Use obstack_strdup in ada-lang.c
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2
PH
201static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
205 struct type *);
206
207static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
0d5cff50 210static int find_struct_field (const char *, struct type *, int,
52ce6436 211 struct type **, int *, int *, int *, int *);
4c4b4cd2 212
d12307c1 213static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 214 struct value **, int, const char *,
2a612529 215 struct type *, int);
4c4b4cd2 216
4c4b4cd2
PH
217static int ada_is_direct_array_type (struct type *);
218
72d5681a
PH
219static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
714e53ab 221
52ce6436
PH
222static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
226 struct expression *,
227 int *, enum noside);
52ce6436
PH
228
229static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
852dff6c
JB
253
254static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
255
256static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
4c4b4cd2
PH
259\f
260
ee01b665
JB
261/* The result of a symbol lookup to be stored in our symbol cache. */
262
263struct cache_entry
264{
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
fe978cb0 268 domain_enum domain;
ee01b665
JB
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277};
278
279/* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288#define HASH_SIZE 1009
289
290struct ada_symbol_cache
291{
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297};
298
299static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 300
4c4b4cd2 301/* Maximum-sized dynamic type. */
14f9c5c9
AS
302static unsigned int varsize_limit;
303
67cb5b2d 304static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
305#ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307#else
14f9c5c9 308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 309#endif
14f9c5c9 310
4c4b4cd2 311/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 312static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 313 = "__gnat_ada_main_program_name";
14f9c5c9 314
4c4b4cd2
PH
315/* Limit on the number of warnings to raise per expression evaluation. */
316static int warning_limit = 2;
317
318/* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320static int warnings_issued = 0;
321
322static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324};
325
326static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328};
329
c6044dd1
JB
330/* Maintenance-related settings for this module. */
331
332static struct cmd_list_element *maint_set_ada_cmdlist;
333static struct cmd_list_element *maint_show_ada_cmdlist;
334
335/* Implement the "maintenance set ada" (prefix) command. */
336
337static void
981a3fb3 338maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 339{
635c7e8a
TT
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
c6044dd1
JB
342}
343
344/* Implement the "maintenance show ada" (prefix) command. */
345
346static void
981a3fb3 347maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
348{
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350}
351
352/* The "maintenance ada set/show ignore-descriptive-type" value. */
353
491144b5 354static bool ada_ignore_descriptive_types_p = false;
c6044dd1 355
e802dbe0
JB
356 /* Inferior-specific data. */
357
358/* Per-inferior data for this module. */
359
360struct ada_inferior_data
361{
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
f37b313d 366 struct type *tsd_type = nullptr;
3eecfa55
JB
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
f37b313d 371 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
372};
373
374/* Our key to this module's inferior data. */
f37b313d 375static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
376
377/* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385static struct ada_inferior_data *
386get_ada_inferior_data (struct inferior *inf)
387{
388 struct ada_inferior_data *data;
389
f37b313d 390 data = ada_inferior_data.get (inf);
e802dbe0 391 if (data == NULL)
f37b313d 392 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
393
394 return data;
395}
396
397/* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400static void
401ada_inferior_exit (struct inferior *inf)
402{
f37b313d 403 ada_inferior_data.clear (inf);
e802dbe0
JB
404}
405
ee01b665
JB
406
407 /* program-space-specific data. */
408
409/* This module's per-program-space data. */
410struct ada_pspace_data
411{
f37b313d
TT
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
ee01b665 418 /* The Ada symbol cache. */
f37b313d 419 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
420};
421
422/* Key to our per-program-space data. */
f37b313d 423static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
424
425/* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430static struct ada_pspace_data *
431get_ada_pspace_data (struct program_space *pspace)
432{
433 struct ada_pspace_data *data;
434
f37b313d 435 data = ada_pspace_data_handle.get (pspace);
ee01b665 436 if (data == NULL)
f37b313d 437 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
438
439 return data;
440}
441
4c4b4cd2
PH
442 /* Utilities */
443
720d1a40 444/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 445 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471static struct type *
472ada_typedef_target_type (struct type *type)
473{
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477}
478
41d27058
JB
479/* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483static const char *
484ada_unqualified_name (const char *decoded_name)
485{
2b0f535a
JB
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
41d27058
JB
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502}
503
39e7af3e 504/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 505
39e7af3e 506static std::string
41d27058
JB
507add_angle_brackets (const char *str)
508{
39e7af3e 509 return string_printf ("<%s>", str);
41d27058 510}
96d887e8 511
67cb5b2d 512static const char *
4c4b4cd2
PH
513ada_get_gdb_completer_word_break_characters (void)
514{
515 return ada_completer_word_break_characters;
516}
517
e79af960
JB
518/* Print an array element index using the Ada syntax. */
519
520static void
521ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 522 const struct value_print_options *options)
e79af960 523{
79a45b7d 524 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
525 fprintf_filtered (stream, " => ");
526}
527
e2b7af72
JB
528/* la_watch_location_expression for Ada. */
529
de93309a 530static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
531ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532{
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537}
538
de93309a
SM
539/* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542#define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
f27cf670 545/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 547 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 548
de93309a 549static void *
f27cf670 550grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 551{
d2e4a39e
AS
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
4c4b4cd2 556 *size = min_size;
f27cf670 557 vect = xrealloc (vect, *size * element_size);
d2e4a39e 558 }
f27cf670 559 return vect;
14f9c5c9
AS
560}
561
562/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 563 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
564
565static int
ebf56fd3 566field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
567{
568 int len = strlen (target);
5b4ee69b 569
d2e4a39e 570 return
4c4b4cd2
PH
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
61012eef 573 || (startswith (field_name + len, "___")
76a01679
JB
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
14f9c5c9
AS
576}
577
578
872c8b51
JB
579/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
586
587int
588ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590{
591 int fieldno;
872c8b51
JB
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
596 return fieldno;
597
598 if (!maybe_missing)
323e0a4a 599 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 600 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
601
602 return -1;
603}
604
605/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
606
607int
d2e4a39e 608ada_name_prefix_len (const char *name)
14f9c5c9
AS
609{
610 if (name == NULL)
611 return 0;
d2e4a39e 612 else
14f9c5c9 613 {
d2e4a39e 614 const char *p = strstr (name, "___");
5b4ee69b 615
14f9c5c9 616 if (p == NULL)
4c4b4cd2 617 return strlen (name);
14f9c5c9 618 else
4c4b4cd2 619 return p - name;
14f9c5c9
AS
620 }
621}
622
4c4b4cd2
PH
623/* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
14f9c5c9 626static int
d2e4a39e 627is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
628{
629 int len1, len2;
5b4ee69b 630
14f9c5c9
AS
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
4c4b4cd2 635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
636}
637
4c4b4cd2
PH
638/* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
14f9c5c9 640
d2e4a39e 641static struct value *
4c4b4cd2 642coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 643{
61ee279c 644 type = ada_check_typedef (type);
df407dfe 645 if (value_type (val) == type)
4c4b4cd2 646 return val;
d2e4a39e 647 else
14f9c5c9 648 {
4c4b4cd2
PH
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
c1b5a1a6 653 ada_ensure_varsize_limit (type);
4c4b4cd2 654
41e8491f
JK
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
9a0dc9e3 661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 662 }
74bcbdf3 663 set_value_component_location (result, val);
9bbda503
AC
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
14f9c5c9
AS
668 return result;
669 }
670}
671
fc1a4b47
AC
672static const gdb_byte *
673cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
674{
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679}
680
681static CORE_ADDR
ebf56fd3 682cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
683{
684 if (address == 0)
685 return 0;
d2e4a39e 686 else
14f9c5c9
AS
687 return address + offset;
688}
689
4c4b4cd2
PH
690/* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
a2249542 694
77109804
AC
695/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
a0b31db1 697static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 698
14f9c5c9 699static void
a2249542 700lim_warning (const char *format, ...)
14f9c5c9 701{
a2249542 702 va_list args;
a2249542 703
5b4ee69b 704 va_start (args, format);
4c4b4cd2
PH
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
a2249542
MK
707 vwarning (format, args);
708
709 va_end (args);
4c4b4cd2
PH
710}
711
714e53ab
PH
712/* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
c1b5a1a6
JB
716void
717ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
718{
719 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 720 error (_("object size is larger than varsize-limit"));
714e53ab
PH
721}
722
0963b4bd 723/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 724static LONGEST
c3e5cd34 725max_of_size (int size)
4c4b4cd2 726{
76a01679 727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 728
76a01679 729 return top_bit | (top_bit - 1);
4c4b4cd2
PH
730}
731
0963b4bd 732/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 733static LONGEST
c3e5cd34 734min_of_size (int size)
4c4b4cd2 735{
c3e5cd34 736 return -max_of_size (size) - 1;
4c4b4cd2
PH
737}
738
0963b4bd 739/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 740static ULONGEST
c3e5cd34 741umax_of_size (int size)
4c4b4cd2 742{
76a01679 743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 744
76a01679 745 return top_bit | (top_bit - 1);
4c4b4cd2
PH
746}
747
0963b4bd 748/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
749static LONGEST
750max_of_type (struct type *t)
4c4b4cd2 751{
c3e5cd34
PH
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756}
757
0963b4bd 758/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
759static LONGEST
760min_of_type (struct type *t)
761{
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
766}
767
768/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
769LONGEST
770ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 771{
c3345124 772 type = resolve_dynamic_type (type, NULL, 0);
76a01679 773 switch (TYPE_CODE (type))
4c4b4cd2
PH
774 {
775 case TYPE_CODE_RANGE:
690cc4eb 776 return TYPE_HIGH_BOUND (type);
4c4b4cd2 777 case TYPE_CODE_ENUM:
14e75d8e 778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
76a01679 782 case TYPE_CODE_INT:
690cc4eb 783 return max_of_type (type);
4c4b4cd2 784 default:
43bbcdc2 785 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
786 }
787}
788
14e75d8e 789/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
790LONGEST
791ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 792{
c3345124 793 type = resolve_dynamic_type (type, NULL, 0);
76a01679 794 switch (TYPE_CODE (type))
4c4b4cd2
PH
795 {
796 case TYPE_CODE_RANGE:
690cc4eb 797 return TYPE_LOW_BOUND (type);
4c4b4cd2 798 case TYPE_CODE_ENUM:
14e75d8e 799 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
76a01679 803 case TYPE_CODE_INT:
690cc4eb 804 return min_of_type (type);
4c4b4cd2 805 default:
43bbcdc2 806 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
807 }
808}
809
810/* The identity on non-range types. For range types, the underlying
76a01679 811 non-range scalar type. */
4c4b4cd2
PH
812
813static struct type *
18af8284 814get_base_type (struct type *type)
4c4b4cd2
PH
815{
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
76a01679
JB
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
4c4b4cd2
PH
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
14f9c5c9 823}
41246937
JB
824
825/* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
85102364 827 encodings, making the resulting type a static but standard description
41246937
JB
828 of the initial type. */
829
830struct value *
831ada_get_decoded_value (struct value *value)
832{
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848}
849
850/* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855struct type *
856ada_get_decoded_type (struct type *type)
857{
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862}
863
4c4b4cd2 864\f
76a01679 865
4c4b4cd2 866 /* Language Selection */
14f9c5c9
AS
867
868/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 869 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 870
de93309a 871static enum language
ccefe4c4 872ada_update_initial_language (enum language lang)
14f9c5c9 873{
cafb3438 874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 875 return language_ada;
14f9c5c9
AS
876
877 return lang;
878}
96d887e8
PH
879
880/* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884char *
885ada_main_name (void)
886{
3b7344d5 887 struct bound_minimal_symbol msym;
e83e4e24 888 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 889
96d887e8
PH
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
3b7344d5 897 if (msym.minsym != NULL)
96d887e8 898 {
f9bc20b9
JB
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
77e371c0 902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 903 if (main_program_name_addr == 0)
323e0a4a 904 error (_("Invalid address for Ada main program name."));
96d887e8 905
f9bc20b9
JB
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
e83e4e24 911 return main_program_name.get ();
96d887e8
PH
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916}
14f9c5c9 917\f
4c4b4cd2 918 /* Symbols */
d2e4a39e 919
4c4b4cd2
PH
920/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
14f9c5c9 922
d2e4a39e
AS
923const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
14f9c5c9
AS
946};
947
b5ec771e
PA
948/* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
4c4b4cd2 952
b5ec771e
PA
953static char *
954ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 955{
4c4b4cd2
PH
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
d2e4a39e 958 const char *p;
14f9c5c9 959 int k;
d2e4a39e 960
4c4b4cd2 961 if (decoded == NULL)
14f9c5c9
AS
962 return NULL;
963
4c4b4cd2
PH
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
14f9c5c9
AS
966
967 k = 0;
4c4b4cd2 968 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 969 {
cdc7bb92 970 if (*p == '.')
4c4b4cd2
PH
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
14f9c5c9 975 else if (*p == '"')
4c4b4cd2
PH
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
1265e4aa 980 mapping->encoded != NULL
61012eef 981 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
982 ;
983 if (mapping->encoded == NULL)
b5ec771e
PA
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
4c4b4cd2
PH
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
d2e4a39e 994 else
4c4b4cd2
PH
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
14f9c5c9
AS
999 }
1000
4c4b4cd2
PH
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
14f9c5c9
AS
1003}
1004
b5ec771e
PA
1005/* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008char *
1009ada_encode (const char *decoded)
1010{
1011 return ada_encode_1 (decoded, true);
1012}
1013
14f9c5c9 1014/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
de93309a 1018static char *
d2e4a39e 1019ada_fold_name (const char *name)
14f9c5c9 1020{
d2e4a39e 1021 static char *fold_buffer = NULL;
14f9c5c9
AS
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
d2e4a39e 1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1026
1027 if (name[0] == '\'')
1028 {
d2e4a39e
AS
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1031 }
1032 else
1033 {
1034 int i;
5b4ee69b 1035
14f9c5c9 1036 for (i = 0; i <= len; i += 1)
4c4b4cd2 1037 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1038 }
1039
1040 return fold_buffer;
1041}
1042
529cad9c
PH
1043/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045static int
1046is_lower_alphanum (const char c)
1047{
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049}
1050
c90092fe
JB
1051/* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
29480c32
JB
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
c90092fe 1058
29480c32
JB
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063static void
1064ada_remove_trailing_digits (const char *encoded, int *len)
1065{
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
5b4ee69b 1069
29480c32
JB
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
61012eef 1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1077 *len = i - 2;
61012eef 1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1079 *len = i - 1;
1080 }
1081}
1082
1083/* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086static void
1087ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088{
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
0963b4bd 1094 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103}
1104
1105/* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1107 replaced by ENCODED. */
14f9c5c9 1108
f945dedf 1109std::string
4c4b4cd2 1110ada_decode (const char *encoded)
14f9c5c9
AS
1111{
1112 int i, j;
1113 int len0;
d2e4a39e 1114 const char *p;
14f9c5c9 1115 int at_start_name;
f945dedf 1116 std::string decoded;
d2e4a39e 1117
0d81f350
JG
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
29480c32
JB
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
61012eef 1126 if (startswith (encoded, "_ada_"))
4c4b4cd2 1127 encoded += 5;
14f9c5c9 1128
29480c32
JB
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
4c4b4cd2 1132 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1133 goto Suppress;
1134
4c4b4cd2 1135 len0 = strlen (encoded);
4c4b4cd2 1136
29480c32
JB
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1139
4c4b4cd2
PH
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1146 {
1147 if (p[3] == 'X')
4c4b4cd2 1148 len0 = p - encoded;
14f9c5c9 1149 else
4c4b4cd2 1150 goto Suppress;
14f9c5c9 1151 }
4c4b4cd2 1152
29480c32
JB
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
61012eef 1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1158 len0 -= 3;
76a01679 1159
a10967fa
JB
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
61012eef 1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1165 len0 -= 2;
1166
29480c32
JB
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
61012eef 1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1171 len0 -= 1;
1172
4c4b4cd2 1173 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1174
f945dedf 1175 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1176
29480c32
JB
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
4c4b4cd2 1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1180 {
4c4b4cd2
PH
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
d2e4a39e 1189 }
14f9c5c9 1190
29480c32
JB
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
4c4b4cd2
PH
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
14f9c5c9
AS
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
29480c32 1200 /* Is this a symbol function? */
4c4b4cd2
PH
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
5b4ee69b 1204
4c4b4cd2
PH
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1211 {
f945dedf 1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
14f9c5c9
AS
1222 at_start_name = 0;
1223
529cad9c
PH
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
61012eef 1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1228 i += 2;
529cad9c 1229
29480c32
JB
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
529cad9c
PH
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1252 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
4c4b4cd2
PH
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
29480c32
JB
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
4c4b4cd2
PH
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
cdc7bb92 1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1317 {
29480c32 1318 /* Replace '__' by '.'. */
4c4b4cd2
PH
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
14f9c5c9 1324 else
4c4b4cd2 1325 {
29480c32
JB
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
4c4b4cd2
PH
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
14f9c5c9 1332 }
f945dedf 1333 decoded.resize (j);
14f9c5c9 1334
29480c32
JB
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
f945dedf 1338 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1339 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1340 goto Suppress;
1341
f945dedf 1342 return decoded;
14f9c5c9
AS
1343
1344Suppress:
4c4b4cd2 1345 if (encoded[0] == '<')
f945dedf 1346 decoded = encoded;
14f9c5c9 1347 else
f945dedf 1348 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1349 return decoded;
1350
1351}
1352
1353/* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358static struct htab *decoded_names_store;
1359
1360/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1365 GSYMBOL).
4c4b4cd2
PH
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1368 when a decoded name is cached in it. */
4c4b4cd2 1369
45e6c716 1370const char *
f85f34ed 1371ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1372{
f85f34ed
TT
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
615b3f62 1375 &gsymbol->language_specific.demangled_name;
5b4ee69b 1376
f85f34ed 1377 if (!gsymbol->ada_mangled)
4c4b4cd2 1378 {
4d4eaa30 1379 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1380 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1381
f85f34ed 1382 gsymbol->ada_mangled = 1;
5b4ee69b 1383
f85f34ed 1384 if (obstack != NULL)
f945dedf 1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1386 else
76a01679 1387 {
f85f34ed
TT
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
76a01679 1393 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1394 decoded.c_str (), INSERT);
5b4ee69b 1395
76a01679 1396 if (*slot == NULL)
f945dedf 1397 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1398 *resultp = *slot;
1399 }
4c4b4cd2 1400 }
14f9c5c9 1401
4c4b4cd2
PH
1402 return *resultp;
1403}
76a01679 1404
2c0b251b 1405static char *
76a01679 1406ada_la_decode (const char *encoded, int options)
4c4b4cd2 1407{
f945dedf 1408 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1409}
1410
8b302db8
TT
1411/* Implement la_sniff_from_mangled_name for Ada. */
1412
1413static int
1414ada_sniff_from_mangled_name (const char *mangled, char **out)
1415{
f945dedf 1416 std::string demangled = ada_decode (mangled);
8b302db8
TT
1417
1418 *out = NULL;
1419
f945dedf 1420 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448}
1449
14f9c5c9 1450\f
d2e4a39e 1451
4c4b4cd2 1452 /* Arrays */
14f9c5c9 1453
28c85d6c
JB
1454/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
85102364 1461 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477void
1478ada_fixup_array_indexes_type (struct type *index_desc_type)
1479{
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
0d5cff50 1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507}
1508
4c4b4cd2 1509/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1510
a121b7c1 1511static const char *bound_name[] = {
d2e4a39e 1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514};
1515
1516/* Maximum number of array dimensions we are prepared to handle. */
1517
4c4b4cd2 1518#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1519
14f9c5c9 1520
4c4b4cd2
PH
1521/* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
14f9c5c9
AS
1523
1524/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1525 level of indirection, if needed. */
1526
d2e4a39e
AS
1527static struct type *
1528desc_base_type (struct type *type)
14f9c5c9
AS
1529{
1530 if (type == NULL)
1531 return NULL;
61ee279c 1532 type = ada_check_typedef (type);
720d1a40
JB
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1265e4aa
JB
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1540 else
1541 return type;
1542}
1543
4c4b4cd2
PH
1544/* True iff TYPE indicates a "thin" array pointer type. */
1545
14f9c5c9 1546static int
d2e4a39e 1547is_thin_pntr (struct type *type)
14f9c5c9 1548{
d2e4a39e 1549 return
14f9c5c9
AS
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552}
1553
4c4b4cd2
PH
1554/* The descriptor type for thin pointer type TYPE. */
1555
d2e4a39e
AS
1556static struct type *
1557thin_descriptor_type (struct type *type)
14f9c5c9 1558{
d2e4a39e 1559 struct type *base_type = desc_base_type (type);
5b4ee69b 1560
14f9c5c9
AS
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
d2e4a39e 1565 else
14f9c5c9 1566 {
d2e4a39e 1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1568
14f9c5c9 1569 if (alt_type == NULL)
4c4b4cd2 1570 return base_type;
14f9c5c9 1571 else
4c4b4cd2 1572 return alt_type;
14f9c5c9
AS
1573 }
1574}
1575
4c4b4cd2
PH
1576/* A pointer to the array data for thin-pointer value VAL. */
1577
d2e4a39e
AS
1578static struct value *
1579thin_data_pntr (struct value *val)
14f9c5c9 1580{
828292f2 1581 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1583
556bdfd4
UW
1584 data_type = lookup_pointer_type (data_type);
1585
14f9c5c9 1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1587 return value_cast (data_type, value_copy (val));
d2e4a39e 1588 else
42ae5230 1589 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1590}
1591
4c4b4cd2
PH
1592/* True iff TYPE indicates a "thick" array pointer type. */
1593
14f9c5c9 1594static int
d2e4a39e 1595is_thick_pntr (struct type *type)
14f9c5c9
AS
1596{
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1604
d2e4a39e
AS
1605static struct type *
1606desc_bounds_type (struct type *type)
14f9c5c9 1607{
d2e4a39e 1608 struct type *r;
14f9c5c9
AS
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
4c4b4cd2 1618 return NULL;
14f9c5c9
AS
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
61ee279c 1621 return ada_check_typedef (r);
14f9c5c9
AS
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
61ee279c 1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1628 }
1629 return NULL;
1630}
1631
1632/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
d2e4a39e
AS
1635static struct value *
1636desc_bounds (struct value *arr)
14f9c5c9 1637{
df407dfe 1638 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1639
d2e4a39e 1640 if (is_thin_pntr (type))
14f9c5c9 1641 {
d2e4a39e 1642 struct type *bounds_type =
4c4b4cd2 1643 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1644 LONGEST addr;
1645
4cdfadb1 1646 if (bounds_type == NULL)
323e0a4a 1647 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1648
1649 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1650 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1651 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1653 addr = value_as_long (arr);
d2e4a39e 1654 else
42ae5230 1655 addr = value_address (arr);
14f9c5c9 1656
d2e4a39e 1657 return
4c4b4cd2
PH
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1660 }
1661
1662 else if (is_thick_pntr (type))
05e522ef
JB
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
14f9c5c9
AS
1683 else
1684 return NULL;
1685}
1686
4c4b4cd2
PH
1687/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
14f9c5c9 1690static int
d2e4a39e 1691fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1692{
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694}
1695
1696/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1697 size of the field containing the address of the bounds data. */
1698
14f9c5c9 1699static int
d2e4a39e 1700fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1701{
1702 type = desc_base_type (type);
1703
d2e4a39e 1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
61ee279c 1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1708}
1709
4c4b4cd2 1710/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
4c4b4cd2 1714
d2e4a39e 1715static struct type *
556bdfd4 1716desc_data_target_type (struct type *type)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
4c4b4cd2 1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1721 if (is_thin_pntr (type))
556bdfd4 1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1723 else if (is_thick_pntr (type))
556bdfd4
UW
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1730 }
1731
1732 return NULL;
14f9c5c9
AS
1733}
1734
1735/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
4c4b4cd2 1737
d2e4a39e
AS
1738static struct value *
1739desc_data (struct value *arr)
14f9c5c9 1740{
df407dfe 1741 struct type *type = value_type (arr);
5b4ee69b 1742
14f9c5c9
AS
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
d2e4a39e 1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1747 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1748 else
1749 return NULL;
1750}
1751
1752
1753/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1754 position of the field containing the address of the data. */
1755
14f9c5c9 1756static int
d2e4a39e 1757fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1758{
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760}
1761
1762/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1763 size of the field containing the address of the data. */
1764
14f9c5c9 1765static int
d2e4a39e 1766fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1767{
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1772 else
14f9c5c9
AS
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774}
1775
4c4b4cd2 1776/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
d2e4a39e
AS
1780static struct value *
1781desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1782{
d2e4a39e 1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1784 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1785}
1786
1787/* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
14f9c5c9 1791static int
d2e4a39e 1792desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1793{
d2e4a39e 1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1795}
1796
1797/* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
76a01679 1801static int
d2e4a39e 1802desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1803{
1804 type = desc_base_type (type);
1805
d2e4a39e
AS
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1810}
1811
1812/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
d2e4a39e
AS
1815static struct type *
1816desc_index_type (struct type *type, int i)
14f9c5c9
AS
1817{
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
14f9c5c9
AS
1823 return NULL;
1824}
1825
4c4b4cd2
PH
1826/* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
14f9c5c9 1829static int
d2e4a39e 1830desc_arity (struct type *type)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837}
1838
4c4b4cd2
PH
1839/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
76a01679
JB
1843static int
1844ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1845{
1846 if (type == NULL)
1847 return 0;
61ee279c 1848 type = ada_check_typedef (type);
4c4b4cd2 1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1850 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1851}
1852
52ce6436 1853/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1854 * to one. */
52ce6436 1855
2c0b251b 1856static int
52ce6436
PH
1857ada_is_array_type (struct type *type)
1858{
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864}
1865
4c4b4cd2 1866/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1867
14f9c5c9 1868int
4c4b4cd2 1869ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
14f9c5c9 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1878}
1879
4c4b4cd2
PH
1880/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
14f9c5c9 1882int
4c4b4cd2 1883ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1884{
556bdfd4 1885 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1886
1887 if (type == NULL)
1888 return 0;
61ee279c 1889 type = ada_check_typedef (type);
556bdfd4
UW
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1893}
1894
1895/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1896 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1897 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1898 is still needed. */
1899
14f9c5c9 1900int
ebf56fd3 1901ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1902{
d2e4a39e 1903 return
14f9c5c9
AS
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1909}
1910
1911
4c4b4cd2 1912/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1913 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1915 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1918 a descriptor. */
de93309a
SM
1919
1920static struct type *
d2e4a39e 1921ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1925
df407dfe
AC
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
d2e4a39e
AS
1928
1929 if (!bounds)
ad82864c
JB
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
14f9c5c9
AS
1940 else
1941 {
d2e4a39e 1942 struct type *elt_type;
14f9c5c9 1943 int arity;
d2e4a39e 1944 struct value *descriptor;
14f9c5c9 1945
df407dfe
AC
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
14f9c5c9 1948
d2e4a39e 1949 if (elt_type == NULL || arity == 0)
df407dfe 1950 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1951
1952 descriptor = desc_bounds (arr);
d2e4a39e 1953 if (value_as_long (descriptor) == 0)
4c4b4cd2 1954 return NULL;
d2e4a39e 1955 while (arity > 0)
4c4b4cd2 1956 {
e9bb382b
UW
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1961
5b4ee69b 1962 arity -= 1;
0c9c3474
SA
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
4c4b4cd2 1966 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
4c4b4cd2 1988 }
14f9c5c9
AS
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992}
1993
1994/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
d2e4a39e
AS
1999struct value *
2000ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2001{
df407dfe 2002 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2003 {
d2e4a39e 2004 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2005
14f9c5c9 2006 if (arrType == NULL)
4c4b4cd2 2007 return NULL;
14f9c5c9
AS
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
ad82864c
JB
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2012 else
2013 return arr;
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2018 be ARR itself if it already is in the proper form). */
2019
720d1a40 2020struct value *
d2e4a39e 2021ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2026
14f9c5c9 2027 if (arrVal == NULL)
323e0a4a 2028 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2030 return value_ind (arrVal);
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
d2e4a39e 2034 else
14f9c5c9
AS
2035 return arr;
2036}
2037
2038/* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2040 packing). For other types, is the identity. */
2041
d2e4a39e
AS
2042struct type *
2043ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2044{
ad82864c
JB
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
17280b9f
UW
2047
2048 if (ada_is_array_descriptor_type (type))
556bdfd4 2049 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2050
2051 return type;
14f9c5c9
AS
2052}
2053
4c4b4cd2
PH
2054/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
ad82864c
JB
2056static int
2057ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2058{
2059 if (type == NULL)
2060 return 0;
4c4b4cd2 2061 type = desc_base_type (type);
61ee279c 2062 type = ada_check_typedef (type);
d2e4a39e 2063 return
14f9c5c9
AS
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066}
2067
ad82864c
JB
2068/* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071int
2072ada_is_constrained_packed_array_type (struct type *type)
2073{
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076}
2077
2078/* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081static int
2082ada_is_unconstrained_packed_array_type (struct type *type)
2083{
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086}
2087
2088/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091static long
2092decode_packed_array_bitsize (struct type *type)
2093{
0d5cff50
DE
2094 const char *raw_name;
2095 const char *tail;
ad82864c
JB
2096 long bits;
2097
720d1a40
JB
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
720d1a40 2112 gdb_assert (tail != NULL);
ad82864c
JB
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122}
2123
14f9c5c9
AS
2124/* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
4c4b4cd2 2140
d2e4a39e 2141static struct type *
ad82864c 2142constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2143{
d2e4a39e
AS
2144 struct type *new_elt_type;
2145 struct type *new_type;
99b1c762
JB
2146 struct type *index_type_desc;
2147 struct type *index_type;
14f9c5c9
AS
2148 LONGEST low_bound, high_bound;
2149
61ee279c 2150 type = ada_check_typedef (type);
14f9c5c9
AS
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
99b1c762
JB
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
e9bb382b 2161 new_type = alloc_type_copy (type);
ad82864c
JB
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
99b1c762 2165 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
4a46959e
JB
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2178 TYPE_LENGTH (new_type) =
4c4b4cd2 2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2180 }
2181
876cecd0 2182 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2183 return new_type;
2184}
2185
ad82864c
JB
2186/* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2188
d2e4a39e 2189static struct type *
ad82864c 2190decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2191{
0d5cff50 2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2193 char *name;
0d5cff50 2194 const char *tail;
d2e4a39e 2195 struct type *shadow_type;
14f9c5c9 2196 long bits;
14f9c5c9 2197
727e3d2e
JB
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2206 type = desc_base_type (type);
2207
14f9c5c9
AS
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
b4ba55a1
JB
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
14f9c5c9 2214 {
323e0a4a 2215 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2216 return NULL;
2217 }
f168693b 2218 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
0963b4bd
MS
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
d2e4a39e 2226
ad82864c
JB
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2229}
2230
ad82864c
JB
2231/* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
4c4b4cd2 2235 type length is set appropriately. */
14f9c5c9 2236
d2e4a39e 2237static struct value *
ad82864c 2238decode_constrained_packed_array (struct value *arr)
14f9c5c9 2239{
4c4b4cd2 2240 struct type *type;
14f9c5c9 2241
11aa919a
PMR
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
828292f2 2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2251 arr = value_ind (arr);
4c4b4cd2 2252
ad82864c 2253 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2254 if (type == NULL)
2255 {
323e0a4a 2256 error (_("can't unpack array"));
14f9c5c9
AS
2257 return NULL;
2258 }
61ee279c 2259
d5a22e77 2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2261 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
df407dfe 2270 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
df407dfe 2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
4c4b4cd2 2285 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2286}
2287
2288
2289/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2290 given in IND. ARR must be a simple array. */
14f9c5c9 2291
d2e4a39e
AS
2292static struct value *
2293value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2294{
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
d2e4a39e
AS
2298 struct type *elt_type;
2299 struct value *v;
14f9c5c9
AS
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
df407dfe 2303 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2304 for (i = 0; i < arity; i += 1)
14f9c5c9 2305 {
d2e4a39e 2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
0963b4bd
MS
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
14f9c5c9 2311 else
4c4b4cd2
PH
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
323e0a4a 2319 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2320 lowerbound = upperbound = 0;
2321 }
2322
3cb382c9 2323 idx = pos_atr (ind[i]);
4c4b4cd2 2324 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
4c4b4cd2
PH
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2330 }
14f9c5c9
AS
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2336 bits, elt_type);
14f9c5c9
AS
2337 return v;
2338}
2339
4c4b4cd2 2340/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2341
2342static int
d2e4a39e 2343has_negatives (struct type *type)
14f9c5c9 2344{
d2e4a39e
AS
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
4e962e74 2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2353 }
14f9c5c9 2354}
d2e4a39e 2355
f93fca70 2356/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2358 the unpacked buffer.
14f9c5c9 2359
5b639dea
JB
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
f93fca70
JB
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
14f9c5c9 2365
f93fca70 2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2367
f93fca70
JB
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370static void
2371ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375{
a1c95e6b
JB
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
a1c95e6b
JB
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
4c4b4cd2 2386 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2387 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2388 unsigned char sign;
a1c95e6b 2389
4c4b4cd2
PH
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
f93fca70 2392 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2393
5b639dea
JB
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
14f9c5c9 2400 srcBitsLeft = bit_size;
086ca51f 2401 src_bytes_left = src_len;
f93fca70 2402 unpacked_bytes_left = unpacked_len;
14f9c5c9 2403 sign = 0;
f93fca70
JB
2404
2405 if (is_big_endian)
14f9c5c9 2406 {
086ca51f 2407 src_idx = src_len - 1;
f93fca70
JB
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2410 sign = ~0;
d2e4a39e
AS
2411
2412 unusedLS =
4c4b4cd2
PH
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
14f9c5c9 2415
f93fca70
JB
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
4c4b4cd2
PH
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
086ca51f
JB
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2430 }
14f9c5c9 2431 }
d2e4a39e 2432 else
14f9c5c9
AS
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
086ca51f 2436 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
f93fca70 2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2441 sign = ~0;
14f9c5c9 2442 }
d2e4a39e 2443
14f9c5c9 2444 accum = 0;
086ca51f 2445 while (src_bytes_left > 0)
14f9c5c9
AS
2446 {
2447 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2448 part of the value. */
d2e4a39e 2449 unsigned int unusedMSMask =
4c4b4cd2
PH
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
14f9c5c9 2453 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2454
d2e4a39e 2455 accum |=
086ca51f 2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2457 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2458 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2459 {
db297a65 2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
4c4b4cd2 2465 }
14f9c5c9
AS
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
086ca51f
JB
2468 src_bytes_left -= 1;
2469 src_idx += delta;
14f9c5c9 2470 }
086ca51f 2471 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2472 {
2473 accum |= sign << accumSize;
db297a65 2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2475 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2476 if (accumSize < 0)
2477 accumSize = 0;
14f9c5c9 2478 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
14f9c5c9 2481 }
f93fca70
JB
2482}
2483
2484/* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493struct value *
2494ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497{
2498 struct value *v;
bfb1c796 2499 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2500 gdb_byte *unpacked;
220475ed 2501 const int is_scalar = is_scalar_type (type);
d5a22e77 2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2503 gdb::byte_vector staging;
f93fca70
JB
2504
2505 type = ada_check_typedef (type);
2506
d0a9e810 2507 if (obj == NULL)
bfb1c796 2508 src = valaddr + offset;
d0a9e810 2509 else
bfb1c796 2510 src = value_contents (obj) + offset;
d0a9e810
JB
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
d0a9e810
JB
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2525 staging.data (), staging.size (),
d0a9e810
JB
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
d5722aa2 2528 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
d0a9e810
JB
2540 }
2541
f93fca70
JB
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = valaddr + offset;
f93fca70
JB
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
0cafa88c 2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2550 gdb_byte *buf;
0cafa88c 2551
f93fca70 2552 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
f93fca70
JB
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
bfb1c796 2560 src = value_contents (obj) + offset;
f93fca70
JB
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
bfb1c796 2583 unpacked = value_contents_writeable (v);
f93fca70
JB
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
d5722aa2 2591 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2592 {
d0a9e810
JB
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
d5722aa2 2596 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2597 }
d0a9e810
JB
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2602
14f9c5c9
AS
2603 return v;
2604}
d2e4a39e 2605
14f9c5c9
AS
2606/* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2609 floating-point or non-scalar types. */
14f9c5c9 2610
d2e4a39e
AS
2611static struct value *
2612ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2613{
df407dfe
AC
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
14f9c5c9 2616
52ce6436
PH
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
88e3b34b 2625 if (!deprecated_value_modifiable (toval))
323e0a4a 2626 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2627
d2e4a39e 2628 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2629 && bits > 0
d2e4a39e 2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2632 {
df407dfe
AC
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2635 int from_size;
224c3ddb 2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2637 struct value *val;
42ae5230 2638 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2641 fromval = value_cast (type, fromval);
14f9c5c9 2642
52ce6436 2643 read_memory (to_addr, buffer, len);
aced2898
PH
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2647
d5a22e77 2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
972daa01 2655 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2656
14f9c5c9 2657 val = value_copy (toval);
0fd88904 2658 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2659 TYPE_LENGTH (type));
04624583 2660 deprecated_set_value_type (val, type);
d2e4a39e 2661
14f9c5c9
AS
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666}
2667
2668
7c512744
JB
2669/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
52ce6436
PH
2680static void
2681value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683{
2684 LONGEST offset_in_container =
42ae5230 2685 (LONGEST) (value_address (component) - value_address (container));
7c512744 2686 int bit_offset_in_container =
52ce6436
PH
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
7c512744 2689
52ce6436
PH
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
d5a22e77 2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
a99bc3d2
JB
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2a62dfa9 2709 }
52ce6436 2710 else
a99bc3d2
JB
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
7c512744
JB
2714}
2715
736ade86
XR
2716/* Determine if TYPE is an access to an unconstrained array. */
2717
d91e9ea8 2718bool
736ade86
XR
2719ada_is_access_to_unconstrained_array (struct type *type)
2720{
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723}
2724
4c4b4cd2
PH
2725/* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2727 thereto. */
2728
d2e4a39e
AS
2729struct value *
2730ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2731{
2732 int k;
d2e4a39e
AS
2733 struct value *elt;
2734 struct type *elt_type;
14f9c5c9
AS
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
df407dfe 2738 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
b9c50e9a
XR
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
14f9c5c9 2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2749
2497b498 2750 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2771 }
b9c50e9a 2772
14f9c5c9
AS
2773 return elt;
2774}
2775
deede10c
JB
2776/* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
14f9c5c9 2787
2c0b251b 2788static struct value *
deede10c 2789ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2790{
2791 int k;
919e6dbe 2792 struct value *array_ind = ada_value_ind (arr);
deede10c 2793 struct type *type
919e6dbe
PMR
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
aa715135 2803 struct value *lwb_value;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2806 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2808 value_copy (arr));
14f9c5c9 2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816}
2817
0b5d8877 2818/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
0b5d8877 2822static struct value *
f5938064
JG
2823ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
0b5d8877 2825{
b0dd7688 2826 struct type *type0 = ada_check_typedef (type);
aa715135 2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2828 struct type *index_type
aa715135 2829 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
5b4ee69b 2845
aa715135
JG
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2849 return value_at_lazy (slice_type, base);
0b5d8877
PH
2850}
2851
2852
2853static struct value *
2854ada_value_slice (struct value *array, int low, int high)
2855{
b0dd7688 2856 struct type *type = ada_check_typedef (value_type (array));
aa715135 2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2864 LONGEST low_pos, high_pos;
5b4ee69b 2865
aa715135
JG
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2876}
2877
14f9c5c9
AS
2878/* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2881 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2882
2883int
d2e4a39e 2884ada_array_arity (struct type *type)
14f9c5c9
AS
2885{
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
d2e4a39e 2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2895 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2898 {
4c4b4cd2 2899 arity += 1;
61ee279c 2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2901 }
d2e4a39e 2902
14f9c5c9
AS
2903 return arity;
2904}
2905
2906/* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2909 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2910
d2e4a39e
AS
2911struct type *
2912ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2913{
2914 type = desc_base_type (type);
2915
d2e4a39e 2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2917 {
2918 int k;
d2e4a39e 2919 struct type *p_array_type;
14f9c5c9 2920
556bdfd4 2921 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
4c4b4cd2 2925 return NULL;
d2e4a39e 2926
4c4b4cd2 2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2928 if (nindices >= 0 && k > nindices)
4c4b4cd2 2929 k = nindices;
d2e4a39e 2930 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2931 {
61ee279c 2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2933 k -= 1;
2934 }
14f9c5c9
AS
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
14f9c5c9
AS
2944 return type;
2945 }
2946
2947 return NULL;
2948}
2949
4c4b4cd2 2950/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
14f9c5c9 2955
1eea4ebd
UW
2956static struct type *
2957ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2958{
4c4b4cd2
PH
2959 struct type *result_type;
2960
14f9c5c9
AS
2961 type = desc_base_type (type);
2962
1eea4ebd
UW
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2965
4c4b4cd2 2966 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
4c4b4cd2 2971 type = TYPE_TARGET_TYPE (type);
262452ec 2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2975 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
14f9c5c9 2978 }
d2e4a39e 2979 else
1eea4ebd
UW
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
14f9c5c9
AS
2987}
2988
2989/* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
14f9c5c9 2994
abb68b3e 2995static LONGEST
fb5e3d5c 2996ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2997{
8a48ac95 2998 struct type *type, *index_type_desc, *index_type;
1ce677a4 2999 int i;
262452ec
JK
3000
3001 gdb_assert (which == 0 || which == 1);
14f9c5c9 3002
ad82864c
JB
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3005
4c4b4cd2 3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3007 return (LONGEST) - which;
14f9c5c9
AS
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
bafffb51
JB
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
262452ec 3027 if (index_type_desc != NULL)
28c85d6c
JB
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
262452ec 3030 else
8a48ac95
JB
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
262452ec 3039
43bbcdc2
PH
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3044}
3045
3046/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3049 supplied by run-time quantities other than discriminants. */
14f9c5c9 3050
1eea4ebd 3051static LONGEST
4dc81987 3052ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3053{
eb479039
JB
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
14f9c5c9 3059
ad82864c
JB
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3062 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3063 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3064 else
1eea4ebd 3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
14f9c5c9 3073
1eea4ebd 3074static LONGEST
d2e4a39e 3075ada_array_length (struct value *arr, int n)
14f9c5c9 3076{
aa715135
JG
3077 struct type *arr_type, *index_type;
3078 int low, high;
eb479039
JB
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
14f9c5c9 3083
ad82864c
JB
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3086
4c4b4cd2 3087 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
14f9c5c9 3092 else
aa715135
JG
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
f168693b 3098 arr_type = check_typedef (arr_type);
7150d33c 3099 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
4c4b4cd2
PH
3112}
3113
bff8c71f
TT
3114/* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3117
3118static struct value *
bff8c71f 3119empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3120{
b0dd7688 3121 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3122 struct type *index_type
3123 = create_static_range_type
bff8c71f
TT
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
b0dd7688 3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3127
0b5d8877 3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3129}
14f9c5c9 3130\f
d2e4a39e 3131
4c4b4cd2 3132 /* Name resolution */
14f9c5c9 3133
4c4b4cd2
PH
3134/* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
14f9c5c9 3136
d2e4a39e 3137static const char *
4c4b4cd2 3138ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3139{
3140 int i;
3141
4c4b4cd2 3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3143 {
3144 if (ada_opname_table[i].op == op)
4c4b4cd2 3145 return ada_opname_table[i].decoded;
14f9c5c9 3146 }
323e0a4a 3147 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3148}
3149
de93309a
SM
3150/* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
14f9c5c9 3155
de93309a
SM
3156static int
3157encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3158{
de93309a
SM
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
30b15541 3166
de93309a
SM
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
30b15541 3175
de93309a
SM
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
14f9c5c9
AS
3187}
3188
de93309a
SM
3189/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
14f9c5c9 3191
de93309a
SM
3192static void
3193sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3194{
14f9c5c9 3195 int i;
14f9c5c9 3196
de93309a 3197 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3198 {
de93309a
SM
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3203 {
987012b8
CB
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
de93309a
SM
3206 break;
3207 syms[j + 1] = syms[j];
4c4b4cd2 3208 }
de93309a
SM
3209 syms[j + 1] = sym;
3210 }
3211}
14f9c5c9 3212
de93309a
SM
3213/* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215static bool print_signatures = true;
4c4b4cd2 3216
de93309a
SM
3217/* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
4c4b4cd2 3221
de93309a
SM
3222static void
3223ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225{
3226 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3227
987012b8 3228 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
4c4b4cd2 3233
de93309a
SM
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
14f9c5c9 3237
de93309a
SM
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254}
14f9c5c9 3255
de93309a
SM
3256/* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3259
de93309a
SM
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
14f9c5c9 3262
de93309a
SM
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3266
de93309a 3267 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3268
de93309a
SM
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
14f9c5c9 3271
de93309a
SM
3272static int
3273get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275{
992a7040 3276 const char *args;
de93309a
SM
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3280
de93309a
SM
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
4c4b4cd2 3284
de93309a 3285 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3286
de93309a
SM
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3289
de93309a 3290 n_chosen = 0;
4c4b4cd2 3291
de93309a
SM
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
14f9c5c9 3295 {
de93309a
SM
3296 char *args2;
3297 int choice, j;
76a01679 3298
de93309a
SM
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
76a01679 3304
de93309a
SM
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
76a01679 3310
de93309a
SM
3311 if (choice == 0)
3312 error (_("cancelled"));
76a01679 3313
de93309a
SM
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
76a01679 3320 }
de93309a 3321 choice -= first_choice;
76a01679 3322
de93309a 3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3324 {
76a01679 3325 }
4c4b4cd2 3326
de93309a 3327 if (j < 0 || choice != choices[j])
4c4b4cd2 3328 {
de93309a 3329 int k;
4c4b4cd2 3330
de93309a
SM
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
4c4b4cd2 3335 }
14f9c5c9
AS
3336 }
3337
de93309a
SM
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
14f9c5c9
AS
3342}
3343
de93309a
SM
3344/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
14f9c5c9
AS
3351
3352static int
de93309a 3353user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3354{
de93309a
SM
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3360
de93309a
SM
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
14f9c5c9 3365
de93309a
SM
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368canceled because the command is ambiguous\n\
3369See set/show multiple-symbol."));
14f9c5c9 3370
de93309a
SM
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
14f9c5c9 3376
de93309a
SM
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
14f9c5c9 3380
de93309a 3381 sort_choices (syms, nsyms);
14f9c5c9 3382
de93309a
SM
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
14f9c5c9 3387
de93309a
SM
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3392
de93309a
SM
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
76a01679
JB
3407 else
3408 {
de93309a
SM
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
4c4b4cd2 3414
de93309a
SM
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3434 syms[i].symbol->print_name ());
de93309a
SM
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
76a01679 3452 }
14f9c5c9 3453 }
14f9c5c9 3454
de93309a
SM
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
14f9c5c9 3457
de93309a
SM
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
14f9c5c9 3460
de93309a
SM
3461 return n_chosen;
3462}
14f9c5c9 3463
de93309a
SM
3464/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3472
de93309a
SM
3473static void
3474resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476{
3477 struct type *context_type = NULL;
3478 int pc = 0;
14f9c5c9 3479
de93309a
SM
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3482
de93309a
SM
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484}
4c4b4cd2 3485
de93309a
SM
3486/* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
14f9c5c9 3494
de93309a
SM
3495static struct value *
3496resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
14f9c5c9 3499{
de93309a
SM
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
14f9c5c9 3507
de93309a
SM
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
4c4b4cd2 3511
de93309a
SM
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3524 }
de93309a
SM
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
14f9c5c9 3527
de93309a
SM
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
14f9c5c9 3656 }
14f9c5c9 3657
de93309a
SM
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
4c4b4cd2 3664
de93309a
SM
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
14f9c5c9 3667 {
de93309a
SM
3668 default:
3669 break;
5b4ee69b 3670
de93309a
SM
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3673 {
de93309a
SM
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
5b4ee69b 3676
de93309a 3677 n_candidates =
987012b8 3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
d2e4a39e 3681
de93309a
SM
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
4c4b4cd2 3717
de93309a
SM
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
987012b8 3720 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
987012b8 3728 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
987012b8 3732 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3737 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
5b4ee69b 3741
de93309a
SM
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
14f9c5c9 3746
de93309a
SM
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
4c4b4cd2 3750 {
de93309a
SM
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
4c4b4cd2 3755 }
de93309a
SM
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
987012b8 3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
14f9c5c9 3770
de93309a
SM
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
987012b8 3778 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
987012b8 3782 exp->elts[pc + 5].symbol->print_name ());
de93309a 3783 }
d72413e6 3784
de93309a
SM
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
d72413e6 3816
de93309a
SM
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
d72413e6 3821
de93309a
SM
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
d72413e6 3827
de93309a
SM
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
d72413e6 3834
de93309a
SM
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
d72413e6 3838 }
d72413e6 3839
de93309a
SM
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847}
14f9c5c9 3848
de93309a
SM
3849/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852/* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
14f9c5c9 3854
de93309a
SM
3855static int
3856ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3857{
de93309a
SM
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
14f9c5c9 3860
de93309a
SM
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3865
de93309a 3866 switch (TYPE_CODE (ftype))
14f9c5c9 3867 {
de93309a
SM
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3874 else
de93309a
SM
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
4c4b4cd2 3881 {
de93309a
SM
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
4c4b4cd2 3888 }
d2e4a39e 3889
de93309a
SM
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
14f9c5c9 3893
de93309a
SM
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3901
de93309a
SM
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
14f9c5c9
AS
3906}
3907
de93309a
SM
3908/* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
14f9c5c9 3912
de93309a
SM
3913static int
3914ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915{
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3918
de93309a
SM
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
14f9c5c9 3924
de93309a
SM
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
14f9c5c9 3927
de93309a
SM
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3937
de93309a
SM
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943}
d2e4a39e 3944
de93309a
SM
3945/* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3949
de93309a
SM
3950static int
3951return_match (struct type *func_type, struct type *context_type)
3952{
3953 struct type *return_type;
d2e4a39e 3954
de93309a
SM
3955 if (func_type == NULL)
3956 return 1;
14f9c5c9 3957
de93309a
SM
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
76a01679 3964
de93309a 3965 context_type = get_base_type (context_type);
14f9c5c9 3966
de93309a
SM
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973}
14f9c5c9 3974
14f9c5c9 3975
de93309a
SM
3976/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
14f9c5c9 3982
de93309a
SM
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
14f9c5c9 3987
de93309a
SM
3988static int
3989ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993{
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
14f9c5c9 3997
de93309a
SM
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 4005 {
de93309a 4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 4007
de93309a
SM
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4c4b4cd2 4014 }
14f9c5c9
AS
4015 }
4016
de93309a
SM
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
14f9c5c9
AS
4030}
4031
4c4b4cd2
PH
4032/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4035
4036static void
e9d9f57e 4037replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4038 int oplen, struct symbol *sym,
270140bd 4039 const struct block *block)
14f9c5c9
AS
4040{
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4042 symbol, -oplen for operator being replaced). */
d2e4a39e 4043 struct expression *newexp = (struct expression *)
8c1a34e7 4044 xzalloc (sizeof (struct expression)
4c4b4cd2 4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4046 struct expression *exp = expp->get ();
14f9c5c9
AS
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
3489610d 4050 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
e9d9f57e 4062 expp->reset (newexp);
d2e4a39e 4063}
14f9c5c9
AS
4064
4065/* Type-class predicates */
4066
4c4b4cd2
PH
4067/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
14f9c5c9
AS
4069
4070static int
d2e4a39e 4071numeric_type_p (struct type *type)
14f9c5c9
AS
4072{
4073 if (type == NULL)
4074 return 0;
d2e4a39e
AS
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4c4b4cd2
PH
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
d2e4a39e 4088 }
14f9c5c9
AS
4089}
4090
4c4b4cd2 4091/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4092
4093static int
d2e4a39e 4094integer_type_p (struct type *type)
14f9c5c9
AS
4095{
4096 if (type == NULL)
4097 return 0;
d2e4a39e
AS
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4c4b4cd2
PH
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
d2e4a39e 4110 }
14f9c5c9
AS
4111}
4112
4c4b4cd2 4113/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4114
4115static int
d2e4a39e 4116scalar_type_p (struct type *type)
14f9c5c9
AS
4117{
4118 if (type == NULL)
4119 return 0;
d2e4a39e
AS
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4c4b4cd2
PH
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
d2e4a39e 4132 }
14f9c5c9
AS
4133}
4134
4c4b4cd2 4135/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4136
4137static int
d2e4a39e 4138discrete_type_p (struct type *type)
14f9c5c9
AS
4139{
4140 if (type == NULL)
4141 return 0;
d2e4a39e
AS
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4c4b4cd2
PH
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
872f0337 4149 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4150 return 1;
4151 default:
4152 return 0;
4153 }
d2e4a39e 4154 }
14f9c5c9
AS
4155}
4156
4c4b4cd2
PH
4157/* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
14f9c5c9
AS
4160
4161static int
d2e4a39e 4162possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4163{
76a01679 4164 struct type *type0 =
df407dfe 4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4166 struct type *type1 =
df407dfe 4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4168
4c4b4cd2
PH
4169 if (type0 == NULL)
4170 return 0;
4171
14f9c5c9
AS
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
d2e4a39e 4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
d2e4a39e 4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
d2e4a39e 4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4197
4198 case BINOP_CONCAT:
ee90b9ab 4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4200
4201 case BINOP_EXP:
d2e4a39e 4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
14f9c5c9
AS
4209
4210 }
4211}
4212\f
4c4b4cd2 4213 /* Renaming */
14f9c5c9 4214
aeb5907d
JB
4215/* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227/* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
0963b4bd 4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246enum ada_renaming_category
4247ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250{
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
14f9c5c9 4258 {
aeb5907d
JB
4259 default:
4260 return ADA_NOT_RENAMING;
aeb5907d
JB
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
987012b8 4265 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
14f9c5c9 4289 }
4c4b4cd2 4290
de93309a
SM
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302}
4303
4304/* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308static struct value *
4309ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311{
4312 const char *sym_name;
4313
987012b8 4314 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317}
4318\f
4319
4320 /* Evaluation: Function Calls */
4321
4322/* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326static struct value *
4327ensure_lval (struct value *val)
4328{
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342}
4343
4344/* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356static struct value *
4357ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358{
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
aeb5907d 4392
de93309a
SM
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
52ce6436 4395
de93309a
SM
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
a5ee536b 4403
de93309a
SM
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4408
de93309a
SM
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
14f9c5c9 4414
de93309a
SM
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
14f9c5c9 4421
de93309a
SM
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
c3e5cd34 4431
de93309a
SM
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
c3e5cd34 4454 }
14f9c5c9 4455
de93309a
SM
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
14f9c5c9
AS
4467}
4468
4469/* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4472 values not residing in memory, updating it as needed. */
14f9c5c9 4473
a93c0eb6 4474struct value *
40bc484c 4475ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4476{
df407dfe 4477 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4478 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4485
4c4b4cd2 4486 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4488 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4491 {
a84a8a0d 4492 struct value *result;
5b4ee69b 4493
14f9c5c9 4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4495 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4496 result = desc_data (actual);
cb923fcc 4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
5b4ee69b 4502
df407dfe 4503 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4504 val = allocate_value (actual_type);
990a07ab 4505 memcpy ((char *) value_contents_raw (val),
0fd88904 4506 (char *) value_contents (actual),
4c4b4cd2 4507 TYPE_LENGTH (actual_type));
40bc484c 4508 actual = ensure_lval (val);
4c4b4cd2 4509 }
a84a8a0d 4510 result = value_addr (actual);
4c4b4cd2 4511 }
a84a8a0d
JB
4512 else
4513 return actual;
b1af9e97 4514 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
8344af1e
JB
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
14f9c5c9
AS
4528
4529 return actual;
4530}
4531
438c98a1
JB
4532/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537static CORE_ADDR
4538value_pointer (struct value *value, struct type *type)
4539{
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
224c3ddb 4542 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4548 return addr;
4549}
4550
14f9c5c9 4551
4c4b4cd2
PH
4552/* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
14f9c5c9 4557
d2e4a39e 4558static struct value *
40bc484c 4559make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4560{
d2e4a39e
AS
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4565 int i;
d2e4a39e 4566
0963b4bd
MS
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
14f9c5c9 4569 {
19f220c3
JK
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4578 }
d2e4a39e 4579
40bc484c 4580 bounds = ensure_lval (bounds);
d2e4a39e 4581
19f220c3
JK
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4595
40bc484c 4596 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602}
14f9c5c9 4603\f
3d9434b5
JB
4604 /* Symbol Cache Module */
4605
3d9434b5 4606/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4607 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
ee01b665 4616/* Initialize the contents of SYM_CACHE. */
3d9434b5 4617
ee01b665
JB
4618static void
4619ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620{
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623}
3d9434b5 4624
ee01b665
JB
4625/* Free the memory used by SYM_CACHE. */
4626
4627static void
4628ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4629{
ee01b665
JB
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632}
3d9434b5 4633
ee01b665
JB
4634/* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4636
ee01b665
JB
4637static struct ada_symbol_cache *
4638ada_get_symbol_cache (struct program_space *pspace)
4639{
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4641
66c168ae 4642 if (pspace_data->sym_cache == NULL)
ee01b665 4643 {
66c168ae
JB
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4646 }
4647
66c168ae 4648 return pspace_data->sym_cache;
ee01b665 4649}
3d9434b5
JB
4650
4651/* Clear all entries from the symbol cache. */
4652
4653static void
4654ada_clear_symbol_cache (void)
4655{
ee01b665
JB
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4661}
4662
fe978cb0 4663/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4664 Return it if found, or NULL otherwise. */
4665
4666static struct cache_entry **
fe978cb0 4667find_entry (const char *name, domain_enum domain)
3d9434b5 4668{
ee01b665
JB
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
ee01b665 4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4675 {
fe978cb0 4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4677 return e;
4678 }
4679 return NULL;
4680}
4681
fe978cb0 4682/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4687
96d887e8 4688static int
fe978cb0 4689lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4690 struct symbol **sym, const struct block **block)
96d887e8 4691{
fe978cb0 4692 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
96d887e8
PH
4701}
4702
3d9434b5 4703/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4704 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4705
96d887e8 4706static void
fe978cb0 4707cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4708 const struct block *block)
96d887e8 4709{
ee01b665
JB
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
3d9434b5 4712 int h;
3d9434b5
JB
4713 struct cache_entry *e;
4714
1994afbf
DE
4715 /* Symbols for builtin types don't have a block.
4716 For now don't cache such symbols. */
4717 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4718 return;
4719
3d9434b5
JB
4720 /* If the symbol is a local symbol, then do not cache it, as a search
4721 for that symbol depends on the context. To determine whether
4722 the symbol is local or not, we check the block where we found it
4723 against the global and static blocks of its associated symtab. */
4724 if (sym
08be3fe3 4725 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4726 GLOBAL_BLOCK) != block
08be3fe3 4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4728 STATIC_BLOCK) != block)
3d9434b5
JB
4729 return;
4730
4731 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4732 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4733 e->next = sym_cache->root[h];
4734 sym_cache->root[h] = e;
2ef5453b 4735 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4736 e->sym = sym;
fe978cb0 4737 e->domain = domain;
3d9434b5 4738 e->block = block;
96d887e8 4739}
4c4b4cd2
PH
4740\f
4741 /* Symbol Lookup */
4742
b5ec771e
PA
4743/* Return the symbol name match type that should be used used when
4744 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4745
4746 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4747 for Ada lookups. */
c0431670 4748
b5ec771e
PA
4749static symbol_name_match_type
4750name_match_type_from_name (const char *lookup_name)
c0431670 4751{
b5ec771e
PA
4752 return (strstr (lookup_name, "__") == NULL
4753 ? symbol_name_match_type::WILD
4754 : symbol_name_match_type::FULL);
c0431670
JB
4755}
4756
4c4b4cd2
PH
4757/* Return the result of a standard (literal, C-like) lookup of NAME in
4758 given DOMAIN, visible from lexical block BLOCK. */
4759
4760static struct symbol *
4761standard_lookup (const char *name, const struct block *block,
4762 domain_enum domain)
4763{
acbd605d 4764 /* Initialize it just to avoid a GCC false warning. */
6640a367 4765 struct block_symbol sym = {};
4c4b4cd2 4766
d12307c1
PMR
4767 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4768 return sym.symbol;
a2cd4f14 4769 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4770 cache_symbol (name, domain, sym.symbol, sym.block);
4771 return sym.symbol;
4c4b4cd2
PH
4772}
4773
4774
4775/* Non-zero iff there is at least one non-function/non-enumeral symbol
4776 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4777 since they contend in overloading in the same way. */
4778static int
d12307c1 4779is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4780{
4781 int i;
4782
4783 for (i = 0; i < n; i += 1)
d12307c1
PMR
4784 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4785 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4786 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4787 return 1;
4788
4789 return 0;
4790}
4791
4792/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4793 struct types. Otherwise, they may not. */
14f9c5c9
AS
4794
4795static int
d2e4a39e 4796equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4797{
d2e4a39e 4798 if (type0 == type1)
14f9c5c9 4799 return 1;
d2e4a39e 4800 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4801 || TYPE_CODE (type0) != TYPE_CODE (type1))
4802 return 0;
d2e4a39e 4803 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4804 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4805 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4806 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4807 return 1;
d2e4a39e 4808
14f9c5c9
AS
4809 return 0;
4810}
4811
4812/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4813 no more defined than that of SYM1. */
14f9c5c9
AS
4814
4815static int
d2e4a39e 4816lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4817{
4818 if (sym0 == sym1)
4819 return 1;
176620f1 4820 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4821 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4822 return 0;
4823
d2e4a39e 4824 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4825 {
4826 case LOC_UNDEF:
4827 return 1;
4828 case LOC_TYPEDEF:
4829 {
4c4b4cd2
PH
4830 struct type *type0 = SYMBOL_TYPE (sym0);
4831 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4832 const char *name0 = sym0->linkage_name ();
4833 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4834 int len0 = strlen (name0);
5b4ee69b 4835
4c4b4cd2
PH
4836 return
4837 TYPE_CODE (type0) == TYPE_CODE (type1)
4838 && (equiv_types (type0, type1)
4839 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4840 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4841 }
4842 case LOC_CONST:
4843 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4844 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4845
4846 case LOC_STATIC:
4847 {
987012b8
CB
4848 const char *name0 = sym0->linkage_name ();
4849 const char *name1 = sym1->linkage_name ();
4b610737
TT
4850 return (strcmp (name0, name1) == 0
4851 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4852 }
4853
d2e4a39e
AS
4854 default:
4855 return 0;
14f9c5c9
AS
4856 }
4857}
4858
d12307c1 4859/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4860 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4861
4862static void
76a01679
JB
4863add_defn_to_vec (struct obstack *obstackp,
4864 struct symbol *sym,
f0c5f9b2 4865 const struct block *block)
14f9c5c9
AS
4866{
4867 int i;
d12307c1 4868 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4869
529cad9c
PH
4870 /* Do not try to complete stub types, as the debugger is probably
4871 already scanning all symbols matching a certain name at the
4872 time when this function is called. Trying to replace the stub
4873 type by its associated full type will cause us to restart a scan
4874 which may lead to an infinite recursion. Instead, the client
4875 collecting the matching symbols will end up collecting several
4876 matches, with at least one of them complete. It can then filter
4877 out the stub ones if needed. */
4878
4c4b4cd2
PH
4879 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4880 {
d12307c1 4881 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4882 return;
d12307c1 4883 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4884 {
d12307c1 4885 prevDefns[i].symbol = sym;
4c4b4cd2 4886 prevDefns[i].block = block;
4c4b4cd2 4887 return;
76a01679 4888 }
4c4b4cd2
PH
4889 }
4890
4891 {
d12307c1 4892 struct block_symbol info;
4c4b4cd2 4893
d12307c1 4894 info.symbol = sym;
4c4b4cd2 4895 info.block = block;
d12307c1 4896 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4897 }
4898}
4899
d12307c1
PMR
4900/* Number of block_symbol structures currently collected in current vector in
4901 OBSTACKP. */
4c4b4cd2 4902
76a01679
JB
4903static int
4904num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4905{
d12307c1 4906 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4907}
4908
d12307c1
PMR
4909/* Vector of block_symbol structures currently collected in current vector in
4910 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4911
d12307c1 4912static struct block_symbol *
4c4b4cd2
PH
4913defns_collected (struct obstack *obstackp, int finish)
4914{
4915 if (finish)
224c3ddb 4916 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4917 else
d12307c1 4918 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4919}
4920
7c7b6655
TT
4921/* Return a bound minimal symbol matching NAME according to Ada
4922 decoding rules. Returns an invalid symbol if there is no such
4923 minimal symbol. Names prefixed with "standard__" are handled
4924 specially: "standard__" is first stripped off, and only static and
4925 global symbols are searched. */
4c4b4cd2 4926
7c7b6655 4927struct bound_minimal_symbol
96d887e8 4928ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4929{
7c7b6655 4930 struct bound_minimal_symbol result;
4c4b4cd2 4931
7c7b6655
TT
4932 memset (&result, 0, sizeof (result));
4933
b5ec771e
PA
4934 symbol_name_match_type match_type = name_match_type_from_name (name);
4935 lookup_name_info lookup_name (name, match_type);
4936
4937 symbol_name_matcher_ftype *match_name
4938 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4939
2030c079 4940 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4941 {
7932255d 4942 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4943 {
c9d95fa3 4944 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4945 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4946 {
4947 result.minsym = msymbol;
4948 result.objfile = objfile;
4949 break;
4950 }
4951 }
4952 }
4c4b4cd2 4953
7c7b6655 4954 return result;
96d887e8 4955}
4c4b4cd2 4956
96d887e8
PH
4957/* For all subprograms that statically enclose the subprogram of the
4958 selected frame, add symbols matching identifier NAME in DOMAIN
4959 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4960 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4961 with a wildcard prefix. */
4c4b4cd2 4962
96d887e8
PH
4963static void
4964add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4965 const lookup_name_info &lookup_name,
4966 domain_enum domain)
96d887e8 4967{
96d887e8 4968}
14f9c5c9 4969
96d887e8
PH
4970/* True if TYPE is definitely an artificial type supplied to a symbol
4971 for which no debugging information was given in the symbol file. */
14f9c5c9 4972
96d887e8
PH
4973static int
4974is_nondebugging_type (struct type *type)
4975{
0d5cff50 4976 const char *name = ada_type_name (type);
5b4ee69b 4977
96d887e8
PH
4978 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4979}
4c4b4cd2 4980
8f17729f
JB
4981/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4982 that are deemed "identical" for practical purposes.
4983
4984 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4985 types and that their number of enumerals is identical (in other
4986 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4987
4988static int
4989ada_identical_enum_types_p (struct type *type1, struct type *type2)
4990{
4991 int i;
4992
4993 /* The heuristic we use here is fairly conservative. We consider
4994 that 2 enumerate types are identical if they have the same
4995 number of enumerals and that all enumerals have the same
4996 underlying value and name. */
4997
4998 /* All enums in the type should have an identical underlying value. */
4999 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5000 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5001 return 0;
5002
5003 /* All enumerals should also have the same name (modulo any numerical
5004 suffix). */
5005 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5006 {
0d5cff50
DE
5007 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5008 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5009 int len_1 = strlen (name_1);
5010 int len_2 = strlen (name_2);
5011
5012 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5014 if (len_1 != len_2
5015 || strncmp (TYPE_FIELD_NAME (type1, i),
5016 TYPE_FIELD_NAME (type2, i),
5017 len_1) != 0)
5018 return 0;
5019 }
5020
5021 return 1;
5022}
5023
5024/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5025 that are deemed "identical" for practical purposes. Sometimes,
5026 enumerals are not strictly identical, but their types are so similar
5027 that they can be considered identical.
5028
5029 For instance, consider the following code:
5030
5031 type Color is (Black, Red, Green, Blue, White);
5032 type RGB_Color is new Color range Red .. Blue;
5033
5034 Type RGB_Color is a subrange of an implicit type which is a copy
5035 of type Color. If we call that implicit type RGB_ColorB ("B" is
5036 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5037 As a result, when an expression references any of the enumeral
5038 by name (Eg. "print green"), the expression is technically
5039 ambiguous and the user should be asked to disambiguate. But
5040 doing so would only hinder the user, since it wouldn't matter
5041 what choice he makes, the outcome would always be the same.
5042 So, for practical purposes, we consider them as the same. */
5043
5044static int
54d343a2 5045symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5046{
5047 int i;
5048
5049 /* Before performing a thorough comparison check of each type,
5050 we perform a series of inexpensive checks. We expect that these
5051 checks will quickly fail in the vast majority of cases, and thus
5052 help prevent the unnecessary use of a more expensive comparison.
5053 Said comparison also expects us to make some of these checks
5054 (see ada_identical_enum_types_p). */
5055
5056 /* Quick check: All symbols should have an enum type. */
54d343a2 5057 for (i = 0; i < syms.size (); i++)
d12307c1 5058 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5059 return 0;
5060
5061 /* Quick check: They should all have the same value. */
54d343a2 5062 for (i = 1; i < syms.size (); i++)
d12307c1 5063 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5064 return 0;
5065
5066 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5067 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5068 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5069 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5070 return 0;
5071
5072 /* All the sanity checks passed, so we might have a set of
5073 identical enumeration types. Perform a more complete
5074 comparison of the type of each symbol. */
54d343a2 5075 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5076 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5077 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5078 return 0;
5079
5080 return 1;
5081}
5082
54d343a2 5083/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5084 duplicate other symbols in the list (The only case I know of where
5085 this happens is when object files containing stabs-in-ecoff are
5086 linked with files containing ordinary ecoff debugging symbols (or no
5087 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5088 Returns the number of items in the modified list. */
4c4b4cd2 5089
96d887e8 5090static int
54d343a2 5091remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5092{
5093 int i, j;
4c4b4cd2 5094
8f17729f
JB
5095 /* We should never be called with less than 2 symbols, as there
5096 cannot be any extra symbol in that case. But it's easy to
5097 handle, since we have nothing to do in that case. */
54d343a2
TT
5098 if (syms->size () < 2)
5099 return syms->size ();
8f17729f 5100
96d887e8 5101 i = 0;
54d343a2 5102 while (i < syms->size ())
96d887e8 5103 {
a35ddb44 5104 int remove_p = 0;
339c13b6
JB
5105
5106 /* If two symbols have the same name and one of them is a stub type,
5107 the get rid of the stub. */
5108
54d343a2 5109 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5110 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5111 {
54d343a2 5112 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5113 {
5114 if (j != i
54d343a2 5115 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5116 && (*syms)[j].symbol->linkage_name () != NULL
5117 && strcmp ((*syms)[i].symbol->linkage_name (),
5118 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5119 remove_p = 1;
339c13b6
JB
5120 }
5121 }
5122
5123 /* Two symbols with the same name, same class and same address
5124 should be identical. */
5125
987012b8 5126 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5127 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5128 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5129 {
54d343a2 5130 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5131 {
5132 if (i != j
987012b8
CB
5133 && (*syms)[j].symbol->linkage_name () != NULL
5134 && strcmp ((*syms)[i].symbol->linkage_name (),
5135 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5136 && SYMBOL_CLASS ((*syms)[i].symbol)
5137 == SYMBOL_CLASS ((*syms)[j].symbol)
5138 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5139 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5140 remove_p = 1;
4c4b4cd2 5141 }
4c4b4cd2 5142 }
339c13b6 5143
a35ddb44 5144 if (remove_p)
54d343a2 5145 syms->erase (syms->begin () + i);
339c13b6 5146
96d887e8 5147 i += 1;
14f9c5c9 5148 }
8f17729f
JB
5149
5150 /* If all the remaining symbols are identical enumerals, then
5151 just keep the first one and discard the rest.
5152
5153 Unlike what we did previously, we do not discard any entry
5154 unless they are ALL identical. This is because the symbol
5155 comparison is not a strict comparison, but rather a practical
5156 comparison. If all symbols are considered identical, then
5157 we can just go ahead and use the first one and discard the rest.
5158 But if we cannot reduce the list to a single element, we have
5159 to ask the user to disambiguate anyways. And if we have to
5160 present a multiple-choice menu, it's less confusing if the list
5161 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5162 if (symbols_are_identical_enums (*syms))
5163 syms->resize (1);
8f17729f 5164
54d343a2 5165 return syms->size ();
14f9c5c9
AS
5166}
5167
96d887e8
PH
5168/* Given a type that corresponds to a renaming entity, use the type name
5169 to extract the scope (package name or function name, fully qualified,
5170 and following the GNAT encoding convention) where this renaming has been
49d83361 5171 defined. */
4c4b4cd2 5172
49d83361 5173static std::string
96d887e8 5174xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5175{
96d887e8 5176 /* The renaming types adhere to the following convention:
0963b4bd 5177 <scope>__<rename>___<XR extension>.
96d887e8
PH
5178 So, to extract the scope, we search for the "___XR" extension,
5179 and then backtrack until we find the first "__". */
76a01679 5180
a737d952 5181 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5182 const char *suffix = strstr (name, "___XR");
5183 const char *last;
14f9c5c9 5184
96d887e8
PH
5185 /* Now, backtrack a bit until we find the first "__". Start looking
5186 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5187
96d887e8
PH
5188 for (last = suffix - 3; last > name; last--)
5189 if (last[0] == '_' && last[1] == '_')
5190 break;
76a01679 5191
96d887e8 5192 /* Make a copy of scope and return it. */
49d83361 5193 return std::string (name, last);
4c4b4cd2
PH
5194}
5195
96d887e8 5196/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5197
96d887e8
PH
5198static int
5199is_package_name (const char *name)
4c4b4cd2 5200{
96d887e8
PH
5201 /* Here, We take advantage of the fact that no symbols are generated
5202 for packages, while symbols are generated for each function.
5203 So the condition for NAME represent a package becomes equivalent
5204 to NAME not existing in our list of symbols. There is only one
5205 small complication with library-level functions (see below). */
4c4b4cd2 5206
96d887e8
PH
5207 /* If it is a function that has not been defined at library level,
5208 then we should be able to look it up in the symbols. */
5209 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5210 return 0;
14f9c5c9 5211
96d887e8
PH
5212 /* Library-level function names start with "_ada_". See if function
5213 "_ada_" followed by NAME can be found. */
14f9c5c9 5214
96d887e8 5215 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5216 functions names cannot contain "__" in them. */
96d887e8
PH
5217 if (strstr (name, "__") != NULL)
5218 return 0;
4c4b4cd2 5219
528e1572 5220 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5221
528e1572 5222 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5223}
14f9c5c9 5224
96d887e8 5225/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5226 not visible from FUNCTION_NAME. */
14f9c5c9 5227
96d887e8 5228static int
0d5cff50 5229old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5230{
aeb5907d
JB
5231 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5232 return 0;
5233
49d83361 5234 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5235
96d887e8 5236 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5237 if (is_package_name (scope.c_str ()))
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Check that the rename is in the current function scope by checking
5241 that its name starts with SCOPE. */
76a01679 5242
96d887e8
PH
5243 /* If the function name starts with "_ada_", it means that it is
5244 a library-level function. Strip this prefix before doing the
5245 comparison, as the encoding for the renaming does not contain
5246 this prefix. */
61012eef 5247 if (startswith (function_name, "_ada_"))
96d887e8 5248 function_name += 5;
f26caa11 5249
49d83361 5250 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5251}
5252
aeb5907d
JB
5253/* Remove entries from SYMS that corresponds to a renaming entity that
5254 is not visible from the function associated with CURRENT_BLOCK or
5255 that is superfluous due to the presence of more specific renaming
5256 information. Places surviving symbols in the initial entries of
5257 SYMS and returns the number of surviving symbols.
96d887e8
PH
5258
5259 Rationale:
aeb5907d
JB
5260 First, in cases where an object renaming is implemented as a
5261 reference variable, GNAT may produce both the actual reference
5262 variable and the renaming encoding. In this case, we discard the
5263 latter.
5264
5265 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5266 entity. Unfortunately, STABS currently does not support the definition
5267 of types that are local to a given lexical block, so all renamings types
5268 are emitted at library level. As a consequence, if an application
5269 contains two renaming entities using the same name, and a user tries to
5270 print the value of one of these entities, the result of the ada symbol
5271 lookup will also contain the wrong renaming type.
f26caa11 5272
96d887e8
PH
5273 This function partially covers for this limitation by attempting to
5274 remove from the SYMS list renaming symbols that should be visible
5275 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5276 method with the current information available. The implementation
5277 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5278
5279 - When the user tries to print a rename in a function while there
5280 is another rename entity defined in a package: Normally, the
5281 rename in the function has precedence over the rename in the
5282 package, so the latter should be removed from the list. This is
5283 currently not the case.
5284
5285 - This function will incorrectly remove valid renames if
5286 the CURRENT_BLOCK corresponds to a function which symbol name
5287 has been changed by an "Export" pragma. As a consequence,
5288 the user will be unable to print such rename entities. */
4c4b4cd2 5289
14f9c5c9 5290static int
54d343a2
TT
5291remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5292 const struct block *current_block)
4c4b4cd2
PH
5293{
5294 struct symbol *current_function;
0d5cff50 5295 const char *current_function_name;
4c4b4cd2 5296 int i;
aeb5907d
JB
5297 int is_new_style_renaming;
5298
5299 /* If there is both a renaming foo___XR... encoded as a variable and
5300 a simple variable foo in the same block, discard the latter.
0963b4bd 5301 First, zero out such symbols, then compress. */
aeb5907d 5302 is_new_style_renaming = 0;
54d343a2 5303 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5304 {
54d343a2
TT
5305 struct symbol *sym = (*syms)[i].symbol;
5306 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5307 const char *name;
5308 const char *suffix;
5309
5310 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5311 continue;
987012b8 5312 name = sym->linkage_name ();
aeb5907d
JB
5313 suffix = strstr (name, "___XR");
5314
5315 if (suffix != NULL)
5316 {
5317 int name_len = suffix - name;
5318 int j;
5b4ee69b 5319
aeb5907d 5320 is_new_style_renaming = 1;
54d343a2
TT
5321 for (j = 0; j < syms->size (); j += 1)
5322 if (i != j && (*syms)[j].symbol != NULL
987012b8 5323 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5324 name_len) == 0
54d343a2
TT
5325 && block == (*syms)[j].block)
5326 (*syms)[j].symbol = NULL;
aeb5907d
JB
5327 }
5328 }
5329 if (is_new_style_renaming)
5330 {
5331 int j, k;
5332
54d343a2
TT
5333 for (j = k = 0; j < syms->size (); j += 1)
5334 if ((*syms)[j].symbol != NULL)
aeb5907d 5335 {
54d343a2 5336 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5337 k += 1;
5338 }
5339 return k;
5340 }
4c4b4cd2
PH
5341
5342 /* Extract the function name associated to CURRENT_BLOCK.
5343 Abort if unable to do so. */
76a01679 5344
4c4b4cd2 5345 if (current_block == NULL)
54d343a2 5346 return syms->size ();
76a01679 5347
7f0df278 5348 current_function = block_linkage_function (current_block);
4c4b4cd2 5349 if (current_function == NULL)
54d343a2 5350 return syms->size ();
4c4b4cd2 5351
987012b8 5352 current_function_name = current_function->linkage_name ();
4c4b4cd2 5353 if (current_function_name == NULL)
54d343a2 5354 return syms->size ();
4c4b4cd2
PH
5355
5356 /* Check each of the symbols, and remove it from the list if it is
5357 a type corresponding to a renaming that is out of the scope of
5358 the current block. */
5359
5360 i = 0;
54d343a2 5361 while (i < syms->size ())
4c4b4cd2 5362 {
54d343a2 5363 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5364 == ADA_OBJECT_RENAMING
54d343a2
TT
5365 && old_renaming_is_invisible ((*syms)[i].symbol,
5366 current_function_name))
5367 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5368 else
5369 i += 1;
5370 }
5371
54d343a2 5372 return syms->size ();
4c4b4cd2
PH
5373}
5374
339c13b6
JB
5375/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5376 whose name and domain match NAME and DOMAIN respectively.
5377 If no match was found, then extend the search to "enclosing"
5378 routines (in other words, if we're inside a nested function,
5379 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5380 If WILD_MATCH_P is nonzero, perform the naming matching in
5381 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5382
5383 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5384
5385static void
b5ec771e
PA
5386ada_add_local_symbols (struct obstack *obstackp,
5387 const lookup_name_info &lookup_name,
5388 const struct block *block, domain_enum domain)
339c13b6
JB
5389{
5390 int block_depth = 0;
5391
5392 while (block != NULL)
5393 {
5394 block_depth += 1;
b5ec771e 5395 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5396
5397 /* If we found a non-function match, assume that's the one. */
5398 if (is_nonfunction (defns_collected (obstackp, 0),
5399 num_defns_collected (obstackp)))
5400 return;
5401
5402 block = BLOCK_SUPERBLOCK (block);
5403 }
5404
5405 /* If no luck so far, try to find NAME as a local symbol in some lexically
5406 enclosing subprogram. */
5407 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5408 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5409}
5410
ccefe4c4 5411/* An object of this type is used as the user_data argument when
40658b94 5412 calling the map_matching_symbols method. */
ccefe4c4 5413
40658b94 5414struct match_data
ccefe4c4 5415{
40658b94 5416 struct objfile *objfile;
ccefe4c4 5417 struct obstack *obstackp;
40658b94
PH
5418 struct symbol *arg_sym;
5419 int found_sym;
ccefe4c4
TT
5420};
5421
199b4314
TT
5422/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5423 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5424 containing the obstack that collects the symbol list, the file that SYM
5425 must come from, a flag indicating whether a non-argument symbol has
5426 been found in the current block, and the last argument symbol
5427 passed in SYM within the current block (if any). When SYM is null,
5428 marking the end of a block, the argument symbol is added if no
5429 other has been found. */
ccefe4c4 5430
199b4314
TT
5431static bool
5432aux_add_nonlocal_symbols (struct block_symbol *bsym,
5433 struct match_data *data)
ccefe4c4 5434{
199b4314
TT
5435 const struct block *block = bsym->block;
5436 struct symbol *sym = bsym->symbol;
5437
40658b94
PH
5438 if (sym == NULL)
5439 {
5440 if (!data->found_sym && data->arg_sym != NULL)
5441 add_defn_to_vec (data->obstackp,
5442 fixup_symbol_section (data->arg_sym, data->objfile),
5443 block);
5444 data->found_sym = 0;
5445 data->arg_sym = NULL;
5446 }
5447 else
5448 {
5449 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5450 return true;
40658b94
PH
5451 else if (SYMBOL_IS_ARGUMENT (sym))
5452 data->arg_sym = sym;
5453 else
5454 {
5455 data->found_sym = 1;
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (sym, data->objfile),
5458 block);
5459 }
5460 }
199b4314 5461 return true;
40658b94
PH
5462}
5463
b5ec771e
PA
5464/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5465 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5466 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5467
5468static int
5469ada_add_block_renamings (struct obstack *obstackp,
5470 const struct block *block,
b5ec771e
PA
5471 const lookup_name_info &lookup_name,
5472 domain_enum domain)
22cee43f
PMR
5473{
5474 struct using_direct *renaming;
5475 int defns_mark = num_defns_collected (obstackp);
5476
b5ec771e
PA
5477 symbol_name_matcher_ftype *name_match
5478 = ada_get_symbol_name_matcher (lookup_name);
5479
22cee43f
PMR
5480 for (renaming = block_using (block);
5481 renaming != NULL;
5482 renaming = renaming->next)
5483 {
5484 const char *r_name;
22cee43f
PMR
5485
5486 /* Avoid infinite recursions: skip this renaming if we are actually
5487 already traversing it.
5488
5489 Currently, symbol lookup in Ada don't use the namespace machinery from
5490 C++/Fortran support: skip namespace imports that use them. */
5491 if (renaming->searched
5492 || (renaming->import_src != NULL
5493 && renaming->import_src[0] != '\0')
5494 || (renaming->import_dest != NULL
5495 && renaming->import_dest[0] != '\0'))
5496 continue;
5497 renaming->searched = 1;
5498
5499 /* TODO: here, we perform another name-based symbol lookup, which can
5500 pull its own multiple overloads. In theory, we should be able to do
5501 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5502 not a simple name. But in order to do this, we would need to enhance
5503 the DWARF reader to associate a symbol to this renaming, instead of a
5504 name. So, for now, we do something simpler: re-use the C++/Fortran
5505 namespace machinery. */
5506 r_name = (renaming->alias != NULL
5507 ? renaming->alias
5508 : renaming->declaration);
b5ec771e
PA
5509 if (name_match (r_name, lookup_name, NULL))
5510 {
5511 lookup_name_info decl_lookup_name (renaming->declaration,
5512 lookup_name.match_type ());
5513 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5514 1, NULL);
5515 }
22cee43f
PMR
5516 renaming->searched = 0;
5517 }
5518 return num_defns_collected (obstackp) != defns_mark;
5519}
5520
db230ce3
JB
5521/* Implements compare_names, but only applying the comparision using
5522 the given CASING. */
5b4ee69b 5523
40658b94 5524static int
db230ce3
JB
5525compare_names_with_case (const char *string1, const char *string2,
5526 enum case_sensitivity casing)
40658b94
PH
5527{
5528 while (*string1 != '\0' && *string2 != '\0')
5529 {
db230ce3
JB
5530 char c1, c2;
5531
40658b94
PH
5532 if (isspace (*string1) || isspace (*string2))
5533 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5534
5535 if (casing == case_sensitive_off)
5536 {
5537 c1 = tolower (*string1);
5538 c2 = tolower (*string2);
5539 }
5540 else
5541 {
5542 c1 = *string1;
5543 c2 = *string2;
5544 }
5545 if (c1 != c2)
40658b94 5546 break;
db230ce3 5547
40658b94
PH
5548 string1 += 1;
5549 string2 += 1;
5550 }
db230ce3 5551
40658b94
PH
5552 switch (*string1)
5553 {
5554 case '(':
5555 return strcmp_iw_ordered (string1, string2);
5556 case '_':
5557 if (*string2 == '\0')
5558 {
052874e8 5559 if (is_name_suffix (string1))
40658b94
PH
5560 return 0;
5561 else
1a1d5513 5562 return 1;
40658b94 5563 }
dbb8534f 5564 /* FALLTHROUGH */
40658b94
PH
5565 default:
5566 if (*string2 == '(')
5567 return strcmp_iw_ordered (string1, string2);
5568 else
db230ce3
JB
5569 {
5570 if (casing == case_sensitive_off)
5571 return tolower (*string1) - tolower (*string2);
5572 else
5573 return *string1 - *string2;
5574 }
40658b94 5575 }
ccefe4c4
TT
5576}
5577
db230ce3
JB
5578/* Compare STRING1 to STRING2, with results as for strcmp.
5579 Compatible with strcmp_iw_ordered in that...
5580
5581 strcmp_iw_ordered (STRING1, STRING2) <= 0
5582
5583 ... implies...
5584
5585 compare_names (STRING1, STRING2) <= 0
5586
5587 (they may differ as to what symbols compare equal). */
5588
5589static int
5590compare_names (const char *string1, const char *string2)
5591{
5592 int result;
5593
5594 /* Similar to what strcmp_iw_ordered does, we need to perform
5595 a case-insensitive comparison first, and only resort to
5596 a second, case-sensitive, comparison if the first one was
5597 not sufficient to differentiate the two strings. */
5598
5599 result = compare_names_with_case (string1, string2, case_sensitive_off);
5600 if (result == 0)
5601 result = compare_names_with_case (string1, string2, case_sensitive_on);
5602
5603 return result;
5604}
5605
b5ec771e
PA
5606/* Convenience function to get at the Ada encoded lookup name for
5607 LOOKUP_NAME, as a C string. */
5608
5609static const char *
5610ada_lookup_name (const lookup_name_info &lookup_name)
5611{
5612 return lookup_name.ada ().lookup_name ().c_str ();
5613}
5614
339c13b6 5615/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5616 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5617 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5618 symbols otherwise. */
339c13b6
JB
5619
5620static void
b5ec771e
PA
5621add_nonlocal_symbols (struct obstack *obstackp,
5622 const lookup_name_info &lookup_name,
5623 domain_enum domain, int global)
339c13b6 5624{
40658b94 5625 struct match_data data;
339c13b6 5626
6475f2fe 5627 memset (&data, 0, sizeof data);
ccefe4c4 5628 data.obstackp = obstackp;
339c13b6 5629
b5ec771e
PA
5630 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5631
199b4314
TT
5632 auto callback = [&] (struct block_symbol *bsym)
5633 {
5634 return aux_add_nonlocal_symbols (bsym, &data);
5635 };
5636
2030c079 5637 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5638 {
5639 data.objfile = objfile;
5640
b054970d
TT
5641 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5642 domain, global, callback,
5643 (is_wild_match
5644 ? NULL : compare_names));
22cee43f 5645
b669c953 5646 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5647 {
5648 const struct block *global_block
5649 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5650
b5ec771e
PA
5651 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5652 domain))
22cee43f
PMR
5653 data.found_sym = 1;
5654 }
40658b94
PH
5655 }
5656
5657 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5658 {
b5ec771e 5659 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5660 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5661 symbol_name_match_type::FULL);
b5ec771e 5662
2030c079 5663 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5664 {
40658b94 5665 data.objfile = objfile;
b054970d 5666 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5667 domain, global, callback,
b5ec771e 5668 compare_names);
40658b94
PH
5669 }
5670 }
339c13b6
JB
5671}
5672
b5ec771e
PA
5673/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5674 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5675 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5676
22cee43f
PMR
5677 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5678 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5679 is the one match returned (no other matches in that or
d9680e73 5680 enclosing blocks is returned). If there are any matches in or
22cee43f 5681 surrounding BLOCK, then these alone are returned.
4eeaa230 5682
b5ec771e
PA
5683 Names prefixed with "standard__" are handled specially:
5684 "standard__" is first stripped off (by the lookup_name
5685 constructor), and only static and global symbols are searched.
14f9c5c9 5686
22cee43f
PMR
5687 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5688 to lookup global symbols. */
5689
5690static void
5691ada_add_all_symbols (struct obstack *obstackp,
5692 const struct block *block,
b5ec771e 5693 const lookup_name_info &lookup_name,
22cee43f
PMR
5694 domain_enum domain,
5695 int full_search,
5696 int *made_global_lookup_p)
14f9c5c9
AS
5697{
5698 struct symbol *sym;
14f9c5c9 5699
22cee43f
PMR
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 0;
339c13b6
JB
5702
5703 /* Special case: If the user specifies a symbol name inside package
5704 Standard, do a non-wild matching of the symbol name without
5705 the "standard__" prefix. This was primarily introduced in order
5706 to allow the user to specifically access the standard exceptions
5707 using, for instance, Standard.Constraint_Error when Constraint_Error
5708 is ambiguous (due to the user defining its own Constraint_Error
5709 entity inside its program). */
b5ec771e
PA
5710 if (lookup_name.ada ().standard_p ())
5711 block = NULL;
4c4b4cd2 5712
339c13b6 5713 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5714
4eeaa230
DE
5715 if (block != NULL)
5716 {
5717 if (full_search)
b5ec771e 5718 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5719 else
5720 {
5721 /* In the !full_search case we're are being called by
5722 ada_iterate_over_symbols, and we don't want to search
5723 superblocks. */
b5ec771e 5724 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5725 }
22cee43f
PMR
5726 if (num_defns_collected (obstackp) > 0 || !full_search)
5727 return;
4eeaa230 5728 }
d2e4a39e 5729
339c13b6
JB
5730 /* No non-global symbols found. Check our cache to see if we have
5731 already performed this search before. If we have, then return
5732 the same result. */
5733
b5ec771e
PA
5734 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5735 domain, &sym, &block))
4c4b4cd2
PH
5736 {
5737 if (sym != NULL)
b5ec771e 5738 add_defn_to_vec (obstackp, sym, block);
22cee43f 5739 return;
4c4b4cd2 5740 }
14f9c5c9 5741
22cee43f
PMR
5742 if (made_global_lookup_p)
5743 *made_global_lookup_p = 1;
b1eedac9 5744
339c13b6
JB
5745 /* Search symbols from all global blocks. */
5746
b5ec771e 5747 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5748
4c4b4cd2 5749 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5750 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5751
22cee43f 5752 if (num_defns_collected (obstackp) == 0)
b5ec771e 5753 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5754}
5755
b5ec771e
PA
5756/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5757 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5758 matches.
54d343a2
TT
5759 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5760 found and the blocks and symbol tables (if any) in which they were
5761 found.
22cee43f
PMR
5762
5763 When full_search is non-zero, any non-function/non-enumeral
5764 symbol match within the nest of blocks whose innermost member is BLOCK,
5765 is the one match returned (no other matches in that or
5766 enclosing blocks is returned). If there are any matches in or
5767 surrounding BLOCK, then these alone are returned.
5768
5769 Names prefixed with "standard__" are handled specially: "standard__"
5770 is first stripped off, and only static and global symbols are searched. */
5771
5772static int
b5ec771e
PA
5773ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5774 const struct block *block,
22cee43f 5775 domain_enum domain,
54d343a2 5776 std::vector<struct block_symbol> *results,
22cee43f
PMR
5777 int full_search)
5778{
22cee43f
PMR
5779 int syms_from_global_search;
5780 int ndefns;
ec6a20c2 5781 auto_obstack obstack;
22cee43f 5782
ec6a20c2 5783 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5784 domain, full_search, &syms_from_global_search);
14f9c5c9 5785
ec6a20c2
JB
5786 ndefns = num_defns_collected (&obstack);
5787
54d343a2
TT
5788 struct block_symbol *base = defns_collected (&obstack, 1);
5789 for (int i = 0; i < ndefns; ++i)
5790 results->push_back (base[i]);
4c4b4cd2 5791
54d343a2 5792 ndefns = remove_extra_symbols (results);
4c4b4cd2 5793
b1eedac9 5794 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5795 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5796
b1eedac9 5797 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5798 cache_symbol (ada_lookup_name (lookup_name), domain,
5799 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5800
54d343a2 5801 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5802
14f9c5c9
AS
5803 return ndefns;
5804}
5805
b5ec771e 5806/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5807 in global scopes, returning the number of matches, and filling *RESULTS
5808 with (SYM,BLOCK) tuples.
ec6a20c2 5809
4eeaa230
DE
5810 See ada_lookup_symbol_list_worker for further details. */
5811
5812int
b5ec771e 5813ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5814 domain_enum domain,
5815 std::vector<struct block_symbol> *results)
4eeaa230 5816{
b5ec771e
PA
5817 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5818 lookup_name_info lookup_name (name, name_match_type);
5819
5820 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5821}
5822
5823/* Implementation of the la_iterate_over_symbols method. */
5824
6969f124 5825static bool
14bc53a8 5826ada_iterate_over_symbols
b5ec771e
PA
5827 (const struct block *block, const lookup_name_info &name,
5828 domain_enum domain,
14bc53a8 5829 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5830{
5831 int ndefs, i;
54d343a2 5832 std::vector<struct block_symbol> results;
4eeaa230
DE
5833
5834 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5835
4eeaa230
DE
5836 for (i = 0; i < ndefs; ++i)
5837 {
7e41c8db 5838 if (!callback (&results[i]))
6969f124 5839 return false;
4eeaa230 5840 }
6969f124
TT
5841
5842 return true;
4eeaa230
DE
5843}
5844
4e5c77fe
JB
5845/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5846 to 1, but choosing the first symbol found if there are multiple
5847 choices.
5848
5e2336be
JB
5849 The result is stored in *INFO, which must be non-NULL.
5850 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5851
5852void
5853ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5854 domain_enum domain,
d12307c1 5855 struct block_symbol *info)
14f9c5c9 5856{
b5ec771e
PA
5857 /* Since we already have an encoded name, wrap it in '<>' to force a
5858 verbatim match. Otherwise, if the name happens to not look like
5859 an encoded name (because it doesn't include a "__"),
5860 ada_lookup_name_info would re-encode/fold it again, and that
5861 would e.g., incorrectly lowercase object renaming names like
5862 "R28b" -> "r28b". */
5863 std::string verbatim = std::string ("<") + name + '>';
5864
5e2336be 5865 gdb_assert (info != NULL);
65392b3e 5866 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5867}
aeb5907d
JB
5868
5869/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5870 scope and in global scopes, or NULL if none. NAME is folded and
5871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5872 choosing the first symbol if there are multiple choices. */
4e5c77fe 5873
d12307c1 5874struct block_symbol
aeb5907d 5875ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5876 domain_enum domain)
aeb5907d 5877{
54d343a2 5878 std::vector<struct block_symbol> candidates;
f98fc17b 5879 int n_candidates;
f98fc17b
PA
5880
5881 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5882
5883 if (n_candidates == 0)
54d343a2 5884 return {};
f98fc17b
PA
5885
5886 block_symbol info = candidates[0];
5887 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5888 return info;
4c4b4cd2 5889}
14f9c5c9 5890
d12307c1 5891static struct block_symbol
f606139a
DE
5892ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5893 const char *name,
76a01679 5894 const struct block *block,
21b556f4 5895 const domain_enum domain)
4c4b4cd2 5896{
d12307c1 5897 struct block_symbol sym;
04dccad0 5898
65392b3e 5899 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5900 if (sym.symbol != NULL)
04dccad0
JB
5901 return sym;
5902
5903 /* If we haven't found a match at this point, try the primitive
5904 types. In other languages, this search is performed before
5905 searching for global symbols in order to short-circuit that
5906 global-symbol search if it happens that the name corresponds
5907 to a primitive type. But we cannot do the same in Ada, because
5908 it is perfectly legitimate for a program to declare a type which
5909 has the same name as a standard type. If looking up a type in
5910 that situation, we have traditionally ignored the primitive type
5911 in favor of user-defined types. This is why, unlike most other
5912 languages, we search the primitive types this late and only after
5913 having searched the global symbols without success. */
5914
5915 if (domain == VAR_DOMAIN)
5916 {
5917 struct gdbarch *gdbarch;
5918
5919 if (block == NULL)
5920 gdbarch = target_gdbarch ();
5921 else
5922 gdbarch = block_gdbarch (block);
d12307c1
PMR
5923 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5924 if (sym.symbol != NULL)
04dccad0
JB
5925 return sym;
5926 }
5927
6640a367 5928 return {};
14f9c5c9
AS
5929}
5930
5931
4c4b4cd2
PH
5932/* True iff STR is a possible encoded suffix of a normal Ada name
5933 that is to be ignored for matching purposes. Suffixes of parallel
5934 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5935 are given by any of the regular expressions:
4c4b4cd2 5936
babe1480
JB
5937 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5938 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5939 TKB [subprogram suffix for task bodies]
babe1480 5940 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5941 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5942
5943 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5944 match is performed. This sequence is used to differentiate homonyms,
5945 is an optional part of a valid name suffix. */
4c4b4cd2 5946
14f9c5c9 5947static int
d2e4a39e 5948is_name_suffix (const char *str)
14f9c5c9
AS
5949{
5950 int k;
4c4b4cd2
PH
5951 const char *matching;
5952 const int len = strlen (str);
5953
babe1480
JB
5954 /* Skip optional leading __[0-9]+. */
5955
4c4b4cd2
PH
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5957 {
babe1480
JB
5958 str += 3;
5959 while (isdigit (str[0]))
5960 str += 1;
4c4b4cd2 5961 }
babe1480
JB
5962
5963 /* [.$][0-9]+ */
4c4b4cd2 5964
babe1480 5965 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5966 {
babe1480 5967 matching = str + 1;
4c4b4cd2
PH
5968 while (isdigit (matching[0]))
5969 matching += 1;
5970 if (matching[0] == '\0')
5971 return 1;
5972 }
5973
5974 /* ___[0-9]+ */
babe1480 5975
4c4b4cd2
PH
5976 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5977 {
5978 matching = str + 3;
5979 while (isdigit (matching[0]))
5980 matching += 1;
5981 if (matching[0] == '\0')
5982 return 1;
5983 }
5984
9ac7f98e
JB
5985 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5986
5987 if (strcmp (str, "TKB") == 0)
5988 return 1;
5989
529cad9c
PH
5990#if 0
5991 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5992 with a N at the end. Unfortunately, the compiler uses the same
5993 convention for other internal types it creates. So treating
529cad9c 5994 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5995 some regressions. For instance, consider the case of an enumerated
5996 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5997 name ends with N.
5998 Having a single character like this as a suffix carrying some
0963b4bd 5999 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6000 to be something like "_N" instead. In the meantime, do not do
6001 the following check. */
6002 /* Protected Object Subprograms */
6003 if (len == 1 && str [0] == 'N')
6004 return 1;
6005#endif
6006
6007 /* _E[0-9]+[bs]$ */
6008 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6009 {
6010 matching = str + 3;
6011 while (isdigit (matching[0]))
6012 matching += 1;
6013 if ((matching[0] == 'b' || matching[0] == 's')
6014 && matching [1] == '\0')
6015 return 1;
6016 }
6017
4c4b4cd2
PH
6018 /* ??? We should not modify STR directly, as we are doing below. This
6019 is fine in this case, but may become problematic later if we find
6020 that this alternative did not work, and want to try matching
6021 another one from the begining of STR. Since we modified it, we
6022 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6023 if (str[0] == 'X')
6024 {
6025 str += 1;
d2e4a39e 6026 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6027 {
6028 if (str[0] != 'n' && str[0] != 'b')
6029 return 0;
6030 str += 1;
6031 }
14f9c5c9 6032 }
babe1480 6033
14f9c5c9
AS
6034 if (str[0] == '\000')
6035 return 1;
babe1480 6036
d2e4a39e 6037 if (str[0] == '_')
14f9c5c9
AS
6038 {
6039 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6040 return 0;
d2e4a39e 6041 if (str[2] == '_')
4c4b4cd2 6042 {
61ee279c
PH
6043 if (strcmp (str + 3, "JM") == 0)
6044 return 1;
6045 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6046 the LJM suffix in favor of the JM one. But we will
6047 still accept LJM as a valid suffix for a reasonable
6048 amount of time, just to allow ourselves to debug programs
6049 compiled using an older version of GNAT. */
4c4b4cd2
PH
6050 if (strcmp (str + 3, "LJM") == 0)
6051 return 1;
6052 if (str[3] != 'X')
6053 return 0;
1265e4aa
JB
6054 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6055 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6056 return 1;
6057 if (str[4] == 'R' && str[5] != 'T')
6058 return 1;
6059 return 0;
6060 }
6061 if (!isdigit (str[2]))
6062 return 0;
6063 for (k = 3; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6065 return 0;
14f9c5c9
AS
6066 return 1;
6067 }
4c4b4cd2 6068 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6069 {
4c4b4cd2
PH
6070 for (k = 2; str[k] != '\0'; k += 1)
6071 if (!isdigit (str[k]) && str[k] != '_')
6072 return 0;
14f9c5c9
AS
6073 return 1;
6074 }
6075 return 0;
6076}
d2e4a39e 6077
aeb5907d
JB
6078/* Return non-zero if the string starting at NAME and ending before
6079 NAME_END contains no capital letters. */
529cad9c
PH
6080
6081static int
6082is_valid_name_for_wild_match (const char *name0)
6083{
f945dedf 6084 std::string decoded_name = ada_decode (name0);
529cad9c
PH
6085 int i;
6086
5823c3ef
JB
6087 /* If the decoded name starts with an angle bracket, it means that
6088 NAME0 does not follow the GNAT encoding format. It should then
6089 not be allowed as a possible wild match. */
6090 if (decoded_name[0] == '<')
6091 return 0;
6092
529cad9c
PH
6093 for (i=0; decoded_name[i] != '\0'; i++)
6094 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6095 return 0;
6096
6097 return 1;
6098}
6099
73589123
PH
6100/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6101 that could start a simple name. Assumes that *NAMEP points into
6102 the string beginning at NAME0. */
4c4b4cd2 6103
14f9c5c9 6104static int
73589123 6105advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6106{
73589123 6107 const char *name = *namep;
5b4ee69b 6108
5823c3ef 6109 while (1)
14f9c5c9 6110 {
aa27d0b3 6111 int t0, t1;
73589123
PH
6112
6113 t0 = *name;
6114 if (t0 == '_')
6115 {
6116 t1 = name[1];
6117 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6118 {
6119 name += 1;
61012eef 6120 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6121 break;
6122 else
6123 name += 1;
6124 }
aa27d0b3
JB
6125 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6126 || name[2] == target0))
73589123
PH
6127 {
6128 name += 2;
6129 break;
6130 }
6131 else
6132 return 0;
6133 }
6134 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6135 name += 1;
6136 else
5823c3ef 6137 return 0;
73589123
PH
6138 }
6139
6140 *namep = name;
6141 return 1;
6142}
6143
b5ec771e
PA
6144/* Return true iff NAME encodes a name of the form prefix.PATN.
6145 Ignores any informational suffixes of NAME (i.e., for which
6146 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6147 simple name. */
73589123 6148
b5ec771e 6149static bool
73589123
PH
6150wild_match (const char *name, const char *patn)
6151{
22e048c9 6152 const char *p;
73589123
PH
6153 const char *name0 = name;
6154
6155 while (1)
6156 {
6157 const char *match = name;
6158
6159 if (*name == *patn)
6160 {
6161 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6162 if (*p != *name)
6163 break;
6164 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6165 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6166
6167 if (name[-1] == '_')
6168 name -= 1;
6169 }
6170 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6171 return false;
96d887e8 6172 }
96d887e8
PH
6173}
6174
b5ec771e
PA
6175/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6176 any trailing suffixes that encode debugging information or leading
6177 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6178 information that is ignored). */
40658b94 6179
b5ec771e 6180static bool
c4d840bd
PH
6181full_match (const char *sym_name, const char *search_name)
6182{
b5ec771e
PA
6183 size_t search_name_len = strlen (search_name);
6184
6185 if (strncmp (sym_name, search_name, search_name_len) == 0
6186 && is_name_suffix (sym_name + search_name_len))
6187 return true;
6188
6189 if (startswith (sym_name, "_ada_")
6190 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6191 && is_name_suffix (sym_name + search_name_len + 5))
6192 return true;
c4d840bd 6193
b5ec771e
PA
6194 return false;
6195}
c4d840bd 6196
b5ec771e
PA
6197/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6198 *defn_symbols, updating the list of symbols in OBSTACKP (if
6199 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6200
6201static void
6202ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6203 const struct block *block,
6204 const lookup_name_info &lookup_name,
6205 domain_enum domain, struct objfile *objfile)
96d887e8 6206{
8157b174 6207 struct block_iterator iter;
96d887e8
PH
6208 /* A matching argument symbol, if any. */
6209 struct symbol *arg_sym;
6210 /* Set true when we find a matching non-argument symbol. */
6211 int found_sym;
6212 struct symbol *sym;
6213
6214 arg_sym = NULL;
6215 found_sym = 0;
b5ec771e
PA
6216 for (sym = block_iter_match_first (block, lookup_name, &iter);
6217 sym != NULL;
6218 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6219 {
c1b5c1eb 6220 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6221 {
6222 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6223 {
6224 if (SYMBOL_IS_ARGUMENT (sym))
6225 arg_sym = sym;
6226 else
6227 {
6228 found_sym = 1;
6229 add_defn_to_vec (obstackp,
6230 fixup_symbol_section (sym, objfile),
6231 block);
6232 }
6233 }
6234 }
96d887e8
PH
6235 }
6236
22cee43f
PMR
6237 /* Handle renamings. */
6238
b5ec771e 6239 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6240 found_sym = 1;
6241
96d887e8
PH
6242 if (!found_sym && arg_sym != NULL)
6243 {
76a01679
JB
6244 add_defn_to_vec (obstackp,
6245 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6246 block);
96d887e8
PH
6247 }
6248
b5ec771e 6249 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6250 {
6251 arg_sym = NULL;
6252 found_sym = 0;
b5ec771e
PA
6253 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6254 const char *name = ada_lookup_name.c_str ();
6255 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6256
6257 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6258 {
c1b5c1eb 6259 if (symbol_matches_domain (sym->language (),
4186eb54 6260 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6261 {
6262 int cmp;
6263
987012b8 6264 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6265 if (cmp == 0)
6266 {
987012b8 6267 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6268 if (cmp == 0)
987012b8 6269 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6270 name_len);
6271 }
6272
6273 if (cmp == 0
987012b8 6274 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6275 {
2a2d4dc3
AS
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
76a01679
JB
6288 }
6289 }
76a01679 6290 }
96d887e8
PH
6291
6292 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6293 They aren't parameters, right? */
6294 if (!found_sym && arg_sym != NULL)
6295 {
6296 add_defn_to_vec (obstackp,
76a01679 6297 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6298 block);
96d887e8
PH
6299 }
6300 }
6301}
6302\f
41d27058
JB
6303
6304 /* Symbol Completion */
6305
b5ec771e 6306/* See symtab.h. */
41d27058 6307
b5ec771e
PA
6308bool
6309ada_lookup_name_info::matches
6310 (const char *sym_name,
6311 symbol_name_match_type match_type,
a207cff2 6312 completion_match_result *comp_match_res) const
41d27058 6313{
b5ec771e
PA
6314 bool match = false;
6315 const char *text = m_encoded_name.c_str ();
6316 size_t text_len = m_encoded_name.size ();
41d27058
JB
6317
6318 /* First, test against the fully qualified name of the symbol. */
6319
6320 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6321 match = true;
41d27058 6322
f945dedf 6323 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6324 if (match && !m_encoded_p)
41d27058
JB
6325 {
6326 /* One needed check before declaring a positive match is to verify
6327 that iff we are doing a verbatim match, the decoded version
6328 of the symbol name starts with '<'. Otherwise, this symbol name
6329 is not a suitable completion. */
41d27058 6330
f945dedf 6331 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6332 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6333 }
6334
b5ec771e 6335 if (match && !m_verbatim_p)
41d27058
JB
6336 {
6337 /* When doing non-verbatim match, another check that needs to
6338 be done is to verify that the potentially matching symbol name
6339 does not include capital letters, because the ada-mode would
6340 not be able to understand these symbol names without the
6341 angle bracket notation. */
6342 const char *tmp;
6343
6344 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6345 if (*tmp != '\0')
b5ec771e 6346 match = false;
41d27058
JB
6347 }
6348
6349 /* Second: Try wild matching... */
6350
b5ec771e 6351 if (!match && m_wild_match_p)
41d27058
JB
6352 {
6353 /* Since we are doing wild matching, this means that TEXT
6354 may represent an unqualified symbol name. We therefore must
6355 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6356 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6357
6358 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6359 match = true;
41d27058
JB
6360 }
6361
b5ec771e 6362 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6363
6364 if (!match)
b5ec771e 6365 return false;
41d27058 6366
a207cff2 6367 if (comp_match_res != NULL)
b5ec771e 6368 {
a207cff2 6369 std::string &match_str = comp_match_res->match.storage ();
41d27058 6370
b5ec771e 6371 if (!m_encoded_p)
a207cff2 6372 match_str = ada_decode (sym_name);
b5ec771e
PA
6373 else
6374 {
6375 if (m_verbatim_p)
6376 match_str = add_angle_brackets (sym_name);
6377 else
6378 match_str = sym_name;
41d27058 6379
b5ec771e 6380 }
a207cff2
PA
6381
6382 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6383 }
6384
b5ec771e 6385 return true;
41d27058
JB
6386}
6387
b5ec771e 6388/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6389 WORD is the entire command on which completion is made. */
41d27058 6390
eb3ff9a5
PA
6391static void
6392ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6393 complete_symbol_mode mode,
b5ec771e
PA
6394 symbol_name_match_type name_match_type,
6395 const char *text, const char *word,
eb3ff9a5 6396 enum type_code code)
41d27058 6397{
41d27058 6398 struct symbol *sym;
3977b71f 6399 const struct block *b, *surrounding_static_block = 0;
8157b174 6400 struct block_iterator iter;
41d27058 6401
2f68a895
TT
6402 gdb_assert (code == TYPE_CODE_UNDEF);
6403
1b026119 6404 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6405
6406 /* First, look at the partial symtab symbols. */
14bc53a8 6407 expand_symtabs_matching (NULL,
b5ec771e
PA
6408 lookup_name,
6409 NULL,
14bc53a8
PA
6410 NULL,
6411 ALL_DOMAIN);
41d27058
JB
6412
6413 /* At this point scan through the misc symbol vectors and add each
6414 symbol you find to the list. Eventually we want to ignore
6415 anything that isn't a text symbol (everything else will be
6416 handled by the psymtab code above). */
6417
2030c079 6418 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6419 {
7932255d 6420 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6421 {
6422 QUIT;
6423
6424 if (completion_skip_symbol (mode, msymbol))
6425 continue;
6426
c1b5c1eb 6427 language symbol_language = msymbol->language ();
5325b9bf
TT
6428
6429 /* Ada minimal symbols won't have their language set to Ada. If
6430 we let completion_list_add_name compare using the
6431 default/C-like matcher, then when completing e.g., symbols in a
6432 package named "pck", we'd match internal Ada symbols like
6433 "pckS", which are invalid in an Ada expression, unless you wrap
6434 them in '<' '>' to request a verbatim match.
6435
6436 Unfortunately, some Ada encoded names successfully demangle as
6437 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6438 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6439 with the wrong language set. Paper over that issue here. */
6440 if (symbol_language == language_auto
6441 || symbol_language == language_cplus)
6442 symbol_language = language_ada;
6443
6444 completion_list_add_name (tracker,
6445 symbol_language,
c9d95fa3 6446 msymbol->linkage_name (),
5325b9bf
TT
6447 lookup_name, text, word);
6448 }
6449 }
41d27058
JB
6450
6451 /* Search upwards from currently selected frame (so that we can
6452 complete on local vars. */
6453
6454 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6455 {
6456 if (!BLOCK_SUPERBLOCK (b))
6457 surrounding_static_block = b; /* For elmin of dups */
6458
6459 ALL_BLOCK_SYMBOLS (b, iter, sym)
6460 {
f9d67a22
PA
6461 if (completion_skip_symbol (mode, sym))
6462 continue;
6463
b5ec771e 6464 completion_list_add_name (tracker,
c1b5c1eb 6465 sym->language (),
987012b8 6466 sym->linkage_name (),
1b026119 6467 lookup_name, text, word);
41d27058
JB
6468 }
6469 }
6470
6471 /* Go through the symtabs and check the externs and statics for
43f3e411 6472 symbols which match. */
41d27058 6473
2030c079 6474 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6475 {
b669c953 6476 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6477 {
6478 QUIT;
6479 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6480 ALL_BLOCK_SYMBOLS (b, iter, sym)
6481 {
6482 if (completion_skip_symbol (mode, sym))
6483 continue;
f9d67a22 6484
d8aeb77f 6485 completion_list_add_name (tracker,
c1b5c1eb 6486 sym->language (),
987012b8 6487 sym->linkage_name (),
d8aeb77f
TT
6488 lookup_name, text, word);
6489 }
6490 }
41d27058 6491 }
41d27058 6492
2030c079 6493 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6494 {
b669c953 6495 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6496 {
6497 QUIT;
6498 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6499 /* Don't do this block twice. */
6500 if (b == surrounding_static_block)
6501 continue;
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
f9d67a22 6506
d8aeb77f 6507 completion_list_add_name (tracker,
c1b5c1eb 6508 sym->language (),
987012b8 6509 sym->linkage_name (),
d8aeb77f
TT
6510 lookup_name, text, word);
6511 }
6512 }
41d27058 6513 }
41d27058
JB
6514}
6515
963a6417 6516 /* Field Access */
96d887e8 6517
73fb9985
JB
6518/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6519 for tagged types. */
6520
6521static int
6522ada_is_dispatch_table_ptr_type (struct type *type)
6523{
0d5cff50 6524 const char *name;
73fb9985
JB
6525
6526 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6527 return 0;
6528
6529 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6530 if (name == NULL)
6531 return 0;
6532
6533 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6534}
6535
ac4a2da4
JG
6536/* Return non-zero if TYPE is an interface tag. */
6537
6538static int
6539ada_is_interface_tag (struct type *type)
6540{
6541 const char *name = TYPE_NAME (type);
6542
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__interface_tag") == 0);
6547}
6548
963a6417
PH
6549/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6550 to be invisible to users. */
96d887e8 6551
963a6417
PH
6552int
6553ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6554{
963a6417
PH
6555 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6556 return 1;
ffde82bf 6557
73fb9985
JB
6558 /* Check the name of that field. */
6559 {
6560 const char *name = TYPE_FIELD_NAME (type, field_num);
6561
6562 /* Anonymous field names should not be printed.
6563 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6564 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6565 if (name == NULL)
6566 return 1;
6567
ffde82bf
JB
6568 /* Normally, fields whose name start with an underscore ("_")
6569 are fields that have been internally generated by the compiler,
6570 and thus should not be printed. The "_parent" field is special,
6571 however: This is a field internally generated by the compiler
6572 for tagged types, and it contains the components inherited from
6573 the parent type. This field should not be printed as is, but
6574 should not be ignored either. */
61012eef 6575 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6576 return 1;
6577 }
6578
ac4a2da4
JG
6579 /* If this is the dispatch table of a tagged type or an interface tag,
6580 then ignore. */
73fb9985 6581 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6582 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6583 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6584 return 1;
6585
6586 /* Not a special field, so it should not be ignored. */
6587 return 0;
963a6417 6588}
96d887e8 6589
963a6417 6590/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6591 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6592
963a6417
PH
6593int
6594ada_is_tagged_type (struct type *type, int refok)
6595{
988f6b3d 6596 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6597}
96d887e8 6598
963a6417 6599/* True iff TYPE represents the type of X'Tag */
96d887e8 6600
963a6417
PH
6601int
6602ada_is_tag_type (struct type *type)
6603{
460efde1
JB
6604 type = ada_check_typedef (type);
6605
963a6417
PH
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6607 return 0;
6608 else
96d887e8 6609 {
963a6417 6610 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6611
963a6417
PH
6612 return (name != NULL
6613 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6614 }
96d887e8
PH
6615}
6616
963a6417 6617/* The type of the tag on VAL. */
76a01679 6618
de93309a 6619static struct type *
963a6417 6620ada_tag_type (struct value *val)
96d887e8 6621{
988f6b3d 6622 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6623}
96d887e8 6624
b50d69b5
JG
6625/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6626 retired at Ada 05). */
6627
6628static int
6629is_ada95_tag (struct value *tag)
6630{
6631 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6632}
6633
963a6417 6634/* The value of the tag on VAL. */
96d887e8 6635
de93309a 6636static struct value *
963a6417
PH
6637ada_value_tag (struct value *val)
6638{
03ee6b2e 6639 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6640}
6641
963a6417
PH
6642/* The value of the tag on the object of type TYPE whose contents are
6643 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6644 ADDRESS. */
96d887e8 6645
963a6417 6646static struct value *
10a2c479 6647value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6648 const gdb_byte *valaddr,
963a6417 6649 CORE_ADDR address)
96d887e8 6650{
b5385fc0 6651 int tag_byte_offset;
963a6417 6652 struct type *tag_type;
5b4ee69b 6653
963a6417 6654 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6655 NULL, NULL, NULL))
96d887e8 6656 {
fc1a4b47 6657 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6658 ? NULL
6659 : valaddr + tag_byte_offset);
963a6417 6660 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6661
963a6417 6662 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6663 }
963a6417
PH
6664 return NULL;
6665}
96d887e8 6666
963a6417
PH
6667static struct type *
6668type_from_tag (struct value *tag)
6669{
6670 const char *type_name = ada_tag_name (tag);
5b4ee69b 6671
963a6417
PH
6672 if (type_name != NULL)
6673 return ada_find_any_type (ada_encode (type_name));
6674 return NULL;
6675}
96d887e8 6676
b50d69b5
JG
6677/* Given a value OBJ of a tagged type, return a value of this
6678 type at the base address of the object. The base address, as
6679 defined in Ada.Tags, it is the address of the primary tag of
6680 the object, and therefore where the field values of its full
6681 view can be fetched. */
6682
6683struct value *
6684ada_tag_value_at_base_address (struct value *obj)
6685{
b50d69b5
JG
6686 struct value *val;
6687 LONGEST offset_to_top = 0;
6688 struct type *ptr_type, *obj_type;
6689 struct value *tag;
6690 CORE_ADDR base_address;
6691
6692 obj_type = value_type (obj);
6693
6694 /* It is the responsability of the caller to deref pointers. */
6695
6696 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6697 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6698 return obj;
6699
6700 tag = ada_value_tag (obj);
6701 if (!tag)
6702 return obj;
6703
6704 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6705
6706 if (is_ada95_tag (tag))
6707 return obj;
6708
08f49010
XR
6709 ptr_type = language_lookup_primitive_type
6710 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6711 ptr_type = lookup_pointer_type (ptr_type);
6712 val = value_cast (ptr_type, tag);
6713 if (!val)
6714 return obj;
6715
6716 /* It is perfectly possible that an exception be raised while
6717 trying to determine the base address, just like for the tag;
6718 see ada_tag_name for more details. We do not print the error
6719 message for the same reason. */
6720
a70b8144 6721 try
b50d69b5
JG
6722 {
6723 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6724 }
6725
230d2906 6726 catch (const gdb_exception_error &e)
492d29ea
PA
6727 {
6728 return obj;
6729 }
b50d69b5
JG
6730
6731 /* If offset is null, nothing to do. */
6732
6733 if (offset_to_top == 0)
6734 return obj;
6735
6736 /* -1 is a special case in Ada.Tags; however, what should be done
6737 is not quite clear from the documentation. So do nothing for
6738 now. */
6739
6740 if (offset_to_top == -1)
6741 return obj;
6742
08f49010
XR
6743 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6744 from the base address. This was however incompatible with
6745 C++ dispatch table: C++ uses a *negative* value to *add*
6746 to the base address. Ada's convention has therefore been
6747 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6748 use the same convention. Here, we support both cases by
6749 checking the sign of OFFSET_TO_TOP. */
6750
6751 if (offset_to_top > 0)
6752 offset_to_top = -offset_to_top;
6753
6754 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6755 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6756
6757 /* Make sure that we have a proper tag at the new address.
6758 Otherwise, offset_to_top is bogus (which can happen when
6759 the object is not initialized yet). */
6760
6761 if (!tag)
6762 return obj;
6763
6764 obj_type = type_from_tag (tag);
6765
6766 if (!obj_type)
6767 return obj;
6768
6769 return value_from_contents_and_address (obj_type, NULL, base_address);
6770}
6771
1b611343
JB
6772/* Return the "ada__tags__type_specific_data" type. */
6773
6774static struct type *
6775ada_get_tsd_type (struct inferior *inf)
963a6417 6776{
1b611343 6777 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6778
1b611343
JB
6779 if (data->tsd_type == 0)
6780 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6781 return data->tsd_type;
6782}
529cad9c 6783
1b611343
JB
6784/* Return the TSD (type-specific data) associated to the given TAG.
6785 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6786
1b611343 6787 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6788
1b611343
JB
6789static struct value *
6790ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6791{
4c4b4cd2 6792 struct value *val;
1b611343 6793 struct type *type;
5b4ee69b 6794
1b611343
JB
6795 /* First option: The TSD is simply stored as a field of our TAG.
6796 Only older versions of GNAT would use this format, but we have
6797 to test it first, because there are no visible markers for
6798 the current approach except the absence of that field. */
529cad9c 6799
1b611343
JB
6800 val = ada_value_struct_elt (tag, "tsd", 1);
6801 if (val)
6802 return val;
e802dbe0 6803
1b611343
JB
6804 /* Try the second representation for the dispatch table (in which
6805 there is no explicit 'tsd' field in the referent of the tag pointer,
6806 and instead the tsd pointer is stored just before the dispatch
6807 table. */
e802dbe0 6808
1b611343
JB
6809 type = ada_get_tsd_type (current_inferior());
6810 if (type == NULL)
6811 return NULL;
6812 type = lookup_pointer_type (lookup_pointer_type (type));
6813 val = value_cast (type, tag);
6814 if (val == NULL)
6815 return NULL;
6816 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6817}
6818
1b611343
JB
6819/* Given the TSD of a tag (type-specific data), return a string
6820 containing the name of the associated type.
6821
6822 The returned value is good until the next call. May return NULL
6823 if we are unable to determine the tag name. */
6824
6825static char *
6826ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6827{
529cad9c
PH
6828 static char name[1024];
6829 char *p;
1b611343 6830 struct value *val;
529cad9c 6831
1b611343 6832 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6833 if (val == NULL)
1b611343 6834 return NULL;
4c4b4cd2
PH
6835 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6836 for (p = name; *p != '\0'; p += 1)
6837 if (isalpha (*p))
6838 *p = tolower (*p);
1b611343 6839 return name;
4c4b4cd2
PH
6840}
6841
6842/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6843 a C string.
6844
6845 Return NULL if the TAG is not an Ada tag, or if we were unable to
6846 determine the name of that tag. The result is good until the next
6847 call. */
4c4b4cd2
PH
6848
6849const char *
6850ada_tag_name (struct value *tag)
6851{
1b611343 6852 char *name = NULL;
5b4ee69b 6853
df407dfe 6854 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6855 return NULL;
1b611343
JB
6856
6857 /* It is perfectly possible that an exception be raised while trying
6858 to determine the TAG's name, even under normal circumstances:
6859 The associated variable may be uninitialized or corrupted, for
6860 instance. We do not let any exception propagate past this point.
6861 instead we return NULL.
6862
6863 We also do not print the error message either (which often is very
6864 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6865 the caller print a more meaningful message if necessary. */
a70b8144 6866 try
1b611343
JB
6867 {
6868 struct value *tsd = ada_get_tsd_from_tag (tag);
6869
6870 if (tsd != NULL)
6871 name = ada_tag_name_from_tsd (tsd);
6872 }
230d2906 6873 catch (const gdb_exception_error &e)
492d29ea
PA
6874 {
6875 }
1b611343
JB
6876
6877 return name;
4c4b4cd2
PH
6878}
6879
6880/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6881
d2e4a39e 6882struct type *
ebf56fd3 6883ada_parent_type (struct type *type)
14f9c5c9
AS
6884{
6885 int i;
6886
61ee279c 6887 type = ada_check_typedef (type);
14f9c5c9
AS
6888
6889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6890 return NULL;
6891
6892 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6893 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6894 {
6895 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6896
6897 /* If the _parent field is a pointer, then dereference it. */
6898 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6899 parent_type = TYPE_TARGET_TYPE (parent_type);
6900 /* If there is a parallel XVS type, get the actual base type. */
6901 parent_type = ada_get_base_type (parent_type);
6902
6903 return ada_check_typedef (parent_type);
6904 }
14f9c5c9
AS
6905
6906 return NULL;
6907}
6908
4c4b4cd2
PH
6909/* True iff field number FIELD_NUM of structure type TYPE contains the
6910 parent-type (inherited) fields of a derived type. Assumes TYPE is
6911 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6912
6913int
ebf56fd3 6914ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6915{
61ee279c 6916 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6917
4c4b4cd2 6918 return (name != NULL
61012eef
GB
6919 && (startswith (name, "PARENT")
6920 || startswith (name, "_parent")));
14f9c5c9
AS
6921}
6922
4c4b4cd2 6923/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6924 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6925 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6926 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6927 structures. */
14f9c5c9
AS
6928
6929int
ebf56fd3 6930ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6931{
d2e4a39e 6932 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6933
dddc0e16
JB
6934 if (name != NULL && strcmp (name, "RETVAL") == 0)
6935 {
6936 /* This happens in functions with "out" or "in out" parameters
6937 which are passed by copy. For such functions, GNAT describes
6938 the function's return type as being a struct where the return
6939 value is in a field called RETVAL, and where the other "out"
6940 or "in out" parameters are fields of that struct. This is not
6941 a wrapper. */
6942 return 0;
6943 }
6944
d2e4a39e 6945 return (name != NULL
61012eef 6946 && (startswith (name, "PARENT")
4c4b4cd2 6947 || strcmp (name, "REP") == 0
61012eef 6948 || startswith (name, "_parent")
4c4b4cd2 6949 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6950}
6951
4c4b4cd2
PH
6952/* True iff field number FIELD_NUM of structure or union type TYPE
6953 is a variant wrapper. Assumes TYPE is a structure type with at least
6954 FIELD_NUM+1 fields. */
14f9c5c9
AS
6955
6956int
ebf56fd3 6957ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6958{
8ecb59f8
TT
6959 /* Only Ada types are eligible. */
6960 if (!ADA_TYPE_P (type))
6961 return 0;
6962
d2e4a39e 6963 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6964
14f9c5c9 6965 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6966 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6967 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6968 == TYPE_CODE_UNION)));
14f9c5c9
AS
6969}
6970
6971/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6972 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6973 returns the type of the controlling discriminant for the variant.
6974 May return NULL if the type could not be found. */
14f9c5c9 6975
d2e4a39e 6976struct type *
ebf56fd3 6977ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6978{
a121b7c1 6979 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6980
988f6b3d 6981 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6982}
6983
4c4b4cd2 6984/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6985 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6986 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6987
de93309a 6988static int
ebf56fd3 6989ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6990{
d2e4a39e 6991 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6992
14f9c5c9
AS
6993 return (name != NULL && name[0] == 'O');
6994}
6995
6996/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6997 returns the name of the discriminant controlling the variant.
6998 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6999
a121b7c1 7000const char *
ebf56fd3 7001ada_variant_discrim_name (struct type *type0)
14f9c5c9 7002{
d2e4a39e 7003 static char *result = NULL;
14f9c5c9 7004 static size_t result_len = 0;
d2e4a39e
AS
7005 struct type *type;
7006 const char *name;
7007 const char *discrim_end;
7008 const char *discrim_start;
14f9c5c9
AS
7009
7010 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7011 type = TYPE_TARGET_TYPE (type0);
7012 else
7013 type = type0;
7014
7015 name = ada_type_name (type);
7016
7017 if (name == NULL || name[0] == '\000')
7018 return "";
7019
7020 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7021 discrim_end -= 1)
7022 {
61012eef 7023 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7024 break;
14f9c5c9
AS
7025 }
7026 if (discrim_end == name)
7027 return "";
7028
d2e4a39e 7029 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7030 discrim_start -= 1)
7031 {
d2e4a39e 7032 if (discrim_start == name + 1)
4c4b4cd2 7033 return "";
76a01679 7034 if ((discrim_start > name + 3
61012eef 7035 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7036 || discrim_start[-1] == '.')
7037 break;
14f9c5c9
AS
7038 }
7039
7040 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7041 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7042 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7043 return result;
7044}
7045
4c4b4cd2
PH
7046/* Scan STR for a subtype-encoded number, beginning at position K.
7047 Put the position of the character just past the number scanned in
7048 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7049 Return 1 if there was a valid number at the given position, and 0
7050 otherwise. A "subtype-encoded" number consists of the absolute value
7051 in decimal, followed by the letter 'm' to indicate a negative number.
7052 Assumes 0m does not occur. */
14f9c5c9
AS
7053
7054int
d2e4a39e 7055ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7056{
7057 ULONGEST RU;
7058
d2e4a39e 7059 if (!isdigit (str[k]))
14f9c5c9
AS
7060 return 0;
7061
4c4b4cd2 7062 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7063 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7064 LONGEST. */
14f9c5c9
AS
7065 RU = 0;
7066 while (isdigit (str[k]))
7067 {
d2e4a39e 7068 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7069 k += 1;
7070 }
7071
d2e4a39e 7072 if (str[k] == 'm')
14f9c5c9
AS
7073 {
7074 if (R != NULL)
4c4b4cd2 7075 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7076 k += 1;
7077 }
7078 else if (R != NULL)
7079 *R = (LONGEST) RU;
7080
4c4b4cd2 7081 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7082 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7083 number representable as a LONGEST (although either would probably work
7084 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7085 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7086
7087 if (new_k != NULL)
7088 *new_k = k;
7089 return 1;
7090}
7091
4c4b4cd2
PH
7092/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7093 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7094 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7095
de93309a 7096static int
ebf56fd3 7097ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7098{
d2e4a39e 7099 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7100 int p;
7101
7102 p = 0;
7103 while (1)
7104 {
d2e4a39e 7105 switch (name[p])
4c4b4cd2
PH
7106 {
7107 case '\0':
7108 return 0;
7109 case 'S':
7110 {
7111 LONGEST W;
5b4ee69b 7112
4c4b4cd2
PH
7113 if (!ada_scan_number (name, p + 1, &W, &p))
7114 return 0;
7115 if (val == W)
7116 return 1;
7117 break;
7118 }
7119 case 'R':
7120 {
7121 LONGEST L, U;
5b4ee69b 7122
4c4b4cd2
PH
7123 if (!ada_scan_number (name, p + 1, &L, &p)
7124 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7125 return 0;
7126 if (val >= L && val <= U)
7127 return 1;
7128 break;
7129 }
7130 case 'O':
7131 return 1;
7132 default:
7133 return 0;
7134 }
7135 }
7136}
7137
0963b4bd 7138/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7139
7140/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7141 ARG_TYPE, extract and return the value of one of its (non-static)
7142 fields. FIELDNO says which field. Differs from value_primitive_field
7143 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7144
4c4b4cd2 7145static struct value *
d2e4a39e 7146ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7147 struct type *arg_type)
14f9c5c9 7148{
14f9c5c9
AS
7149 struct type *type;
7150
61ee279c 7151 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7152 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7153
4504bbde
TT
7154 /* Handle packed fields. It might be that the field is not packed
7155 relative to its containing structure, but the structure itself is
7156 packed; in this case we must take the bit-field path. */
7157 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7160 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7161
0fd88904 7162 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7163 offset + bit_pos / 8,
7164 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7165 }
7166 else
7167 return value_primitive_field (arg1, offset, fieldno, arg_type);
7168}
7169
52ce6436
PH
7170/* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7177 0 otherwise;
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7182
828d5846
XR
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7185
7186 type Top_T is tagged record
7187 N : Integer := 1;
7188 U : Integer := 974;
7189 A : Integer := 48;
7190 end record;
7191
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7194 C : Integer := 3;
7195 end record;
7196
7197 type Bottom_T is new Middle.Middle_T with record
7198 N : Float := 4.0;
7199 C : Character := '5';
7200 X : Integer := 6;
7201 A : Character := 'J';
7202 end record;
7203
7204 Let's say we now have a variable declared and initialized as follow:
7205
7206 TC : Top_A := new Bottom_T;
7207
7208 And then we use this variable to call this function
7209
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7211
7212 as follow:
7213
7214 Assign (Top_T (B), 12);
7215
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7218
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7228
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7231 to program.
7232
0963b4bd 7233 Returns 1 if found, 0 otherwise. */
52ce6436 7234
4c4b4cd2 7235static int
0d5cff50 7236find_struct_field (const char *name, struct type *type, int offset,
76a01679 7237 struct type **field_type_p,
52ce6436
PH
7238 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7239 int *index_p)
4c4b4cd2
PH
7240{
7241 int i;
828d5846 7242 int parent_offset = -1;
4c4b4cd2 7243
61ee279c 7244 type = ada_check_typedef (type);
76a01679 7245
52ce6436
PH
7246 if (field_type_p != NULL)
7247 *field_type_p = NULL;
7248 if (byte_offset_p != NULL)
d5d6fca5 7249 *byte_offset_p = 0;
52ce6436
PH
7250 if (bit_offset_p != NULL)
7251 *bit_offset_p = 0;
7252 if (bit_size_p != NULL)
7253 *bit_size_p = 0;
7254
7255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7256 {
7257 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7258 int fld_offset = offset + bit_pos / 8;
0d5cff50 7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7260
4c4b4cd2
PH
7261 if (t_field_name == NULL)
7262 continue;
7263
828d5846
XR
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
52ce6436 7278 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7279 {
7280 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7281
52ce6436
PH
7282 if (field_type_p != NULL)
7283 *field_type_p = TYPE_FIELD_TYPE (type, i);
7284 if (byte_offset_p != NULL)
7285 *byte_offset_p = fld_offset;
7286 if (bit_offset_p != NULL)
7287 *bit_offset_p = bit_pos % 8;
7288 if (bit_size_p != NULL)
7289 *bit_size_p = bit_size;
76a01679
JB
7290 return 1;
7291 }
4c4b4cd2
PH
7292 else if (ada_is_wrapper_field (type, i))
7293 {
52ce6436
PH
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7295 field_type_p, byte_offset_p, bit_offset_p,
7296 bit_size_p, index_p))
76a01679
JB
7297 return 1;
7298 }
4c4b4cd2
PH
7299 else if (ada_is_variant_part (type, i))
7300 {
52ce6436
PH
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7302 fixed type?? */
4c4b4cd2 7303 int j;
52ce6436
PH
7304 struct type *field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7306
52ce6436 7307 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7308 {
76a01679
JB
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7310 fld_offset
7311 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7312 field_type_p, byte_offset_p,
52ce6436 7313 bit_offset_p, bit_size_p, index_p))
76a01679 7314 return 1;
4c4b4cd2
PH
7315 }
7316 }
52ce6436
PH
7317 else if (index_p != NULL)
7318 *index_p += 1;
4c4b4cd2 7319 }
828d5846
XR
7320
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7323
7324 if (parent_offset != -1)
7325 {
7326 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7327 int fld_offset = offset + bit_pos / 8;
7328
7329 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7330 fld_offset, field_type_p, byte_offset_p,
7331 bit_offset_p, bit_size_p, index_p))
7332 return 1;
7333 }
7334
4c4b4cd2
PH
7335 return 0;
7336}
7337
0963b4bd 7338/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7339
52ce6436
PH
7340static int
7341num_visible_fields (struct type *type)
7342{
7343 int n;
5b4ee69b 7344
52ce6436
PH
7345 n = 0;
7346 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7347 return n;
7348}
14f9c5c9 7349
4c4b4cd2 7350/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7353
828d5846
XR
7354 Searches recursively through wrapper fields (e.g., '_parent').
7355
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
14f9c5c9 7358
4c4b4cd2 7359static struct value *
108d56a4 7360ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7361 struct type *type)
14f9c5c9
AS
7362{
7363 int i;
828d5846 7364 int parent_offset = -1;
14f9c5c9 7365
5b4ee69b 7366 type = ada_check_typedef (type);
52ce6436 7367 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7368 {
0d5cff50 7369 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7370
7371 if (t_field_name == NULL)
4c4b4cd2 7372 continue;
14f9c5c9 7373
828d5846
XR
7374 else if (ada_is_parent_field (type, i))
7375 {
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7383
7384 parent_offset = i;
7385 continue;
7386 }
7387
14f9c5c9 7388 else if (field_name_match (t_field_name, name))
4c4b4cd2 7389 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7390
7391 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7392 {
0963b4bd 7393 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7394 ada_search_struct_field (name, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7397
4c4b4cd2
PH
7398 if (v != NULL)
7399 return v;
7400 }
14f9c5c9
AS
7401
7402 else if (ada_is_variant_part (type, i))
4c4b4cd2 7403 {
0963b4bd 7404 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7405 int j;
5b4ee69b
MS
7406 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 i));
4c4b4cd2
PH
7408 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409
52ce6436 7410 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7411 {
0963b4bd
MS
7412 struct value *v = ada_search_struct_field /* Force line
7413 break. */
06d5cf63
JB
7414 (name, arg,
7415 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7416 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7417
4c4b4cd2
PH
7418 if (v != NULL)
7419 return v;
7420 }
7421 }
14f9c5c9 7422 }
828d5846
XR
7423
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7426
7427 if (parent_offset != -1)
7428 {
7429 struct value *v = ada_search_struct_field (
7430 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7431 TYPE_FIELD_TYPE (type, parent_offset));
7432
7433 if (v != NULL)
7434 return v;
7435 }
7436
14f9c5c9
AS
7437 return NULL;
7438}
d2e4a39e 7439
52ce6436
PH
7440static struct value *ada_index_struct_field_1 (int *, struct value *,
7441 int, struct type *);
7442
7443
7444/* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7447 * If found, return value, else return NULL. */
52ce6436
PH
7448
7449static struct value *
7450ada_index_struct_field (int index, struct value *arg, int offset,
7451 struct type *type)
7452{
7453 return ada_index_struct_field_1 (&index, arg, offset, type);
7454}
7455
7456
7457/* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7459 * *INDEX_P. */
52ce6436
PH
7460
7461static struct value *
7462ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7463 struct type *type)
7464{
7465 int i;
7466 type = ada_check_typedef (type);
7467
7468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7469 {
7470 if (TYPE_FIELD_NAME (type, i) == NULL)
7471 continue;
7472 else if (ada_is_wrapper_field (type, i))
7473 {
0963b4bd 7474 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7475 ada_index_struct_field_1 (index_p, arg,
7476 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7477 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7478
52ce6436
PH
7479 if (v != NULL)
7480 return v;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7486 find_struct_field. */
52ce6436
PH
7487 error (_("Cannot assign this kind of variant record"));
7488 }
7489 else if (*index_p == 0)
7490 return ada_value_primitive_field (arg, offset, i, type);
7491 else
7492 *index_p -= 1;
7493 }
7494 return NULL;
7495}
7496
3b4de39c 7497/* Return a string representation of type TYPE. */
99bbb428 7498
3b4de39c 7499static std::string
99bbb428
PA
7500type_as_string (struct type *type)
7501{
d7e74731 7502 string_file tmp_stream;
99bbb428 7503
d7e74731 7504 type_print (type, "", &tmp_stream, -1);
99bbb428 7505
d7e74731 7506 return std::move (tmp_stream.string ());
99bbb428
PA
7507}
7508
14f9c5c9 7509/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7510 If DISPP is non-null, add its byte displacement from the beginning of a
7511 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7512 work for packed fields).
7513
7514 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7515 followed by "___".
14f9c5c9 7516
0963b4bd 7517 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7518 be a (pointer or reference)+ to a struct or union, and the
7519 ultimate target type will be searched.
14f9c5c9
AS
7520
7521 Looks recursively into variant clauses and parent types.
7522
828d5846
XR
7523 In the case of homonyms in the tagged types, please refer to the
7524 long explanation in find_struct_field's function documentation.
7525
4c4b4cd2
PH
7526 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7527 TYPE is not a type of the right kind. */
14f9c5c9 7528
4c4b4cd2 7529static struct type *
a121b7c1 7530ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7531 int noerr)
14f9c5c9
AS
7532{
7533 int i;
828d5846 7534 int parent_offset = -1;
14f9c5c9
AS
7535
7536 if (name == NULL)
7537 goto BadName;
7538
76a01679 7539 if (refok && type != NULL)
4c4b4cd2
PH
7540 while (1)
7541 {
61ee279c 7542 type = ada_check_typedef (type);
76a01679
JB
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7547 }
14f9c5c9 7548
76a01679 7549 if (type == NULL
1265e4aa
JB
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7552 {
4c4b4cd2 7553 if (noerr)
76a01679 7554 return NULL;
99bbb428 7555
3b4de39c
PA
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
0d5cff50 7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7565 struct type *t;
d2e4a39e 7566
14f9c5c9 7567 if (t_field_name == NULL)
4c4b4cd2 7568 continue;
14f9c5c9 7569
828d5846
XR
7570 else if (ada_is_parent_field (type, i))
7571 {
7572 /* This is a field pointing us to the parent type of a tagged
7573 type. As hinted in this function's documentation, we give
7574 preference to fields in the current record first, so what
7575 we do here is just record the index of this field before
7576 we skip it. If it turns out we couldn't find our field
7577 in the current record, then we'll get back to it and search
7578 inside it whether the field might exist in the parent. */
7579
7580 parent_offset = i;
7581 continue;
7582 }
7583
14f9c5c9 7584 else if (field_name_match (t_field_name, name))
988f6b3d 7585 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7586
7587 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7588 {
4c4b4cd2 7589 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7590 0, 1);
4c4b4cd2 7591 if (t != NULL)
988f6b3d 7592 return t;
4c4b4cd2 7593 }
14f9c5c9
AS
7594
7595 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7596 {
7597 int j;
5b4ee69b
MS
7598 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7599 i));
4c4b4cd2
PH
7600
7601 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7602 {
b1f33ddd
JB
7603 /* FIXME pnh 2008/01/26: We check for a field that is
7604 NOT wrapped in a struct, since the compiler sometimes
7605 generates these for unchecked variant types. Revisit
0963b4bd 7606 if the compiler changes this practice. */
0d5cff50 7607 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7608
b1f33ddd
JB
7609 if (v_field_name != NULL
7610 && field_name_match (v_field_name, name))
460efde1 7611 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7612 else
0963b4bd
MS
7613 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7614 j),
988f6b3d 7615 name, 0, 1);
b1f33ddd 7616
4c4b4cd2 7617 if (t != NULL)
988f6b3d 7618 return t;
4c4b4cd2
PH
7619 }
7620 }
14f9c5c9
AS
7621
7622 }
7623
828d5846
XR
7624 /* Field not found so far. If this is a tagged type which
7625 has a parent, try finding that field in the parent now. */
7626
7627 if (parent_offset != -1)
7628 {
7629 struct type *t;
7630
7631 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7632 name, 0, 1);
7633 if (t != NULL)
7634 return t;
7635 }
7636
14f9c5c9 7637BadName:
d2e4a39e 7638 if (!noerr)
14f9c5c9 7639 {
2b2798cc 7640 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7641
7642 error (_("Type %s has no component named %s"),
3b4de39c 7643 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7644 }
7645
7646 return NULL;
7647}
7648
b1f33ddd
JB
7649/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7650 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7651 represents an unchecked union (that is, the variant part of a
0963b4bd 7652 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7653
7654static int
7655is_unchecked_variant (struct type *var_type, struct type *outer_type)
7656{
a121b7c1 7657 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7658
988f6b3d 7659 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7660}
7661
7662
14f9c5c9
AS
7663/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7664 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7665 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7666 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7667
d2e4a39e 7668int
ebf56fd3 7669ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7670 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7671{
7672 int others_clause;
7673 int i;
a121b7c1 7674 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7675 struct value *outer;
7676 struct value *discrim;
14f9c5c9
AS
7677 LONGEST discrim_val;
7678
012370f6
TT
7679 /* Using plain value_from_contents_and_address here causes problems
7680 because we will end up trying to resolve a type that is currently
7681 being constructed. */
7682 outer = value_from_contents_and_address_unresolved (outer_type,
7683 outer_valaddr, 0);
0c281816
JB
7684 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7685 if (discrim == NULL)
14f9c5c9 7686 return -1;
0c281816 7687 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7688
7689 others_clause = -1;
7690 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7691 {
7692 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7693 others_clause = i;
14f9c5c9 7694 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7695 return i;
14f9c5c9
AS
7696 }
7697
7698 return others_clause;
7699}
d2e4a39e 7700\f
14f9c5c9
AS
7701
7702
4c4b4cd2 7703 /* Dynamic-Sized Records */
14f9c5c9
AS
7704
7705/* Strategy: The type ostensibly attached to a value with dynamic size
7706 (i.e., a size that is not statically recorded in the debugging
7707 data) does not accurately reflect the size or layout of the value.
7708 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7709 conventional types that are constructed on the fly. */
14f9c5c9
AS
7710
7711/* There is a subtle and tricky problem here. In general, we cannot
7712 determine the size of dynamic records without its data. However,
7713 the 'struct value' data structure, which GDB uses to represent
7714 quantities in the inferior process (the target), requires the size
7715 of the type at the time of its allocation in order to reserve space
7716 for GDB's internal copy of the data. That's why the
7717 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7718 rather than struct value*s.
14f9c5c9
AS
7719
7720 However, GDB's internal history variables ($1, $2, etc.) are
7721 struct value*s containing internal copies of the data that are not, in
7722 general, the same as the data at their corresponding addresses in
7723 the target. Fortunately, the types we give to these values are all
7724 conventional, fixed-size types (as per the strategy described
7725 above), so that we don't usually have to perform the
7726 'to_fixed_xxx_type' conversions to look at their values.
7727 Unfortunately, there is one exception: if one of the internal
7728 history variables is an array whose elements are unconstrained
7729 records, then we will need to create distinct fixed types for each
7730 element selected. */
7731
7732/* The upshot of all of this is that many routines take a (type, host
7733 address, target address) triple as arguments to represent a value.
7734 The host address, if non-null, is supposed to contain an internal
7735 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7736 target at the target address. */
14f9c5c9
AS
7737
7738/* Assuming that VAL0 represents a pointer value, the result of
7739 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7740 dynamic-sized types. */
14f9c5c9 7741
d2e4a39e
AS
7742struct value *
7743ada_value_ind (struct value *val0)
14f9c5c9 7744{
c48db5ca 7745 struct value *val = value_ind (val0);
5b4ee69b 7746
b50d69b5
JG
7747 if (ada_is_tagged_type (value_type (val), 0))
7748 val = ada_tag_value_at_base_address (val);
7749
4c4b4cd2 7750 return ada_to_fixed_value (val);
14f9c5c9
AS
7751}
7752
7753/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7754 qualifiers on VAL0. */
7755
d2e4a39e
AS
7756static struct value *
7757ada_coerce_ref (struct value *val0)
7758{
df407dfe 7759 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7760 {
7761 struct value *val = val0;
5b4ee69b 7762
994b9211 7763 val = coerce_ref (val);
b50d69b5
JG
7764
7765 if (ada_is_tagged_type (value_type (val), 0))
7766 val = ada_tag_value_at_base_address (val);
7767
4c4b4cd2 7768 return ada_to_fixed_value (val);
d2e4a39e
AS
7769 }
7770 else
14f9c5c9
AS
7771 return val0;
7772}
7773
7774/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7775 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7776
7777static unsigned int
ebf56fd3 7778align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7779{
7780 return (off + alignment - 1) & ~(alignment - 1);
7781}
7782
4c4b4cd2 7783/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7784
7785static unsigned int
ebf56fd3 7786field_alignment (struct type *type, int f)
14f9c5c9 7787{
d2e4a39e 7788 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7789 int len;
14f9c5c9
AS
7790 int align_offset;
7791
64a1bf19
JB
7792 /* The field name should never be null, unless the debugging information
7793 is somehow malformed. In this case, we assume the field does not
7794 require any alignment. */
7795 if (name == NULL)
7796 return 1;
7797
7798 len = strlen (name);
7799
4c4b4cd2
PH
7800 if (!isdigit (name[len - 1]))
7801 return 1;
14f9c5c9 7802
d2e4a39e 7803 if (isdigit (name[len - 2]))
14f9c5c9
AS
7804 align_offset = len - 2;
7805 else
7806 align_offset = len - 1;
7807
61012eef 7808 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7809 return TARGET_CHAR_BIT;
7810
4c4b4cd2
PH
7811 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7812}
7813
852dff6c 7814/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7815
852dff6c
JB
7816static struct symbol *
7817ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7818{
7819 struct symbol *sym;
7820
7821 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7822 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7823 return sym;
7824
4186eb54
KS
7825 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7826 return sym;
14f9c5c9
AS
7827}
7828
dddfab26
UW
7829/* Find a type named NAME. Ignores ambiguity. This routine will look
7830 solely for types defined by debug info, it will not search the GDB
7831 primitive types. */
4c4b4cd2 7832
852dff6c 7833static struct type *
ebf56fd3 7834ada_find_any_type (const char *name)
14f9c5c9 7835{
852dff6c 7836 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7837
14f9c5c9 7838 if (sym != NULL)
dddfab26 7839 return SYMBOL_TYPE (sym);
14f9c5c9 7840
dddfab26 7841 return NULL;
14f9c5c9
AS
7842}
7843
739593e0
JB
7844/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7845 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7846 symbol, in which case it is returned. Otherwise, this looks for
7847 symbols whose name is that of NAME_SYM suffixed with "___XR".
7848 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7849
c0e70c62
TT
7850static bool
7851ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7852{
987012b8 7853 const char *name = name_sym->linkage_name ();
c0e70c62 7854 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7855}
7856
14f9c5c9 7857/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7858 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7859 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7860 otherwise return 0. */
7861
14f9c5c9 7862int
d2e4a39e 7863ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7864{
7865 if (type1 == NULL)
7866 return 1;
7867 else if (type0 == NULL)
7868 return 0;
7869 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7870 return 1;
7871 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7872 return 0;
4c4b4cd2
PH
7873 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7874 return 1;
ad82864c 7875 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7876 return 1;
4c4b4cd2
PH
7877 else if (ada_is_array_descriptor_type (type0)
7878 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7879 return 1;
aeb5907d
JB
7880 else
7881 {
a737d952
TT
7882 const char *type0_name = TYPE_NAME (type0);
7883 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7884
7885 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7886 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7887 return 1;
7888 }
14f9c5c9
AS
7889 return 0;
7890}
7891
e86ca25f
TT
7892/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7893 null. */
4c4b4cd2 7894
0d5cff50 7895const char *
d2e4a39e 7896ada_type_name (struct type *type)
14f9c5c9 7897{
d2e4a39e 7898 if (type == NULL)
14f9c5c9 7899 return NULL;
e86ca25f 7900 return TYPE_NAME (type);
14f9c5c9
AS
7901}
7902
b4ba55a1
JB
7903/* Search the list of "descriptive" types associated to TYPE for a type
7904 whose name is NAME. */
7905
7906static struct type *
7907find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7908{
931e5bc3 7909 struct type *result, *tmp;
b4ba55a1 7910
c6044dd1
JB
7911 if (ada_ignore_descriptive_types_p)
7912 return NULL;
7913
b4ba55a1
JB
7914 /* If there no descriptive-type info, then there is no parallel type
7915 to be found. */
7916 if (!HAVE_GNAT_AUX_INFO (type))
7917 return NULL;
7918
7919 result = TYPE_DESCRIPTIVE_TYPE (type);
7920 while (result != NULL)
7921 {
0d5cff50 7922 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7923
7924 if (result_name == NULL)
7925 {
7926 warning (_("unexpected null name on descriptive type"));
7927 return NULL;
7928 }
7929
7930 /* If the names match, stop. */
7931 if (strcmp (result_name, name) == 0)
7932 break;
7933
7934 /* Otherwise, look at the next item on the list, if any. */
7935 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7936 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7937 else
7938 tmp = NULL;
7939
7940 /* If not found either, try after having resolved the typedef. */
7941 if (tmp != NULL)
7942 result = tmp;
b4ba55a1 7943 else
931e5bc3 7944 {
f168693b 7945 result = check_typedef (result);
931e5bc3
JG
7946 if (HAVE_GNAT_AUX_INFO (result))
7947 result = TYPE_DESCRIPTIVE_TYPE (result);
7948 else
7949 result = NULL;
7950 }
b4ba55a1
JB
7951 }
7952
7953 /* If we didn't find a match, see whether this is a packed array. With
7954 older compilers, the descriptive type information is either absent or
7955 irrelevant when it comes to packed arrays so the above lookup fails.
7956 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7957 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7958 return ada_find_any_type (name);
7959
7960 return result;
7961}
7962
7963/* Find a parallel type to TYPE with the specified NAME, using the
7964 descriptive type taken from the debugging information, if available,
7965 and otherwise using the (slower) name-based method. */
7966
7967static struct type *
7968ada_find_parallel_type_with_name (struct type *type, const char *name)
7969{
7970 struct type *result = NULL;
7971
7972 if (HAVE_GNAT_AUX_INFO (type))
7973 result = find_parallel_type_by_descriptive_type (type, name);
7974 else
7975 result = ada_find_any_type (name);
7976
7977 return result;
7978}
7979
7980/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7981 SUFFIX to the name of TYPE. */
14f9c5c9 7982
d2e4a39e 7983struct type *
ebf56fd3 7984ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7985{
0d5cff50 7986 char *name;
fe978cb0 7987 const char *type_name = ada_type_name (type);
14f9c5c9 7988 int len;
d2e4a39e 7989
fe978cb0 7990 if (type_name == NULL)
14f9c5c9
AS
7991 return NULL;
7992
fe978cb0 7993 len = strlen (type_name);
14f9c5c9 7994
b4ba55a1 7995 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7996
fe978cb0 7997 strcpy (name, type_name);
14f9c5c9
AS
7998 strcpy (name + len, suffix);
7999
b4ba55a1 8000 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8001}
8002
14f9c5c9 8003/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8004 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8005
d2e4a39e
AS
8006static struct type *
8007dynamic_template_type (struct type *type)
14f9c5c9 8008{
61ee279c 8009 type = ada_check_typedef (type);
14f9c5c9
AS
8010
8011 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8012 || ada_type_name (type) == NULL)
14f9c5c9 8013 return NULL;
d2e4a39e 8014 else
14f9c5c9
AS
8015 {
8016 int len = strlen (ada_type_name (type));
5b4ee69b 8017
4c4b4cd2
PH
8018 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8019 return type;
14f9c5c9 8020 else
4c4b4cd2 8021 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8022 }
8023}
8024
8025/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8026 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8027
d2e4a39e
AS
8028static int
8029is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8030{
8031 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8032
d2e4a39e 8033 return name != NULL
14f9c5c9
AS
8034 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8035 && strstr (name, "___XVL") != NULL;
8036}
8037
4c4b4cd2
PH
8038/* The index of the variant field of TYPE, or -1 if TYPE does not
8039 represent a variant record type. */
14f9c5c9 8040
d2e4a39e 8041static int
4c4b4cd2 8042variant_field_index (struct type *type)
14f9c5c9
AS
8043{
8044 int f;
8045
4c4b4cd2
PH
8046 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8047 return -1;
8048
8049 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8050 {
8051 if (ada_is_variant_part (type, f))
8052 return f;
8053 }
8054 return -1;
14f9c5c9
AS
8055}
8056
4c4b4cd2
PH
8057/* A record type with no fields. */
8058
d2e4a39e 8059static struct type *
fe978cb0 8060empty_record (struct type *templ)
14f9c5c9 8061{
fe978cb0 8062 struct type *type = alloc_type_copy (templ);
5b4ee69b 8063
14f9c5c9
AS
8064 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8065 TYPE_NFIELDS (type) = 0;
8066 TYPE_FIELDS (type) = NULL;
8ecb59f8 8067 INIT_NONE_SPECIFIC (type);
14f9c5c9 8068 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8069 TYPE_LENGTH (type) = 0;
8070 return type;
8071}
8072
8073/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8074 the value of type TYPE at VALADDR or ADDRESS (see comments at
8075 the beginning of this section) VAL according to GNAT conventions.
8076 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8077 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8078 an outer-level type (i.e., as opposed to a branch of a variant.) A
8079 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8080 of the variant.
14f9c5c9 8081
4c4b4cd2
PH
8082 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8083 length are not statically known are discarded. As a consequence,
8084 VALADDR, ADDRESS and DVAL0 are ignored.
8085
8086 NOTE: Limitations: For now, we assume that dynamic fields and
8087 variants occupy whole numbers of bytes. However, they need not be
8088 byte-aligned. */
8089
8090struct type *
10a2c479 8091ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8092 const gdb_byte *valaddr,
4c4b4cd2
PH
8093 CORE_ADDR address, struct value *dval0,
8094 int keep_dynamic_fields)
14f9c5c9 8095{
d2e4a39e
AS
8096 struct value *mark = value_mark ();
8097 struct value *dval;
8098 struct type *rtype;
14f9c5c9 8099 int nfields, bit_len;
4c4b4cd2 8100 int variant_field;
14f9c5c9 8101 long off;
d94e4f4f 8102 int fld_bit_len;
14f9c5c9
AS
8103 int f;
8104
4c4b4cd2
PH
8105 /* Compute the number of fields in this record type that are going
8106 to be processed: unless keep_dynamic_fields, this includes only
8107 fields whose position and length are static will be processed. */
8108 if (keep_dynamic_fields)
8109 nfields = TYPE_NFIELDS (type);
8110 else
8111 {
8112 nfields = 0;
76a01679 8113 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8114 && !ada_is_variant_part (type, nfields)
8115 && !is_dynamic_field (type, nfields))
8116 nfields++;
8117 }
8118
e9bb382b 8119 rtype = alloc_type_copy (type);
14f9c5c9 8120 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8121 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8122 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8123 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8124 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8125 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8126 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8127 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8128
d2e4a39e
AS
8129 off = 0;
8130 bit_len = 0;
4c4b4cd2
PH
8131 variant_field = -1;
8132
14f9c5c9
AS
8133 for (f = 0; f < nfields; f += 1)
8134 {
6c038f32
PH
8135 off = align_value (off, field_alignment (type, f))
8136 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8137 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8138 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8139
d2e4a39e 8140 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8141 {
8142 variant_field = f;
d94e4f4f 8143 fld_bit_len = 0;
4c4b4cd2 8144 }
14f9c5c9 8145 else if (is_dynamic_field (type, f))
4c4b4cd2 8146 {
284614f0
JB
8147 const gdb_byte *field_valaddr = valaddr;
8148 CORE_ADDR field_address = address;
8149 struct type *field_type =
8150 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8151
4c4b4cd2 8152 if (dval0 == NULL)
b5304971
JG
8153 {
8154 /* rtype's length is computed based on the run-time
8155 value of discriminants. If the discriminants are not
8156 initialized, the type size may be completely bogus and
0963b4bd 8157 GDB may fail to allocate a value for it. So check the
b5304971 8158 size first before creating the value. */
c1b5a1a6 8159 ada_ensure_varsize_limit (rtype);
012370f6
TT
8160 /* Using plain value_from_contents_and_address here
8161 causes problems because we will end up trying to
8162 resolve a type that is currently being
8163 constructed. */
8164 dval = value_from_contents_and_address_unresolved (rtype,
8165 valaddr,
8166 address);
9f1f738a 8167 rtype = value_type (dval);
b5304971 8168 }
4c4b4cd2
PH
8169 else
8170 dval = dval0;
8171
284614f0
JB
8172 /* If the type referenced by this field is an aligner type, we need
8173 to unwrap that aligner type, because its size might not be set.
8174 Keeping the aligner type would cause us to compute the wrong
8175 size for this field, impacting the offset of the all the fields
8176 that follow this one. */
8177 if (ada_is_aligner_type (field_type))
8178 {
8179 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8180
8181 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8182 field_address = cond_offset_target (field_address, field_offset);
8183 field_type = ada_aligned_type (field_type);
8184 }
8185
8186 field_valaddr = cond_offset_host (field_valaddr,
8187 off / TARGET_CHAR_BIT);
8188 field_address = cond_offset_target (field_address,
8189 off / TARGET_CHAR_BIT);
8190
8191 /* Get the fixed type of the field. Note that, in this case,
8192 we do not want to get the real type out of the tag: if
8193 the current field is the parent part of a tagged record,
8194 we will get the tag of the object. Clearly wrong: the real
8195 type of the parent is not the real type of the child. We
8196 would end up in an infinite loop. */
8197 field_type = ada_get_base_type (field_type);
8198 field_type = ada_to_fixed_type (field_type, field_valaddr,
8199 field_address, dval, 0);
27f2a97b
JB
8200 /* If the field size is already larger than the maximum
8201 object size, then the record itself will necessarily
8202 be larger than the maximum object size. We need to make
8203 this check now, because the size might be so ridiculously
8204 large (due to an uninitialized variable in the inferior)
8205 that it would cause an overflow when adding it to the
8206 record size. */
c1b5a1a6 8207 ada_ensure_varsize_limit (field_type);
284614f0
JB
8208
8209 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8210 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8211 /* The multiplication can potentially overflow. But because
8212 the field length has been size-checked just above, and
8213 assuming that the maximum size is a reasonable value,
8214 an overflow should not happen in practice. So rather than
8215 adding overflow recovery code to this already complex code,
8216 we just assume that it's not going to happen. */
d94e4f4f 8217 fld_bit_len =
4c4b4cd2
PH
8218 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8219 }
14f9c5c9 8220 else
4c4b4cd2 8221 {
5ded5331
JB
8222 /* Note: If this field's type is a typedef, it is important
8223 to preserve the typedef layer.
8224
8225 Otherwise, we might be transforming a typedef to a fat
8226 pointer (encoding a pointer to an unconstrained array),
8227 into a basic fat pointer (encoding an unconstrained
8228 array). As both types are implemented using the same
8229 structure, the typedef is the only clue which allows us
8230 to distinguish between the two options. Stripping it
8231 would prevent us from printing this field appropriately. */
8232 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8233 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8234 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8235 fld_bit_len =
4c4b4cd2
PH
8236 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8237 else
5ded5331
JB
8238 {
8239 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8240
8241 /* We need to be careful of typedefs when computing
8242 the length of our field. If this is a typedef,
8243 get the length of the target type, not the length
8244 of the typedef. */
8245 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8246 field_type = ada_typedef_target_type (field_type);
8247
8248 fld_bit_len =
8249 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8250 }
4c4b4cd2 8251 }
14f9c5c9 8252 if (off + fld_bit_len > bit_len)
4c4b4cd2 8253 bit_len = off + fld_bit_len;
d94e4f4f 8254 off += fld_bit_len;
4c4b4cd2
PH
8255 TYPE_LENGTH (rtype) =
8256 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8257 }
4c4b4cd2
PH
8258
8259 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8260 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8261 the record. This can happen in the presence of representation
8262 clauses. */
8263 if (variant_field >= 0)
8264 {
8265 struct type *branch_type;
8266
8267 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8268
8269 if (dval0 == NULL)
9f1f738a 8270 {
012370f6
TT
8271 /* Using plain value_from_contents_and_address here causes
8272 problems because we will end up trying to resolve a type
8273 that is currently being constructed. */
8274 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8275 address);
9f1f738a
SA
8276 rtype = value_type (dval);
8277 }
4c4b4cd2
PH
8278 else
8279 dval = dval0;
8280
8281 branch_type =
8282 to_fixed_variant_branch_type
8283 (TYPE_FIELD_TYPE (type, variant_field),
8284 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8285 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8286 if (branch_type == NULL)
8287 {
8288 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8289 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8290 TYPE_NFIELDS (rtype) -= 1;
8291 }
8292 else
8293 {
8294 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8295 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8296 fld_bit_len =
8297 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8298 TARGET_CHAR_BIT;
8299 if (off + fld_bit_len > bit_len)
8300 bit_len = off + fld_bit_len;
8301 TYPE_LENGTH (rtype) =
8302 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8303 }
8304 }
8305
714e53ab
PH
8306 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8307 should contain the alignment of that record, which should be a strictly
8308 positive value. If null or negative, then something is wrong, most
8309 probably in the debug info. In that case, we don't round up the size
0963b4bd 8310 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8311 the current RTYPE length might be good enough for our purposes. */
8312 if (TYPE_LENGTH (type) <= 0)
8313 {
323e0a4a 8314 if (TYPE_NAME (rtype))
cc1defb1
KS
8315 warning (_("Invalid type size for `%s' detected: %s."),
8316 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8317 else
cc1defb1
KS
8318 warning (_("Invalid type size for <unnamed> detected: %s."),
8319 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8320 }
8321 else
8322 {
8323 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8324 TYPE_LENGTH (type));
8325 }
14f9c5c9
AS
8326
8327 value_free_to_mark (mark);
d2e4a39e 8328 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8329 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8330 return rtype;
8331}
8332
4c4b4cd2
PH
8333/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8334 of 1. */
14f9c5c9 8335
d2e4a39e 8336static struct type *
fc1a4b47 8337template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8338 CORE_ADDR address, struct value *dval0)
8339{
8340 return ada_template_to_fixed_record_type_1 (type, valaddr,
8341 address, dval0, 1);
8342}
8343
8344/* An ordinary record type in which ___XVL-convention fields and
8345 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8346 static approximations, containing all possible fields. Uses
8347 no runtime values. Useless for use in values, but that's OK,
8348 since the results are used only for type determinations. Works on both
8349 structs and unions. Representation note: to save space, we memorize
8350 the result of this function in the TYPE_TARGET_TYPE of the
8351 template type. */
8352
8353static struct type *
8354template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8355{
8356 struct type *type;
8357 int nfields;
8358 int f;
8359
9e195661
PMR
8360 /* No need no do anything if the input type is already fixed. */
8361 if (TYPE_FIXED_INSTANCE (type0))
8362 return type0;
8363
8364 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8365 if (TYPE_TARGET_TYPE (type0) != NULL)
8366 return TYPE_TARGET_TYPE (type0);
8367
9e195661 8368 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8369 type = type0;
9e195661
PMR
8370 nfields = TYPE_NFIELDS (type0);
8371
8372 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8373 recompute all over next time. */
8374 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8375
8376 for (f = 0; f < nfields; f += 1)
8377 {
460efde1 8378 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8379 struct type *new_type;
14f9c5c9 8380
4c4b4cd2 8381 if (is_dynamic_field (type0, f))
460efde1
JB
8382 {
8383 field_type = ada_check_typedef (field_type);
8384 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8385 }
14f9c5c9 8386 else
f192137b 8387 new_type = static_unwrap_type (field_type);
9e195661
PMR
8388
8389 if (new_type != field_type)
8390 {
8391 /* Clone TYPE0 only the first time we get a new field type. */
8392 if (type == type0)
8393 {
8394 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8395 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8396 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8397 TYPE_NFIELDS (type) = nfields;
8398 TYPE_FIELDS (type) = (struct field *)
8399 TYPE_ALLOC (type, nfields * sizeof (struct field));
8400 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8401 sizeof (struct field) * nfields);
8402 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8403 TYPE_FIXED_INSTANCE (type) = 1;
8404 TYPE_LENGTH (type) = 0;
8405 }
8406 TYPE_FIELD_TYPE (type, f) = new_type;
8407 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8408 }
14f9c5c9 8409 }
9e195661 8410
14f9c5c9
AS
8411 return type;
8412}
8413
4c4b4cd2 8414/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8415 whose address in memory is ADDRESS, returns a revision of TYPE,
8416 which should be a non-dynamic-sized record, in which the variant
8417 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8418 for discriminant values in DVAL0, which can be NULL if the record
8419 contains the necessary discriminant values. */
8420
d2e4a39e 8421static struct type *
fc1a4b47 8422to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8423 CORE_ADDR address, struct value *dval0)
14f9c5c9 8424{
d2e4a39e 8425 struct value *mark = value_mark ();
4c4b4cd2 8426 struct value *dval;
d2e4a39e 8427 struct type *rtype;
14f9c5c9
AS
8428 struct type *branch_type;
8429 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8430 int variant_field = variant_field_index (type);
14f9c5c9 8431
4c4b4cd2 8432 if (variant_field == -1)
14f9c5c9
AS
8433 return type;
8434
4c4b4cd2 8435 if (dval0 == NULL)
9f1f738a
SA
8436 {
8437 dval = value_from_contents_and_address (type, valaddr, address);
8438 type = value_type (dval);
8439 }
4c4b4cd2
PH
8440 else
8441 dval = dval0;
8442
e9bb382b 8443 rtype = alloc_type_copy (type);
14f9c5c9 8444 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8445 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8446 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8447 TYPE_FIELDS (rtype) =
8448 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8449 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8450 sizeof (struct field) * nfields);
14f9c5c9 8451 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8452 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8453 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8454
4c4b4cd2
PH
8455 branch_type = to_fixed_variant_branch_type
8456 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8457 cond_offset_host (valaddr,
4c4b4cd2
PH
8458 TYPE_FIELD_BITPOS (type, variant_field)
8459 / TARGET_CHAR_BIT),
d2e4a39e 8460 cond_offset_target (address,
4c4b4cd2
PH
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT), dval);
d2e4a39e 8463 if (branch_type == NULL)
14f9c5c9 8464 {
4c4b4cd2 8465 int f;
5b4ee69b 8466
4c4b4cd2
PH
8467 for (f = variant_field + 1; f < nfields; f += 1)
8468 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8469 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8470 }
8471 else
8472 {
4c4b4cd2
PH
8473 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8474 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8475 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8476 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8477 }
4c4b4cd2 8478 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8479
4c4b4cd2 8480 value_free_to_mark (mark);
14f9c5c9
AS
8481 return rtype;
8482}
8483
8484/* An ordinary record type (with fixed-length fields) that describes
8485 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8486 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8487 should be in DVAL, a record value; it may be NULL if the object
8488 at ADDR itself contains any necessary discriminant values.
8489 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8490 values from the record are needed. Except in the case that DVAL,
8491 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8492 unchecked) is replaced by a particular branch of the variant.
8493
8494 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8495 is questionable and may be removed. It can arise during the
8496 processing of an unconstrained-array-of-record type where all the
8497 variant branches have exactly the same size. This is because in
8498 such cases, the compiler does not bother to use the XVS convention
8499 when encoding the record. I am currently dubious of this
8500 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8501
d2e4a39e 8502static struct type *
fc1a4b47 8503to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8504 CORE_ADDR address, struct value *dval)
14f9c5c9 8505{
d2e4a39e 8506 struct type *templ_type;
14f9c5c9 8507
876cecd0 8508 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8509 return type0;
8510
d2e4a39e 8511 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8512
8513 if (templ_type != NULL)
8514 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8515 else if (variant_field_index (type0) >= 0)
8516 {
8517 if (dval == NULL && valaddr == NULL && address == 0)
8518 return type0;
8519 return to_record_with_fixed_variant_part (type0, valaddr, address,
8520 dval);
8521 }
14f9c5c9
AS
8522 else
8523 {
876cecd0 8524 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8525 return type0;
8526 }
8527
8528}
8529
8530/* An ordinary record type (with fixed-length fields) that describes
8531 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8532 union type. Any necessary discriminants' values should be in DVAL,
8533 a record value. That is, this routine selects the appropriate
8534 branch of the union at ADDR according to the discriminant value
b1f33ddd 8535 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8536 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8537
d2e4a39e 8538static struct type *
fc1a4b47 8539to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8540 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8541{
8542 int which;
d2e4a39e
AS
8543 struct type *templ_type;
8544 struct type *var_type;
14f9c5c9
AS
8545
8546 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8547 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8548 else
14f9c5c9
AS
8549 var_type = var_type0;
8550
8551 templ_type = ada_find_parallel_type (var_type, "___XVU");
8552
8553 if (templ_type != NULL)
8554 var_type = templ_type;
8555
b1f33ddd
JB
8556 if (is_unchecked_variant (var_type, value_type (dval)))
8557 return var_type0;
d2e4a39e
AS
8558 which =
8559 ada_which_variant_applies (var_type,
0fd88904 8560 value_type (dval), value_contents (dval));
14f9c5c9
AS
8561
8562 if (which < 0)
e9bb382b 8563 return empty_record (var_type);
14f9c5c9 8564 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8565 return to_fixed_record_type
d2e4a39e
AS
8566 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8567 valaddr, address, dval);
4c4b4cd2 8568 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8569 return
8570 to_fixed_record_type
8571 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8572 else
8573 return TYPE_FIELD_TYPE (var_type, which);
8574}
8575
8908fca5
JB
8576/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8577 ENCODING_TYPE, a type following the GNAT conventions for discrete
8578 type encodings, only carries redundant information. */
8579
8580static int
8581ada_is_redundant_range_encoding (struct type *range_type,
8582 struct type *encoding_type)
8583{
108d56a4 8584 const char *bounds_str;
8908fca5
JB
8585 int n;
8586 LONGEST lo, hi;
8587
8588 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8589
005e2509
JB
8590 if (TYPE_CODE (get_base_type (range_type))
8591 != TYPE_CODE (get_base_type (encoding_type)))
8592 {
8593 /* The compiler probably used a simple base type to describe
8594 the range type instead of the range's actual base type,
8595 expecting us to get the real base type from the encoding
8596 anyway. In this situation, the encoding cannot be ignored
8597 as redundant. */
8598 return 0;
8599 }
8600
8908fca5
JB
8601 if (is_dynamic_type (range_type))
8602 return 0;
8603
8604 if (TYPE_NAME (encoding_type) == NULL)
8605 return 0;
8606
8607 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8608 if (bounds_str == NULL)
8609 return 0;
8610
8611 n = 8; /* Skip "___XDLU_". */
8612 if (!ada_scan_number (bounds_str, n, &lo, &n))
8613 return 0;
8614 if (TYPE_LOW_BOUND (range_type) != lo)
8615 return 0;
8616
8617 n += 2; /* Skip the "__" separator between the two bounds. */
8618 if (!ada_scan_number (bounds_str, n, &hi, &n))
8619 return 0;
8620 if (TYPE_HIGH_BOUND (range_type) != hi)
8621 return 0;
8622
8623 return 1;
8624}
8625
8626/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8627 a type following the GNAT encoding for describing array type
8628 indices, only carries redundant information. */
8629
8630static int
8631ada_is_redundant_index_type_desc (struct type *array_type,
8632 struct type *desc_type)
8633{
8634 struct type *this_layer = check_typedef (array_type);
8635 int i;
8636
8637 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8638 {
8639 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8640 TYPE_FIELD_TYPE (desc_type, i)))
8641 return 0;
8642 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8643 }
8644
8645 return 1;
8646}
8647
14f9c5c9
AS
8648/* Assuming that TYPE0 is an array type describing the type of a value
8649 at ADDR, and that DVAL describes a record containing any
8650 discriminants used in TYPE0, returns a type for the value that
8651 contains no dynamic components (that is, no components whose sizes
8652 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8653 true, gives an error message if the resulting type's size is over
4c4b4cd2 8654 varsize_limit. */
14f9c5c9 8655
d2e4a39e
AS
8656static struct type *
8657to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8658 int ignore_too_big)
14f9c5c9 8659{
d2e4a39e
AS
8660 struct type *index_type_desc;
8661 struct type *result;
ad82864c 8662 int constrained_packed_array_p;
931e5bc3 8663 static const char *xa_suffix = "___XA";
14f9c5c9 8664
b0dd7688 8665 type0 = ada_check_typedef (type0);
284614f0 8666 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8667 return type0;
14f9c5c9 8668
ad82864c
JB
8669 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8670 if (constrained_packed_array_p)
8671 type0 = decode_constrained_packed_array_type (type0);
284614f0 8672
931e5bc3
JG
8673 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8674
8675 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8676 encoding suffixed with 'P' may still be generated. If so,
8677 it should be used to find the XA type. */
8678
8679 if (index_type_desc == NULL)
8680 {
1da0522e 8681 const char *type_name = ada_type_name (type0);
931e5bc3 8682
1da0522e 8683 if (type_name != NULL)
931e5bc3 8684 {
1da0522e 8685 const int len = strlen (type_name);
931e5bc3
JG
8686 char *name = (char *) alloca (len + strlen (xa_suffix));
8687
1da0522e 8688 if (type_name[len - 1] == 'P')
931e5bc3 8689 {
1da0522e 8690 strcpy (name, type_name);
931e5bc3
JG
8691 strcpy (name + len - 1, xa_suffix);
8692 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8693 }
8694 }
8695 }
8696
28c85d6c 8697 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8698 if (index_type_desc != NULL
8699 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8700 {
8701 /* Ignore this ___XA parallel type, as it does not bring any
8702 useful information. This allows us to avoid creating fixed
8703 versions of the array's index types, which would be identical
8704 to the original ones. This, in turn, can also help avoid
8705 the creation of fixed versions of the array itself. */
8706 index_type_desc = NULL;
8707 }
8708
14f9c5c9
AS
8709 if (index_type_desc == NULL)
8710 {
61ee279c 8711 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8712
14f9c5c9 8713 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8714 depend on the contents of the array in properly constructed
8715 debugging data. */
529cad9c
PH
8716 /* Create a fixed version of the array element type.
8717 We're not providing the address of an element here,
e1d5a0d2 8718 and thus the actual object value cannot be inspected to do
529cad9c
PH
8719 the conversion. This should not be a problem, since arrays of
8720 unconstrained objects are not allowed. In particular, all
8721 the elements of an array of a tagged type should all be of
8722 the same type specified in the debugging info. No need to
8723 consult the object tag. */
1ed6ede0 8724 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8725
284614f0
JB
8726 /* Make sure we always create a new array type when dealing with
8727 packed array types, since we're going to fix-up the array
8728 type length and element bitsize a little further down. */
ad82864c 8729 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8730 result = type0;
14f9c5c9 8731 else
e9bb382b 8732 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8733 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8734 }
8735 else
8736 {
8737 int i;
8738 struct type *elt_type0;
8739
8740 elt_type0 = type0;
8741 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8742 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8743
8744 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8745 depend on the contents of the array in properly constructed
8746 debugging data. */
529cad9c
PH
8747 /* Create a fixed version of the array element type.
8748 We're not providing the address of an element here,
e1d5a0d2 8749 and thus the actual object value cannot be inspected to do
529cad9c
PH
8750 the conversion. This should not be a problem, since arrays of
8751 unconstrained objects are not allowed. In particular, all
8752 the elements of an array of a tagged type should all be of
8753 the same type specified in the debugging info. No need to
8754 consult the object tag. */
1ed6ede0
JB
8755 result =
8756 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8757
8758 elt_type0 = type0;
14f9c5c9 8759 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8760 {
8761 struct type *range_type =
28c85d6c 8762 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8763
e9bb382b 8764 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8765 result, range_type);
1ce677a4 8766 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8767 }
d2e4a39e 8768 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8769 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8770 }
8771
2e6fda7d
JB
8772 /* We want to preserve the type name. This can be useful when
8773 trying to get the type name of a value that has already been
8774 printed (for instance, if the user did "print VAR; whatis $". */
8775 TYPE_NAME (result) = TYPE_NAME (type0);
8776
ad82864c 8777 if (constrained_packed_array_p)
284614f0
JB
8778 {
8779 /* So far, the resulting type has been created as if the original
8780 type was a regular (non-packed) array type. As a result, the
8781 bitsize of the array elements needs to be set again, and the array
8782 length needs to be recomputed based on that bitsize. */
8783 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8784 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8785
8786 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8787 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8788 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8789 TYPE_LENGTH (result)++;
8790 }
8791
876cecd0 8792 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8793 return result;
d2e4a39e 8794}
14f9c5c9
AS
8795
8796
8797/* A standard type (containing no dynamically sized components)
8798 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8799 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8800 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8801 ADDRESS or in VALADDR contains these discriminants.
8802
1ed6ede0
JB
8803 If CHECK_TAG is not null, in the case of tagged types, this function
8804 attempts to locate the object's tag and use it to compute the actual
8805 type. However, when ADDRESS is null, we cannot use it to determine the
8806 location of the tag, and therefore compute the tagged type's actual type.
8807 So we return the tagged type without consulting the tag. */
529cad9c 8808
f192137b
JB
8809static struct type *
8810ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8811 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8812{
61ee279c 8813 type = ada_check_typedef (type);
8ecb59f8
TT
8814
8815 /* Only un-fixed types need to be handled here. */
8816 if (!HAVE_GNAT_AUX_INFO (type))
8817 return type;
8818
d2e4a39e
AS
8819 switch (TYPE_CODE (type))
8820 {
8821 default:
14f9c5c9 8822 return type;
d2e4a39e 8823 case TYPE_CODE_STRUCT:
4c4b4cd2 8824 {
76a01679 8825 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8826 struct type *fixed_record_type =
8827 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8828
529cad9c
PH
8829 /* If STATIC_TYPE is a tagged type and we know the object's address,
8830 then we can determine its tag, and compute the object's actual
0963b4bd 8831 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8832 type (the parent part of the record may have dynamic fields
8833 and the way the location of _tag is expressed may depend on
8834 them). */
529cad9c 8835
1ed6ede0 8836 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8837 {
b50d69b5
JG
8838 struct value *tag =
8839 value_tag_from_contents_and_address
8840 (fixed_record_type,
8841 valaddr,
8842 address);
8843 struct type *real_type = type_from_tag (tag);
8844 struct value *obj =
8845 value_from_contents_and_address (fixed_record_type,
8846 valaddr,
8847 address);
9f1f738a 8848 fixed_record_type = value_type (obj);
76a01679 8849 if (real_type != NULL)
b50d69b5
JG
8850 return to_fixed_record_type
8851 (real_type, NULL,
8852 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8853 }
4af88198
JB
8854
8855 /* Check to see if there is a parallel ___XVZ variable.
8856 If there is, then it provides the actual size of our type. */
8857 else if (ada_type_name (fixed_record_type) != NULL)
8858 {
0d5cff50 8859 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8860 char *xvz_name
8861 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8862 bool xvz_found = false;
4af88198
JB
8863 LONGEST size;
8864
88c15c34 8865 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8866 try
eccab96d
JB
8867 {
8868 xvz_found = get_int_var_value (xvz_name, size);
8869 }
230d2906 8870 catch (const gdb_exception_error &except)
eccab96d
JB
8871 {
8872 /* We found the variable, but somehow failed to read
8873 its value. Rethrow the same error, but with a little
8874 bit more information, to help the user understand
8875 what went wrong (Eg: the variable might have been
8876 optimized out). */
8877 throw_error (except.error,
8878 _("unable to read value of %s (%s)"),
3d6e9d23 8879 xvz_name, except.what ());
eccab96d 8880 }
eccab96d
JB
8881
8882 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8883 {
8884 fixed_record_type = copy_type (fixed_record_type);
8885 TYPE_LENGTH (fixed_record_type) = size;
8886
8887 /* The FIXED_RECORD_TYPE may have be a stub. We have
8888 observed this when the debugging info is STABS, and
8889 apparently it is something that is hard to fix.
8890
8891 In practice, we don't need the actual type definition
8892 at all, because the presence of the XVZ variable allows us
8893 to assume that there must be a XVS type as well, which we
8894 should be able to use later, when we need the actual type
8895 definition.
8896
8897 In the meantime, pretend that the "fixed" type we are
8898 returning is NOT a stub, because this can cause trouble
8899 when using this type to create new types targeting it.
8900 Indeed, the associated creation routines often check
8901 whether the target type is a stub and will try to replace
0963b4bd 8902 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8903 might cause the new type to have the wrong size too.
8904 Consider the case of an array, for instance, where the size
8905 of the array is computed from the number of elements in
8906 our array multiplied by the size of its element. */
8907 TYPE_STUB (fixed_record_type) = 0;
8908 }
8909 }
1ed6ede0 8910 return fixed_record_type;
4c4b4cd2 8911 }
d2e4a39e 8912 case TYPE_CODE_ARRAY:
4c4b4cd2 8913 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8914 case TYPE_CODE_UNION:
8915 if (dval == NULL)
4c4b4cd2 8916 return type;
d2e4a39e 8917 else
4c4b4cd2 8918 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8919 }
14f9c5c9
AS
8920}
8921
f192137b
JB
8922/* The same as ada_to_fixed_type_1, except that it preserves the type
8923 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8924
8925 The typedef layer needs be preserved in order to differentiate between
8926 arrays and array pointers when both types are implemented using the same
8927 fat pointer. In the array pointer case, the pointer is encoded as
8928 a typedef of the pointer type. For instance, considering:
8929
8930 type String_Access is access String;
8931 S1 : String_Access := null;
8932
8933 To the debugger, S1 is defined as a typedef of type String. But
8934 to the user, it is a pointer. So if the user tries to print S1,
8935 we should not dereference the array, but print the array address
8936 instead.
8937
8938 If we didn't preserve the typedef layer, we would lose the fact that
8939 the type is to be presented as a pointer (needs de-reference before
8940 being printed). And we would also use the source-level type name. */
f192137b
JB
8941
8942struct type *
8943ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8944 CORE_ADDR address, struct value *dval, int check_tag)
8945
8946{
8947 struct type *fixed_type =
8948 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8949
96dbd2c1
JB
8950 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8951 then preserve the typedef layer.
8952
8953 Implementation note: We can only check the main-type portion of
8954 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8955 from TYPE now returns a type that has the same instance flags
8956 as TYPE. For instance, if TYPE is a "typedef const", and its
8957 target type is a "struct", then the typedef elimination will return
8958 a "const" version of the target type. See check_typedef for more
8959 details about how the typedef layer elimination is done.
8960
8961 brobecker/2010-11-19: It seems to me that the only case where it is
8962 useful to preserve the typedef layer is when dealing with fat pointers.
8963 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8964 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8965 because we call check_typedef/ada_check_typedef pretty much everywhere.
8966 */
f192137b 8967 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8968 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8969 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8970 return type;
8971
8972 return fixed_type;
8973}
8974
14f9c5c9 8975/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8976 TYPE0, but based on no runtime data. */
14f9c5c9 8977
d2e4a39e
AS
8978static struct type *
8979to_static_fixed_type (struct type *type0)
14f9c5c9 8980{
d2e4a39e 8981 struct type *type;
14f9c5c9
AS
8982
8983 if (type0 == NULL)
8984 return NULL;
8985
876cecd0 8986 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8987 return type0;
8988
61ee279c 8989 type0 = ada_check_typedef (type0);
d2e4a39e 8990
14f9c5c9
AS
8991 switch (TYPE_CODE (type0))
8992 {
8993 default:
8994 return type0;
8995 case TYPE_CODE_STRUCT:
8996 type = dynamic_template_type (type0);
d2e4a39e 8997 if (type != NULL)
4c4b4cd2
PH
8998 return template_to_static_fixed_type (type);
8999 else
9000 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9001 case TYPE_CODE_UNION:
9002 type = ada_find_parallel_type (type0, "___XVU");
9003 if (type != NULL)
4c4b4cd2
PH
9004 return template_to_static_fixed_type (type);
9005 else
9006 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9007 }
9008}
9009
4c4b4cd2
PH
9010/* A static approximation of TYPE with all type wrappers removed. */
9011
d2e4a39e
AS
9012static struct type *
9013static_unwrap_type (struct type *type)
14f9c5c9
AS
9014{
9015 if (ada_is_aligner_type (type))
9016 {
61ee279c 9017 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9018 if (ada_type_name (type1) == NULL)
4c4b4cd2 9019 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9020
9021 return static_unwrap_type (type1);
9022 }
d2e4a39e 9023 else
14f9c5c9 9024 {
d2e4a39e 9025 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9026
d2e4a39e 9027 if (raw_real_type == type)
4c4b4cd2 9028 return type;
14f9c5c9 9029 else
4c4b4cd2 9030 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9031 }
9032}
9033
9034/* In some cases, incomplete and private types require
4c4b4cd2 9035 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9036 type Foo;
9037 type FooP is access Foo;
9038 V: FooP;
9039 type Foo is array ...;
4c4b4cd2 9040 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9041 cross-references to such types, we instead substitute for FooP a
9042 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9043 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9044
9045/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9046 exists, otherwise TYPE. */
9047
d2e4a39e 9048struct type *
61ee279c 9049ada_check_typedef (struct type *type)
14f9c5c9 9050{
727e3d2e
JB
9051 if (type == NULL)
9052 return NULL;
9053
736ade86
XR
9054 /* If our type is an access to an unconstrained array, which is encoded
9055 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9056 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9057 what allows us to distinguish between fat pointers that represent
9058 array types, and fat pointers that represent array access types
9059 (in both cases, the compiler implements them as fat pointers). */
736ade86 9060 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9061 return type;
9062
f168693b 9063 type = check_typedef (type);
14f9c5c9 9064 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9065 || !TYPE_STUB (type)
e86ca25f 9066 || TYPE_NAME (type) == NULL)
14f9c5c9 9067 return type;
d2e4a39e 9068 else
14f9c5c9 9069 {
e86ca25f 9070 const char *name = TYPE_NAME (type);
d2e4a39e 9071 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9072
05e522ef
JB
9073 if (type1 == NULL)
9074 return type;
9075
9076 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9077 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9078 types, only for the typedef-to-array types). If that's the case,
9079 strip the typedef layer. */
9080 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9081 type1 = ada_check_typedef (type1);
9082
9083 return type1;
14f9c5c9
AS
9084 }
9085}
9086
9087/* A value representing the data at VALADDR/ADDRESS as described by
9088 type TYPE0, but with a standard (static-sized) type that correctly
9089 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9090 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9091 creation of struct values]. */
14f9c5c9 9092
4c4b4cd2
PH
9093static struct value *
9094ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9095 struct value *val0)
14f9c5c9 9096{
1ed6ede0 9097 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9098
14f9c5c9
AS
9099 if (type == type0 && val0 != NULL)
9100 return val0;
cc0e770c
JB
9101
9102 if (VALUE_LVAL (val0) != lval_memory)
9103 {
9104 /* Our value does not live in memory; it could be a convenience
9105 variable, for instance. Create a not_lval value using val0's
9106 contents. */
9107 return value_from_contents (type, value_contents (val0));
9108 }
9109
9110 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9111}
9112
9113/* A value representing VAL, but with a standard (static-sized) type
9114 that correctly describes it. Does not necessarily create a new
9115 value. */
9116
0c3acc09 9117struct value *
4c4b4cd2
PH
9118ada_to_fixed_value (struct value *val)
9119{
c48db5ca 9120 val = unwrap_value (val);
d8ce9127 9121 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9122 return val;
14f9c5c9 9123}
d2e4a39e 9124\f
14f9c5c9 9125
14f9c5c9
AS
9126/* Attributes */
9127
4c4b4cd2
PH
9128/* Table mapping attribute numbers to names.
9129 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9130
d2e4a39e 9131static const char *attribute_names[] = {
14f9c5c9
AS
9132 "<?>",
9133
d2e4a39e 9134 "first",
14f9c5c9
AS
9135 "last",
9136 "length",
9137 "image",
14f9c5c9
AS
9138 "max",
9139 "min",
4c4b4cd2
PH
9140 "modulus",
9141 "pos",
9142 "size",
9143 "tag",
14f9c5c9 9144 "val",
14f9c5c9
AS
9145 0
9146};
9147
de93309a 9148static const char *
4c4b4cd2 9149ada_attribute_name (enum exp_opcode n)
14f9c5c9 9150{
4c4b4cd2
PH
9151 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9152 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9153 else
9154 return attribute_names[0];
9155}
9156
4c4b4cd2 9157/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9158
4c4b4cd2
PH
9159static LONGEST
9160pos_atr (struct value *arg)
14f9c5c9 9161{
24209737
PH
9162 struct value *val = coerce_ref (arg);
9163 struct type *type = value_type (val);
aa715135 9164 LONGEST result;
14f9c5c9 9165
d2e4a39e 9166 if (!discrete_type_p (type))
323e0a4a 9167 error (_("'POS only defined on discrete types"));
14f9c5c9 9168
aa715135
JG
9169 if (!discrete_position (type, value_as_long (val), &result))
9170 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9171
aa715135 9172 return result;
4c4b4cd2
PH
9173}
9174
9175static struct value *
3cb382c9 9176value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9177{
3cb382c9 9178 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9179}
9180
4c4b4cd2 9181/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9182
d2e4a39e
AS
9183static struct value *
9184value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9185{
d2e4a39e 9186 if (!discrete_type_p (type))
323e0a4a 9187 error (_("'VAL only defined on discrete types"));
df407dfe 9188 if (!integer_type_p (value_type (arg)))
323e0a4a 9189 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9190
9191 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9192 {
9193 long pos = value_as_long (arg);
5b4ee69b 9194
14f9c5c9 9195 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9196 error (_("argument to 'VAL out of range"));
14e75d8e 9197 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9198 }
9199 else
9200 return value_from_longest (type, value_as_long (arg));
9201}
14f9c5c9 9202\f
d2e4a39e 9203
4c4b4cd2 9204 /* Evaluation */
14f9c5c9 9205
4c4b4cd2
PH
9206/* True if TYPE appears to be an Ada character type.
9207 [At the moment, this is true only for Character and Wide_Character;
9208 It is a heuristic test that could stand improvement]. */
14f9c5c9 9209
fc913e53 9210bool
d2e4a39e 9211ada_is_character_type (struct type *type)
14f9c5c9 9212{
7b9f71f2
JB
9213 const char *name;
9214
9215 /* If the type code says it's a character, then assume it really is,
9216 and don't check any further. */
9217 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9218 return true;
7b9f71f2
JB
9219
9220 /* Otherwise, assume it's a character type iff it is a discrete type
9221 with a known character type name. */
9222 name = ada_type_name (type);
9223 return (name != NULL
9224 && (TYPE_CODE (type) == TYPE_CODE_INT
9225 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9226 && (strcmp (name, "character") == 0
9227 || strcmp (name, "wide_character") == 0
5a517ebd 9228 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9229 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9230}
9231
4c4b4cd2 9232/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9233
fc913e53 9234bool
ebf56fd3 9235ada_is_string_type (struct type *type)
14f9c5c9 9236{
61ee279c 9237 type = ada_check_typedef (type);
d2e4a39e 9238 if (type != NULL
14f9c5c9 9239 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9240 && (ada_is_simple_array_type (type)
9241 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9242 && ada_array_arity (type) == 1)
9243 {
9244 struct type *elttype = ada_array_element_type (type, 1);
9245
9246 return ada_is_character_type (elttype);
9247 }
d2e4a39e 9248 else
fc913e53 9249 return false;
14f9c5c9
AS
9250}
9251
5bf03f13
JB
9252/* The compiler sometimes provides a parallel XVS type for a given
9253 PAD type. Normally, it is safe to follow the PAD type directly,
9254 but older versions of the compiler have a bug that causes the offset
9255 of its "F" field to be wrong. Following that field in that case
9256 would lead to incorrect results, but this can be worked around
9257 by ignoring the PAD type and using the associated XVS type instead.
9258
9259 Set to True if the debugger should trust the contents of PAD types.
9260 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9261static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9262
9263/* True if TYPE is a struct type introduced by the compiler to force the
9264 alignment of a value. Such types have a single field with a
4c4b4cd2 9265 distinctive name. */
14f9c5c9
AS
9266
9267int
ebf56fd3 9268ada_is_aligner_type (struct type *type)
14f9c5c9 9269{
61ee279c 9270 type = ada_check_typedef (type);
714e53ab 9271
5bf03f13 9272 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9273 return 0;
9274
14f9c5c9 9275 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9276 && TYPE_NFIELDS (type) == 1
9277 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9278}
9279
9280/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9281 the parallel type. */
14f9c5c9 9282
d2e4a39e
AS
9283struct type *
9284ada_get_base_type (struct type *raw_type)
14f9c5c9 9285{
d2e4a39e
AS
9286 struct type *real_type_namer;
9287 struct type *raw_real_type;
14f9c5c9
AS
9288
9289 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9290 return raw_type;
9291
284614f0
JB
9292 if (ada_is_aligner_type (raw_type))
9293 /* The encoding specifies that we should always use the aligner type.
9294 So, even if this aligner type has an associated XVS type, we should
9295 simply ignore it.
9296
9297 According to the compiler gurus, an XVS type parallel to an aligner
9298 type may exist because of a stabs limitation. In stabs, aligner
9299 types are empty because the field has a variable-sized type, and
9300 thus cannot actually be used as an aligner type. As a result,
9301 we need the associated parallel XVS type to decode the type.
9302 Since the policy in the compiler is to not change the internal
9303 representation based on the debugging info format, we sometimes
9304 end up having a redundant XVS type parallel to the aligner type. */
9305 return raw_type;
9306
14f9c5c9 9307 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9308 if (real_type_namer == NULL
14f9c5c9
AS
9309 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9310 || TYPE_NFIELDS (real_type_namer) != 1)
9311 return raw_type;
9312
f80d3ff2
JB
9313 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9314 {
9315 /* This is an older encoding form where the base type needs to be
85102364 9316 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9317 more efficient. */
9318 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9319 if (raw_real_type == NULL)
9320 return raw_type;
9321 else
9322 return raw_real_type;
9323 }
9324
9325 /* The field in our XVS type is a reference to the base type. */
9326 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9327}
14f9c5c9 9328
4c4b4cd2 9329/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9330
d2e4a39e
AS
9331struct type *
9332ada_aligned_type (struct type *type)
14f9c5c9
AS
9333{
9334 if (ada_is_aligner_type (type))
9335 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9336 else
9337 return ada_get_base_type (type);
9338}
9339
9340
9341/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9342 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9343
fc1a4b47
AC
9344const gdb_byte *
9345ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9346{
d2e4a39e 9347 if (ada_is_aligner_type (type))
14f9c5c9 9348 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9349 valaddr +
9350 TYPE_FIELD_BITPOS (type,
9351 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9352 else
9353 return valaddr;
9354}
9355
4c4b4cd2
PH
9356
9357
14f9c5c9 9358/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9359 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9360const char *
9361ada_enum_name (const char *name)
14f9c5c9 9362{
4c4b4cd2
PH
9363 static char *result;
9364 static size_t result_len = 0;
e6a959d6 9365 const char *tmp;
14f9c5c9 9366
4c4b4cd2
PH
9367 /* First, unqualify the enumeration name:
9368 1. Search for the last '.' character. If we find one, then skip
177b42fe 9369 all the preceding characters, the unqualified name starts
76a01679 9370 right after that dot.
4c4b4cd2 9371 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9372 translates dots into "__". Search forward for double underscores,
9373 but stop searching when we hit an overloading suffix, which is
9374 of the form "__" followed by digits. */
4c4b4cd2 9375
c3e5cd34
PH
9376 tmp = strrchr (name, '.');
9377 if (tmp != NULL)
4c4b4cd2
PH
9378 name = tmp + 1;
9379 else
14f9c5c9 9380 {
4c4b4cd2
PH
9381 while ((tmp = strstr (name, "__")) != NULL)
9382 {
9383 if (isdigit (tmp[2]))
9384 break;
9385 else
9386 name = tmp + 2;
9387 }
14f9c5c9
AS
9388 }
9389
9390 if (name[0] == 'Q')
9391 {
14f9c5c9 9392 int v;
5b4ee69b 9393
14f9c5c9 9394 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9395 {
9396 if (sscanf (name + 2, "%x", &v) != 1)
9397 return name;
9398 }
272560b5
TT
9399 else if (((name[1] >= '0' && name[1] <= '9')
9400 || (name[1] >= 'a' && name[1] <= 'z'))
9401 && name[2] == '\0')
9402 {
9403 GROW_VECT (result, result_len, 4);
9404 xsnprintf (result, result_len, "'%c'", name[1]);
9405 return result;
9406 }
14f9c5c9 9407 else
4c4b4cd2 9408 return name;
14f9c5c9 9409
4c4b4cd2 9410 GROW_VECT (result, result_len, 16);
14f9c5c9 9411 if (isascii (v) && isprint (v))
88c15c34 9412 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9413 else if (name[1] == 'U')
88c15c34 9414 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9415 else
88c15c34 9416 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9417
9418 return result;
9419 }
d2e4a39e 9420 else
4c4b4cd2 9421 {
c3e5cd34
PH
9422 tmp = strstr (name, "__");
9423 if (tmp == NULL)
9424 tmp = strstr (name, "$");
9425 if (tmp != NULL)
4c4b4cd2
PH
9426 {
9427 GROW_VECT (result, result_len, tmp - name + 1);
9428 strncpy (result, name, tmp - name);
9429 result[tmp - name] = '\0';
9430 return result;
9431 }
9432
9433 return name;
9434 }
14f9c5c9
AS
9435}
9436
14f9c5c9
AS
9437/* Evaluate the subexpression of EXP starting at *POS as for
9438 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9439 expression. */
14f9c5c9 9440
d2e4a39e
AS
9441static struct value *
9442evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9443{
4b27a620 9444 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9445}
9446
9447/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9448 value it wraps. */
14f9c5c9 9449
d2e4a39e
AS
9450static struct value *
9451unwrap_value (struct value *val)
14f9c5c9 9452{
df407dfe 9453 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9454
14f9c5c9
AS
9455 if (ada_is_aligner_type (type))
9456 {
de4d072f 9457 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9458 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9459
14f9c5c9 9460 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9461 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9462
9463 return unwrap_value (v);
9464 }
d2e4a39e 9465 else
14f9c5c9 9466 {
d2e4a39e 9467 struct type *raw_real_type =
61ee279c 9468 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9469
5bf03f13
JB
9470 /* If there is no parallel XVS or XVE type, then the value is
9471 already unwrapped. Return it without further modification. */
9472 if ((type == raw_real_type)
9473 && ada_find_parallel_type (type, "___XVE") == NULL)
9474 return val;
14f9c5c9 9475
d2e4a39e 9476 return
4c4b4cd2
PH
9477 coerce_unspec_val_to_type
9478 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9479 value_address (val),
1ed6ede0 9480 NULL, 1));
14f9c5c9
AS
9481 }
9482}
d2e4a39e
AS
9483
9484static struct value *
50eff16b 9485cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9486{
50eff16b
UW
9487 struct value *scale = ada_scaling_factor (value_type (arg));
9488 arg = value_cast (value_type (scale), arg);
14f9c5c9 9489
50eff16b
UW
9490 arg = value_binop (arg, scale, BINOP_MUL);
9491 return value_cast (type, arg);
14f9c5c9
AS
9492}
9493
d2e4a39e 9494static struct value *
50eff16b 9495cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9496{
50eff16b
UW
9497 if (type == value_type (arg))
9498 return arg;
5b4ee69b 9499
50eff16b
UW
9500 struct value *scale = ada_scaling_factor (type);
9501 if (ada_is_fixed_point_type (value_type (arg)))
9502 arg = cast_from_fixed (value_type (scale), arg);
9503 else
9504 arg = value_cast (value_type (scale), arg);
9505
9506 arg = value_binop (arg, scale, BINOP_DIV);
9507 return value_cast (type, arg);
14f9c5c9
AS
9508}
9509
d99dcf51
JB
9510/* Given two array types T1 and T2, return nonzero iff both arrays
9511 contain the same number of elements. */
9512
9513static int
9514ada_same_array_size_p (struct type *t1, struct type *t2)
9515{
9516 LONGEST lo1, hi1, lo2, hi2;
9517
9518 /* Get the array bounds in order to verify that the size of
9519 the two arrays match. */
9520 if (!get_array_bounds (t1, &lo1, &hi1)
9521 || !get_array_bounds (t2, &lo2, &hi2))
9522 error (_("unable to determine array bounds"));
9523
9524 /* To make things easier for size comparison, normalize a bit
9525 the case of empty arrays by making sure that the difference
9526 between upper bound and lower bound is always -1. */
9527 if (lo1 > hi1)
9528 hi1 = lo1 - 1;
9529 if (lo2 > hi2)
9530 hi2 = lo2 - 1;
9531
9532 return (hi1 - lo1 == hi2 - lo2);
9533}
9534
9535/* Assuming that VAL is an array of integrals, and TYPE represents
9536 an array with the same number of elements, but with wider integral
9537 elements, return an array "casted" to TYPE. In practice, this
9538 means that the returned array is built by casting each element
9539 of the original array into TYPE's (wider) element type. */
9540
9541static struct value *
9542ada_promote_array_of_integrals (struct type *type, struct value *val)
9543{
9544 struct type *elt_type = TYPE_TARGET_TYPE (type);
9545 LONGEST lo, hi;
9546 struct value *res;
9547 LONGEST i;
9548
9549 /* Verify that both val and type are arrays of scalars, and
9550 that the size of val's elements is smaller than the size
9551 of type's element. */
9552 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9553 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9554 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9555 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9556 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9557 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9558
9559 if (!get_array_bounds (type, &lo, &hi))
9560 error (_("unable to determine array bounds"));
9561
9562 res = allocate_value (type);
9563
9564 /* Promote each array element. */
9565 for (i = 0; i < hi - lo + 1; i++)
9566 {
9567 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9568
9569 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9570 value_contents_all (elt), TYPE_LENGTH (elt_type));
9571 }
9572
9573 return res;
9574}
9575
4c4b4cd2
PH
9576/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9577 return the converted value. */
9578
d2e4a39e
AS
9579static struct value *
9580coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9581{
df407dfe 9582 struct type *type2 = value_type (val);
5b4ee69b 9583
14f9c5c9
AS
9584 if (type == type2)
9585 return val;
9586
61ee279c
PH
9587 type2 = ada_check_typedef (type2);
9588 type = ada_check_typedef (type);
14f9c5c9 9589
d2e4a39e
AS
9590 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9591 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9592 {
9593 val = ada_value_ind (val);
df407dfe 9594 type2 = value_type (val);
14f9c5c9
AS
9595 }
9596
d2e4a39e 9597 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9598 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9599 {
d99dcf51
JB
9600 if (!ada_same_array_size_p (type, type2))
9601 error (_("cannot assign arrays of different length"));
9602
9603 if (is_integral_type (TYPE_TARGET_TYPE (type))
9604 && is_integral_type (TYPE_TARGET_TYPE (type2))
9605 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9606 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9607 {
9608 /* Allow implicit promotion of the array elements to
9609 a wider type. */
9610 return ada_promote_array_of_integrals (type, val);
9611 }
9612
9613 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9614 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9615 error (_("Incompatible types in assignment"));
04624583 9616 deprecated_set_value_type (val, type);
14f9c5c9 9617 }
d2e4a39e 9618 return val;
14f9c5c9
AS
9619}
9620
4c4b4cd2
PH
9621static struct value *
9622ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9623{
9624 struct value *val;
9625 struct type *type1, *type2;
9626 LONGEST v, v1, v2;
9627
994b9211
AC
9628 arg1 = coerce_ref (arg1);
9629 arg2 = coerce_ref (arg2);
18af8284
JB
9630 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9631 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9632
76a01679
JB
9633 if (TYPE_CODE (type1) != TYPE_CODE_INT
9634 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9635 return value_binop (arg1, arg2, op);
9636
76a01679 9637 switch (op)
4c4b4cd2
PH
9638 {
9639 case BINOP_MOD:
9640 case BINOP_DIV:
9641 case BINOP_REM:
9642 break;
9643 default:
9644 return value_binop (arg1, arg2, op);
9645 }
9646
9647 v2 = value_as_long (arg2);
9648 if (v2 == 0)
323e0a4a 9649 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9650
9651 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9652 return value_binop (arg1, arg2, op);
9653
9654 v1 = value_as_long (arg1);
9655 switch (op)
9656 {
9657 case BINOP_DIV:
9658 v = v1 / v2;
76a01679
JB
9659 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9660 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9661 break;
9662 case BINOP_REM:
9663 v = v1 % v2;
76a01679
JB
9664 if (v * v1 < 0)
9665 v -= v2;
4c4b4cd2
PH
9666 break;
9667 default:
9668 /* Should not reach this point. */
9669 v = 0;
9670 }
9671
9672 val = allocate_value (type1);
990a07ab 9673 store_unsigned_integer (value_contents_raw (val),
e17a4113 9674 TYPE_LENGTH (value_type (val)),
34877895 9675 type_byte_order (type1), v);
4c4b4cd2
PH
9676 return val;
9677}
9678
9679static int
9680ada_value_equal (struct value *arg1, struct value *arg2)
9681{
df407dfe
AC
9682 if (ada_is_direct_array_type (value_type (arg1))
9683 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9684 {
79e8fcaa
JB
9685 struct type *arg1_type, *arg2_type;
9686
f58b38bf
JB
9687 /* Automatically dereference any array reference before
9688 we attempt to perform the comparison. */
9689 arg1 = ada_coerce_ref (arg1);
9690 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9691
4c4b4cd2
PH
9692 arg1 = ada_coerce_to_simple_array (arg1);
9693 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9694
9695 arg1_type = ada_check_typedef (value_type (arg1));
9696 arg2_type = ada_check_typedef (value_type (arg2));
9697
9698 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9699 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9700 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9701 /* FIXME: The following works only for types whose
76a01679
JB
9702 representations use all bits (no padding or undefined bits)
9703 and do not have user-defined equality. */
79e8fcaa
JB
9704 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9705 && memcmp (value_contents (arg1), value_contents (arg2),
9706 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9707 }
9708 return value_equal (arg1, arg2);
9709}
9710
52ce6436
PH
9711/* Total number of component associations in the aggregate starting at
9712 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9713 OP_AGGREGATE. */
52ce6436
PH
9714
9715static int
9716num_component_specs (struct expression *exp, int pc)
9717{
9718 int n, m, i;
5b4ee69b 9719
52ce6436
PH
9720 m = exp->elts[pc + 1].longconst;
9721 pc += 3;
9722 n = 0;
9723 for (i = 0; i < m; i += 1)
9724 {
9725 switch (exp->elts[pc].opcode)
9726 {
9727 default:
9728 n += 1;
9729 break;
9730 case OP_CHOICES:
9731 n += exp->elts[pc + 1].longconst;
9732 break;
9733 }
9734 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9735 }
9736 return n;
9737}
9738
9739/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9740 component of LHS (a simple array or a record), updating *POS past
9741 the expression, assuming that LHS is contained in CONTAINER. Does
9742 not modify the inferior's memory, nor does it modify LHS (unless
9743 LHS == CONTAINER). */
9744
9745static void
9746assign_component (struct value *container, struct value *lhs, LONGEST index,
9747 struct expression *exp, int *pos)
9748{
9749 struct value *mark = value_mark ();
9750 struct value *elt;
0e2da9f0 9751 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9752
0e2da9f0 9753 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9754 {
22601c15
UW
9755 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9756 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9757
52ce6436
PH
9758 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9759 }
9760 else
9761 {
9762 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9763 elt = ada_to_fixed_value (elt);
52ce6436
PH
9764 }
9765
9766 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9767 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9768 else
9769 value_assign_to_component (container, elt,
9770 ada_evaluate_subexp (NULL, exp, pos,
9771 EVAL_NORMAL));
9772
9773 value_free_to_mark (mark);
9774}
9775
9776/* Assuming that LHS represents an lvalue having a record or array
9777 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9778 of that aggregate's value to LHS, advancing *POS past the
9779 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9780 lvalue containing LHS (possibly LHS itself). Does not modify
9781 the inferior's memory, nor does it modify the contents of
0963b4bd 9782 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9783
9784static struct value *
9785assign_aggregate (struct value *container,
9786 struct value *lhs, struct expression *exp,
9787 int *pos, enum noside noside)
9788{
9789 struct type *lhs_type;
9790 int n = exp->elts[*pos+1].longconst;
9791 LONGEST low_index, high_index;
9792 int num_specs;
9793 LONGEST *indices;
9794 int max_indices, num_indices;
52ce6436 9795 int i;
52ce6436
PH
9796
9797 *pos += 3;
9798 if (noside != EVAL_NORMAL)
9799 {
52ce6436
PH
9800 for (i = 0; i < n; i += 1)
9801 ada_evaluate_subexp (NULL, exp, pos, noside);
9802 return container;
9803 }
9804
9805 container = ada_coerce_ref (container);
9806 if (ada_is_direct_array_type (value_type (container)))
9807 container = ada_coerce_to_simple_array (container);
9808 lhs = ada_coerce_ref (lhs);
9809 if (!deprecated_value_modifiable (lhs))
9810 error (_("Left operand of assignment is not a modifiable lvalue."));
9811
0e2da9f0 9812 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9813 if (ada_is_direct_array_type (lhs_type))
9814 {
9815 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9816 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9817 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9818 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9819 }
9820 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9821 {
9822 low_index = 0;
9823 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9824 }
9825 else
9826 error (_("Left-hand side must be array or record."));
9827
9828 num_specs = num_component_specs (exp, *pos - 3);
9829 max_indices = 4 * num_specs + 4;
8d749320 9830 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9831 indices[0] = indices[1] = low_index - 1;
9832 indices[2] = indices[3] = high_index + 1;
9833 num_indices = 4;
9834
9835 for (i = 0; i < n; i += 1)
9836 {
9837 switch (exp->elts[*pos].opcode)
9838 {
1fbf5ada
JB
9839 case OP_CHOICES:
9840 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9841 &num_indices, max_indices,
9842 low_index, high_index);
9843 break;
9844 case OP_POSITIONAL:
9845 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9846 &num_indices, max_indices,
9847 low_index, high_index);
1fbf5ada
JB
9848 break;
9849 case OP_OTHERS:
9850 if (i != n-1)
9851 error (_("Misplaced 'others' clause"));
9852 aggregate_assign_others (container, lhs, exp, pos, indices,
9853 num_indices, low_index, high_index);
9854 break;
9855 default:
9856 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9857 }
9858 }
9859
9860 return container;
9861}
9862
9863/* Assign into the component of LHS indexed by the OP_POSITIONAL
9864 construct at *POS, updating *POS past the construct, given that
9865 the positions are relative to lower bound LOW, where HIGH is the
9866 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9867 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9868 assign_aggregate. */
52ce6436
PH
9869static void
9870aggregate_assign_positional (struct value *container,
9871 struct value *lhs, struct expression *exp,
9872 int *pos, LONGEST *indices, int *num_indices,
9873 int max_indices, LONGEST low, LONGEST high)
9874{
9875 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9876
9877 if (ind - 1 == high)
e1d5a0d2 9878 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9879 if (ind <= high)
9880 {
9881 add_component_interval (ind, ind, indices, num_indices, max_indices);
9882 *pos += 3;
9883 assign_component (container, lhs, ind, exp, pos);
9884 }
9885 else
9886 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9887}
9888
9889/* Assign into the components of LHS indexed by the OP_CHOICES
9890 construct at *POS, updating *POS past the construct, given that
9891 the allowable indices are LOW..HIGH. Record the indices assigned
9892 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9893 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9894static void
9895aggregate_assign_from_choices (struct value *container,
9896 struct value *lhs, struct expression *exp,
9897 int *pos, LONGEST *indices, int *num_indices,
9898 int max_indices, LONGEST low, LONGEST high)
9899{
9900 int j;
9901 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9902 int choice_pos, expr_pc;
9903 int is_array = ada_is_direct_array_type (value_type (lhs));
9904
9905 choice_pos = *pos += 3;
9906
9907 for (j = 0; j < n_choices; j += 1)
9908 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9909 expr_pc = *pos;
9910 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9911
9912 for (j = 0; j < n_choices; j += 1)
9913 {
9914 LONGEST lower, upper;
9915 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9916
52ce6436
PH
9917 if (op == OP_DISCRETE_RANGE)
9918 {
9919 choice_pos += 1;
9920 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9921 EVAL_NORMAL));
9922 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9923 EVAL_NORMAL));
9924 }
9925 else if (is_array)
9926 {
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9928 EVAL_NORMAL));
9929 upper = lower;
9930 }
9931 else
9932 {
9933 int ind;
0d5cff50 9934 const char *name;
5b4ee69b 9935
52ce6436
PH
9936 switch (op)
9937 {
9938 case OP_NAME:
9939 name = &exp->elts[choice_pos + 2].string;
9940 break;
9941 case OP_VAR_VALUE:
987012b8 9942 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9943 break;
9944 default:
9945 error (_("Invalid record component association."));
9946 }
9947 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9948 ind = 0;
9949 if (! find_struct_field (name, value_type (lhs), 0,
9950 NULL, NULL, NULL, NULL, &ind))
9951 error (_("Unknown component name: %s."), name);
9952 lower = upper = ind;
9953 }
9954
9955 if (lower <= upper && (lower < low || upper > high))
9956 error (_("Index in component association out of bounds."));
9957
9958 add_component_interval (lower, upper, indices, num_indices,
9959 max_indices);
9960 while (lower <= upper)
9961 {
9962 int pos1;
5b4ee69b 9963
52ce6436
PH
9964 pos1 = expr_pc;
9965 assign_component (container, lhs, lower, exp, &pos1);
9966 lower += 1;
9967 }
9968 }
9969}
9970
9971/* Assign the value of the expression in the OP_OTHERS construct in
9972 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9973 have not been previously assigned. The index intervals already assigned
9974 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9975 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9976static void
9977aggregate_assign_others (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int num_indices,
9980 LONGEST low, LONGEST high)
9981{
9982 int i;
5ce64950 9983 int expr_pc = *pos + 1;
52ce6436
PH
9984
9985 for (i = 0; i < num_indices - 2; i += 2)
9986 {
9987 LONGEST ind;
5b4ee69b 9988
52ce6436
PH
9989 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9990 {
5ce64950 9991 int localpos;
5b4ee69b 9992
5ce64950
MS
9993 localpos = expr_pc;
9994 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9995 }
9996 }
9997 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9998}
9999
10000/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10001 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10002 modifying *SIZE as needed. It is an error if *SIZE exceeds
10003 MAX_SIZE. The resulting intervals do not overlap. */
10004static void
10005add_component_interval (LONGEST low, LONGEST high,
10006 LONGEST* indices, int *size, int max_size)
10007{
10008 int i, j;
5b4ee69b 10009
52ce6436
PH
10010 for (i = 0; i < *size; i += 2) {
10011 if (high >= indices[i] && low <= indices[i + 1])
10012 {
10013 int kh;
5b4ee69b 10014
52ce6436
PH
10015 for (kh = i + 2; kh < *size; kh += 2)
10016 if (high < indices[kh])
10017 break;
10018 if (low < indices[i])
10019 indices[i] = low;
10020 indices[i + 1] = indices[kh - 1];
10021 if (high > indices[i + 1])
10022 indices[i + 1] = high;
10023 memcpy (indices + i + 2, indices + kh, *size - kh);
10024 *size -= kh - i - 2;
10025 return;
10026 }
10027 else if (high < indices[i])
10028 break;
10029 }
10030
10031 if (*size == max_size)
10032 error (_("Internal error: miscounted aggregate components."));
10033 *size += 2;
10034 for (j = *size-1; j >= i+2; j -= 1)
10035 indices[j] = indices[j - 2];
10036 indices[i] = low;
10037 indices[i + 1] = high;
10038}
10039
6e48bd2c
JB
10040/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10041 is different. */
10042
10043static struct value *
b7e22850 10044ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10045{
10046 if (type == ada_check_typedef (value_type (arg2)))
10047 return arg2;
10048
10049 if (ada_is_fixed_point_type (type))
95f39a5b 10050 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10051
10052 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10053 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10054
10055 return value_cast (type, arg2);
10056}
10057
284614f0
JB
10058/* Evaluating Ada expressions, and printing their result.
10059 ------------------------------------------------------
10060
21649b50
JB
10061 1. Introduction:
10062 ----------------
10063
284614f0
JB
10064 We usually evaluate an Ada expression in order to print its value.
10065 We also evaluate an expression in order to print its type, which
10066 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10067 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10068 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10069 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10070 similar.
10071
10072 Evaluating expressions is a little more complicated for Ada entities
10073 than it is for entities in languages such as C. The main reason for
10074 this is that Ada provides types whose definition might be dynamic.
10075 One example of such types is variant records. Or another example
10076 would be an array whose bounds can only be known at run time.
10077
10078 The following description is a general guide as to what should be
10079 done (and what should NOT be done) in order to evaluate an expression
10080 involving such types, and when. This does not cover how the semantic
10081 information is encoded by GNAT as this is covered separatly. For the
10082 document used as the reference for the GNAT encoding, see exp_dbug.ads
10083 in the GNAT sources.
10084
10085 Ideally, we should embed each part of this description next to its
10086 associated code. Unfortunately, the amount of code is so vast right
10087 now that it's hard to see whether the code handling a particular
10088 situation might be duplicated or not. One day, when the code is
10089 cleaned up, this guide might become redundant with the comments
10090 inserted in the code, and we might want to remove it.
10091
21649b50
JB
10092 2. ``Fixing'' an Entity, the Simple Case:
10093 -----------------------------------------
10094
284614f0
JB
10095 When evaluating Ada expressions, the tricky issue is that they may
10096 reference entities whose type contents and size are not statically
10097 known. Consider for instance a variant record:
10098
10099 type Rec (Empty : Boolean := True) is record
10100 case Empty is
10101 when True => null;
10102 when False => Value : Integer;
10103 end case;
10104 end record;
10105 Yes : Rec := (Empty => False, Value => 1);
10106 No : Rec := (empty => True);
10107
10108 The size and contents of that record depends on the value of the
10109 descriminant (Rec.Empty). At this point, neither the debugging
10110 information nor the associated type structure in GDB are able to
10111 express such dynamic types. So what the debugger does is to create
10112 "fixed" versions of the type that applies to the specific object.
30baf67b 10113 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10114 which means creating its associated fixed type.
10115
10116 Example: when printing the value of variable "Yes" above, its fixed
10117 type would look like this:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 Value : Integer;
10122 end record;
10123
10124 On the other hand, if we printed the value of "No", its fixed type
10125 would become:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 end record;
10130
10131 Things become a little more complicated when trying to fix an entity
10132 with a dynamic type that directly contains another dynamic type,
10133 such as an array of variant records, for instance. There are
10134 two possible cases: Arrays, and records.
10135
21649b50
JB
10136 3. ``Fixing'' Arrays:
10137 ---------------------
10138
10139 The type structure in GDB describes an array in terms of its bounds,
10140 and the type of its elements. By design, all elements in the array
10141 have the same type and we cannot represent an array of variant elements
10142 using the current type structure in GDB. When fixing an array,
10143 we cannot fix the array element, as we would potentially need one
10144 fixed type per element of the array. As a result, the best we can do
10145 when fixing an array is to produce an array whose bounds and size
10146 are correct (allowing us to read it from memory), but without having
10147 touched its element type. Fixing each element will be done later,
10148 when (if) necessary.
10149
10150 Arrays are a little simpler to handle than records, because the same
10151 amount of memory is allocated for each element of the array, even if
1b536f04 10152 the amount of space actually used by each element differs from element
21649b50 10153 to element. Consider for instance the following array of type Rec:
284614f0
JB
10154
10155 type Rec_Array is array (1 .. 2) of Rec;
10156
1b536f04
JB
10157 The actual amount of memory occupied by each element might be different
10158 from element to element, depending on the value of their discriminant.
21649b50 10159 But the amount of space reserved for each element in the array remains
1b536f04 10160 fixed regardless. So we simply need to compute that size using
21649b50
JB
10161 the debugging information available, from which we can then determine
10162 the array size (we multiply the number of elements of the array by
10163 the size of each element).
10164
10165 The simplest case is when we have an array of a constrained element
10166 type. For instance, consider the following type declarations:
10167
10168 type Bounded_String (Max_Size : Integer) is
10169 Length : Integer;
10170 Buffer : String (1 .. Max_Size);
10171 end record;
10172 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10173
10174 In this case, the compiler describes the array as an array of
10175 variable-size elements (identified by its XVS suffix) for which
10176 the size can be read in the parallel XVZ variable.
10177
10178 In the case of an array of an unconstrained element type, the compiler
10179 wraps the array element inside a private PAD type. This type should not
10180 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10181 that we also use the adjective "aligner" in our code to designate
10182 these wrapper types.
10183
1b536f04 10184 In some cases, the size allocated for each element is statically
21649b50
JB
10185 known. In that case, the PAD type already has the correct size,
10186 and the array element should remain unfixed.
10187
10188 But there are cases when this size is not statically known.
10189 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10190
10191 type Dynamic is array (1 .. Five) of Integer;
10192 type Wrapper (Has_Length : Boolean := False) is record
10193 Data : Dynamic;
10194 case Has_Length is
10195 when True => Length : Integer;
10196 when False => null;
10197 end case;
10198 end record;
10199 type Wrapper_Array is array (1 .. 2) of Wrapper;
10200
10201 Hello : Wrapper_Array := (others => (Has_Length => True,
10202 Data => (others => 17),
10203 Length => 1));
10204
10205
10206 The debugging info would describe variable Hello as being an
10207 array of a PAD type. The size of that PAD type is not statically
10208 known, but can be determined using a parallel XVZ variable.
10209 In that case, a copy of the PAD type with the correct size should
10210 be used for the fixed array.
10211
21649b50
JB
10212 3. ``Fixing'' record type objects:
10213 ----------------------------------
10214
10215 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10216 record types. In this case, in order to compute the associated
10217 fixed type, we need to determine the size and offset of each of
10218 its components. This, in turn, requires us to compute the fixed
10219 type of each of these components.
10220
10221 Consider for instance the example:
10222
10223 type Bounded_String (Max_Size : Natural) is record
10224 Str : String (1 .. Max_Size);
10225 Length : Natural;
10226 end record;
10227 My_String : Bounded_String (Max_Size => 10);
10228
10229 In that case, the position of field "Length" depends on the size
10230 of field Str, which itself depends on the value of the Max_Size
21649b50 10231 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10232 we need to fix the type of field Str. Therefore, fixing a variant
10233 record requires us to fix each of its components.
10234
10235 However, if a component does not have a dynamic size, the component
10236 should not be fixed. In particular, fields that use a PAD type
10237 should not fixed. Here is an example where this might happen
10238 (assuming type Rec above):
10239
10240 type Container (Big : Boolean) is record
10241 First : Rec;
10242 After : Integer;
10243 case Big is
10244 when True => Another : Integer;
10245 when False => null;
10246 end case;
10247 end record;
10248 My_Container : Container := (Big => False,
10249 First => (Empty => True),
10250 After => 42);
10251
10252 In that example, the compiler creates a PAD type for component First,
10253 whose size is constant, and then positions the component After just
10254 right after it. The offset of component After is therefore constant
10255 in this case.
10256
10257 The debugger computes the position of each field based on an algorithm
10258 that uses, among other things, the actual position and size of the field
21649b50
JB
10259 preceding it. Let's now imagine that the user is trying to print
10260 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10261 end up computing the offset of field After based on the size of the
10262 fixed version of field First. And since in our example First has
10263 only one actual field, the size of the fixed type is actually smaller
10264 than the amount of space allocated to that field, and thus we would
10265 compute the wrong offset of field After.
10266
21649b50
JB
10267 To make things more complicated, we need to watch out for dynamic
10268 components of variant records (identified by the ___XVL suffix in
10269 the component name). Even if the target type is a PAD type, the size
10270 of that type might not be statically known. So the PAD type needs
10271 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10272 we might end up with the wrong size for our component. This can be
10273 observed with the following type declarations:
284614f0
JB
10274
10275 type Octal is new Integer range 0 .. 7;
10276 type Octal_Array is array (Positive range <>) of Octal;
10277 pragma Pack (Octal_Array);
10278
10279 type Octal_Buffer (Size : Positive) is record
10280 Buffer : Octal_Array (1 .. Size);
10281 Length : Integer;
10282 end record;
10283
10284 In that case, Buffer is a PAD type whose size is unset and needs
10285 to be computed by fixing the unwrapped type.
10286
21649b50
JB
10287 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10288 ----------------------------------------------------------
10289
10290 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10291 thus far, be actually fixed?
10292
10293 The answer is: Only when referencing that element. For instance
10294 when selecting one component of a record, this specific component
10295 should be fixed at that point in time. Or when printing the value
10296 of a record, each component should be fixed before its value gets
10297 printed. Similarly for arrays, the element of the array should be
10298 fixed when printing each element of the array, or when extracting
10299 one element out of that array. On the other hand, fixing should
10300 not be performed on the elements when taking a slice of an array!
10301
31432a67 10302 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10303 size of each field is that we end up also miscomputing the size
10304 of the containing type. This can have adverse results when computing
10305 the value of an entity. GDB fetches the value of an entity based
10306 on the size of its type, and thus a wrong size causes GDB to fetch
10307 the wrong amount of memory. In the case where the computed size is
10308 too small, GDB fetches too little data to print the value of our
31432a67 10309 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10310 past the buffer containing the data =:-o. */
10311
ced9779b
JB
10312/* Evaluate a subexpression of EXP, at index *POS, and return a value
10313 for that subexpression cast to TO_TYPE. Advance *POS over the
10314 subexpression. */
10315
10316static value *
10317ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10318 enum noside noside, struct type *to_type)
10319{
10320 int pc = *pos;
10321
10322 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10323 || exp->elts[pc].opcode == OP_VAR_VALUE)
10324 {
10325 (*pos) += 4;
10326
10327 value *val;
10328 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10329 {
10330 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10331 return value_zero (to_type, not_lval);
10332
10333 val = evaluate_var_msym_value (noside,
10334 exp->elts[pc + 1].objfile,
10335 exp->elts[pc + 2].msymbol);
10336 }
10337 else
10338 val = evaluate_var_value (noside,
10339 exp->elts[pc + 1].block,
10340 exp->elts[pc + 2].symbol);
10341
10342 if (noside == EVAL_SKIP)
10343 return eval_skip_value (exp);
10344
10345 val = ada_value_cast (to_type, val);
10346
10347 /* Follow the Ada language semantics that do not allow taking
10348 an address of the result of a cast (view conversion in Ada). */
10349 if (VALUE_LVAL (val) == lval_memory)
10350 {
10351 if (value_lazy (val))
10352 value_fetch_lazy (val);
10353 VALUE_LVAL (val) = not_lval;
10354 }
10355 return val;
10356 }
10357
10358 value *val = evaluate_subexp (to_type, exp, pos, noside);
10359 if (noside == EVAL_SKIP)
10360 return eval_skip_value (exp);
10361 return ada_value_cast (to_type, val);
10362}
10363
284614f0
JB
10364/* Implement the evaluate_exp routine in the exp_descriptor structure
10365 for the Ada language. */
10366
52ce6436 10367static struct value *
ebf56fd3 10368ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10369 int *pos, enum noside noside)
14f9c5c9
AS
10370{
10371 enum exp_opcode op;
b5385fc0 10372 int tem;
14f9c5c9 10373 int pc;
5ec18f2b 10374 int preeval_pos;
14f9c5c9
AS
10375 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10376 struct type *type;
52ce6436 10377 int nargs, oplen;
d2e4a39e 10378 struct value **argvec;
14f9c5c9 10379
d2e4a39e
AS
10380 pc = *pos;
10381 *pos += 1;
14f9c5c9
AS
10382 op = exp->elts[pc].opcode;
10383
d2e4a39e 10384 switch (op)
14f9c5c9
AS
10385 {
10386 default:
10387 *pos -= 1;
6e48bd2c 10388 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10389
10390 if (noside == EVAL_NORMAL)
10391 arg1 = unwrap_value (arg1);
6e48bd2c 10392
edd079d9 10393 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10394 then we need to perform the conversion manually, because
10395 evaluate_subexp_standard doesn't do it. This conversion is
10396 necessary in Ada because the different kinds of float/fixed
10397 types in Ada have different representations.
10398
10399 Similarly, we need to perform the conversion from OP_LONG
10400 ourselves. */
edd079d9 10401 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10402 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10403
10404 return arg1;
4c4b4cd2
PH
10405
10406 case OP_STRING:
10407 {
76a01679 10408 struct value *result;
5b4ee69b 10409
76a01679
JB
10410 *pos -= 1;
10411 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10412 /* The result type will have code OP_STRING, bashed there from
10413 OP_ARRAY. Bash it back. */
df407dfe
AC
10414 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10415 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10416 return result;
4c4b4cd2 10417 }
14f9c5c9
AS
10418
10419 case UNOP_CAST:
10420 (*pos) += 2;
10421 type = exp->elts[pc + 1].type;
ced9779b 10422 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10423
4c4b4cd2
PH
10424 case UNOP_QUAL:
10425 (*pos) += 2;
10426 type = exp->elts[pc + 1].type;
10427 return ada_evaluate_subexp (type, exp, pos, noside);
10428
14f9c5c9
AS
10429 case BINOP_ASSIGN:
10430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10431 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10432 {
10433 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10434 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10435 return arg1;
10436 return ada_value_assign (arg1, arg1);
10437 }
003f3813
JB
10438 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10439 except if the lhs of our assignment is a convenience variable.
10440 In the case of assigning to a convenience variable, the lhs
10441 should be exactly the result of the evaluation of the rhs. */
10442 type = value_type (arg1);
10443 if (VALUE_LVAL (arg1) == lval_internalvar)
10444 type = NULL;
10445 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10446 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10447 return arg1;
f411722c
TT
10448 if (VALUE_LVAL (arg1) == lval_internalvar)
10449 {
10450 /* Nothing. */
10451 }
10452 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10453 arg2 = cast_to_fixed (value_type (arg1), arg2);
10454 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10455 error
323e0a4a 10456 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10457 else
df407dfe 10458 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10459 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10460
10461 case BINOP_ADD:
10462 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10463 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10464 if (noside == EVAL_SKIP)
4c4b4cd2 10465 goto nosideret;
2ac8a782
JB
10466 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10467 return (value_from_longest
10468 (value_type (arg1),
10469 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10470 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg2),
10473 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10474 if ((ada_is_fixed_point_type (value_type (arg1))
10475 || ada_is_fixed_point_type (value_type (arg2)))
10476 && value_type (arg1) != value_type (arg2))
323e0a4a 10477 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10478 /* Do the addition, and cast the result to the type of the first
10479 argument. We cannot cast the result to a reference type, so if
10480 ARG1 is a reference type, find its underlying type. */
10481 type = value_type (arg1);
10482 while (TYPE_CODE (type) == TYPE_CODE_REF)
10483 type = TYPE_TARGET_TYPE (type);
f44316fa 10484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10485 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10486
10487 case BINOP_SUB:
10488 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 if (noside == EVAL_SKIP)
4c4b4cd2 10491 goto nosideret;
2ac8a782
JB
10492 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10493 return (value_from_longest
10494 (value_type (arg1),
10495 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10496 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg2),
10499 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10500 if ((ada_is_fixed_point_type (value_type (arg1))
10501 || ada_is_fixed_point_type (value_type (arg2)))
10502 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10503 error (_("Operands of fixed-point subtraction "
10504 "must have the same type"));
b7789565
JB
10505 /* Do the substraction, and cast the result to the type of the first
10506 argument. We cannot cast the result to a reference type, so if
10507 ARG1 is a reference type, find its underlying type. */
10508 type = value_type (arg1);
10509 while (TYPE_CODE (type) == TYPE_CODE_REF)
10510 type = TYPE_TARGET_TYPE (type);
f44316fa 10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10512 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10513
10514 case BINOP_MUL:
10515 case BINOP_DIV:
e1578042
JB
10516 case BINOP_REM:
10517 case BINOP_MOD:
14f9c5c9
AS
10518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10520 if (noside == EVAL_SKIP)
4c4b4cd2 10521 goto nosideret;
e1578042 10522 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10523 {
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525 return value_zero (value_type (arg1), not_lval);
10526 }
14f9c5c9 10527 else
4c4b4cd2 10528 {
a53b7a21 10529 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10530 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10531 arg1 = cast_from_fixed (type, arg1);
df407dfe 10532 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10533 arg2 = cast_from_fixed (type, arg2);
f44316fa 10534 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10535 return ada_value_binop (arg1, arg2, op);
10536 }
10537
4c4b4cd2
PH
10538 case BINOP_EQUAL:
10539 case BINOP_NOTEQUAL:
14f9c5c9 10540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10541 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10542 if (noside == EVAL_SKIP)
76a01679 10543 goto nosideret;
4c4b4cd2 10544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10545 tem = 0;
4c4b4cd2 10546 else
f44316fa
UW
10547 {
10548 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10549 tem = ada_value_equal (arg1, arg2);
10550 }
4c4b4cd2 10551 if (op == BINOP_NOTEQUAL)
76a01679 10552 tem = !tem;
fbb06eb1
UW
10553 type = language_bool_type (exp->language_defn, exp->gdbarch);
10554 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10555
10556 case UNOP_NEG:
10557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
10559 goto nosideret;
df407dfe
AC
10560 else if (ada_is_fixed_point_type (value_type (arg1)))
10561 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10562 else
f44316fa
UW
10563 {
10564 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10565 return value_neg (arg1);
10566 }
4c4b4cd2 10567
2330c6c6
JB
10568 case BINOP_LOGICAL_AND:
10569 case BINOP_LOGICAL_OR:
10570 case UNOP_LOGICAL_NOT:
000d5124
JB
10571 {
10572 struct value *val;
10573
10574 *pos -= 1;
10575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10576 type = language_bool_type (exp->language_defn, exp->gdbarch);
10577 return value_cast (type, val);
000d5124 10578 }
2330c6c6
JB
10579
10580 case BINOP_BITWISE_AND:
10581 case BINOP_BITWISE_IOR:
10582 case BINOP_BITWISE_XOR:
000d5124
JB
10583 {
10584 struct value *val;
10585
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10587 *pos = pc;
10588 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10589
10590 return value_cast (value_type (arg1), val);
10591 }
2330c6c6 10592
14f9c5c9
AS
10593 case OP_VAR_VALUE:
10594 *pos -= 1;
6799def4 10595
14f9c5c9 10596 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10597 {
10598 *pos += 4;
10599 goto nosideret;
10600 }
da5c522f
JB
10601
10602 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10603 /* Only encountered when an unresolved symbol occurs in a
10604 context other than a function call, in which case, it is
52ce6436 10605 invalid. */
323e0a4a 10606 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10607 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10608
10609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10610 {
0c1f74cf 10611 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10612 /* Check to see if this is a tagged type. We also need to handle
10613 the case where the type is a reference to a tagged type, but
10614 we have to be careful to exclude pointers to tagged types.
10615 The latter should be shown as usual (as a pointer), whereas
10616 a reference should mostly be transparent to the user. */
10617 if (ada_is_tagged_type (type, 0)
023db19c 10618 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10619 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10620 {
10621 /* Tagged types are a little special in the fact that the real
10622 type is dynamic and can only be determined by inspecting the
10623 object's tag. This means that we need to get the object's
10624 value first (EVAL_NORMAL) and then extract the actual object
10625 type from its tag.
10626
10627 Note that we cannot skip the final step where we extract
10628 the object type from its tag, because the EVAL_NORMAL phase
10629 results in dynamic components being resolved into fixed ones.
10630 This can cause problems when trying to print the type
10631 description of tagged types whose parent has a dynamic size:
10632 We use the type name of the "_parent" component in order
10633 to print the name of the ancestor type in the type description.
10634 If that component had a dynamic size, the resolution into
10635 a fixed type would result in the loss of that type name,
10636 thus preventing us from printing the name of the ancestor
10637 type in the type description. */
10638 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10639
10640 if (TYPE_CODE (type) != TYPE_CODE_REF)
10641 {
10642 struct type *actual_type;
10643
10644 actual_type = type_from_tag (ada_value_tag (arg1));
10645 if (actual_type == NULL)
10646 /* If, for some reason, we were unable to determine
10647 the actual type from the tag, then use the static
10648 approximation that we just computed as a fallback.
10649 This can happen if the debugging information is
10650 incomplete, for instance. */
10651 actual_type = type;
10652 return value_zero (actual_type, not_lval);
10653 }
10654 else
10655 {
10656 /* In the case of a ref, ada_coerce_ref takes care
10657 of determining the actual type. But the evaluation
10658 should return a ref as it should be valid to ask
10659 for its address; so rebuild a ref after coerce. */
10660 arg1 = ada_coerce_ref (arg1);
a65cfae5 10661 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10662 }
10663 }
0c1f74cf 10664
84754697
JB
10665 /* Records and unions for which GNAT encodings have been
10666 generated need to be statically fixed as well.
10667 Otherwise, non-static fixing produces a type where
10668 all dynamic properties are removed, which prevents "ptype"
10669 from being able to completely describe the type.
10670 For instance, a case statement in a variant record would be
10671 replaced by the relevant components based on the actual
10672 value of the discriminants. */
10673 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10674 && dynamic_template_type (type) != NULL)
10675 || (TYPE_CODE (type) == TYPE_CODE_UNION
10676 && ada_find_parallel_type (type, "___XVU") != NULL))
10677 {
10678 *pos += 4;
10679 return value_zero (to_static_fixed_type (type), not_lval);
10680 }
4c4b4cd2 10681 }
da5c522f
JB
10682
10683 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10684 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10685
10686 case OP_FUNCALL:
10687 (*pos) += 2;
10688
10689 /* Allocate arg vector, including space for the function to be
10690 called in argvec[0] and a terminating NULL. */
10691 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10692 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10693
10694 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10695 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10696 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10697 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10698 else
10699 {
10700 for (tem = 0; tem <= nargs; tem += 1)
10701 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10702 argvec[tem] = 0;
10703
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 }
10707
ad82864c
JB
10708 if (ada_is_constrained_packed_array_type
10709 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10710 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10711 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10712 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10713 /* This is a packed array that has already been fixed, and
10714 therefore already coerced to a simple array. Nothing further
10715 to do. */
10716 ;
e6c2c623
PMR
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10718 {
10719 /* Make sure we dereference references so that all the code below
10720 feels like it's really handling the referenced value. Wrapping
10721 types (for alignment) may be there, so make sure we strip them as
10722 well. */
10723 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10724 }
10725 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10726 && VALUE_LVAL (argvec[0]) == lval_memory)
10727 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10728
df407dfe 10729 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10730
10731 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10732 them. So, if this is an array typedef (encoding use for array
10733 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10734 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10735 type = ada_typedef_target_type (type);
10736
4c4b4cd2
PH
10737 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10738 {
61ee279c 10739 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10740 {
10741 case TYPE_CODE_FUNC:
61ee279c 10742 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10743 break;
10744 case TYPE_CODE_ARRAY:
10745 break;
10746 case TYPE_CODE_STRUCT:
10747 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10748 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10749 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10750 break;
10751 default:
323e0a4a 10752 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10753 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10754 break;
10755 }
10756 }
10757
10758 switch (TYPE_CODE (type))
10759 {
10760 case TYPE_CODE_FUNC:
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10762 {
7022349d
PA
10763 if (TYPE_TARGET_TYPE (type) == NULL)
10764 error_call_unknown_return_type (NULL);
10765 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10766 }
e71585ff
PA
10767 return call_function_by_hand (argvec[0], NULL,
10768 gdb::make_array_view (argvec + 1,
10769 nargs));
c8ea1972
PH
10770 case TYPE_CODE_INTERNAL_FUNCTION:
10771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10772 /* We don't know anything about what the internal
10773 function might return, but we have to return
10774 something. */
10775 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10776 not_lval);
10777 else
10778 return call_internal_function (exp->gdbarch, exp->language_defn,
10779 argvec[0], nargs, argvec + 1);
10780
4c4b4cd2
PH
10781 case TYPE_CODE_STRUCT:
10782 {
10783 int arity;
10784
4c4b4cd2
PH
10785 arity = ada_array_arity (type);
10786 type = ada_array_element_type (type, nargs);
10787 if (type == NULL)
323e0a4a 10788 error (_("cannot subscript or call a record"));
4c4b4cd2 10789 if (arity != nargs)
323e0a4a 10790 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10792 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10793 return
10794 unwrap_value (ada_value_subscript
10795 (argvec[0], nargs, argvec + 1));
10796 }
10797 case TYPE_CODE_ARRAY:
10798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10799 {
10800 type = ada_array_element_type (type, nargs);
10801 if (type == NULL)
323e0a4a 10802 error (_("element type of array unknown"));
4c4b4cd2 10803 else
0a07e705 10804 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10805 }
10806 return
10807 unwrap_value (ada_value_subscript
10808 (ada_coerce_to_simple_array (argvec[0]),
10809 nargs, argvec + 1));
10810 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 {
deede10c 10813 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10814 type = ada_array_element_type (type, nargs);
10815 if (type == NULL)
323e0a4a 10816 error (_("element type of array unknown"));
4c4b4cd2 10817 else
0a07e705 10818 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10819 }
10820 return
deede10c
JB
10821 unwrap_value (ada_value_ptr_subscript (argvec[0],
10822 nargs, argvec + 1));
4c4b4cd2
PH
10823
10824 default:
e1d5a0d2
PH
10825 error (_("Attempt to index or call something other than an "
10826 "array or function"));
4c4b4cd2
PH
10827 }
10828
10829 case TERNOP_SLICE:
10830 {
10831 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10832 struct value *low_bound_val =
10833 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10834 struct value *high_bound_val =
10835 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 LONGEST low_bound;
10837 LONGEST high_bound;
5b4ee69b 10838
994b9211
AC
10839 low_bound_val = coerce_ref (low_bound_val);
10840 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10841 low_bound = value_as_long (low_bound_val);
10842 high_bound = value_as_long (high_bound_val);
963a6417 10843
4c4b4cd2
PH
10844 if (noside == EVAL_SKIP)
10845 goto nosideret;
10846
4c4b4cd2
PH
10847 /* If this is a reference to an aligner type, then remove all
10848 the aligners. */
df407dfe
AC
10849 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10850 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10851 TYPE_TARGET_TYPE (value_type (array)) =
10852 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10853
ad82864c 10854 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10855 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10856
10857 /* If this is a reference to an array or an array lvalue,
10858 convert to a pointer. */
df407dfe
AC
10859 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10860 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10861 && VALUE_LVAL (array) == lval_memory))
10862 array = value_addr (array);
10863
1265e4aa 10864 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10865 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10866 (value_type (array))))
bff8c71f
TT
10867 return empty_array (ada_type_of_array (array, 0), low_bound,
10868 high_bound);
4c4b4cd2
PH
10869
10870 array = ada_coerce_to_simple_array_ptr (array);
10871
714e53ab
PH
10872 /* If we have more than one level of pointer indirection,
10873 dereference the value until we get only one level. */
df407dfe
AC
10874 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10875 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10876 == TYPE_CODE_PTR))
10877 array = value_ind (array);
10878
10879 /* Make sure we really do have an array type before going further,
10880 to avoid a SEGV when trying to get the index type or the target
10881 type later down the road if the debug info generated by
10882 the compiler is incorrect or incomplete. */
df407dfe 10883 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10884 error (_("cannot take slice of non-array"));
714e53ab 10885
828292f2
JB
10886 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10887 == TYPE_CODE_PTR)
4c4b4cd2 10888 {
828292f2
JB
10889 struct type *type0 = ada_check_typedef (value_type (array));
10890
0b5d8877 10891 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10892 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10893 else
10894 {
10895 struct type *arr_type0 =
828292f2 10896 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10897
f5938064
JG
10898 return ada_value_slice_from_ptr (array, arr_type0,
10899 longest_to_int (low_bound),
10900 longest_to_int (high_bound));
4c4b4cd2
PH
10901 }
10902 }
10903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return array;
10905 else if (high_bound < low_bound)
bff8c71f 10906 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10907 else
529cad9c
PH
10908 return ada_value_slice (array, longest_to_int (low_bound),
10909 longest_to_int (high_bound));
4c4b4cd2 10910 }
14f9c5c9 10911
4c4b4cd2
PH
10912 case UNOP_IN_RANGE:
10913 (*pos) += 2;
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10915 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10916
14f9c5c9 10917 if (noside == EVAL_SKIP)
4c4b4cd2 10918 goto nosideret;
14f9c5c9 10919
4c4b4cd2
PH
10920 switch (TYPE_CODE (type))
10921 {
10922 default:
e1d5a0d2
PH
10923 lim_warning (_("Membership test incompletely implemented; "
10924 "always returns true"));
fbb06eb1
UW
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10927
10928 case TYPE_CODE_RANGE:
030b4912
UW
10929 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10930 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10931 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return
10935 value_from_longest (type,
4c4b4cd2
PH
10936 (value_less (arg1, arg3)
10937 || value_equal (arg1, arg3))
10938 && (value_less (arg2, arg1)
10939 || value_equal (arg2, arg1)));
10940 }
10941
10942 case BINOP_IN_BOUNDS:
14f9c5c9 10943 (*pos) += 2;
4c4b4cd2
PH
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10946
4c4b4cd2
PH
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
14f9c5c9 10949
4c4b4cd2 10950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10951 {
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_zero (type, not_lval);
10954 }
14f9c5c9 10955
4c4b4cd2 10956 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10957
1eea4ebd
UW
10958 type = ada_index_type (value_type (arg2), tem, "range");
10959 if (!type)
10960 type = value_type (arg1);
14f9c5c9 10961
1eea4ebd
UW
10962 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10963 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10964
f44316fa
UW
10965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10967 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10968 return
fbb06eb1 10969 value_from_longest (type,
4c4b4cd2
PH
10970 (value_less (arg1, arg3)
10971 || value_equal (arg1, arg3))
10972 && (value_less (arg2, arg1)
10973 || value_equal (arg2, arg1)));
10974
10975 case TERNOP_IN_RANGE:
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10977 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10978 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982
f44316fa
UW
10983 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10985 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10986 return
fbb06eb1 10987 value_from_longest (type,
4c4b4cd2
PH
10988 (value_less (arg1, arg3)
10989 || value_equal (arg1, arg3))
10990 && (value_less (arg2, arg1)
10991 || value_equal (arg2, arg1)));
10992
10993 case OP_ATR_FIRST:
10994 case OP_ATR_LAST:
10995 case OP_ATR_LENGTH:
10996 {
76a01679 10997 struct type *type_arg;
5b4ee69b 10998
76a01679
JB
10999 if (exp->elts[*pos].opcode == OP_TYPE)
11000 {
11001 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11002 arg1 = NULL;
5bc23cb3 11003 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11004 }
11005 else
11006 {
11007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 type_arg = NULL;
11009 }
11010
11011 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11012 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11013 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11014 *pos += 4;
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
680e1bee
TT
11018 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11019 {
11020 if (type_arg == NULL)
11021 type_arg = value_type (arg1);
76a01679 11022
680e1bee
TT
11023 if (ada_is_constrained_packed_array_type (type_arg))
11024 type_arg = decode_constrained_packed_array_type (type_arg);
11025
11026 if (!discrete_type_p (type_arg))
11027 {
11028 switch (op)
11029 {
11030 default: /* Should never happen. */
11031 error (_("unexpected attribute encountered"));
11032 case OP_ATR_FIRST:
11033 case OP_ATR_LAST:
11034 type_arg = ada_index_type (type_arg, tem,
11035 ada_attribute_name (op));
11036 break;
11037 case OP_ATR_LENGTH:
11038 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11039 break;
11040 }
11041 }
11042
11043 return value_zero (type_arg, not_lval);
11044 }
11045 else if (type_arg == NULL)
76a01679
JB
11046 {
11047 arg1 = ada_coerce_ref (arg1);
11048
ad82864c 11049 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11050 arg1 = ada_coerce_to_simple_array (arg1);
11051
aa4fb036 11052 if (op == OP_ATR_LENGTH)
1eea4ebd 11053 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11054 else
11055 {
11056 type = ada_index_type (value_type (arg1), tem,
11057 ada_attribute_name (op));
11058 if (type == NULL)
11059 type = builtin_type (exp->gdbarch)->builtin_int;
11060 }
76a01679 11061
76a01679
JB
11062 switch (op)
11063 {
11064 default: /* Should never happen. */
323e0a4a 11065 error (_("unexpected attribute encountered"));
76a01679 11066 case OP_ATR_FIRST:
1eea4ebd
UW
11067 return value_from_longest
11068 (type, ada_array_bound (arg1, tem, 0));
76a01679 11069 case OP_ATR_LAST:
1eea4ebd
UW
11070 return value_from_longest
11071 (type, ada_array_bound (arg1, tem, 1));
76a01679 11072 case OP_ATR_LENGTH:
1eea4ebd
UW
11073 return value_from_longest
11074 (type, ada_array_length (arg1, tem));
76a01679
JB
11075 }
11076 }
11077 else if (discrete_type_p (type_arg))
11078 {
11079 struct type *range_type;
0d5cff50 11080 const char *name = ada_type_name (type_arg);
5b4ee69b 11081
76a01679
JB
11082 range_type = NULL;
11083 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11084 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11085 if (range_type == NULL)
11086 range_type = type_arg;
11087 switch (op)
11088 {
11089 default:
323e0a4a 11090 error (_("unexpected attribute encountered"));
76a01679 11091 case OP_ATR_FIRST:
690cc4eb 11092 return value_from_longest
43bbcdc2 11093 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11094 case OP_ATR_LAST:
690cc4eb 11095 return value_from_longest
43bbcdc2 11096 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11097 case OP_ATR_LENGTH:
323e0a4a 11098 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11099 }
11100 }
11101 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11102 error (_("unimplemented type attribute"));
76a01679
JB
11103 else
11104 {
11105 LONGEST low, high;
11106
ad82864c
JB
11107 if (ada_is_constrained_packed_array_type (type_arg))
11108 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11109
aa4fb036 11110 if (op == OP_ATR_LENGTH)
1eea4ebd 11111 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11112 else
11113 {
11114 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11115 if (type == NULL)
11116 type = builtin_type (exp->gdbarch)->builtin_int;
11117 }
1eea4ebd 11118
76a01679
JB
11119 switch (op)
11120 {
11121 default:
323e0a4a 11122 error (_("unexpected attribute encountered"));
76a01679 11123 case OP_ATR_FIRST:
1eea4ebd 11124 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11125 return value_from_longest (type, low);
11126 case OP_ATR_LAST:
1eea4ebd 11127 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11128 return value_from_longest (type, high);
11129 case OP_ATR_LENGTH:
1eea4ebd
UW
11130 low = ada_array_bound_from_type (type_arg, tem, 0);
11131 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11132 return value_from_longest (type, high - low + 1);
11133 }
11134 }
14f9c5c9
AS
11135 }
11136
4c4b4cd2
PH
11137 case OP_ATR_TAG:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
76a01679 11140 goto nosideret;
4c4b4cd2
PH
11141
11142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11143 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11144
11145 return ada_value_tag (arg1);
11146
11147 case OP_ATR_MIN:
11148 case OP_ATR_MAX:
11149 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 if (noside == EVAL_SKIP)
76a01679 11153 goto nosideret;
d2e4a39e 11154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11155 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11156 else
f44316fa
UW
11157 {
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11159 return value_binop (arg1, arg2,
11160 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11161 }
14f9c5c9 11162
4c4b4cd2
PH
11163 case OP_ATR_MODULUS:
11164 {
31dedfee 11165 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11166
5b4ee69b 11167 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
4c4b4cd2 11170
76a01679 11171 if (!ada_is_modular_type (type_arg))
323e0a4a 11172 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11173
76a01679
JB
11174 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11175 ada_modulus (type_arg));
4c4b4cd2
PH
11176 }
11177
11178
11179 case OP_ATR_POS:
11180 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 if (noside == EVAL_SKIP)
76a01679 11183 goto nosideret;
3cb382c9
UW
11184 type = builtin_type (exp->gdbarch)->builtin_int;
11185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11186 return value_zero (type, not_lval);
14f9c5c9 11187 else
3cb382c9 11188 return value_pos_atr (type, arg1);
14f9c5c9 11189
4c4b4cd2
PH
11190 case OP_ATR_SIZE:
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11192 type = value_type (arg1);
11193
11194 /* If the argument is a reference, then dereference its type, since
11195 the user is really asking for the size of the actual object,
11196 not the size of the pointer. */
11197 if (TYPE_CODE (type) == TYPE_CODE_REF)
11198 type = TYPE_TARGET_TYPE (type);
11199
4c4b4cd2 11200 if (noside == EVAL_SKIP)
76a01679 11201 goto nosideret;
4c4b4cd2 11202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11203 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11204 else
22601c15 11205 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11206 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11207
11208 case OP_ATR_VAL:
11209 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11211 type = exp->elts[pc + 2].type;
14f9c5c9 11212 if (noside == EVAL_SKIP)
76a01679 11213 goto nosideret;
4c4b4cd2 11214 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11215 return value_zero (type, not_lval);
4c4b4cd2 11216 else
76a01679 11217 return value_val_atr (type, arg1);
4c4b4cd2
PH
11218
11219 case BINOP_EXP:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11225 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11226 else
f44316fa
UW
11227 {
11228 /* For integer exponentiation operations,
11229 only promote the first argument. */
11230 if (is_integral_type (value_type (arg2)))
11231 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11232 else
11233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11234
11235 return value_binop (arg1, arg2, op);
11236 }
4c4b4cd2
PH
11237
11238 case UNOP_PLUS:
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 else
11243 return arg1;
11244
11245 case UNOP_ABS:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
f44316fa 11249 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11250 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11251 return value_neg (arg1);
14f9c5c9 11252 else
4c4b4cd2 11253 return arg1;
14f9c5c9
AS
11254
11255 case UNOP_IND:
5ec18f2b 11256 preeval_pos = *pos;
6b0d7253 11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11258 if (noside == EVAL_SKIP)
4c4b4cd2 11259 goto nosideret;
df407dfe 11260 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11262 {
11263 if (ada_is_array_descriptor_type (type))
11264 /* GDB allows dereferencing GNAT array descriptors. */
11265 {
11266 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11267
4c4b4cd2 11268 if (arrType == NULL)
323e0a4a 11269 error (_("Attempt to dereference null array pointer."));
00a4c844 11270 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11271 }
11272 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11273 || TYPE_CODE (type) == TYPE_CODE_REF
11274 /* In C you can dereference an array to get the 1st elt. */
11275 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11276 {
5ec18f2b
JG
11277 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11278 only be determined by inspecting the object's tag.
11279 This means that we need to evaluate completely the
11280 expression in order to get its type. */
11281
023db19c
JB
11282 if ((TYPE_CODE (type) == TYPE_CODE_REF
11283 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11284 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11285 {
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11287 EVAL_NORMAL);
11288 type = value_type (ada_value_ind (arg1));
11289 }
11290 else
11291 {
11292 type = to_static_fixed_type
11293 (ada_aligned_type
11294 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11295 }
c1b5a1a6 11296 ada_ensure_varsize_limit (type);
714e53ab
PH
11297 return value_zero (type, lval_memory);
11298 }
4c4b4cd2 11299 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11300 {
11301 /* GDB allows dereferencing an int. */
11302 if (expect_type == NULL)
11303 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11304 lval_memory);
11305 else
11306 {
11307 expect_type =
11308 to_static_fixed_type (ada_aligned_type (expect_type));
11309 return value_zero (expect_type, lval_memory);
11310 }
11311 }
4c4b4cd2 11312 else
323e0a4a 11313 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11314 }
0963b4bd 11315 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11316 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11317
96967637
JB
11318 if (TYPE_CODE (type) == TYPE_CODE_INT)
11319 /* GDB allows dereferencing an int. If we were given
11320 the expect_type, then use that as the target type.
11321 Otherwise, assume that the target type is an int. */
11322 {
11323 if (expect_type != NULL)
11324 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11325 arg1));
11326 else
11327 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11328 (CORE_ADDR) value_as_address (arg1));
11329 }
6b0d7253 11330
4c4b4cd2
PH
11331 if (ada_is_array_descriptor_type (type))
11332 /* GDB allows dereferencing GNAT array descriptors. */
11333 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11334 else
4c4b4cd2 11335 return ada_value_ind (arg1);
14f9c5c9
AS
11336
11337 case STRUCTOP_STRUCT:
11338 tem = longest_to_int (exp->elts[pc + 1].longconst);
11339 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11340 preeval_pos = *pos;
14f9c5c9
AS
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11342 if (noside == EVAL_SKIP)
4c4b4cd2 11343 goto nosideret;
14f9c5c9 11344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11345 {
df407dfe 11346 struct type *type1 = value_type (arg1);
5b4ee69b 11347
76a01679
JB
11348 if (ada_is_tagged_type (type1, 1))
11349 {
11350 type = ada_lookup_struct_elt_type (type1,
11351 &exp->elts[pc + 2].string,
988f6b3d 11352 1, 1);
5ec18f2b
JG
11353
11354 /* If the field is not found, check if it exists in the
11355 extension of this object's type. This means that we
11356 need to evaluate completely the expression. */
11357
76a01679 11358 if (type == NULL)
5ec18f2b
JG
11359 {
11360 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11361 EVAL_NORMAL);
11362 arg1 = ada_value_struct_elt (arg1,
11363 &exp->elts[pc + 2].string,
11364 0);
11365 arg1 = unwrap_value (arg1);
11366 type = value_type (ada_to_fixed_value (arg1));
11367 }
76a01679
JB
11368 }
11369 else
11370 type =
11371 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11372 0);
76a01679
JB
11373
11374 return value_zero (ada_aligned_type (type), lval_memory);
11375 }
14f9c5c9 11376 else
a579cd9a
MW
11377 {
11378 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11379 arg1 = unwrap_value (arg1);
11380 return ada_to_fixed_value (arg1);
11381 }
284614f0 11382
14f9c5c9 11383 case OP_TYPE:
4c4b4cd2
PH
11384 /* The value is not supposed to be used. This is here to make it
11385 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11386 (*pos) += 2;
11387 if (noside == EVAL_SKIP)
4c4b4cd2 11388 goto nosideret;
14f9c5c9 11389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11390 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11391 else
323e0a4a 11392 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11393
11394 case OP_AGGREGATE:
11395 case OP_CHOICES:
11396 case OP_OTHERS:
11397 case OP_DISCRETE_RANGE:
11398 case OP_POSITIONAL:
11399 case OP_NAME:
11400 if (noside == EVAL_NORMAL)
11401 switch (op)
11402 {
11403 case OP_NAME:
11404 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11405 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11406 case OP_AGGREGATE:
11407 error (_("Aggregates only allowed on the right of an assignment"));
11408 default:
0963b4bd
MS
11409 internal_error (__FILE__, __LINE__,
11410 _("aggregate apparently mangled"));
52ce6436
PH
11411 }
11412
11413 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11414 *pos += oplen - 1;
11415 for (tem = 0; tem < nargs; tem += 1)
11416 ada_evaluate_subexp (NULL, exp, pos, noside);
11417 goto nosideret;
14f9c5c9
AS
11418 }
11419
11420nosideret:
ced9779b 11421 return eval_skip_value (exp);
14f9c5c9 11422}
14f9c5c9 11423\f
d2e4a39e 11424
4c4b4cd2 11425 /* Fixed point */
14f9c5c9
AS
11426
11427/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11428 type name that encodes the 'small and 'delta information.
4c4b4cd2 11429 Otherwise, return NULL. */
14f9c5c9 11430
d2e4a39e 11431static const char *
ebf56fd3 11432fixed_type_info (struct type *type)
14f9c5c9 11433{
d2e4a39e 11434 const char *name = ada_type_name (type);
14f9c5c9
AS
11435 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11436
d2e4a39e
AS
11437 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11438 {
14f9c5c9 11439 const char *tail = strstr (name, "___XF_");
5b4ee69b 11440
14f9c5c9 11441 if (tail == NULL)
4c4b4cd2 11442 return NULL;
d2e4a39e 11443 else
4c4b4cd2 11444 return tail + 5;
14f9c5c9
AS
11445 }
11446 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11447 return fixed_type_info (TYPE_TARGET_TYPE (type));
11448 else
11449 return NULL;
11450}
11451
4c4b4cd2 11452/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11453
11454int
ebf56fd3 11455ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11456{
11457 return fixed_type_info (type) != NULL;
11458}
11459
4c4b4cd2
PH
11460/* Return non-zero iff TYPE represents a System.Address type. */
11461
11462int
11463ada_is_system_address_type (struct type *type)
11464{
11465 return (TYPE_NAME (type)
11466 && strcmp (TYPE_NAME (type), "system__address") == 0);
11467}
11468
14f9c5c9 11469/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11470 type, return the target floating-point type to be used to represent
11471 of this type during internal computation. */
11472
11473static struct type *
11474ada_scaling_type (struct type *type)
11475{
11476 return builtin_type (get_type_arch (type))->builtin_long_double;
11477}
11478
11479/* Assuming that TYPE is the representation of an Ada fixed-point
11480 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11481 delta cannot be determined. */
14f9c5c9 11482
50eff16b 11483struct value *
ebf56fd3 11484ada_delta (struct type *type)
14f9c5c9
AS
11485{
11486 const char *encoding = fixed_type_info (type);
50eff16b
UW
11487 struct type *scale_type = ada_scaling_type (type);
11488
11489 long long num, den;
11490
11491 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11492 return nullptr;
d2e4a39e 11493 else
50eff16b
UW
11494 return value_binop (value_from_longest (scale_type, num),
11495 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11496}
11497
11498/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11499 factor ('SMALL value) associated with the type. */
14f9c5c9 11500
50eff16b
UW
11501struct value *
11502ada_scaling_factor (struct type *type)
14f9c5c9
AS
11503{
11504 const char *encoding = fixed_type_info (type);
50eff16b
UW
11505 struct type *scale_type = ada_scaling_type (type);
11506
11507 long long num0, den0, num1, den1;
14f9c5c9 11508 int n;
d2e4a39e 11509
50eff16b 11510 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11511 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11512
11513 if (n < 2)
50eff16b 11514 return value_from_longest (scale_type, 1);
14f9c5c9 11515 else if (n == 4)
50eff16b
UW
11516 return value_binop (value_from_longest (scale_type, num1),
11517 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11518 else
50eff16b
UW
11519 return value_binop (value_from_longest (scale_type, num0),
11520 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11521}
11522
14f9c5c9 11523\f
d2e4a39e 11524
4c4b4cd2 11525 /* Range types */
14f9c5c9
AS
11526
11527/* Scan STR beginning at position K for a discriminant name, and
11528 return the value of that discriminant field of DVAL in *PX. If
11529 PNEW_K is not null, put the position of the character beyond the
11530 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11531 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11532
11533static int
108d56a4 11534scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11535 int *pnew_k)
14f9c5c9
AS
11536{
11537 static char *bound_buffer = NULL;
11538 static size_t bound_buffer_len = 0;
5da1a4d3 11539 const char *pstart, *pend, *bound;
d2e4a39e 11540 struct value *bound_val;
14f9c5c9
AS
11541
11542 if (dval == NULL || str == NULL || str[k] == '\0')
11543 return 0;
11544
5da1a4d3
SM
11545 pstart = str + k;
11546 pend = strstr (pstart, "__");
14f9c5c9
AS
11547 if (pend == NULL)
11548 {
5da1a4d3 11549 bound = pstart;
14f9c5c9
AS
11550 k += strlen (bound);
11551 }
d2e4a39e 11552 else
14f9c5c9 11553 {
5da1a4d3
SM
11554 int len = pend - pstart;
11555
11556 /* Strip __ and beyond. */
11557 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11558 strncpy (bound_buffer, pstart, len);
11559 bound_buffer[len] = '\0';
11560
14f9c5c9 11561 bound = bound_buffer;
d2e4a39e 11562 k = pend - str;
14f9c5c9 11563 }
d2e4a39e 11564
df407dfe 11565 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11566 if (bound_val == NULL)
11567 return 0;
11568
11569 *px = value_as_long (bound_val);
11570 if (pnew_k != NULL)
11571 *pnew_k = k;
11572 return 1;
11573}
11574
11575/* Value of variable named NAME in the current environment. If
11576 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11577 otherwise causes an error with message ERR_MSG. */
11578
d2e4a39e 11579static struct value *
edb0c9cb 11580get_var_value (const char *name, const char *err_msg)
14f9c5c9 11581{
b5ec771e 11582 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11583
54d343a2 11584 std::vector<struct block_symbol> syms;
b5ec771e
PA
11585 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11586 get_selected_block (0),
11587 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11588
11589 if (nsyms != 1)
11590 {
11591 if (err_msg == NULL)
4c4b4cd2 11592 return 0;
14f9c5c9 11593 else
8a3fe4f8 11594 error (("%s"), err_msg);
14f9c5c9
AS
11595 }
11596
54d343a2 11597 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11598}
d2e4a39e 11599
edb0c9cb
PA
11600/* Value of integer variable named NAME in the current environment.
11601 If no such variable is found, returns false. Otherwise, sets VALUE
11602 to the variable's value and returns true. */
4c4b4cd2 11603
edb0c9cb
PA
11604bool
11605get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11606{
4c4b4cd2 11607 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11608
14f9c5c9 11609 if (var_val == 0)
edb0c9cb
PA
11610 return false;
11611
11612 value = value_as_long (var_val);
11613 return true;
14f9c5c9 11614}
d2e4a39e 11615
14f9c5c9
AS
11616
11617/* Return a range type whose base type is that of the range type named
11618 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11619 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11620 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11621 corresponding range type from debug information; fall back to using it
11622 if symbol lookup fails. If a new type must be created, allocate it
11623 like ORIG_TYPE was. The bounds information, in general, is encoded
11624 in NAME, the base type given in the named range type. */
14f9c5c9 11625
d2e4a39e 11626static struct type *
28c85d6c 11627to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11628{
0d5cff50 11629 const char *name;
14f9c5c9 11630 struct type *base_type;
108d56a4 11631 const char *subtype_info;
14f9c5c9 11632
28c85d6c
JB
11633 gdb_assert (raw_type != NULL);
11634 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11635
1ce677a4 11636 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11637 base_type = TYPE_TARGET_TYPE (raw_type);
11638 else
11639 base_type = raw_type;
11640
28c85d6c 11641 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11642 subtype_info = strstr (name, "___XD");
11643 if (subtype_info == NULL)
690cc4eb 11644 {
43bbcdc2
PH
11645 LONGEST L = ada_discrete_type_low_bound (raw_type);
11646 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11647
690cc4eb
PH
11648 if (L < INT_MIN || U > INT_MAX)
11649 return raw_type;
11650 else
0c9c3474
SA
11651 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11652 L, U);
690cc4eb 11653 }
14f9c5c9
AS
11654 else
11655 {
11656 static char *name_buf = NULL;
11657 static size_t name_len = 0;
11658 int prefix_len = subtype_info - name;
11659 LONGEST L, U;
11660 struct type *type;
108d56a4 11661 const char *bounds_str;
14f9c5c9
AS
11662 int n;
11663
11664 GROW_VECT (name_buf, name_len, prefix_len + 5);
11665 strncpy (name_buf, name, prefix_len);
11666 name_buf[prefix_len] = '\0';
11667
11668 subtype_info += 5;
11669 bounds_str = strchr (subtype_info, '_');
11670 n = 1;
11671
d2e4a39e 11672 if (*subtype_info == 'L')
4c4b4cd2
PH
11673 {
11674 if (!ada_scan_number (bounds_str, n, &L, &n)
11675 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11676 return raw_type;
11677 if (bounds_str[n] == '_')
11678 n += 2;
0963b4bd 11679 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11680 n += 1;
11681 subtype_info += 1;
11682 }
d2e4a39e 11683 else
4c4b4cd2 11684 {
4c4b4cd2 11685 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11686 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11687 {
323e0a4a 11688 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11689 L = 1;
11690 }
11691 }
14f9c5c9 11692
d2e4a39e 11693 if (*subtype_info == 'U')
4c4b4cd2
PH
11694 {
11695 if (!ada_scan_number (bounds_str, n, &U, &n)
11696 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11697 return raw_type;
11698 }
d2e4a39e 11699 else
4c4b4cd2 11700 {
4c4b4cd2 11701 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11702 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11703 {
323e0a4a 11704 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11705 U = L;
11706 }
11707 }
14f9c5c9 11708
0c9c3474
SA
11709 type = create_static_range_type (alloc_type_copy (raw_type),
11710 base_type, L, U);
f5a91472
JB
11711 /* create_static_range_type alters the resulting type's length
11712 to match the size of the base_type, which is not what we want.
11713 Set it back to the original range type's length. */
11714 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11715 TYPE_NAME (type) = name;
14f9c5c9
AS
11716 return type;
11717 }
11718}
11719
4c4b4cd2
PH
11720/* True iff NAME is the name of a range type. */
11721
14f9c5c9 11722int
d2e4a39e 11723ada_is_range_type_name (const char *name)
14f9c5c9
AS
11724{
11725 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11726}
14f9c5c9 11727\f
d2e4a39e 11728
4c4b4cd2
PH
11729 /* Modular types */
11730
11731/* True iff TYPE is an Ada modular type. */
14f9c5c9 11732
14f9c5c9 11733int
d2e4a39e 11734ada_is_modular_type (struct type *type)
14f9c5c9 11735{
18af8284 11736 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11737
11738 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11739 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11740 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11741}
11742
4c4b4cd2
PH
11743/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11744
61ee279c 11745ULONGEST
0056e4d5 11746ada_modulus (struct type *type)
14f9c5c9 11747{
43bbcdc2 11748 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11749}
d2e4a39e 11750\f
f7f9143b
JB
11751
11752/* Ada exception catchpoint support:
11753 ---------------------------------
11754
11755 We support 3 kinds of exception catchpoints:
11756 . catchpoints on Ada exceptions
11757 . catchpoints on unhandled Ada exceptions
11758 . catchpoints on failed assertions
11759
11760 Exceptions raised during failed assertions, or unhandled exceptions
11761 could perfectly be caught with the general catchpoint on Ada exceptions.
11762 However, we can easily differentiate these two special cases, and having
11763 the option to distinguish these two cases from the rest can be useful
11764 to zero-in on certain situations.
11765
11766 Exception catchpoints are a specialized form of breakpoint,
11767 since they rely on inserting breakpoints inside known routines
11768 of the GNAT runtime. The implementation therefore uses a standard
11769 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11770 of breakpoint_ops.
11771
0259addd
JB
11772 Support in the runtime for exception catchpoints have been changed
11773 a few times already, and these changes affect the implementation
11774 of these catchpoints. In order to be able to support several
11775 variants of the runtime, we use a sniffer that will determine
28010a5d 11776 the runtime variant used by the program being debugged. */
f7f9143b 11777
82eacd52
JB
11778/* Ada's standard exceptions.
11779
11780 The Ada 83 standard also defined Numeric_Error. But there so many
11781 situations where it was unclear from the Ada 83 Reference Manual
11782 (RM) whether Constraint_Error or Numeric_Error should be raised,
11783 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11784 Interpretation saying that anytime the RM says that Numeric_Error
11785 should be raised, the implementation may raise Constraint_Error.
11786 Ada 95 went one step further and pretty much removed Numeric_Error
11787 from the list of standard exceptions (it made it a renaming of
11788 Constraint_Error, to help preserve compatibility when compiling
11789 an Ada83 compiler). As such, we do not include Numeric_Error from
11790 this list of standard exceptions. */
3d0b0fa3 11791
a121b7c1 11792static const char *standard_exc[] = {
3d0b0fa3
JB
11793 "constraint_error",
11794 "program_error",
11795 "storage_error",
11796 "tasking_error"
11797};
11798
0259addd
JB
11799typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11800
11801/* A structure that describes how to support exception catchpoints
11802 for a given executable. */
11803
11804struct exception_support_info
11805{
11806 /* The name of the symbol to break on in order to insert
11807 a catchpoint on exceptions. */
11808 const char *catch_exception_sym;
11809
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on unhandled exceptions. */
11812 const char *catch_exception_unhandled_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on failed assertions. */
11816 const char *catch_assert_sym;
11817
9f757bf7
XR
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on exception handling. */
11820 const char *catch_handlers_sym;
11821
0259addd
JB
11822 /* Assuming that the inferior just triggered an unhandled exception
11823 catchpoint, this function is responsible for returning the address
11824 in inferior memory where the name of that exception is stored.
11825 Return zero if the address could not be computed. */
11826 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11827};
11828
11829static CORE_ADDR ada_unhandled_exception_name_addr (void);
11830static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11831
11832/* The following exception support info structure describes how to
11833 implement exception catchpoints with the latest version of the
ca683e3a 11834 Ada runtime (as of 2019-08-??). */
0259addd
JB
11835
11836static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11837{
11838 "__gnat_debug_raise_exception", /* catch_exception_sym */
11839 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11840 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11841 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11842 ada_unhandled_exception_name_addr
11843};
11844
11845/* The following exception support info structure describes how to
11846 implement exception catchpoints with an earlier version of the
11847 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11848
11849static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11850{
11851 "__gnat_debug_raise_exception", /* catch_exception_sym */
11852 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11853 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11854 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11855 ada_unhandled_exception_name_addr
11856};
11857
11858/* The following exception support info structure describes how to
11859 implement exception catchpoints with a slightly older version
11860 of the Ada runtime. */
11861
11862static const struct exception_support_info exception_support_info_fallback =
11863{
11864 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11865 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11866 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11867 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11868 ada_unhandled_exception_name_addr_from_raise
11869};
11870
f17011e0
JB
11871/* Return nonzero if we can detect the exception support routines
11872 described in EINFO.
11873
11874 This function errors out if an abnormal situation is detected
11875 (for instance, if we find the exception support routines, but
11876 that support is found to be incomplete). */
11877
11878static int
11879ada_has_this_exception_support (const struct exception_support_info *einfo)
11880{
11881 struct symbol *sym;
11882
11883 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11884 that should be compiled with debugging information. As a result, we
11885 expect to find that symbol in the symtabs. */
11886
11887 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11888 if (sym == NULL)
a6af7abe
JB
11889 {
11890 /* Perhaps we did not find our symbol because the Ada runtime was
11891 compiled without debugging info, or simply stripped of it.
11892 It happens on some GNU/Linux distributions for instance, where
11893 users have to install a separate debug package in order to get
11894 the runtime's debugging info. In that situation, let the user
11895 know why we cannot insert an Ada exception catchpoint.
11896
11897 Note: Just for the purpose of inserting our Ada exception
11898 catchpoint, we could rely purely on the associated minimal symbol.
11899 But we would be operating in degraded mode anyway, since we are
11900 still lacking the debugging info needed later on to extract
11901 the name of the exception being raised (this name is printed in
11902 the catchpoint message, and is also used when trying to catch
11903 a specific exception). We do not handle this case for now. */
3b7344d5 11904 struct bound_minimal_symbol msym
1c8e84b0
JB
11905 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11906
3b7344d5 11907 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11908 error (_("Your Ada runtime appears to be missing some debugging "
11909 "information.\nCannot insert Ada exception catchpoint "
11910 "in this configuration."));
11911
11912 return 0;
11913 }
f17011e0
JB
11914
11915 /* Make sure that the symbol we found corresponds to a function. */
11916
11917 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11918 {
11919 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11920 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11921 return 0;
11922 }
11923
11924 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11925 if (sym == NULL)
11926 {
11927 struct bound_minimal_symbol msym
11928 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11929
11930 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11931 error (_("Your Ada runtime appears to be missing some debugging "
11932 "information.\nCannot insert Ada exception catchpoint "
11933 "in this configuration."));
11934
11935 return 0;
11936 }
11937
11938 /* Make sure that the symbol we found corresponds to a function. */
11939
11940 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11941 {
11942 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11943 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11944 return 0;
11945 }
f17011e0
JB
11946
11947 return 1;
11948}
11949
0259addd
JB
11950/* Inspect the Ada runtime and determine which exception info structure
11951 should be used to provide support for exception catchpoints.
11952
3eecfa55
JB
11953 This function will always set the per-inferior exception_info,
11954 or raise an error. */
0259addd
JB
11955
11956static void
11957ada_exception_support_info_sniffer (void)
11958{
3eecfa55 11959 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11960
11961 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11962 if (data->exception_info != NULL)
0259addd
JB
11963 return;
11964
11965 /* Check the latest (default) exception support info. */
f17011e0 11966 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11967 {
3eecfa55 11968 data->exception_info = &default_exception_support_info;
0259addd
JB
11969 return;
11970 }
11971
ca683e3a
AO
11972 /* Try the v0 exception suport info. */
11973 if (ada_has_this_exception_support (&exception_support_info_v0))
11974 {
11975 data->exception_info = &exception_support_info_v0;
11976 return;
11977 }
11978
0259addd 11979 /* Try our fallback exception suport info. */
f17011e0 11980 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11981 {
3eecfa55 11982 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11983 return;
11984 }
11985
11986 /* Sometimes, it is normal for us to not be able to find the routine
11987 we are looking for. This happens when the program is linked with
11988 the shared version of the GNAT runtime, and the program has not been
11989 started yet. Inform the user of these two possible causes if
11990 applicable. */
11991
ccefe4c4 11992 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11993 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11994
11995 /* If the symbol does not exist, then check that the program is
11996 already started, to make sure that shared libraries have been
11997 loaded. If it is not started, this may mean that the symbol is
11998 in a shared library. */
11999
e99b03dc 12000 if (inferior_ptid.pid () == 0)
0259addd
JB
12001 error (_("Unable to insert catchpoint. Try to start the program first."));
12002
12003 /* At this point, we know that we are debugging an Ada program and
12004 that the inferior has been started, but we still are not able to
0963b4bd 12005 find the run-time symbols. That can mean that we are in
0259addd
JB
12006 configurable run time mode, or that a-except as been optimized
12007 out by the linker... In any case, at this point it is not worth
12008 supporting this feature. */
12009
7dda8cff 12010 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12011}
12012
f7f9143b
JB
12013/* True iff FRAME is very likely to be that of a function that is
12014 part of the runtime system. This is all very heuristic, but is
12015 intended to be used as advice as to what frames are uninteresting
12016 to most users. */
12017
12018static int
12019is_known_support_routine (struct frame_info *frame)
12020{
692465f1 12021 enum language func_lang;
f7f9143b 12022 int i;
f35a17b5 12023 const char *fullname;
f7f9143b 12024
4ed6b5be
JB
12025 /* If this code does not have any debugging information (no symtab),
12026 This cannot be any user code. */
f7f9143b 12027
51abb421 12028 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12029 if (sal.symtab == NULL)
12030 return 1;
12031
4ed6b5be
JB
12032 /* If there is a symtab, but the associated source file cannot be
12033 located, then assume this is not user code: Selecting a frame
12034 for which we cannot display the code would not be very helpful
12035 for the user. This should also take care of case such as VxWorks
12036 where the kernel has some debugging info provided for a few units. */
f7f9143b 12037
f35a17b5
JK
12038 fullname = symtab_to_fullname (sal.symtab);
12039 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12040 return 1;
12041
85102364 12042 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
12043 We also check the name of the objfile against the name of some
12044 known system libraries that sometimes come with debugging info
12045 too. */
12046
f7f9143b
JB
12047 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12048 {
12049 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12050 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12051 return 1;
eb822aa6
DE
12052 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12053 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12054 return 1;
f7f9143b
JB
12055 }
12056
4ed6b5be 12057 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12058
c6dc63a1
TT
12059 gdb::unique_xmalloc_ptr<char> func_name
12060 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12061 if (func_name == NULL)
12062 return 1;
12063
12064 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12065 {
12066 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12067 if (re_exec (func_name.get ()))
12068 return 1;
f7f9143b
JB
12069 }
12070
12071 return 0;
12072}
12073
12074/* Find the first frame that contains debugging information and that is not
12075 part of the Ada run-time, starting from FI and moving upward. */
12076
0ef643c8 12077void
f7f9143b
JB
12078ada_find_printable_frame (struct frame_info *fi)
12079{
12080 for (; fi != NULL; fi = get_prev_frame (fi))
12081 {
12082 if (!is_known_support_routine (fi))
12083 {
12084 select_frame (fi);
12085 break;
12086 }
12087 }
12088
12089}
12090
12091/* Assuming that the inferior just triggered an unhandled exception
12092 catchpoint, return the address in inferior memory where the name
12093 of the exception is stored.
12094
12095 Return zero if the address could not be computed. */
12096
12097static CORE_ADDR
12098ada_unhandled_exception_name_addr (void)
0259addd
JB
12099{
12100 return parse_and_eval_address ("e.full_name");
12101}
12102
12103/* Same as ada_unhandled_exception_name_addr, except that this function
12104 should be used when the inferior uses an older version of the runtime,
12105 where the exception name needs to be extracted from a specific frame
12106 several frames up in the callstack. */
12107
12108static CORE_ADDR
12109ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12110{
12111 int frame_level;
12112 struct frame_info *fi;
3eecfa55 12113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12114
12115 /* To determine the name of this exception, we need to select
12116 the frame corresponding to RAISE_SYM_NAME. This frame is
12117 at least 3 levels up, so we simply skip the first 3 frames
12118 without checking the name of their associated function. */
12119 fi = get_current_frame ();
12120 for (frame_level = 0; frame_level < 3; frame_level += 1)
12121 if (fi != NULL)
12122 fi = get_prev_frame (fi);
12123
12124 while (fi != NULL)
12125 {
692465f1
JB
12126 enum language func_lang;
12127
c6dc63a1
TT
12128 gdb::unique_xmalloc_ptr<char> func_name
12129 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12130 if (func_name != NULL)
12131 {
c6dc63a1 12132 if (strcmp (func_name.get (),
55b87a52
KS
12133 data->exception_info->catch_exception_sym) == 0)
12134 break; /* We found the frame we were looking for... */
55b87a52 12135 }
fb44b1a7 12136 fi = get_prev_frame (fi);
f7f9143b
JB
12137 }
12138
12139 if (fi == NULL)
12140 return 0;
12141
12142 select_frame (fi);
12143 return parse_and_eval_address ("id.full_name");
12144}
12145
12146/* Assuming the inferior just triggered an Ada exception catchpoint
12147 (of any type), return the address in inferior memory where the name
12148 of the exception is stored, if applicable.
12149
45db7c09
PA
12150 Assumes the selected frame is the current frame.
12151
f7f9143b
JB
12152 Return zero if the address could not be computed, or if not relevant. */
12153
12154static CORE_ADDR
761269c8 12155ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12156 struct breakpoint *b)
12157{
3eecfa55
JB
12158 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12159
f7f9143b
JB
12160 switch (ex)
12161 {
761269c8 12162 case ada_catch_exception:
f7f9143b
JB
12163 return (parse_and_eval_address ("e.full_name"));
12164 break;
12165
761269c8 12166 case ada_catch_exception_unhandled:
3eecfa55 12167 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12168 break;
9f757bf7
XR
12169
12170 case ada_catch_handlers:
12171 return 0; /* The runtimes does not provide access to the exception
12172 name. */
12173 break;
12174
761269c8 12175 case ada_catch_assert:
f7f9143b
JB
12176 return 0; /* Exception name is not relevant in this case. */
12177 break;
12178
12179 default:
12180 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12181 break;
12182 }
12183
12184 return 0; /* Should never be reached. */
12185}
12186
e547c119
JB
12187/* Assuming the inferior is stopped at an exception catchpoint,
12188 return the message which was associated to the exception, if
12189 available. Return NULL if the message could not be retrieved.
12190
e547c119
JB
12191 Note: The exception message can be associated to an exception
12192 either through the use of the Raise_Exception function, or
12193 more simply (Ada 2005 and later), via:
12194
12195 raise Exception_Name with "exception message";
12196
12197 */
12198
6f46ac85 12199static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12200ada_exception_message_1 (void)
12201{
12202 struct value *e_msg_val;
e547c119 12203 int e_msg_len;
e547c119
JB
12204
12205 /* For runtimes that support this feature, the exception message
12206 is passed as an unbounded string argument called "message". */
12207 e_msg_val = parse_and_eval ("message");
12208 if (e_msg_val == NULL)
12209 return NULL; /* Exception message not supported. */
12210
12211 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12212 gdb_assert (e_msg_val != NULL);
12213 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12214
12215 /* If the message string is empty, then treat it as if there was
12216 no exception message. */
12217 if (e_msg_len <= 0)
12218 return NULL;
12219
6f46ac85
TT
12220 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12221 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12222 e_msg.get ()[e_msg_len] = '\0';
e547c119 12223
e547c119
JB
12224 return e_msg;
12225}
12226
12227/* Same as ada_exception_message_1, except that all exceptions are
12228 contained here (returning NULL instead). */
12229
6f46ac85 12230static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12231ada_exception_message (void)
12232{
6f46ac85 12233 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12234
a70b8144 12235 try
e547c119
JB
12236 {
12237 e_msg = ada_exception_message_1 ();
12238 }
230d2906 12239 catch (const gdb_exception_error &e)
e547c119 12240 {
6f46ac85 12241 e_msg.reset (nullptr);
e547c119 12242 }
e547c119
JB
12243
12244 return e_msg;
12245}
12246
f7f9143b
JB
12247/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12248 any error that ada_exception_name_addr_1 might cause to be thrown.
12249 When an error is intercepted, a warning with the error message is printed,
12250 and zero is returned. */
12251
12252static CORE_ADDR
761269c8 12253ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12254 struct breakpoint *b)
12255{
f7f9143b
JB
12256 CORE_ADDR result = 0;
12257
a70b8144 12258 try
f7f9143b
JB
12259 {
12260 result = ada_exception_name_addr_1 (ex, b);
12261 }
12262
230d2906 12263 catch (const gdb_exception_error &e)
f7f9143b 12264 {
3d6e9d23 12265 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12266 return 0;
12267 }
12268
12269 return result;
12270}
12271
cb7de75e 12272static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12273 (const char *excep_string,
12274 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12275
12276/* Ada catchpoints.
12277
12278 In the case of catchpoints on Ada exceptions, the catchpoint will
12279 stop the target on every exception the program throws. When a user
12280 specifies the name of a specific exception, we translate this
12281 request into a condition expression (in text form), and then parse
12282 it into an expression stored in each of the catchpoint's locations.
12283 We then use this condition to check whether the exception that was
12284 raised is the one the user is interested in. If not, then the
12285 target is resumed again. We store the name of the requested
12286 exception, in order to be able to re-set the condition expression
12287 when symbols change. */
12288
12289/* An instance of this type is used to represent an Ada catchpoint
5625a286 12290 breakpoint location. */
28010a5d 12291
5625a286 12292class ada_catchpoint_location : public bp_location
28010a5d 12293{
5625a286 12294public:
5f486660 12295 ada_catchpoint_location (breakpoint *owner)
f06f1252 12296 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12297 {}
28010a5d
PA
12298
12299 /* The condition that checks whether the exception that was raised
12300 is the specific exception the user specified on catchpoint
12301 creation. */
4d01a485 12302 expression_up excep_cond_expr;
28010a5d
PA
12303};
12304
c1fc2657 12305/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12306
c1fc2657 12307struct ada_catchpoint : public breakpoint
28010a5d 12308{
37f6a7f4
TT
12309 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12310 : m_kind (kind)
12311 {
12312 }
12313
28010a5d 12314 /* The name of the specific exception the user specified. */
bc18fbb5 12315 std::string excep_string;
37f6a7f4
TT
12316
12317 /* What kind of catchpoint this is. */
12318 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12319};
12320
12321/* Parse the exception condition string in the context of each of the
12322 catchpoint's locations, and store them for later evaluation. */
12323
12324static void
9f757bf7
XR
12325create_excep_cond_exprs (struct ada_catchpoint *c,
12326 enum ada_exception_catchpoint_kind ex)
28010a5d 12327{
fccf9de1
TT
12328 struct bp_location *bl;
12329
28010a5d 12330 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12331 if (c->excep_string.empty ())
28010a5d
PA
12332 return;
12333
12334 /* Same if there are no locations... */
c1fc2657 12335 if (c->loc == NULL)
28010a5d
PA
12336 return;
12337
fccf9de1
TT
12338 /* Compute the condition expression in text form, from the specific
12339 expection we want to catch. */
12340 std::string cond_string
12341 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12342
fccf9de1
TT
12343 /* Iterate over all the catchpoint's locations, and parse an
12344 expression for each. */
12345 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12346 {
12347 struct ada_catchpoint_location *ada_loc
fccf9de1 12348 = (struct ada_catchpoint_location *) bl;
4d01a485 12349 expression_up exp;
28010a5d 12350
fccf9de1 12351 if (!bl->shlib_disabled)
28010a5d 12352 {
bbc13ae3 12353 const char *s;
28010a5d 12354
cb7de75e 12355 s = cond_string.c_str ();
a70b8144 12356 try
28010a5d 12357 {
fccf9de1
TT
12358 exp = parse_exp_1 (&s, bl->address,
12359 block_for_pc (bl->address),
036e657b 12360 0);
28010a5d 12361 }
230d2906 12362 catch (const gdb_exception_error &e)
849f2b52
JB
12363 {
12364 warning (_("failed to reevaluate internal exception condition "
12365 "for catchpoint %d: %s"),
3d6e9d23 12366 c->number, e.what ());
849f2b52 12367 }
28010a5d
PA
12368 }
12369
b22e99fd 12370 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12371 }
28010a5d
PA
12372}
12373
28010a5d
PA
12374/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12375 structure for all exception catchpoint kinds. */
12376
12377static struct bp_location *
37f6a7f4 12378allocate_location_exception (struct breakpoint *self)
28010a5d 12379{
5f486660 12380 return new ada_catchpoint_location (self);
28010a5d
PA
12381}
12382
12383/* Implement the RE_SET method in the breakpoint_ops structure for all
12384 exception catchpoint kinds. */
12385
12386static void
37f6a7f4 12387re_set_exception (struct breakpoint *b)
28010a5d
PA
12388{
12389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12390
12391 /* Call the base class's method. This updates the catchpoint's
12392 locations. */
2060206e 12393 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12394
12395 /* Reparse the exception conditional expressions. One for each
12396 location. */
37f6a7f4 12397 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12398}
12399
12400/* Returns true if we should stop for this breakpoint hit. If the
12401 user specified a specific exception, we only want to cause a stop
12402 if the program thrown that exception. */
12403
12404static int
12405should_stop_exception (const struct bp_location *bl)
12406{
12407 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12408 const struct ada_catchpoint_location *ada_loc
12409 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12410 int stop;
12411
37f6a7f4
TT
12412 struct internalvar *var = lookup_internalvar ("_ada_exception");
12413 if (c->m_kind == ada_catch_assert)
12414 clear_internalvar (var);
12415 else
12416 {
12417 try
12418 {
12419 const char *expr;
12420
12421 if (c->m_kind == ada_catch_handlers)
12422 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12423 ".all.occurrence.id");
12424 else
12425 expr = "e";
12426
12427 struct value *exc = parse_and_eval (expr);
12428 set_internalvar (var, exc);
12429 }
12430 catch (const gdb_exception_error &ex)
12431 {
12432 clear_internalvar (var);
12433 }
12434 }
12435
28010a5d 12436 /* With no specific exception, should always stop. */
bc18fbb5 12437 if (c->excep_string.empty ())
28010a5d
PA
12438 return 1;
12439
12440 if (ada_loc->excep_cond_expr == NULL)
12441 {
12442 /* We will have a NULL expression if back when we were creating
12443 the expressions, this location's had failed to parse. */
12444 return 1;
12445 }
12446
12447 stop = 1;
a70b8144 12448 try
28010a5d
PA
12449 {
12450 struct value *mark;
12451
12452 mark = value_mark ();
4d01a485 12453 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12454 value_free_to_mark (mark);
12455 }
230d2906 12456 catch (const gdb_exception &ex)
492d29ea
PA
12457 {
12458 exception_fprintf (gdb_stderr, ex,
12459 _("Error in testing exception condition:\n"));
12460 }
492d29ea 12461
28010a5d
PA
12462 return stop;
12463}
12464
12465/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12466 for all exception catchpoint kinds. */
12467
12468static void
37f6a7f4 12469check_status_exception (bpstat bs)
28010a5d
PA
12470{
12471 bs->stop = should_stop_exception (bs->bp_location_at);
12472}
12473
f7f9143b
JB
12474/* Implement the PRINT_IT method in the breakpoint_ops structure
12475 for all exception catchpoint kinds. */
12476
12477static enum print_stop_action
37f6a7f4 12478print_it_exception (bpstat bs)
f7f9143b 12479{
79a45e25 12480 struct ui_out *uiout = current_uiout;
348d480f
PA
12481 struct breakpoint *b = bs->breakpoint_at;
12482
956a9fb9 12483 annotate_catchpoint (b->number);
f7f9143b 12484
112e8700 12485 if (uiout->is_mi_like_p ())
f7f9143b 12486 {
112e8700 12487 uiout->field_string ("reason",
956a9fb9 12488 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12489 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12490 }
12491
112e8700
SM
12492 uiout->text (b->disposition == disp_del
12493 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12494 uiout->field_signed ("bkptno", b->number);
112e8700 12495 uiout->text (", ");
f7f9143b 12496
45db7c09
PA
12497 /* ada_exception_name_addr relies on the selected frame being the
12498 current frame. Need to do this here because this function may be
12499 called more than once when printing a stop, and below, we'll
12500 select the first frame past the Ada run-time (see
12501 ada_find_printable_frame). */
12502 select_frame (get_current_frame ());
12503
37f6a7f4
TT
12504 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12505 switch (c->m_kind)
f7f9143b 12506 {
761269c8
JB
12507 case ada_catch_exception:
12508 case ada_catch_exception_unhandled:
9f757bf7 12509 case ada_catch_handlers:
956a9fb9 12510 {
37f6a7f4 12511 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12512 char exception_name[256];
12513
12514 if (addr != 0)
12515 {
c714b426
PA
12516 read_memory (addr, (gdb_byte *) exception_name,
12517 sizeof (exception_name) - 1);
956a9fb9
JB
12518 exception_name [sizeof (exception_name) - 1] = '\0';
12519 }
12520 else
12521 {
12522 /* For some reason, we were unable to read the exception
12523 name. This could happen if the Runtime was compiled
12524 without debugging info, for instance. In that case,
12525 just replace the exception name by the generic string
12526 "exception" - it will read as "an exception" in the
12527 notification we are about to print. */
967cff16 12528 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12529 }
12530 /* In the case of unhandled exception breakpoints, we print
12531 the exception name as "unhandled EXCEPTION_NAME", to make
12532 it clearer to the user which kind of catchpoint just got
12533 hit. We used ui_out_text to make sure that this extra
12534 info does not pollute the exception name in the MI case. */
37f6a7f4 12535 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12536 uiout->text ("unhandled ");
12537 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12538 }
12539 break;
761269c8 12540 case ada_catch_assert:
956a9fb9
JB
12541 /* In this case, the name of the exception is not really
12542 important. Just print "failed assertion" to make it clearer
12543 that his program just hit an assertion-failure catchpoint.
12544 We used ui_out_text because this info does not belong in
12545 the MI output. */
112e8700 12546 uiout->text ("failed assertion");
956a9fb9 12547 break;
f7f9143b 12548 }
e547c119 12549
6f46ac85 12550 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12551 if (exception_message != NULL)
12552 {
e547c119 12553 uiout->text (" (");
6f46ac85 12554 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12555 uiout->text (")");
e547c119
JB
12556 }
12557
112e8700 12558 uiout->text (" at ");
956a9fb9 12559 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12560
12561 return PRINT_SRC_AND_LOC;
12562}
12563
12564/* Implement the PRINT_ONE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567static void
37f6a7f4 12568print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12569{
79a45e25 12570 struct ui_out *uiout = current_uiout;
28010a5d 12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12572 struct value_print_options opts;
12573
12574 get_user_print_options (&opts);
f06f1252 12575
79a45b7d 12576 if (opts.addressprint)
f06f1252 12577 uiout->field_skip ("addr");
f7f9143b
JB
12578
12579 annotate_field (5);
37f6a7f4 12580 switch (c->m_kind)
f7f9143b 12581 {
761269c8 12582 case ada_catch_exception:
bc18fbb5 12583 if (!c->excep_string.empty ())
f7f9143b 12584 {
bc18fbb5
TT
12585 std::string msg = string_printf (_("`%s' Ada exception"),
12586 c->excep_string.c_str ());
28010a5d 12587
112e8700 12588 uiout->field_string ("what", msg);
f7f9143b
JB
12589 }
12590 else
112e8700 12591 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12592
12593 break;
12594
761269c8 12595 case ada_catch_exception_unhandled:
112e8700 12596 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12597 break;
12598
9f757bf7 12599 case ada_catch_handlers:
bc18fbb5 12600 if (!c->excep_string.empty ())
9f757bf7
XR
12601 {
12602 uiout->field_fmt ("what",
12603 _("`%s' Ada exception handlers"),
bc18fbb5 12604 c->excep_string.c_str ());
9f757bf7
XR
12605 }
12606 else
12607 uiout->field_string ("what", "all Ada exceptions handlers");
12608 break;
12609
761269c8 12610 case ada_catch_assert:
112e8700 12611 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12612 break;
12613
12614 default:
12615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12616 break;
12617 }
12618}
12619
12620/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623static void
37f6a7f4 12624print_mention_exception (struct breakpoint *b)
f7f9143b 12625{
28010a5d 12626 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12627 struct ui_out *uiout = current_uiout;
28010a5d 12628
112e8700 12629 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12630 : _("Catchpoint "));
381befee 12631 uiout->field_signed ("bkptno", b->number);
112e8700 12632 uiout->text (": ");
00eb2c4a 12633
37f6a7f4 12634 switch (c->m_kind)
f7f9143b 12635 {
761269c8 12636 case ada_catch_exception:
bc18fbb5 12637 if (!c->excep_string.empty ())
00eb2c4a 12638 {
862d101a 12639 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12640 c->excep_string.c_str ());
862d101a 12641 uiout->text (info.c_str ());
00eb2c4a 12642 }
f7f9143b 12643 else
112e8700 12644 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12645 break;
12646
761269c8 12647 case ada_catch_exception_unhandled:
112e8700 12648 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12649 break;
9f757bf7
XR
12650
12651 case ada_catch_handlers:
bc18fbb5 12652 if (!c->excep_string.empty ())
9f757bf7
XR
12653 {
12654 std::string info
12655 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12656 c->excep_string.c_str ());
9f757bf7
XR
12657 uiout->text (info.c_str ());
12658 }
12659 else
12660 uiout->text (_("all Ada exceptions handlers"));
12661 break;
12662
761269c8 12663 case ada_catch_assert:
112e8700 12664 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12665 break;
12666
12667 default:
12668 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12669 break;
12670 }
12671}
12672
6149aea9
PA
12673/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12674 for all exception catchpoint kinds. */
12675
12676static void
37f6a7f4 12677print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12678{
28010a5d
PA
12679 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12680
37f6a7f4 12681 switch (c->m_kind)
6149aea9 12682 {
761269c8 12683 case ada_catch_exception:
6149aea9 12684 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12685 if (!c->excep_string.empty ())
12686 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12687 break;
12688
761269c8 12689 case ada_catch_exception_unhandled:
78076abc 12690 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12691 break;
12692
9f757bf7
XR
12693 case ada_catch_handlers:
12694 fprintf_filtered (fp, "catch handlers");
12695 break;
12696
761269c8 12697 case ada_catch_assert:
6149aea9
PA
12698 fprintf_filtered (fp, "catch assert");
12699 break;
12700
12701 default:
12702 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12703 }
d9b3f62e 12704 print_recreate_thread (b, fp);
6149aea9
PA
12705}
12706
37f6a7f4 12707/* Virtual tables for various breakpoint types. */
2060206e 12708static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12709static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12710static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12711static struct breakpoint_ops catch_handlers_breakpoint_ops;
12712
f06f1252
TT
12713/* See ada-lang.h. */
12714
12715bool
12716is_ada_exception_catchpoint (breakpoint *bp)
12717{
12718 return (bp->ops == &catch_exception_breakpoint_ops
12719 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12720 || bp->ops == &catch_assert_breakpoint_ops
12721 || bp->ops == &catch_handlers_breakpoint_ops);
12722}
12723
f7f9143b
JB
12724/* Split the arguments specified in a "catch exception" command.
12725 Set EX to the appropriate catchpoint type.
28010a5d 12726 Set EXCEP_STRING to the name of the specific exception if
5845583d 12727 specified by the user.
9f757bf7
XR
12728 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12729 "catch handlers" command. False otherwise.
5845583d
JB
12730 If a condition is found at the end of the arguments, the condition
12731 expression is stored in COND_STRING (memory must be deallocated
12732 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12733
12734static void
a121b7c1 12735catch_ada_exception_command_split (const char *args,
9f757bf7 12736 bool is_catch_handlers_cmd,
761269c8 12737 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12738 std::string *excep_string,
12739 std::string *cond_string)
f7f9143b 12740{
bc18fbb5 12741 std::string exception_name;
f7f9143b 12742
bc18fbb5
TT
12743 exception_name = extract_arg (&args);
12744 if (exception_name == "if")
5845583d
JB
12745 {
12746 /* This is not an exception name; this is the start of a condition
12747 expression for a catchpoint on all exceptions. So, "un-get"
12748 this token, and set exception_name to NULL. */
bc18fbb5 12749 exception_name.clear ();
5845583d
JB
12750 args -= 2;
12751 }
f7f9143b 12752
5845583d 12753 /* Check to see if we have a condition. */
f7f9143b 12754
f1735a53 12755 args = skip_spaces (args);
61012eef 12756 if (startswith (args, "if")
5845583d
JB
12757 && (isspace (args[2]) || args[2] == '\0'))
12758 {
12759 args += 2;
f1735a53 12760 args = skip_spaces (args);
5845583d
JB
12761
12762 if (args[0] == '\0')
12763 error (_("Condition missing after `if' keyword"));
bc18fbb5 12764 *cond_string = args;
5845583d
JB
12765
12766 args += strlen (args);
12767 }
12768
12769 /* Check that we do not have any more arguments. Anything else
12770 is unexpected. */
f7f9143b
JB
12771
12772 if (args[0] != '\0')
12773 error (_("Junk at end of expression"));
12774
9f757bf7
XR
12775 if (is_catch_handlers_cmd)
12776 {
12777 /* Catch handling of exceptions. */
12778 *ex = ada_catch_handlers;
12779 *excep_string = exception_name;
12780 }
bc18fbb5 12781 else if (exception_name.empty ())
f7f9143b
JB
12782 {
12783 /* Catch all exceptions. */
761269c8 12784 *ex = ada_catch_exception;
bc18fbb5 12785 excep_string->clear ();
f7f9143b 12786 }
bc18fbb5 12787 else if (exception_name == "unhandled")
f7f9143b
JB
12788 {
12789 /* Catch unhandled exceptions. */
761269c8 12790 *ex = ada_catch_exception_unhandled;
bc18fbb5 12791 excep_string->clear ();
f7f9143b
JB
12792 }
12793 else
12794 {
12795 /* Catch a specific exception. */
761269c8 12796 *ex = ada_catch_exception;
28010a5d 12797 *excep_string = exception_name;
f7f9143b
JB
12798 }
12799}
12800
12801/* Return the name of the symbol on which we should break in order to
12802 implement a catchpoint of the EX kind. */
12803
12804static const char *
761269c8 12805ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12806{
3eecfa55
JB
12807 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12808
12809 gdb_assert (data->exception_info != NULL);
0259addd 12810
f7f9143b
JB
12811 switch (ex)
12812 {
761269c8 12813 case ada_catch_exception:
3eecfa55 12814 return (data->exception_info->catch_exception_sym);
f7f9143b 12815 break;
761269c8 12816 case ada_catch_exception_unhandled:
3eecfa55 12817 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12818 break;
761269c8 12819 case ada_catch_assert:
3eecfa55 12820 return (data->exception_info->catch_assert_sym);
f7f9143b 12821 break;
9f757bf7
XR
12822 case ada_catch_handlers:
12823 return (data->exception_info->catch_handlers_sym);
12824 break;
f7f9143b
JB
12825 default:
12826 internal_error (__FILE__, __LINE__,
12827 _("unexpected catchpoint kind (%d)"), ex);
12828 }
12829}
12830
12831/* Return the breakpoint ops "virtual table" used for catchpoints
12832 of the EX kind. */
12833
c0a91b2b 12834static const struct breakpoint_ops *
761269c8 12835ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12836{
12837 switch (ex)
12838 {
761269c8 12839 case ada_catch_exception:
f7f9143b
JB
12840 return (&catch_exception_breakpoint_ops);
12841 break;
761269c8 12842 case ada_catch_exception_unhandled:
f7f9143b
JB
12843 return (&catch_exception_unhandled_breakpoint_ops);
12844 break;
761269c8 12845 case ada_catch_assert:
f7f9143b
JB
12846 return (&catch_assert_breakpoint_ops);
12847 break;
9f757bf7
XR
12848 case ada_catch_handlers:
12849 return (&catch_handlers_breakpoint_ops);
12850 break;
f7f9143b
JB
12851 default:
12852 internal_error (__FILE__, __LINE__,
12853 _("unexpected catchpoint kind (%d)"), ex);
12854 }
12855}
12856
12857/* Return the condition that will be used to match the current exception
12858 being raised with the exception that the user wants to catch. This
12859 assumes that this condition is used when the inferior just triggered
12860 an exception catchpoint.
cb7de75e 12861 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12862
cb7de75e 12863static std::string
9f757bf7
XR
12864ada_exception_catchpoint_cond_string (const char *excep_string,
12865 enum ada_exception_catchpoint_kind ex)
f7f9143b 12866{
3d0b0fa3 12867 int i;
fccf9de1 12868 bool is_standard_exc = false;
cb7de75e 12869 std::string result;
9f757bf7
XR
12870
12871 if (ex == ada_catch_handlers)
12872 {
12873 /* For exception handlers catchpoints, the condition string does
12874 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12875 result = ("long_integer (GNAT_GCC_exception_Access"
12876 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12877 }
12878 else
fccf9de1 12879 result = "long_integer (e)";
3d0b0fa3 12880
0963b4bd 12881 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12882 runtime units that have been compiled without debugging info; if
28010a5d 12883 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12884 exception (e.g. "constraint_error") then, during the evaluation
12885 of the condition expression, the symbol lookup on this name would
0963b4bd 12886 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12887 may then be set only on user-defined exceptions which have the
12888 same not-fully-qualified name (e.g. my_package.constraint_error).
12889
12890 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12891 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12892 exception constraint_error" is rewritten into "catch exception
12893 standard.constraint_error".
12894
85102364 12895 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12896 the inferior program, then the only way to specify this exception as a
12897 breakpoint condition is to use its fully-qualified named:
fccf9de1 12898 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12899
12900 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12901 {
28010a5d 12902 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12903 {
fccf9de1 12904 is_standard_exc = true;
9f757bf7 12905 break;
3d0b0fa3
JB
12906 }
12907 }
9f757bf7 12908
fccf9de1
TT
12909 result += " = ";
12910
12911 if (is_standard_exc)
12912 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12913 else
12914 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12915
9f757bf7 12916 return result;
f7f9143b
JB
12917}
12918
12919/* Return the symtab_and_line that should be used to insert an exception
12920 catchpoint of the TYPE kind.
12921
28010a5d
PA
12922 ADDR_STRING returns the name of the function where the real
12923 breakpoint that implements the catchpoints is set, depending on the
12924 type of catchpoint we need to create. */
f7f9143b
JB
12925
12926static struct symtab_and_line
bc18fbb5 12927ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12928 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12929{
12930 const char *sym_name;
12931 struct symbol *sym;
f7f9143b 12932
0259addd
JB
12933 /* First, find out which exception support info to use. */
12934 ada_exception_support_info_sniffer ();
12935
12936 /* Then lookup the function on which we will break in order to catch
f7f9143b 12937 the Ada exceptions requested by the user. */
f7f9143b
JB
12938 sym_name = ada_exception_sym_name (ex);
12939 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12940
57aff202
JB
12941 if (sym == NULL)
12942 error (_("Catchpoint symbol not found: %s"), sym_name);
12943
12944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12945 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12946
12947 /* Set ADDR_STRING. */
cc12f4a8 12948 *addr_string = sym_name;
f7f9143b 12949
f7f9143b 12950 /* Set OPS. */
4b9eee8c 12951 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12952
f17011e0 12953 return find_function_start_sal (sym, 1);
f7f9143b
JB
12954}
12955
b4a5b78b 12956/* Create an Ada exception catchpoint.
f7f9143b 12957
b4a5b78b 12958 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12959
bc18fbb5 12960 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12961 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12962 of the exception to which this catchpoint applies.
2df4d1d5 12963
bc18fbb5 12964 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12965
b4a5b78b
JB
12966 TEMPFLAG, if nonzero, means that the underlying breakpoint
12967 should be temporary.
28010a5d 12968
b4a5b78b 12969 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12970
349774ef 12971void
28010a5d 12972create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12973 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12974 const std::string &excep_string,
56ecd069 12975 const std::string &cond_string,
28010a5d 12976 int tempflag,
349774ef 12977 int disabled,
28010a5d
PA
12978 int from_tty)
12979{
cc12f4a8 12980 std::string addr_string;
b4a5b78b 12981 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12982 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12983
37f6a7f4 12984 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12985 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12986 ops, tempflag, disabled, from_tty);
28010a5d 12987 c->excep_string = excep_string;
9f757bf7 12988 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12989 if (!cond_string.empty ())
12990 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12991 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12992}
12993
9ac4176b
PA
12994/* Implement the "catch exception" command. */
12995
12996static void
eb4c3f4a 12997catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12998 struct cmd_list_element *command)
12999{
a121b7c1 13000 const char *arg = arg_entry;
9ac4176b
PA
13001 struct gdbarch *gdbarch = get_current_arch ();
13002 int tempflag;
761269c8 13003 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13004 std::string excep_string;
56ecd069 13005 std::string cond_string;
9ac4176b
PA
13006
13007 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13008
13009 if (!arg)
13010 arg = "";
9f757bf7 13011 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13012 &cond_string);
9f757bf7
XR
13013 create_ada_exception_catchpoint (gdbarch, ex_kind,
13014 excep_string, cond_string,
13015 tempflag, 1 /* enabled */,
13016 from_tty);
13017}
13018
13019/* Implement the "catch handlers" command. */
13020
13021static void
13022catch_ada_handlers_command (const char *arg_entry, int from_tty,
13023 struct cmd_list_element *command)
13024{
13025 const char *arg = arg_entry;
13026 struct gdbarch *gdbarch = get_current_arch ();
13027 int tempflag;
13028 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13029 std::string excep_string;
56ecd069 13030 std::string cond_string;
9f757bf7
XR
13031
13032 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13033
13034 if (!arg)
13035 arg = "";
13036 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13037 &cond_string);
b4a5b78b
JB
13038 create_ada_exception_catchpoint (gdbarch, ex_kind,
13039 excep_string, cond_string,
349774ef
JB
13040 tempflag, 1 /* enabled */,
13041 from_tty);
9ac4176b
PA
13042}
13043
71bed2db
TT
13044/* Completion function for the Ada "catch" commands. */
13045
13046static void
13047catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13048 const char *text, const char *word)
13049{
13050 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13051
13052 for (const ada_exc_info &info : exceptions)
13053 {
13054 if (startswith (info.name, word))
b02f78f9 13055 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13056 }
13057}
13058
b4a5b78b 13059/* Split the arguments specified in a "catch assert" command.
5845583d 13060
b4a5b78b
JB
13061 ARGS contains the command's arguments (or the empty string if
13062 no arguments were passed).
5845583d
JB
13063
13064 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13065 (the memory needs to be deallocated after use). */
5845583d 13066
b4a5b78b 13067static void
56ecd069 13068catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13069{
f1735a53 13070 args = skip_spaces (args);
f7f9143b 13071
5845583d 13072 /* Check whether a condition was provided. */
61012eef 13073 if (startswith (args, "if")
5845583d 13074 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13075 {
5845583d 13076 args += 2;
f1735a53 13077 args = skip_spaces (args);
5845583d
JB
13078 if (args[0] == '\0')
13079 error (_("condition missing after `if' keyword"));
56ecd069 13080 cond_string.assign (args);
f7f9143b
JB
13081 }
13082
5845583d
JB
13083 /* Otherwise, there should be no other argument at the end of
13084 the command. */
13085 else if (args[0] != '\0')
13086 error (_("Junk at end of arguments."));
f7f9143b
JB
13087}
13088
9ac4176b
PA
13089/* Implement the "catch assert" command. */
13090
13091static void
eb4c3f4a 13092catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13093 struct cmd_list_element *command)
13094{
a121b7c1 13095 const char *arg = arg_entry;
9ac4176b
PA
13096 struct gdbarch *gdbarch = get_current_arch ();
13097 int tempflag;
56ecd069 13098 std::string cond_string;
9ac4176b
PA
13099
13100 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13101
13102 if (!arg)
13103 arg = "";
56ecd069 13104 catch_ada_assert_command_split (arg, cond_string);
761269c8 13105 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13106 "", cond_string,
349774ef
JB
13107 tempflag, 1 /* enabled */,
13108 from_tty);
9ac4176b 13109}
778865d3
JB
13110
13111/* Return non-zero if the symbol SYM is an Ada exception object. */
13112
13113static int
13114ada_is_exception_sym (struct symbol *sym)
13115{
a737d952 13116 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13117
13118 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13119 && SYMBOL_CLASS (sym) != LOC_BLOCK
13120 && SYMBOL_CLASS (sym) != LOC_CONST
13121 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13122 && type_name != NULL && strcmp (type_name, "exception") == 0);
13123}
13124
13125/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13126 Ada exception object. This matches all exceptions except the ones
13127 defined by the Ada language. */
13128
13129static int
13130ada_is_non_standard_exception_sym (struct symbol *sym)
13131{
13132 int i;
13133
13134 if (!ada_is_exception_sym (sym))
13135 return 0;
13136
13137 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13138 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13139 return 0; /* A standard exception. */
13140
13141 /* Numeric_Error is also a standard exception, so exclude it.
13142 See the STANDARD_EXC description for more details as to why
13143 this exception is not listed in that array. */
987012b8 13144 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13145 return 0;
13146
13147 return 1;
13148}
13149
ab816a27 13150/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13151 objects.
13152
13153 The comparison is determined first by exception name, and then
13154 by exception address. */
13155
ab816a27 13156bool
cc536b21 13157ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13158{
778865d3
JB
13159 int result;
13160
ab816a27
TT
13161 result = strcmp (name, other.name);
13162 if (result < 0)
13163 return true;
13164 if (result == 0 && addr < other.addr)
13165 return true;
13166 return false;
13167}
778865d3 13168
ab816a27 13169bool
cc536b21 13170ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13171{
13172 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13173}
13174
13175/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13176 routine, but keeping the first SKIP elements untouched.
13177
13178 All duplicates are also removed. */
13179
13180static void
ab816a27 13181sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13182 int skip)
13183{
ab816a27
TT
13184 std::sort (exceptions->begin () + skip, exceptions->end ());
13185 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13186 exceptions->end ());
778865d3
JB
13187}
13188
778865d3
JB
13189/* Add all exceptions defined by the Ada standard whose name match
13190 a regular expression.
13191
13192 If PREG is not NULL, then this regexp_t object is used to
13193 perform the symbol name matching. Otherwise, no name-based
13194 filtering is performed.
13195
13196 EXCEPTIONS is a vector of exceptions to which matching exceptions
13197 gets pushed. */
13198
13199static void
2d7cc5c7 13200ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13201 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13202{
13203 int i;
13204
13205 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13206 {
13207 if (preg == NULL
2d7cc5c7 13208 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13209 {
13210 struct bound_minimal_symbol msymbol
13211 = ada_lookup_simple_minsym (standard_exc[i]);
13212
13213 if (msymbol.minsym != NULL)
13214 {
13215 struct ada_exc_info info
77e371c0 13216 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13217
ab816a27 13218 exceptions->push_back (info);
778865d3
JB
13219 }
13220 }
13221 }
13222}
13223
13224/* Add all Ada exceptions defined locally and accessible from the given
13225 FRAME.
13226
13227 If PREG is not NULL, then this regexp_t object is used to
13228 perform the symbol name matching. Otherwise, no name-based
13229 filtering is performed.
13230
13231 EXCEPTIONS is a vector of exceptions to which matching exceptions
13232 gets pushed. */
13233
13234static void
2d7cc5c7
PA
13235ada_add_exceptions_from_frame (compiled_regex *preg,
13236 struct frame_info *frame,
ab816a27 13237 std::vector<ada_exc_info> *exceptions)
778865d3 13238{
3977b71f 13239 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13240
13241 while (block != 0)
13242 {
13243 struct block_iterator iter;
13244 struct symbol *sym;
13245
13246 ALL_BLOCK_SYMBOLS (block, iter, sym)
13247 {
13248 switch (SYMBOL_CLASS (sym))
13249 {
13250 case LOC_TYPEDEF:
13251 case LOC_BLOCK:
13252 case LOC_CONST:
13253 break;
13254 default:
13255 if (ada_is_exception_sym (sym))
13256 {
987012b8 13257 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13258 SYMBOL_VALUE_ADDRESS (sym)};
13259
ab816a27 13260 exceptions->push_back (info);
778865d3
JB
13261 }
13262 }
13263 }
13264 if (BLOCK_FUNCTION (block) != NULL)
13265 break;
13266 block = BLOCK_SUPERBLOCK (block);
13267 }
13268}
13269
14bc53a8
PA
13270/* Return true if NAME matches PREG or if PREG is NULL. */
13271
13272static bool
2d7cc5c7 13273name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13274{
13275 return (preg == NULL
f945dedf 13276 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13277}
13278
778865d3
JB
13279/* Add all exceptions defined globally whose name name match
13280 a regular expression, excluding standard exceptions.
13281
13282 The reason we exclude standard exceptions is that they need
13283 to be handled separately: Standard exceptions are defined inside
13284 a runtime unit which is normally not compiled with debugging info,
13285 and thus usually do not show up in our symbol search. However,
13286 if the unit was in fact built with debugging info, we need to
13287 exclude them because they would duplicate the entry we found
13288 during the special loop that specifically searches for those
13289 standard exceptions.
13290
13291 If PREG is not NULL, then this regexp_t object is used to
13292 perform the symbol name matching. Otherwise, no name-based
13293 filtering is performed.
13294
13295 EXCEPTIONS is a vector of exceptions to which matching exceptions
13296 gets pushed. */
13297
13298static void
2d7cc5c7 13299ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13300 std::vector<ada_exc_info> *exceptions)
778865d3 13301{
14bc53a8
PA
13302 /* In Ada, the symbol "search name" is a linkage name, whereas the
13303 regular expression used to do the matching refers to the natural
13304 name. So match against the decoded name. */
13305 expand_symtabs_matching (NULL,
b5ec771e 13306 lookup_name_info::match_any (),
14bc53a8
PA
13307 [&] (const char *search_name)
13308 {
f945dedf
CB
13309 std::string decoded = ada_decode (search_name);
13310 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13311 },
13312 NULL,
13313 VARIABLES_DOMAIN);
778865d3 13314
2030c079 13315 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13316 {
b669c953 13317 for (compunit_symtab *s : objfile->compunits ())
778865d3 13318 {
d8aeb77f
TT
13319 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13320 int i;
778865d3 13321
d8aeb77f
TT
13322 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13323 {
582942f4 13324 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13325 struct block_iterator iter;
13326 struct symbol *sym;
778865d3 13327
d8aeb77f
TT
13328 ALL_BLOCK_SYMBOLS (b, iter, sym)
13329 if (ada_is_non_standard_exception_sym (sym)
987012b8 13330 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13331 {
13332 struct ada_exc_info info
987012b8 13333 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13334
13335 exceptions->push_back (info);
13336 }
13337 }
778865d3
JB
13338 }
13339 }
13340}
13341
13342/* Implements ada_exceptions_list with the regular expression passed
13343 as a regex_t, rather than a string.
13344
13345 If not NULL, PREG is used to filter out exceptions whose names
13346 do not match. Otherwise, all exceptions are listed. */
13347
ab816a27 13348static std::vector<ada_exc_info>
2d7cc5c7 13349ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13350{
ab816a27 13351 std::vector<ada_exc_info> result;
778865d3
JB
13352 int prev_len;
13353
13354 /* First, list the known standard exceptions. These exceptions
13355 need to be handled separately, as they are usually defined in
13356 runtime units that have been compiled without debugging info. */
13357
13358 ada_add_standard_exceptions (preg, &result);
13359
13360 /* Next, find all exceptions whose scope is local and accessible
13361 from the currently selected frame. */
13362
13363 if (has_stack_frames ())
13364 {
ab816a27 13365 prev_len = result.size ();
778865d3
JB
13366 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13367 &result);
ab816a27 13368 if (result.size () > prev_len)
778865d3
JB
13369 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13370 }
13371
13372 /* Add all exceptions whose scope is global. */
13373
ab816a27 13374 prev_len = result.size ();
778865d3 13375 ada_add_global_exceptions (preg, &result);
ab816a27 13376 if (result.size () > prev_len)
778865d3
JB
13377 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13378
778865d3
JB
13379 return result;
13380}
13381
13382/* Return a vector of ada_exc_info.
13383
13384 If REGEXP is NULL, all exceptions are included in the result.
13385 Otherwise, it should contain a valid regular expression,
13386 and only the exceptions whose names match that regular expression
13387 are included in the result.
13388
13389 The exceptions are sorted in the following order:
13390 - Standard exceptions (defined by the Ada language), in
13391 alphabetical order;
13392 - Exceptions only visible from the current frame, in
13393 alphabetical order;
13394 - Exceptions whose scope is global, in alphabetical order. */
13395
ab816a27 13396std::vector<ada_exc_info>
778865d3
JB
13397ada_exceptions_list (const char *regexp)
13398{
2d7cc5c7
PA
13399 if (regexp == NULL)
13400 return ada_exceptions_list_1 (NULL);
778865d3 13401
2d7cc5c7
PA
13402 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13403 return ada_exceptions_list_1 (&reg);
778865d3
JB
13404}
13405
13406/* Implement the "info exceptions" command. */
13407
13408static void
1d12d88f 13409info_exceptions_command (const char *regexp, int from_tty)
778865d3 13410{
778865d3 13411 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13412
ab816a27 13413 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13414
13415 if (regexp != NULL)
13416 printf_filtered
13417 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13418 else
13419 printf_filtered (_("All defined Ada exceptions:\n"));
13420
ab816a27
TT
13421 for (const ada_exc_info &info : exceptions)
13422 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13423}
13424
4c4b4cd2
PH
13425 /* Operators */
13426/* Information about operators given special treatment in functions
13427 below. */
13428/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13429
13430#define ADA_OPERATORS \
13431 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13432 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13433 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13434 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13435 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13436 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13437 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13438 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13439 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13440 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13441 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13443 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13444 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13445 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13446 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13447 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13448 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13449 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13450
13451static void
554794dc
SDJ
13452ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13453 int *argsp)
4c4b4cd2
PH
13454{
13455 switch (exp->elts[pc - 1].opcode)
13456 {
76a01679 13457 default:
4c4b4cd2
PH
13458 operator_length_standard (exp, pc, oplenp, argsp);
13459 break;
13460
13461#define OP_DEFN(op, len, args, binop) \
13462 case op: *oplenp = len; *argsp = args; break;
13463 ADA_OPERATORS;
13464#undef OP_DEFN
52ce6436
PH
13465
13466 case OP_AGGREGATE:
13467 *oplenp = 3;
13468 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13469 break;
13470
13471 case OP_CHOICES:
13472 *oplenp = 3;
13473 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13474 break;
4c4b4cd2
PH
13475 }
13476}
13477
c0201579
JK
13478/* Implementation of the exp_descriptor method operator_check. */
13479
13480static int
13481ada_operator_check (struct expression *exp, int pos,
13482 int (*objfile_func) (struct objfile *objfile, void *data),
13483 void *data)
13484{
13485 const union exp_element *const elts = exp->elts;
13486 struct type *type = NULL;
13487
13488 switch (elts[pos].opcode)
13489 {
13490 case UNOP_IN_RANGE:
13491 case UNOP_QUAL:
13492 type = elts[pos + 1].type;
13493 break;
13494
13495 default:
13496 return operator_check_standard (exp, pos, objfile_func, data);
13497 }
13498
13499 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13500
13501 if (type && TYPE_OBJFILE (type)
13502 && (*objfile_func) (TYPE_OBJFILE (type), data))
13503 return 1;
13504
13505 return 0;
13506}
13507
a121b7c1 13508static const char *
4c4b4cd2
PH
13509ada_op_name (enum exp_opcode opcode)
13510{
13511 switch (opcode)
13512 {
76a01679 13513 default:
4c4b4cd2 13514 return op_name_standard (opcode);
52ce6436 13515
4c4b4cd2
PH
13516#define OP_DEFN(op, len, args, binop) case op: return #op;
13517 ADA_OPERATORS;
13518#undef OP_DEFN
52ce6436
PH
13519
13520 case OP_AGGREGATE:
13521 return "OP_AGGREGATE";
13522 case OP_CHOICES:
13523 return "OP_CHOICES";
13524 case OP_NAME:
13525 return "OP_NAME";
4c4b4cd2
PH
13526 }
13527}
13528
13529/* As for operator_length, but assumes PC is pointing at the first
13530 element of the operator, and gives meaningful results only for the
52ce6436 13531 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13532
13533static void
76a01679
JB
13534ada_forward_operator_length (struct expression *exp, int pc,
13535 int *oplenp, int *argsp)
4c4b4cd2 13536{
76a01679 13537 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13538 {
13539 default:
13540 *oplenp = *argsp = 0;
13541 break;
52ce6436 13542
4c4b4cd2
PH
13543#define OP_DEFN(op, len, args, binop) \
13544 case op: *oplenp = len; *argsp = args; break;
13545 ADA_OPERATORS;
13546#undef OP_DEFN
52ce6436
PH
13547
13548 case OP_AGGREGATE:
13549 *oplenp = 3;
13550 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13551 break;
13552
13553 case OP_CHOICES:
13554 *oplenp = 3;
13555 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13556 break;
13557
13558 case OP_STRING:
13559 case OP_NAME:
13560 {
13561 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13562
52ce6436
PH
13563 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13564 *argsp = 0;
13565 break;
13566 }
4c4b4cd2
PH
13567 }
13568}
13569
13570static int
13571ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13572{
13573 enum exp_opcode op = exp->elts[elt].opcode;
13574 int oplen, nargs;
13575 int pc = elt;
13576 int i;
76a01679 13577
4c4b4cd2
PH
13578 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13579
76a01679 13580 switch (op)
4c4b4cd2 13581 {
76a01679 13582 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13583 case OP_ATR_FIRST:
13584 case OP_ATR_LAST:
13585 case OP_ATR_LENGTH:
13586 case OP_ATR_IMAGE:
13587 case OP_ATR_MAX:
13588 case OP_ATR_MIN:
13589 case OP_ATR_MODULUS:
13590 case OP_ATR_POS:
13591 case OP_ATR_SIZE:
13592 case OP_ATR_TAG:
13593 case OP_ATR_VAL:
13594 break;
13595
13596 case UNOP_IN_RANGE:
13597 case UNOP_QUAL:
323e0a4a
AC
13598 /* XXX: gdb_sprint_host_address, type_sprint */
13599 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13600 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13601 fprintf_filtered (stream, " (");
13602 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13603 fprintf_filtered (stream, ")");
13604 break;
13605 case BINOP_IN_BOUNDS:
52ce6436
PH
13606 fprintf_filtered (stream, " (%d)",
13607 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13608 break;
13609 case TERNOP_IN_RANGE:
13610 break;
13611
52ce6436
PH
13612 case OP_AGGREGATE:
13613 case OP_OTHERS:
13614 case OP_DISCRETE_RANGE:
13615 case OP_POSITIONAL:
13616 case OP_CHOICES:
13617 break;
13618
13619 case OP_NAME:
13620 case OP_STRING:
13621 {
13622 char *name = &exp->elts[elt + 2].string;
13623 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13624
52ce6436
PH
13625 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13626 break;
13627 }
13628
4c4b4cd2
PH
13629 default:
13630 return dump_subexp_body_standard (exp, stream, elt);
13631 }
13632
13633 elt += oplen;
13634 for (i = 0; i < nargs; i += 1)
13635 elt = dump_subexp (exp, stream, elt);
13636
13637 return elt;
13638}
13639
13640/* The Ada extension of print_subexp (q.v.). */
13641
76a01679
JB
13642static void
13643ada_print_subexp (struct expression *exp, int *pos,
13644 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13645{
52ce6436 13646 int oplen, nargs, i;
4c4b4cd2
PH
13647 int pc = *pos;
13648 enum exp_opcode op = exp->elts[pc].opcode;
13649
13650 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13651
52ce6436 13652 *pos += oplen;
4c4b4cd2
PH
13653 switch (op)
13654 {
13655 default:
52ce6436 13656 *pos -= oplen;
4c4b4cd2
PH
13657 print_subexp_standard (exp, pos, stream, prec);
13658 return;
13659
13660 case OP_VAR_VALUE:
987012b8 13661 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13662 return;
13663
13664 case BINOP_IN_BOUNDS:
323e0a4a 13665 /* XXX: sprint_subexp */
4c4b4cd2 13666 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13667 fputs_filtered (" in ", stream);
4c4b4cd2 13668 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13669 fputs_filtered ("'range", stream);
4c4b4cd2 13670 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13671 fprintf_filtered (stream, "(%ld)",
13672 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13673 return;
13674
13675 case TERNOP_IN_RANGE:
4c4b4cd2 13676 if (prec >= PREC_EQUAL)
76a01679 13677 fputs_filtered ("(", stream);
323e0a4a 13678 /* XXX: sprint_subexp */
4c4b4cd2 13679 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13680 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13681 print_subexp (exp, pos, stream, PREC_EQUAL);
13682 fputs_filtered (" .. ", stream);
13683 print_subexp (exp, pos, stream, PREC_EQUAL);
13684 if (prec >= PREC_EQUAL)
76a01679
JB
13685 fputs_filtered (")", stream);
13686 return;
4c4b4cd2
PH
13687
13688 case OP_ATR_FIRST:
13689 case OP_ATR_LAST:
13690 case OP_ATR_LENGTH:
13691 case OP_ATR_IMAGE:
13692 case OP_ATR_MAX:
13693 case OP_ATR_MIN:
13694 case OP_ATR_MODULUS:
13695 case OP_ATR_POS:
13696 case OP_ATR_SIZE:
13697 case OP_ATR_TAG:
13698 case OP_ATR_VAL:
4c4b4cd2 13699 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13700 {
13701 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13702 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13703 &type_print_raw_options);
76a01679
JB
13704 *pos += 3;
13705 }
4c4b4cd2 13706 else
76a01679 13707 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13708 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13709 if (nargs > 1)
76a01679
JB
13710 {
13711 int tem;
5b4ee69b 13712
76a01679
JB
13713 for (tem = 1; tem < nargs; tem += 1)
13714 {
13715 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13716 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13717 }
13718 fputs_filtered (")", stream);
13719 }
4c4b4cd2 13720 return;
14f9c5c9 13721
4c4b4cd2 13722 case UNOP_QUAL:
4c4b4cd2
PH
13723 type_print (exp->elts[pc + 1].type, "", stream, 0);
13724 fputs_filtered ("'(", stream);
13725 print_subexp (exp, pos, stream, PREC_PREFIX);
13726 fputs_filtered (")", stream);
13727 return;
14f9c5c9 13728
4c4b4cd2 13729 case UNOP_IN_RANGE:
323e0a4a 13730 /* XXX: sprint_subexp */
4c4b4cd2 13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13732 fputs_filtered (" in ", stream);
79d43c61
TT
13733 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13734 &type_print_raw_options);
4c4b4cd2 13735 return;
52ce6436
PH
13736
13737 case OP_DISCRETE_RANGE:
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fputs_filtered ("..", stream);
13740 print_subexp (exp, pos, stream, PREC_SUFFIX);
13741 return;
13742
13743 case OP_OTHERS:
13744 fputs_filtered ("others => ", stream);
13745 print_subexp (exp, pos, stream, PREC_SUFFIX);
13746 return;
13747
13748 case OP_CHOICES:
13749 for (i = 0; i < nargs-1; i += 1)
13750 {
13751 if (i > 0)
13752 fputs_filtered ("|", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 }
13755 fputs_filtered (" => ", stream);
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 return;
13758
13759 case OP_POSITIONAL:
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 return;
13762
13763 case OP_AGGREGATE:
13764 fputs_filtered ("(", stream);
13765 for (i = 0; i < nargs; i += 1)
13766 {
13767 if (i > 0)
13768 fputs_filtered (", ", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 }
13771 fputs_filtered (")", stream);
13772 return;
4c4b4cd2
PH
13773 }
13774}
14f9c5c9
AS
13775
13776/* Table mapping opcodes into strings for printing operators
13777 and precedences of the operators. */
13778
d2e4a39e
AS
13779static const struct op_print ada_op_print_tab[] = {
13780 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13781 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13782 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13783 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13784 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13785 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13786 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13787 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13788 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13789 {">=", BINOP_GEQ, PREC_ORDER, 0},
13790 {">", BINOP_GTR, PREC_ORDER, 0},
13791 {"<", BINOP_LESS, PREC_ORDER, 0},
13792 {">>", BINOP_RSH, PREC_SHIFT, 0},
13793 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13794 {"+", BINOP_ADD, PREC_ADD, 0},
13795 {"-", BINOP_SUB, PREC_ADD, 0},
13796 {"&", BINOP_CONCAT, PREC_ADD, 0},
13797 {"*", BINOP_MUL, PREC_MUL, 0},
13798 {"/", BINOP_DIV, PREC_MUL, 0},
13799 {"rem", BINOP_REM, PREC_MUL, 0},
13800 {"mod", BINOP_MOD, PREC_MUL, 0},
13801 {"**", BINOP_EXP, PREC_REPEAT, 0},
13802 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13803 {"-", UNOP_NEG, PREC_PREFIX, 0},
13804 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13805 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13806 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13807 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13808 {".all", UNOP_IND, PREC_SUFFIX, 1},
13809 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13810 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13811 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13812};
13813\f
72d5681a
PH
13814enum ada_primitive_types {
13815 ada_primitive_type_int,
13816 ada_primitive_type_long,
13817 ada_primitive_type_short,
13818 ada_primitive_type_char,
13819 ada_primitive_type_float,
13820 ada_primitive_type_double,
13821 ada_primitive_type_void,
13822 ada_primitive_type_long_long,
13823 ada_primitive_type_long_double,
13824 ada_primitive_type_natural,
13825 ada_primitive_type_positive,
13826 ada_primitive_type_system_address,
08f49010 13827 ada_primitive_type_storage_offset,
72d5681a
PH
13828 nr_ada_primitive_types
13829};
6c038f32
PH
13830
13831static void
d4a9a881 13832ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13833 struct language_arch_info *lai)
13834{
d4a9a881 13835 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13836
72d5681a 13837 lai->primitive_type_vector
d4a9a881 13838 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13839 struct type *);
e9bb382b
UW
13840
13841 lai->primitive_type_vector [ada_primitive_type_int]
13842 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13843 0, "integer");
13844 lai->primitive_type_vector [ada_primitive_type_long]
13845 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13846 0, "long_integer");
13847 lai->primitive_type_vector [ada_primitive_type_short]
13848 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13849 0, "short_integer");
13850 lai->string_char_type
13851 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13852 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13853 lai->primitive_type_vector [ada_primitive_type_float]
13854 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13855 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13856 lai->primitive_type_vector [ada_primitive_type_double]
13857 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13858 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13859 lai->primitive_type_vector [ada_primitive_type_long_long]
13860 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13861 0, "long_long_integer");
13862 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13863 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13864 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13865 lai->primitive_type_vector [ada_primitive_type_natural]
13866 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13867 0, "natural");
13868 lai->primitive_type_vector [ada_primitive_type_positive]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "positive");
13871 lai->primitive_type_vector [ada_primitive_type_void]
13872 = builtin->builtin_void;
13873
13874 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13875 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13876 "void"));
72d5681a
PH
13877 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13878 = "system__address";
fbb06eb1 13879
08f49010
XR
13880 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13881 type. This is a signed integral type whose size is the same as
13882 the size of addresses. */
13883 {
13884 unsigned int addr_length = TYPE_LENGTH
13885 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13886
13887 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13888 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13889 "storage_offset");
13890 }
13891
47e729a8 13892 lai->bool_type_symbol = NULL;
fbb06eb1 13893 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13894}
6c038f32
PH
13895\f
13896 /* Language vector */
13897
13898/* Not really used, but needed in the ada_language_defn. */
13899
13900static void
6c7a06a3 13901emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13902{
6c7a06a3 13903 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13904}
13905
13906static int
410a0ff2 13907parse (struct parser_state *ps)
6c038f32
PH
13908{
13909 warnings_issued = 0;
410a0ff2 13910 return ada_parse (ps);
6c038f32
PH
13911}
13912
13913static const struct exp_descriptor ada_exp_descriptor = {
13914 ada_print_subexp,
13915 ada_operator_length,
c0201579 13916 ada_operator_check,
6c038f32
PH
13917 ada_op_name,
13918 ada_dump_subexp_body,
13919 ada_evaluate_subexp
13920};
13921
b5ec771e
PA
13922/* symbol_name_matcher_ftype adapter for wild_match. */
13923
13924static bool
13925do_wild_match (const char *symbol_search_name,
13926 const lookup_name_info &lookup_name,
a207cff2 13927 completion_match_result *comp_match_res)
b5ec771e
PA
13928{
13929 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13930}
13931
13932/* symbol_name_matcher_ftype adapter for full_match. */
13933
13934static bool
13935do_full_match (const char *symbol_search_name,
13936 const lookup_name_info &lookup_name,
a207cff2 13937 completion_match_result *comp_match_res)
b5ec771e
PA
13938{
13939 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13940}
13941
a2cd4f14
JB
13942/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13943
13944static bool
13945do_exact_match (const char *symbol_search_name,
13946 const lookup_name_info &lookup_name,
13947 completion_match_result *comp_match_res)
13948{
13949 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13950}
13951
b5ec771e
PA
13952/* Build the Ada lookup name for LOOKUP_NAME. */
13953
13954ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13955{
13956 const std::string &user_name = lookup_name.name ();
13957
13958 if (user_name[0] == '<')
13959 {
13960 if (user_name.back () == '>')
13961 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13962 else
13963 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13964 m_encoded_p = true;
13965 m_verbatim_p = true;
13966 m_wild_match_p = false;
13967 m_standard_p = false;
13968 }
13969 else
13970 {
13971 m_verbatim_p = false;
13972
13973 m_encoded_p = user_name.find ("__") != std::string::npos;
13974
13975 if (!m_encoded_p)
13976 {
13977 const char *folded = ada_fold_name (user_name.c_str ());
13978 const char *encoded = ada_encode_1 (folded, false);
13979 if (encoded != NULL)
13980 m_encoded_name = encoded;
13981 else
13982 m_encoded_name = user_name;
13983 }
13984 else
13985 m_encoded_name = user_name;
13986
13987 /* Handle the 'package Standard' special case. See description
13988 of m_standard_p. */
13989 if (startswith (m_encoded_name.c_str (), "standard__"))
13990 {
13991 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13992 m_standard_p = true;
13993 }
13994 else
13995 m_standard_p = false;
74ccd7f5 13996
b5ec771e
PA
13997 /* If the name contains a ".", then the user is entering a fully
13998 qualified entity name, and the match must not be done in wild
13999 mode. Similarly, if the user wants to complete what looks
14000 like an encoded name, the match must not be done in wild
14001 mode. Also, in the standard__ special case always do
14002 non-wild matching. */
14003 m_wild_match_p
14004 = (lookup_name.match_type () != symbol_name_match_type::FULL
14005 && !m_encoded_p
14006 && !m_standard_p
14007 && user_name.find ('.') == std::string::npos);
14008 }
14009}
14010
14011/* symbol_name_matcher_ftype method for Ada. This only handles
14012 completion mode. */
14013
14014static bool
14015ada_symbol_name_matches (const char *symbol_search_name,
14016 const lookup_name_info &lookup_name,
a207cff2 14017 completion_match_result *comp_match_res)
74ccd7f5 14018{
b5ec771e
PA
14019 return lookup_name.ada ().matches (symbol_search_name,
14020 lookup_name.match_type (),
a207cff2 14021 comp_match_res);
b5ec771e
PA
14022}
14023
de63c46b
PA
14024/* A name matcher that matches the symbol name exactly, with
14025 strcmp. */
14026
14027static bool
14028literal_symbol_name_matcher (const char *symbol_search_name,
14029 const lookup_name_info &lookup_name,
14030 completion_match_result *comp_match_res)
14031{
14032 const std::string &name = lookup_name.name ();
14033
14034 int cmp = (lookup_name.completion_mode ()
14035 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14036 : strcmp (symbol_search_name, name.c_str ()));
14037 if (cmp == 0)
14038 {
14039 if (comp_match_res != NULL)
14040 comp_match_res->set_match (symbol_search_name);
14041 return true;
14042 }
14043 else
14044 return false;
14045}
14046
b5ec771e
PA
14047/* Implement the "la_get_symbol_name_matcher" language_defn method for
14048 Ada. */
14049
14050static symbol_name_matcher_ftype *
14051ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14052{
de63c46b
PA
14053 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14054 return literal_symbol_name_matcher;
14055
b5ec771e
PA
14056 if (lookup_name.completion_mode ())
14057 return ada_symbol_name_matches;
74ccd7f5 14058 else
b5ec771e
PA
14059 {
14060 if (lookup_name.ada ().wild_match_p ())
14061 return do_wild_match;
a2cd4f14
JB
14062 else if (lookup_name.ada ().verbatim_p ())
14063 return do_exact_match;
b5ec771e
PA
14064 else
14065 return do_full_match;
14066 }
74ccd7f5
JB
14067}
14068
a5ee536b
JB
14069/* Implement the "la_read_var_value" language_defn method for Ada. */
14070
14071static struct value *
63e43d3a
PMR
14072ada_read_var_value (struct symbol *var, const struct block *var_block,
14073 struct frame_info *frame)
a5ee536b 14074{
a5ee536b
JB
14075 /* The only case where default_read_var_value is not sufficient
14076 is when VAR is a renaming... */
c0e70c62
TT
14077 if (frame != nullptr)
14078 {
14079 const struct block *frame_block = get_frame_block (frame, NULL);
14080 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14081 return ada_read_renaming_var_value (var, frame_block);
14082 }
a5ee536b
JB
14083
14084 /* This is a typical case where we expect the default_read_var_value
14085 function to work. */
63e43d3a 14086 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14087}
14088
56618e20
TT
14089static const char *ada_extensions[] =
14090{
14091 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14092};
14093
47e77640 14094extern const struct language_defn ada_language_defn = {
6c038f32 14095 "ada", /* Language name */
6abde28f 14096 "Ada",
6c038f32 14097 language_ada,
6c038f32 14098 range_check_off,
6c038f32
PH
14099 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14100 that's not quite what this means. */
6c038f32 14101 array_row_major,
9a044a89 14102 macro_expansion_no,
56618e20 14103 ada_extensions,
6c038f32
PH
14104 &ada_exp_descriptor,
14105 parse,
6c038f32
PH
14106 resolve,
14107 ada_printchar, /* Print a character constant */
14108 ada_printstr, /* Function to print string constant */
14109 emit_char, /* Function to print single char (not used) */
6c038f32 14110 ada_print_type, /* Print a type using appropriate syntax */
be942545 14111 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14112 ada_val_print, /* Print a value using appropriate syntax */
14113 ada_value_print, /* Print a top-level value */
a5ee536b 14114 ada_read_var_value, /* la_read_var_value */
6c038f32 14115 NULL, /* Language specific skip_trampoline */
2b2d9e11 14116 NULL, /* name_of_this */
59cc4834 14117 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14118 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14119 basic_lookup_transparent_type, /* lookup_transparent_type */
14120 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14121 ada_sniff_from_mangled_name,
0963b4bd
MS
14122 NULL, /* Language specific
14123 class_name_from_physname */
6c038f32
PH
14124 ada_op_print_tab, /* expression operators for printing */
14125 0, /* c-style arrays */
14126 1, /* String lower bound */
6c038f32 14127 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14128 ada_collect_symbol_completion_matches,
72d5681a 14129 ada_language_arch_info,
e79af960 14130 ada_print_array_index,
41f1b697 14131 default_pass_by_reference,
e2b7af72 14132 ada_watch_location_expression,
b5ec771e 14133 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14134 ada_iterate_over_symbols,
5ffa0793 14135 default_search_name_hash,
a53b64ea 14136 &ada_varobj_ops,
bb2ec1b3 14137 NULL,
721b08c6 14138 NULL,
4be290b2 14139 ada_is_string_type,
721b08c6 14140 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14141};
14142
5bf03f13
JB
14143/* Command-list for the "set/show ada" prefix command. */
14144static struct cmd_list_element *set_ada_list;
14145static struct cmd_list_element *show_ada_list;
14146
14147/* Implement the "set ada" prefix command. */
14148
14149static void
981a3fb3 14150set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14151{
14152 printf_unfiltered (_(\
14153"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14154 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14155}
14156
14157/* Implement the "show ada" prefix command. */
14158
14159static void
981a3fb3 14160show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14161{
14162 cmd_show_list (show_ada_list, from_tty, "");
14163}
14164
2060206e
PA
14165static void
14166initialize_ada_catchpoint_ops (void)
14167{
14168 struct breakpoint_ops *ops;
14169
14170 initialize_breakpoint_ops ();
14171
14172 ops = &catch_exception_breakpoint_ops;
14173 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14174 ops->allocate_location = allocate_location_exception;
14175 ops->re_set = re_set_exception;
14176 ops->check_status = check_status_exception;
14177 ops->print_it = print_it_exception;
14178 ops->print_one = print_one_exception;
14179 ops->print_mention = print_mention_exception;
14180 ops->print_recreate = print_recreate_exception;
2060206e
PA
14181
14182 ops = &catch_exception_unhandled_breakpoint_ops;
14183 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14184 ops->allocate_location = allocate_location_exception;
14185 ops->re_set = re_set_exception;
14186 ops->check_status = check_status_exception;
14187 ops->print_it = print_it_exception;
14188 ops->print_one = print_one_exception;
14189 ops->print_mention = print_mention_exception;
14190 ops->print_recreate = print_recreate_exception;
2060206e
PA
14191
14192 ops = &catch_assert_breakpoint_ops;
14193 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14194 ops->allocate_location = allocate_location_exception;
14195 ops->re_set = re_set_exception;
14196 ops->check_status = check_status_exception;
14197 ops->print_it = print_it_exception;
14198 ops->print_one = print_one_exception;
14199 ops->print_mention = print_mention_exception;
14200 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14201
14202 ops = &catch_handlers_breakpoint_ops;
14203 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14204 ops->allocate_location = allocate_location_exception;
14205 ops->re_set = re_set_exception;
14206 ops->check_status = check_status_exception;
14207 ops->print_it = print_it_exception;
14208 ops->print_one = print_one_exception;
14209 ops->print_mention = print_mention_exception;
14210 ops->print_recreate = print_recreate_exception;
2060206e
PA
14211}
14212
3d9434b5
JB
14213/* This module's 'new_objfile' observer. */
14214
14215static void
14216ada_new_objfile_observer (struct objfile *objfile)
14217{
14218 ada_clear_symbol_cache ();
14219}
14220
14221/* This module's 'free_objfile' observer. */
14222
14223static void
14224ada_free_objfile_observer (struct objfile *objfile)
14225{
14226 ada_clear_symbol_cache ();
14227}
14228
6c265988 14229void _initialize_ada_language ();
d2e4a39e 14230void
6c265988 14231_initialize_ada_language ()
14f9c5c9 14232{
2060206e
PA
14233 initialize_ada_catchpoint_ops ();
14234
5bf03f13 14235 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14236 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14237 &set_ada_list, "set ada ", 0, &setlist);
14238
14239 add_prefix_cmd ("ada", no_class, show_ada_command,
14240 _("Generic command for showing Ada-specific settings."),
14241 &show_ada_list, "show ada ", 0, &showlist);
14242
14243 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14244 &trust_pad_over_xvs, _("\
590042fc
PW
14245Enable or disable an optimization trusting PAD types over XVS types."), _("\
14246Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14247 _("\
14248This is related to the encoding used by the GNAT compiler. The debugger\n\
14249should normally trust the contents of PAD types, but certain older versions\n\
14250of GNAT have a bug that sometimes causes the information in the PAD type\n\
14251to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14252work around this bug. It is always safe to turn this option \"off\", but\n\
14253this incurs a slight performance penalty, so it is recommended to NOT change\n\
14254this option to \"off\" unless necessary."),
14255 NULL, NULL, &set_ada_list, &show_ada_list);
14256
d72413e6
PMR
14257 add_setshow_boolean_cmd ("print-signatures", class_vars,
14258 &print_signatures, _("\
14259Enable or disable the output of formal and return types for functions in the \
590042fc 14260overloads selection menu."), _("\
d72413e6 14261Show whether the output of formal and return types for functions in the \
590042fc 14262overloads selection menu is activated."),
d72413e6
PMR
14263 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14264
9ac4176b
PA
14265 add_catch_command ("exception", _("\
14266Catch Ada exceptions, when raised.\n\
9bf7038b 14267Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14268Without any argument, stop when any Ada exception is raised.\n\
14269If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14270being raised does not have a handler (and will therefore lead to the task's\n\
14271termination).\n\
14272Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14273raised is the same as ARG.\n\
14274CONDITION is a boolean expression that is evaluated to see whether the\n\
14275exception should cause a stop."),
9ac4176b 14276 catch_ada_exception_command,
71bed2db 14277 catch_ada_completer,
9ac4176b
PA
14278 CATCH_PERMANENT,
14279 CATCH_TEMPORARY);
9f757bf7
XR
14280
14281 add_catch_command ("handlers", _("\
14282Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14283Usage: catch handlers [ARG] [if CONDITION]\n\
14284Without any argument, stop when any Ada exception is handled.\n\
14285With an argument, catch only exceptions with the given name.\n\
14286CONDITION is a boolean expression that is evaluated to see whether the\n\
14287exception should cause a stop."),
9f757bf7 14288 catch_ada_handlers_command,
71bed2db 14289 catch_ada_completer,
9f757bf7
XR
14290 CATCH_PERMANENT,
14291 CATCH_TEMPORARY);
9ac4176b
PA
14292 add_catch_command ("assert", _("\
14293Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14294Usage: catch assert [if CONDITION]\n\
14295CONDITION is a boolean expression that is evaluated to see whether the\n\
14296exception should cause a stop."),
9ac4176b
PA
14297 catch_assert_command,
14298 NULL,
14299 CATCH_PERMANENT,
14300 CATCH_TEMPORARY);
14301
6c038f32 14302 varsize_limit = 65536;
3fcded8f
JB
14303 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14304 &varsize_limit, _("\
14305Set the maximum number of bytes allowed in a variable-size object."), _("\
14306Show the maximum number of bytes allowed in a variable-size object."), _("\
14307Attempts to access an object whose size is not a compile-time constant\n\
14308and exceeds this limit will cause an error."),
14309 NULL, NULL, &setlist, &showlist);
6c038f32 14310
778865d3
JB
14311 add_info ("exceptions", info_exceptions_command,
14312 _("\
14313List all Ada exception names.\n\
9bf7038b 14314Usage: info exceptions [REGEXP]\n\
778865d3
JB
14315If a regular expression is passed as an argument, only those matching\n\
14316the regular expression are listed."));
14317
c6044dd1
JB
14318 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14319 _("Set Ada maintenance-related variables."),
14320 &maint_set_ada_cmdlist, "maintenance set ada ",
14321 0/*allow-unknown*/, &maintenance_set_cmdlist);
14322
14323 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14324 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14325 &maint_show_ada_cmdlist, "maintenance show ada ",
14326 0/*allow-unknown*/, &maintenance_show_cmdlist);
14327
14328 add_setshow_boolean_cmd
14329 ("ignore-descriptive-types", class_maintenance,
14330 &ada_ignore_descriptive_types_p,
14331 _("Set whether descriptive types generated by GNAT should be ignored."),
14332 _("Show whether descriptive types generated by GNAT should be ignored."),
14333 _("\
14334When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14335DWARF attribute."),
14336 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14337
459a2e4c
TT
14338 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14339 NULL, xcalloc, xfree);
6b69afc4 14340
3d9434b5 14341 /* The ada-lang observers. */
76727919
TT
14342 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14343 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14344 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14345}
This page took 2.622327 seconds and 4 git commands to generate.