c7 13567ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13568{
ab816a27 13569 std::vector<ada_exc_info> result;
778865d3
JB
13570 int prev_len;
13571
13572 /* First, list the known standard exceptions. These exceptions
13573 need to be handled separately, as they are usually defined in
13574 runtime units that have been compiled without debugging info. */
13575
13576 ada_add_standard_exceptions (preg, &result);
13577
13578 /* Next, find all exceptions whose scope is local and accessible
13579 from the currently selected frame. */
13580
13581 if (has_stack_frames ())
13582 {
ab816a27 13583 prev_len = result.size ();
778865d3
JB
13584 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13585 &result);
ab816a27 13586 if (result.size () > prev_len)
778865d3
JB
13587 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13588 }
13589
13590 /* Add all exceptions whose scope is global. */
13591
ab816a27 13592 prev_len = result.size ();
778865d3 13593 ada_add_global_exceptions (preg, &result);
ab816a27 13594 if (result.size () > prev_len)
778865d3
JB
13595 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13596
778865d3
JB
13597 return result;
13598}
13599
13600/* Return a vector of ada_exc_info.
13601
13602 If REGEXP is NULL, all exceptions are included in the result.
13603 Otherwise, it should contain a valid regular expression,
13604 and only the exceptions whose names match that regular expression
13605 are included in the result.
13606
13607 The exceptions are sorted in the following order:
13608 - Standard exceptions (defined by the Ada language), in
13609 alphabetical order;
13610 - Exceptions only visible from the current frame, in
13611 alphabetical order;
13612 - Exceptions whose scope is global, in alphabetical order. */
13613
ab816a27 13614std::vector<ada_exc_info>
778865d3
JB
13615ada_exceptions_list (const char *regexp)
13616{
2d7cc5c7
PA
13617 if (regexp == NULL)
13618 return ada_exceptions_list_1 (NULL);
778865d3 13619
2d7cc5c7
PA
13620 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13621 return ada_exceptions_list_1 (&reg);
778865d3
JB
13622}
13623
13624/* Implement the "info exceptions" command. */
13625
13626static void
1d12d88f 13627info_exceptions_command (const char *regexp, int from_tty)
778865d3 13628{
778865d3 13629 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13630
ab816a27 13631 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13632
13633 if (regexp != NULL)
13634 printf_filtered
13635 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13636 else
13637 printf_filtered (_("All defined Ada exceptions:\n"));
13638
ab816a27
TT
13639 for (const ada_exc_info &info : exceptions)
13640 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13641}
13642
4c4b4cd2
PH
13643 /* Operators */
13644/* Information about operators given special treatment in functions
13645 below. */
13646/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13647
13648#define ADA_OPERATORS \
13649 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13650 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13651 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13652 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13653 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13654 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13655 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13656 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13657 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13658 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13659 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13661 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13662 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13663 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13664 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13665 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13666 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13667 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13668
13669static void
554794dc
SDJ
13670ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13671 int *argsp)
4c4b4cd2
PH
13672{
13673 switch (exp->elts[pc - 1].opcode)
13674 {
76a01679 13675 default:
4c4b4cd2
PH
13676 operator_length_standard (exp, pc, oplenp, argsp);
13677 break;
13678
13679#define OP_DEFN(op, len, args, binop) \
13680 case op: *oplenp = len; *argsp = args; break;
13681 ADA_OPERATORS;
13682#undef OP_DEFN
52ce6436
PH
13683
13684 case OP_AGGREGATE:
13685 *oplenp = 3;
13686 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13687 break;
13688
13689 case OP_CHOICES:
13690 *oplenp = 3;
13691 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13692 break;
4c4b4cd2
PH
13693 }
13694}
13695
c0201579
JK
13696/* Implementation of the exp_descriptor method operator_check. */
13697
13698static int
13699ada_operator_check (struct expression *exp, int pos,
13700 int (*objfile_func) (struct objfile *objfile, void *data),
13701 void *data)
13702{
13703 const union exp_element *const elts = exp->elts;
13704 struct type *type = NULL;
13705
13706 switch (elts[pos].opcode)
13707 {
13708 case UNOP_IN_RANGE:
13709 case UNOP_QUAL:
13710 type = elts[pos + 1].type;
13711 break;
13712
13713 default:
13714 return operator_check_standard (exp, pos, objfile_func, data);
13715 }
13716
13717 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13718
13719 if (type && TYPE_OBJFILE (type)
13720 && (*objfile_func) (TYPE_OBJFILE (type), data))
13721 return 1;
13722
13723 return 0;
13724}
13725
a121b7c1 13726static const char *
4c4b4cd2
PH
13727ada_op_name (enum exp_opcode opcode)
13728{
13729 switch (opcode)
13730 {
76a01679 13731 default:
4c4b4cd2 13732 return op_name_standard (opcode);
52ce6436 13733
4c4b4cd2
PH
13734#define OP_DEFN(op, len, args, binop) case op: return #op;
13735 ADA_OPERATORS;
13736#undef OP_DEFN
52ce6436
PH
13737
13738 case OP_AGGREGATE:
13739 return "OP_AGGREGATE";
13740 case OP_CHOICES:
13741 return "OP_CHOICES";
13742 case OP_NAME:
13743 return "OP_NAME";
4c4b4cd2
PH
13744 }
13745}
13746
13747/* As for operator_length, but assumes PC is pointing at the first
13748 element of the operator, and gives meaningful results only for the
52ce6436 13749 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13750
13751static void
76a01679
JB
13752ada_forward_operator_length (struct expression *exp, int pc,
13753 int *oplenp, int *argsp)
4c4b4cd2 13754{
76a01679 13755 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13756 {
13757 default:
13758 *oplenp = *argsp = 0;
13759 break;
52ce6436 13760
4c4b4cd2
PH
13761#define OP_DEFN(op, len, args, binop) \
13762 case op: *oplenp = len; *argsp = args; break;
13763 ADA_OPERATORS;
13764#undef OP_DEFN
52ce6436
PH
13765
13766 case OP_AGGREGATE:
13767 *oplenp = 3;
13768 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13769 break;
13770
13771 case OP_CHOICES:
13772 *oplenp = 3;
13773 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13774 break;
13775
13776 case OP_STRING:
13777 case OP_NAME:
13778 {
13779 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13780
52ce6436
PH
13781 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13782 *argsp = 0;
13783 break;
13784 }
4c4b4cd2
PH
13785 }
13786}
13787
13788static int
13789ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13790{
13791 enum exp_opcode op = exp->elts[elt].opcode;
13792 int oplen, nargs;
13793 int pc = elt;
13794 int i;
76a01679 13795
4c4b4cd2
PH
13796 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13797
76a01679 13798 switch (op)
4c4b4cd2 13799 {
76a01679 13800 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13801 case OP_ATR_FIRST:
13802 case OP_ATR_LAST:
13803 case OP_ATR_LENGTH:
13804 case OP_ATR_IMAGE:
13805 case OP_ATR_MAX:
13806 case OP_ATR_MIN:
13807 case OP_ATR_MODULUS:
13808 case OP_ATR_POS:
13809 case OP_ATR_SIZE:
13810 case OP_ATR_TAG:
13811 case OP_ATR_VAL:
13812 break;
13813
13814 case UNOP_IN_RANGE:
13815 case UNOP_QUAL:
323e0a4a
AC
13816 /* XXX: gdb_sprint_host_address, type_sprint */
13817 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13818 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13819 fprintf_filtered (stream, " (");
13820 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13821 fprintf_filtered (stream, ")");
13822 break;
13823 case BINOP_IN_BOUNDS:
52ce6436
PH
13824 fprintf_filtered (stream, " (%d)",
13825 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13826 break;
13827 case TERNOP_IN_RANGE:
13828 break;
13829
52ce6436
PH
13830 case OP_AGGREGATE:
13831 case OP_OTHERS:
13832 case OP_DISCRETE_RANGE:
13833 case OP_POSITIONAL:
13834 case OP_CHOICES:
13835 break;
13836
13837 case OP_NAME:
13838 case OP_STRING:
13839 {
13840 char *name = &exp->elts[elt + 2].string;
13841 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13842
52ce6436
PH
13843 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13844 break;
13845 }
13846
4c4b4cd2
PH
13847 default:
13848 return dump_subexp_body_standard (exp, stream, elt);
13849 }
13850
13851 elt += oplen;
13852 for (i = 0; i < nargs; i += 1)
13853 elt = dump_subexp (exp, stream, elt);
13854
13855 return elt;
13856}
13857
13858/* The Ada extension of print_subexp (q.v.). */
13859
76a01679
JB
13860static void
13861ada_print_subexp (struct expression *exp, int *pos,
13862 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13863{
52ce6436 13864 int oplen, nargs, i;
4c4b4cd2
PH
13865 int pc = *pos;
13866 enum exp_opcode op = exp->elts[pc].opcode;
13867
13868 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13869
52ce6436 13870 *pos += oplen;
4c4b4cd2
PH
13871 switch (op)
13872 {
13873 default:
52ce6436 13874 *pos -= oplen;
4c4b4cd2
PH
13875 print_subexp_standard (exp, pos, stream, prec);
13876 return;
13877
13878 case OP_VAR_VALUE:
4c4b4cd2
PH
13879 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13880 return;
13881
13882 case BINOP_IN_BOUNDS:
323e0a4a 13883 /* XXX: sprint_subexp */
4c4b4cd2 13884 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13885 fputs_filtered (" in ", stream);
4c4b4cd2 13886 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13887 fputs_filtered ("'range", stream);
4c4b4cd2 13888 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13889 fprintf_filtered (stream, "(%ld)",
13890 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13891 return;
13892
13893 case TERNOP_IN_RANGE:
4c4b4cd2 13894 if (prec >= PREC_EQUAL)
76a01679 13895 fputs_filtered ("(", stream);
323e0a4a 13896 /* XXX: sprint_subexp */
4c4b4cd2 13897 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13898 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13899 print_subexp (exp, pos, stream, PREC_EQUAL);
13900 fputs_filtered (" .. ", stream);
13901 print_subexp (exp, pos, stream, PREC_EQUAL);
13902 if (prec >= PREC_EQUAL)
76a01679
JB
13903 fputs_filtered (")", stream);
13904 return;
4c4b4cd2
PH
13905
13906 case OP_ATR_FIRST:
13907 case OP_ATR_LAST:
13908 case OP_ATR_LENGTH:
13909 case OP_ATR_IMAGE:
13910 case OP_ATR_MAX:
13911 case OP_ATR_MIN:
13912 case OP_ATR_MODULUS:
13913 case OP_ATR_POS:
13914 case OP_ATR_SIZE:
13915 case OP_ATR_TAG:
13916 case OP_ATR_VAL:
4c4b4cd2 13917 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13918 {
13919 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13920 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13921 &type_print_raw_options);
76a01679
JB
13922 *pos += 3;
13923 }
4c4b4cd2 13924 else
76a01679 13925 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13926 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13927 if (nargs > 1)
76a01679
JB
13928 {
13929 int tem;
5b4ee69b 13930
76a01679
JB
13931 for (tem = 1; tem < nargs; tem += 1)
13932 {
13933 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13934 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13935 }
13936 fputs_filtered (")", stream);
13937 }
4c4b4cd2 13938 return;
14f9c5c9 13939
4c4b4cd2 13940 case UNOP_QUAL:
4c4b4cd2
PH
13941 type_print (exp->elts[pc + 1].type, "", stream, 0);
13942 fputs_filtered ("'(", stream);
13943 print_subexp (exp, pos, stream, PREC_PREFIX);
13944 fputs_filtered (")", stream);
13945 return;
14f9c5c9 13946
4c4b4cd2 13947 case UNOP_IN_RANGE:
323e0a4a 13948 /* XXX: sprint_subexp */
4c4b4cd2 13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13950 fputs_filtered (" in ", stream);
79d43c61
TT
13951 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13952 &type_print_raw_options);
4c4b4cd2 13953 return;
52ce6436
PH
13954
13955 case OP_DISCRETE_RANGE:
13956 print_subexp (exp, pos, stream, PREC_SUFFIX);
13957 fputs_filtered ("..", stream);
13958 print_subexp (exp, pos, stream, PREC_SUFFIX);
13959 return;
13960
13961 case OP_OTHERS:
13962 fputs_filtered ("others => ", stream);
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 return;
13965
13966 case OP_CHOICES:
13967 for (i = 0; i < nargs-1; i += 1)
13968 {
13969 if (i > 0)
13970 fputs_filtered ("|", stream);
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 }
13973 fputs_filtered (" => ", stream);
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 return;
13976
13977 case OP_POSITIONAL:
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 return;
13980
13981 case OP_AGGREGATE:
13982 fputs_filtered ("(", stream);
13983 for (i = 0; i < nargs; i += 1)
13984 {
13985 if (i > 0)
13986 fputs_filtered (", ", stream);
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 }
13989 fputs_filtered (")", stream);
13990 return;
4c4b4cd2
PH
13991 }
13992}
14f9c5c9
AS
13993
13994/* Table mapping opcodes into strings for printing operators
13995 and precedences of the operators. */
13996
d2e4a39e
AS
13997static const struct op_print ada_op_print_tab[] = {
13998 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13999 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14000 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14001 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14002 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14003 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14004 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14005 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14006 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14007 {">=", BINOP_GEQ, PREC_ORDER, 0},
14008 {">", BINOP_GTR, PREC_ORDER, 0},
14009 {"<", BINOP_LESS, PREC_ORDER, 0},
14010 {">>", BINOP_RSH, PREC_SHIFT, 0},
14011 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14012 {"+", BINOP_ADD, PREC_ADD, 0},
14013 {"-", BINOP_SUB, PREC_ADD, 0},
14014 {"&", BINOP_CONCAT, PREC_ADD, 0},
14015 {"*", BINOP_MUL, PREC_MUL, 0},
14016 {"/", BINOP_DIV, PREC_MUL, 0},
14017 {"rem", BINOP_REM, PREC_MUL, 0},
14018 {"mod", BINOP_MOD, PREC_MUL, 0},
14019 {"**", BINOP_EXP, PREC_REPEAT, 0},
14020 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14021 {"-", UNOP_NEG, PREC_PREFIX, 0},
14022 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14023 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14024 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14025 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14026 {".all", UNOP_IND, PREC_SUFFIX, 1},
14027 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14028 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14029 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14030};
14031\f
72d5681a
PH
14032enum ada_primitive_types {
14033 ada_primitive_type_int,
14034 ada_primitive_type_long,
14035 ada_primitive_type_short,
14036 ada_primitive_type_char,
14037 ada_primitive_type_float,
14038 ada_primitive_type_double,
14039 ada_primitive_type_void,
14040 ada_primitive_type_long_long,
14041 ada_primitive_type_long_double,
14042 ada_primitive_type_natural,
14043 ada_primitive_type_positive,
14044 ada_primitive_type_system_address,
08f49010 14045 ada_primitive_type_storage_offset,
72d5681a
PH
14046 nr_ada_primitive_types
14047};
6c038f32
PH
14048
14049static void
d4a9a881 14050ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14051 struct language_arch_info *lai)
14052{
d4a9a881 14053 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14054
72d5681a 14055 lai->primitive_type_vector
d4a9a881 14056 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14057 struct type *);
e9bb382b
UW
14058
14059 lai->primitive_type_vector [ada_primitive_type_int]
14060 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14061 0, "integer");
14062 lai->primitive_type_vector [ada_primitive_type_long]
14063 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14064 0, "long_integer");
14065 lai->primitive_type_vector [ada_primitive_type_short]
14066 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14067 0, "short_integer");
14068 lai->string_char_type
14069 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14070 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14071 lai->primitive_type_vector [ada_primitive_type_float]
14072 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14073 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14074 lai->primitive_type_vector [ada_primitive_type_double]
14075 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14076 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14077 lai->primitive_type_vector [ada_primitive_type_long_long]
14078 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14079 0, "long_long_integer");
14080 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14081 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14082 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14083 lai->primitive_type_vector [ada_primitive_type_natural]
14084 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14085 0, "natural");
14086 lai->primitive_type_vector [ada_primitive_type_positive]
14087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14088 0, "positive");
14089 lai->primitive_type_vector [ada_primitive_type_void]
14090 = builtin->builtin_void;
14091
14092 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14093 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14094 "void"));
72d5681a
PH
14095 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14096 = "system__address";
fbb06eb1 14097
08f49010
XR
14098 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14099 type. This is a signed integral type whose size is the same as
14100 the size of addresses. */
14101 {
14102 unsigned int addr_length = TYPE_LENGTH
14103 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14104
14105 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14106 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14107 "storage_offset");
14108 }
14109
47e729a8 14110 lai->bool_type_symbol = NULL;
fbb06eb1 14111 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14112}
6c038f32
PH
14113\f
14114 /* Language vector */
14115
14116/* Not really used, but needed in the ada_language_defn. */
14117
14118static void
6c7a06a3 14119emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14120{
6c7a06a3 14121 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14122}
14123
14124static int
410a0ff2 14125parse (struct parser_state *ps)
6c038f32
PH
14126{
14127 warnings_issued = 0;
410a0ff2 14128 return ada_parse (ps);
6c038f32
PH
14129}
14130
14131static const struct exp_descriptor ada_exp_descriptor = {
14132 ada_print_subexp,
14133 ada_operator_length,
c0201579 14134 ada_operator_check,
6c038f32
PH
14135 ada_op_name,
14136 ada_dump_subexp_body,
14137 ada_evaluate_subexp
14138};
14139
b5ec771e
PA
14140/* symbol_name_matcher_ftype adapter for wild_match. */
14141
14142static bool
14143do_wild_match (const char *symbol_search_name,
14144 const lookup_name_info &lookup_name,
a207cff2 14145 completion_match_result *comp_match_res)
b5ec771e
PA
14146{
14147 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14148}
14149
14150/* symbol_name_matcher_ftype adapter for full_match. */
14151
14152static bool
14153do_full_match (const char *symbol_search_name,
14154 const lookup_name_info &lookup_name,
a207cff2 14155 completion_match_result *comp_match_res)
b5ec771e
PA
14156{
14157 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14158}
14159
a2cd4f14
JB
14160/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14161
14162static bool
14163do_exact_match (const char *symbol_search_name,
14164 const lookup_name_info &lookup_name,
14165 completion_match_result *comp_match_res)
14166{
14167 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14168}
14169
b5ec771e
PA
14170/* Build the Ada lookup name for LOOKUP_NAME. */
14171
14172ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14173{
14174 const std::string &user_name = lookup_name.name ();
14175
14176 if (user_name[0] == '<')
14177 {
14178 if (user_name.back () == '>')
14179 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14180 else
14181 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14182 m_encoded_p = true;
14183 m_verbatim_p = true;
14184 m_wild_match_p = false;
14185 m_standard_p = false;
14186 }
14187 else
14188 {
14189 m_verbatim_p = false;
14190
14191 m_encoded_p = user_name.find ("__") != std::string::npos;
14192
14193 if (!m_encoded_p)
14194 {
14195 const char *folded = ada_fold_name (user_name.c_str ());
14196 const char *encoded = ada_encode_1 (folded, false);
14197 if (encoded != NULL)
14198 m_encoded_name = encoded;
14199 else
14200 m_encoded_name = user_name;
14201 }
14202 else
14203 m_encoded_name = user_name;
14204
14205 /* Handle the 'package Standard' special case. See description
14206 of m_standard_p. */
14207 if (startswith (m_encoded_name.c_str (), "standard__"))
14208 {
14209 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14210 m_standard_p = true;
14211 }
14212 else
14213 m_standard_p = false;
74ccd7f5 14214
b5ec771e
PA
14215 /* If the name contains a ".", then the user is entering a fully
14216 qualified entity name, and the match must not be done in wild
14217 mode. Similarly, if the user wants to complete what looks
14218 like an encoded name, the match must not be done in wild
14219 mode. Also, in the standard__ special case always do
14220 non-wild matching. */
14221 m_wild_match_p
14222 = (lookup_name.match_type () != symbol_name_match_type::FULL
14223 && !m_encoded_p
14224 && !m_standard_p
14225 && user_name.find ('.') == std::string::npos);
14226 }
14227}
14228
14229/* symbol_name_matcher_ftype method for Ada. This only handles
14230 completion mode. */
14231
14232static bool
14233ada_symbol_name_matches (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
a207cff2 14235 completion_match_result *comp_match_res)
74ccd7f5 14236{
b5ec771e
PA
14237 return lookup_name.ada ().matches (symbol_search_name,
14238 lookup_name.match_type (),
a207cff2 14239 comp_match_res);
b5ec771e
PA
14240}
14241
de63c46b
PA
14242/* A name matcher that matches the symbol name exactly, with
14243 strcmp. */
14244
14245static bool
14246literal_symbol_name_matcher (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
14248 completion_match_result *comp_match_res)
14249{
14250 const std::string &name = lookup_name.name ();
14251
14252 int cmp = (lookup_name.completion_mode ()
14253 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14254 : strcmp (symbol_search_name, name.c_str ()));
14255 if (cmp == 0)
14256 {
14257 if (comp_match_res != NULL)
14258 comp_match_res->set_match (symbol_search_name);
14259 return true;
14260 }
14261 else
14262 return false;
14263}
14264
b5ec771e
PA
14265/* Implement the "la_get_symbol_name_matcher" language_defn method for
14266 Ada. */
14267
14268static symbol_name_matcher_ftype *
14269ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14270{
de63c46b
PA
14271 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14272 return literal_symbol_name_matcher;
14273
b5ec771e
PA
14274 if (lookup_name.completion_mode ())
14275 return ada_symbol_name_matches;
74ccd7f5 14276 else
b5ec771e
PA
14277 {
14278 if (lookup_name.ada ().wild_match_p ())
14279 return do_wild_match;
a2cd4f14
JB
14280 else if (lookup_name.ada ().verbatim_p ())
14281 return do_exact_match;
b5ec771e
PA
14282 else
14283 return do_full_match;
14284 }
74ccd7f5
JB
14285}
14286
a5ee536b
JB
14287/* Implement the "la_read_var_value" language_defn method for Ada. */
14288
14289static struct value *
63e43d3a
PMR
14290ada_read_var_value (struct symbol *var, const struct block *var_block,
14291 struct frame_info *frame)
a5ee536b 14292{
a5ee536b
JB
14293 /* The only case where default_read_var_value is not sufficient
14294 is when VAR is a renaming... */
c0e70c62
TT
14295 if (frame != nullptr)
14296 {
14297 const struct block *frame_block = get_frame_block (frame, NULL);
14298 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14299 return ada_read_renaming_var_value (var, frame_block);
14300 }
a5ee536b
JB
14301
14302 /* This is a typical case where we expect the default_read_var_value
14303 function to work. */
63e43d3a 14304 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14305}
14306
56618e20
TT
14307static const char *ada_extensions[] =
14308{
14309 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14310};
14311
47e77640 14312extern const struct language_defn ada_language_defn = {
6c038f32 14313 "ada", /* Language name */
6abde28f 14314 "Ada",
6c038f32 14315 language_ada,
6c038f32 14316 range_check_off,
6c038f32
PH
14317 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14318 that's not quite what this means. */
6c038f32 14319 array_row_major,
9a044a89 14320 macro_expansion_no,
56618e20 14321 ada_extensions,
6c038f32
PH
14322 &ada_exp_descriptor,
14323 parse,
6c038f32
PH
14324 resolve,
14325 ada_printchar, /* Print a character constant */
14326 ada_printstr, /* Function to print string constant */
14327 emit_char, /* Function to print single char (not used) */
6c038f32 14328 ada_print_type, /* Print a type using appropriate syntax */
be942545 14329 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14330 ada_val_print, /* Print a value using appropriate syntax */
14331 ada_value_print, /* Print a top-level value */
a5ee536b 14332 ada_read_var_value, /* la_read_var_value */
6c038f32 14333 NULL, /* Language specific skip_trampoline */
2b2d9e11 14334 NULL, /* name_of_this */
59cc4834 14335 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14336 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14337 basic_lookup_transparent_type, /* lookup_transparent_type */
14338 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14339 ada_sniff_from_mangled_name,
0963b4bd
MS
14340 NULL, /* Language specific
14341 class_name_from_physname */
6c038f32
PH
14342 ada_op_print_tab, /* expression operators for printing */
14343 0, /* c-style arrays */
14344 1, /* String lower bound */
6c038f32 14345 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14346 ada_collect_symbol_completion_matches,
72d5681a 14347 ada_language_arch_info,
e79af960 14348 ada_print_array_index,
41f1b697 14349 default_pass_by_reference,
ae6a3a4c 14350 c_get_string,
e2b7af72 14351 ada_watch_location_expression,
b5ec771e 14352 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14353 ada_iterate_over_symbols,
5ffa0793 14354 default_search_name_hash,
a53b64ea 14355 &ada_varobj_ops,
bb2ec1b3 14356 NULL,
721b08c6 14357 NULL,
4be290b2 14358 ada_is_string_type,
721b08c6 14359 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14360};
14361
5bf03f13
JB
14362/* Command-list for the "set/show ada" prefix command. */
14363static struct cmd_list_element *set_ada_list;
14364static struct cmd_list_element *show_ada_list;
14365
14366/* Implement the "set ada" prefix command. */
14367
14368static void
981a3fb3 14369set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14370{
14371 printf_unfiltered (_(\
14372"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14373 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14374}
14375
14376/* Implement the "show ada" prefix command. */
14377
14378static void
981a3fb3 14379show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14380{
14381 cmd_show_list (show_ada_list, from_tty, "");
14382}
14383
2060206e
PA
14384static void
14385initialize_ada_catchpoint_ops (void)
14386{
14387 struct breakpoint_ops *ops;
14388
14389 initialize_breakpoint_ops ();
14390
14391 ops = &catch_exception_breakpoint_ops;
14392 *ops = bkpt_breakpoint_ops;
2060206e
PA
14393 ops->allocate_location = allocate_location_catch_exception;
14394 ops->re_set = re_set_catch_exception;
14395 ops->check_status = check_status_catch_exception;
14396 ops->print_it = print_it_catch_exception;
14397 ops->print_one = print_one_catch_exception;
14398 ops->print_mention = print_mention_catch_exception;
14399 ops->print_recreate = print_recreate_catch_exception;
14400
14401 ops = &catch_exception_unhandled_breakpoint_ops;
14402 *ops = bkpt_breakpoint_ops;
2060206e
PA
14403 ops->allocate_location = allocate_location_catch_exception_unhandled;
14404 ops->re_set = re_set_catch_exception_unhandled;
14405 ops->check_status = check_status_catch_exception_unhandled;
14406 ops->print_it = print_it_catch_exception_unhandled;
14407 ops->print_one = print_one_catch_exception_unhandled;
14408 ops->print_mention = print_mention_catch_exception_unhandled;
14409 ops->print_recreate = print_recreate_catch_exception_unhandled;
14410
14411 ops = &catch_assert_breakpoint_ops;
14412 *ops = bkpt_breakpoint_ops;
2060206e
PA
14413 ops->allocate_location = allocate_location_catch_assert;
14414 ops->re_set = re_set_catch_assert;
14415 ops->check_status = check_status_catch_assert;
14416 ops->print_it = print_it_catch_assert;
14417 ops->print_one = print_one_catch_assert;
14418 ops->print_mention = print_mention_catch_assert;
14419 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14420
14421 ops = &catch_handlers_breakpoint_ops;
14422 *ops = bkpt_breakpoint_ops;
14423 ops->allocate_location = allocate_location_catch_handlers;
14424 ops->re_set = re_set_catch_handlers;
14425 ops->check_status = check_status_catch_handlers;
14426 ops->print_it = print_it_catch_handlers;
14427 ops->print_one = print_one_catch_handlers;
14428 ops->print_mention = print_mention_catch_handlers;
14429 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14430}
14431
3d9434b5
JB
14432/* This module's 'new_objfile' observer. */
14433
14434static void
14435ada_new_objfile_observer (struct objfile *objfile)
14436{
14437 ada_clear_symbol_cache ();
14438}
14439
14440/* This module's 'free_objfile' observer. */
14441
14442static void
14443ada_free_objfile_observer (struct objfile *objfile)
14444{
14445 ada_clear_symbol_cache ();
14446}
14447
d2e4a39e 14448void
6c038f32 14449_initialize_ada_language (void)
14f9c5c9 14450{
2060206e
PA
14451 initialize_ada_catchpoint_ops ();
14452
5bf03f13 14453 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14454 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14455 &set_ada_list, "set ada ", 0, &setlist);
14456
14457 add_prefix_cmd ("ada", no_class, show_ada_command,
14458 _("Generic command for showing Ada-specific settings."),
14459 &show_ada_list, "show ada ", 0, &showlist);
14460
14461 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14462 &trust_pad_over_xvs, _("\
590042fc
PW
14463Enable or disable an optimization trusting PAD types over XVS types."), _("\
14464Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14465 _("\
14466This is related to the encoding used by the GNAT compiler. The debugger\n\
14467should normally trust the contents of PAD types, but certain older versions\n\
14468of GNAT have a bug that sometimes causes the information in the PAD type\n\
14469to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14470work around this bug. It is always safe to turn this option \"off\", but\n\
14471this incurs a slight performance penalty, so it is recommended to NOT change\n\
14472this option to \"off\" unless necessary."),
14473 NULL, NULL, &set_ada_list, &show_ada_list);
14474
d72413e6
PMR
14475 add_setshow_boolean_cmd ("print-signatures", class_vars,
14476 &print_signatures, _("\
14477Enable or disable the output of formal and return types for functions in the \
590042fc 14478overloads selection menu."), _("\
d72413e6 14479Show whether the output of formal and return types for functions in the \
590042fc 14480overloads selection menu is activated."),
d72413e6
PMR
14481 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14482
9ac4176b
PA
14483 add_catch_command ("exception", _("\
14484Catch Ada exceptions, when raised.\n\
9bf7038b 14485Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14486Without any argument, stop when any Ada exception is raised.\n\
14487If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14488being raised does not have a handler (and will therefore lead to the task's\n\
14489termination).\n\
14490Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14491raised is the same as ARG.\n\
14492CONDITION is a boolean expression that is evaluated to see whether the\n\
14493exception should cause a stop."),
9ac4176b 14494 catch_ada_exception_command,
71bed2db 14495 catch_ada_completer,
9ac4176b
PA
14496 CATCH_PERMANENT,
14497 CATCH_TEMPORARY);
9f757bf7
XR
14498
14499 add_catch_command ("handlers", _("\
14500Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14501Usage: catch handlers [ARG] [if CONDITION]\n\
14502Without any argument, stop when any Ada exception is handled.\n\
14503With an argument, catch only exceptions with the given name.\n\
14504CONDITION is a boolean expression that is evaluated to see whether the\n\
14505exception should cause a stop."),
9f757bf7 14506 catch_ada_handlers_command,
71bed2db 14507 catch_ada_completer,
9f757bf7
XR
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
9ac4176b
PA
14510 add_catch_command ("assert", _("\
14511Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14512Usage: catch assert [if CONDITION]\n\
14513CONDITION is a boolean expression that is evaluated to see whether the\n\
14514exception should cause a stop."),
9ac4176b
PA
14515 catch_assert_command,
14516 NULL,
14517 CATCH_PERMANENT,
14518 CATCH_TEMPORARY);
14519
6c038f32 14520 varsize_limit = 65536;
3fcded8f
JB
14521 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14522 &varsize_limit, _("\
14523Set the maximum number of bytes allowed in a variable-size object."), _("\
14524Show the maximum number of bytes allowed in a variable-size object."), _("\
14525Attempts to access an object whose size is not a compile-time constant\n\
14526and exceeds this limit will cause an error."),
14527 NULL, NULL, &setlist, &showlist);
6c038f32 14528
778865d3
JB
14529 add_info ("exceptions", info_exceptions_command,
14530 _("\
14531List all Ada exception names.\n\
9bf7038b 14532Usage: info exceptions [REGEXP]\n\
778865d3
JB
14533If a regular expression is passed as an argument, only those matching\n\
14534the regular expression are listed."));
14535
c6044dd1
JB
14536 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14537 _("Set Ada maintenance-related variables."),
14538 &maint_set_ada_cmdlist, "maintenance set ada ",
14539 0/*allow-unknown*/, &maintenance_set_cmdlist);
14540
14541 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14542 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14543 &maint_show_ada_cmdlist, "maintenance show ada ",
14544 0/*allow-unknown*/, &maintenance_show_cmdlist);
14545
14546 add_setshow_boolean_cmd
14547 ("ignore-descriptive-types", class_maintenance,
14548 &ada_ignore_descriptive_types_p,
14549 _("Set whether descriptive types generated by GNAT should be ignored."),
14550 _("Show whether descriptive types generated by GNAT should be ignored."),
14551 _("\
14552When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14553DWARF attribute."),
14554 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14555
459a2e4c
TT
14556 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14557 NULL, xcalloc, xfree);
6b69afc4 14558
3d9434b5 14559 /* The ada-lang observers. */
76727919
TT
14560 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14561 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14562 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14563}
This page took 3.754102 seconds and 4 git commands to generate.