gdb: Convert language la_lookup_transparent_type field to a method
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
67cb5b2d 491static const char *
4c4b4cd2
PH
492ada_get_gdb_completer_word_break_characters (void)
493{
494 return ada_completer_word_break_characters;
495}
496
e2b7af72
JB
497/* la_watch_location_expression for Ada. */
498
de93309a 499static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
500ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501{
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506}
507
de93309a
SM
508/* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511#define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
f27cf670 514/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 516 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 517
de93309a 518static void *
f27cf670 519grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 520{
d2e4a39e
AS
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
4c4b4cd2 525 *size = min_size;
f27cf670 526 vect = xrealloc (vect, *size * element_size);
d2e4a39e 527 }
f27cf670 528 return vect;
14f9c5c9
AS
529}
530
531/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 532 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
533
534static int
ebf56fd3 535field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
536{
537 int len = strlen (target);
5b4ee69b 538
d2e4a39e 539 return
4c4b4cd2
PH
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
61012eef 542 || (startswith (field_name + len, "___")
76a01679
JB
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
14f9c5c9
AS
545}
546
547
872c8b51
JB
548/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
555
556int
557ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559{
560 int fieldno;
872c8b51
JB
561 struct type *struct_type = check_typedef ((struct type *) type);
562
1f704f76 563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
565 return fieldno;
566
567 if (!maybe_missing)
323e0a4a 568 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 569 field_name, struct_type->name ());
4c4b4cd2
PH
570
571 return -1;
572}
573
574/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
575
576int
d2e4a39e 577ada_name_prefix_len (const char *name)
14f9c5c9
AS
578{
579 if (name == NULL)
580 return 0;
d2e4a39e 581 else
14f9c5c9 582 {
d2e4a39e 583 const char *p = strstr (name, "___");
5b4ee69b 584
14f9c5c9 585 if (p == NULL)
4c4b4cd2 586 return strlen (name);
14f9c5c9 587 else
4c4b4cd2 588 return p - name;
14f9c5c9
AS
589 }
590}
591
4c4b4cd2
PH
592/* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
14f9c5c9 595static int
d2e4a39e 596is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
597{
598 int len1, len2;
5b4ee69b 599
14f9c5c9
AS
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
4c4b4cd2 604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
605}
606
4c4b4cd2
PH
607/* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
14f9c5c9 609
d2e4a39e 610static struct value *
4c4b4cd2 611coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 612{
61ee279c 613 type = ada_check_typedef (type);
df407dfe 614 if (value_type (val) == type)
4c4b4cd2 615 return val;
d2e4a39e 616 else
14f9c5c9 617 {
4c4b4cd2
PH
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
c1b5a1a6 622 ada_ensure_varsize_limit (type);
4c4b4cd2 623
41e8491f
JK
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
9a0dc9e3 630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 631 }
74bcbdf3 632 set_value_component_location (result, val);
9bbda503
AC
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
14f9c5c9
AS
637 return result;
638 }
639}
640
fc1a4b47
AC
641static const gdb_byte *
642cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
643{
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648}
649
650static CORE_ADDR
ebf56fd3 651cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
652{
653 if (address == 0)
654 return 0;
d2e4a39e 655 else
14f9c5c9
AS
656 return address + offset;
657}
658
4c4b4cd2
PH
659/* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
a2249542 663
77109804
AC
664/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
a0b31db1 666static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 667
14f9c5c9 668static void
a2249542 669lim_warning (const char *format, ...)
14f9c5c9 670{
a2249542 671 va_list args;
a2249542 672
5b4ee69b 673 va_start (args, format);
4c4b4cd2
PH
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
a2249542
MK
676 vwarning (format, args);
677
678 va_end (args);
4c4b4cd2
PH
679}
680
714e53ab
PH
681/* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
c1b5a1a6
JB
685void
686ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
687{
688 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 689 error (_("object size is larger than varsize-limit"));
714e53ab
PH
690}
691
0963b4bd 692/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 693static LONGEST
c3e5cd34 694max_of_size (int size)
4c4b4cd2 695{
76a01679 696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 697
76a01679 698 return top_bit | (top_bit - 1);
4c4b4cd2
PH
699}
700
0963b4bd 701/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 702static LONGEST
c3e5cd34 703min_of_size (int size)
4c4b4cd2 704{
c3e5cd34 705 return -max_of_size (size) - 1;
4c4b4cd2
PH
706}
707
0963b4bd 708/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 709static ULONGEST
c3e5cd34 710umax_of_size (int size)
4c4b4cd2 711{
76a01679 712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 713
76a01679 714 return top_bit | (top_bit - 1);
4c4b4cd2
PH
715}
716
0963b4bd 717/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
718static LONGEST
719max_of_type (struct type *t)
4c4b4cd2 720{
c3e5cd34
PH
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725}
726
0963b4bd 727/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
728static LONGEST
729min_of_type (struct type *t)
730{
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
735}
736
737/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
738LONGEST
739ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 740{
b249d2c2 741 type = resolve_dynamic_type (type, {}, 0);
78134374 742 switch (type->code ())
4c4b4cd2
PH
743 {
744 case TYPE_CODE_RANGE:
690cc4eb 745 return TYPE_HIGH_BOUND (type);
4c4b4cd2 746 case TYPE_CODE_ENUM:
1f704f76 747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
76a01679 751 case TYPE_CODE_INT:
690cc4eb 752 return max_of_type (type);
4c4b4cd2 753 default:
43bbcdc2 754 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
755 }
756}
757
14e75d8e 758/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
759LONGEST
760ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 761{
b249d2c2 762 type = resolve_dynamic_type (type, {}, 0);
78134374 763 switch (type->code ())
4c4b4cd2
PH
764 {
765 case TYPE_CODE_RANGE:
690cc4eb 766 return TYPE_LOW_BOUND (type);
4c4b4cd2 767 case TYPE_CODE_ENUM:
14e75d8e 768 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
76a01679 772 case TYPE_CODE_INT:
690cc4eb 773 return min_of_type (type);
4c4b4cd2 774 default:
43bbcdc2 775 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
776 }
777}
778
779/* The identity on non-range types. For range types, the underlying
76a01679 780 non-range scalar type. */
4c4b4cd2
PH
781
782static struct type *
18af8284 783get_base_type (struct type *type)
4c4b4cd2 784{
78134374 785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 786 {
76a01679
JB
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
4c4b4cd2
PH
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
14f9c5c9 792}
41246937
JB
793
794/* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
85102364 796 encodings, making the resulting type a static but standard description
41246937
JB
797 of the initial type. */
798
799struct value *
800ada_get_decoded_value (struct value *value)
801{
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
78134374 806 && type->code () != TYPE_CODE_PTR))
41246937 807 {
78134374 808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817}
818
819/* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824struct type *
825ada_get_decoded_type (struct type *type)
826{
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831}
832
4c4b4cd2 833\f
76a01679 834
4c4b4cd2 835 /* Language Selection */
14f9c5c9
AS
836
837/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 838 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 839
de93309a 840static enum language
ccefe4c4 841ada_update_initial_language (enum language lang)
14f9c5c9 842{
cafb3438 843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 844 return language_ada;
14f9c5c9
AS
845
846 return lang;
847}
96d887e8
PH
848
849/* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853char *
854ada_main_name (void)
855{
3b7344d5 856 struct bound_minimal_symbol msym;
e83e4e24 857 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 858
96d887e8
PH
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
3b7344d5 866 if (msym.minsym != NULL)
96d887e8 867 {
f9bc20b9
JB
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
77e371c0 871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 872 if (main_program_name_addr == 0)
323e0a4a 873 error (_("Invalid address for Ada main program name."));
96d887e8 874
f9bc20b9
JB
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
e83e4e24 880 return main_program_name.get ();
96d887e8
PH
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885}
14f9c5c9 886\f
4c4b4cd2 887 /* Symbols */
d2e4a39e 888
4c4b4cd2
PH
889/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
14f9c5c9 891
d2e4a39e
AS
892const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
14f9c5c9
AS
915};
916
b5ec771e
PA
917/* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
4c4b4cd2 921
b5ec771e
PA
922static char *
923ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 924{
4c4b4cd2
PH
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
d2e4a39e 927 const char *p;
14f9c5c9 928 int k;
d2e4a39e 929
4c4b4cd2 930 if (decoded == NULL)
14f9c5c9
AS
931 return NULL;
932
4c4b4cd2
PH
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
14f9c5c9
AS
935
936 k = 0;
4c4b4cd2 937 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 938 {
cdc7bb92 939 if (*p == '.')
4c4b4cd2
PH
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
14f9c5c9 944 else if (*p == '"')
4c4b4cd2
PH
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
1265e4aa 949 mapping->encoded != NULL
61012eef 950 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
951 ;
952 if (mapping->encoded == NULL)
b5ec771e
PA
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
4c4b4cd2
PH
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
d2e4a39e 963 else
4c4b4cd2
PH
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
14f9c5c9
AS
968 }
969
4c4b4cd2
PH
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
14f9c5c9
AS
972}
973
b5ec771e
PA
974/* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977char *
978ada_encode (const char *decoded)
979{
980 return ada_encode_1 (decoded, true);
981}
982
14f9c5c9 983/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
de93309a 987static char *
e0802d59 988ada_fold_name (gdb::string_view name)
14f9c5c9 989{
d2e4a39e 990 static char *fold_buffer = NULL;
14f9c5c9
AS
991 static size_t fold_buffer_size = 0;
992
e0802d59 993 int len = name.size ();
d2e4a39e 994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
995
996 if (name[0] == '\'')
997 {
e0802d59 998 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 999 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1000 }
1001 else
1002 {
1003 int i;
5b4ee69b 1004
14f9c5c9 1005 for (i = 0; i <= len; i += 1)
4c4b4cd2 1006 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1007 }
1008
1009 return fold_buffer;
1010}
1011
529cad9c
PH
1012/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014static int
1015is_lower_alphanum (const char c)
1016{
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018}
1019
c90092fe
JB
1020/* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
29480c32
JB
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
c90092fe 1027
29480c32
JB
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032static void
1033ada_remove_trailing_digits (const char *encoded, int *len)
1034{
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
5b4ee69b 1038
29480c32
JB
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
61012eef 1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1046 *len = i - 2;
61012eef 1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1048 *len = i - 1;
1049 }
1050}
1051
1052/* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055static void
1056ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057{
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
0963b4bd 1063 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072}
1073
1074/* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1076 replaced by ENCODED. */
14f9c5c9 1077
f945dedf 1078std::string
4c4b4cd2 1079ada_decode (const char *encoded)
14f9c5c9
AS
1080{
1081 int i, j;
1082 int len0;
d2e4a39e 1083 const char *p;
14f9c5c9 1084 int at_start_name;
f945dedf 1085 std::string decoded;
d2e4a39e 1086
0d81f350
JG
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
29480c32
JB
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
61012eef 1095 if (startswith (encoded, "_ada_"))
4c4b4cd2 1096 encoded += 5;
14f9c5c9 1097
29480c32
JB
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
4c4b4cd2 1101 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2 1104 len0 = strlen (encoded);
4c4b4cd2 1105
29480c32
JB
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1108
4c4b4cd2
PH
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1115 {
1116 if (p[3] == 'X')
4c4b4cd2 1117 len0 = p - encoded;
14f9c5c9 1118 else
4c4b4cd2 1119 goto Suppress;
14f9c5c9 1120 }
4c4b4cd2 1121
29480c32
JB
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
61012eef 1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1127 len0 -= 3;
76a01679 1128
a10967fa
JB
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
61012eef 1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1134 len0 -= 2;
1135
29480c32
JB
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
61012eef 1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1140 len0 -= 1;
1141
4c4b4cd2 1142 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1143
f945dedf 1144 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1145
29480c32
JB
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
4c4b4cd2 1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1149 {
4c4b4cd2
PH
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
d2e4a39e 1158 }
14f9c5c9 1159
29480c32
JB
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
4c4b4cd2
PH
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
14f9c5c9
AS
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
29480c32 1169 /* Is this a symbol function? */
4c4b4cd2
PH
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
5b4ee69b 1173
4c4b4cd2
PH
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1180 {
f945dedf 1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
14f9c5c9
AS
1191 at_start_name = 0;
1192
529cad9c
PH
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
61012eef 1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1197 i += 2;
529cad9c 1198
29480c32
JB
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
529cad9c
PH
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1221 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
4c4b4cd2
PH
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
29480c32
JB
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
4c4b4cd2
PH
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
cdc7bb92 1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1286 {
29480c32 1287 /* Replace '__' by '.'. */
4c4b4cd2
PH
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
14f9c5c9 1293 else
4c4b4cd2 1294 {
29480c32
JB
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
4c4b4cd2
PH
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
14f9c5c9 1301 }
f945dedf 1302 decoded.resize (j);
14f9c5c9 1303
29480c32
JB
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
f945dedf 1307 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1308 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1309 goto Suppress;
1310
f945dedf 1311 return decoded;
14f9c5c9
AS
1312
1313Suppress:
4c4b4cd2 1314 if (encoded[0] == '<')
f945dedf 1315 decoded = encoded;
14f9c5c9 1316 else
f945dedf 1317 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1318 return decoded;
1319
1320}
1321
1322/* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327static struct htab *decoded_names_store;
1328
1329/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1334 GSYMBOL).
4c4b4cd2
PH
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1337 when a decoded name is cached in it. */
4c4b4cd2 1338
45e6c716 1339const char *
f85f34ed 1340ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1341{
f85f34ed
TT
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
615b3f62 1344 &gsymbol->language_specific.demangled_name;
5b4ee69b 1345
f85f34ed 1346 if (!gsymbol->ada_mangled)
4c4b4cd2 1347 {
4d4eaa30 1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1349 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1350
f85f34ed 1351 gsymbol->ada_mangled = 1;
5b4ee69b 1352
f85f34ed 1353 if (obstack != NULL)
f945dedf 1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1355 else
76a01679 1356 {
f85f34ed
TT
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
76a01679 1362 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1363 decoded.c_str (), INSERT);
5b4ee69b 1364
76a01679 1365 if (*slot == NULL)
f945dedf 1366 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1367 *resultp = *slot;
1368 }
4c4b4cd2 1369 }
14f9c5c9 1370
4c4b4cd2
PH
1371 return *resultp;
1372}
76a01679 1373
2c0b251b 1374static char *
76a01679 1375ada_la_decode (const char *encoded, int options)
4c4b4cd2 1376{
f945dedf 1377 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1378}
1379
8b302db8
TT
1380/* Implement la_sniff_from_mangled_name for Ada. */
1381
1382static int
1383ada_sniff_from_mangled_name (const char *mangled, char **out)
1384{
f945dedf 1385 std::string demangled = ada_decode (mangled);
8b302db8
TT
1386
1387 *out = NULL;
1388
f945dedf 1389 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1390 {
1391 /* Set the gsymbol language to Ada, but still return 0.
1392 Two reasons for that:
1393
1394 1. For Ada, we prefer computing the symbol's decoded name
1395 on the fly rather than pre-compute it, in order to save
1396 memory (Ada projects are typically very large).
1397
1398 2. There are some areas in the definition of the GNAT
1399 encoding where, with a bit of bad luck, we might be able
1400 to decode a non-Ada symbol, generating an incorrect
1401 demangled name (Eg: names ending with "TB" for instance
1402 are identified as task bodies and so stripped from
1403 the decoded name returned).
1404
1405 Returning 1, here, but not setting *DEMANGLED, helps us get a
1406 little bit of the best of both worlds. Because we're last,
1407 we should not affect any of the other languages that were
1408 able to demangle the symbol before us; we get to correctly
1409 tag Ada symbols as such; and even if we incorrectly tagged a
1410 non-Ada symbol, which should be rare, any routing through the
1411 Ada language should be transparent (Ada tries to behave much
1412 like C/C++ with non-Ada symbols). */
1413 return 1;
1414 }
1415
1416 return 0;
1417}
1418
14f9c5c9 1419\f
d2e4a39e 1420
4c4b4cd2 1421 /* Arrays */
14f9c5c9 1422
28c85d6c
JB
1423/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1424 generated by the GNAT compiler to describe the index type used
1425 for each dimension of an array, check whether it follows the latest
1426 known encoding. If not, fix it up to conform to the latest encoding.
1427 Otherwise, do nothing. This function also does nothing if
1428 INDEX_DESC_TYPE is NULL.
1429
85102364 1430 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1431 Initially, the information would be provided through the name of each
1432 field of the structure type only, while the type of these fields was
1433 described as unspecified and irrelevant. The debugger was then expected
1434 to perform a global type lookup using the name of that field in order
1435 to get access to the full index type description. Because these global
1436 lookups can be very expensive, the encoding was later enhanced to make
1437 the global lookup unnecessary by defining the field type as being
1438 the full index type description.
1439
1440 The purpose of this routine is to allow us to support older versions
1441 of the compiler by detecting the use of the older encoding, and by
1442 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1443 we essentially replace each field's meaningless type by the associated
1444 index subtype). */
1445
1446void
1447ada_fixup_array_indexes_type (struct type *index_desc_type)
1448{
1449 int i;
1450
1451 if (index_desc_type == NULL)
1452 return;
1f704f76 1453 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1454
1455 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1456 to check one field only, no need to check them all). If not, return
1457 now.
1458
1459 If our INDEX_DESC_TYPE was generated using the older encoding,
1460 the field type should be a meaningless integer type whose name
1461 is not equal to the field name. */
7d93a1e0
SM
1462 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1463 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
28c85d6c
JB
1464 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1465 return;
1466
1467 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1468 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1469 {
0d5cff50 1470 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1471 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1472
1473 if (raw_type)
1474 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1475 }
1476}
1477
4c4b4cd2
PH
1478/* The desc_* routines return primitive portions of array descriptors
1479 (fat pointers). */
14f9c5c9
AS
1480
1481/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1482 level of indirection, if needed. */
1483
d2e4a39e
AS
1484static struct type *
1485desc_base_type (struct type *type)
14f9c5c9
AS
1486{
1487 if (type == NULL)
1488 return NULL;
61ee279c 1489 type = ada_check_typedef (type);
78134374 1490 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1491 type = ada_typedef_target_type (type);
1492
1265e4aa 1493 if (type != NULL
78134374
SM
1494 && (type->code () == TYPE_CODE_PTR
1495 || type->code () == TYPE_CODE_REF))
61ee279c 1496 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1497 else
1498 return type;
1499}
1500
4c4b4cd2
PH
1501/* True iff TYPE indicates a "thin" array pointer type. */
1502
14f9c5c9 1503static int
d2e4a39e 1504is_thin_pntr (struct type *type)
14f9c5c9 1505{
d2e4a39e 1506 return
14f9c5c9
AS
1507 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1508 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1509}
1510
4c4b4cd2
PH
1511/* The descriptor type for thin pointer type TYPE. */
1512
d2e4a39e
AS
1513static struct type *
1514thin_descriptor_type (struct type *type)
14f9c5c9 1515{
d2e4a39e 1516 struct type *base_type = desc_base_type (type);
5b4ee69b 1517
14f9c5c9
AS
1518 if (base_type == NULL)
1519 return NULL;
1520 if (is_suffix (ada_type_name (base_type), "___XVE"))
1521 return base_type;
d2e4a39e 1522 else
14f9c5c9 1523 {
d2e4a39e 1524 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1525
14f9c5c9 1526 if (alt_type == NULL)
4c4b4cd2 1527 return base_type;
14f9c5c9 1528 else
4c4b4cd2 1529 return alt_type;
14f9c5c9
AS
1530 }
1531}
1532
4c4b4cd2
PH
1533/* A pointer to the array data for thin-pointer value VAL. */
1534
d2e4a39e
AS
1535static struct value *
1536thin_data_pntr (struct value *val)
14f9c5c9 1537{
828292f2 1538 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1539 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1540
556bdfd4
UW
1541 data_type = lookup_pointer_type (data_type);
1542
78134374 1543 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1544 return value_cast (data_type, value_copy (val));
d2e4a39e 1545 else
42ae5230 1546 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1547}
1548
4c4b4cd2
PH
1549/* True iff TYPE indicates a "thick" array pointer type. */
1550
14f9c5c9 1551static int
d2e4a39e 1552is_thick_pntr (struct type *type)
14f9c5c9
AS
1553{
1554 type = desc_base_type (type);
78134374 1555 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1556 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1557}
1558
4c4b4cd2
PH
1559/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1560 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1561
d2e4a39e
AS
1562static struct type *
1563desc_bounds_type (struct type *type)
14f9c5c9 1564{
d2e4a39e 1565 struct type *r;
14f9c5c9
AS
1566
1567 type = desc_base_type (type);
1568
1569 if (type == NULL)
1570 return NULL;
1571 else if (is_thin_pntr (type))
1572 {
1573 type = thin_descriptor_type (type);
1574 if (type == NULL)
4c4b4cd2 1575 return NULL;
14f9c5c9
AS
1576 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1577 if (r != NULL)
61ee279c 1578 return ada_check_typedef (r);
14f9c5c9 1579 }
78134374 1580 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1581 {
1582 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1583 if (r != NULL)
61ee279c 1584 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1585 }
1586 return NULL;
1587}
1588
1589/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1590 one, a pointer to its bounds data. Otherwise NULL. */
1591
d2e4a39e
AS
1592static struct value *
1593desc_bounds (struct value *arr)
14f9c5c9 1594{
df407dfe 1595 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1596
d2e4a39e 1597 if (is_thin_pntr (type))
14f9c5c9 1598 {
d2e4a39e 1599 struct type *bounds_type =
4c4b4cd2 1600 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1601 LONGEST addr;
1602
4cdfadb1 1603 if (bounds_type == NULL)
323e0a4a 1604 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1605
1606 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1607 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1608 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1609 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1610 addr = value_as_long (arr);
d2e4a39e 1611 else
42ae5230 1612 addr = value_address (arr);
14f9c5c9 1613
d2e4a39e 1614 return
4c4b4cd2
PH
1615 value_from_longest (lookup_pointer_type (bounds_type),
1616 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1617 }
1618
1619 else if (is_thick_pntr (type))
05e522ef
JB
1620 {
1621 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1622 _("Bad GNAT array descriptor"));
1623 struct type *p_bounds_type = value_type (p_bounds);
1624
1625 if (p_bounds_type
78134374 1626 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1627 {
1628 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1629
1630 if (TYPE_STUB (target_type))
1631 p_bounds = value_cast (lookup_pointer_type
1632 (ada_check_typedef (target_type)),
1633 p_bounds);
1634 }
1635 else
1636 error (_("Bad GNAT array descriptor"));
1637
1638 return p_bounds;
1639 }
14f9c5c9
AS
1640 else
1641 return NULL;
1642}
1643
4c4b4cd2
PH
1644/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1645 position of the field containing the address of the bounds data. */
1646
14f9c5c9 1647static int
d2e4a39e 1648fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1649{
1650 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1651}
1652
1653/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1654 size of the field containing the address of the bounds data. */
1655
14f9c5c9 1656static int
d2e4a39e 1657fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1658{
1659 type = desc_base_type (type);
1660
d2e4a39e 1661 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1662 return TYPE_FIELD_BITSIZE (type, 1);
1663 else
61ee279c 1664 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1665}
1666
4c4b4cd2 1667/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1668 pointer to one, the type of its array data (a array-with-no-bounds type);
1669 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1670 data. */
4c4b4cd2 1671
d2e4a39e 1672static struct type *
556bdfd4 1673desc_data_target_type (struct type *type)
14f9c5c9
AS
1674{
1675 type = desc_base_type (type);
1676
4c4b4cd2 1677 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1678 if (is_thin_pntr (type))
556bdfd4 1679 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1680 else if (is_thick_pntr (type))
556bdfd4
UW
1681 {
1682 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1683
1684 if (data_type
78134374 1685 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1686 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1687 }
1688
1689 return NULL;
14f9c5c9
AS
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1693 its array data. */
4c4b4cd2 1694
d2e4a39e
AS
1695static struct value *
1696desc_data (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = value_type (arr);
5b4ee69b 1699
14f9c5c9
AS
1700 if (is_thin_pntr (type))
1701 return thin_data_pntr (arr);
1702 else if (is_thick_pntr (type))
d2e4a39e 1703 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1704 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1705 else
1706 return NULL;
1707}
1708
1709
1710/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1711 position of the field containing the address of the data. */
1712
14f9c5c9 1713static int
d2e4a39e 1714fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1715{
1716 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1717}
1718
1719/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1720 size of the field containing the address of the data. */
1721
14f9c5c9 1722static int
d2e4a39e 1723fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1724{
1725 type = desc_base_type (type);
1726
1727 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1729 else
14f9c5c9
AS
1730 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1731}
1732
4c4b4cd2 1733/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1734 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1735 bound, if WHICH is 1. The first bound is I=1. */
1736
d2e4a39e
AS
1737static struct value *
1738desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1739{
250106a7
TT
1740 char bound_name[20];
1741 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1742 which ? 'U' : 'L', i - 1);
1743 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1744 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1745}
1746
1747/* If BOUNDS is an array-bounds structure type, return the bit position
1748 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1749 bound, if WHICH is 1. The first bound is I=1. */
1750
14f9c5c9 1751static int
d2e4a39e 1752desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1753{
d2e4a39e 1754 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1755}
1756
1757/* If BOUNDS is an array-bounds structure type, return the bit field size
1758 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1759 bound, if WHICH is 1. The first bound is I=1. */
1760
76a01679 1761static int
d2e4a39e 1762desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1763{
1764 type = desc_base_type (type);
1765
d2e4a39e
AS
1766 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1767 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1768 else
1769 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1770}
1771
1772/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1773 Ith bound (numbering from 1). Otherwise, NULL. */
1774
d2e4a39e
AS
1775static struct type *
1776desc_index_type (struct type *type, int i)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
78134374 1780 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1781 {
1782 char bound_name[20];
1783 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1784 return lookup_struct_elt_type (type, bound_name, 1);
1785 }
d2e4a39e 1786 else
14f9c5c9
AS
1787 return NULL;
1788}
1789
4c4b4cd2
PH
1790/* The number of index positions in the array-bounds type TYPE.
1791 Return 0 if TYPE is NULL. */
1792
14f9c5c9 1793static int
d2e4a39e 1794desc_arity (struct type *type)
14f9c5c9
AS
1795{
1796 type = desc_base_type (type);
1797
1798 if (type != NULL)
1f704f76 1799 return type->num_fields () / 2;
14f9c5c9
AS
1800 return 0;
1801}
1802
4c4b4cd2
PH
1803/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1804 an array descriptor type (representing an unconstrained array
1805 type). */
1806
76a01679
JB
1807static int
1808ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1809{
1810 if (type == NULL)
1811 return 0;
61ee279c 1812 type = ada_check_typedef (type);
78134374 1813 return (type->code () == TYPE_CODE_ARRAY
76a01679 1814 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1815}
1816
52ce6436 1817/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1818 * to one. */
52ce6436 1819
2c0b251b 1820static int
52ce6436
PH
1821ada_is_array_type (struct type *type)
1822{
78134374
SM
1823 while (type != NULL
1824 && (type->code () == TYPE_CODE_PTR
1825 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1826 type = TYPE_TARGET_TYPE (type);
1827 return ada_is_direct_array_type (type);
1828}
1829
4c4b4cd2 1830/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1831
14f9c5c9 1832int
4c4b4cd2 1833ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1834{
1835 if (type == NULL)
1836 return 0;
61ee279c 1837 type = ada_check_typedef (type);
78134374
SM
1838 return (type->code () == TYPE_CODE_ARRAY
1839 || (type->code () == TYPE_CODE_PTR
1840 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1841 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1842}
1843
4c4b4cd2
PH
1844/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1845
14f9c5c9 1846int
4c4b4cd2 1847ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1848{
556bdfd4 1849 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1850
1851 if (type == NULL)
1852 return 0;
61ee279c 1853 type = ada_check_typedef (type);
556bdfd4 1854 return (data_type != NULL
78134374 1855 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1856 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1857}
1858
1859/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1860 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1861 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1862 is still needed. */
1863
14f9c5c9 1864int
ebf56fd3 1865ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1866{
d2e4a39e 1867 return
14f9c5c9 1868 type != NULL
78134374 1869 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1870 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1871 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1872 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1873}
1874
1875
4c4b4cd2 1876/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1877 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1878 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1879 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1880 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1881 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1882 a descriptor. */
de93309a
SM
1883
1884static struct type *
d2e4a39e 1885ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1886{
ad82864c
JB
1887 if (ada_is_constrained_packed_array_type (value_type (arr)))
1888 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1889
df407dfe
AC
1890 if (!ada_is_array_descriptor_type (value_type (arr)))
1891 return value_type (arr);
d2e4a39e
AS
1892
1893 if (!bounds)
ad82864c
JB
1894 {
1895 struct type *array_type =
1896 ada_check_typedef (desc_data_target_type (value_type (arr)));
1897
1898 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1899 TYPE_FIELD_BITSIZE (array_type, 0) =
1900 decode_packed_array_bitsize (value_type (arr));
1901
1902 return array_type;
1903 }
14f9c5c9
AS
1904 else
1905 {
d2e4a39e 1906 struct type *elt_type;
14f9c5c9 1907 int arity;
d2e4a39e 1908 struct value *descriptor;
14f9c5c9 1909
df407dfe
AC
1910 elt_type = ada_array_element_type (value_type (arr), -1);
1911 arity = ada_array_arity (value_type (arr));
14f9c5c9 1912
d2e4a39e 1913 if (elt_type == NULL || arity == 0)
df407dfe 1914 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1915
1916 descriptor = desc_bounds (arr);
d2e4a39e 1917 if (value_as_long (descriptor) == 0)
4c4b4cd2 1918 return NULL;
d2e4a39e 1919 while (arity > 0)
4c4b4cd2 1920 {
e9bb382b
UW
1921 struct type *range_type = alloc_type_copy (value_type (arr));
1922 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1923 struct value *low = desc_one_bound (descriptor, arity, 0);
1924 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1925
5b4ee69b 1926 arity -= 1;
0c9c3474
SA
1927 create_static_range_type (range_type, value_type (low),
1928 longest_to_int (value_as_long (low)),
1929 longest_to_int (value_as_long (high)));
4c4b4cd2 1930 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1931
1932 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1933 {
1934 /* We need to store the element packed bitsize, as well as
1935 recompute the array size, because it was previously
1936 computed based on the unpacked element size. */
1937 LONGEST lo = value_as_long (low);
1938 LONGEST hi = value_as_long (high);
1939
1940 TYPE_FIELD_BITSIZE (elt_type, 0) =
1941 decode_packed_array_bitsize (value_type (arr));
1942 /* If the array has no element, then the size is already
1943 zero, and does not need to be recomputed. */
1944 if (lo < hi)
1945 {
1946 int array_bitsize =
1947 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1948
1949 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1950 }
1951 }
4c4b4cd2 1952 }
14f9c5c9
AS
1953
1954 return lookup_pointer_type (elt_type);
1955 }
1956}
1957
1958/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1959 Otherwise, returns either a standard GDB array with bounds set
1960 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1961 GDB array. Returns NULL if ARR is a null fat pointer. */
1962
d2e4a39e
AS
1963struct value *
1964ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1965{
df407dfe 1966 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1967 {
d2e4a39e 1968 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1969
14f9c5c9 1970 if (arrType == NULL)
4c4b4cd2 1971 return NULL;
14f9c5c9
AS
1972 return value_cast (arrType, value_copy (desc_data (arr)));
1973 }
ad82864c
JB
1974 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1975 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1976 else
1977 return arr;
1978}
1979
1980/* If ARR does not represent an array, returns ARR unchanged.
1981 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1982 be ARR itself if it already is in the proper form). */
1983
720d1a40 1984struct value *
d2e4a39e 1985ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1986{
df407dfe 1987 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1988 {
d2e4a39e 1989 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1990
14f9c5c9 1991 if (arrVal == NULL)
323e0a4a 1992 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1993 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1994 return value_ind (arrVal);
1995 }
ad82864c
JB
1996 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1997 return decode_constrained_packed_array (arr);
d2e4a39e 1998 else
14f9c5c9
AS
1999 return arr;
2000}
2001
2002/* If TYPE represents a GNAT array type, return it translated to an
2003 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2004 packing). For other types, is the identity. */
2005
d2e4a39e
AS
2006struct type *
2007ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2008{
ad82864c
JB
2009 if (ada_is_constrained_packed_array_type (type))
2010 return decode_constrained_packed_array_type (type);
17280b9f
UW
2011
2012 if (ada_is_array_descriptor_type (type))
556bdfd4 2013 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2014
2015 return type;
14f9c5c9
AS
2016}
2017
4c4b4cd2
PH
2018/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2019
ad82864c
JB
2020static int
2021ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2022{
2023 if (type == NULL)
2024 return 0;
4c4b4cd2 2025 type = desc_base_type (type);
61ee279c 2026 type = ada_check_typedef (type);
d2e4a39e 2027 return
14f9c5c9
AS
2028 ada_type_name (type) != NULL
2029 && strstr (ada_type_name (type), "___XP") != NULL;
2030}
2031
ad82864c
JB
2032/* Non-zero iff TYPE represents a standard GNAT constrained
2033 packed-array type. */
2034
2035int
2036ada_is_constrained_packed_array_type (struct type *type)
2037{
2038 return ada_is_packed_array_type (type)
2039 && !ada_is_array_descriptor_type (type);
2040}
2041
2042/* Non-zero iff TYPE represents an array descriptor for a
2043 unconstrained packed-array type. */
2044
2045static int
2046ada_is_unconstrained_packed_array_type (struct type *type)
2047{
2048 return ada_is_packed_array_type (type)
2049 && ada_is_array_descriptor_type (type);
2050}
2051
2052/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2053 return the size of its elements in bits. */
2054
2055static long
2056decode_packed_array_bitsize (struct type *type)
2057{
0d5cff50
DE
2058 const char *raw_name;
2059 const char *tail;
ad82864c
JB
2060 long bits;
2061
720d1a40
JB
2062 /* Access to arrays implemented as fat pointers are encoded as a typedef
2063 of the fat pointer type. We need the name of the fat pointer type
2064 to do the decoding, so strip the typedef layer. */
78134374 2065 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2066 type = ada_typedef_target_type (type);
2067
2068 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2069 if (!raw_name)
2070 raw_name = ada_type_name (desc_base_type (type));
2071
2072 if (!raw_name)
2073 return 0;
2074
2075 tail = strstr (raw_name, "___XP");
720d1a40 2076 gdb_assert (tail != NULL);
ad82864c
JB
2077
2078 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2079 {
2080 lim_warning
2081 (_("could not understand bit size information on packed array"));
2082 return 0;
2083 }
2084
2085 return bits;
2086}
2087
14f9c5c9
AS
2088/* Given that TYPE is a standard GDB array type with all bounds filled
2089 in, and that the element size of its ultimate scalar constituents
2090 (that is, either its elements, or, if it is an array of arrays, its
2091 elements' elements, etc.) is *ELT_BITS, return an identical type,
2092 but with the bit sizes of its elements (and those of any
2093 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2094 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2095 in bits.
2096
2097 Note that, for arrays whose index type has an XA encoding where
2098 a bound references a record discriminant, getting that discriminant,
2099 and therefore the actual value of that bound, is not possible
2100 because none of the given parameters gives us access to the record.
2101 This function assumes that it is OK in the context where it is being
2102 used to return an array whose bounds are still dynamic and where
2103 the length is arbitrary. */
4c4b4cd2 2104
d2e4a39e 2105static struct type *
ad82864c 2106constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2107{
d2e4a39e
AS
2108 struct type *new_elt_type;
2109 struct type *new_type;
99b1c762
JB
2110 struct type *index_type_desc;
2111 struct type *index_type;
14f9c5c9
AS
2112 LONGEST low_bound, high_bound;
2113
61ee279c 2114 type = ada_check_typedef (type);
78134374 2115 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2116 return type;
2117
99b1c762
JB
2118 index_type_desc = ada_find_parallel_type (type, "___XA");
2119 if (index_type_desc)
2120 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2121 NULL);
2122 else
2123 index_type = TYPE_INDEX_TYPE (type);
2124
e9bb382b 2125 new_type = alloc_type_copy (type);
ad82864c
JB
2126 new_elt_type =
2127 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2128 elt_bits);
99b1c762 2129 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2130 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2131 new_type->set_name (ada_type_name (type));
14f9c5c9 2132
78134374 2133 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2134 && is_dynamic_type (check_typedef (index_type)))
2135 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2136 low_bound = high_bound = 0;
2137 if (high_bound < low_bound)
2138 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2139 else
14f9c5c9
AS
2140 {
2141 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2142 TYPE_LENGTH (new_type) =
4c4b4cd2 2143 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2144 }
2145
876cecd0 2146 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2147 return new_type;
2148}
2149
ad82864c
JB
2150/* The array type encoded by TYPE, where
2151 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2152
d2e4a39e 2153static struct type *
ad82864c 2154decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2155{
0d5cff50 2156 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2157 char *name;
0d5cff50 2158 const char *tail;
d2e4a39e 2159 struct type *shadow_type;
14f9c5c9 2160 long bits;
14f9c5c9 2161
727e3d2e
JB
2162 if (!raw_name)
2163 raw_name = ada_type_name (desc_base_type (type));
2164
2165 if (!raw_name)
2166 return NULL;
2167
2168 name = (char *) alloca (strlen (raw_name) + 1);
2169 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2170 type = desc_base_type (type);
2171
14f9c5c9
AS
2172 memcpy (name, raw_name, tail - raw_name);
2173 name[tail - raw_name] = '\000';
2174
b4ba55a1
JB
2175 shadow_type = ada_find_parallel_type_with_name (type, name);
2176
2177 if (shadow_type == NULL)
14f9c5c9 2178 {
323e0a4a 2179 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2180 return NULL;
2181 }
f168693b 2182 shadow_type = check_typedef (shadow_type);
14f9c5c9 2183
78134374 2184 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2185 {
0963b4bd
MS
2186 lim_warning (_("could not understand bounds "
2187 "information on packed array"));
14f9c5c9
AS
2188 return NULL;
2189 }
d2e4a39e 2190
ad82864c
JB
2191 bits = decode_packed_array_bitsize (type);
2192 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2193}
2194
ad82864c
JB
2195/* Given that ARR is a struct value *indicating a GNAT constrained packed
2196 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2197 standard GDB array type except that the BITSIZEs of the array
2198 target types are set to the number of bits in each element, and the
4c4b4cd2 2199 type length is set appropriately. */
14f9c5c9 2200
d2e4a39e 2201static struct value *
ad82864c 2202decode_constrained_packed_array (struct value *arr)
14f9c5c9 2203{
4c4b4cd2 2204 struct type *type;
14f9c5c9 2205
11aa919a
PMR
2206 /* If our value is a pointer, then dereference it. Likewise if
2207 the value is a reference. Make sure that this operation does not
2208 cause the target type to be fixed, as this would indirectly cause
2209 this array to be decoded. The rest of the routine assumes that
2210 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2211 and "value_ind" routines to perform the dereferencing, as opposed
2212 to using "ada_coerce_ref" or "ada_value_ind". */
2213 arr = coerce_ref (arr);
78134374 2214 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2215 arr = value_ind (arr);
4c4b4cd2 2216
ad82864c 2217 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2218 if (type == NULL)
2219 {
323e0a4a 2220 error (_("can't unpack array"));
14f9c5c9
AS
2221 return NULL;
2222 }
61ee279c 2223
d5a22e77 2224 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2225 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2226 {
2227 /* This is a (right-justified) modular type representing a packed
2228 array with no wrapper. In order to interpret the value through
2229 the (left-justified) packed array type we just built, we must
2230 first left-justify it. */
2231 int bit_size, bit_pos;
2232 ULONGEST mod;
2233
df407dfe 2234 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2235 bit_size = 0;
2236 while (mod > 0)
2237 {
2238 bit_size += 1;
2239 mod >>= 1;
2240 }
df407dfe 2241 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2242 arr = ada_value_primitive_packed_val (arr, NULL,
2243 bit_pos / HOST_CHAR_BIT,
2244 bit_pos % HOST_CHAR_BIT,
2245 bit_size,
2246 type);
2247 }
2248
4c4b4cd2 2249 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2250}
2251
2252
2253/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2254 given in IND. ARR must be a simple array. */
14f9c5c9 2255
d2e4a39e
AS
2256static struct value *
2257value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2258{
2259 int i;
2260 int bits, elt_off, bit_off;
2261 long elt_total_bit_offset;
d2e4a39e
AS
2262 struct type *elt_type;
2263 struct value *v;
14f9c5c9
AS
2264
2265 bits = 0;
2266 elt_total_bit_offset = 0;
df407dfe 2267 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2268 for (i = 0; i < arity; i += 1)
14f9c5c9 2269 {
78134374 2270 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2271 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2272 error
0963b4bd
MS
2273 (_("attempt to do packed indexing of "
2274 "something other than a packed array"));
14f9c5c9 2275 else
4c4b4cd2
PH
2276 {
2277 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2278 LONGEST lowerbound, upperbound;
2279 LONGEST idx;
2280
2281 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2282 {
323e0a4a 2283 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2284 lowerbound = upperbound = 0;
2285 }
2286
3cb382c9 2287 idx = pos_atr (ind[i]);
4c4b4cd2 2288 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2289 lim_warning (_("packed array index %ld out of bounds"),
2290 (long) idx);
4c4b4cd2
PH
2291 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2292 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2293 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2294 }
14f9c5c9
AS
2295 }
2296 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2297 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2298
2299 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2300 bits, elt_type);
14f9c5c9
AS
2301 return v;
2302}
2303
4c4b4cd2 2304/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2305
2306static int
d2e4a39e 2307has_negatives (struct type *type)
14f9c5c9 2308{
78134374 2309 switch (type->code ())
d2e4a39e
AS
2310 {
2311 default:
2312 return 0;
2313 case TYPE_CODE_INT:
2314 return !TYPE_UNSIGNED (type);
2315 case TYPE_CODE_RANGE:
4e962e74 2316 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2317 }
14f9c5c9 2318}
d2e4a39e 2319
f93fca70 2320/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2321 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2322 the unpacked buffer.
14f9c5c9 2323
5b639dea
JB
2324 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2325 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2326
f93fca70
JB
2327 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2328 zero otherwise.
14f9c5c9 2329
f93fca70 2330 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2331
f93fca70
JB
2332 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2333
2334static void
2335ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2336 gdb_byte *unpacked, int unpacked_len,
2337 int is_big_endian, int is_signed_type,
2338 int is_scalar)
2339{
a1c95e6b
JB
2340 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2341 int src_idx; /* Index into the source area */
2342 int src_bytes_left; /* Number of source bytes left to process. */
2343 int srcBitsLeft; /* Number of source bits left to move */
2344 int unusedLS; /* Number of bits in next significant
2345 byte of source that are unused */
2346
a1c95e6b
JB
2347 int unpacked_idx; /* Index into the unpacked buffer */
2348 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2349
4c4b4cd2 2350 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2351 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2352 unsigned char sign;
a1c95e6b 2353
4c4b4cd2
PH
2354 /* Transmit bytes from least to most significant; delta is the direction
2355 the indices move. */
f93fca70 2356 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2357
5b639dea
JB
2358 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2359 bits from SRC. .*/
2360 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2361 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2362 bit_size, unpacked_len);
2363
14f9c5c9 2364 srcBitsLeft = bit_size;
086ca51f 2365 src_bytes_left = src_len;
f93fca70 2366 unpacked_bytes_left = unpacked_len;
14f9c5c9 2367 sign = 0;
f93fca70
JB
2368
2369 if (is_big_endian)
14f9c5c9 2370 {
086ca51f 2371 src_idx = src_len - 1;
f93fca70
JB
2372 if (is_signed_type
2373 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2374 sign = ~0;
d2e4a39e
AS
2375
2376 unusedLS =
4c4b4cd2
PH
2377 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2378 % HOST_CHAR_BIT;
14f9c5c9 2379
f93fca70
JB
2380 if (is_scalar)
2381 {
2382 accumSize = 0;
2383 unpacked_idx = unpacked_len - 1;
2384 }
2385 else
2386 {
4c4b4cd2
PH
2387 /* Non-scalar values must be aligned at a byte boundary... */
2388 accumSize =
2389 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2390 /* ... And are placed at the beginning (most-significant) bytes
2391 of the target. */
086ca51f
JB
2392 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2393 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2394 }
14f9c5c9 2395 }
d2e4a39e 2396 else
14f9c5c9
AS
2397 {
2398 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2399
086ca51f 2400 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2401 unusedLS = bit_offset;
2402 accumSize = 0;
2403
f93fca70 2404 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2405 sign = ~0;
14f9c5c9 2406 }
d2e4a39e 2407
14f9c5c9 2408 accum = 0;
086ca51f 2409 while (src_bytes_left > 0)
14f9c5c9
AS
2410 {
2411 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2412 part of the value. */
d2e4a39e 2413 unsigned int unusedMSMask =
4c4b4cd2
PH
2414 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2415 1;
2416 /* Sign-extend bits for this byte. */
14f9c5c9 2417 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2418
d2e4a39e 2419 accum |=
086ca51f 2420 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2421 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2422 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2423 {
db297a65 2424 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2425 accumSize -= HOST_CHAR_BIT;
2426 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2427 unpacked_bytes_left -= 1;
2428 unpacked_idx += delta;
4c4b4cd2 2429 }
14f9c5c9
AS
2430 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2431 unusedLS = 0;
086ca51f
JB
2432 src_bytes_left -= 1;
2433 src_idx += delta;
14f9c5c9 2434 }
086ca51f 2435 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2436 {
2437 accum |= sign << accumSize;
db297a65 2438 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2439 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2440 if (accumSize < 0)
2441 accumSize = 0;
14f9c5c9 2442 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2443 unpacked_bytes_left -= 1;
2444 unpacked_idx += delta;
14f9c5c9 2445 }
f93fca70
JB
2446}
2447
2448/* Create a new value of type TYPE from the contents of OBJ starting
2449 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2450 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2451 assigning through the result will set the field fetched from.
2452 VALADDR is ignored unless OBJ is NULL, in which case,
2453 VALADDR+OFFSET must address the start of storage containing the
2454 packed value. The value returned in this case is never an lval.
2455 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2456
2457struct value *
2458ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2459 long offset, int bit_offset, int bit_size,
2460 struct type *type)
2461{
2462 struct value *v;
bfb1c796 2463 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2464 gdb_byte *unpacked;
220475ed 2465 const int is_scalar = is_scalar_type (type);
d5a22e77 2466 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2467 gdb::byte_vector staging;
f93fca70
JB
2468
2469 type = ada_check_typedef (type);
2470
d0a9e810 2471 if (obj == NULL)
bfb1c796 2472 src = valaddr + offset;
d0a9e810 2473 else
bfb1c796 2474 src = value_contents (obj) + offset;
d0a9e810
JB
2475
2476 if (is_dynamic_type (type))
2477 {
2478 /* The length of TYPE might by dynamic, so we need to resolve
2479 TYPE in order to know its actual size, which we then use
2480 to create the contents buffer of the value we return.
2481 The difficulty is that the data containing our object is
2482 packed, and therefore maybe not at a byte boundary. So, what
2483 we do, is unpack the data into a byte-aligned buffer, and then
2484 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2485 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2486 staging.resize (staging_len);
d0a9e810
JB
2487
2488 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2489 staging.data (), staging.size (),
d0a9e810
JB
2490 is_big_endian, has_negatives (type),
2491 is_scalar);
b249d2c2 2492 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2493 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2494 {
2495 /* This happens when the length of the object is dynamic,
2496 and is actually smaller than the space reserved for it.
2497 For instance, in an array of variant records, the bit_size
2498 we're given is the array stride, which is constant and
2499 normally equal to the maximum size of its element.
2500 But, in reality, each element only actually spans a portion
2501 of that stride. */
2502 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2503 }
d0a9e810
JB
2504 }
2505
f93fca70
JB
2506 if (obj == NULL)
2507 {
2508 v = allocate_value (type);
bfb1c796 2509 src = valaddr + offset;
f93fca70
JB
2510 }
2511 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2512 {
0cafa88c 2513 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2514 gdb_byte *buf;
0cafa88c 2515
f93fca70 2516 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2517 buf = (gdb_byte *) alloca (src_len);
2518 read_memory (value_address (v), buf, src_len);
2519 src = buf;
f93fca70
JB
2520 }
2521 else
2522 {
2523 v = allocate_value (type);
bfb1c796 2524 src = value_contents (obj) + offset;
f93fca70
JB
2525 }
2526
2527 if (obj != NULL)
2528 {
2529 long new_offset = offset;
2530
2531 set_value_component_location (v, obj);
2532 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2533 set_value_bitsize (v, bit_size);
2534 if (value_bitpos (v) >= HOST_CHAR_BIT)
2535 {
2536 ++new_offset;
2537 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2538 }
2539 set_value_offset (v, new_offset);
2540
2541 /* Also set the parent value. This is needed when trying to
2542 assign a new value (in inferior memory). */
2543 set_value_parent (v, obj);
2544 }
2545 else
2546 set_value_bitsize (v, bit_size);
bfb1c796 2547 unpacked = value_contents_writeable (v);
f93fca70
JB
2548
2549 if (bit_size == 0)
2550 {
2551 memset (unpacked, 0, TYPE_LENGTH (type));
2552 return v;
2553 }
2554
d5722aa2 2555 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2556 {
d0a9e810
JB
2557 /* Small short-cut: If we've unpacked the data into a buffer
2558 of the same size as TYPE's length, then we can reuse that,
2559 instead of doing the unpacking again. */
d5722aa2 2560 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2561 }
d0a9e810
JB
2562 else
2563 ada_unpack_from_contents (src, bit_offset, bit_size,
2564 unpacked, TYPE_LENGTH (type),
2565 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2566
14f9c5c9
AS
2567 return v;
2568}
d2e4a39e 2569
14f9c5c9
AS
2570/* Store the contents of FROMVAL into the location of TOVAL.
2571 Return a new value with the location of TOVAL and contents of
2572 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2573 floating-point or non-scalar types. */
14f9c5c9 2574
d2e4a39e
AS
2575static struct value *
2576ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2577{
df407dfe
AC
2578 struct type *type = value_type (toval);
2579 int bits = value_bitsize (toval);
14f9c5c9 2580
52ce6436
PH
2581 toval = ada_coerce_ref (toval);
2582 fromval = ada_coerce_ref (fromval);
2583
2584 if (ada_is_direct_array_type (value_type (toval)))
2585 toval = ada_coerce_to_simple_array (toval);
2586 if (ada_is_direct_array_type (value_type (fromval)))
2587 fromval = ada_coerce_to_simple_array (fromval);
2588
88e3b34b 2589 if (!deprecated_value_modifiable (toval))
323e0a4a 2590 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2591
d2e4a39e 2592 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2593 && bits > 0
78134374
SM
2594 && (type->code () == TYPE_CODE_FLT
2595 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2596 {
df407dfe
AC
2597 int len = (value_bitpos (toval)
2598 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2599 int from_size;
224c3ddb 2600 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2601 struct value *val;
42ae5230 2602 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2603
78134374 2604 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2605 fromval = value_cast (type, fromval);
14f9c5c9 2606
52ce6436 2607 read_memory (to_addr, buffer, len);
aced2898
PH
2608 from_size = value_bitsize (fromval);
2609 if (from_size == 0)
2610 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2611
d5a22e77 2612 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2613 ULONGEST from_offset = 0;
2614 if (is_big_endian && is_scalar_type (value_type (fromval)))
2615 from_offset = from_size - bits;
2616 copy_bitwise (buffer, value_bitpos (toval),
2617 value_contents (fromval), from_offset,
2618 bits, is_big_endian);
972daa01 2619 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2620
14f9c5c9 2621 val = value_copy (toval);
0fd88904 2622 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2623 TYPE_LENGTH (type));
04624583 2624 deprecated_set_value_type (val, type);
d2e4a39e 2625
14f9c5c9
AS
2626 return val;
2627 }
2628
2629 return value_assign (toval, fromval);
2630}
2631
2632
7c512744
JB
2633/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2634 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2635 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2636 COMPONENT, and not the inferior's memory. The current contents
2637 of COMPONENT are ignored.
2638
2639 Although not part of the initial design, this function also works
2640 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2641 had a null address, and COMPONENT had an address which is equal to
2642 its offset inside CONTAINER. */
2643
52ce6436
PH
2644static void
2645value_assign_to_component (struct value *container, struct value *component,
2646 struct value *val)
2647{
2648 LONGEST offset_in_container =
42ae5230 2649 (LONGEST) (value_address (component) - value_address (container));
7c512744 2650 int bit_offset_in_container =
52ce6436
PH
2651 value_bitpos (component) - value_bitpos (container);
2652 int bits;
7c512744 2653
52ce6436
PH
2654 val = value_cast (value_type (component), val);
2655
2656 if (value_bitsize (component) == 0)
2657 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2658 else
2659 bits = value_bitsize (component);
2660
d5a22e77 2661 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2662 {
2663 int src_offset;
2664
2665 if (is_scalar_type (check_typedef (value_type (component))))
2666 src_offset
2667 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2668 else
2669 src_offset = 0;
a99bc3d2
JB
2670 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2671 value_bitpos (container) + bit_offset_in_container,
2672 value_contents (val), src_offset, bits, 1);
2a62dfa9 2673 }
52ce6436 2674 else
a99bc3d2
JB
2675 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2676 value_bitpos (container) + bit_offset_in_container,
2677 value_contents (val), 0, bits, 0);
7c512744
JB
2678}
2679
736ade86
XR
2680/* Determine if TYPE is an access to an unconstrained array. */
2681
d91e9ea8 2682bool
736ade86
XR
2683ada_is_access_to_unconstrained_array (struct type *type)
2684{
78134374 2685 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2686 && is_thick_pntr (ada_typedef_target_type (type)));
2687}
2688
4c4b4cd2
PH
2689/* The value of the element of array ARR at the ARITY indices given in IND.
2690 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2691 thereto. */
2692
d2e4a39e
AS
2693struct value *
2694ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2695{
2696 int k;
d2e4a39e
AS
2697 struct value *elt;
2698 struct type *elt_type;
14f9c5c9
AS
2699
2700 elt = ada_coerce_to_simple_array (arr);
2701
df407dfe 2702 elt_type = ada_check_typedef (value_type (elt));
78134374 2703 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2704 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2705 return value_subscript_packed (elt, arity, ind);
2706
2707 for (k = 0; k < arity; k += 1)
2708 {
b9c50e9a
XR
2709 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2710
78134374 2711 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2712 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2713
2497b498 2714 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2715
2716 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2717 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2718 {
2719 /* The element is a typedef to an unconstrained array,
2720 except that the value_subscript call stripped the
2721 typedef layer. The typedef layer is GNAT's way to
2722 specify that the element is, at the source level, an
2723 access to the unconstrained array, rather than the
2724 unconstrained array. So, we need to restore that
2725 typedef layer, which we can do by forcing the element's
2726 type back to its original type. Otherwise, the returned
2727 value is going to be printed as the array, rather
2728 than as an access. Another symptom of the same issue
2729 would be that an expression trying to dereference the
2730 element would also be improperly rejected. */
2731 deprecated_set_value_type (elt, saved_elt_type);
2732 }
2733
2734 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2735 }
b9c50e9a 2736
14f9c5c9
AS
2737 return elt;
2738}
2739
deede10c
JB
2740/* Assuming ARR is a pointer to a GDB array, the value of the element
2741 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2742 Does not read the entire array into memory.
2743
2744 Note: Unlike what one would expect, this function is used instead of
2745 ada_value_subscript for basically all non-packed array types. The reason
2746 for this is that a side effect of doing our own pointer arithmetics instead
2747 of relying on value_subscript is that there is no implicit typedef peeling.
2748 This is important for arrays of array accesses, where it allows us to
2749 preserve the fact that the array's element is an array access, where the
2750 access part os encoded in a typedef layer. */
14f9c5c9 2751
2c0b251b 2752static struct value *
deede10c 2753ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2754{
2755 int k;
919e6dbe 2756 struct value *array_ind = ada_value_ind (arr);
deede10c 2757 struct type *type
919e6dbe
PMR
2758 = check_typedef (value_enclosing_type (array_ind));
2759
78134374 2760 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2761 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2762 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2763
2764 for (k = 0; k < arity; k += 1)
2765 {
2766 LONGEST lwb, upb;
14f9c5c9 2767
78134374 2768 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2769 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2770 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2771 value_copy (arr));
14f9c5c9 2772 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
53a47a3e 2773 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2774 type = TYPE_TARGET_TYPE (type);
2775 }
2776
2777 return value_ind (arr);
2778}
2779
0b5d8877 2780/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2781 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2782 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2783 this array is LOW, as per Ada rules. */
0b5d8877 2784static struct value *
f5938064
JG
2785ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2786 int low, int high)
0b5d8877 2787{
b0dd7688 2788 struct type *type0 = ada_check_typedef (type);
aa715135 2789 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2790 struct type *index_type
aa715135 2791 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2792 struct type *slice_type = create_array_type_with_stride
2793 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2794 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2795 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2796 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2797 LONGEST base_low_pos, low_pos;
2798 CORE_ADDR base;
2799
2800 if (!discrete_position (base_index_type, low, &low_pos)
2801 || !discrete_position (base_index_type, base_low, &base_low_pos))
2802 {
2803 warning (_("unable to get positions in slice, use bounds instead"));
2804 low_pos = low;
2805 base_low_pos = base_low;
2806 }
5b4ee69b 2807
aa715135
JG
2808 base = value_as_address (array_ptr)
2809 + ((low_pos - base_low_pos)
2810 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2811 return value_at_lazy (slice_type, base);
0b5d8877
PH
2812}
2813
2814
2815static struct value *
2816ada_value_slice (struct value *array, int low, int high)
2817{
b0dd7688 2818 struct type *type = ada_check_typedef (value_type (array));
aa715135 2819 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2820 struct type *index_type
2821 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2822 struct type *slice_type = create_array_type_with_stride
2823 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2824 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2825 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2826 LONGEST low_pos, high_pos;
5b4ee69b 2827
aa715135
JG
2828 if (!discrete_position (base_index_type, low, &low_pos)
2829 || !discrete_position (base_index_type, high, &high_pos))
2830 {
2831 warning (_("unable to get positions in slice, use bounds instead"));
2832 low_pos = low;
2833 high_pos = high;
2834 }
2835
2836 return value_cast (slice_type,
2837 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2838}
2839
14f9c5c9
AS
2840/* If type is a record type in the form of a standard GNAT array
2841 descriptor, returns the number of dimensions for type. If arr is a
2842 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2843 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2844
2845int
d2e4a39e 2846ada_array_arity (struct type *type)
14f9c5c9
AS
2847{
2848 int arity;
2849
2850 if (type == NULL)
2851 return 0;
2852
2853 type = desc_base_type (type);
2854
2855 arity = 0;
78134374 2856 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2857 return desc_arity (desc_bounds_type (type));
d2e4a39e 2858 else
78134374 2859 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2860 {
4c4b4cd2 2861 arity += 1;
61ee279c 2862 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2863 }
d2e4a39e 2864
14f9c5c9
AS
2865 return arity;
2866}
2867
2868/* If TYPE is a record type in the form of a standard GNAT array
2869 descriptor or a simple array type, returns the element type for
2870 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2871 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2872
d2e4a39e
AS
2873struct type *
2874ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2875{
2876 type = desc_base_type (type);
2877
78134374 2878 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2879 {
2880 int k;
d2e4a39e 2881 struct type *p_array_type;
14f9c5c9 2882
556bdfd4 2883 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2884
2885 k = ada_array_arity (type);
2886 if (k == 0)
4c4b4cd2 2887 return NULL;
d2e4a39e 2888
4c4b4cd2 2889 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2890 if (nindices >= 0 && k > nindices)
4c4b4cd2 2891 k = nindices;
d2e4a39e 2892 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2893 {
61ee279c 2894 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2895 k -= 1;
2896 }
14f9c5c9
AS
2897 return p_array_type;
2898 }
78134374 2899 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2900 {
78134374 2901 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2902 {
2903 type = TYPE_TARGET_TYPE (type);
2904 nindices -= 1;
2905 }
14f9c5c9
AS
2906 return type;
2907 }
2908
2909 return NULL;
2910}
2911
4c4b4cd2 2912/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2913 Does not examine memory. Throws an error if N is invalid or TYPE
2914 is not an array type. NAME is the name of the Ada attribute being
2915 evaluated ('range, 'first, 'last, or 'length); it is used in building
2916 the error message. */
14f9c5c9 2917
1eea4ebd
UW
2918static struct type *
2919ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2920{
4c4b4cd2
PH
2921 struct type *result_type;
2922
14f9c5c9
AS
2923 type = desc_base_type (type);
2924
1eea4ebd
UW
2925 if (n < 0 || n > ada_array_arity (type))
2926 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2927
4c4b4cd2 2928 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2929 {
2930 int i;
2931
2932 for (i = 1; i < n; i += 1)
4c4b4cd2 2933 type = TYPE_TARGET_TYPE (type);
262452ec 2934 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2935 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2936 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2937 perhaps stabsread.c would make more sense. */
78134374 2938 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2939 result_type = NULL;
14f9c5c9 2940 }
d2e4a39e 2941 else
1eea4ebd
UW
2942 {
2943 result_type = desc_index_type (desc_bounds_type (type), n);
2944 if (result_type == NULL)
2945 error (_("attempt to take bound of something that is not an array"));
2946 }
2947
2948 return result_type;
14f9c5c9
AS
2949}
2950
2951/* Given that arr is an array type, returns the lower bound of the
2952 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2953 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2954 array-descriptor type. It works for other arrays with bounds supplied
2955 by run-time quantities other than discriminants. */
14f9c5c9 2956
abb68b3e 2957static LONGEST
fb5e3d5c 2958ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2959{
8a48ac95 2960 struct type *type, *index_type_desc, *index_type;
1ce677a4 2961 int i;
262452ec
JK
2962
2963 gdb_assert (which == 0 || which == 1);
14f9c5c9 2964
ad82864c
JB
2965 if (ada_is_constrained_packed_array_type (arr_type))
2966 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2967
4c4b4cd2 2968 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2969 return (LONGEST) - which;
14f9c5c9 2970
78134374 2971 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2972 type = TYPE_TARGET_TYPE (arr_type);
2973 else
2974 type = arr_type;
2975
bafffb51
JB
2976 if (TYPE_FIXED_INSTANCE (type))
2977 {
2978 /* The array has already been fixed, so we do not need to
2979 check the parallel ___XA type again. That encoding has
2980 already been applied, so ignore it now. */
2981 index_type_desc = NULL;
2982 }
2983 else
2984 {
2985 index_type_desc = ada_find_parallel_type (type, "___XA");
2986 ada_fixup_array_indexes_type (index_type_desc);
2987 }
2988
262452ec 2989 if (index_type_desc != NULL)
28c85d6c
JB
2990 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2991 NULL);
262452ec 2992 else
8a48ac95
JB
2993 {
2994 struct type *elt_type = check_typedef (type);
2995
2996 for (i = 1; i < n; i++)
2997 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2998
2999 index_type = TYPE_INDEX_TYPE (elt_type);
3000 }
262452ec 3001
43bbcdc2
PH
3002 return
3003 (LONGEST) (which == 0
3004 ? ada_discrete_type_low_bound (index_type)
3005 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3006}
3007
3008/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3009 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3010 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3011 supplied by run-time quantities other than discriminants. */
14f9c5c9 3012
1eea4ebd 3013static LONGEST
4dc81987 3014ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3015{
eb479039
JB
3016 struct type *arr_type;
3017
78134374 3018 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3019 arr = value_ind (arr);
3020 arr_type = value_enclosing_type (arr);
14f9c5c9 3021
ad82864c
JB
3022 if (ada_is_constrained_packed_array_type (arr_type))
3023 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3024 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3025 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3026 else
1eea4ebd 3027 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3028}
3029
3030/* Given that arr is an array value, returns the length of the
3031 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3032 supplied by run-time quantities other than discriminants.
3033 Does not work for arrays indexed by enumeration types with representation
3034 clauses at the moment. */
14f9c5c9 3035
1eea4ebd 3036static LONGEST
d2e4a39e 3037ada_array_length (struct value *arr, int n)
14f9c5c9 3038{
aa715135
JG
3039 struct type *arr_type, *index_type;
3040 int low, high;
eb479039 3041
78134374 3042 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3043 arr = value_ind (arr);
3044 arr_type = value_enclosing_type (arr);
14f9c5c9 3045
ad82864c
JB
3046 if (ada_is_constrained_packed_array_type (arr_type))
3047 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3048
4c4b4cd2 3049 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3050 {
3051 low = ada_array_bound_from_type (arr_type, n, 0);
3052 high = ada_array_bound_from_type (arr_type, n, 1);
3053 }
14f9c5c9 3054 else
aa715135
JG
3055 {
3056 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3057 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3058 }
3059
f168693b 3060 arr_type = check_typedef (arr_type);
7150d33c 3061 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3062 if (index_type != NULL)
3063 {
3064 struct type *base_type;
78134374 3065 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3066 base_type = TYPE_TARGET_TYPE (index_type);
3067 else
3068 base_type = index_type;
3069
3070 low = pos_atr (value_from_longest (base_type, low));
3071 high = pos_atr (value_from_longest (base_type, high));
3072 }
3073 return high - low + 1;
4c4b4cd2
PH
3074}
3075
bff8c71f
TT
3076/* An array whose type is that of ARR_TYPE (an array type), with
3077 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3078 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3079
3080static struct value *
bff8c71f 3081empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3082{
b0dd7688 3083 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3084 struct type *index_type
3085 = create_static_range_type
bff8c71f
TT
3086 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3087 high < low ? low - 1 : high);
b0dd7688 3088 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3089
0b5d8877 3090 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3091}
14f9c5c9 3092\f
d2e4a39e 3093
4c4b4cd2 3094 /* Name resolution */
14f9c5c9 3095
4c4b4cd2
PH
3096/* The "decoded" name for the user-definable Ada operator corresponding
3097 to OP. */
14f9c5c9 3098
d2e4a39e 3099static const char *
4c4b4cd2 3100ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3101{
3102 int i;
3103
4c4b4cd2 3104 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3105 {
3106 if (ada_opname_table[i].op == op)
4c4b4cd2 3107 return ada_opname_table[i].decoded;
14f9c5c9 3108 }
323e0a4a 3109 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3110}
3111
de93309a
SM
3112/* Returns true (non-zero) iff decoded name N0 should appear before N1
3113 in a listing of choices during disambiguation (see sort_choices, below).
3114 The idea is that overloadings of a subprogram name from the
3115 same package should sort in their source order. We settle for ordering
3116 such symbols by their trailing number (__N or $N). */
14f9c5c9 3117
de93309a
SM
3118static int
3119encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3120{
de93309a
SM
3121 if (N1 == NULL)
3122 return 0;
3123 else if (N0 == NULL)
3124 return 1;
3125 else
3126 {
3127 int k0, k1;
30b15541 3128
de93309a
SM
3129 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3130 ;
3131 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3132 ;
3133 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3134 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3135 {
3136 int n0, n1;
30b15541 3137
de93309a
SM
3138 n0 = k0;
3139 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3140 n0 -= 1;
3141 n1 = k1;
3142 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3143 n1 -= 1;
3144 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3145 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3146 }
3147 return (strcmp (N0, N1) < 0);
3148 }
14f9c5c9
AS
3149}
3150
de93309a
SM
3151/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3152 encoded names. */
14f9c5c9 3153
de93309a
SM
3154static void
3155sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3156{
14f9c5c9 3157 int i;
14f9c5c9 3158
de93309a 3159 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3160 {
de93309a
SM
3161 struct block_symbol sym = syms[i];
3162 int j;
3163
3164 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3165 {
987012b8
CB
3166 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3167 sym.symbol->linkage_name ()))
de93309a
SM
3168 break;
3169 syms[j + 1] = syms[j];
4c4b4cd2 3170 }
de93309a
SM
3171 syms[j + 1] = sym;
3172 }
3173}
14f9c5c9 3174
de93309a
SM
3175/* Whether GDB should display formals and return types for functions in the
3176 overloads selection menu. */
3177static bool print_signatures = true;
4c4b4cd2 3178
de93309a
SM
3179/* Print the signature for SYM on STREAM according to the FLAGS options. For
3180 all but functions, the signature is just the name of the symbol. For
3181 functions, this is the name of the function, the list of types for formals
3182 and the return type (if any). */
4c4b4cd2 3183
de93309a
SM
3184static void
3185ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3186 const struct type_print_options *flags)
3187{
3188 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3189
987012b8 3190 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3191 if (!print_signatures
3192 || type == NULL
78134374 3193 || type->code () != TYPE_CODE_FUNC)
de93309a 3194 return;
4c4b4cd2 3195
1f704f76 3196 if (type->num_fields () > 0)
de93309a
SM
3197 {
3198 int i;
14f9c5c9 3199
de93309a 3200 fprintf_filtered (stream, " (");
1f704f76 3201 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3202 {
3203 if (i > 0)
3204 fprintf_filtered (stream, "; ");
3205 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3206 flags);
3207 }
3208 fprintf_filtered (stream, ")");
3209 }
3210 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3211 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3212 {
3213 fprintf_filtered (stream, " return ");
3214 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3215 }
3216}
14f9c5c9 3217
de93309a
SM
3218/* Read and validate a set of numeric choices from the user in the
3219 range 0 .. N_CHOICES-1. Place the results in increasing
3220 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3221
de93309a
SM
3222 The user types choices as a sequence of numbers on one line
3223 separated by blanks, encoding them as follows:
14f9c5c9 3224
de93309a
SM
3225 + A choice of 0 means to cancel the selection, throwing an error.
3226 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3227 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3228
de93309a 3229 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3230
de93309a
SM
3231 ANNOTATION_SUFFIX, if present, is used to annotate the input
3232 prompts (for use with the -f switch). */
14f9c5c9 3233
de93309a
SM
3234static int
3235get_selections (int *choices, int n_choices, int max_results,
3236 int is_all_choice, const char *annotation_suffix)
3237{
992a7040 3238 const char *args;
de93309a
SM
3239 const char *prompt;
3240 int n_chosen;
3241 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3242
de93309a
SM
3243 prompt = getenv ("PS2");
3244 if (prompt == NULL)
3245 prompt = "> ";
4c4b4cd2 3246
de93309a 3247 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3248
de93309a
SM
3249 if (args == NULL)
3250 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3251
de93309a 3252 n_chosen = 0;
4c4b4cd2 3253
de93309a
SM
3254 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3255 order, as given in args. Choices are validated. */
3256 while (1)
14f9c5c9 3257 {
de93309a
SM
3258 char *args2;
3259 int choice, j;
76a01679 3260
de93309a
SM
3261 args = skip_spaces (args);
3262 if (*args == '\0' && n_chosen == 0)
3263 error_no_arg (_("one or more choice numbers"));
3264 else if (*args == '\0')
3265 break;
76a01679 3266
de93309a
SM
3267 choice = strtol (args, &args2, 10);
3268 if (args == args2 || choice < 0
3269 || choice > n_choices + first_choice - 1)
3270 error (_("Argument must be choice number"));
3271 args = args2;
76a01679 3272
de93309a
SM
3273 if (choice == 0)
3274 error (_("cancelled"));
76a01679 3275
de93309a
SM
3276 if (choice < first_choice)
3277 {
3278 n_chosen = n_choices;
3279 for (j = 0; j < n_choices; j += 1)
3280 choices[j] = j;
3281 break;
76a01679 3282 }
de93309a 3283 choice -= first_choice;
76a01679 3284
de93309a 3285 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3286 {
76a01679 3287 }
4c4b4cd2 3288
de93309a 3289 if (j < 0 || choice != choices[j])
4c4b4cd2 3290 {
de93309a 3291 int k;
4c4b4cd2 3292
de93309a
SM
3293 for (k = n_chosen - 1; k > j; k -= 1)
3294 choices[k + 1] = choices[k];
3295 choices[j + 1] = choice;
3296 n_chosen += 1;
4c4b4cd2 3297 }
14f9c5c9
AS
3298 }
3299
de93309a
SM
3300 if (n_chosen > max_results)
3301 error (_("Select no more than %d of the above"), max_results);
3302
3303 return n_chosen;
14f9c5c9
AS
3304}
3305
de93309a
SM
3306/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3307 by asking the user (if necessary), returning the number selected,
3308 and setting the first elements of SYMS items. Error if no symbols
3309 selected. */
3310
3311/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3312 to be re-integrated one of these days. */
14f9c5c9
AS
3313
3314static int
de93309a 3315user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3316{
de93309a
SM
3317 int i;
3318 int *chosen = XALLOCAVEC (int , nsyms);
3319 int n_chosen;
3320 int first_choice = (max_results == 1) ? 1 : 2;
3321 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3322
de93309a
SM
3323 if (max_results < 1)
3324 error (_("Request to select 0 symbols!"));
3325 if (nsyms <= 1)
3326 return nsyms;
14f9c5c9 3327
de93309a
SM
3328 if (select_mode == multiple_symbols_cancel)
3329 error (_("\
3330canceled because the command is ambiguous\n\
3331See set/show multiple-symbol."));
14f9c5c9 3332
de93309a
SM
3333 /* If select_mode is "all", then return all possible symbols.
3334 Only do that if more than one symbol can be selected, of course.
3335 Otherwise, display the menu as usual. */
3336 if (select_mode == multiple_symbols_all && max_results > 1)
3337 return nsyms;
14f9c5c9 3338
de93309a
SM
3339 printf_filtered (_("[0] cancel\n"));
3340 if (max_results > 1)
3341 printf_filtered (_("[1] all\n"));
14f9c5c9 3342
de93309a 3343 sort_choices (syms, nsyms);
14f9c5c9 3344
de93309a
SM
3345 for (i = 0; i < nsyms; i += 1)
3346 {
3347 if (syms[i].symbol == NULL)
3348 continue;
14f9c5c9 3349
de93309a
SM
3350 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3351 {
3352 struct symtab_and_line sal =
3353 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3354
de93309a
SM
3355 printf_filtered ("[%d] ", i + first_choice);
3356 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3357 &type_print_raw_options);
3358 if (sal.symtab == NULL)
3359 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3360 metadata_style.style ().ptr (), nullptr, sal.line);
3361 else
3362 printf_filtered
3363 (_(" at %ps:%d\n"),
3364 styled_string (file_name_style.style (),
3365 symtab_to_filename_for_display (sal.symtab)),
3366 sal.line);
3367 continue;
3368 }
76a01679
JB
3369 else
3370 {
de93309a
SM
3371 int is_enumeral =
3372 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3373 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3374 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3375 struct symtab *symtab = NULL;
4c4b4cd2 3376
de93309a
SM
3377 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3378 symtab = symbol_symtab (syms[i].symbol);
3379
3380 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3381 {
3382 printf_filtered ("[%d] ", i + first_choice);
3383 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3384 &type_print_raw_options);
3385 printf_filtered (_(" at %s:%d\n"),
3386 symtab_to_filename_for_display (symtab),
3387 SYMBOL_LINE (syms[i].symbol));
3388 }
3389 else if (is_enumeral
7d93a1e0 3390 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3391 {
3392 printf_filtered (("[%d] "), i + first_choice);
3393 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3394 gdb_stdout, -1, 0, &type_print_raw_options);
3395 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3396 syms[i].symbol->print_name ());
de93309a
SM
3397 }
3398 else
3399 {
3400 printf_filtered ("[%d] ", i + first_choice);
3401 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3402 &type_print_raw_options);
3403
3404 if (symtab != NULL)
3405 printf_filtered (is_enumeral
3406 ? _(" in %s (enumeral)\n")
3407 : _(" at %s:?\n"),
3408 symtab_to_filename_for_display (symtab));
3409 else
3410 printf_filtered (is_enumeral
3411 ? _(" (enumeral)\n")
3412 : _(" at ?\n"));
3413 }
76a01679 3414 }
14f9c5c9 3415 }
14f9c5c9 3416
de93309a
SM
3417 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3418 "overload-choice");
14f9c5c9 3419
de93309a
SM
3420 for (i = 0; i < n_chosen; i += 1)
3421 syms[i] = syms[chosen[i]];
14f9c5c9 3422
de93309a
SM
3423 return n_chosen;
3424}
14f9c5c9 3425
de93309a
SM
3426/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3427 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3428 undefined namespace) and converts operators that are
3429 user-defined into appropriate function calls. If CONTEXT_TYPE is
3430 non-null, it provides a preferred result type [at the moment, only
3431 type void has any effect---causing procedures to be preferred over
3432 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3433 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3434
de93309a
SM
3435static void
3436resolve (expression_up *expp, int void_context_p, int parse_completion,
3437 innermost_block_tracker *tracker)
3438{
3439 struct type *context_type = NULL;
3440 int pc = 0;
14f9c5c9 3441
de93309a
SM
3442 if (void_context_p)
3443 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3444
de93309a
SM
3445 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3446}
4c4b4cd2 3447
de93309a
SM
3448/* Resolve the operator of the subexpression beginning at
3449 position *POS of *EXPP. "Resolving" consists of replacing
3450 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3451 with their resolutions, replacing built-in operators with
3452 function calls to user-defined operators, where appropriate, and,
3453 when DEPROCEDURE_P is non-zero, converting function-valued variables
3454 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3455 are as in ada_resolve, above. */
14f9c5c9 3456
de93309a
SM
3457static struct value *
3458resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3459 struct type *context_type, int parse_completion,
3460 innermost_block_tracker *tracker)
14f9c5c9 3461{
de93309a
SM
3462 int pc = *pos;
3463 int i;
3464 struct expression *exp; /* Convenience: == *expp. */
3465 enum exp_opcode op = (*expp)->elts[pc].opcode;
3466 struct value **argvec; /* Vector of operand types (alloca'ed). */
3467 int nargs; /* Number of operands. */
3468 int oplen;
14f9c5c9 3469
de93309a
SM
3470 argvec = NULL;
3471 nargs = 0;
3472 exp = expp->get ();
4c4b4cd2 3473
de93309a
SM
3474 /* Pass one: resolve operands, saving their types and updating *pos,
3475 if needed. */
3476 switch (op)
3477 {
3478 case OP_FUNCALL:
3479 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3480 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3481 *pos += 7;
3482 else
3483 {
3484 *pos += 3;
3485 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3486 }
de93309a
SM
3487 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3488 break;
14f9c5c9 3489
de93309a
SM
3490 case UNOP_ADDR:
3491 *pos += 1;
3492 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3493 break;
3494
3495 case UNOP_QUAL:
3496 *pos += 3;
3497 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3498 parse_completion, tracker);
3499 break;
3500
3501 case OP_ATR_MODULUS:
3502 case OP_ATR_SIZE:
3503 case OP_ATR_TAG:
3504 case OP_ATR_FIRST:
3505 case OP_ATR_LAST:
3506 case OP_ATR_LENGTH:
3507 case OP_ATR_POS:
3508 case OP_ATR_VAL:
3509 case OP_ATR_MIN:
3510 case OP_ATR_MAX:
3511 case TERNOP_IN_RANGE:
3512 case BINOP_IN_BOUNDS:
3513 case UNOP_IN_RANGE:
3514 case OP_AGGREGATE:
3515 case OP_OTHERS:
3516 case OP_CHOICES:
3517 case OP_POSITIONAL:
3518 case OP_DISCRETE_RANGE:
3519 case OP_NAME:
3520 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3521 *pos += oplen;
3522 break;
3523
3524 case BINOP_ASSIGN:
3525 {
3526 struct value *arg1;
3527
3528 *pos += 1;
3529 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3530 if (arg1 == NULL)
3531 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3532 else
3533 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3534 tracker);
3535 break;
3536 }
3537
3538 case UNOP_CAST:
3539 *pos += 3;
3540 nargs = 1;
3541 break;
3542
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_EXP:
3550 case BINOP_CONCAT:
3551 case BINOP_LOGICAL_AND:
3552 case BINOP_LOGICAL_OR:
3553 case BINOP_BITWISE_AND:
3554 case BINOP_BITWISE_IOR:
3555 case BINOP_BITWISE_XOR:
3556
3557 case BINOP_EQUAL:
3558 case BINOP_NOTEQUAL:
3559 case BINOP_LESS:
3560 case BINOP_GTR:
3561 case BINOP_LEQ:
3562 case BINOP_GEQ:
3563
3564 case BINOP_REPEAT:
3565 case BINOP_SUBSCRIPT:
3566 case BINOP_COMMA:
3567 *pos += 1;
3568 nargs = 2;
3569 break;
3570
3571 case UNOP_NEG:
3572 case UNOP_PLUS:
3573 case UNOP_LOGICAL_NOT:
3574 case UNOP_ABS:
3575 case UNOP_IND:
3576 *pos += 1;
3577 nargs = 1;
3578 break;
3579
3580 case OP_LONG:
3581 case OP_FLOAT:
3582 case OP_VAR_VALUE:
3583 case OP_VAR_MSYM_VALUE:
3584 *pos += 4;
3585 break;
3586
3587 case OP_TYPE:
3588 case OP_BOOL:
3589 case OP_LAST:
3590 case OP_INTERNALVAR:
3591 *pos += 3;
3592 break;
3593
3594 case UNOP_MEMVAL:
3595 *pos += 3;
3596 nargs = 1;
3597 break;
3598
3599 case OP_REGISTER:
3600 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3601 break;
3602
3603 case STRUCTOP_STRUCT:
3604 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3605 nargs = 1;
3606 break;
3607
3608 case TERNOP_SLICE:
3609 *pos += 1;
3610 nargs = 3;
3611 break;
3612
3613 case OP_STRING:
3614 break;
3615
3616 default:
3617 error (_("Unexpected operator during name resolution"));
14f9c5c9 3618 }
14f9c5c9 3619
de93309a
SM
3620 argvec = XALLOCAVEC (struct value *, nargs + 1);
3621 for (i = 0; i < nargs; i += 1)
3622 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3623 tracker);
3624 argvec[i] = NULL;
3625 exp = expp->get ();
4c4b4cd2 3626
de93309a
SM
3627 /* Pass two: perform any resolution on principal operator. */
3628 switch (op)
14f9c5c9 3629 {
de93309a
SM
3630 default:
3631 break;
5b4ee69b 3632
de93309a
SM
3633 case OP_VAR_VALUE:
3634 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3635 {
de93309a
SM
3636 std::vector<struct block_symbol> candidates;
3637 int n_candidates;
5b4ee69b 3638
de93309a 3639 n_candidates =
987012b8 3640 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3641 exp->elts[pc + 1].block, VAR_DOMAIN,
3642 &candidates);
d2e4a39e 3643
de93309a
SM
3644 if (n_candidates > 1)
3645 {
3646 /* Types tend to get re-introduced locally, so if there
3647 are any local symbols that are not types, first filter
3648 out all types. */
3649 int j;
3650 for (j = 0; j < n_candidates; j += 1)
3651 switch (SYMBOL_CLASS (candidates[j].symbol))
3652 {
3653 case LOC_REGISTER:
3654 case LOC_ARG:
3655 case LOC_REF_ARG:
3656 case LOC_REGPARM_ADDR:
3657 case LOC_LOCAL:
3658 case LOC_COMPUTED:
3659 goto FoundNonType;
3660 default:
3661 break;
3662 }
3663 FoundNonType:
3664 if (j < n_candidates)
3665 {
3666 j = 0;
3667 while (j < n_candidates)
3668 {
3669 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3670 {
3671 candidates[j] = candidates[n_candidates - 1];
3672 n_candidates -= 1;
3673 }
3674 else
3675 j += 1;
3676 }
3677 }
3678 }
4c4b4cd2 3679
de93309a
SM
3680 if (n_candidates == 0)
3681 error (_("No definition found for %s"),
987012b8 3682 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3683 else if (n_candidates == 1)
3684 i = 0;
3685 else if (deprocedure_p
3686 && !is_nonfunction (candidates.data (), n_candidates))
3687 {
3688 i = ada_resolve_function
3689 (candidates.data (), n_candidates, NULL, 0,
987012b8 3690 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3691 context_type, parse_completion);
3692 if (i < 0)
3693 error (_("Could not find a match for %s"),
987012b8 3694 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3695 }
3696 else
3697 {
3698 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3699 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3700 user_select_syms (candidates.data (), n_candidates, 1);
3701 i = 0;
3702 }
5b4ee69b 3703
de93309a
SM
3704 exp->elts[pc + 1].block = candidates[i].block;
3705 exp->elts[pc + 2].symbol = candidates[i].symbol;
3706 tracker->update (candidates[i]);
3707 }
14f9c5c9 3708
de93309a 3709 if (deprocedure_p
78134374 3710 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3711 == TYPE_CODE_FUNC))
4c4b4cd2 3712 {
de93309a
SM
3713 replace_operator_with_call (expp, pc, 0, 4,
3714 exp->elts[pc + 2].symbol,
3715 exp->elts[pc + 1].block);
3716 exp = expp->get ();
4c4b4cd2 3717 }
de93309a
SM
3718 break;
3719
3720 case OP_FUNCALL:
3721 {
3722 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3723 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3724 {
3725 std::vector<struct block_symbol> candidates;
3726 int n_candidates;
3727
3728 n_candidates =
987012b8 3729 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3730 exp->elts[pc + 4].block, VAR_DOMAIN,
3731 &candidates);
14f9c5c9 3732
de93309a
SM
3733 if (n_candidates == 1)
3734 i = 0;
3735 else
3736 {
3737 i = ada_resolve_function
3738 (candidates.data (), n_candidates,
3739 argvec, nargs,
987012b8 3740 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3741 context_type, parse_completion);
3742 if (i < 0)
3743 error (_("Could not find a match for %s"),
987012b8 3744 exp->elts[pc + 5].symbol->print_name ());
de93309a 3745 }
d72413e6 3746
de93309a
SM
3747 exp->elts[pc + 4].block = candidates[i].block;
3748 exp->elts[pc + 5].symbol = candidates[i].symbol;
3749 tracker->update (candidates[i]);
3750 }
3751 }
3752 break;
3753 case BINOP_ADD:
3754 case BINOP_SUB:
3755 case BINOP_MUL:
3756 case BINOP_DIV:
3757 case BINOP_REM:
3758 case BINOP_MOD:
3759 case BINOP_CONCAT:
3760 case BINOP_BITWISE_AND:
3761 case BINOP_BITWISE_IOR:
3762 case BINOP_BITWISE_XOR:
3763 case BINOP_EQUAL:
3764 case BINOP_NOTEQUAL:
3765 case BINOP_LESS:
3766 case BINOP_GTR:
3767 case BINOP_LEQ:
3768 case BINOP_GEQ:
3769 case BINOP_EXP:
3770 case UNOP_NEG:
3771 case UNOP_PLUS:
3772 case UNOP_LOGICAL_NOT:
3773 case UNOP_ABS:
3774 if (possible_user_operator_p (op, argvec))
3775 {
3776 std::vector<struct block_symbol> candidates;
3777 int n_candidates;
d72413e6 3778
de93309a
SM
3779 n_candidates =
3780 ada_lookup_symbol_list (ada_decoded_op_name (op),
3781 NULL, VAR_DOMAIN,
3782 &candidates);
d72413e6 3783
de93309a
SM
3784 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3785 nargs, ada_decoded_op_name (op), NULL,
3786 parse_completion);
3787 if (i < 0)
3788 break;
d72413e6 3789
de93309a
SM
3790 replace_operator_with_call (expp, pc, nargs, 1,
3791 candidates[i].symbol,
3792 candidates[i].block);
3793 exp = expp->get ();
3794 }
3795 break;
d72413e6 3796
de93309a
SM
3797 case OP_TYPE:
3798 case OP_REGISTER:
3799 return NULL;
d72413e6 3800 }
d72413e6 3801
de93309a
SM
3802 *pos = pc;
3803 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3804 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3805 exp->elts[pc + 1].objfile,
3806 exp->elts[pc + 2].msymbol);
3807 else
3808 return evaluate_subexp_type (exp, pos);
3809}
14f9c5c9 3810
de93309a
SM
3811/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3812 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3813 a non-pointer. */
3814/* The term "match" here is rather loose. The match is heuristic and
3815 liberal. */
14f9c5c9 3816
de93309a
SM
3817static int
3818ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3819{
de93309a
SM
3820 ftype = ada_check_typedef (ftype);
3821 atype = ada_check_typedef (atype);
14f9c5c9 3822
78134374 3823 if (ftype->code () == TYPE_CODE_REF)
de93309a 3824 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3825 if (atype->code () == TYPE_CODE_REF)
de93309a 3826 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3827
78134374 3828 switch (ftype->code ())
14f9c5c9 3829 {
de93309a 3830 default:
78134374 3831 return ftype->code () == atype->code ();
de93309a 3832 case TYPE_CODE_PTR:
78134374 3833 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3834 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3835 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3836 else
de93309a
SM
3837 return (may_deref
3838 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3839 case TYPE_CODE_INT:
3840 case TYPE_CODE_ENUM:
3841 case TYPE_CODE_RANGE:
78134374 3842 switch (atype->code ())
4c4b4cd2 3843 {
de93309a
SM
3844 case TYPE_CODE_INT:
3845 case TYPE_CODE_ENUM:
3846 case TYPE_CODE_RANGE:
3847 return 1;
3848 default:
3849 return 0;
4c4b4cd2 3850 }
d2e4a39e 3851
de93309a 3852 case TYPE_CODE_ARRAY:
78134374 3853 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3854 || ada_is_array_descriptor_type (atype));
14f9c5c9 3855
de93309a
SM
3856 case TYPE_CODE_STRUCT:
3857 if (ada_is_array_descriptor_type (ftype))
78134374 3858 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3859 || ada_is_array_descriptor_type (atype));
3860 else
78134374 3861 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3862 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3863
de93309a
SM
3864 case TYPE_CODE_UNION:
3865 case TYPE_CODE_FLT:
78134374 3866 return (atype->code () == ftype->code ());
de93309a 3867 }
14f9c5c9
AS
3868}
3869
de93309a
SM
3870/* Return non-zero if the formals of FUNC "sufficiently match" the
3871 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3872 may also be an enumeral, in which case it is treated as a 0-
3873 argument function. */
14f9c5c9 3874
de93309a
SM
3875static int
3876ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3877{
3878 int i;
3879 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3880
de93309a 3881 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3882 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3883 return (n_actuals == 0);
78134374 3884 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3885 return 0;
14f9c5c9 3886
1f704f76 3887 if (func_type->num_fields () != n_actuals)
de93309a 3888 return 0;
14f9c5c9 3889
de93309a
SM
3890 for (i = 0; i < n_actuals; i += 1)
3891 {
3892 if (actuals[i] == NULL)
3893 return 0;
3894 else
3895 {
3896 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3897 i));
3898 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3899
de93309a
SM
3900 if (!ada_type_match (ftype, atype, 1))
3901 return 0;
3902 }
3903 }
3904 return 1;
3905}
d2e4a39e 3906
de93309a
SM
3907/* False iff function type FUNC_TYPE definitely does not produce a value
3908 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3909 FUNC_TYPE is not a valid function type with a non-null return type
3910 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3911
de93309a
SM
3912static int
3913return_match (struct type *func_type, struct type *context_type)
3914{
3915 struct type *return_type;
d2e4a39e 3916
de93309a
SM
3917 if (func_type == NULL)
3918 return 1;
14f9c5c9 3919
78134374 3920 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3921 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3922 else
3923 return_type = get_base_type (func_type);
3924 if (return_type == NULL)
3925 return 1;
76a01679 3926
de93309a 3927 context_type = get_base_type (context_type);
14f9c5c9 3928
78134374 3929 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3930 return context_type == NULL || return_type == context_type;
3931 else if (context_type == NULL)
78134374 3932 return return_type->code () != TYPE_CODE_VOID;
de93309a 3933 else
78134374 3934 return return_type->code () == context_type->code ();
de93309a 3935}
14f9c5c9 3936
14f9c5c9 3937
de93309a
SM
3938/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3939 function (if any) that matches the types of the NARGS arguments in
3940 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3941 that returns that type, then eliminate matches that don't. If
3942 CONTEXT_TYPE is void and there is at least one match that does not
3943 return void, eliminate all matches that do.
14f9c5c9 3944
de93309a
SM
3945 Asks the user if there is more than one match remaining. Returns -1
3946 if there is no such symbol or none is selected. NAME is used
3947 solely for messages. May re-arrange and modify SYMS in
3948 the process; the index returned is for the modified vector. */
14f9c5c9 3949
de93309a
SM
3950static int
3951ada_resolve_function (struct block_symbol syms[],
3952 int nsyms, struct value **args, int nargs,
3953 const char *name, struct type *context_type,
3954 int parse_completion)
3955{
3956 int fallback;
3957 int k;
3958 int m; /* Number of hits */
14f9c5c9 3959
de93309a
SM
3960 m = 0;
3961 /* In the first pass of the loop, we only accept functions matching
3962 context_type. If none are found, we add a second pass of the loop
3963 where every function is accepted. */
3964 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3965 {
3966 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3967 {
de93309a 3968 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3969
de93309a
SM
3970 if (ada_args_match (syms[k].symbol, args, nargs)
3971 && (fallback || return_match (type, context_type)))
3972 {
3973 syms[m] = syms[k];
3974 m += 1;
3975 }
4c4b4cd2 3976 }
14f9c5c9
AS
3977 }
3978
de93309a
SM
3979 /* If we got multiple matches, ask the user which one to use. Don't do this
3980 interactive thing during completion, though, as the purpose of the
3981 completion is providing a list of all possible matches. Prompting the
3982 user to filter it down would be completely unexpected in this case. */
3983 if (m == 0)
3984 return -1;
3985 else if (m > 1 && !parse_completion)
3986 {
3987 printf_filtered (_("Multiple matches for %s\n"), name);
3988 user_select_syms (syms, m, 1);
3989 return 0;
3990 }
3991 return 0;
14f9c5c9
AS
3992}
3993
4c4b4cd2
PH
3994/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3995 on the function identified by SYM and BLOCK, and taking NARGS
3996 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3997
3998static void
e9d9f57e 3999replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4000 int oplen, struct symbol *sym,
270140bd 4001 const struct block *block)
14f9c5c9
AS
4002{
4003 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4004 symbol, -oplen for operator being replaced). */
d2e4a39e 4005 struct expression *newexp = (struct expression *)
8c1a34e7 4006 xzalloc (sizeof (struct expression)
4c4b4cd2 4007 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4008 struct expression *exp = expp->get ();
14f9c5c9
AS
4009
4010 newexp->nelts = exp->nelts + 7 - oplen;
4011 newexp->language_defn = exp->language_defn;
3489610d 4012 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4013 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4014 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4015 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4016
4017 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4018 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4019
4020 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4021 newexp->elts[pc + 4].block = block;
4022 newexp->elts[pc + 5].symbol = sym;
4023
e9d9f57e 4024 expp->reset (newexp);
d2e4a39e 4025}
14f9c5c9
AS
4026
4027/* Type-class predicates */
4028
4c4b4cd2
PH
4029/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4030 or FLOAT). */
14f9c5c9
AS
4031
4032static int
d2e4a39e 4033numeric_type_p (struct type *type)
14f9c5c9
AS
4034{
4035 if (type == NULL)
4036 return 0;
d2e4a39e
AS
4037 else
4038 {
78134374 4039 switch (type->code ())
4c4b4cd2
PH
4040 {
4041 case TYPE_CODE_INT:
4042 case TYPE_CODE_FLT:
4043 return 1;
4044 case TYPE_CODE_RANGE:
4045 return (type == TYPE_TARGET_TYPE (type)
4046 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4047 default:
4048 return 0;
4049 }
d2e4a39e 4050 }
14f9c5c9
AS
4051}
4052
4c4b4cd2 4053/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4054
4055static int
d2e4a39e 4056integer_type_p (struct type *type)
14f9c5c9
AS
4057{
4058 if (type == NULL)
4059 return 0;
d2e4a39e
AS
4060 else
4061 {
78134374 4062 switch (type->code ())
4c4b4cd2
PH
4063 {
4064 case TYPE_CODE_INT:
4065 return 1;
4066 case TYPE_CODE_RANGE:
4067 return (type == TYPE_TARGET_TYPE (type)
4068 || integer_type_p (TYPE_TARGET_TYPE (type)));
4069 default:
4070 return 0;
4071 }
d2e4a39e 4072 }
14f9c5c9
AS
4073}
4074
4c4b4cd2 4075/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4076
4077static int
d2e4a39e 4078scalar_type_p (struct type *type)
14f9c5c9
AS
4079{
4080 if (type == NULL)
4081 return 0;
d2e4a39e
AS
4082 else
4083 {
78134374 4084 switch (type->code ())
4c4b4cd2
PH
4085 {
4086 case TYPE_CODE_INT:
4087 case TYPE_CODE_RANGE:
4088 case TYPE_CODE_ENUM:
4089 case TYPE_CODE_FLT:
4090 return 1;
4091 default:
4092 return 0;
4093 }
d2e4a39e 4094 }
14f9c5c9
AS
4095}
4096
4c4b4cd2 4097/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4098
4099static int
d2e4a39e 4100discrete_type_p (struct type *type)
14f9c5c9
AS
4101{
4102 if (type == NULL)
4103 return 0;
d2e4a39e
AS
4104 else
4105 {
78134374 4106 switch (type->code ())
4c4b4cd2
PH
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_ENUM:
872f0337 4111 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4112 return 1;
4113 default:
4114 return 0;
4115 }
d2e4a39e 4116 }
14f9c5c9
AS
4117}
4118
4c4b4cd2
PH
4119/* Returns non-zero if OP with operands in the vector ARGS could be
4120 a user-defined function. Errs on the side of pre-defined operators
4121 (i.e., result 0). */
14f9c5c9
AS
4122
4123static int
d2e4a39e 4124possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4125{
76a01679 4126 struct type *type0 =
df407dfe 4127 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4128 struct type *type1 =
df407dfe 4129 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4130
4c4b4cd2
PH
4131 if (type0 == NULL)
4132 return 0;
4133
14f9c5c9
AS
4134 switch (op)
4135 {
4136 default:
4137 return 0;
4138
4139 case BINOP_ADD:
4140 case BINOP_SUB:
4141 case BINOP_MUL:
4142 case BINOP_DIV:
d2e4a39e 4143 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4144
4145 case BINOP_REM:
4146 case BINOP_MOD:
4147 case BINOP_BITWISE_AND:
4148 case BINOP_BITWISE_IOR:
4149 case BINOP_BITWISE_XOR:
d2e4a39e 4150 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4151
4152 case BINOP_EQUAL:
4153 case BINOP_NOTEQUAL:
4154 case BINOP_LESS:
4155 case BINOP_GTR:
4156 case BINOP_LEQ:
4157 case BINOP_GEQ:
d2e4a39e 4158 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4159
4160 case BINOP_CONCAT:
ee90b9ab 4161 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4162
4163 case BINOP_EXP:
d2e4a39e 4164 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4165
4166 case UNOP_NEG:
4167 case UNOP_PLUS:
4168 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4169 case UNOP_ABS:
4170 return (!numeric_type_p (type0));
14f9c5c9
AS
4171
4172 }
4173}
4174\f
4c4b4cd2 4175 /* Renaming */
14f9c5c9 4176
aeb5907d
JB
4177/* NOTES:
4178
4179 1. In the following, we assume that a renaming type's name may
4180 have an ___XD suffix. It would be nice if this went away at some
4181 point.
4182 2. We handle both the (old) purely type-based representation of
4183 renamings and the (new) variable-based encoding. At some point,
4184 it is devoutly to be hoped that the former goes away
4185 (FIXME: hilfinger-2007-07-09).
4186 3. Subprogram renamings are not implemented, although the XRS
4187 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4188
4189/* If SYM encodes a renaming,
4190
4191 <renaming> renames <renamed entity>,
4192
4193 sets *LEN to the length of the renamed entity's name,
4194 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4195 the string describing the subcomponent selected from the renamed
0963b4bd 4196 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4197 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4198 are undefined). Otherwise, returns a value indicating the category
4199 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4200 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4201 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4202 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4203 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4204 may be NULL, in which case they are not assigned.
4205
4206 [Currently, however, GCC does not generate subprogram renamings.] */
4207
4208enum ada_renaming_category
4209ada_parse_renaming (struct symbol *sym,
4210 const char **renamed_entity, int *len,
4211 const char **renaming_expr)
4212{
4213 enum ada_renaming_category kind;
4214 const char *info;
4215 const char *suffix;
4216
4217 if (sym == NULL)
4218 return ADA_NOT_RENAMING;
4219 switch (SYMBOL_CLASS (sym))
14f9c5c9 4220 {
aeb5907d
JB
4221 default:
4222 return ADA_NOT_RENAMING;
aeb5907d
JB
4223 case LOC_LOCAL:
4224 case LOC_STATIC:
4225 case LOC_COMPUTED:
4226 case LOC_OPTIMIZED_OUT:
987012b8 4227 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4228 if (info == NULL)
4229 return ADA_NOT_RENAMING;
4230 switch (info[5])
4231 {
4232 case '_':
4233 kind = ADA_OBJECT_RENAMING;
4234 info += 6;
4235 break;
4236 case 'E':
4237 kind = ADA_EXCEPTION_RENAMING;
4238 info += 7;
4239 break;
4240 case 'P':
4241 kind = ADA_PACKAGE_RENAMING;
4242 info += 7;
4243 break;
4244 case 'S':
4245 kind = ADA_SUBPROGRAM_RENAMING;
4246 info += 7;
4247 break;
4248 default:
4249 return ADA_NOT_RENAMING;
4250 }
14f9c5c9 4251 }
4c4b4cd2 4252
de93309a
SM
4253 if (renamed_entity != NULL)
4254 *renamed_entity = info;
4255 suffix = strstr (info, "___XE");
4256 if (suffix == NULL || suffix == info)
4257 return ADA_NOT_RENAMING;
4258 if (len != NULL)
4259 *len = strlen (info) - strlen (suffix);
4260 suffix += 5;
4261 if (renaming_expr != NULL)
4262 *renaming_expr = suffix;
4263 return kind;
4264}
4265
4266/* Compute the value of the given RENAMING_SYM, which is expected to
4267 be a symbol encoding a renaming expression. BLOCK is the block
4268 used to evaluate the renaming. */
4269
4270static struct value *
4271ada_read_renaming_var_value (struct symbol *renaming_sym,
4272 const struct block *block)
4273{
4274 const char *sym_name;
4275
987012b8 4276 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4277 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4278 return evaluate_expression (expr.get ());
4279}
4280\f
4281
4282 /* Evaluation: Function Calls */
4283
4284/* Return an lvalue containing the value VAL. This is the identity on
4285 lvalues, and otherwise has the side-effect of allocating memory
4286 in the inferior where a copy of the value contents is copied. */
4287
4288static struct value *
4289ensure_lval (struct value *val)
4290{
4291 if (VALUE_LVAL (val) == not_lval
4292 || VALUE_LVAL (val) == lval_internalvar)
4293 {
4294 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4295 const CORE_ADDR addr =
4296 value_as_long (value_allocate_space_in_inferior (len));
4297
4298 VALUE_LVAL (val) = lval_memory;
4299 set_value_address (val, addr);
4300 write_memory (addr, value_contents (val), len);
4301 }
4302
4303 return val;
4304}
4305
4306/* Given ARG, a value of type (pointer or reference to a)*
4307 structure/union, extract the component named NAME from the ultimate
4308 target structure/union and return it as a value with its
4309 appropriate type.
4310
4311 The routine searches for NAME among all members of the structure itself
4312 and (recursively) among all members of any wrapper members
4313 (e.g., '_parent').
4314
4315 If NO_ERR, then simply return NULL in case of error, rather than
4316 calling error. */
4317
4318static struct value *
4319ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4320{
4321 struct type *t, *t1;
4322 struct value *v;
4323 int check_tag;
4324
4325 v = NULL;
4326 t1 = t = ada_check_typedef (value_type (arg));
78134374 4327 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4328 {
4329 t1 = TYPE_TARGET_TYPE (t);
4330 if (t1 == NULL)
4331 goto BadValue;
4332 t1 = ada_check_typedef (t1);
78134374 4333 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4334 {
4335 arg = coerce_ref (arg);
4336 t = t1;
4337 }
4338 }
4339
78134374 4340 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4341 {
4342 t1 = TYPE_TARGET_TYPE (t);
4343 if (t1 == NULL)
4344 goto BadValue;
4345 t1 = ada_check_typedef (t1);
78134374 4346 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4347 {
4348 arg = value_ind (arg);
4349 t = t1;
4350 }
4351 else
4352 break;
4353 }
aeb5907d 4354
78134374 4355 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4356 goto BadValue;
52ce6436 4357
de93309a
SM
4358 if (t1 == t)
4359 v = ada_search_struct_field (name, arg, 0, t);
4360 else
4361 {
4362 int bit_offset, bit_size, byte_offset;
4363 struct type *field_type;
4364 CORE_ADDR address;
a5ee536b 4365
78134374 4366 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4367 address = value_address (ada_value_ind (arg));
4368 else
4369 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4370
de93309a
SM
4371 /* Check to see if this is a tagged type. We also need to handle
4372 the case where the type is a reference to a tagged type, but
4373 we have to be careful to exclude pointers to tagged types.
4374 The latter should be shown as usual (as a pointer), whereas
4375 a reference should mostly be transparent to the user. */
14f9c5c9 4376
de93309a 4377 if (ada_is_tagged_type (t1, 0)
78134374 4378 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4379 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4380 {
4381 /* We first try to find the searched field in the current type.
4382 If not found then let's look in the fixed type. */
14f9c5c9 4383
de93309a
SM
4384 if (!find_struct_field (name, t1, 0,
4385 &field_type, &byte_offset, &bit_offset,
4386 &bit_size, NULL))
4387 check_tag = 1;
4388 else
4389 check_tag = 0;
4390 }
4391 else
4392 check_tag = 0;
c3e5cd34 4393
de93309a
SM
4394 /* Convert to fixed type in all cases, so that we have proper
4395 offsets to each field in unconstrained record types. */
4396 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4397 address, NULL, check_tag);
4398
4399 if (find_struct_field (name, t1, 0,
4400 &field_type, &byte_offset, &bit_offset,
4401 &bit_size, NULL))
4402 {
4403 if (bit_size != 0)
4404 {
78134374 4405 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4406 arg = ada_coerce_ref (arg);
4407 else
4408 arg = ada_value_ind (arg);
4409 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4410 bit_offset, bit_size,
4411 field_type);
4412 }
4413 else
4414 v = value_at_lazy (field_type, address + byte_offset);
4415 }
c3e5cd34 4416 }
14f9c5c9 4417
de93309a
SM
4418 if (v != NULL || no_err)
4419 return v;
4420 else
4421 error (_("There is no member named %s."), name);
4422
4423 BadValue:
4424 if (no_err)
4425 return NULL;
4426 else
4427 error (_("Attempt to extract a component of "
4428 "a value that is not a record."));
14f9c5c9
AS
4429}
4430
4431/* Return the value ACTUAL, converted to be an appropriate value for a
4432 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4433 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4434 values not residing in memory, updating it as needed. */
14f9c5c9 4435
a93c0eb6 4436struct value *
40bc484c 4437ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4438{
df407dfe 4439 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4440 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4441 struct type *formal_target =
78134374 4442 formal_type->code () == TYPE_CODE_PTR
61ee279c 4443 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4444 struct type *actual_target =
78134374 4445 actual_type->code () == TYPE_CODE_PTR
61ee279c 4446 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4447
4c4b4cd2 4448 if (ada_is_array_descriptor_type (formal_target)
78134374 4449 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4450 return make_array_descriptor (formal_type, actual);
78134374
SM
4451 else if (formal_type->code () == TYPE_CODE_PTR
4452 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4453 {
a84a8a0d 4454 struct value *result;
5b4ee69b 4455
78134374 4456 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4457 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4458 result = desc_data (actual);
78134374 4459 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4460 {
4461 if (VALUE_LVAL (actual) != lval_memory)
4462 {
4463 struct value *val;
5b4ee69b 4464
df407dfe 4465 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4466 val = allocate_value (actual_type);
990a07ab 4467 memcpy ((char *) value_contents_raw (val),
0fd88904 4468 (char *) value_contents (actual),
4c4b4cd2 4469 TYPE_LENGTH (actual_type));
40bc484c 4470 actual = ensure_lval (val);
4c4b4cd2 4471 }
a84a8a0d 4472 result = value_addr (actual);
4c4b4cd2 4473 }
a84a8a0d
JB
4474 else
4475 return actual;
b1af9e97 4476 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4477 }
78134374 4478 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4479 return ada_value_ind (actual);
8344af1e
JB
4480 else if (ada_is_aligner_type (formal_type))
4481 {
4482 /* We need to turn this parameter into an aligner type
4483 as well. */
4484 struct value *aligner = allocate_value (formal_type);
4485 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4486
4487 value_assign_to_component (aligner, component, actual);
4488 return aligner;
4489 }
14f9c5c9
AS
4490
4491 return actual;
4492}
4493
438c98a1
JB
4494/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4495 type TYPE. This is usually an inefficient no-op except on some targets
4496 (such as AVR) where the representation of a pointer and an address
4497 differs. */
4498
4499static CORE_ADDR
4500value_pointer (struct value *value, struct type *type)
4501{
4502 struct gdbarch *gdbarch = get_type_arch (type);
4503 unsigned len = TYPE_LENGTH (type);
224c3ddb 4504 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4505 CORE_ADDR addr;
4506
4507 addr = value_address (value);
4508 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4509 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4510 return addr;
4511}
4512
14f9c5c9 4513
4c4b4cd2
PH
4514/* Push a descriptor of type TYPE for array value ARR on the stack at
4515 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4516 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4517 to-descriptor type rather than a descriptor type), a struct value *
4518 representing a pointer to this descriptor. */
14f9c5c9 4519
d2e4a39e 4520static struct value *
40bc484c 4521make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4522{
d2e4a39e
AS
4523 struct type *bounds_type = desc_bounds_type (type);
4524 struct type *desc_type = desc_base_type (type);
4525 struct value *descriptor = allocate_value (desc_type);
4526 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4527 int i;
d2e4a39e 4528
0963b4bd
MS
4529 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4530 i > 0; i -= 1)
14f9c5c9 4531 {
19f220c3
JK
4532 modify_field (value_type (bounds), value_contents_writeable (bounds),
4533 ada_array_bound (arr, i, 0),
4534 desc_bound_bitpos (bounds_type, i, 0),
4535 desc_bound_bitsize (bounds_type, i, 0));
4536 modify_field (value_type (bounds), value_contents_writeable (bounds),
4537 ada_array_bound (arr, i, 1),
4538 desc_bound_bitpos (bounds_type, i, 1),
4539 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4540 }
d2e4a39e 4541
40bc484c 4542 bounds = ensure_lval (bounds);
d2e4a39e 4543
19f220c3
JK
4544 modify_field (value_type (descriptor),
4545 value_contents_writeable (descriptor),
4546 value_pointer (ensure_lval (arr),
4547 TYPE_FIELD_TYPE (desc_type, 0)),
4548 fat_pntr_data_bitpos (desc_type),
4549 fat_pntr_data_bitsize (desc_type));
4550
4551 modify_field (value_type (descriptor),
4552 value_contents_writeable (descriptor),
4553 value_pointer (bounds,
4554 TYPE_FIELD_TYPE (desc_type, 1)),
4555 fat_pntr_bounds_bitpos (desc_type),
4556 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4557
40bc484c 4558 descriptor = ensure_lval (descriptor);
14f9c5c9 4559
78134374 4560 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4561 return value_addr (descriptor);
4562 else
4563 return descriptor;
4564}
14f9c5c9 4565\f
3d9434b5
JB
4566 /* Symbol Cache Module */
4567
3d9434b5 4568/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4569 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4570 on the type of entity being printed, the cache can make it as much
4571 as an order of magnitude faster than without it.
4572
4573 The descriptive type DWARF extension has significantly reduced
4574 the need for this cache, at least when DWARF is being used. However,
4575 even in this case, some expensive name-based symbol searches are still
4576 sometimes necessary - to find an XVZ variable, mostly. */
4577
ee01b665 4578/* Initialize the contents of SYM_CACHE. */
3d9434b5 4579
ee01b665
JB
4580static void
4581ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4582{
4583 obstack_init (&sym_cache->cache_space);
4584 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4585}
3d9434b5 4586
ee01b665
JB
4587/* Free the memory used by SYM_CACHE. */
4588
4589static void
4590ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4591{
ee01b665
JB
4592 obstack_free (&sym_cache->cache_space, NULL);
4593 xfree (sym_cache);
4594}
3d9434b5 4595
ee01b665
JB
4596/* Return the symbol cache associated to the given program space PSPACE.
4597 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4598
ee01b665
JB
4599static struct ada_symbol_cache *
4600ada_get_symbol_cache (struct program_space *pspace)
4601{
4602 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4603
66c168ae 4604 if (pspace_data->sym_cache == NULL)
ee01b665 4605 {
66c168ae
JB
4606 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4607 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4608 }
4609
66c168ae 4610 return pspace_data->sym_cache;
ee01b665 4611}
3d9434b5
JB
4612
4613/* Clear all entries from the symbol cache. */
4614
4615static void
4616ada_clear_symbol_cache (void)
4617{
ee01b665
JB
4618 struct ada_symbol_cache *sym_cache
4619 = ada_get_symbol_cache (current_program_space);
4620
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4623}
4624
fe978cb0 4625/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4626 Return it if found, or NULL otherwise. */
4627
4628static struct cache_entry **
fe978cb0 4629find_entry (const char *name, domain_enum domain)
3d9434b5 4630{
ee01b665
JB
4631 struct ada_symbol_cache *sym_cache
4632 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4633 int h = msymbol_hash (name) % HASH_SIZE;
4634 struct cache_entry **e;
4635
ee01b665 4636 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4637 {
fe978cb0 4638 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4639 return e;
4640 }
4641 return NULL;
4642}
4643
fe978cb0 4644/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4645 Return 1 if found, 0 otherwise.
4646
4647 If an entry was found and SYM is not NULL, set *SYM to the entry's
4648 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4649
96d887e8 4650static int
fe978cb0 4651lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4652 struct symbol **sym, const struct block **block)
96d887e8 4653{
fe978cb0 4654 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4655
4656 if (e == NULL)
4657 return 0;
4658 if (sym != NULL)
4659 *sym = (*e)->sym;
4660 if (block != NULL)
4661 *block = (*e)->block;
4662 return 1;
96d887e8
PH
4663}
4664
3d9434b5 4665/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4666 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4667
96d887e8 4668static void
fe978cb0 4669cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4670 const struct block *block)
96d887e8 4671{
ee01b665
JB
4672 struct ada_symbol_cache *sym_cache
4673 = ada_get_symbol_cache (current_program_space);
3d9434b5 4674 int h;
3d9434b5
JB
4675 struct cache_entry *e;
4676
1994afbf
DE
4677 /* Symbols for builtin types don't have a block.
4678 For now don't cache such symbols. */
4679 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4680 return;
4681
3d9434b5
JB
4682 /* If the symbol is a local symbol, then do not cache it, as a search
4683 for that symbol depends on the context. To determine whether
4684 the symbol is local or not, we check the block where we found it
4685 against the global and static blocks of its associated symtab. */
4686 if (sym
08be3fe3 4687 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4688 GLOBAL_BLOCK) != block
08be3fe3 4689 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4690 STATIC_BLOCK) != block)
3d9434b5
JB
4691 return;
4692
4693 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4694 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4695 e->next = sym_cache->root[h];
4696 sym_cache->root[h] = e;
2ef5453b 4697 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4698 e->sym = sym;
fe978cb0 4699 e->domain = domain;
3d9434b5 4700 e->block = block;
96d887e8 4701}
4c4b4cd2
PH
4702\f
4703 /* Symbol Lookup */
4704
b5ec771e
PA
4705/* Return the symbol name match type that should be used used when
4706 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4707
4708 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4709 for Ada lookups. */
c0431670 4710
b5ec771e
PA
4711static symbol_name_match_type
4712name_match_type_from_name (const char *lookup_name)
c0431670 4713{
b5ec771e
PA
4714 return (strstr (lookup_name, "__") == NULL
4715 ? symbol_name_match_type::WILD
4716 : symbol_name_match_type::FULL);
c0431670
JB
4717}
4718
4c4b4cd2
PH
4719/* Return the result of a standard (literal, C-like) lookup of NAME in
4720 given DOMAIN, visible from lexical block BLOCK. */
4721
4722static struct symbol *
4723standard_lookup (const char *name, const struct block *block,
4724 domain_enum domain)
4725{
acbd605d 4726 /* Initialize it just to avoid a GCC false warning. */
6640a367 4727 struct block_symbol sym = {};
4c4b4cd2 4728
d12307c1
PMR
4729 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4730 return sym.symbol;
a2cd4f14 4731 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4732 cache_symbol (name, domain, sym.symbol, sym.block);
4733 return sym.symbol;
4c4b4cd2
PH
4734}
4735
4736
4737/* Non-zero iff there is at least one non-function/non-enumeral symbol
4738 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4739 since they contend in overloading in the same way. */
4740static int
d12307c1 4741is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4742{
4743 int i;
4744
4745 for (i = 0; i < n; i += 1)
78134374
SM
4746 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4747 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4748 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4749 return 1;
4750
4751 return 0;
4752}
4753
4754/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4755 struct types. Otherwise, they may not. */
14f9c5c9
AS
4756
4757static int
d2e4a39e 4758equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4759{
d2e4a39e 4760 if (type0 == type1)
14f9c5c9 4761 return 1;
d2e4a39e 4762 if (type0 == NULL || type1 == NULL
78134374 4763 || type0->code () != type1->code ())
14f9c5c9 4764 return 0;
78134374
SM
4765 if ((type0->code () == TYPE_CODE_STRUCT
4766 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4767 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4768 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4769 return 1;
d2e4a39e 4770
14f9c5c9
AS
4771 return 0;
4772}
4773
4774/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4775 no more defined than that of SYM1. */
14f9c5c9
AS
4776
4777static int
d2e4a39e 4778lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4779{
4780 if (sym0 == sym1)
4781 return 1;
176620f1 4782 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4783 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4784 return 0;
4785
d2e4a39e 4786 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4787 {
4788 case LOC_UNDEF:
4789 return 1;
4790 case LOC_TYPEDEF:
4791 {
4c4b4cd2
PH
4792 struct type *type0 = SYMBOL_TYPE (sym0);
4793 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4794 const char *name0 = sym0->linkage_name ();
4795 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4796 int len0 = strlen (name0);
5b4ee69b 4797
4c4b4cd2 4798 return
78134374 4799 type0->code () == type1->code ()
4c4b4cd2
PH
4800 && (equiv_types (type0, type1)
4801 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4802 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4803 }
4804 case LOC_CONST:
4805 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4806 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4807
4808 case LOC_STATIC:
4809 {
987012b8
CB
4810 const char *name0 = sym0->linkage_name ();
4811 const char *name1 = sym1->linkage_name ();
4b610737
TT
4812 return (strcmp (name0, name1) == 0
4813 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4814 }
4815
d2e4a39e
AS
4816 default:
4817 return 0;
14f9c5c9
AS
4818 }
4819}
4820
d12307c1 4821/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4822 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4823
4824static void
76a01679
JB
4825add_defn_to_vec (struct obstack *obstackp,
4826 struct symbol *sym,
f0c5f9b2 4827 const struct block *block)
14f9c5c9
AS
4828{
4829 int i;
d12307c1 4830 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4831
529cad9c
PH
4832 /* Do not try to complete stub types, as the debugger is probably
4833 already scanning all symbols matching a certain name at the
4834 time when this function is called. Trying to replace the stub
4835 type by its associated full type will cause us to restart a scan
4836 which may lead to an infinite recursion. Instead, the client
4837 collecting the matching symbols will end up collecting several
4838 matches, with at least one of them complete. It can then filter
4839 out the stub ones if needed. */
4840
4c4b4cd2
PH
4841 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4842 {
d12307c1 4843 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4844 return;
d12307c1 4845 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4846 {
d12307c1 4847 prevDefns[i].symbol = sym;
4c4b4cd2 4848 prevDefns[i].block = block;
4c4b4cd2 4849 return;
76a01679 4850 }
4c4b4cd2
PH
4851 }
4852
4853 {
d12307c1 4854 struct block_symbol info;
4c4b4cd2 4855
d12307c1 4856 info.symbol = sym;
4c4b4cd2 4857 info.block = block;
d12307c1 4858 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4859 }
4860}
4861
d12307c1
PMR
4862/* Number of block_symbol structures currently collected in current vector in
4863 OBSTACKP. */
4c4b4cd2 4864
76a01679
JB
4865static int
4866num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4867{
d12307c1 4868 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4869}
4870
d12307c1
PMR
4871/* Vector of block_symbol structures currently collected in current vector in
4872 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4873
d12307c1 4874static struct block_symbol *
4c4b4cd2
PH
4875defns_collected (struct obstack *obstackp, int finish)
4876{
4877 if (finish)
224c3ddb 4878 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4879 else
d12307c1 4880 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4881}
4882
7c7b6655
TT
4883/* Return a bound minimal symbol matching NAME according to Ada
4884 decoding rules. Returns an invalid symbol if there is no such
4885 minimal symbol. Names prefixed with "standard__" are handled
4886 specially: "standard__" is first stripped off, and only static and
4887 global symbols are searched. */
4c4b4cd2 4888
7c7b6655 4889struct bound_minimal_symbol
96d887e8 4890ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4891{
7c7b6655 4892 struct bound_minimal_symbol result;
4c4b4cd2 4893
7c7b6655
TT
4894 memset (&result, 0, sizeof (result));
4895
b5ec771e
PA
4896 symbol_name_match_type match_type = name_match_type_from_name (name);
4897 lookup_name_info lookup_name (name, match_type);
4898
4899 symbol_name_matcher_ftype *match_name
4900 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4901
2030c079 4902 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4903 {
7932255d 4904 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4905 {
c9d95fa3 4906 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4907 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4908 {
4909 result.minsym = msymbol;
4910 result.objfile = objfile;
4911 break;
4912 }
4913 }
4914 }
4c4b4cd2 4915
7c7b6655 4916 return result;
96d887e8 4917}
4c4b4cd2 4918
96d887e8
PH
4919/* For all subprograms that statically enclose the subprogram of the
4920 selected frame, add symbols matching identifier NAME in DOMAIN
4921 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4922 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4923 with a wildcard prefix. */
4c4b4cd2 4924
96d887e8
PH
4925static void
4926add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4927 const lookup_name_info &lookup_name,
4928 domain_enum domain)
96d887e8 4929{
96d887e8 4930}
14f9c5c9 4931
96d887e8
PH
4932/* True if TYPE is definitely an artificial type supplied to a symbol
4933 for which no debugging information was given in the symbol file. */
14f9c5c9 4934
96d887e8
PH
4935static int
4936is_nondebugging_type (struct type *type)
4937{
0d5cff50 4938 const char *name = ada_type_name (type);
5b4ee69b 4939
96d887e8
PH
4940 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4941}
4c4b4cd2 4942
8f17729f
JB
4943/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4944 that are deemed "identical" for practical purposes.
4945
4946 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4947 types and that their number of enumerals is identical (in other
1f704f76 4948 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4949
4950static int
4951ada_identical_enum_types_p (struct type *type1, struct type *type2)
4952{
4953 int i;
4954
4955 /* The heuristic we use here is fairly conservative. We consider
4956 that 2 enumerate types are identical if they have the same
4957 number of enumerals and that all enumerals have the same
4958 underlying value and name. */
4959
4960 /* All enums in the type should have an identical underlying value. */
1f704f76 4961 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4962 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4963 return 0;
4964
4965 /* All enumerals should also have the same name (modulo any numerical
4966 suffix). */
1f704f76 4967 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4968 {
0d5cff50
DE
4969 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4970 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4971 int len_1 = strlen (name_1);
4972 int len_2 = strlen (name_2);
4973
4974 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4975 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4976 if (len_1 != len_2
4977 || strncmp (TYPE_FIELD_NAME (type1, i),
4978 TYPE_FIELD_NAME (type2, i),
4979 len_1) != 0)
4980 return 0;
4981 }
4982
4983 return 1;
4984}
4985
4986/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4987 that are deemed "identical" for practical purposes. Sometimes,
4988 enumerals are not strictly identical, but their types are so similar
4989 that they can be considered identical.
4990
4991 For instance, consider the following code:
4992
4993 type Color is (Black, Red, Green, Blue, White);
4994 type RGB_Color is new Color range Red .. Blue;
4995
4996 Type RGB_Color is a subrange of an implicit type which is a copy
4997 of type Color. If we call that implicit type RGB_ColorB ("B" is
4998 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4999 As a result, when an expression references any of the enumeral
5000 by name (Eg. "print green"), the expression is technically
5001 ambiguous and the user should be asked to disambiguate. But
5002 doing so would only hinder the user, since it wouldn't matter
5003 what choice he makes, the outcome would always be the same.
5004 So, for practical purposes, we consider them as the same. */
5005
5006static int
54d343a2 5007symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5008{
5009 int i;
5010
5011 /* Before performing a thorough comparison check of each type,
5012 we perform a series of inexpensive checks. We expect that these
5013 checks will quickly fail in the vast majority of cases, and thus
5014 help prevent the unnecessary use of a more expensive comparison.
5015 Said comparison also expects us to make some of these checks
5016 (see ada_identical_enum_types_p). */
5017
5018 /* Quick check: All symbols should have an enum type. */
54d343a2 5019 for (i = 0; i < syms.size (); i++)
78134374 5020 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5021 return 0;
5022
5023 /* Quick check: They should all have the same value. */
54d343a2 5024 for (i = 1; i < syms.size (); i++)
d12307c1 5025 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5026 return 0;
5027
5028 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5029 for (i = 1; i < syms.size (); i++)
1f704f76
SM
5030 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5031 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
5032 return 0;
5033
5034 /* All the sanity checks passed, so we might have a set of
5035 identical enumeration types. Perform a more complete
5036 comparison of the type of each symbol. */
54d343a2 5037 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5038 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5039 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5040 return 0;
5041
5042 return 1;
5043}
5044
54d343a2 5045/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5046 duplicate other symbols in the list (The only case I know of where
5047 this happens is when object files containing stabs-in-ecoff are
5048 linked with files containing ordinary ecoff debugging symbols (or no
5049 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5050 Returns the number of items in the modified list. */
4c4b4cd2 5051
96d887e8 5052static int
54d343a2 5053remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5054{
5055 int i, j;
4c4b4cd2 5056
8f17729f
JB
5057 /* We should never be called with less than 2 symbols, as there
5058 cannot be any extra symbol in that case. But it's easy to
5059 handle, since we have nothing to do in that case. */
54d343a2
TT
5060 if (syms->size () < 2)
5061 return syms->size ();
8f17729f 5062
96d887e8 5063 i = 0;
54d343a2 5064 while (i < syms->size ())
96d887e8 5065 {
a35ddb44 5066 int remove_p = 0;
339c13b6
JB
5067
5068 /* If two symbols have the same name and one of them is a stub type,
5069 the get rid of the stub. */
5070
54d343a2 5071 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5072 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5073 {
54d343a2 5074 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5075 {
5076 if (j != i
54d343a2 5077 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5078 && (*syms)[j].symbol->linkage_name () != NULL
5079 && strcmp ((*syms)[i].symbol->linkage_name (),
5080 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5081 remove_p = 1;
339c13b6
JB
5082 }
5083 }
5084
5085 /* Two symbols with the same name, same class and same address
5086 should be identical. */
5087
987012b8 5088 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5089 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5090 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5091 {
54d343a2 5092 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5093 {
5094 if (i != j
987012b8
CB
5095 && (*syms)[j].symbol->linkage_name () != NULL
5096 && strcmp ((*syms)[i].symbol->linkage_name (),
5097 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5098 && SYMBOL_CLASS ((*syms)[i].symbol)
5099 == SYMBOL_CLASS ((*syms)[j].symbol)
5100 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5101 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5102 remove_p = 1;
4c4b4cd2 5103 }
4c4b4cd2 5104 }
339c13b6 5105
a35ddb44 5106 if (remove_p)
54d343a2 5107 syms->erase (syms->begin () + i);
339c13b6 5108
96d887e8 5109 i += 1;
14f9c5c9 5110 }
8f17729f
JB
5111
5112 /* If all the remaining symbols are identical enumerals, then
5113 just keep the first one and discard the rest.
5114
5115 Unlike what we did previously, we do not discard any entry
5116 unless they are ALL identical. This is because the symbol
5117 comparison is not a strict comparison, but rather a practical
5118 comparison. If all symbols are considered identical, then
5119 we can just go ahead and use the first one and discard the rest.
5120 But if we cannot reduce the list to a single element, we have
5121 to ask the user to disambiguate anyways. And if we have to
5122 present a multiple-choice menu, it's less confusing if the list
5123 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5124 if (symbols_are_identical_enums (*syms))
5125 syms->resize (1);
8f17729f 5126
54d343a2 5127 return syms->size ();
14f9c5c9
AS
5128}
5129
96d887e8
PH
5130/* Given a type that corresponds to a renaming entity, use the type name
5131 to extract the scope (package name or function name, fully qualified,
5132 and following the GNAT encoding convention) where this renaming has been
49d83361 5133 defined. */
4c4b4cd2 5134
49d83361 5135static std::string
96d887e8 5136xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5137{
96d887e8 5138 /* The renaming types adhere to the following convention:
0963b4bd 5139 <scope>__<rename>___<XR extension>.
96d887e8
PH
5140 So, to extract the scope, we search for the "___XR" extension,
5141 and then backtrack until we find the first "__". */
76a01679 5142
7d93a1e0 5143 const char *name = renaming_type->name ();
108d56a4
SM
5144 const char *suffix = strstr (name, "___XR");
5145 const char *last;
14f9c5c9 5146
96d887e8
PH
5147 /* Now, backtrack a bit until we find the first "__". Start looking
5148 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5149
96d887e8
PH
5150 for (last = suffix - 3; last > name; last--)
5151 if (last[0] == '_' && last[1] == '_')
5152 break;
76a01679 5153
96d887e8 5154 /* Make a copy of scope and return it. */
49d83361 5155 return std::string (name, last);
4c4b4cd2
PH
5156}
5157
96d887e8 5158/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5159
96d887e8
PH
5160static int
5161is_package_name (const char *name)
4c4b4cd2 5162{
96d887e8
PH
5163 /* Here, We take advantage of the fact that no symbols are generated
5164 for packages, while symbols are generated for each function.
5165 So the condition for NAME represent a package becomes equivalent
5166 to NAME not existing in our list of symbols. There is only one
5167 small complication with library-level functions (see below). */
4c4b4cd2 5168
96d887e8
PH
5169 /* If it is a function that has not been defined at library level,
5170 then we should be able to look it up in the symbols. */
5171 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5172 return 0;
14f9c5c9 5173
96d887e8
PH
5174 /* Library-level function names start with "_ada_". See if function
5175 "_ada_" followed by NAME can be found. */
14f9c5c9 5176
96d887e8 5177 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5178 functions names cannot contain "__" in them. */
96d887e8
PH
5179 if (strstr (name, "__") != NULL)
5180 return 0;
4c4b4cd2 5181
528e1572 5182 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5183
528e1572 5184 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5185}
14f9c5c9 5186
96d887e8 5187/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5188 not visible from FUNCTION_NAME. */
14f9c5c9 5189
96d887e8 5190static int
0d5cff50 5191old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5192{
aeb5907d
JB
5193 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5194 return 0;
5195
49d83361 5196 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5197
96d887e8 5198 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5199 if (is_package_name (scope.c_str ()))
5200 return 0;
14f9c5c9 5201
96d887e8
PH
5202 /* Check that the rename is in the current function scope by checking
5203 that its name starts with SCOPE. */
76a01679 5204
96d887e8
PH
5205 /* If the function name starts with "_ada_", it means that it is
5206 a library-level function. Strip this prefix before doing the
5207 comparison, as the encoding for the renaming does not contain
5208 this prefix. */
61012eef 5209 if (startswith (function_name, "_ada_"))
96d887e8 5210 function_name += 5;
f26caa11 5211
49d83361 5212 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5213}
5214
aeb5907d
JB
5215/* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
96d887e8
PH
5220
5221 Rationale:
aeb5907d
JB
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
f26caa11 5234
96d887e8
PH
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
4c4b4cd2 5251
14f9c5c9 5252static int
54d343a2
TT
5253remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5254 const struct block *current_block)
4c4b4cd2
PH
5255{
5256 struct symbol *current_function;
0d5cff50 5257 const char *current_function_name;
4c4b4cd2 5258 int i;
aeb5907d
JB
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
0963b4bd 5263 First, zero out such symbols, then compress. */
aeb5907d 5264 is_new_style_renaming = 0;
54d343a2 5265 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5266 {
54d343a2
TT
5267 struct symbol *sym = (*syms)[i].symbol;
5268 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
987012b8 5274 name = sym->linkage_name ();
aeb5907d
JB
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5b4ee69b 5281
aeb5907d 5282 is_new_style_renaming = 1;
54d343a2
TT
5283 for (j = 0; j < syms->size (); j += 1)
5284 if (i != j && (*syms)[j].symbol != NULL
987012b8 5285 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5286 name_len) == 0
54d343a2
TT
5287 && block == (*syms)[j].block)
5288 (*syms)[j].symbol = NULL;
aeb5907d
JB
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
54d343a2
TT
5295 for (j = k = 0; j < syms->size (); j += 1)
5296 if ((*syms)[j].symbol != NULL)
aeb5907d 5297 {
54d343a2 5298 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5299 k += 1;
5300 }
5301 return k;
5302 }
4c4b4cd2
PH
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
76a01679 5306
4c4b4cd2 5307 if (current_block == NULL)
54d343a2 5308 return syms->size ();
76a01679 5309
7f0df278 5310 current_function = block_linkage_function (current_block);
4c4b4cd2 5311 if (current_function == NULL)
54d343a2 5312 return syms->size ();
4c4b4cd2 5313
987012b8 5314 current_function_name = current_function->linkage_name ();
4c4b4cd2 5315 if (current_function_name == NULL)
54d343a2 5316 return syms->size ();
4c4b4cd2
PH
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
54d343a2 5323 while (i < syms->size ())
4c4b4cd2 5324 {
54d343a2 5325 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5326 == ADA_OBJECT_RENAMING
54d343a2
TT
5327 && old_renaming_is_invisible ((*syms)[i].symbol,
5328 current_function_name))
5329 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5330 else
5331 i += 1;
5332 }
5333
54d343a2 5334 return syms->size ();
4c4b4cd2
PH
5335}
5336
339c13b6
JB
5337/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5338 whose name and domain match NAME and DOMAIN respectively.
5339 If no match was found, then extend the search to "enclosing"
5340 routines (in other words, if we're inside a nested function,
5341 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5342 If WILD_MATCH_P is nonzero, perform the naming matching in
5343 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5344
5345 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5346
5347static void
b5ec771e
PA
5348ada_add_local_symbols (struct obstack *obstackp,
5349 const lookup_name_info &lookup_name,
5350 const struct block *block, domain_enum domain)
339c13b6
JB
5351{
5352 int block_depth = 0;
5353
5354 while (block != NULL)
5355 {
5356 block_depth += 1;
b5ec771e 5357 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5358
5359 /* If we found a non-function match, assume that's the one. */
5360 if (is_nonfunction (defns_collected (obstackp, 0),
5361 num_defns_collected (obstackp)))
5362 return;
5363
5364 block = BLOCK_SUPERBLOCK (block);
5365 }
5366
5367 /* If no luck so far, try to find NAME as a local symbol in some lexically
5368 enclosing subprogram. */
5369 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5370 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5371}
5372
ccefe4c4 5373/* An object of this type is used as the user_data argument when
40658b94 5374 calling the map_matching_symbols method. */
ccefe4c4 5375
40658b94 5376struct match_data
ccefe4c4 5377{
40658b94 5378 struct objfile *objfile;
ccefe4c4 5379 struct obstack *obstackp;
40658b94
PH
5380 struct symbol *arg_sym;
5381 int found_sym;
ccefe4c4
TT
5382};
5383
199b4314
TT
5384/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5385 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5386 containing the obstack that collects the symbol list, the file that SYM
5387 must come from, a flag indicating whether a non-argument symbol has
5388 been found in the current block, and the last argument symbol
5389 passed in SYM within the current block (if any). When SYM is null,
5390 marking the end of a block, the argument symbol is added if no
5391 other has been found. */
ccefe4c4 5392
199b4314
TT
5393static bool
5394aux_add_nonlocal_symbols (struct block_symbol *bsym,
5395 struct match_data *data)
ccefe4c4 5396{
199b4314
TT
5397 const struct block *block = bsym->block;
5398 struct symbol *sym = bsym->symbol;
5399
40658b94
PH
5400 if (sym == NULL)
5401 {
5402 if (!data->found_sym && data->arg_sym != NULL)
5403 add_defn_to_vec (data->obstackp,
5404 fixup_symbol_section (data->arg_sym, data->objfile),
5405 block);
5406 data->found_sym = 0;
5407 data->arg_sym = NULL;
5408 }
5409 else
5410 {
5411 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5412 return true;
40658b94
PH
5413 else if (SYMBOL_IS_ARGUMENT (sym))
5414 data->arg_sym = sym;
5415 else
5416 {
5417 data->found_sym = 1;
5418 add_defn_to_vec (data->obstackp,
5419 fixup_symbol_section (sym, data->objfile),
5420 block);
5421 }
5422 }
199b4314 5423 return true;
40658b94
PH
5424}
5425
b5ec771e
PA
5426/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5427 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5428 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5429
5430static int
5431ada_add_block_renamings (struct obstack *obstackp,
5432 const struct block *block,
b5ec771e
PA
5433 const lookup_name_info &lookup_name,
5434 domain_enum domain)
22cee43f
PMR
5435{
5436 struct using_direct *renaming;
5437 int defns_mark = num_defns_collected (obstackp);
5438
b5ec771e
PA
5439 symbol_name_matcher_ftype *name_match
5440 = ada_get_symbol_name_matcher (lookup_name);
5441
22cee43f
PMR
5442 for (renaming = block_using (block);
5443 renaming != NULL;
5444 renaming = renaming->next)
5445 {
5446 const char *r_name;
22cee43f
PMR
5447
5448 /* Avoid infinite recursions: skip this renaming if we are actually
5449 already traversing it.
5450
5451 Currently, symbol lookup in Ada don't use the namespace machinery from
5452 C++/Fortran support: skip namespace imports that use them. */
5453 if (renaming->searched
5454 || (renaming->import_src != NULL
5455 && renaming->import_src[0] != '\0')
5456 || (renaming->import_dest != NULL
5457 && renaming->import_dest[0] != '\0'))
5458 continue;
5459 renaming->searched = 1;
5460
5461 /* TODO: here, we perform another name-based symbol lookup, which can
5462 pull its own multiple overloads. In theory, we should be able to do
5463 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5464 not a simple name. But in order to do this, we would need to enhance
5465 the DWARF reader to associate a symbol to this renaming, instead of a
5466 name. So, for now, we do something simpler: re-use the C++/Fortran
5467 namespace machinery. */
5468 r_name = (renaming->alias != NULL
5469 ? renaming->alias
5470 : renaming->declaration);
b5ec771e
PA
5471 if (name_match (r_name, lookup_name, NULL))
5472 {
5473 lookup_name_info decl_lookup_name (renaming->declaration,
5474 lookup_name.match_type ());
5475 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5476 1, NULL);
5477 }
22cee43f
PMR
5478 renaming->searched = 0;
5479 }
5480 return num_defns_collected (obstackp) != defns_mark;
5481}
5482
db230ce3
JB
5483/* Implements compare_names, but only applying the comparision using
5484 the given CASING. */
5b4ee69b 5485
40658b94 5486static int
db230ce3
JB
5487compare_names_with_case (const char *string1, const char *string2,
5488 enum case_sensitivity casing)
40658b94
PH
5489{
5490 while (*string1 != '\0' && *string2 != '\0')
5491 {
db230ce3
JB
5492 char c1, c2;
5493
40658b94
PH
5494 if (isspace (*string1) || isspace (*string2))
5495 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5496
5497 if (casing == case_sensitive_off)
5498 {
5499 c1 = tolower (*string1);
5500 c2 = tolower (*string2);
5501 }
5502 else
5503 {
5504 c1 = *string1;
5505 c2 = *string2;
5506 }
5507 if (c1 != c2)
40658b94 5508 break;
db230ce3 5509
40658b94
PH
5510 string1 += 1;
5511 string2 += 1;
5512 }
db230ce3 5513
40658b94
PH
5514 switch (*string1)
5515 {
5516 case '(':
5517 return strcmp_iw_ordered (string1, string2);
5518 case '_':
5519 if (*string2 == '\0')
5520 {
052874e8 5521 if (is_name_suffix (string1))
40658b94
PH
5522 return 0;
5523 else
1a1d5513 5524 return 1;
40658b94 5525 }
dbb8534f 5526 /* FALLTHROUGH */
40658b94
PH
5527 default:
5528 if (*string2 == '(')
5529 return strcmp_iw_ordered (string1, string2);
5530 else
db230ce3
JB
5531 {
5532 if (casing == case_sensitive_off)
5533 return tolower (*string1) - tolower (*string2);
5534 else
5535 return *string1 - *string2;
5536 }
40658b94 5537 }
ccefe4c4
TT
5538}
5539
db230ce3
JB
5540/* Compare STRING1 to STRING2, with results as for strcmp.
5541 Compatible with strcmp_iw_ordered in that...
5542
5543 strcmp_iw_ordered (STRING1, STRING2) <= 0
5544
5545 ... implies...
5546
5547 compare_names (STRING1, STRING2) <= 0
5548
5549 (they may differ as to what symbols compare equal). */
5550
5551static int
5552compare_names (const char *string1, const char *string2)
5553{
5554 int result;
5555
5556 /* Similar to what strcmp_iw_ordered does, we need to perform
5557 a case-insensitive comparison first, and only resort to
5558 a second, case-sensitive, comparison if the first one was
5559 not sufficient to differentiate the two strings. */
5560
5561 result = compare_names_with_case (string1, string2, case_sensitive_off);
5562 if (result == 0)
5563 result = compare_names_with_case (string1, string2, case_sensitive_on);
5564
5565 return result;
5566}
5567
b5ec771e
PA
5568/* Convenience function to get at the Ada encoded lookup name for
5569 LOOKUP_NAME, as a C string. */
5570
5571static const char *
5572ada_lookup_name (const lookup_name_info &lookup_name)
5573{
5574 return lookup_name.ada ().lookup_name ().c_str ();
5575}
5576
339c13b6 5577/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5578 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5579 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5580 symbols otherwise. */
339c13b6
JB
5581
5582static void
b5ec771e
PA
5583add_nonlocal_symbols (struct obstack *obstackp,
5584 const lookup_name_info &lookup_name,
5585 domain_enum domain, int global)
339c13b6 5586{
40658b94 5587 struct match_data data;
339c13b6 5588
6475f2fe 5589 memset (&data, 0, sizeof data);
ccefe4c4 5590 data.obstackp = obstackp;
339c13b6 5591
b5ec771e
PA
5592 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5593
199b4314
TT
5594 auto callback = [&] (struct block_symbol *bsym)
5595 {
5596 return aux_add_nonlocal_symbols (bsym, &data);
5597 };
5598
2030c079 5599 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5600 {
5601 data.objfile = objfile;
5602
b054970d
TT
5603 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5604 domain, global, callback,
5605 (is_wild_match
5606 ? NULL : compare_names));
22cee43f 5607
b669c953 5608 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5609 {
5610 const struct block *global_block
5611 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5612
b5ec771e
PA
5613 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5614 domain))
22cee43f
PMR
5615 data.found_sym = 1;
5616 }
40658b94
PH
5617 }
5618
5619 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5620 {
b5ec771e 5621 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5622 std::string bracket_name = std::string ("<_ada_") + name + '>';
5623 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5624
2030c079 5625 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5626 {
40658b94 5627 data.objfile = objfile;
b054970d 5628 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5629 domain, global, callback,
b5ec771e 5630 compare_names);
40658b94
PH
5631 }
5632 }
339c13b6
JB
5633}
5634
b5ec771e
PA
5635/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5636 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5637 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5638
22cee43f
PMR
5639 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5640 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5641 is the one match returned (no other matches in that or
d9680e73 5642 enclosing blocks is returned). If there are any matches in or
22cee43f 5643 surrounding BLOCK, then these alone are returned.
4eeaa230 5644
b5ec771e
PA
5645 Names prefixed with "standard__" are handled specially:
5646 "standard__" is first stripped off (by the lookup_name
5647 constructor), and only static and global symbols are searched.
14f9c5c9 5648
22cee43f
PMR
5649 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5650 to lookup global symbols. */
5651
5652static void
5653ada_add_all_symbols (struct obstack *obstackp,
5654 const struct block *block,
b5ec771e 5655 const lookup_name_info &lookup_name,
22cee43f
PMR
5656 domain_enum domain,
5657 int full_search,
5658 int *made_global_lookup_p)
14f9c5c9
AS
5659{
5660 struct symbol *sym;
14f9c5c9 5661
22cee43f
PMR
5662 if (made_global_lookup_p)
5663 *made_global_lookup_p = 0;
339c13b6
JB
5664
5665 /* Special case: If the user specifies a symbol name inside package
5666 Standard, do a non-wild matching of the symbol name without
5667 the "standard__" prefix. This was primarily introduced in order
5668 to allow the user to specifically access the standard exceptions
5669 using, for instance, Standard.Constraint_Error when Constraint_Error
5670 is ambiguous (due to the user defining its own Constraint_Error
5671 entity inside its program). */
b5ec771e
PA
5672 if (lookup_name.ada ().standard_p ())
5673 block = NULL;
4c4b4cd2 5674
339c13b6 5675 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5676
4eeaa230
DE
5677 if (block != NULL)
5678 {
5679 if (full_search)
b5ec771e 5680 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5681 else
5682 {
5683 /* In the !full_search case we're are being called by
5684 ada_iterate_over_symbols, and we don't want to search
5685 superblocks. */
b5ec771e 5686 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5687 }
22cee43f
PMR
5688 if (num_defns_collected (obstackp) > 0 || !full_search)
5689 return;
4eeaa230 5690 }
d2e4a39e 5691
339c13b6
JB
5692 /* No non-global symbols found. Check our cache to see if we have
5693 already performed this search before. If we have, then return
5694 the same result. */
5695
b5ec771e
PA
5696 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5697 domain, &sym, &block))
4c4b4cd2
PH
5698 {
5699 if (sym != NULL)
b5ec771e 5700 add_defn_to_vec (obstackp, sym, block);
22cee43f 5701 return;
4c4b4cd2 5702 }
14f9c5c9 5703
22cee43f
PMR
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 1;
b1eedac9 5706
339c13b6
JB
5707 /* Search symbols from all global blocks. */
5708
b5ec771e 5709 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5710
4c4b4cd2 5711 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5712 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5713
22cee43f 5714 if (num_defns_collected (obstackp) == 0)
b5ec771e 5715 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5716}
5717
b5ec771e
PA
5718/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5719 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5720 matches.
54d343a2
TT
5721 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5722 found and the blocks and symbol tables (if any) in which they were
5723 found.
22cee43f
PMR
5724
5725 When full_search is non-zero, any non-function/non-enumeral
5726 symbol match within the nest of blocks whose innermost member is BLOCK,
5727 is the one match returned (no other matches in that or
5728 enclosing blocks is returned). If there are any matches in or
5729 surrounding BLOCK, then these alone are returned.
5730
5731 Names prefixed with "standard__" are handled specially: "standard__"
5732 is first stripped off, and only static and global symbols are searched. */
5733
5734static int
b5ec771e
PA
5735ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5736 const struct block *block,
22cee43f 5737 domain_enum domain,
54d343a2 5738 std::vector<struct block_symbol> *results,
22cee43f
PMR
5739 int full_search)
5740{
22cee43f
PMR
5741 int syms_from_global_search;
5742 int ndefns;
ec6a20c2 5743 auto_obstack obstack;
22cee43f 5744
ec6a20c2 5745 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5746 domain, full_search, &syms_from_global_search);
14f9c5c9 5747
ec6a20c2
JB
5748 ndefns = num_defns_collected (&obstack);
5749
54d343a2
TT
5750 struct block_symbol *base = defns_collected (&obstack, 1);
5751 for (int i = 0; i < ndefns; ++i)
5752 results->push_back (base[i]);
4c4b4cd2 5753
54d343a2 5754 ndefns = remove_extra_symbols (results);
4c4b4cd2 5755
b1eedac9 5756 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5757 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5758
b1eedac9 5759 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5760 cache_symbol (ada_lookup_name (lookup_name), domain,
5761 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5762
54d343a2 5763 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5764
14f9c5c9
AS
5765 return ndefns;
5766}
5767
b5ec771e 5768/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5769 in global scopes, returning the number of matches, and filling *RESULTS
5770 with (SYM,BLOCK) tuples.
ec6a20c2 5771
4eeaa230
DE
5772 See ada_lookup_symbol_list_worker for further details. */
5773
5774int
b5ec771e 5775ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5776 domain_enum domain,
5777 std::vector<struct block_symbol> *results)
4eeaa230 5778{
b5ec771e
PA
5779 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5780 lookup_name_info lookup_name (name, name_match_type);
5781
5782 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5783}
5784
5785/* Implementation of the la_iterate_over_symbols method. */
5786
6969f124 5787static bool
14bc53a8 5788ada_iterate_over_symbols
b5ec771e
PA
5789 (const struct block *block, const lookup_name_info &name,
5790 domain_enum domain,
14bc53a8 5791 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5792{
5793 int ndefs, i;
54d343a2 5794 std::vector<struct block_symbol> results;
4eeaa230
DE
5795
5796 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5797
4eeaa230
DE
5798 for (i = 0; i < ndefs; ++i)
5799 {
7e41c8db 5800 if (!callback (&results[i]))
6969f124 5801 return false;
4eeaa230 5802 }
6969f124
TT
5803
5804 return true;
4eeaa230
DE
5805}
5806
4e5c77fe
JB
5807/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5808 to 1, but choosing the first symbol found if there are multiple
5809 choices.
5810
5e2336be
JB
5811 The result is stored in *INFO, which must be non-NULL.
5812 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5813
5814void
5815ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5816 domain_enum domain,
d12307c1 5817 struct block_symbol *info)
14f9c5c9 5818{
b5ec771e
PA
5819 /* Since we already have an encoded name, wrap it in '<>' to force a
5820 verbatim match. Otherwise, if the name happens to not look like
5821 an encoded name (because it doesn't include a "__"),
5822 ada_lookup_name_info would re-encode/fold it again, and that
5823 would e.g., incorrectly lowercase object renaming names like
5824 "R28b" -> "r28b". */
5825 std::string verbatim = std::string ("<") + name + '>';
5826
5e2336be 5827 gdb_assert (info != NULL);
65392b3e 5828 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5829}
aeb5907d
JB
5830
5831/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5832 scope and in global scopes, or NULL if none. NAME is folded and
5833 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5834 choosing the first symbol if there are multiple choices. */
4e5c77fe 5835
d12307c1 5836struct block_symbol
aeb5907d 5837ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5838 domain_enum domain)
aeb5907d 5839{
54d343a2 5840 std::vector<struct block_symbol> candidates;
f98fc17b 5841 int n_candidates;
f98fc17b
PA
5842
5843 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5844
5845 if (n_candidates == 0)
54d343a2 5846 return {};
f98fc17b
PA
5847
5848 block_symbol info = candidates[0];
5849 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5850 return info;
4c4b4cd2 5851}
14f9c5c9 5852
d12307c1 5853static struct block_symbol
f606139a
DE
5854ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5855 const char *name,
76a01679 5856 const struct block *block,
21b556f4 5857 const domain_enum domain)
4c4b4cd2 5858{
d12307c1 5859 struct block_symbol sym;
04dccad0 5860
65392b3e 5861 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5862 if (sym.symbol != NULL)
04dccad0
JB
5863 return sym;
5864
5865 /* If we haven't found a match at this point, try the primitive
5866 types. In other languages, this search is performed before
5867 searching for global symbols in order to short-circuit that
5868 global-symbol search if it happens that the name corresponds
5869 to a primitive type. But we cannot do the same in Ada, because
5870 it is perfectly legitimate for a program to declare a type which
5871 has the same name as a standard type. If looking up a type in
5872 that situation, we have traditionally ignored the primitive type
5873 in favor of user-defined types. This is why, unlike most other
5874 languages, we search the primitive types this late and only after
5875 having searched the global symbols without success. */
5876
5877 if (domain == VAR_DOMAIN)
5878 {
5879 struct gdbarch *gdbarch;
5880
5881 if (block == NULL)
5882 gdbarch = target_gdbarch ();
5883 else
5884 gdbarch = block_gdbarch (block);
d12307c1
PMR
5885 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5886 if (sym.symbol != NULL)
04dccad0
JB
5887 return sym;
5888 }
5889
6640a367 5890 return {};
14f9c5c9
AS
5891}
5892
5893
4c4b4cd2
PH
5894/* True iff STR is a possible encoded suffix of a normal Ada name
5895 that is to be ignored for matching purposes. Suffixes of parallel
5896 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5897 are given by any of the regular expressions:
4c4b4cd2 5898
babe1480
JB
5899 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5900 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5901 TKB [subprogram suffix for task bodies]
babe1480 5902 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5903 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5904
5905 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5906 match is performed. This sequence is used to differentiate homonyms,
5907 is an optional part of a valid name suffix. */
4c4b4cd2 5908
14f9c5c9 5909static int
d2e4a39e 5910is_name_suffix (const char *str)
14f9c5c9
AS
5911{
5912 int k;
4c4b4cd2
PH
5913 const char *matching;
5914 const int len = strlen (str);
5915
babe1480
JB
5916 /* Skip optional leading __[0-9]+. */
5917
4c4b4cd2
PH
5918 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5919 {
babe1480
JB
5920 str += 3;
5921 while (isdigit (str[0]))
5922 str += 1;
4c4b4cd2 5923 }
babe1480
JB
5924
5925 /* [.$][0-9]+ */
4c4b4cd2 5926
babe1480 5927 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5928 {
babe1480 5929 matching = str + 1;
4c4b4cd2
PH
5930 while (isdigit (matching[0]))
5931 matching += 1;
5932 if (matching[0] == '\0')
5933 return 1;
5934 }
5935
5936 /* ___[0-9]+ */
babe1480 5937
4c4b4cd2
PH
5938 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5939 {
5940 matching = str + 3;
5941 while (isdigit (matching[0]))
5942 matching += 1;
5943 if (matching[0] == '\0')
5944 return 1;
5945 }
5946
9ac7f98e
JB
5947 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5948
5949 if (strcmp (str, "TKB") == 0)
5950 return 1;
5951
529cad9c
PH
5952#if 0
5953 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5954 with a N at the end. Unfortunately, the compiler uses the same
5955 convention for other internal types it creates. So treating
529cad9c 5956 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5957 some regressions. For instance, consider the case of an enumerated
5958 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5959 name ends with N.
5960 Having a single character like this as a suffix carrying some
0963b4bd 5961 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5962 to be something like "_N" instead. In the meantime, do not do
5963 the following check. */
5964 /* Protected Object Subprograms */
5965 if (len == 1 && str [0] == 'N')
5966 return 1;
5967#endif
5968
5969 /* _E[0-9]+[bs]$ */
5970 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5971 {
5972 matching = str + 3;
5973 while (isdigit (matching[0]))
5974 matching += 1;
5975 if ((matching[0] == 'b' || matching[0] == 's')
5976 && matching [1] == '\0')
5977 return 1;
5978 }
5979
4c4b4cd2
PH
5980 /* ??? We should not modify STR directly, as we are doing below. This
5981 is fine in this case, but may become problematic later if we find
5982 that this alternative did not work, and want to try matching
5983 another one from the begining of STR. Since we modified it, we
5984 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5985 if (str[0] == 'X')
5986 {
5987 str += 1;
d2e4a39e 5988 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5989 {
5990 if (str[0] != 'n' && str[0] != 'b')
5991 return 0;
5992 str += 1;
5993 }
14f9c5c9 5994 }
babe1480 5995
14f9c5c9
AS
5996 if (str[0] == '\000')
5997 return 1;
babe1480 5998
d2e4a39e 5999 if (str[0] == '_')
14f9c5c9
AS
6000 {
6001 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6002 return 0;
d2e4a39e 6003 if (str[2] == '_')
4c4b4cd2 6004 {
61ee279c
PH
6005 if (strcmp (str + 3, "JM") == 0)
6006 return 1;
6007 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6008 the LJM suffix in favor of the JM one. But we will
6009 still accept LJM as a valid suffix for a reasonable
6010 amount of time, just to allow ourselves to debug programs
6011 compiled using an older version of GNAT. */
4c4b4cd2
PH
6012 if (strcmp (str + 3, "LJM") == 0)
6013 return 1;
6014 if (str[3] != 'X')
6015 return 0;
1265e4aa
JB
6016 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6017 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6018 return 1;
6019 if (str[4] == 'R' && str[5] != 'T')
6020 return 1;
6021 return 0;
6022 }
6023 if (!isdigit (str[2]))
6024 return 0;
6025 for (k = 3; str[k] != '\0'; k += 1)
6026 if (!isdigit (str[k]) && str[k] != '_')
6027 return 0;
14f9c5c9
AS
6028 return 1;
6029 }
4c4b4cd2 6030 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6031 {
4c4b4cd2
PH
6032 for (k = 2; str[k] != '\0'; k += 1)
6033 if (!isdigit (str[k]) && str[k] != '_')
6034 return 0;
14f9c5c9
AS
6035 return 1;
6036 }
6037 return 0;
6038}
d2e4a39e 6039
aeb5907d
JB
6040/* Return non-zero if the string starting at NAME and ending before
6041 NAME_END contains no capital letters. */
529cad9c
PH
6042
6043static int
6044is_valid_name_for_wild_match (const char *name0)
6045{
f945dedf 6046 std::string decoded_name = ada_decode (name0);
529cad9c
PH
6047 int i;
6048
5823c3ef
JB
6049 /* If the decoded name starts with an angle bracket, it means that
6050 NAME0 does not follow the GNAT encoding format. It should then
6051 not be allowed as a possible wild match. */
6052 if (decoded_name[0] == '<')
6053 return 0;
6054
529cad9c
PH
6055 for (i=0; decoded_name[i] != '\0'; i++)
6056 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6057 return 0;
6058
6059 return 1;
6060}
6061
73589123
PH
6062/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6063 that could start a simple name. Assumes that *NAMEP points into
6064 the string beginning at NAME0. */
4c4b4cd2 6065
14f9c5c9 6066static int
73589123 6067advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6068{
73589123 6069 const char *name = *namep;
5b4ee69b 6070
5823c3ef 6071 while (1)
14f9c5c9 6072 {
aa27d0b3 6073 int t0, t1;
73589123
PH
6074
6075 t0 = *name;
6076 if (t0 == '_')
6077 {
6078 t1 = name[1];
6079 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6080 {
6081 name += 1;
61012eef 6082 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6083 break;
6084 else
6085 name += 1;
6086 }
aa27d0b3
JB
6087 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6088 || name[2] == target0))
73589123
PH
6089 {
6090 name += 2;
6091 break;
6092 }
6093 else
6094 return 0;
6095 }
6096 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6097 name += 1;
6098 else
5823c3ef 6099 return 0;
73589123
PH
6100 }
6101
6102 *namep = name;
6103 return 1;
6104}
6105
b5ec771e
PA
6106/* Return true iff NAME encodes a name of the form prefix.PATN.
6107 Ignores any informational suffixes of NAME (i.e., for which
6108 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6109 simple name. */
73589123 6110
b5ec771e 6111static bool
73589123
PH
6112wild_match (const char *name, const char *patn)
6113{
22e048c9 6114 const char *p;
73589123
PH
6115 const char *name0 = name;
6116
6117 while (1)
6118 {
6119 const char *match = name;
6120
6121 if (*name == *patn)
6122 {
6123 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6124 if (*p != *name)
6125 break;
6126 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6127 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6128
6129 if (name[-1] == '_')
6130 name -= 1;
6131 }
6132 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6133 return false;
96d887e8 6134 }
96d887e8
PH
6135}
6136
b5ec771e
PA
6137/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6138 any trailing suffixes that encode debugging information or leading
6139 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6140 information that is ignored). */
40658b94 6141
b5ec771e 6142static bool
c4d840bd
PH
6143full_match (const char *sym_name, const char *search_name)
6144{
b5ec771e
PA
6145 size_t search_name_len = strlen (search_name);
6146
6147 if (strncmp (sym_name, search_name, search_name_len) == 0
6148 && is_name_suffix (sym_name + search_name_len))
6149 return true;
6150
6151 if (startswith (sym_name, "_ada_")
6152 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6153 && is_name_suffix (sym_name + search_name_len + 5))
6154 return true;
c4d840bd 6155
b5ec771e
PA
6156 return false;
6157}
c4d840bd 6158
b5ec771e
PA
6159/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6160 *defn_symbols, updating the list of symbols in OBSTACKP (if
6161 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6162
6163static void
6164ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6165 const struct block *block,
6166 const lookup_name_info &lookup_name,
6167 domain_enum domain, struct objfile *objfile)
96d887e8 6168{
8157b174 6169 struct block_iterator iter;
96d887e8
PH
6170 /* A matching argument symbol, if any. */
6171 struct symbol *arg_sym;
6172 /* Set true when we find a matching non-argument symbol. */
6173 int found_sym;
6174 struct symbol *sym;
6175
6176 arg_sym = NULL;
6177 found_sym = 0;
b5ec771e
PA
6178 for (sym = block_iter_match_first (block, lookup_name, &iter);
6179 sym != NULL;
6180 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6181 {
c1b5c1eb 6182 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6183 {
6184 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6185 {
6186 if (SYMBOL_IS_ARGUMENT (sym))
6187 arg_sym = sym;
6188 else
6189 {
6190 found_sym = 1;
6191 add_defn_to_vec (obstackp,
6192 fixup_symbol_section (sym, objfile),
6193 block);
6194 }
6195 }
6196 }
96d887e8
PH
6197 }
6198
22cee43f
PMR
6199 /* Handle renamings. */
6200
b5ec771e 6201 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6202 found_sym = 1;
6203
96d887e8
PH
6204 if (!found_sym && arg_sym != NULL)
6205 {
76a01679
JB
6206 add_defn_to_vec (obstackp,
6207 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6208 block);
96d887e8
PH
6209 }
6210
b5ec771e 6211 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6212 {
6213 arg_sym = NULL;
6214 found_sym = 0;
b5ec771e
PA
6215 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6216 const char *name = ada_lookup_name.c_str ();
6217 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6218
6219 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6220 {
c1b5c1eb 6221 if (symbol_matches_domain (sym->language (),
4186eb54 6222 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6223 {
6224 int cmp;
6225
987012b8 6226 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6227 if (cmp == 0)
6228 {
987012b8 6229 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6230 if (cmp == 0)
987012b8 6231 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6232 name_len);
6233 }
6234
6235 if (cmp == 0
987012b8 6236 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6237 {
2a2d4dc3
AS
6238 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6239 {
6240 if (SYMBOL_IS_ARGUMENT (sym))
6241 arg_sym = sym;
6242 else
6243 {
6244 found_sym = 1;
6245 add_defn_to_vec (obstackp,
6246 fixup_symbol_section (sym, objfile),
6247 block);
6248 }
6249 }
76a01679
JB
6250 }
6251 }
76a01679 6252 }
96d887e8
PH
6253
6254 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6255 They aren't parameters, right? */
6256 if (!found_sym && arg_sym != NULL)
6257 {
6258 add_defn_to_vec (obstackp,
76a01679 6259 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6260 block);
96d887e8
PH
6261 }
6262 }
6263}
6264\f
41d27058
JB
6265
6266 /* Symbol Completion */
6267
b5ec771e 6268/* See symtab.h. */
41d27058 6269
b5ec771e
PA
6270bool
6271ada_lookup_name_info::matches
6272 (const char *sym_name,
6273 symbol_name_match_type match_type,
a207cff2 6274 completion_match_result *comp_match_res) const
41d27058 6275{
b5ec771e
PA
6276 bool match = false;
6277 const char *text = m_encoded_name.c_str ();
6278 size_t text_len = m_encoded_name.size ();
41d27058
JB
6279
6280 /* First, test against the fully qualified name of the symbol. */
6281
6282 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6283 match = true;
41d27058 6284
f945dedf 6285 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6286 if (match && !m_encoded_p)
41d27058
JB
6287 {
6288 /* One needed check before declaring a positive match is to verify
6289 that iff we are doing a verbatim match, the decoded version
6290 of the symbol name starts with '<'. Otherwise, this symbol name
6291 is not a suitable completion. */
41d27058 6292
f945dedf 6293 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6294 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6295 }
6296
b5ec771e 6297 if (match && !m_verbatim_p)
41d27058
JB
6298 {
6299 /* When doing non-verbatim match, another check that needs to
6300 be done is to verify that the potentially matching symbol name
6301 does not include capital letters, because the ada-mode would
6302 not be able to understand these symbol names without the
6303 angle bracket notation. */
6304 const char *tmp;
6305
6306 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6307 if (*tmp != '\0')
b5ec771e 6308 match = false;
41d27058
JB
6309 }
6310
6311 /* Second: Try wild matching... */
6312
b5ec771e 6313 if (!match && m_wild_match_p)
41d27058
JB
6314 {
6315 /* Since we are doing wild matching, this means that TEXT
6316 may represent an unqualified symbol name. We therefore must
6317 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6318 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6319
6320 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6321 match = true;
41d27058
JB
6322 }
6323
b5ec771e 6324 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6325
6326 if (!match)
b5ec771e 6327 return false;
41d27058 6328
a207cff2 6329 if (comp_match_res != NULL)
b5ec771e 6330 {
a207cff2 6331 std::string &match_str = comp_match_res->match.storage ();
41d27058 6332
b5ec771e 6333 if (!m_encoded_p)
a207cff2 6334 match_str = ada_decode (sym_name);
b5ec771e
PA
6335 else
6336 {
6337 if (m_verbatim_p)
6338 match_str = add_angle_brackets (sym_name);
6339 else
6340 match_str = sym_name;
41d27058 6341
b5ec771e 6342 }
a207cff2
PA
6343
6344 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6345 }
6346
b5ec771e 6347 return true;
41d27058
JB
6348}
6349
b5ec771e 6350/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6351 WORD is the entire command on which completion is made. */
41d27058 6352
eb3ff9a5
PA
6353static void
6354ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6355 complete_symbol_mode mode,
b5ec771e
PA
6356 symbol_name_match_type name_match_type,
6357 const char *text, const char *word,
eb3ff9a5 6358 enum type_code code)
41d27058 6359{
41d27058 6360 struct symbol *sym;
3977b71f 6361 const struct block *b, *surrounding_static_block = 0;
8157b174 6362 struct block_iterator iter;
41d27058 6363
2f68a895
TT
6364 gdb_assert (code == TYPE_CODE_UNDEF);
6365
1b026119 6366 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6367
6368 /* First, look at the partial symtab symbols. */
14bc53a8 6369 expand_symtabs_matching (NULL,
b5ec771e
PA
6370 lookup_name,
6371 NULL,
14bc53a8
PA
6372 NULL,
6373 ALL_DOMAIN);
41d27058
JB
6374
6375 /* At this point scan through the misc symbol vectors and add each
6376 symbol you find to the list. Eventually we want to ignore
6377 anything that isn't a text symbol (everything else will be
6378 handled by the psymtab code above). */
6379
2030c079 6380 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6381 {
7932255d 6382 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6383 {
6384 QUIT;
6385
6386 if (completion_skip_symbol (mode, msymbol))
6387 continue;
6388
c1b5c1eb 6389 language symbol_language = msymbol->language ();
5325b9bf
TT
6390
6391 /* Ada minimal symbols won't have their language set to Ada. If
6392 we let completion_list_add_name compare using the
6393 default/C-like matcher, then when completing e.g., symbols in a
6394 package named "pck", we'd match internal Ada symbols like
6395 "pckS", which are invalid in an Ada expression, unless you wrap
6396 them in '<' '>' to request a verbatim match.
6397
6398 Unfortunately, some Ada encoded names successfully demangle as
6399 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6400 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6401 with the wrong language set. Paper over that issue here. */
6402 if (symbol_language == language_auto
6403 || symbol_language == language_cplus)
6404 symbol_language = language_ada;
6405
6406 completion_list_add_name (tracker,
6407 symbol_language,
c9d95fa3 6408 msymbol->linkage_name (),
5325b9bf
TT
6409 lookup_name, text, word);
6410 }
6411 }
41d27058
JB
6412
6413 /* Search upwards from currently selected frame (so that we can
6414 complete on local vars. */
6415
6416 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6417 {
6418 if (!BLOCK_SUPERBLOCK (b))
6419 surrounding_static_block = b; /* For elmin of dups */
6420
6421 ALL_BLOCK_SYMBOLS (b, iter, sym)
6422 {
f9d67a22
PA
6423 if (completion_skip_symbol (mode, sym))
6424 continue;
6425
b5ec771e 6426 completion_list_add_name (tracker,
c1b5c1eb 6427 sym->language (),
987012b8 6428 sym->linkage_name (),
1b026119 6429 lookup_name, text, word);
41d27058
JB
6430 }
6431 }
6432
6433 /* Go through the symtabs and check the externs and statics for
43f3e411 6434 symbols which match. */
41d27058 6435
2030c079 6436 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6437 {
b669c953 6438 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6439 {
6440 QUIT;
6441 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6442 ALL_BLOCK_SYMBOLS (b, iter, sym)
6443 {
6444 if (completion_skip_symbol (mode, sym))
6445 continue;
f9d67a22 6446
d8aeb77f 6447 completion_list_add_name (tracker,
c1b5c1eb 6448 sym->language (),
987012b8 6449 sym->linkage_name (),
d8aeb77f
TT
6450 lookup_name, text, word);
6451 }
6452 }
41d27058 6453 }
41d27058 6454
2030c079 6455 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6456 {
b669c953 6457 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6458 {
6459 QUIT;
6460 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6461 /* Don't do this block twice. */
6462 if (b == surrounding_static_block)
6463 continue;
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
f9d67a22 6468
d8aeb77f 6469 completion_list_add_name (tracker,
c1b5c1eb 6470 sym->language (),
987012b8 6471 sym->linkage_name (),
d8aeb77f
TT
6472 lookup_name, text, word);
6473 }
6474 }
41d27058 6475 }
41d27058
JB
6476}
6477
963a6417 6478 /* Field Access */
96d887e8 6479
73fb9985
JB
6480/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6481 for tagged types. */
6482
6483static int
6484ada_is_dispatch_table_ptr_type (struct type *type)
6485{
0d5cff50 6486 const char *name;
73fb9985 6487
78134374 6488 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6489 return 0;
6490
7d93a1e0 6491 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6492 if (name == NULL)
6493 return 0;
6494
6495 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6496}
6497
ac4a2da4
JG
6498/* Return non-zero if TYPE is an interface tag. */
6499
6500static int
6501ada_is_interface_tag (struct type *type)
6502{
7d93a1e0 6503 const char *name = type->name ();
ac4a2da4
JG
6504
6505 if (name == NULL)
6506 return 0;
6507
6508 return (strcmp (name, "ada__tags__interface_tag") == 0);
6509}
6510
963a6417
PH
6511/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6512 to be invisible to users. */
96d887e8 6513
963a6417
PH
6514int
6515ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6516{
1f704f76 6517 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6518 return 1;
ffde82bf 6519
73fb9985
JB
6520 /* Check the name of that field. */
6521 {
6522 const char *name = TYPE_FIELD_NAME (type, field_num);
6523
6524 /* Anonymous field names should not be printed.
6525 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6526 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6527 if (name == NULL)
6528 return 1;
6529
ffde82bf
JB
6530 /* Normally, fields whose name start with an underscore ("_")
6531 are fields that have been internally generated by the compiler,
6532 and thus should not be printed. The "_parent" field is special,
6533 however: This is a field internally generated by the compiler
6534 for tagged types, and it contains the components inherited from
6535 the parent type. This field should not be printed as is, but
6536 should not be ignored either. */
61012eef 6537 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6538 return 1;
6539 }
6540
ac4a2da4
JG
6541 /* If this is the dispatch table of a tagged type or an interface tag,
6542 then ignore. */
73fb9985 6543 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6544 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6545 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6546 return 1;
6547
6548 /* Not a special field, so it should not be ignored. */
6549 return 0;
963a6417 6550}
96d887e8 6551
963a6417 6552/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6553 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6554
963a6417
PH
6555int
6556ada_is_tagged_type (struct type *type, int refok)
6557{
988f6b3d 6558 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6559}
96d887e8 6560
963a6417 6561/* True iff TYPE represents the type of X'Tag */
96d887e8 6562
963a6417
PH
6563int
6564ada_is_tag_type (struct type *type)
6565{
460efde1
JB
6566 type = ada_check_typedef (type);
6567
78134374 6568 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6569 return 0;
6570 else
96d887e8 6571 {
963a6417 6572 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6573
963a6417
PH
6574 return (name != NULL
6575 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6576 }
96d887e8
PH
6577}
6578
963a6417 6579/* The type of the tag on VAL. */
76a01679 6580
de93309a 6581static struct type *
963a6417 6582ada_tag_type (struct value *val)
96d887e8 6583{
988f6b3d 6584 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6585}
96d887e8 6586
b50d69b5
JG
6587/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6588 retired at Ada 05). */
6589
6590static int
6591is_ada95_tag (struct value *tag)
6592{
6593 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6594}
6595
963a6417 6596/* The value of the tag on VAL. */
96d887e8 6597
de93309a 6598static struct value *
963a6417
PH
6599ada_value_tag (struct value *val)
6600{
03ee6b2e 6601 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6602}
6603
963a6417
PH
6604/* The value of the tag on the object of type TYPE whose contents are
6605 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6606 ADDRESS. */
96d887e8 6607
963a6417 6608static struct value *
10a2c479 6609value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6610 const gdb_byte *valaddr,
963a6417 6611 CORE_ADDR address)
96d887e8 6612{
b5385fc0 6613 int tag_byte_offset;
963a6417 6614 struct type *tag_type;
5b4ee69b 6615
963a6417 6616 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6617 NULL, NULL, NULL))
96d887e8 6618 {
fc1a4b47 6619 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6620 ? NULL
6621 : valaddr + tag_byte_offset);
963a6417 6622 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6623
963a6417 6624 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6625 }
963a6417
PH
6626 return NULL;
6627}
96d887e8 6628
963a6417
PH
6629static struct type *
6630type_from_tag (struct value *tag)
6631{
6632 const char *type_name = ada_tag_name (tag);
5b4ee69b 6633
963a6417
PH
6634 if (type_name != NULL)
6635 return ada_find_any_type (ada_encode (type_name));
6636 return NULL;
6637}
96d887e8 6638
b50d69b5
JG
6639/* Given a value OBJ of a tagged type, return a value of this
6640 type at the base address of the object. The base address, as
6641 defined in Ada.Tags, it is the address of the primary tag of
6642 the object, and therefore where the field values of its full
6643 view can be fetched. */
6644
6645struct value *
6646ada_tag_value_at_base_address (struct value *obj)
6647{
b50d69b5
JG
6648 struct value *val;
6649 LONGEST offset_to_top = 0;
6650 struct type *ptr_type, *obj_type;
6651 struct value *tag;
6652 CORE_ADDR base_address;
6653
6654 obj_type = value_type (obj);
6655
6656 /* It is the responsability of the caller to deref pointers. */
6657
78134374 6658 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6659 return obj;
6660
6661 tag = ada_value_tag (obj);
6662 if (!tag)
6663 return obj;
6664
6665 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6666
6667 if (is_ada95_tag (tag))
6668 return obj;
6669
08f49010
XR
6670 ptr_type = language_lookup_primitive_type
6671 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6672 ptr_type = lookup_pointer_type (ptr_type);
6673 val = value_cast (ptr_type, tag);
6674 if (!val)
6675 return obj;
6676
6677 /* It is perfectly possible that an exception be raised while
6678 trying to determine the base address, just like for the tag;
6679 see ada_tag_name for more details. We do not print the error
6680 message for the same reason. */
6681
a70b8144 6682 try
b50d69b5
JG
6683 {
6684 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6685 }
6686
230d2906 6687 catch (const gdb_exception_error &e)
492d29ea
PA
6688 {
6689 return obj;
6690 }
b50d69b5
JG
6691
6692 /* If offset is null, nothing to do. */
6693
6694 if (offset_to_top == 0)
6695 return obj;
6696
6697 /* -1 is a special case in Ada.Tags; however, what should be done
6698 is not quite clear from the documentation. So do nothing for
6699 now. */
6700
6701 if (offset_to_top == -1)
6702 return obj;
6703
08f49010
XR
6704 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6705 from the base address. This was however incompatible with
6706 C++ dispatch table: C++ uses a *negative* value to *add*
6707 to the base address. Ada's convention has therefore been
6708 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6709 use the same convention. Here, we support both cases by
6710 checking the sign of OFFSET_TO_TOP. */
6711
6712 if (offset_to_top > 0)
6713 offset_to_top = -offset_to_top;
6714
6715 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6716 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6717
6718 /* Make sure that we have a proper tag at the new address.
6719 Otherwise, offset_to_top is bogus (which can happen when
6720 the object is not initialized yet). */
6721
6722 if (!tag)
6723 return obj;
6724
6725 obj_type = type_from_tag (tag);
6726
6727 if (!obj_type)
6728 return obj;
6729
6730 return value_from_contents_and_address (obj_type, NULL, base_address);
6731}
6732
1b611343
JB
6733/* Return the "ada__tags__type_specific_data" type. */
6734
6735static struct type *
6736ada_get_tsd_type (struct inferior *inf)
963a6417 6737{
1b611343 6738 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6739
1b611343
JB
6740 if (data->tsd_type == 0)
6741 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6742 return data->tsd_type;
6743}
529cad9c 6744
1b611343
JB
6745/* Return the TSD (type-specific data) associated to the given TAG.
6746 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6747
1b611343 6748 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6749
1b611343
JB
6750static struct value *
6751ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6752{
4c4b4cd2 6753 struct value *val;
1b611343 6754 struct type *type;
5b4ee69b 6755
1b611343
JB
6756 /* First option: The TSD is simply stored as a field of our TAG.
6757 Only older versions of GNAT would use this format, but we have
6758 to test it first, because there are no visible markers for
6759 the current approach except the absence of that field. */
529cad9c 6760
1b611343
JB
6761 val = ada_value_struct_elt (tag, "tsd", 1);
6762 if (val)
6763 return val;
e802dbe0 6764
1b611343
JB
6765 /* Try the second representation for the dispatch table (in which
6766 there is no explicit 'tsd' field in the referent of the tag pointer,
6767 and instead the tsd pointer is stored just before the dispatch
6768 table. */
e802dbe0 6769
1b611343
JB
6770 type = ada_get_tsd_type (current_inferior());
6771 if (type == NULL)
6772 return NULL;
6773 type = lookup_pointer_type (lookup_pointer_type (type));
6774 val = value_cast (type, tag);
6775 if (val == NULL)
6776 return NULL;
6777 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6778}
6779
1b611343
JB
6780/* Given the TSD of a tag (type-specific data), return a string
6781 containing the name of the associated type.
6782
6783 The returned value is good until the next call. May return NULL
6784 if we are unable to determine the tag name. */
6785
6786static char *
6787ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6788{
529cad9c
PH
6789 static char name[1024];
6790 char *p;
1b611343 6791 struct value *val;
529cad9c 6792
1b611343 6793 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6794 if (val == NULL)
1b611343 6795 return NULL;
4c4b4cd2
PH
6796 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6797 for (p = name; *p != '\0'; p += 1)
6798 if (isalpha (*p))
6799 *p = tolower (*p);
1b611343 6800 return name;
4c4b4cd2
PH
6801}
6802
6803/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6804 a C string.
6805
6806 Return NULL if the TAG is not an Ada tag, or if we were unable to
6807 determine the name of that tag. The result is good until the next
6808 call. */
4c4b4cd2
PH
6809
6810const char *
6811ada_tag_name (struct value *tag)
6812{
1b611343 6813 char *name = NULL;
5b4ee69b 6814
df407dfe 6815 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6816 return NULL;
1b611343
JB
6817
6818 /* It is perfectly possible that an exception be raised while trying
6819 to determine the TAG's name, even under normal circumstances:
6820 The associated variable may be uninitialized or corrupted, for
6821 instance. We do not let any exception propagate past this point.
6822 instead we return NULL.
6823
6824 We also do not print the error message either (which often is very
6825 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6826 the caller print a more meaningful message if necessary. */
a70b8144 6827 try
1b611343
JB
6828 {
6829 struct value *tsd = ada_get_tsd_from_tag (tag);
6830
6831 if (tsd != NULL)
6832 name = ada_tag_name_from_tsd (tsd);
6833 }
230d2906 6834 catch (const gdb_exception_error &e)
492d29ea
PA
6835 {
6836 }
1b611343
JB
6837
6838 return name;
4c4b4cd2
PH
6839}
6840
6841/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6842
d2e4a39e 6843struct type *
ebf56fd3 6844ada_parent_type (struct type *type)
14f9c5c9
AS
6845{
6846 int i;
6847
61ee279c 6848 type = ada_check_typedef (type);
14f9c5c9 6849
78134374 6850 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6851 return NULL;
6852
1f704f76 6853 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6854 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6855 {
6856 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6857
6858 /* If the _parent field is a pointer, then dereference it. */
78134374 6859 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6860 parent_type = TYPE_TARGET_TYPE (parent_type);
6861 /* If there is a parallel XVS type, get the actual base type. */
6862 parent_type = ada_get_base_type (parent_type);
6863
6864 return ada_check_typedef (parent_type);
6865 }
14f9c5c9
AS
6866
6867 return NULL;
6868}
6869
4c4b4cd2
PH
6870/* True iff field number FIELD_NUM of structure type TYPE contains the
6871 parent-type (inherited) fields of a derived type. Assumes TYPE is
6872 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6873
6874int
ebf56fd3 6875ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6876{
61ee279c 6877 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6878
4c4b4cd2 6879 return (name != NULL
61012eef
GB
6880 && (startswith (name, "PARENT")
6881 || startswith (name, "_parent")));
14f9c5c9
AS
6882}
6883
4c4b4cd2 6884/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6885 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6886 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6887 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6888 structures. */
14f9c5c9
AS
6889
6890int
ebf56fd3 6891ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6892{
d2e4a39e 6893 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6894
dddc0e16
JB
6895 if (name != NULL && strcmp (name, "RETVAL") == 0)
6896 {
6897 /* This happens in functions with "out" or "in out" parameters
6898 which are passed by copy. For such functions, GNAT describes
6899 the function's return type as being a struct where the return
6900 value is in a field called RETVAL, and where the other "out"
6901 or "in out" parameters are fields of that struct. This is not
6902 a wrapper. */
6903 return 0;
6904 }
6905
d2e4a39e 6906 return (name != NULL
61012eef 6907 && (startswith (name, "PARENT")
4c4b4cd2 6908 || strcmp (name, "REP") == 0
61012eef 6909 || startswith (name, "_parent")
4c4b4cd2 6910 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6911}
6912
4c4b4cd2
PH
6913/* True iff field number FIELD_NUM of structure or union type TYPE
6914 is a variant wrapper. Assumes TYPE is a structure type with at least
6915 FIELD_NUM+1 fields. */
14f9c5c9
AS
6916
6917int
ebf56fd3 6918ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6919{
8ecb59f8
TT
6920 /* Only Ada types are eligible. */
6921 if (!ADA_TYPE_P (type))
6922 return 0;
6923
d2e4a39e 6924 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6925
78134374
SM
6926 return (field_type->code () == TYPE_CODE_UNION
6927 || (is_dynamic_field (type, field_num)
6928 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6929 == TYPE_CODE_UNION)));
14f9c5c9
AS
6930}
6931
6932/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6933 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6934 returns the type of the controlling discriminant for the variant.
6935 May return NULL if the type could not be found. */
14f9c5c9 6936
d2e4a39e 6937struct type *
ebf56fd3 6938ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6939{
a121b7c1 6940 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6941
988f6b3d 6942 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6943}
6944
4c4b4cd2 6945/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6946 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6947 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6948
de93309a 6949static int
ebf56fd3 6950ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6951{
d2e4a39e 6952 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6953
14f9c5c9
AS
6954 return (name != NULL && name[0] == 'O');
6955}
6956
6957/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6958 returns the name of the discriminant controlling the variant.
6959 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6960
a121b7c1 6961const char *
ebf56fd3 6962ada_variant_discrim_name (struct type *type0)
14f9c5c9 6963{
d2e4a39e 6964 static char *result = NULL;
14f9c5c9 6965 static size_t result_len = 0;
d2e4a39e
AS
6966 struct type *type;
6967 const char *name;
6968 const char *discrim_end;
6969 const char *discrim_start;
14f9c5c9 6970
78134374 6971 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6972 type = TYPE_TARGET_TYPE (type0);
6973 else
6974 type = type0;
6975
6976 name = ada_type_name (type);
6977
6978 if (name == NULL || name[0] == '\000')
6979 return "";
6980
6981 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6982 discrim_end -= 1)
6983 {
61012eef 6984 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6985 break;
14f9c5c9
AS
6986 }
6987 if (discrim_end == name)
6988 return "";
6989
d2e4a39e 6990 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6991 discrim_start -= 1)
6992 {
d2e4a39e 6993 if (discrim_start == name + 1)
4c4b4cd2 6994 return "";
76a01679 6995 if ((discrim_start > name + 3
61012eef 6996 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6997 || discrim_start[-1] == '.')
6998 break;
14f9c5c9
AS
6999 }
7000
7001 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7002 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7003 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7004 return result;
7005}
7006
4c4b4cd2
PH
7007/* Scan STR for a subtype-encoded number, beginning at position K.
7008 Put the position of the character just past the number scanned in
7009 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7010 Return 1 if there was a valid number at the given position, and 0
7011 otherwise. A "subtype-encoded" number consists of the absolute value
7012 in decimal, followed by the letter 'm' to indicate a negative number.
7013 Assumes 0m does not occur. */
14f9c5c9
AS
7014
7015int
d2e4a39e 7016ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7017{
7018 ULONGEST RU;
7019
d2e4a39e 7020 if (!isdigit (str[k]))
14f9c5c9
AS
7021 return 0;
7022
4c4b4cd2 7023 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7024 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7025 LONGEST. */
14f9c5c9
AS
7026 RU = 0;
7027 while (isdigit (str[k]))
7028 {
d2e4a39e 7029 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7030 k += 1;
7031 }
7032
d2e4a39e 7033 if (str[k] == 'm')
14f9c5c9
AS
7034 {
7035 if (R != NULL)
4c4b4cd2 7036 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7037 k += 1;
7038 }
7039 else if (R != NULL)
7040 *R = (LONGEST) RU;
7041
4c4b4cd2 7042 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7043 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7044 number representable as a LONGEST (although either would probably work
7045 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7046 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7047
7048 if (new_k != NULL)
7049 *new_k = k;
7050 return 1;
7051}
7052
4c4b4cd2
PH
7053/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7054 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7055 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7056
de93309a 7057static int
ebf56fd3 7058ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7059{
d2e4a39e 7060 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7061 int p;
7062
7063 p = 0;
7064 while (1)
7065 {
d2e4a39e 7066 switch (name[p])
4c4b4cd2
PH
7067 {
7068 case '\0':
7069 return 0;
7070 case 'S':
7071 {
7072 LONGEST W;
5b4ee69b 7073
4c4b4cd2
PH
7074 if (!ada_scan_number (name, p + 1, &W, &p))
7075 return 0;
7076 if (val == W)
7077 return 1;
7078 break;
7079 }
7080 case 'R':
7081 {
7082 LONGEST L, U;
5b4ee69b 7083
4c4b4cd2
PH
7084 if (!ada_scan_number (name, p + 1, &L, &p)
7085 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7086 return 0;
7087 if (val >= L && val <= U)
7088 return 1;
7089 break;
7090 }
7091 case 'O':
7092 return 1;
7093 default:
7094 return 0;
7095 }
7096 }
7097}
7098
0963b4bd 7099/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7100
7101/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7102 ARG_TYPE, extract and return the value of one of its (non-static)
7103 fields. FIELDNO says which field. Differs from value_primitive_field
7104 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7105
5eb68a39 7106struct value *
d2e4a39e 7107ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7108 struct type *arg_type)
14f9c5c9 7109{
14f9c5c9
AS
7110 struct type *type;
7111
61ee279c 7112 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7113 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7114
4504bbde
TT
7115 /* Handle packed fields. It might be that the field is not packed
7116 relative to its containing structure, but the structure itself is
7117 packed; in this case we must take the bit-field path. */
7118 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7119 {
7120 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7121 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7122
0fd88904 7123 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7124 offset + bit_pos / 8,
7125 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7126 }
7127 else
7128 return value_primitive_field (arg1, offset, fieldno, arg_type);
7129}
7130
52ce6436
PH
7131/* Find field with name NAME in object of type TYPE. If found,
7132 set the following for each argument that is non-null:
7133 - *FIELD_TYPE_P to the field's type;
7134 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7135 an object of that type;
7136 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7137 - *BIT_SIZE_P to its size in bits if the field is packed, and
7138 0 otherwise;
7139 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7140 fields up to but not including the desired field, or by the total
7141 number of fields if not found. A NULL value of NAME never
7142 matches; the function just counts visible fields in this case.
7143
828d5846
XR
7144 Notice that we need to handle when a tagged record hierarchy
7145 has some components with the same name, like in this scenario:
7146
7147 type Top_T is tagged record
7148 N : Integer := 1;
7149 U : Integer := 974;
7150 A : Integer := 48;
7151 end record;
7152
7153 type Middle_T is new Top.Top_T with record
7154 N : Character := 'a';
7155 C : Integer := 3;
7156 end record;
7157
7158 type Bottom_T is new Middle.Middle_T with record
7159 N : Float := 4.0;
7160 C : Character := '5';
7161 X : Integer := 6;
7162 A : Character := 'J';
7163 end record;
7164
7165 Let's say we now have a variable declared and initialized as follow:
7166
7167 TC : Top_A := new Bottom_T;
7168
7169 And then we use this variable to call this function
7170
7171 procedure Assign (Obj: in out Top_T; TV : Integer);
7172
7173 as follow:
7174
7175 Assign (Top_T (B), 12);
7176
7177 Now, we're in the debugger, and we're inside that procedure
7178 then and we want to print the value of obj.c:
7179
7180 Usually, the tagged record or one of the parent type owns the
7181 component to print and there's no issue but in this particular
7182 case, what does it mean to ask for Obj.C? Since the actual
7183 type for object is type Bottom_T, it could mean two things: type
7184 component C from the Middle_T view, but also component C from
7185 Bottom_T. So in that "undefined" case, when the component is
7186 not found in the non-resolved type (which includes all the
7187 components of the parent type), then resolve it and see if we
7188 get better luck once expanded.
7189
7190 In the case of homonyms in the derived tagged type, we don't
7191 guaranty anything, and pick the one that's easiest for us
7192 to program.
7193
0963b4bd 7194 Returns 1 if found, 0 otherwise. */
52ce6436 7195
4c4b4cd2 7196static int
0d5cff50 7197find_struct_field (const char *name, struct type *type, int offset,
76a01679 7198 struct type **field_type_p,
52ce6436
PH
7199 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7200 int *index_p)
4c4b4cd2
PH
7201{
7202 int i;
828d5846 7203 int parent_offset = -1;
4c4b4cd2 7204
61ee279c 7205 type = ada_check_typedef (type);
76a01679 7206
52ce6436
PH
7207 if (field_type_p != NULL)
7208 *field_type_p = NULL;
7209 if (byte_offset_p != NULL)
d5d6fca5 7210 *byte_offset_p = 0;
52ce6436
PH
7211 if (bit_offset_p != NULL)
7212 *bit_offset_p = 0;
7213 if (bit_size_p != NULL)
7214 *bit_size_p = 0;
7215
1f704f76 7216 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7217 {
7218 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7219 int fld_offset = offset + bit_pos / 8;
0d5cff50 7220 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7221
4c4b4cd2
PH
7222 if (t_field_name == NULL)
7223 continue;
7224
828d5846
XR
7225 else if (ada_is_parent_field (type, i))
7226 {
7227 /* This is a field pointing us to the parent type of a tagged
7228 type. As hinted in this function's documentation, we give
7229 preference to fields in the current record first, so what
7230 we do here is just record the index of this field before
7231 we skip it. If it turns out we couldn't find our field
7232 in the current record, then we'll get back to it and search
7233 inside it whether the field might exist in the parent. */
7234
7235 parent_offset = i;
7236 continue;
7237 }
7238
52ce6436 7239 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7240 {
7241 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7242
52ce6436
PH
7243 if (field_type_p != NULL)
7244 *field_type_p = TYPE_FIELD_TYPE (type, i);
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = fld_offset;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = bit_pos % 8;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = bit_size;
76a01679
JB
7251 return 1;
7252 }
4c4b4cd2
PH
7253 else if (ada_is_wrapper_field (type, i))
7254 {
52ce6436
PH
7255 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7256 field_type_p, byte_offset_p, bit_offset_p,
7257 bit_size_p, index_p))
76a01679
JB
7258 return 1;
7259 }
4c4b4cd2
PH
7260 else if (ada_is_variant_part (type, i))
7261 {
52ce6436
PH
7262 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7263 fixed type?? */
4c4b4cd2 7264 int j;
52ce6436
PH
7265 struct type *field_type
7266 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7267
1f704f76 7268 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7269 {
76a01679
JB
7270 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7271 fld_offset
7272 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7273 field_type_p, byte_offset_p,
52ce6436 7274 bit_offset_p, bit_size_p, index_p))
76a01679 7275 return 1;
4c4b4cd2
PH
7276 }
7277 }
52ce6436
PH
7278 else if (index_p != NULL)
7279 *index_p += 1;
4c4b4cd2 7280 }
828d5846
XR
7281
7282 /* Field not found so far. If this is a tagged type which
7283 has a parent, try finding that field in the parent now. */
7284
7285 if (parent_offset != -1)
7286 {
7287 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7288 int fld_offset = offset + bit_pos / 8;
7289
7290 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7291 fld_offset, field_type_p, byte_offset_p,
7292 bit_offset_p, bit_size_p, index_p))
7293 return 1;
7294 }
7295
4c4b4cd2
PH
7296 return 0;
7297}
7298
0963b4bd 7299/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7300
52ce6436
PH
7301static int
7302num_visible_fields (struct type *type)
7303{
7304 int n;
5b4ee69b 7305
52ce6436
PH
7306 n = 0;
7307 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7308 return n;
7309}
14f9c5c9 7310
4c4b4cd2 7311/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7312 and search in it assuming it has (class) type TYPE.
7313 If found, return value, else return NULL.
7314
828d5846
XR
7315 Searches recursively through wrapper fields (e.g., '_parent').
7316
7317 In the case of homonyms in the tagged types, please refer to the
7318 long explanation in find_struct_field's function documentation. */
14f9c5c9 7319
4c4b4cd2 7320static struct value *
108d56a4 7321ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7322 struct type *type)
14f9c5c9
AS
7323{
7324 int i;
828d5846 7325 int parent_offset = -1;
14f9c5c9 7326
5b4ee69b 7327 type = ada_check_typedef (type);
1f704f76 7328 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7329 {
0d5cff50 7330 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7331
7332 if (t_field_name == NULL)
4c4b4cd2 7333 continue;
14f9c5c9 7334
828d5846
XR
7335 else if (ada_is_parent_field (type, i))
7336 {
7337 /* This is a field pointing us to the parent type of a tagged
7338 type. As hinted in this function's documentation, we give
7339 preference to fields in the current record first, so what
7340 we do here is just record the index of this field before
7341 we skip it. If it turns out we couldn't find our field
7342 in the current record, then we'll get back to it and search
7343 inside it whether the field might exist in the parent. */
7344
7345 parent_offset = i;
7346 continue;
7347 }
7348
14f9c5c9 7349 else if (field_name_match (t_field_name, name))
4c4b4cd2 7350 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7351
7352 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7353 {
0963b4bd 7354 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7355 ada_search_struct_field (name, arg,
7356 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7357 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7358
4c4b4cd2
PH
7359 if (v != NULL)
7360 return v;
7361 }
14f9c5c9
AS
7362
7363 else if (ada_is_variant_part (type, i))
4c4b4cd2 7364 {
0963b4bd 7365 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7366 int j;
5b4ee69b
MS
7367 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7368 i));
4c4b4cd2
PH
7369 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7370
1f704f76 7371 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7372 {
0963b4bd
MS
7373 struct value *v = ada_search_struct_field /* Force line
7374 break. */
06d5cf63
JB
7375 (name, arg,
7376 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7377 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7378
4c4b4cd2
PH
7379 if (v != NULL)
7380 return v;
7381 }
7382 }
14f9c5c9 7383 }
828d5846
XR
7384
7385 /* Field not found so far. If this is a tagged type which
7386 has a parent, try finding that field in the parent now. */
7387
7388 if (parent_offset != -1)
7389 {
7390 struct value *v = ada_search_struct_field (
7391 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7392 TYPE_FIELD_TYPE (type, parent_offset));
7393
7394 if (v != NULL)
7395 return v;
7396 }
7397
14f9c5c9
AS
7398 return NULL;
7399}
d2e4a39e 7400
52ce6436
PH
7401static struct value *ada_index_struct_field_1 (int *, struct value *,
7402 int, struct type *);
7403
7404
7405/* Return field #INDEX in ARG, where the index is that returned by
7406 * find_struct_field through its INDEX_P argument. Adjust the address
7407 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7408 * If found, return value, else return NULL. */
52ce6436
PH
7409
7410static struct value *
7411ada_index_struct_field (int index, struct value *arg, int offset,
7412 struct type *type)
7413{
7414 return ada_index_struct_field_1 (&index, arg, offset, type);
7415}
7416
7417
7418/* Auxiliary function for ada_index_struct_field. Like
7419 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7420 * *INDEX_P. */
52ce6436
PH
7421
7422static struct value *
7423ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7424 struct type *type)
7425{
7426 int i;
7427 type = ada_check_typedef (type);
7428
1f704f76 7429 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7430 {
7431 if (TYPE_FIELD_NAME (type, i) == NULL)
7432 continue;
7433 else if (ada_is_wrapper_field (type, i))
7434 {
0963b4bd 7435 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7436 ada_index_struct_field_1 (index_p, arg,
7437 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7438 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7439
52ce6436
PH
7440 if (v != NULL)
7441 return v;
7442 }
7443
7444 else if (ada_is_variant_part (type, i))
7445 {
7446 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7447 find_struct_field. */
52ce6436
PH
7448 error (_("Cannot assign this kind of variant record"));
7449 }
7450 else if (*index_p == 0)
7451 return ada_value_primitive_field (arg, offset, i, type);
7452 else
7453 *index_p -= 1;
7454 }
7455 return NULL;
7456}
7457
3b4de39c 7458/* Return a string representation of type TYPE. */
99bbb428 7459
3b4de39c 7460static std::string
99bbb428
PA
7461type_as_string (struct type *type)
7462{
d7e74731 7463 string_file tmp_stream;
99bbb428 7464
d7e74731 7465 type_print (type, "", &tmp_stream, -1);
99bbb428 7466
d7e74731 7467 return std::move (tmp_stream.string ());
99bbb428
PA
7468}
7469
14f9c5c9 7470/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7471 If DISPP is non-null, add its byte displacement from the beginning of a
7472 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7473 work for packed fields).
7474
7475 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7476 followed by "___".
14f9c5c9 7477
0963b4bd 7478 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7479 be a (pointer or reference)+ to a struct or union, and the
7480 ultimate target type will be searched.
14f9c5c9
AS
7481
7482 Looks recursively into variant clauses and parent types.
7483
828d5846
XR
7484 In the case of homonyms in the tagged types, please refer to the
7485 long explanation in find_struct_field's function documentation.
7486
4c4b4cd2
PH
7487 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7488 TYPE is not a type of the right kind. */
14f9c5c9 7489
4c4b4cd2 7490static struct type *
a121b7c1 7491ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7492 int noerr)
14f9c5c9
AS
7493{
7494 int i;
828d5846 7495 int parent_offset = -1;
14f9c5c9
AS
7496
7497 if (name == NULL)
7498 goto BadName;
7499
76a01679 7500 if (refok && type != NULL)
4c4b4cd2
PH
7501 while (1)
7502 {
61ee279c 7503 type = ada_check_typedef (type);
78134374 7504 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7505 break;
7506 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7507 }
14f9c5c9 7508
76a01679 7509 if (type == NULL
78134374
SM
7510 || (type->code () != TYPE_CODE_STRUCT
7511 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7512 {
4c4b4cd2 7513 if (noerr)
76a01679 7514 return NULL;
99bbb428 7515
3b4de39c
PA
7516 error (_("Type %s is not a structure or union type"),
7517 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7518 }
7519
7520 type = to_static_fixed_type (type);
7521
1f704f76 7522 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7523 {
0d5cff50 7524 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7525 struct type *t;
d2e4a39e 7526
14f9c5c9 7527 if (t_field_name == NULL)
4c4b4cd2 7528 continue;
14f9c5c9 7529
828d5846
XR
7530 else if (ada_is_parent_field (type, i))
7531 {
7532 /* This is a field pointing us to the parent type of a tagged
7533 type. As hinted in this function's documentation, we give
7534 preference to fields in the current record first, so what
7535 we do here is just record the index of this field before
7536 we skip it. If it turns out we couldn't find our field
7537 in the current record, then we'll get back to it and search
7538 inside it whether the field might exist in the parent. */
7539
7540 parent_offset = i;
7541 continue;
7542 }
7543
14f9c5c9 7544 else if (field_name_match (t_field_name, name))
988f6b3d 7545 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7546
7547 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7548 {
4c4b4cd2 7549 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7550 0, 1);
4c4b4cd2 7551 if (t != NULL)
988f6b3d 7552 return t;
4c4b4cd2 7553 }
14f9c5c9
AS
7554
7555 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7556 {
7557 int j;
5b4ee69b
MS
7558 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7559 i));
4c4b4cd2 7560
1f704f76 7561 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7562 {
b1f33ddd
JB
7563 /* FIXME pnh 2008/01/26: We check for a field that is
7564 NOT wrapped in a struct, since the compiler sometimes
7565 generates these for unchecked variant types. Revisit
0963b4bd 7566 if the compiler changes this practice. */
0d5cff50 7567 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7568
b1f33ddd
JB
7569 if (v_field_name != NULL
7570 && field_name_match (v_field_name, name))
460efde1 7571 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7572 else
0963b4bd
MS
7573 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7574 j),
988f6b3d 7575 name, 0, 1);
b1f33ddd 7576
4c4b4cd2 7577 if (t != NULL)
988f6b3d 7578 return t;
4c4b4cd2
PH
7579 }
7580 }
14f9c5c9
AS
7581
7582 }
7583
828d5846
XR
7584 /* Field not found so far. If this is a tagged type which
7585 has a parent, try finding that field in the parent now. */
7586
7587 if (parent_offset != -1)
7588 {
7589 struct type *t;
7590
7591 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7592 name, 0, 1);
7593 if (t != NULL)
7594 return t;
7595 }
7596
14f9c5c9 7597BadName:
d2e4a39e 7598 if (!noerr)
14f9c5c9 7599 {
2b2798cc 7600 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7601
7602 error (_("Type %s has no component named %s"),
3b4de39c 7603 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7604 }
7605
7606 return NULL;
7607}
7608
b1f33ddd
JB
7609/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7610 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7611 represents an unchecked union (that is, the variant part of a
0963b4bd 7612 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7613
7614static int
7615is_unchecked_variant (struct type *var_type, struct type *outer_type)
7616{
a121b7c1 7617 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7618
988f6b3d 7619 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7620}
7621
7622
14f9c5c9 7623/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7624 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7625 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7626
d2e4a39e 7627int
d8af9068 7628ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7629{
7630 int others_clause;
7631 int i;
a121b7c1 7632 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7633 struct value *discrim;
14f9c5c9
AS
7634 LONGEST discrim_val;
7635
012370f6
TT
7636 /* Using plain value_from_contents_and_address here causes problems
7637 because we will end up trying to resolve a type that is currently
7638 being constructed. */
0c281816
JB
7639 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7640 if (discrim == NULL)
14f9c5c9 7641 return -1;
0c281816 7642 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7643
7644 others_clause = -1;
1f704f76 7645 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7646 {
7647 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7648 others_clause = i;
14f9c5c9 7649 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7650 return i;
14f9c5c9
AS
7651 }
7652
7653 return others_clause;
7654}
d2e4a39e 7655\f
14f9c5c9
AS
7656
7657
4c4b4cd2 7658 /* Dynamic-Sized Records */
14f9c5c9
AS
7659
7660/* Strategy: The type ostensibly attached to a value with dynamic size
7661 (i.e., a size that is not statically recorded in the debugging
7662 data) does not accurately reflect the size or layout of the value.
7663 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7664 conventional types that are constructed on the fly. */
14f9c5c9
AS
7665
7666/* There is a subtle and tricky problem here. In general, we cannot
7667 determine the size of dynamic records without its data. However,
7668 the 'struct value' data structure, which GDB uses to represent
7669 quantities in the inferior process (the target), requires the size
7670 of the type at the time of its allocation in order to reserve space
7671 for GDB's internal copy of the data. That's why the
7672 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7673 rather than struct value*s.
14f9c5c9
AS
7674
7675 However, GDB's internal history variables ($1, $2, etc.) are
7676 struct value*s containing internal copies of the data that are not, in
7677 general, the same as the data at their corresponding addresses in
7678 the target. Fortunately, the types we give to these values are all
7679 conventional, fixed-size types (as per the strategy described
7680 above), so that we don't usually have to perform the
7681 'to_fixed_xxx_type' conversions to look at their values.
7682 Unfortunately, there is one exception: if one of the internal
7683 history variables is an array whose elements are unconstrained
7684 records, then we will need to create distinct fixed types for each
7685 element selected. */
7686
7687/* The upshot of all of this is that many routines take a (type, host
7688 address, target address) triple as arguments to represent a value.
7689 The host address, if non-null, is supposed to contain an internal
7690 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7691 target at the target address. */
14f9c5c9
AS
7692
7693/* Assuming that VAL0 represents a pointer value, the result of
7694 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7695 dynamic-sized types. */
14f9c5c9 7696
d2e4a39e
AS
7697struct value *
7698ada_value_ind (struct value *val0)
14f9c5c9 7699{
c48db5ca 7700 struct value *val = value_ind (val0);
5b4ee69b 7701
b50d69b5
JG
7702 if (ada_is_tagged_type (value_type (val), 0))
7703 val = ada_tag_value_at_base_address (val);
7704
4c4b4cd2 7705 return ada_to_fixed_value (val);
14f9c5c9
AS
7706}
7707
7708/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7709 qualifiers on VAL0. */
7710
d2e4a39e
AS
7711static struct value *
7712ada_coerce_ref (struct value *val0)
7713{
78134374 7714 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7715 {
7716 struct value *val = val0;
5b4ee69b 7717
994b9211 7718 val = coerce_ref (val);
b50d69b5
JG
7719
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
4c4b4cd2 7723 return ada_to_fixed_value (val);
d2e4a39e
AS
7724 }
7725 else
14f9c5c9
AS
7726 return val0;
7727}
7728
4c4b4cd2 7729/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7730
7731static unsigned int
ebf56fd3 7732field_alignment (struct type *type, int f)
14f9c5c9 7733{
d2e4a39e 7734 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7735 int len;
14f9c5c9
AS
7736 int align_offset;
7737
64a1bf19
JB
7738 /* The field name should never be null, unless the debugging information
7739 is somehow malformed. In this case, we assume the field does not
7740 require any alignment. */
7741 if (name == NULL)
7742 return 1;
7743
7744 len = strlen (name);
7745
4c4b4cd2
PH
7746 if (!isdigit (name[len - 1]))
7747 return 1;
14f9c5c9 7748
d2e4a39e 7749 if (isdigit (name[len - 2]))
14f9c5c9
AS
7750 align_offset = len - 2;
7751 else
7752 align_offset = len - 1;
7753
61012eef 7754 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7755 return TARGET_CHAR_BIT;
7756
4c4b4cd2
PH
7757 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7758}
7759
852dff6c 7760/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7761
852dff6c
JB
7762static struct symbol *
7763ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7764{
7765 struct symbol *sym;
7766
7767 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7768 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7769 return sym;
7770
4186eb54
KS
7771 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7772 return sym;
14f9c5c9
AS
7773}
7774
dddfab26
UW
7775/* Find a type named NAME. Ignores ambiguity. This routine will look
7776 solely for types defined by debug info, it will not search the GDB
7777 primitive types. */
4c4b4cd2 7778
852dff6c 7779static struct type *
ebf56fd3 7780ada_find_any_type (const char *name)
14f9c5c9 7781{
852dff6c 7782 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7783
14f9c5c9 7784 if (sym != NULL)
dddfab26 7785 return SYMBOL_TYPE (sym);
14f9c5c9 7786
dddfab26 7787 return NULL;
14f9c5c9
AS
7788}
7789
739593e0
JB
7790/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7791 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7792 symbol, in which case it is returned. Otherwise, this looks for
7793 symbols whose name is that of NAME_SYM suffixed with "___XR".
7794 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7795
c0e70c62
TT
7796static bool
7797ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7798{
987012b8 7799 const char *name = name_sym->linkage_name ();
c0e70c62 7800 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7801}
7802
14f9c5c9 7803/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7804 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7805 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7806 otherwise return 0. */
7807
14f9c5c9 7808int
d2e4a39e 7809ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7810{
7811 if (type1 == NULL)
7812 return 1;
7813 else if (type0 == NULL)
7814 return 0;
78134374 7815 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7816 return 1;
78134374 7817 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7818 return 0;
7d93a1e0 7819 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7820 return 1;
ad82864c 7821 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7822 return 1;
4c4b4cd2
PH
7823 else if (ada_is_array_descriptor_type (type0)
7824 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7825 return 1;
aeb5907d
JB
7826 else
7827 {
7d93a1e0
SM
7828 const char *type0_name = type0->name ();
7829 const char *type1_name = type1->name ();
aeb5907d
JB
7830
7831 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7832 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7833 return 1;
7834 }
14f9c5c9
AS
7835 return 0;
7836}
7837
e86ca25f
TT
7838/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7839 null. */
4c4b4cd2 7840
0d5cff50 7841const char *
d2e4a39e 7842ada_type_name (struct type *type)
14f9c5c9 7843{
d2e4a39e 7844 if (type == NULL)
14f9c5c9 7845 return NULL;
7d93a1e0 7846 return type->name ();
14f9c5c9
AS
7847}
7848
b4ba55a1
JB
7849/* Search the list of "descriptive" types associated to TYPE for a type
7850 whose name is NAME. */
7851
7852static struct type *
7853find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7854{
931e5bc3 7855 struct type *result, *tmp;
b4ba55a1 7856
c6044dd1
JB
7857 if (ada_ignore_descriptive_types_p)
7858 return NULL;
7859
b4ba55a1
JB
7860 /* If there no descriptive-type info, then there is no parallel type
7861 to be found. */
7862 if (!HAVE_GNAT_AUX_INFO (type))
7863 return NULL;
7864
7865 result = TYPE_DESCRIPTIVE_TYPE (type);
7866 while (result != NULL)
7867 {
0d5cff50 7868 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7869
7870 if (result_name == NULL)
7871 {
7872 warning (_("unexpected null name on descriptive type"));
7873 return NULL;
7874 }
7875
7876 /* If the names match, stop. */
7877 if (strcmp (result_name, name) == 0)
7878 break;
7879
7880 /* Otherwise, look at the next item on the list, if any. */
7881 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7882 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7883 else
7884 tmp = NULL;
7885
7886 /* If not found either, try after having resolved the typedef. */
7887 if (tmp != NULL)
7888 result = tmp;
b4ba55a1 7889 else
931e5bc3 7890 {
f168693b 7891 result = check_typedef (result);
931e5bc3
JG
7892 if (HAVE_GNAT_AUX_INFO (result))
7893 result = TYPE_DESCRIPTIVE_TYPE (result);
7894 else
7895 result = NULL;
7896 }
b4ba55a1
JB
7897 }
7898
7899 /* If we didn't find a match, see whether this is a packed array. With
7900 older compilers, the descriptive type information is either absent or
7901 irrelevant when it comes to packed arrays so the above lookup fails.
7902 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7903 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7904 return ada_find_any_type (name);
7905
7906 return result;
7907}
7908
7909/* Find a parallel type to TYPE with the specified NAME, using the
7910 descriptive type taken from the debugging information, if available,
7911 and otherwise using the (slower) name-based method. */
7912
7913static struct type *
7914ada_find_parallel_type_with_name (struct type *type, const char *name)
7915{
7916 struct type *result = NULL;
7917
7918 if (HAVE_GNAT_AUX_INFO (type))
7919 result = find_parallel_type_by_descriptive_type (type, name);
7920 else
7921 result = ada_find_any_type (name);
7922
7923 return result;
7924}
7925
7926/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7927 SUFFIX to the name of TYPE. */
14f9c5c9 7928
d2e4a39e 7929struct type *
ebf56fd3 7930ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7931{
0d5cff50 7932 char *name;
fe978cb0 7933 const char *type_name = ada_type_name (type);
14f9c5c9 7934 int len;
d2e4a39e 7935
fe978cb0 7936 if (type_name == NULL)
14f9c5c9
AS
7937 return NULL;
7938
fe978cb0 7939 len = strlen (type_name);
14f9c5c9 7940
b4ba55a1 7941 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7942
fe978cb0 7943 strcpy (name, type_name);
14f9c5c9
AS
7944 strcpy (name + len, suffix);
7945
b4ba55a1 7946 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7947}
7948
14f9c5c9 7949/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7950 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7951
d2e4a39e
AS
7952static struct type *
7953dynamic_template_type (struct type *type)
14f9c5c9 7954{
61ee279c 7955 type = ada_check_typedef (type);
14f9c5c9 7956
78134374 7957 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7958 || ada_type_name (type) == NULL)
14f9c5c9 7959 return NULL;
d2e4a39e 7960 else
14f9c5c9
AS
7961 {
7962 int len = strlen (ada_type_name (type));
5b4ee69b 7963
4c4b4cd2
PH
7964 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7965 return type;
14f9c5c9 7966 else
4c4b4cd2 7967 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7968 }
7969}
7970
7971/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7972 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7973
d2e4a39e
AS
7974static int
7975is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7976{
7977 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7978
d2e4a39e 7979 return name != NULL
78134374 7980 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
14f9c5c9
AS
7981 && strstr (name, "___XVL") != NULL;
7982}
7983
4c4b4cd2
PH
7984/* The index of the variant field of TYPE, or -1 if TYPE does not
7985 represent a variant record type. */
14f9c5c9 7986
d2e4a39e 7987static int
4c4b4cd2 7988variant_field_index (struct type *type)
14f9c5c9
AS
7989{
7990 int f;
7991
78134374 7992 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7993 return -1;
7994
1f704f76 7995 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7996 {
7997 if (ada_is_variant_part (type, f))
7998 return f;
7999 }
8000 return -1;
14f9c5c9
AS
8001}
8002
4c4b4cd2
PH
8003/* A record type with no fields. */
8004
d2e4a39e 8005static struct type *
fe978cb0 8006empty_record (struct type *templ)
14f9c5c9 8007{
fe978cb0 8008 struct type *type = alloc_type_copy (templ);
5b4ee69b 8009
67607e24 8010 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8011 INIT_NONE_SPECIFIC (type);
d0e39ea2 8012 type->set_name ("<empty>");
14f9c5c9
AS
8013 TYPE_LENGTH (type) = 0;
8014 return type;
8015}
8016
8017/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8018 the value of type TYPE at VALADDR or ADDRESS (see comments at
8019 the beginning of this section) VAL according to GNAT conventions.
8020 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8021 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8022 an outer-level type (i.e., as opposed to a branch of a variant.) A
8023 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8024 of the variant.
14f9c5c9 8025
4c4b4cd2
PH
8026 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8027 length are not statically known are discarded. As a consequence,
8028 VALADDR, ADDRESS and DVAL0 are ignored.
8029
8030 NOTE: Limitations: For now, we assume that dynamic fields and
8031 variants occupy whole numbers of bytes. However, they need not be
8032 byte-aligned. */
8033
8034struct type *
10a2c479 8035ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8036 const gdb_byte *valaddr,
4c4b4cd2
PH
8037 CORE_ADDR address, struct value *dval0,
8038 int keep_dynamic_fields)
14f9c5c9 8039{
d2e4a39e
AS
8040 struct value *mark = value_mark ();
8041 struct value *dval;
8042 struct type *rtype;
14f9c5c9 8043 int nfields, bit_len;
4c4b4cd2 8044 int variant_field;
14f9c5c9 8045 long off;
d94e4f4f 8046 int fld_bit_len;
14f9c5c9
AS
8047 int f;
8048
4c4b4cd2
PH
8049 /* Compute the number of fields in this record type that are going
8050 to be processed: unless keep_dynamic_fields, this includes only
8051 fields whose position and length are static will be processed. */
8052 if (keep_dynamic_fields)
1f704f76 8053 nfields = type->num_fields ();
4c4b4cd2
PH
8054 else
8055 {
8056 nfields = 0;
1f704f76 8057 while (nfields < type->num_fields ()
4c4b4cd2
PH
8058 && !ada_is_variant_part (type, nfields)
8059 && !is_dynamic_field (type, nfields))
8060 nfields++;
8061 }
8062
e9bb382b 8063 rtype = alloc_type_copy (type);
67607e24 8064 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8065 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8066 rtype->set_num_fields (nfields);
3cabb6b0
SM
8067 rtype->set_fields
8068 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 8069 rtype->set_name (ada_type_name (type));
876cecd0 8070 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8071
d2e4a39e
AS
8072 off = 0;
8073 bit_len = 0;
4c4b4cd2
PH
8074 variant_field = -1;
8075
14f9c5c9
AS
8076 for (f = 0; f < nfields; f += 1)
8077 {
a89febbd 8078 off = align_up (off, field_alignment (type, f))
6c038f32 8079 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 8080 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 8081 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8082
d2e4a39e 8083 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8084 {
8085 variant_field = f;
d94e4f4f 8086 fld_bit_len = 0;
4c4b4cd2 8087 }
14f9c5c9 8088 else if (is_dynamic_field (type, f))
4c4b4cd2 8089 {
284614f0
JB
8090 const gdb_byte *field_valaddr = valaddr;
8091 CORE_ADDR field_address = address;
8092 struct type *field_type =
8093 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8094
4c4b4cd2 8095 if (dval0 == NULL)
b5304971
JG
8096 {
8097 /* rtype's length is computed based on the run-time
8098 value of discriminants. If the discriminants are not
8099 initialized, the type size may be completely bogus and
0963b4bd 8100 GDB may fail to allocate a value for it. So check the
b5304971 8101 size first before creating the value. */
c1b5a1a6 8102 ada_ensure_varsize_limit (rtype);
012370f6
TT
8103 /* Using plain value_from_contents_and_address here
8104 causes problems because we will end up trying to
8105 resolve a type that is currently being
8106 constructed. */
8107 dval = value_from_contents_and_address_unresolved (rtype,
8108 valaddr,
8109 address);
9f1f738a 8110 rtype = value_type (dval);
b5304971 8111 }
4c4b4cd2
PH
8112 else
8113 dval = dval0;
8114
284614f0
JB
8115 /* If the type referenced by this field is an aligner type, we need
8116 to unwrap that aligner type, because its size might not be set.
8117 Keeping the aligner type would cause us to compute the wrong
8118 size for this field, impacting the offset of the all the fields
8119 that follow this one. */
8120 if (ada_is_aligner_type (field_type))
8121 {
8122 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8123
8124 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8125 field_address = cond_offset_target (field_address, field_offset);
8126 field_type = ada_aligned_type (field_type);
8127 }
8128
8129 field_valaddr = cond_offset_host (field_valaddr,
8130 off / TARGET_CHAR_BIT);
8131 field_address = cond_offset_target (field_address,
8132 off / TARGET_CHAR_BIT);
8133
8134 /* Get the fixed type of the field. Note that, in this case,
8135 we do not want to get the real type out of the tag: if
8136 the current field is the parent part of a tagged record,
8137 we will get the tag of the object. Clearly wrong: the real
8138 type of the parent is not the real type of the child. We
8139 would end up in an infinite loop. */
8140 field_type = ada_get_base_type (field_type);
8141 field_type = ada_to_fixed_type (field_type, field_valaddr,
8142 field_address, dval, 0);
27f2a97b
JB
8143 /* If the field size is already larger than the maximum
8144 object size, then the record itself will necessarily
8145 be larger than the maximum object size. We need to make
8146 this check now, because the size might be so ridiculously
8147 large (due to an uninitialized variable in the inferior)
8148 that it would cause an overflow when adding it to the
8149 record size. */
c1b5a1a6 8150 ada_ensure_varsize_limit (field_type);
284614f0
JB
8151
8152 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8153 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8154 /* The multiplication can potentially overflow. But because
8155 the field length has been size-checked just above, and
8156 assuming that the maximum size is a reasonable value,
8157 an overflow should not happen in practice. So rather than
8158 adding overflow recovery code to this already complex code,
8159 we just assume that it's not going to happen. */
d94e4f4f 8160 fld_bit_len =
4c4b4cd2
PH
8161 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8162 }
14f9c5c9 8163 else
4c4b4cd2 8164 {
5ded5331
JB
8165 /* Note: If this field's type is a typedef, it is important
8166 to preserve the typedef layer.
8167
8168 Otherwise, we might be transforming a typedef to a fat
8169 pointer (encoding a pointer to an unconstrained array),
8170 into a basic fat pointer (encoding an unconstrained
8171 array). As both types are implemented using the same
8172 structure, the typedef is the only clue which allows us
8173 to distinguish between the two options. Stripping it
8174 would prevent us from printing this field appropriately. */
8175 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8176 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8177 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8178 fld_bit_len =
4c4b4cd2
PH
8179 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8180 else
5ded5331
JB
8181 {
8182 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8183
8184 /* We need to be careful of typedefs when computing
8185 the length of our field. If this is a typedef,
8186 get the length of the target type, not the length
8187 of the typedef. */
78134374 8188 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8189 field_type = ada_typedef_target_type (field_type);
8190
8191 fld_bit_len =
8192 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8193 }
4c4b4cd2 8194 }
14f9c5c9 8195 if (off + fld_bit_len > bit_len)
4c4b4cd2 8196 bit_len = off + fld_bit_len;
d94e4f4f 8197 off += fld_bit_len;
4c4b4cd2 8198 TYPE_LENGTH (rtype) =
a89febbd 8199 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8200 }
4c4b4cd2
PH
8201
8202 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8203 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8204 the record. This can happen in the presence of representation
8205 clauses. */
8206 if (variant_field >= 0)
8207 {
8208 struct type *branch_type;
8209
8210 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8211
8212 if (dval0 == NULL)
9f1f738a 8213 {
012370f6
TT
8214 /* Using plain value_from_contents_and_address here causes
8215 problems because we will end up trying to resolve a type
8216 that is currently being constructed. */
8217 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8218 address);
9f1f738a
SA
8219 rtype = value_type (dval);
8220 }
4c4b4cd2
PH
8221 else
8222 dval = dval0;
8223
8224 branch_type =
8225 to_fixed_variant_branch_type
8226 (TYPE_FIELD_TYPE (type, variant_field),
8227 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8228 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8229 if (branch_type == NULL)
8230 {
1f704f76 8231 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 8232 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8233 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
8234 }
8235 else
8236 {
8237 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8238 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8239 fld_bit_len =
8240 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8241 TARGET_CHAR_BIT;
8242 if (off + fld_bit_len > bit_len)
8243 bit_len = off + fld_bit_len;
8244 TYPE_LENGTH (rtype) =
a89febbd 8245 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8246 }
8247 }
8248
714e53ab
PH
8249 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8250 should contain the alignment of that record, which should be a strictly
8251 positive value. If null or negative, then something is wrong, most
8252 probably in the debug info. In that case, we don't round up the size
0963b4bd 8253 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8254 the current RTYPE length might be good enough for our purposes. */
8255 if (TYPE_LENGTH (type) <= 0)
8256 {
7d93a1e0 8257 if (rtype->name ())
cc1defb1 8258 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8259 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8260 else
cc1defb1
KS
8261 warning (_("Invalid type size for <unnamed> detected: %s."),
8262 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8263 }
8264 else
8265 {
a89febbd
TT
8266 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8267 TYPE_LENGTH (type));
714e53ab 8268 }
14f9c5c9
AS
8269
8270 value_free_to_mark (mark);
d2e4a39e 8271 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8272 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8273 return rtype;
8274}
8275
4c4b4cd2
PH
8276/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8277 of 1. */
14f9c5c9 8278
d2e4a39e 8279static struct type *
fc1a4b47 8280template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8281 CORE_ADDR address, struct value *dval0)
8282{
8283 return ada_template_to_fixed_record_type_1 (type, valaddr,
8284 address, dval0, 1);
8285}
8286
8287/* An ordinary record type in which ___XVL-convention fields and
8288 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8289 static approximations, containing all possible fields. Uses
8290 no runtime values. Useless for use in values, but that's OK,
8291 since the results are used only for type determinations. Works on both
8292 structs and unions. Representation note: to save space, we memorize
8293 the result of this function in the TYPE_TARGET_TYPE of the
8294 template type. */
8295
8296static struct type *
8297template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8298{
8299 struct type *type;
8300 int nfields;
8301 int f;
8302
9e195661
PMR
8303 /* No need no do anything if the input type is already fixed. */
8304 if (TYPE_FIXED_INSTANCE (type0))
8305 return type0;
8306
8307 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8308 if (TYPE_TARGET_TYPE (type0) != NULL)
8309 return TYPE_TARGET_TYPE (type0);
8310
9e195661 8311 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8312 type = type0;
1f704f76 8313 nfields = type0->num_fields ();
9e195661
PMR
8314
8315 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8316 recompute all over next time. */
8317 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8318
8319 for (f = 0; f < nfields; f += 1)
8320 {
460efde1 8321 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8322 struct type *new_type;
14f9c5c9 8323
4c4b4cd2 8324 if (is_dynamic_field (type0, f))
460efde1
JB
8325 {
8326 field_type = ada_check_typedef (field_type);
8327 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8328 }
14f9c5c9 8329 else
f192137b 8330 new_type = static_unwrap_type (field_type);
9e195661
PMR
8331
8332 if (new_type != field_type)
8333 {
8334 /* Clone TYPE0 only the first time we get a new field type. */
8335 if (type == type0)
8336 {
8337 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8338 type->set_code (type0->code ());
8ecb59f8 8339 INIT_NONE_SPECIFIC (type);
5e33d5f4 8340 type->set_num_fields (nfields);
3cabb6b0
SM
8341
8342 field *fields =
8343 ((struct field *)
8344 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8345 memcpy (fields, type0->fields (),
9e195661 8346 sizeof (struct field) * nfields);
3cabb6b0
SM
8347 type->set_fields (fields);
8348
d0e39ea2 8349 type->set_name (ada_type_name (type0));
9e195661
PMR
8350 TYPE_FIXED_INSTANCE (type) = 1;
8351 TYPE_LENGTH (type) = 0;
8352 }
8353 TYPE_FIELD_TYPE (type, f) = new_type;
8354 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8355 }
14f9c5c9 8356 }
9e195661 8357
14f9c5c9
AS
8358 return type;
8359}
8360
4c4b4cd2 8361/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8362 whose address in memory is ADDRESS, returns a revision of TYPE,
8363 which should be a non-dynamic-sized record, in which the variant
8364 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8365 for discriminant values in DVAL0, which can be NULL if the record
8366 contains the necessary discriminant values. */
8367
d2e4a39e 8368static struct type *
fc1a4b47 8369to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8370 CORE_ADDR address, struct value *dval0)
14f9c5c9 8371{
d2e4a39e 8372 struct value *mark = value_mark ();
4c4b4cd2 8373 struct value *dval;
d2e4a39e 8374 struct type *rtype;
14f9c5c9 8375 struct type *branch_type;
1f704f76 8376 int nfields = type->num_fields ();
4c4b4cd2 8377 int variant_field = variant_field_index (type);
14f9c5c9 8378
4c4b4cd2 8379 if (variant_field == -1)
14f9c5c9
AS
8380 return type;
8381
4c4b4cd2 8382 if (dval0 == NULL)
9f1f738a
SA
8383 {
8384 dval = value_from_contents_and_address (type, valaddr, address);
8385 type = value_type (dval);
8386 }
4c4b4cd2
PH
8387 else
8388 dval = dval0;
8389
e9bb382b 8390 rtype = alloc_type_copy (type);
67607e24 8391 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8392 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8393 rtype->set_num_fields (nfields);
3cabb6b0
SM
8394
8395 field *fields =
d2e4a39e 8396 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8397 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8398 rtype->set_fields (fields);
8399
d0e39ea2 8400 rtype->set_name (ada_type_name (type));
876cecd0 8401 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8402 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8403
4c4b4cd2
PH
8404 branch_type = to_fixed_variant_branch_type
8405 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8406 cond_offset_host (valaddr,
4c4b4cd2
PH
8407 TYPE_FIELD_BITPOS (type, variant_field)
8408 / TARGET_CHAR_BIT),
d2e4a39e 8409 cond_offset_target (address,
4c4b4cd2
PH
8410 TYPE_FIELD_BITPOS (type, variant_field)
8411 / TARGET_CHAR_BIT), dval);
d2e4a39e 8412 if (branch_type == NULL)
14f9c5c9 8413 {
4c4b4cd2 8414 int f;
5b4ee69b 8415
4c4b4cd2 8416 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8417 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8418 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8419 }
8420 else
8421 {
4c4b4cd2
PH
8422 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8423 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8424 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8425 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8426 }
4c4b4cd2 8427 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8428
4c4b4cd2 8429 value_free_to_mark (mark);
14f9c5c9
AS
8430 return rtype;
8431}
8432
8433/* An ordinary record type (with fixed-length fields) that describes
8434 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8435 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8436 should be in DVAL, a record value; it may be NULL if the object
8437 at ADDR itself contains any necessary discriminant values.
8438 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8439 values from the record are needed. Except in the case that DVAL,
8440 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8441 unchecked) is replaced by a particular branch of the variant.
8442
8443 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8444 is questionable and may be removed. It can arise during the
8445 processing of an unconstrained-array-of-record type where all the
8446 variant branches have exactly the same size. This is because in
8447 such cases, the compiler does not bother to use the XVS convention
8448 when encoding the record. I am currently dubious of this
8449 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8450
d2e4a39e 8451static struct type *
fc1a4b47 8452to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8453 CORE_ADDR address, struct value *dval)
14f9c5c9 8454{
d2e4a39e 8455 struct type *templ_type;
14f9c5c9 8456
876cecd0 8457 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8458 return type0;
8459
d2e4a39e 8460 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8461
8462 if (templ_type != NULL)
8463 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8464 else if (variant_field_index (type0) >= 0)
8465 {
8466 if (dval == NULL && valaddr == NULL && address == 0)
8467 return type0;
8468 return to_record_with_fixed_variant_part (type0, valaddr, address,
8469 dval);
8470 }
14f9c5c9
AS
8471 else
8472 {
876cecd0 8473 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8474 return type0;
8475 }
8476
8477}
8478
8479/* An ordinary record type (with fixed-length fields) that describes
8480 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8481 union type. Any necessary discriminants' values should be in DVAL,
8482 a record value. That is, this routine selects the appropriate
8483 branch of the union at ADDR according to the discriminant value
b1f33ddd 8484 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8485 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8486
d2e4a39e 8487static struct type *
fc1a4b47 8488to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8489 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8490{
8491 int which;
d2e4a39e
AS
8492 struct type *templ_type;
8493 struct type *var_type;
14f9c5c9 8494
78134374 8495 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8496 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8497 else
14f9c5c9
AS
8498 var_type = var_type0;
8499
8500 templ_type = ada_find_parallel_type (var_type, "___XVU");
8501
8502 if (templ_type != NULL)
8503 var_type = templ_type;
8504
b1f33ddd
JB
8505 if (is_unchecked_variant (var_type, value_type (dval)))
8506 return var_type0;
d8af9068 8507 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8508
8509 if (which < 0)
e9bb382b 8510 return empty_record (var_type);
14f9c5c9 8511 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8512 return to_fixed_record_type
d2e4a39e
AS
8513 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8514 valaddr, address, dval);
4c4b4cd2 8515 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8516 return
8517 to_fixed_record_type
8518 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8519 else
8520 return TYPE_FIELD_TYPE (var_type, which);
8521}
8522
8908fca5
JB
8523/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8524 ENCODING_TYPE, a type following the GNAT conventions for discrete
8525 type encodings, only carries redundant information. */
8526
8527static int
8528ada_is_redundant_range_encoding (struct type *range_type,
8529 struct type *encoding_type)
8530{
108d56a4 8531 const char *bounds_str;
8908fca5
JB
8532 int n;
8533 LONGEST lo, hi;
8534
78134374 8535 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8536
78134374
SM
8537 if (get_base_type (range_type)->code ()
8538 != get_base_type (encoding_type)->code ())
005e2509
JB
8539 {
8540 /* The compiler probably used a simple base type to describe
8541 the range type instead of the range's actual base type,
8542 expecting us to get the real base type from the encoding
8543 anyway. In this situation, the encoding cannot be ignored
8544 as redundant. */
8545 return 0;
8546 }
8547
8908fca5
JB
8548 if (is_dynamic_type (range_type))
8549 return 0;
8550
7d93a1e0 8551 if (encoding_type->name () == NULL)
8908fca5
JB
8552 return 0;
8553
7d93a1e0 8554 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8555 if (bounds_str == NULL)
8556 return 0;
8557
8558 n = 8; /* Skip "___XDLU_". */
8559 if (!ada_scan_number (bounds_str, n, &lo, &n))
8560 return 0;
8561 if (TYPE_LOW_BOUND (range_type) != lo)
8562 return 0;
8563
8564 n += 2; /* Skip the "__" separator between the two bounds. */
8565 if (!ada_scan_number (bounds_str, n, &hi, &n))
8566 return 0;
8567 if (TYPE_HIGH_BOUND (range_type) != hi)
8568 return 0;
8569
8570 return 1;
8571}
8572
8573/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8574 a type following the GNAT encoding for describing array type
8575 indices, only carries redundant information. */
8576
8577static int
8578ada_is_redundant_index_type_desc (struct type *array_type,
8579 struct type *desc_type)
8580{
8581 struct type *this_layer = check_typedef (array_type);
8582 int i;
8583
1f704f76 8584 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5
JB
8585 {
8586 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8587 TYPE_FIELD_TYPE (desc_type, i)))
8588 return 0;
8589 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8590 }
8591
8592 return 1;
8593}
8594
14f9c5c9
AS
8595/* Assuming that TYPE0 is an array type describing the type of a value
8596 at ADDR, and that DVAL describes a record containing any
8597 discriminants used in TYPE0, returns a type for the value that
8598 contains no dynamic components (that is, no components whose sizes
8599 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8600 true, gives an error message if the resulting type's size is over
4c4b4cd2 8601 varsize_limit. */
14f9c5c9 8602
d2e4a39e
AS
8603static struct type *
8604to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8605 int ignore_too_big)
14f9c5c9 8606{
d2e4a39e
AS
8607 struct type *index_type_desc;
8608 struct type *result;
ad82864c 8609 int constrained_packed_array_p;
931e5bc3 8610 static const char *xa_suffix = "___XA";
14f9c5c9 8611
b0dd7688 8612 type0 = ada_check_typedef (type0);
284614f0 8613 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8614 return type0;
14f9c5c9 8615
ad82864c
JB
8616 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8617 if (constrained_packed_array_p)
8618 type0 = decode_constrained_packed_array_type (type0);
284614f0 8619
931e5bc3
JG
8620 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8621
8622 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8623 encoding suffixed with 'P' may still be generated. If so,
8624 it should be used to find the XA type. */
8625
8626 if (index_type_desc == NULL)
8627 {
1da0522e 8628 const char *type_name = ada_type_name (type0);
931e5bc3 8629
1da0522e 8630 if (type_name != NULL)
931e5bc3 8631 {
1da0522e 8632 const int len = strlen (type_name);
931e5bc3
JG
8633 char *name = (char *) alloca (len + strlen (xa_suffix));
8634
1da0522e 8635 if (type_name[len - 1] == 'P')
931e5bc3 8636 {
1da0522e 8637 strcpy (name, type_name);
931e5bc3
JG
8638 strcpy (name + len - 1, xa_suffix);
8639 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8640 }
8641 }
8642 }
8643
28c85d6c 8644 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8645 if (index_type_desc != NULL
8646 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8647 {
8648 /* Ignore this ___XA parallel type, as it does not bring any
8649 useful information. This allows us to avoid creating fixed
8650 versions of the array's index types, which would be identical
8651 to the original ones. This, in turn, can also help avoid
8652 the creation of fixed versions of the array itself. */
8653 index_type_desc = NULL;
8654 }
8655
14f9c5c9
AS
8656 if (index_type_desc == NULL)
8657 {
61ee279c 8658 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8659
14f9c5c9 8660 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8661 depend on the contents of the array in properly constructed
8662 debugging data. */
529cad9c
PH
8663 /* Create a fixed version of the array element type.
8664 We're not providing the address of an element here,
e1d5a0d2 8665 and thus the actual object value cannot be inspected to do
529cad9c
PH
8666 the conversion. This should not be a problem, since arrays of
8667 unconstrained objects are not allowed. In particular, all
8668 the elements of an array of a tagged type should all be of
8669 the same type specified in the debugging info. No need to
8670 consult the object tag. */
1ed6ede0 8671 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8672
284614f0
JB
8673 /* Make sure we always create a new array type when dealing with
8674 packed array types, since we're going to fix-up the array
8675 type length and element bitsize a little further down. */
ad82864c 8676 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8677 result = type0;
14f9c5c9 8678 else
e9bb382b 8679 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8680 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8681 }
8682 else
8683 {
8684 int i;
8685 struct type *elt_type0;
8686
8687 elt_type0 = type0;
1f704f76 8688 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8689 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8690
8691 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8692 depend on the contents of the array in properly constructed
8693 debugging data. */
529cad9c
PH
8694 /* Create a fixed version of the array element type.
8695 We're not providing the address of an element here,
e1d5a0d2 8696 and thus the actual object value cannot be inspected to do
529cad9c
PH
8697 the conversion. This should not be a problem, since arrays of
8698 unconstrained objects are not allowed. In particular, all
8699 the elements of an array of a tagged type should all be of
8700 the same type specified in the debugging info. No need to
8701 consult the object tag. */
1ed6ede0
JB
8702 result =
8703 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8704
8705 elt_type0 = type0;
1f704f76 8706 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8707 {
8708 struct type *range_type =
28c85d6c 8709 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8710
e9bb382b 8711 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8712 result, range_type);
1ce677a4 8713 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8714 }
d2e4a39e 8715 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8716 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8717 }
8718
2e6fda7d
JB
8719 /* We want to preserve the type name. This can be useful when
8720 trying to get the type name of a value that has already been
8721 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8722 result->set_name (type0->name ());
2e6fda7d 8723
ad82864c 8724 if (constrained_packed_array_p)
284614f0
JB
8725 {
8726 /* So far, the resulting type has been created as if the original
8727 type was a regular (non-packed) array type. As a result, the
8728 bitsize of the array elements needs to be set again, and the array
8729 length needs to be recomputed based on that bitsize. */
8730 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8731 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8732
8733 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8734 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8735 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8736 TYPE_LENGTH (result)++;
8737 }
8738
876cecd0 8739 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8740 return result;
d2e4a39e 8741}
14f9c5c9
AS
8742
8743
8744/* A standard type (containing no dynamically sized components)
8745 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8746 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8747 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8748 ADDRESS or in VALADDR contains these discriminants.
8749
1ed6ede0
JB
8750 If CHECK_TAG is not null, in the case of tagged types, this function
8751 attempts to locate the object's tag and use it to compute the actual
8752 type. However, when ADDRESS is null, we cannot use it to determine the
8753 location of the tag, and therefore compute the tagged type's actual type.
8754 So we return the tagged type without consulting the tag. */
529cad9c 8755
f192137b
JB
8756static struct type *
8757ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8758 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8759{
61ee279c 8760 type = ada_check_typedef (type);
8ecb59f8
TT
8761
8762 /* Only un-fixed types need to be handled here. */
8763 if (!HAVE_GNAT_AUX_INFO (type))
8764 return type;
8765
78134374 8766 switch (type->code ())
d2e4a39e
AS
8767 {
8768 default:
14f9c5c9 8769 return type;
d2e4a39e 8770 case TYPE_CODE_STRUCT:
4c4b4cd2 8771 {
76a01679 8772 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8773 struct type *fixed_record_type =
8774 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8775
529cad9c
PH
8776 /* If STATIC_TYPE is a tagged type and we know the object's address,
8777 then we can determine its tag, and compute the object's actual
0963b4bd 8778 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8779 type (the parent part of the record may have dynamic fields
8780 and the way the location of _tag is expressed may depend on
8781 them). */
529cad9c 8782
1ed6ede0 8783 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8784 {
b50d69b5
JG
8785 struct value *tag =
8786 value_tag_from_contents_and_address
8787 (fixed_record_type,
8788 valaddr,
8789 address);
8790 struct type *real_type = type_from_tag (tag);
8791 struct value *obj =
8792 value_from_contents_and_address (fixed_record_type,
8793 valaddr,
8794 address);
9f1f738a 8795 fixed_record_type = value_type (obj);
76a01679 8796 if (real_type != NULL)
b50d69b5
JG
8797 return to_fixed_record_type
8798 (real_type, NULL,
8799 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8800 }
4af88198
JB
8801
8802 /* Check to see if there is a parallel ___XVZ variable.
8803 If there is, then it provides the actual size of our type. */
8804 else if (ada_type_name (fixed_record_type) != NULL)
8805 {
0d5cff50 8806 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8807 char *xvz_name
8808 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8809 bool xvz_found = false;
4af88198
JB
8810 LONGEST size;
8811
88c15c34 8812 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8813 try
eccab96d
JB
8814 {
8815 xvz_found = get_int_var_value (xvz_name, size);
8816 }
230d2906 8817 catch (const gdb_exception_error &except)
eccab96d
JB
8818 {
8819 /* We found the variable, but somehow failed to read
8820 its value. Rethrow the same error, but with a little
8821 bit more information, to help the user understand
8822 what went wrong (Eg: the variable might have been
8823 optimized out). */
8824 throw_error (except.error,
8825 _("unable to read value of %s (%s)"),
3d6e9d23 8826 xvz_name, except.what ());
eccab96d 8827 }
eccab96d
JB
8828
8829 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8830 {
8831 fixed_record_type = copy_type (fixed_record_type);
8832 TYPE_LENGTH (fixed_record_type) = size;
8833
8834 /* The FIXED_RECORD_TYPE may have be a stub. We have
8835 observed this when the debugging info is STABS, and
8836 apparently it is something that is hard to fix.
8837
8838 In practice, we don't need the actual type definition
8839 at all, because the presence of the XVZ variable allows us
8840 to assume that there must be a XVS type as well, which we
8841 should be able to use later, when we need the actual type
8842 definition.
8843
8844 In the meantime, pretend that the "fixed" type we are
8845 returning is NOT a stub, because this can cause trouble
8846 when using this type to create new types targeting it.
8847 Indeed, the associated creation routines often check
8848 whether the target type is a stub and will try to replace
0963b4bd 8849 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8850 might cause the new type to have the wrong size too.
8851 Consider the case of an array, for instance, where the size
8852 of the array is computed from the number of elements in
8853 our array multiplied by the size of its element. */
8854 TYPE_STUB (fixed_record_type) = 0;
8855 }
8856 }
1ed6ede0 8857 return fixed_record_type;
4c4b4cd2 8858 }
d2e4a39e 8859 case TYPE_CODE_ARRAY:
4c4b4cd2 8860 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8861 case TYPE_CODE_UNION:
8862 if (dval == NULL)
4c4b4cd2 8863 return type;
d2e4a39e 8864 else
4c4b4cd2 8865 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8866 }
14f9c5c9
AS
8867}
8868
f192137b
JB
8869/* The same as ada_to_fixed_type_1, except that it preserves the type
8870 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8871
8872 The typedef layer needs be preserved in order to differentiate between
8873 arrays and array pointers when both types are implemented using the same
8874 fat pointer. In the array pointer case, the pointer is encoded as
8875 a typedef of the pointer type. For instance, considering:
8876
8877 type String_Access is access String;
8878 S1 : String_Access := null;
8879
8880 To the debugger, S1 is defined as a typedef of type String. But
8881 to the user, it is a pointer. So if the user tries to print S1,
8882 we should not dereference the array, but print the array address
8883 instead.
8884
8885 If we didn't preserve the typedef layer, we would lose the fact that
8886 the type is to be presented as a pointer (needs de-reference before
8887 being printed). And we would also use the source-level type name. */
f192137b
JB
8888
8889struct type *
8890ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8891 CORE_ADDR address, struct value *dval, int check_tag)
8892
8893{
8894 struct type *fixed_type =
8895 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8896
96dbd2c1
JB
8897 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8898 then preserve the typedef layer.
8899
8900 Implementation note: We can only check the main-type portion of
8901 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8902 from TYPE now returns a type that has the same instance flags
8903 as TYPE. For instance, if TYPE is a "typedef const", and its
8904 target type is a "struct", then the typedef elimination will return
8905 a "const" version of the target type. See check_typedef for more
8906 details about how the typedef layer elimination is done.
8907
8908 brobecker/2010-11-19: It seems to me that the only case where it is
8909 useful to preserve the typedef layer is when dealing with fat pointers.
8910 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8911 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8912 because we call check_typedef/ada_check_typedef pretty much everywhere.
8913 */
78134374 8914 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8915 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8916 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8917 return type;
8918
8919 return fixed_type;
8920}
8921
14f9c5c9 8922/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8923 TYPE0, but based on no runtime data. */
14f9c5c9 8924
d2e4a39e
AS
8925static struct type *
8926to_static_fixed_type (struct type *type0)
14f9c5c9 8927{
d2e4a39e 8928 struct type *type;
14f9c5c9
AS
8929
8930 if (type0 == NULL)
8931 return NULL;
8932
876cecd0 8933 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8934 return type0;
8935
61ee279c 8936 type0 = ada_check_typedef (type0);
d2e4a39e 8937
78134374 8938 switch (type0->code ())
14f9c5c9
AS
8939 {
8940 default:
8941 return type0;
8942 case TYPE_CODE_STRUCT:
8943 type = dynamic_template_type (type0);
d2e4a39e 8944 if (type != NULL)
4c4b4cd2
PH
8945 return template_to_static_fixed_type (type);
8946 else
8947 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8948 case TYPE_CODE_UNION:
8949 type = ada_find_parallel_type (type0, "___XVU");
8950 if (type != NULL)
4c4b4cd2
PH
8951 return template_to_static_fixed_type (type);
8952 else
8953 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8954 }
8955}
8956
4c4b4cd2
PH
8957/* A static approximation of TYPE with all type wrappers removed. */
8958
d2e4a39e
AS
8959static struct type *
8960static_unwrap_type (struct type *type)
14f9c5c9
AS
8961{
8962 if (ada_is_aligner_type (type))
8963 {
61ee279c 8964 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8965 if (ada_type_name (type1) == NULL)
d0e39ea2 8966 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8967
8968 return static_unwrap_type (type1);
8969 }
d2e4a39e 8970 else
14f9c5c9 8971 {
d2e4a39e 8972 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8973
d2e4a39e 8974 if (raw_real_type == type)
4c4b4cd2 8975 return type;
14f9c5c9 8976 else
4c4b4cd2 8977 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8978 }
8979}
8980
8981/* In some cases, incomplete and private types require
4c4b4cd2 8982 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8983 type Foo;
8984 type FooP is access Foo;
8985 V: FooP;
8986 type Foo is array ...;
4c4b4cd2 8987 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8988 cross-references to such types, we instead substitute for FooP a
8989 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8990 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8991
8992/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8993 exists, otherwise TYPE. */
8994
d2e4a39e 8995struct type *
61ee279c 8996ada_check_typedef (struct type *type)
14f9c5c9 8997{
727e3d2e
JB
8998 if (type == NULL)
8999 return NULL;
9000
736ade86
XR
9001 /* If our type is an access to an unconstrained array, which is encoded
9002 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9003 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9004 what allows us to distinguish between fat pointers that represent
9005 array types, and fat pointers that represent array access types
9006 (in both cases, the compiler implements them as fat pointers). */
736ade86 9007 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9008 return type;
9009
f168693b 9010 type = check_typedef (type);
78134374 9011 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 9012 || !TYPE_STUB (type)
7d93a1e0 9013 || type->name () == NULL)
14f9c5c9 9014 return type;
d2e4a39e 9015 else
14f9c5c9 9016 {
7d93a1e0 9017 const char *name = type->name ();
d2e4a39e 9018 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9019
05e522ef
JB
9020 if (type1 == NULL)
9021 return type;
9022
9023 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9024 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9025 types, only for the typedef-to-array types). If that's the case,
9026 strip the typedef layer. */
78134374 9027 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
9028 type1 = ada_check_typedef (type1);
9029
9030 return type1;
14f9c5c9
AS
9031 }
9032}
9033
9034/* A value representing the data at VALADDR/ADDRESS as described by
9035 type TYPE0, but with a standard (static-sized) type that correctly
9036 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9037 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9038 creation of struct values]. */
14f9c5c9 9039
4c4b4cd2
PH
9040static struct value *
9041ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9042 struct value *val0)
14f9c5c9 9043{
1ed6ede0 9044 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9045
14f9c5c9
AS
9046 if (type == type0 && val0 != NULL)
9047 return val0;
cc0e770c
JB
9048
9049 if (VALUE_LVAL (val0) != lval_memory)
9050 {
9051 /* Our value does not live in memory; it could be a convenience
9052 variable, for instance. Create a not_lval value using val0's
9053 contents. */
9054 return value_from_contents (type, value_contents (val0));
9055 }
9056
9057 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9058}
9059
9060/* A value representing VAL, but with a standard (static-sized) type
9061 that correctly describes it. Does not necessarily create a new
9062 value. */
9063
0c3acc09 9064struct value *
4c4b4cd2
PH
9065ada_to_fixed_value (struct value *val)
9066{
c48db5ca 9067 val = unwrap_value (val);
d8ce9127 9068 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9069 return val;
14f9c5c9 9070}
d2e4a39e 9071\f
14f9c5c9 9072
14f9c5c9
AS
9073/* Attributes */
9074
4c4b4cd2
PH
9075/* Table mapping attribute numbers to names.
9076 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9077
d2e4a39e 9078static const char *attribute_names[] = {
14f9c5c9
AS
9079 "<?>",
9080
d2e4a39e 9081 "first",
14f9c5c9
AS
9082 "last",
9083 "length",
9084 "image",
14f9c5c9
AS
9085 "max",
9086 "min",
4c4b4cd2
PH
9087 "modulus",
9088 "pos",
9089 "size",
9090 "tag",
14f9c5c9 9091 "val",
14f9c5c9
AS
9092 0
9093};
9094
de93309a 9095static const char *
4c4b4cd2 9096ada_attribute_name (enum exp_opcode n)
14f9c5c9 9097{
4c4b4cd2
PH
9098 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9099 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9100 else
9101 return attribute_names[0];
9102}
9103
4c4b4cd2 9104/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9105
4c4b4cd2
PH
9106static LONGEST
9107pos_atr (struct value *arg)
14f9c5c9 9108{
24209737
PH
9109 struct value *val = coerce_ref (arg);
9110 struct type *type = value_type (val);
aa715135 9111 LONGEST result;
14f9c5c9 9112
d2e4a39e 9113 if (!discrete_type_p (type))
323e0a4a 9114 error (_("'POS only defined on discrete types"));
14f9c5c9 9115
aa715135
JG
9116 if (!discrete_position (type, value_as_long (val), &result))
9117 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9118
aa715135 9119 return result;
4c4b4cd2
PH
9120}
9121
9122static struct value *
3cb382c9 9123value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9124{
3cb382c9 9125 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9126}
9127
4c4b4cd2 9128/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9129
d2e4a39e 9130static struct value *
53a47a3e 9131val_atr (struct type *type, LONGEST val)
14f9c5c9 9132{
53a47a3e 9133 gdb_assert (discrete_type_p (type));
0bc2354b
TT
9134 if (type->code () == TYPE_CODE_RANGE)
9135 type = TYPE_TARGET_TYPE (type);
78134374 9136 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 9137 {
53a47a3e 9138 if (val < 0 || val >= type->num_fields ())
323e0a4a 9139 error (_("argument to 'VAL out of range"));
53a47a3e 9140 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 9141 }
53a47a3e
TT
9142 return value_from_longest (type, val);
9143}
9144
9145static struct value *
9146value_val_atr (struct type *type, struct value *arg)
9147{
9148 if (!discrete_type_p (type))
9149 error (_("'VAL only defined on discrete types"));
9150 if (!integer_type_p (value_type (arg)))
9151 error (_("'VAL requires integral argument"));
9152
9153 return val_atr (type, value_as_long (arg));
14f9c5c9 9154}
14f9c5c9 9155\f
d2e4a39e 9156
4c4b4cd2 9157 /* Evaluation */
14f9c5c9 9158
4c4b4cd2
PH
9159/* True if TYPE appears to be an Ada character type.
9160 [At the moment, this is true only for Character and Wide_Character;
9161 It is a heuristic test that could stand improvement]. */
14f9c5c9 9162
fc913e53 9163bool
d2e4a39e 9164ada_is_character_type (struct type *type)
14f9c5c9 9165{
7b9f71f2
JB
9166 const char *name;
9167
9168 /* If the type code says it's a character, then assume it really is,
9169 and don't check any further. */
78134374 9170 if (type->code () == TYPE_CODE_CHAR)
fc913e53 9171 return true;
7b9f71f2
JB
9172
9173 /* Otherwise, assume it's a character type iff it is a discrete type
9174 with a known character type name. */
9175 name = ada_type_name (type);
9176 return (name != NULL
78134374
SM
9177 && (type->code () == TYPE_CODE_INT
9178 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
9179 && (strcmp (name, "character") == 0
9180 || strcmp (name, "wide_character") == 0
5a517ebd 9181 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9182 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9183}
9184
4c4b4cd2 9185/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9186
fc913e53 9187bool
ebf56fd3 9188ada_is_string_type (struct type *type)
14f9c5c9 9189{
61ee279c 9190 type = ada_check_typedef (type);
d2e4a39e 9191 if (type != NULL
78134374 9192 && type->code () != TYPE_CODE_PTR
76a01679
JB
9193 && (ada_is_simple_array_type (type)
9194 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9195 && ada_array_arity (type) == 1)
9196 {
9197 struct type *elttype = ada_array_element_type (type, 1);
9198
9199 return ada_is_character_type (elttype);
9200 }
d2e4a39e 9201 else
fc913e53 9202 return false;
14f9c5c9
AS
9203}
9204
5bf03f13
JB
9205/* The compiler sometimes provides a parallel XVS type for a given
9206 PAD type. Normally, it is safe to follow the PAD type directly,
9207 but older versions of the compiler have a bug that causes the offset
9208 of its "F" field to be wrong. Following that field in that case
9209 would lead to incorrect results, but this can be worked around
9210 by ignoring the PAD type and using the associated XVS type instead.
9211
9212 Set to True if the debugger should trust the contents of PAD types.
9213 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9214static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9215
9216/* True if TYPE is a struct type introduced by the compiler to force the
9217 alignment of a value. Such types have a single field with a
4c4b4cd2 9218 distinctive name. */
14f9c5c9
AS
9219
9220int
ebf56fd3 9221ada_is_aligner_type (struct type *type)
14f9c5c9 9222{
61ee279c 9223 type = ada_check_typedef (type);
714e53ab 9224
5bf03f13 9225 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9226 return 0;
9227
78134374 9228 return (type->code () == TYPE_CODE_STRUCT
1f704f76 9229 && type->num_fields () == 1
4c4b4cd2 9230 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9231}
9232
9233/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9234 the parallel type. */
14f9c5c9 9235
d2e4a39e
AS
9236struct type *
9237ada_get_base_type (struct type *raw_type)
14f9c5c9 9238{
d2e4a39e
AS
9239 struct type *real_type_namer;
9240 struct type *raw_real_type;
14f9c5c9 9241
78134374 9242 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9243 return raw_type;
9244
284614f0
JB
9245 if (ada_is_aligner_type (raw_type))
9246 /* The encoding specifies that we should always use the aligner type.
9247 So, even if this aligner type has an associated XVS type, we should
9248 simply ignore it.
9249
9250 According to the compiler gurus, an XVS type parallel to an aligner
9251 type may exist because of a stabs limitation. In stabs, aligner
9252 types are empty because the field has a variable-sized type, and
9253 thus cannot actually be used as an aligner type. As a result,
9254 we need the associated parallel XVS type to decode the type.
9255 Since the policy in the compiler is to not change the internal
9256 representation based on the debugging info format, we sometimes
9257 end up having a redundant XVS type parallel to the aligner type. */
9258 return raw_type;
9259
14f9c5c9 9260 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9261 if (real_type_namer == NULL
78134374 9262 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9263 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9264 return raw_type;
9265
78134374 9266 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
f80d3ff2
JB
9267 {
9268 /* This is an older encoding form where the base type needs to be
85102364 9269 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9270 more efficient. */
9271 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9272 if (raw_real_type == NULL)
9273 return raw_type;
9274 else
9275 return raw_real_type;
9276 }
9277
9278 /* The field in our XVS type is a reference to the base type. */
9279 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9280}
14f9c5c9 9281
4c4b4cd2 9282/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9283
d2e4a39e
AS
9284struct type *
9285ada_aligned_type (struct type *type)
14f9c5c9
AS
9286{
9287 if (ada_is_aligner_type (type))
9288 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9289 else
9290 return ada_get_base_type (type);
9291}
9292
9293
9294/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9295 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9296
fc1a4b47
AC
9297const gdb_byte *
9298ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9299{
d2e4a39e 9300 if (ada_is_aligner_type (type))
14f9c5c9 9301 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9302 valaddr +
9303 TYPE_FIELD_BITPOS (type,
9304 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9305 else
9306 return valaddr;
9307}
9308
4c4b4cd2
PH
9309
9310
14f9c5c9 9311/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9312 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9313const char *
9314ada_enum_name (const char *name)
14f9c5c9 9315{
4c4b4cd2
PH
9316 static char *result;
9317 static size_t result_len = 0;
e6a959d6 9318 const char *tmp;
14f9c5c9 9319
4c4b4cd2
PH
9320 /* First, unqualify the enumeration name:
9321 1. Search for the last '.' character. If we find one, then skip
177b42fe 9322 all the preceding characters, the unqualified name starts
76a01679 9323 right after that dot.
4c4b4cd2 9324 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9325 translates dots into "__". Search forward for double underscores,
9326 but stop searching when we hit an overloading suffix, which is
9327 of the form "__" followed by digits. */
4c4b4cd2 9328
c3e5cd34
PH
9329 tmp = strrchr (name, '.');
9330 if (tmp != NULL)
4c4b4cd2
PH
9331 name = tmp + 1;
9332 else
14f9c5c9 9333 {
4c4b4cd2
PH
9334 while ((tmp = strstr (name, "__")) != NULL)
9335 {
9336 if (isdigit (tmp[2]))
9337 break;
9338 else
9339 name = tmp + 2;
9340 }
14f9c5c9
AS
9341 }
9342
9343 if (name[0] == 'Q')
9344 {
14f9c5c9 9345 int v;
5b4ee69b 9346
14f9c5c9 9347 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9348 {
9349 if (sscanf (name + 2, "%x", &v) != 1)
9350 return name;
9351 }
272560b5
TT
9352 else if (((name[1] >= '0' && name[1] <= '9')
9353 || (name[1] >= 'a' && name[1] <= 'z'))
9354 && name[2] == '\0')
9355 {
9356 GROW_VECT (result, result_len, 4);
9357 xsnprintf (result, result_len, "'%c'", name[1]);
9358 return result;
9359 }
14f9c5c9 9360 else
4c4b4cd2 9361 return name;
14f9c5c9 9362
4c4b4cd2 9363 GROW_VECT (result, result_len, 16);
14f9c5c9 9364 if (isascii (v) && isprint (v))
88c15c34 9365 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9366 else if (name[1] == 'U')
88c15c34 9367 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9368 else
88c15c34 9369 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9370
9371 return result;
9372 }
d2e4a39e 9373 else
4c4b4cd2 9374 {
c3e5cd34
PH
9375 tmp = strstr (name, "__");
9376 if (tmp == NULL)
9377 tmp = strstr (name, "$");
9378 if (tmp != NULL)
4c4b4cd2
PH
9379 {
9380 GROW_VECT (result, result_len, tmp - name + 1);
9381 strncpy (result, name, tmp - name);
9382 result[tmp - name] = '\0';
9383 return result;
9384 }
9385
9386 return name;
9387 }
14f9c5c9
AS
9388}
9389
14f9c5c9
AS
9390/* Evaluate the subexpression of EXP starting at *POS as for
9391 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9392 expression. */
14f9c5c9 9393
d2e4a39e
AS
9394static struct value *
9395evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9396{
4b27a620 9397 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9398}
9399
9400/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9401 value it wraps. */
14f9c5c9 9402
d2e4a39e
AS
9403static struct value *
9404unwrap_value (struct value *val)
14f9c5c9 9405{
df407dfe 9406 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9407
14f9c5c9
AS
9408 if (ada_is_aligner_type (type))
9409 {
de4d072f 9410 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9411 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9412
14f9c5c9 9413 if (ada_type_name (val_type) == NULL)
d0e39ea2 9414 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9415
9416 return unwrap_value (v);
9417 }
d2e4a39e 9418 else
14f9c5c9 9419 {
d2e4a39e 9420 struct type *raw_real_type =
61ee279c 9421 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9422
5bf03f13
JB
9423 /* If there is no parallel XVS or XVE type, then the value is
9424 already unwrapped. Return it without further modification. */
9425 if ((type == raw_real_type)
9426 && ada_find_parallel_type (type, "___XVE") == NULL)
9427 return val;
14f9c5c9 9428
d2e4a39e 9429 return
4c4b4cd2
PH
9430 coerce_unspec_val_to_type
9431 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9432 value_address (val),
1ed6ede0 9433 NULL, 1));
14f9c5c9
AS
9434 }
9435}
d2e4a39e
AS
9436
9437static struct value *
50eff16b 9438cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9439{
50eff16b
UW
9440 struct value *scale = ada_scaling_factor (value_type (arg));
9441 arg = value_cast (value_type (scale), arg);
14f9c5c9 9442
50eff16b
UW
9443 arg = value_binop (arg, scale, BINOP_MUL);
9444 return value_cast (type, arg);
14f9c5c9
AS
9445}
9446
d2e4a39e 9447static struct value *
50eff16b 9448cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9449{
50eff16b
UW
9450 if (type == value_type (arg))
9451 return arg;
5b4ee69b 9452
50eff16b 9453 struct value *scale = ada_scaling_factor (type);
b2188a06 9454 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9455 arg = cast_from_fixed (value_type (scale), arg);
9456 else
9457 arg = value_cast (value_type (scale), arg);
9458
9459 arg = value_binop (arg, scale, BINOP_DIV);
9460 return value_cast (type, arg);
14f9c5c9
AS
9461}
9462
d99dcf51
JB
9463/* Given two array types T1 and T2, return nonzero iff both arrays
9464 contain the same number of elements. */
9465
9466static int
9467ada_same_array_size_p (struct type *t1, struct type *t2)
9468{
9469 LONGEST lo1, hi1, lo2, hi2;
9470
9471 /* Get the array bounds in order to verify that the size of
9472 the two arrays match. */
9473 if (!get_array_bounds (t1, &lo1, &hi1)
9474 || !get_array_bounds (t2, &lo2, &hi2))
9475 error (_("unable to determine array bounds"));
9476
9477 /* To make things easier for size comparison, normalize a bit
9478 the case of empty arrays by making sure that the difference
9479 between upper bound and lower bound is always -1. */
9480 if (lo1 > hi1)
9481 hi1 = lo1 - 1;
9482 if (lo2 > hi2)
9483 hi2 = lo2 - 1;
9484
9485 return (hi1 - lo1 == hi2 - lo2);
9486}
9487
9488/* Assuming that VAL is an array of integrals, and TYPE represents
9489 an array with the same number of elements, but with wider integral
9490 elements, return an array "casted" to TYPE. In practice, this
9491 means that the returned array is built by casting each element
9492 of the original array into TYPE's (wider) element type. */
9493
9494static struct value *
9495ada_promote_array_of_integrals (struct type *type, struct value *val)
9496{
9497 struct type *elt_type = TYPE_TARGET_TYPE (type);
9498 LONGEST lo, hi;
9499 struct value *res;
9500 LONGEST i;
9501
9502 /* Verify that both val and type are arrays of scalars, and
9503 that the size of val's elements is smaller than the size
9504 of type's element. */
78134374 9505 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9506 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9507 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9508 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9509 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9510 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9511
9512 if (!get_array_bounds (type, &lo, &hi))
9513 error (_("unable to determine array bounds"));
9514
9515 res = allocate_value (type);
9516
9517 /* Promote each array element. */
9518 for (i = 0; i < hi - lo + 1; i++)
9519 {
9520 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9521
9522 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9523 value_contents_all (elt), TYPE_LENGTH (elt_type));
9524 }
9525
9526 return res;
9527}
9528
4c4b4cd2
PH
9529/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9530 return the converted value. */
9531
d2e4a39e
AS
9532static struct value *
9533coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9534{
df407dfe 9535 struct type *type2 = value_type (val);
5b4ee69b 9536
14f9c5c9
AS
9537 if (type == type2)
9538 return val;
9539
61ee279c
PH
9540 type2 = ada_check_typedef (type2);
9541 type = ada_check_typedef (type);
14f9c5c9 9542
78134374
SM
9543 if (type2->code () == TYPE_CODE_PTR
9544 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9545 {
9546 val = ada_value_ind (val);
df407dfe 9547 type2 = value_type (val);
14f9c5c9
AS
9548 }
9549
78134374
SM
9550 if (type2->code () == TYPE_CODE_ARRAY
9551 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9552 {
d99dcf51
JB
9553 if (!ada_same_array_size_p (type, type2))
9554 error (_("cannot assign arrays of different length"));
9555
9556 if (is_integral_type (TYPE_TARGET_TYPE (type))
9557 && is_integral_type (TYPE_TARGET_TYPE (type2))
9558 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9559 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9560 {
9561 /* Allow implicit promotion of the array elements to
9562 a wider type. */
9563 return ada_promote_array_of_integrals (type, val);
9564 }
9565
9566 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9567 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9568 error (_("Incompatible types in assignment"));
04624583 9569 deprecated_set_value_type (val, type);
14f9c5c9 9570 }
d2e4a39e 9571 return val;
14f9c5c9
AS
9572}
9573
4c4b4cd2
PH
9574static struct value *
9575ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9576{
9577 struct value *val;
9578 struct type *type1, *type2;
9579 LONGEST v, v1, v2;
9580
994b9211
AC
9581 arg1 = coerce_ref (arg1);
9582 arg2 = coerce_ref (arg2);
18af8284
JB
9583 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9584 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9585
78134374
SM
9586 if (type1->code () != TYPE_CODE_INT
9587 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9588 return value_binop (arg1, arg2, op);
9589
76a01679 9590 switch (op)
4c4b4cd2
PH
9591 {
9592 case BINOP_MOD:
9593 case BINOP_DIV:
9594 case BINOP_REM:
9595 break;
9596 default:
9597 return value_binop (arg1, arg2, op);
9598 }
9599
9600 v2 = value_as_long (arg2);
9601 if (v2 == 0)
323e0a4a 9602 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9603
9604 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9605 return value_binop (arg1, arg2, op);
9606
9607 v1 = value_as_long (arg1);
9608 switch (op)
9609 {
9610 case BINOP_DIV:
9611 v = v1 / v2;
76a01679
JB
9612 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9613 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9614 break;
9615 case BINOP_REM:
9616 v = v1 % v2;
76a01679
JB
9617 if (v * v1 < 0)
9618 v -= v2;
4c4b4cd2
PH
9619 break;
9620 default:
9621 /* Should not reach this point. */
9622 v = 0;
9623 }
9624
9625 val = allocate_value (type1);
990a07ab 9626 store_unsigned_integer (value_contents_raw (val),
e17a4113 9627 TYPE_LENGTH (value_type (val)),
34877895 9628 type_byte_order (type1), v);
4c4b4cd2
PH
9629 return val;
9630}
9631
9632static int
9633ada_value_equal (struct value *arg1, struct value *arg2)
9634{
df407dfe
AC
9635 if (ada_is_direct_array_type (value_type (arg1))
9636 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9637 {
79e8fcaa
JB
9638 struct type *arg1_type, *arg2_type;
9639
f58b38bf
JB
9640 /* Automatically dereference any array reference before
9641 we attempt to perform the comparison. */
9642 arg1 = ada_coerce_ref (arg1);
9643 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9644
4c4b4cd2
PH
9645 arg1 = ada_coerce_to_simple_array (arg1);
9646 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9647
9648 arg1_type = ada_check_typedef (value_type (arg1));
9649 arg2_type = ada_check_typedef (value_type (arg2));
9650
78134374
SM
9651 if (arg1_type->code () != TYPE_CODE_ARRAY
9652 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9653 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9654 /* FIXME: The following works only for types whose
76a01679
JB
9655 representations use all bits (no padding or undefined bits)
9656 and do not have user-defined equality. */
79e8fcaa
JB
9657 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9658 && memcmp (value_contents (arg1), value_contents (arg2),
9659 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9660 }
9661 return value_equal (arg1, arg2);
9662}
9663
52ce6436
PH
9664/* Total number of component associations in the aggregate starting at
9665 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9666 OP_AGGREGATE. */
52ce6436
PH
9667
9668static int
9669num_component_specs (struct expression *exp, int pc)
9670{
9671 int n, m, i;
5b4ee69b 9672
52ce6436
PH
9673 m = exp->elts[pc + 1].longconst;
9674 pc += 3;
9675 n = 0;
9676 for (i = 0; i < m; i += 1)
9677 {
9678 switch (exp->elts[pc].opcode)
9679 {
9680 default:
9681 n += 1;
9682 break;
9683 case OP_CHOICES:
9684 n += exp->elts[pc + 1].longconst;
9685 break;
9686 }
9687 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9688 }
9689 return n;
9690}
9691
9692/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9693 component of LHS (a simple array or a record), updating *POS past
9694 the expression, assuming that LHS is contained in CONTAINER. Does
9695 not modify the inferior's memory, nor does it modify LHS (unless
9696 LHS == CONTAINER). */
9697
9698static void
9699assign_component (struct value *container, struct value *lhs, LONGEST index,
9700 struct expression *exp, int *pos)
9701{
9702 struct value *mark = value_mark ();
9703 struct value *elt;
0e2da9f0 9704 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9705
78134374 9706 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9707 {
22601c15
UW
9708 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9709 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9710
52ce6436
PH
9711 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9712 }
9713 else
9714 {
9715 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9716 elt = ada_to_fixed_value (elt);
52ce6436
PH
9717 }
9718
9719 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9720 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9721 else
9722 value_assign_to_component (container, elt,
9723 ada_evaluate_subexp (NULL, exp, pos,
9724 EVAL_NORMAL));
9725
9726 value_free_to_mark (mark);
9727}
9728
9729/* Assuming that LHS represents an lvalue having a record or array
9730 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9731 of that aggregate's value to LHS, advancing *POS past the
9732 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9733 lvalue containing LHS (possibly LHS itself). Does not modify
9734 the inferior's memory, nor does it modify the contents of
0963b4bd 9735 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9736
9737static struct value *
9738assign_aggregate (struct value *container,
9739 struct value *lhs, struct expression *exp,
9740 int *pos, enum noside noside)
9741{
9742 struct type *lhs_type;
9743 int n = exp->elts[*pos+1].longconst;
9744 LONGEST low_index, high_index;
9745 int num_specs;
9746 LONGEST *indices;
9747 int max_indices, num_indices;
52ce6436 9748 int i;
52ce6436
PH
9749
9750 *pos += 3;
9751 if (noside != EVAL_NORMAL)
9752 {
52ce6436
PH
9753 for (i = 0; i < n; i += 1)
9754 ada_evaluate_subexp (NULL, exp, pos, noside);
9755 return container;
9756 }
9757
9758 container = ada_coerce_ref (container);
9759 if (ada_is_direct_array_type (value_type (container)))
9760 container = ada_coerce_to_simple_array (container);
9761 lhs = ada_coerce_ref (lhs);
9762 if (!deprecated_value_modifiable (lhs))
9763 error (_("Left operand of assignment is not a modifiable lvalue."));
9764
0e2da9f0 9765 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9766 if (ada_is_direct_array_type (lhs_type))
9767 {
9768 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9769 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9770 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9771 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9772 }
78134374 9773 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9774 {
9775 low_index = 0;
9776 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9777 }
9778 else
9779 error (_("Left-hand side must be array or record."));
9780
9781 num_specs = num_component_specs (exp, *pos - 3);
9782 max_indices = 4 * num_specs + 4;
8d749320 9783 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9784 indices[0] = indices[1] = low_index - 1;
9785 indices[2] = indices[3] = high_index + 1;
9786 num_indices = 4;
9787
9788 for (i = 0; i < n; i += 1)
9789 {
9790 switch (exp->elts[*pos].opcode)
9791 {
1fbf5ada
JB
9792 case OP_CHOICES:
9793 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9794 &num_indices, max_indices,
9795 low_index, high_index);
9796 break;
9797 case OP_POSITIONAL:
9798 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9799 &num_indices, max_indices,
9800 low_index, high_index);
1fbf5ada
JB
9801 break;
9802 case OP_OTHERS:
9803 if (i != n-1)
9804 error (_("Misplaced 'others' clause"));
9805 aggregate_assign_others (container, lhs, exp, pos, indices,
9806 num_indices, low_index, high_index);
9807 break;
9808 default:
9809 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9810 }
9811 }
9812
9813 return container;
9814}
9815
9816/* Assign into the component of LHS indexed by the OP_POSITIONAL
9817 construct at *POS, updating *POS past the construct, given that
9818 the positions are relative to lower bound LOW, where HIGH is the
9819 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9820 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9821 assign_aggregate. */
52ce6436
PH
9822static void
9823aggregate_assign_positional (struct value *container,
9824 struct value *lhs, struct expression *exp,
9825 int *pos, LONGEST *indices, int *num_indices,
9826 int max_indices, LONGEST low, LONGEST high)
9827{
9828 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9829
9830 if (ind - 1 == high)
e1d5a0d2 9831 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9832 if (ind <= high)
9833 {
9834 add_component_interval (ind, ind, indices, num_indices, max_indices);
9835 *pos += 3;
9836 assign_component (container, lhs, ind, exp, pos);
9837 }
9838 else
9839 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9840}
9841
9842/* Assign into the components of LHS indexed by the OP_CHOICES
9843 construct at *POS, updating *POS past the construct, given that
9844 the allowable indices are LOW..HIGH. Record the indices assigned
9845 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9846 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9847static void
9848aggregate_assign_from_choices (struct value *container,
9849 struct value *lhs, struct expression *exp,
9850 int *pos, LONGEST *indices, int *num_indices,
9851 int max_indices, LONGEST low, LONGEST high)
9852{
9853 int j;
9854 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9855 int choice_pos, expr_pc;
9856 int is_array = ada_is_direct_array_type (value_type (lhs));
9857
9858 choice_pos = *pos += 3;
9859
9860 for (j = 0; j < n_choices; j += 1)
9861 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9862 expr_pc = *pos;
9863 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9864
9865 for (j = 0; j < n_choices; j += 1)
9866 {
9867 LONGEST lower, upper;
9868 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9869
52ce6436
PH
9870 if (op == OP_DISCRETE_RANGE)
9871 {
9872 choice_pos += 1;
9873 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9874 EVAL_NORMAL));
9875 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9876 EVAL_NORMAL));
9877 }
9878 else if (is_array)
9879 {
9880 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9881 EVAL_NORMAL));
9882 upper = lower;
9883 }
9884 else
9885 {
9886 int ind;
0d5cff50 9887 const char *name;
5b4ee69b 9888
52ce6436
PH
9889 switch (op)
9890 {
9891 case OP_NAME:
9892 name = &exp->elts[choice_pos + 2].string;
9893 break;
9894 case OP_VAR_VALUE:
987012b8 9895 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9896 break;
9897 default:
9898 error (_("Invalid record component association."));
9899 }
9900 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9901 ind = 0;
9902 if (! find_struct_field (name, value_type (lhs), 0,
9903 NULL, NULL, NULL, NULL, &ind))
9904 error (_("Unknown component name: %s."), name);
9905 lower = upper = ind;
9906 }
9907
9908 if (lower <= upper && (lower < low || upper > high))
9909 error (_("Index in component association out of bounds."));
9910
9911 add_component_interval (lower, upper, indices, num_indices,
9912 max_indices);
9913 while (lower <= upper)
9914 {
9915 int pos1;
5b4ee69b 9916
52ce6436
PH
9917 pos1 = expr_pc;
9918 assign_component (container, lhs, lower, exp, &pos1);
9919 lower += 1;
9920 }
9921 }
9922}
9923
9924/* Assign the value of the expression in the OP_OTHERS construct in
9925 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9926 have not been previously assigned. The index intervals already assigned
9927 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9928 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9929static void
9930aggregate_assign_others (struct value *container,
9931 struct value *lhs, struct expression *exp,
9932 int *pos, LONGEST *indices, int num_indices,
9933 LONGEST low, LONGEST high)
9934{
9935 int i;
5ce64950 9936 int expr_pc = *pos + 1;
52ce6436
PH
9937
9938 for (i = 0; i < num_indices - 2; i += 2)
9939 {
9940 LONGEST ind;
5b4ee69b 9941
52ce6436
PH
9942 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9943 {
5ce64950 9944 int localpos;
5b4ee69b 9945
5ce64950
MS
9946 localpos = expr_pc;
9947 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9948 }
9949 }
9950 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9951}
9952
9953/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9954 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9955 modifying *SIZE as needed. It is an error if *SIZE exceeds
9956 MAX_SIZE. The resulting intervals do not overlap. */
9957static void
9958add_component_interval (LONGEST low, LONGEST high,
9959 LONGEST* indices, int *size, int max_size)
9960{
9961 int i, j;
5b4ee69b 9962
52ce6436
PH
9963 for (i = 0; i < *size; i += 2) {
9964 if (high >= indices[i] && low <= indices[i + 1])
9965 {
9966 int kh;
5b4ee69b 9967
52ce6436
PH
9968 for (kh = i + 2; kh < *size; kh += 2)
9969 if (high < indices[kh])
9970 break;
9971 if (low < indices[i])
9972 indices[i] = low;
9973 indices[i + 1] = indices[kh - 1];
9974 if (high > indices[i + 1])
9975 indices[i + 1] = high;
9976 memcpy (indices + i + 2, indices + kh, *size - kh);
9977 *size -= kh - i - 2;
9978 return;
9979 }
9980 else if (high < indices[i])
9981 break;
9982 }
9983
9984 if (*size == max_size)
9985 error (_("Internal error: miscounted aggregate components."));
9986 *size += 2;
9987 for (j = *size-1; j >= i+2; j -= 1)
9988 indices[j] = indices[j - 2];
9989 indices[i] = low;
9990 indices[i + 1] = high;
9991}
9992
6e48bd2c
JB
9993/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9994 is different. */
9995
9996static struct value *
b7e22850 9997ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9998{
9999 if (type == ada_check_typedef (value_type (arg2)))
10000 return arg2;
10001
b2188a06 10002 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 10003 return cast_to_fixed (type, arg2);
6e48bd2c 10004
b2188a06 10005 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10006 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10007
10008 return value_cast (type, arg2);
10009}
10010
284614f0
JB
10011/* Evaluating Ada expressions, and printing their result.
10012 ------------------------------------------------------
10013
21649b50
JB
10014 1. Introduction:
10015 ----------------
10016
284614f0
JB
10017 We usually evaluate an Ada expression in order to print its value.
10018 We also evaluate an expression in order to print its type, which
10019 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10020 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10021 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10022 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10023 similar.
10024
10025 Evaluating expressions is a little more complicated for Ada entities
10026 than it is for entities in languages such as C. The main reason for
10027 this is that Ada provides types whose definition might be dynamic.
10028 One example of such types is variant records. Or another example
10029 would be an array whose bounds can only be known at run time.
10030
10031 The following description is a general guide as to what should be
10032 done (and what should NOT be done) in order to evaluate an expression
10033 involving such types, and when. This does not cover how the semantic
10034 information is encoded by GNAT as this is covered separatly. For the
10035 document used as the reference for the GNAT encoding, see exp_dbug.ads
10036 in the GNAT sources.
10037
10038 Ideally, we should embed each part of this description next to its
10039 associated code. Unfortunately, the amount of code is so vast right
10040 now that it's hard to see whether the code handling a particular
10041 situation might be duplicated or not. One day, when the code is
10042 cleaned up, this guide might become redundant with the comments
10043 inserted in the code, and we might want to remove it.
10044
21649b50
JB
10045 2. ``Fixing'' an Entity, the Simple Case:
10046 -----------------------------------------
10047
284614f0
JB
10048 When evaluating Ada expressions, the tricky issue is that they may
10049 reference entities whose type contents and size are not statically
10050 known. Consider for instance a variant record:
10051
10052 type Rec (Empty : Boolean := True) is record
10053 case Empty is
10054 when True => null;
10055 when False => Value : Integer;
10056 end case;
10057 end record;
10058 Yes : Rec := (Empty => False, Value => 1);
10059 No : Rec := (empty => True);
10060
10061 The size and contents of that record depends on the value of the
10062 descriminant (Rec.Empty). At this point, neither the debugging
10063 information nor the associated type structure in GDB are able to
10064 express such dynamic types. So what the debugger does is to create
10065 "fixed" versions of the type that applies to the specific object.
30baf67b 10066 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10067 which means creating its associated fixed type.
10068
10069 Example: when printing the value of variable "Yes" above, its fixed
10070 type would look like this:
10071
10072 type Rec is record
10073 Empty : Boolean;
10074 Value : Integer;
10075 end record;
10076
10077 On the other hand, if we printed the value of "No", its fixed type
10078 would become:
10079
10080 type Rec is record
10081 Empty : Boolean;
10082 end record;
10083
10084 Things become a little more complicated when trying to fix an entity
10085 with a dynamic type that directly contains another dynamic type,
10086 such as an array of variant records, for instance. There are
10087 two possible cases: Arrays, and records.
10088
21649b50
JB
10089 3. ``Fixing'' Arrays:
10090 ---------------------
10091
10092 The type structure in GDB describes an array in terms of its bounds,
10093 and the type of its elements. By design, all elements in the array
10094 have the same type and we cannot represent an array of variant elements
10095 using the current type structure in GDB. When fixing an array,
10096 we cannot fix the array element, as we would potentially need one
10097 fixed type per element of the array. As a result, the best we can do
10098 when fixing an array is to produce an array whose bounds and size
10099 are correct (allowing us to read it from memory), but without having
10100 touched its element type. Fixing each element will be done later,
10101 when (if) necessary.
10102
10103 Arrays are a little simpler to handle than records, because the same
10104 amount of memory is allocated for each element of the array, even if
1b536f04 10105 the amount of space actually used by each element differs from element
21649b50 10106 to element. Consider for instance the following array of type Rec:
284614f0
JB
10107
10108 type Rec_Array is array (1 .. 2) of Rec;
10109
1b536f04
JB
10110 The actual amount of memory occupied by each element might be different
10111 from element to element, depending on the value of their discriminant.
21649b50 10112 But the amount of space reserved for each element in the array remains
1b536f04 10113 fixed regardless. So we simply need to compute that size using
21649b50
JB
10114 the debugging information available, from which we can then determine
10115 the array size (we multiply the number of elements of the array by
10116 the size of each element).
10117
10118 The simplest case is when we have an array of a constrained element
10119 type. For instance, consider the following type declarations:
10120
10121 type Bounded_String (Max_Size : Integer) is
10122 Length : Integer;
10123 Buffer : String (1 .. Max_Size);
10124 end record;
10125 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10126
10127 In this case, the compiler describes the array as an array of
10128 variable-size elements (identified by its XVS suffix) for which
10129 the size can be read in the parallel XVZ variable.
10130
10131 In the case of an array of an unconstrained element type, the compiler
10132 wraps the array element inside a private PAD type. This type should not
10133 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10134 that we also use the adjective "aligner" in our code to designate
10135 these wrapper types.
10136
1b536f04 10137 In some cases, the size allocated for each element is statically
21649b50
JB
10138 known. In that case, the PAD type already has the correct size,
10139 and the array element should remain unfixed.
10140
10141 But there are cases when this size is not statically known.
10142 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10143
10144 type Dynamic is array (1 .. Five) of Integer;
10145 type Wrapper (Has_Length : Boolean := False) is record
10146 Data : Dynamic;
10147 case Has_Length is
10148 when True => Length : Integer;
10149 when False => null;
10150 end case;
10151 end record;
10152 type Wrapper_Array is array (1 .. 2) of Wrapper;
10153
10154 Hello : Wrapper_Array := (others => (Has_Length => True,
10155 Data => (others => 17),
10156 Length => 1));
10157
10158
10159 The debugging info would describe variable Hello as being an
10160 array of a PAD type. The size of that PAD type is not statically
10161 known, but can be determined using a parallel XVZ variable.
10162 In that case, a copy of the PAD type with the correct size should
10163 be used for the fixed array.
10164
21649b50
JB
10165 3. ``Fixing'' record type objects:
10166 ----------------------------------
10167
10168 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10169 record types. In this case, in order to compute the associated
10170 fixed type, we need to determine the size and offset of each of
10171 its components. This, in turn, requires us to compute the fixed
10172 type of each of these components.
10173
10174 Consider for instance the example:
10175
10176 type Bounded_String (Max_Size : Natural) is record
10177 Str : String (1 .. Max_Size);
10178 Length : Natural;
10179 end record;
10180 My_String : Bounded_String (Max_Size => 10);
10181
10182 In that case, the position of field "Length" depends on the size
10183 of field Str, which itself depends on the value of the Max_Size
21649b50 10184 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10185 we need to fix the type of field Str. Therefore, fixing a variant
10186 record requires us to fix each of its components.
10187
10188 However, if a component does not have a dynamic size, the component
10189 should not be fixed. In particular, fields that use a PAD type
10190 should not fixed. Here is an example where this might happen
10191 (assuming type Rec above):
10192
10193 type Container (Big : Boolean) is record
10194 First : Rec;
10195 After : Integer;
10196 case Big is
10197 when True => Another : Integer;
10198 when False => null;
10199 end case;
10200 end record;
10201 My_Container : Container := (Big => False,
10202 First => (Empty => True),
10203 After => 42);
10204
10205 In that example, the compiler creates a PAD type for component First,
10206 whose size is constant, and then positions the component After just
10207 right after it. The offset of component After is therefore constant
10208 in this case.
10209
10210 The debugger computes the position of each field based on an algorithm
10211 that uses, among other things, the actual position and size of the field
21649b50
JB
10212 preceding it. Let's now imagine that the user is trying to print
10213 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10214 end up computing the offset of field After based on the size of the
10215 fixed version of field First. And since in our example First has
10216 only one actual field, the size of the fixed type is actually smaller
10217 than the amount of space allocated to that field, and thus we would
10218 compute the wrong offset of field After.
10219
21649b50
JB
10220 To make things more complicated, we need to watch out for dynamic
10221 components of variant records (identified by the ___XVL suffix in
10222 the component name). Even if the target type is a PAD type, the size
10223 of that type might not be statically known. So the PAD type needs
10224 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10225 we might end up with the wrong size for our component. This can be
10226 observed with the following type declarations:
284614f0
JB
10227
10228 type Octal is new Integer range 0 .. 7;
10229 type Octal_Array is array (Positive range <>) of Octal;
10230 pragma Pack (Octal_Array);
10231
10232 type Octal_Buffer (Size : Positive) is record
10233 Buffer : Octal_Array (1 .. Size);
10234 Length : Integer;
10235 end record;
10236
10237 In that case, Buffer is a PAD type whose size is unset and needs
10238 to be computed by fixing the unwrapped type.
10239
21649b50
JB
10240 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10241 ----------------------------------------------------------
10242
10243 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10244 thus far, be actually fixed?
10245
10246 The answer is: Only when referencing that element. For instance
10247 when selecting one component of a record, this specific component
10248 should be fixed at that point in time. Or when printing the value
10249 of a record, each component should be fixed before its value gets
10250 printed. Similarly for arrays, the element of the array should be
10251 fixed when printing each element of the array, or when extracting
10252 one element out of that array. On the other hand, fixing should
10253 not be performed on the elements when taking a slice of an array!
10254
31432a67 10255 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10256 size of each field is that we end up also miscomputing the size
10257 of the containing type. This can have adverse results when computing
10258 the value of an entity. GDB fetches the value of an entity based
10259 on the size of its type, and thus a wrong size causes GDB to fetch
10260 the wrong amount of memory. In the case where the computed size is
10261 too small, GDB fetches too little data to print the value of our
31432a67 10262 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10263 past the buffer containing the data =:-o. */
10264
ced9779b
JB
10265/* Evaluate a subexpression of EXP, at index *POS, and return a value
10266 for that subexpression cast to TO_TYPE. Advance *POS over the
10267 subexpression. */
10268
10269static value *
10270ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10271 enum noside noside, struct type *to_type)
10272{
10273 int pc = *pos;
10274
10275 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10276 || exp->elts[pc].opcode == OP_VAR_VALUE)
10277 {
10278 (*pos) += 4;
10279
10280 value *val;
10281 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10282 {
10283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10284 return value_zero (to_type, not_lval);
10285
10286 val = evaluate_var_msym_value (noside,
10287 exp->elts[pc + 1].objfile,
10288 exp->elts[pc + 2].msymbol);
10289 }
10290 else
10291 val = evaluate_var_value (noside,
10292 exp->elts[pc + 1].block,
10293 exp->elts[pc + 2].symbol);
10294
10295 if (noside == EVAL_SKIP)
10296 return eval_skip_value (exp);
10297
10298 val = ada_value_cast (to_type, val);
10299
10300 /* Follow the Ada language semantics that do not allow taking
10301 an address of the result of a cast (view conversion in Ada). */
10302 if (VALUE_LVAL (val) == lval_memory)
10303 {
10304 if (value_lazy (val))
10305 value_fetch_lazy (val);
10306 VALUE_LVAL (val) = not_lval;
10307 }
10308 return val;
10309 }
10310
10311 value *val = evaluate_subexp (to_type, exp, pos, noside);
10312 if (noside == EVAL_SKIP)
10313 return eval_skip_value (exp);
10314 return ada_value_cast (to_type, val);
10315}
10316
284614f0
JB
10317/* Implement the evaluate_exp routine in the exp_descriptor structure
10318 for the Ada language. */
10319
52ce6436 10320static struct value *
ebf56fd3 10321ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10322 int *pos, enum noside noside)
14f9c5c9
AS
10323{
10324 enum exp_opcode op;
b5385fc0 10325 int tem;
14f9c5c9 10326 int pc;
5ec18f2b 10327 int preeval_pos;
14f9c5c9
AS
10328 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10329 struct type *type;
52ce6436 10330 int nargs, oplen;
d2e4a39e 10331 struct value **argvec;
14f9c5c9 10332
d2e4a39e
AS
10333 pc = *pos;
10334 *pos += 1;
14f9c5c9
AS
10335 op = exp->elts[pc].opcode;
10336
d2e4a39e 10337 switch (op)
14f9c5c9
AS
10338 {
10339 default:
10340 *pos -= 1;
6e48bd2c 10341 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10342
10343 if (noside == EVAL_NORMAL)
10344 arg1 = unwrap_value (arg1);
6e48bd2c 10345
edd079d9 10346 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10347 then we need to perform the conversion manually, because
10348 evaluate_subexp_standard doesn't do it. This conversion is
10349 necessary in Ada because the different kinds of float/fixed
10350 types in Ada have different representations.
10351
10352 Similarly, we need to perform the conversion from OP_LONG
10353 ourselves. */
edd079d9 10354 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10355 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10356
10357 return arg1;
4c4b4cd2
PH
10358
10359 case OP_STRING:
10360 {
76a01679 10361 struct value *result;
5b4ee69b 10362
76a01679
JB
10363 *pos -= 1;
10364 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10365 /* The result type will have code OP_STRING, bashed there from
10366 OP_ARRAY. Bash it back. */
78134374 10367 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10368 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10369 return result;
4c4b4cd2 10370 }
14f9c5c9
AS
10371
10372 case UNOP_CAST:
10373 (*pos) += 2;
10374 type = exp->elts[pc + 1].type;
ced9779b 10375 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10376
4c4b4cd2
PH
10377 case UNOP_QUAL:
10378 (*pos) += 2;
10379 type = exp->elts[pc + 1].type;
10380 return ada_evaluate_subexp (type, exp, pos, noside);
10381
14f9c5c9
AS
10382 case BINOP_ASSIGN:
10383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10384 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10385 {
10386 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10387 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10388 return arg1;
10389 return ada_value_assign (arg1, arg1);
10390 }
003f3813
JB
10391 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10392 except if the lhs of our assignment is a convenience variable.
10393 In the case of assigning to a convenience variable, the lhs
10394 should be exactly the result of the evaluation of the rhs. */
10395 type = value_type (arg1);
10396 if (VALUE_LVAL (arg1) == lval_internalvar)
10397 type = NULL;
10398 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10399 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10400 return arg1;
f411722c
TT
10401 if (VALUE_LVAL (arg1) == lval_internalvar)
10402 {
10403 /* Nothing. */
10404 }
b2188a06 10405 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10406 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10407 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10408 error
323e0a4a 10409 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10410 else
df407dfe 10411 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10412 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10413
10414 case BINOP_ADD:
10415 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10416 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10417 if (noside == EVAL_SKIP)
4c4b4cd2 10418 goto nosideret;
78134374 10419 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10420 return (value_from_longest
10421 (value_type (arg1),
10422 value_as_long (arg1) + value_as_long (arg2)));
78134374 10423 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10424 return (value_from_longest
10425 (value_type (arg2),
10426 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10427 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10428 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10429 && value_type (arg1) != value_type (arg2))
323e0a4a 10430 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10431 /* Do the addition, and cast the result to the type of the first
10432 argument. We cannot cast the result to a reference type, so if
10433 ARG1 is a reference type, find its underlying type. */
10434 type = value_type (arg1);
78134374 10435 while (type->code () == TYPE_CODE_REF)
b7789565 10436 type = TYPE_TARGET_TYPE (type);
f44316fa 10437 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10438 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10439
10440 case BINOP_SUB:
10441 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10442 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10443 if (noside == EVAL_SKIP)
4c4b4cd2 10444 goto nosideret;
78134374 10445 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10446 return (value_from_longest
10447 (value_type (arg1),
10448 value_as_long (arg1) - value_as_long (arg2)));
78134374 10449 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10450 return (value_from_longest
10451 (value_type (arg2),
10452 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10453 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10454 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10455 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10456 error (_("Operands of fixed-point subtraction "
10457 "must have the same type"));
b7789565
JB
10458 /* Do the substraction, and cast the result to the type of the first
10459 argument. We cannot cast the result to a reference type, so if
10460 ARG1 is a reference type, find its underlying type. */
10461 type = value_type (arg1);
78134374 10462 while (type->code () == TYPE_CODE_REF)
b7789565 10463 type = TYPE_TARGET_TYPE (type);
f44316fa 10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10465 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10466
10467 case BINOP_MUL:
10468 case BINOP_DIV:
e1578042
JB
10469 case BINOP_REM:
10470 case BINOP_MOD:
14f9c5c9
AS
10471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10473 if (noside == EVAL_SKIP)
4c4b4cd2 10474 goto nosideret;
e1578042 10475 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10476 {
10477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10478 return value_zero (value_type (arg1), not_lval);
10479 }
14f9c5c9 10480 else
4c4b4cd2 10481 {
a53b7a21 10482 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10483 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10484 arg1 = cast_from_fixed (type, arg1);
b2188a06 10485 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10486 arg2 = cast_from_fixed (type, arg2);
f44316fa 10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10488 return ada_value_binop (arg1, arg2, op);
10489 }
10490
4c4b4cd2
PH
10491 case BINOP_EQUAL:
10492 case BINOP_NOTEQUAL:
14f9c5c9 10493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10494 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10495 if (noside == EVAL_SKIP)
76a01679 10496 goto nosideret;
4c4b4cd2 10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10498 tem = 0;
4c4b4cd2 10499 else
f44316fa
UW
10500 {
10501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10502 tem = ada_value_equal (arg1, arg2);
10503 }
4c4b4cd2 10504 if (op == BINOP_NOTEQUAL)
76a01679 10505 tem = !tem;
fbb06eb1
UW
10506 type = language_bool_type (exp->language_defn, exp->gdbarch);
10507 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10508
10509 case UNOP_NEG:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 if (noside == EVAL_SKIP)
10512 goto nosideret;
b2188a06 10513 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10514 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10515 else
f44316fa
UW
10516 {
10517 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10518 return value_neg (arg1);
10519 }
4c4b4cd2 10520
2330c6c6
JB
10521 case BINOP_LOGICAL_AND:
10522 case BINOP_LOGICAL_OR:
10523 case UNOP_LOGICAL_NOT:
000d5124
JB
10524 {
10525 struct value *val;
10526
10527 *pos -= 1;
10528 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10529 type = language_bool_type (exp->language_defn, exp->gdbarch);
10530 return value_cast (type, val);
000d5124 10531 }
2330c6c6
JB
10532
10533 case BINOP_BITWISE_AND:
10534 case BINOP_BITWISE_IOR:
10535 case BINOP_BITWISE_XOR:
000d5124
JB
10536 {
10537 struct value *val;
10538
10539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10540 *pos = pc;
10541 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10542
10543 return value_cast (value_type (arg1), val);
10544 }
2330c6c6 10545
14f9c5c9
AS
10546 case OP_VAR_VALUE:
10547 *pos -= 1;
6799def4 10548
14f9c5c9 10549 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10550 {
10551 *pos += 4;
10552 goto nosideret;
10553 }
da5c522f
JB
10554
10555 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10556 /* Only encountered when an unresolved symbol occurs in a
10557 context other than a function call, in which case, it is
52ce6436 10558 invalid. */
323e0a4a 10559 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10560 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10561
10562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10563 {
0c1f74cf 10564 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10565 /* Check to see if this is a tagged type. We also need to handle
10566 the case where the type is a reference to a tagged type, but
10567 we have to be careful to exclude pointers to tagged types.
10568 The latter should be shown as usual (as a pointer), whereas
10569 a reference should mostly be transparent to the user. */
10570 if (ada_is_tagged_type (type, 0)
78134374 10571 || (type->code () == TYPE_CODE_REF
31dbc1c5 10572 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10573 {
10574 /* Tagged types are a little special in the fact that the real
10575 type is dynamic and can only be determined by inspecting the
10576 object's tag. This means that we need to get the object's
10577 value first (EVAL_NORMAL) and then extract the actual object
10578 type from its tag.
10579
10580 Note that we cannot skip the final step where we extract
10581 the object type from its tag, because the EVAL_NORMAL phase
10582 results in dynamic components being resolved into fixed ones.
10583 This can cause problems when trying to print the type
10584 description of tagged types whose parent has a dynamic size:
10585 We use the type name of the "_parent" component in order
10586 to print the name of the ancestor type in the type description.
10587 If that component had a dynamic size, the resolution into
10588 a fixed type would result in the loss of that type name,
10589 thus preventing us from printing the name of the ancestor
10590 type in the type description. */
10591 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10592
78134374 10593 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10594 {
10595 struct type *actual_type;
10596
10597 actual_type = type_from_tag (ada_value_tag (arg1));
10598 if (actual_type == NULL)
10599 /* If, for some reason, we were unable to determine
10600 the actual type from the tag, then use the static
10601 approximation that we just computed as a fallback.
10602 This can happen if the debugging information is
10603 incomplete, for instance. */
10604 actual_type = type;
10605 return value_zero (actual_type, not_lval);
10606 }
10607 else
10608 {
10609 /* In the case of a ref, ada_coerce_ref takes care
10610 of determining the actual type. But the evaluation
10611 should return a ref as it should be valid to ask
10612 for its address; so rebuild a ref after coerce. */
10613 arg1 = ada_coerce_ref (arg1);
a65cfae5 10614 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10615 }
10616 }
0c1f74cf 10617
84754697
JB
10618 /* Records and unions for which GNAT encodings have been
10619 generated need to be statically fixed as well.
10620 Otherwise, non-static fixing produces a type where
10621 all dynamic properties are removed, which prevents "ptype"
10622 from being able to completely describe the type.
10623 For instance, a case statement in a variant record would be
10624 replaced by the relevant components based on the actual
10625 value of the discriminants. */
78134374 10626 if ((type->code () == TYPE_CODE_STRUCT
84754697 10627 && dynamic_template_type (type) != NULL)
78134374 10628 || (type->code () == TYPE_CODE_UNION
84754697
JB
10629 && ada_find_parallel_type (type, "___XVU") != NULL))
10630 {
10631 *pos += 4;
10632 return value_zero (to_static_fixed_type (type), not_lval);
10633 }
4c4b4cd2 10634 }
da5c522f
JB
10635
10636 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10638
10639 case OP_FUNCALL:
10640 (*pos) += 2;
10641
10642 /* Allocate arg vector, including space for the function to be
10643 called in argvec[0] and a terminating NULL. */
10644 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10645 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10646
10647 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10648 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10649 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10650 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10651 else
10652 {
10653 for (tem = 0; tem <= nargs; tem += 1)
10654 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 argvec[tem] = 0;
10656
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659 }
10660
ad82864c
JB
10661 if (ada_is_constrained_packed_array_type
10662 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10663 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10664 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10665 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10666 /* This is a packed array that has already been fixed, and
10667 therefore already coerced to a simple array. Nothing further
10668 to do. */
10669 ;
78134374 10670 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10671 {
10672 /* Make sure we dereference references so that all the code below
10673 feels like it's really handling the referenced value. Wrapping
10674 types (for alignment) may be there, so make sure we strip them as
10675 well. */
10676 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10677 }
78134374 10678 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10679 && VALUE_LVAL (argvec[0]) == lval_memory)
10680 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10681
df407dfe 10682 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10683
10684 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10685 them. So, if this is an array typedef (encoding use for array
10686 access types encoded as fat pointers), strip it now. */
78134374 10687 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10688 type = ada_typedef_target_type (type);
10689
78134374 10690 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10691 {
78134374 10692 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10693 {
10694 case TYPE_CODE_FUNC:
61ee279c 10695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10696 break;
10697 case TYPE_CODE_ARRAY:
10698 break;
10699 case TYPE_CODE_STRUCT:
10700 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10701 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10702 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10703 break;
10704 default:
323e0a4a 10705 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10706 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10707 break;
10708 }
10709 }
10710
78134374 10711 switch (type->code ())
4c4b4cd2
PH
10712 {
10713 case TYPE_CODE_FUNC:
10714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10715 {
7022349d
PA
10716 if (TYPE_TARGET_TYPE (type) == NULL)
10717 error_call_unknown_return_type (NULL);
10718 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10719 }
e71585ff
PA
10720 return call_function_by_hand (argvec[0], NULL,
10721 gdb::make_array_view (argvec + 1,
10722 nargs));
c8ea1972
PH
10723 case TYPE_CODE_INTERNAL_FUNCTION:
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 /* We don't know anything about what the internal
10726 function might return, but we have to return
10727 something. */
10728 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10729 not_lval);
10730 else
10731 return call_internal_function (exp->gdbarch, exp->language_defn,
10732 argvec[0], nargs, argvec + 1);
10733
4c4b4cd2
PH
10734 case TYPE_CODE_STRUCT:
10735 {
10736 int arity;
10737
4c4b4cd2
PH
10738 arity = ada_array_arity (type);
10739 type = ada_array_element_type (type, nargs);
10740 if (type == NULL)
323e0a4a 10741 error (_("cannot subscript or call a record"));
4c4b4cd2 10742 if (arity != nargs)
323e0a4a 10743 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10745 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10746 return
10747 unwrap_value (ada_value_subscript
10748 (argvec[0], nargs, argvec + 1));
10749 }
10750 case TYPE_CODE_ARRAY:
10751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10752 {
10753 type = ada_array_element_type (type, nargs);
10754 if (type == NULL)
323e0a4a 10755 error (_("element type of array unknown"));
4c4b4cd2 10756 else
0a07e705 10757 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10758 }
10759 return
10760 unwrap_value (ada_value_subscript
10761 (ada_coerce_to_simple_array (argvec[0]),
10762 nargs, argvec + 1));
10763 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
deede10c 10766 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10767 type = ada_array_element_type (type, nargs);
10768 if (type == NULL)
323e0a4a 10769 error (_("element type of array unknown"));
4c4b4cd2 10770 else
0a07e705 10771 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10772 }
10773 return
deede10c
JB
10774 unwrap_value (ada_value_ptr_subscript (argvec[0],
10775 nargs, argvec + 1));
4c4b4cd2
PH
10776
10777 default:
e1d5a0d2
PH
10778 error (_("Attempt to index or call something other than an "
10779 "array or function"));
4c4b4cd2
PH
10780 }
10781
10782 case TERNOP_SLICE:
10783 {
10784 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10785 struct value *low_bound_val =
10786 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10787 struct value *high_bound_val =
10788 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10789 LONGEST low_bound;
10790 LONGEST high_bound;
5b4ee69b 10791
994b9211
AC
10792 low_bound_val = coerce_ref (low_bound_val);
10793 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10794 low_bound = value_as_long (low_bound_val);
10795 high_bound = value_as_long (high_bound_val);
963a6417 10796
4c4b4cd2
PH
10797 if (noside == EVAL_SKIP)
10798 goto nosideret;
10799
4c4b4cd2
PH
10800 /* If this is a reference to an aligner type, then remove all
10801 the aligners. */
78134374 10802 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10803 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10804 TYPE_TARGET_TYPE (value_type (array)) =
10805 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10806
ad82864c 10807 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10808 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10809
10810 /* If this is a reference to an array or an array lvalue,
10811 convert to a pointer. */
78134374
SM
10812 if (value_type (array)->code () == TYPE_CODE_REF
10813 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10814 && VALUE_LVAL (array) == lval_memory))
10815 array = value_addr (array);
10816
1265e4aa 10817 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10818 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10819 (value_type (array))))
bff8c71f
TT
10820 return empty_array (ada_type_of_array (array, 0), low_bound,
10821 high_bound);
4c4b4cd2
PH
10822
10823 array = ada_coerce_to_simple_array_ptr (array);
10824
714e53ab
PH
10825 /* If we have more than one level of pointer indirection,
10826 dereference the value until we get only one level. */
78134374
SM
10827 while (value_type (array)->code () == TYPE_CODE_PTR
10828 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10829 == TYPE_CODE_PTR))
10830 array = value_ind (array);
10831
10832 /* Make sure we really do have an array type before going further,
10833 to avoid a SEGV when trying to get the index type or the target
10834 type later down the road if the debug info generated by
10835 the compiler is incorrect or incomplete. */
df407dfe 10836 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10837 error (_("cannot take slice of non-array"));
714e53ab 10838
78134374 10839 if (ada_check_typedef (value_type (array))->code ()
828292f2 10840 == TYPE_CODE_PTR)
4c4b4cd2 10841 {
828292f2
JB
10842 struct type *type0 = ada_check_typedef (value_type (array));
10843
0b5d8877 10844 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10845 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10846 else
10847 {
10848 struct type *arr_type0 =
828292f2 10849 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10850
f5938064
JG
10851 return ada_value_slice_from_ptr (array, arr_type0,
10852 longest_to_int (low_bound),
10853 longest_to_int (high_bound));
4c4b4cd2
PH
10854 }
10855 }
10856 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10857 return array;
10858 else if (high_bound < low_bound)
bff8c71f 10859 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10860 else
529cad9c
PH
10861 return ada_value_slice (array, longest_to_int (low_bound),
10862 longest_to_int (high_bound));
4c4b4cd2 10863 }
14f9c5c9 10864
4c4b4cd2
PH
10865 case UNOP_IN_RANGE:
10866 (*pos) += 2;
10867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10868 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10869
14f9c5c9 10870 if (noside == EVAL_SKIP)
4c4b4cd2 10871 goto nosideret;
14f9c5c9 10872
78134374 10873 switch (type->code ())
4c4b4cd2
PH
10874 {
10875 default:
e1d5a0d2
PH
10876 lim_warning (_("Membership test incompletely implemented; "
10877 "always returns true"));
fbb06eb1
UW
10878 type = language_bool_type (exp->language_defn, exp->gdbarch);
10879 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10880
10881 case TYPE_CODE_RANGE:
030b4912
UW
10882 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10883 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10884 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10885 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10886 type = language_bool_type (exp->language_defn, exp->gdbarch);
10887 return
10888 value_from_longest (type,
4c4b4cd2
PH
10889 (value_less (arg1, arg3)
10890 || value_equal (arg1, arg3))
10891 && (value_less (arg2, arg1)
10892 || value_equal (arg2, arg1)));
10893 }
10894
10895 case BINOP_IN_BOUNDS:
14f9c5c9 10896 (*pos) += 2;
4c4b4cd2
PH
10897 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10898 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10899
4c4b4cd2
PH
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
14f9c5c9 10902
4c4b4cd2 10903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10904 {
10905 type = language_bool_type (exp->language_defn, exp->gdbarch);
10906 return value_zero (type, not_lval);
10907 }
14f9c5c9 10908
4c4b4cd2 10909 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10910
1eea4ebd
UW
10911 type = ada_index_type (value_type (arg2), tem, "range");
10912 if (!type)
10913 type = value_type (arg1);
14f9c5c9 10914
1eea4ebd
UW
10915 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10916 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10917
f44316fa
UW
10918 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10919 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10920 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10921 return
fbb06eb1 10922 value_from_longest (type,
4c4b4cd2
PH
10923 (value_less (arg1, arg3)
10924 || value_equal (arg1, arg3))
10925 && (value_less (arg2, arg1)
10926 || value_equal (arg2, arg1)));
10927
10928 case TERNOP_IN_RANGE:
10929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10930 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10931 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10932
10933 if (noside == EVAL_SKIP)
10934 goto nosideret;
10935
f44316fa
UW
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10938 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10939 return
fbb06eb1 10940 value_from_longest (type,
4c4b4cd2
PH
10941 (value_less (arg1, arg3)
10942 || value_equal (arg1, arg3))
10943 && (value_less (arg2, arg1)
10944 || value_equal (arg2, arg1)));
10945
10946 case OP_ATR_FIRST:
10947 case OP_ATR_LAST:
10948 case OP_ATR_LENGTH:
10949 {
76a01679 10950 struct type *type_arg;
5b4ee69b 10951
76a01679
JB
10952 if (exp->elts[*pos].opcode == OP_TYPE)
10953 {
10954 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10955 arg1 = NULL;
5bc23cb3 10956 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10957 }
10958 else
10959 {
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 type_arg = NULL;
10962 }
10963
10964 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10965 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10966 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10967 *pos += 4;
10968
10969 if (noside == EVAL_SKIP)
10970 goto nosideret;
680e1bee
TT
10971 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10972 {
10973 if (type_arg == NULL)
10974 type_arg = value_type (arg1);
76a01679 10975
680e1bee
TT
10976 if (ada_is_constrained_packed_array_type (type_arg))
10977 type_arg = decode_constrained_packed_array_type (type_arg);
10978
10979 if (!discrete_type_p (type_arg))
10980 {
10981 switch (op)
10982 {
10983 default: /* Should never happen. */
10984 error (_("unexpected attribute encountered"));
10985 case OP_ATR_FIRST:
10986 case OP_ATR_LAST:
10987 type_arg = ada_index_type (type_arg, tem,
10988 ada_attribute_name (op));
10989 break;
10990 case OP_ATR_LENGTH:
10991 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10992 break;
10993 }
10994 }
10995
10996 return value_zero (type_arg, not_lval);
10997 }
10998 else if (type_arg == NULL)
76a01679
JB
10999 {
11000 arg1 = ada_coerce_ref (arg1);
11001
ad82864c 11002 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11003 arg1 = ada_coerce_to_simple_array (arg1);
11004
aa4fb036 11005 if (op == OP_ATR_LENGTH)
1eea4ebd 11006 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11007 else
11008 {
11009 type = ada_index_type (value_type (arg1), tem,
11010 ada_attribute_name (op));
11011 if (type == NULL)
11012 type = builtin_type (exp->gdbarch)->builtin_int;
11013 }
76a01679 11014
76a01679
JB
11015 switch (op)
11016 {
11017 default: /* Should never happen. */
323e0a4a 11018 error (_("unexpected attribute encountered"));
76a01679 11019 case OP_ATR_FIRST:
1eea4ebd
UW
11020 return value_from_longest
11021 (type, ada_array_bound (arg1, tem, 0));
76a01679 11022 case OP_ATR_LAST:
1eea4ebd
UW
11023 return value_from_longest
11024 (type, ada_array_bound (arg1, tem, 1));
76a01679 11025 case OP_ATR_LENGTH:
1eea4ebd
UW
11026 return value_from_longest
11027 (type, ada_array_length (arg1, tem));
76a01679
JB
11028 }
11029 }
11030 else if (discrete_type_p (type_arg))
11031 {
11032 struct type *range_type;
0d5cff50 11033 const char *name = ada_type_name (type_arg);
5b4ee69b 11034
76a01679 11035 range_type = NULL;
78134374 11036 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 11037 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11038 if (range_type == NULL)
11039 range_type = type_arg;
11040 switch (op)
11041 {
11042 default:
323e0a4a 11043 error (_("unexpected attribute encountered"));
76a01679 11044 case OP_ATR_FIRST:
690cc4eb 11045 return value_from_longest
43bbcdc2 11046 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11047 case OP_ATR_LAST:
690cc4eb 11048 return value_from_longest
43bbcdc2 11049 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11050 case OP_ATR_LENGTH:
323e0a4a 11051 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11052 }
11053 }
78134374 11054 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 11055 error (_("unimplemented type attribute"));
76a01679
JB
11056 else
11057 {
11058 LONGEST low, high;
11059
ad82864c
JB
11060 if (ada_is_constrained_packed_array_type (type_arg))
11061 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11062
aa4fb036 11063 if (op == OP_ATR_LENGTH)
1eea4ebd 11064 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11065 else
11066 {
11067 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11068 if (type == NULL)
11069 type = builtin_type (exp->gdbarch)->builtin_int;
11070 }
1eea4ebd 11071
76a01679
JB
11072 switch (op)
11073 {
11074 default:
323e0a4a 11075 error (_("unexpected attribute encountered"));
76a01679 11076 case OP_ATR_FIRST:
1eea4ebd 11077 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11078 return value_from_longest (type, low);
11079 case OP_ATR_LAST:
1eea4ebd 11080 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11081 return value_from_longest (type, high);
11082 case OP_ATR_LENGTH:
1eea4ebd
UW
11083 low = ada_array_bound_from_type (type_arg, tem, 0);
11084 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11085 return value_from_longest (type, high - low + 1);
11086 }
11087 }
14f9c5c9
AS
11088 }
11089
4c4b4cd2
PH
11090 case OP_ATR_TAG:
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11092 if (noside == EVAL_SKIP)
76a01679 11093 goto nosideret;
4c4b4cd2
PH
11094
11095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11096 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11097
11098 return ada_value_tag (arg1);
11099
11100 case OP_ATR_MIN:
11101 case OP_ATR_MAX:
11102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11104 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11105 if (noside == EVAL_SKIP)
76a01679 11106 goto nosideret;
d2e4a39e 11107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11108 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11109 else
f44316fa
UW
11110 {
11111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11112 return value_binop (arg1, arg2,
11113 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11114 }
14f9c5c9 11115
4c4b4cd2
PH
11116 case OP_ATR_MODULUS:
11117 {
31dedfee 11118 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11119
5b4ee69b 11120 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
4c4b4cd2 11123
76a01679 11124 if (!ada_is_modular_type (type_arg))
323e0a4a 11125 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11126
76a01679
JB
11127 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11128 ada_modulus (type_arg));
4c4b4cd2
PH
11129 }
11130
11131
11132 case OP_ATR_POS:
11133 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
76a01679 11136 goto nosideret;
3cb382c9
UW
11137 type = builtin_type (exp->gdbarch)->builtin_int;
11138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11139 return value_zero (type, not_lval);
14f9c5c9 11140 else
3cb382c9 11141 return value_pos_atr (type, arg1);
14f9c5c9 11142
4c4b4cd2
PH
11143 case OP_ATR_SIZE:
11144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11145 type = value_type (arg1);
11146
11147 /* If the argument is a reference, then dereference its type, since
11148 the user is really asking for the size of the actual object,
11149 not the size of the pointer. */
78134374 11150 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
11151 type = TYPE_TARGET_TYPE (type);
11152
4c4b4cd2 11153 if (noside == EVAL_SKIP)
76a01679 11154 goto nosideret;
4c4b4cd2 11155 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11156 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11157 else
22601c15 11158 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11159 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11160
11161 case OP_ATR_VAL:
11162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11164 type = exp->elts[pc + 2].type;
14f9c5c9 11165 if (noside == EVAL_SKIP)
76a01679 11166 goto nosideret;
4c4b4cd2 11167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11168 return value_zero (type, not_lval);
4c4b4cd2 11169 else
76a01679 11170 return value_val_atr (type, arg1);
4c4b4cd2
PH
11171
11172 case BINOP_EXP:
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11178 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11179 else
f44316fa
UW
11180 {
11181 /* For integer exponentiation operations,
11182 only promote the first argument. */
11183 if (is_integral_type (value_type (arg2)))
11184 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11185 else
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11187
11188 return value_binop (arg1, arg2, op);
11189 }
4c4b4cd2
PH
11190
11191 case UNOP_PLUS:
11192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195 else
11196 return arg1;
11197
11198 case UNOP_ABS:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
f44316fa 11202 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11203 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11204 return value_neg (arg1);
14f9c5c9 11205 else
4c4b4cd2 11206 return arg1;
14f9c5c9
AS
11207
11208 case UNOP_IND:
5ec18f2b 11209 preeval_pos = *pos;
6b0d7253 11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11211 if (noside == EVAL_SKIP)
4c4b4cd2 11212 goto nosideret;
df407dfe 11213 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11215 {
11216 if (ada_is_array_descriptor_type (type))
11217 /* GDB allows dereferencing GNAT array descriptors. */
11218 {
11219 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11220
4c4b4cd2 11221 if (arrType == NULL)
323e0a4a 11222 error (_("Attempt to dereference null array pointer."));
00a4c844 11223 return value_at_lazy (arrType, 0);
4c4b4cd2 11224 }
78134374
SM
11225 else if (type->code () == TYPE_CODE_PTR
11226 || type->code () == TYPE_CODE_REF
4c4b4cd2 11227 /* In C you can dereference an array to get the 1st elt. */
78134374 11228 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11229 {
5ec18f2b
JG
11230 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11231 only be determined by inspecting the object's tag.
11232 This means that we need to evaluate completely the
11233 expression in order to get its type. */
11234
78134374
SM
11235 if ((type->code () == TYPE_CODE_REF
11236 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11237 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11238 {
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11240 EVAL_NORMAL);
11241 type = value_type (ada_value_ind (arg1));
11242 }
11243 else
11244 {
11245 type = to_static_fixed_type
11246 (ada_aligned_type
11247 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11248 }
c1b5a1a6 11249 ada_ensure_varsize_limit (type);
714e53ab
PH
11250 return value_zero (type, lval_memory);
11251 }
78134374 11252 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11253 {
11254 /* GDB allows dereferencing an int. */
11255 if (expect_type == NULL)
11256 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11257 lval_memory);
11258 else
11259 {
11260 expect_type =
11261 to_static_fixed_type (ada_aligned_type (expect_type));
11262 return value_zero (expect_type, lval_memory);
11263 }
11264 }
4c4b4cd2 11265 else
323e0a4a 11266 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11267 }
0963b4bd 11268 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11269 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11270
78134374 11271 if (type->code () == TYPE_CODE_INT)
96967637
JB
11272 /* GDB allows dereferencing an int. If we were given
11273 the expect_type, then use that as the target type.
11274 Otherwise, assume that the target type is an int. */
11275 {
11276 if (expect_type != NULL)
11277 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11278 arg1));
11279 else
11280 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11281 (CORE_ADDR) value_as_address (arg1));
11282 }
6b0d7253 11283
4c4b4cd2
PH
11284 if (ada_is_array_descriptor_type (type))
11285 /* GDB allows dereferencing GNAT array descriptors. */
11286 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11287 else
4c4b4cd2 11288 return ada_value_ind (arg1);
14f9c5c9
AS
11289
11290 case STRUCTOP_STRUCT:
11291 tem = longest_to_int (exp->elts[pc + 1].longconst);
11292 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11293 preeval_pos = *pos;
14f9c5c9
AS
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
4c4b4cd2 11296 goto nosideret;
14f9c5c9 11297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11298 {
df407dfe 11299 struct type *type1 = value_type (arg1);
5b4ee69b 11300
76a01679
JB
11301 if (ada_is_tagged_type (type1, 1))
11302 {
11303 type = ada_lookup_struct_elt_type (type1,
11304 &exp->elts[pc + 2].string,
988f6b3d 11305 1, 1);
5ec18f2b
JG
11306
11307 /* If the field is not found, check if it exists in the
11308 extension of this object's type. This means that we
11309 need to evaluate completely the expression. */
11310
76a01679 11311 if (type == NULL)
5ec18f2b
JG
11312 {
11313 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11314 EVAL_NORMAL);
11315 arg1 = ada_value_struct_elt (arg1,
11316 &exp->elts[pc + 2].string,
11317 0);
11318 arg1 = unwrap_value (arg1);
11319 type = value_type (ada_to_fixed_value (arg1));
11320 }
76a01679
JB
11321 }
11322 else
11323 type =
11324 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11325 0);
76a01679
JB
11326
11327 return value_zero (ada_aligned_type (type), lval_memory);
11328 }
14f9c5c9 11329 else
a579cd9a
MW
11330 {
11331 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11332 arg1 = unwrap_value (arg1);
11333 return ada_to_fixed_value (arg1);
11334 }
284614f0 11335
14f9c5c9 11336 case OP_TYPE:
4c4b4cd2
PH
11337 /* The value is not supposed to be used. This is here to make it
11338 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11339 (*pos) += 2;
11340 if (noside == EVAL_SKIP)
4c4b4cd2 11341 goto nosideret;
14f9c5c9 11342 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11343 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11344 else
323e0a4a 11345 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11346
11347 case OP_AGGREGATE:
11348 case OP_CHOICES:
11349 case OP_OTHERS:
11350 case OP_DISCRETE_RANGE:
11351 case OP_POSITIONAL:
11352 case OP_NAME:
11353 if (noside == EVAL_NORMAL)
11354 switch (op)
11355 {
11356 case OP_NAME:
11357 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11358 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11359 case OP_AGGREGATE:
11360 error (_("Aggregates only allowed on the right of an assignment"));
11361 default:
0963b4bd
MS
11362 internal_error (__FILE__, __LINE__,
11363 _("aggregate apparently mangled"));
52ce6436
PH
11364 }
11365
11366 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11367 *pos += oplen - 1;
11368 for (tem = 0; tem < nargs; tem += 1)
11369 ada_evaluate_subexp (NULL, exp, pos, noside);
11370 goto nosideret;
14f9c5c9
AS
11371 }
11372
11373nosideret:
ced9779b 11374 return eval_skip_value (exp);
14f9c5c9 11375}
14f9c5c9 11376\f
d2e4a39e 11377
4c4b4cd2 11378 /* Fixed point */
14f9c5c9
AS
11379
11380/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11381 type name that encodes the 'small and 'delta information.
4c4b4cd2 11382 Otherwise, return NULL. */
14f9c5c9 11383
d2e4a39e 11384static const char *
b2188a06 11385gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11386{
d2e4a39e 11387 const char *name = ada_type_name (type);
78134374 11388 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11389
d2e4a39e
AS
11390 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11391 {
14f9c5c9 11392 const char *tail = strstr (name, "___XF_");
5b4ee69b 11393
14f9c5c9 11394 if (tail == NULL)
4c4b4cd2 11395 return NULL;
d2e4a39e 11396 else
4c4b4cd2 11397 return tail + 5;
14f9c5c9
AS
11398 }
11399 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11400 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11401 else
11402 return NULL;
11403}
11404
4c4b4cd2 11405/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11406
11407int
b2188a06 11408ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11409{
b2188a06 11410 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11411}
11412
4c4b4cd2
PH
11413/* Return non-zero iff TYPE represents a System.Address type. */
11414
11415int
11416ada_is_system_address_type (struct type *type)
11417{
7d93a1e0 11418 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11419}
11420
14f9c5c9 11421/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11422 type, return the target floating-point type to be used to represent
11423 of this type during internal computation. */
11424
11425static struct type *
11426ada_scaling_type (struct type *type)
11427{
11428 return builtin_type (get_type_arch (type))->builtin_long_double;
11429}
11430
11431/* Assuming that TYPE is the representation of an Ada fixed-point
11432 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11433 delta cannot be determined. */
14f9c5c9 11434
50eff16b 11435struct value *
b2188a06 11436gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11437{
b2188a06 11438 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11439 struct type *scale_type = ada_scaling_type (type);
11440
11441 long long num, den;
11442
11443 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11444 return nullptr;
d2e4a39e 11445 else
50eff16b
UW
11446 return value_binop (value_from_longest (scale_type, num),
11447 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11448}
11449
b2188a06
JB
11450/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11451 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11452
50eff16b
UW
11453struct value *
11454ada_scaling_factor (struct type *type)
14f9c5c9 11455{
b2188a06 11456 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11457 struct type *scale_type = ada_scaling_type (type);
11458
11459 long long num0, den0, num1, den1;
14f9c5c9 11460 int n;
d2e4a39e 11461
50eff16b 11462 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11463 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11464
11465 if (n < 2)
50eff16b 11466 return value_from_longest (scale_type, 1);
14f9c5c9 11467 else if (n == 4)
50eff16b
UW
11468 return value_binop (value_from_longest (scale_type, num1),
11469 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11470 else
50eff16b
UW
11471 return value_binop (value_from_longest (scale_type, num0),
11472 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11473}
11474
14f9c5c9 11475\f
d2e4a39e 11476
4c4b4cd2 11477 /* Range types */
14f9c5c9
AS
11478
11479/* Scan STR beginning at position K for a discriminant name, and
11480 return the value of that discriminant field of DVAL in *PX. If
11481 PNEW_K is not null, put the position of the character beyond the
11482 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11483 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11484
11485static int
108d56a4 11486scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11487 int *pnew_k)
14f9c5c9
AS
11488{
11489 static char *bound_buffer = NULL;
11490 static size_t bound_buffer_len = 0;
5da1a4d3 11491 const char *pstart, *pend, *bound;
d2e4a39e 11492 struct value *bound_val;
14f9c5c9
AS
11493
11494 if (dval == NULL || str == NULL || str[k] == '\0')
11495 return 0;
11496
5da1a4d3
SM
11497 pstart = str + k;
11498 pend = strstr (pstart, "__");
14f9c5c9
AS
11499 if (pend == NULL)
11500 {
5da1a4d3 11501 bound = pstart;
14f9c5c9
AS
11502 k += strlen (bound);
11503 }
d2e4a39e 11504 else
14f9c5c9 11505 {
5da1a4d3
SM
11506 int len = pend - pstart;
11507
11508 /* Strip __ and beyond. */
11509 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11510 strncpy (bound_buffer, pstart, len);
11511 bound_buffer[len] = '\0';
11512
14f9c5c9 11513 bound = bound_buffer;
d2e4a39e 11514 k = pend - str;
14f9c5c9 11515 }
d2e4a39e 11516
df407dfe 11517 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11518 if (bound_val == NULL)
11519 return 0;
11520
11521 *px = value_as_long (bound_val);
11522 if (pnew_k != NULL)
11523 *pnew_k = k;
11524 return 1;
11525}
11526
11527/* Value of variable named NAME in the current environment. If
11528 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11529 otherwise causes an error with message ERR_MSG. */
11530
d2e4a39e 11531static struct value *
edb0c9cb 11532get_var_value (const char *name, const char *err_msg)
14f9c5c9 11533{
b5ec771e 11534 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11535
54d343a2 11536 std::vector<struct block_symbol> syms;
b5ec771e
PA
11537 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11538 get_selected_block (0),
11539 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11540
11541 if (nsyms != 1)
11542 {
11543 if (err_msg == NULL)
4c4b4cd2 11544 return 0;
14f9c5c9 11545 else
8a3fe4f8 11546 error (("%s"), err_msg);
14f9c5c9
AS
11547 }
11548
54d343a2 11549 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11550}
d2e4a39e 11551
edb0c9cb
PA
11552/* Value of integer variable named NAME in the current environment.
11553 If no such variable is found, returns false. Otherwise, sets VALUE
11554 to the variable's value and returns true. */
4c4b4cd2 11555
edb0c9cb
PA
11556bool
11557get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11558{
4c4b4cd2 11559 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11560
14f9c5c9 11561 if (var_val == 0)
edb0c9cb
PA
11562 return false;
11563
11564 value = value_as_long (var_val);
11565 return true;
14f9c5c9 11566}
d2e4a39e 11567
14f9c5c9
AS
11568
11569/* Return a range type whose base type is that of the range type named
11570 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11571 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11572 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11573 corresponding range type from debug information; fall back to using it
11574 if symbol lookup fails. If a new type must be created, allocate it
11575 like ORIG_TYPE was. The bounds information, in general, is encoded
11576 in NAME, the base type given in the named range type. */
14f9c5c9 11577
d2e4a39e 11578static struct type *
28c85d6c 11579to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11580{
0d5cff50 11581 const char *name;
14f9c5c9 11582 struct type *base_type;
108d56a4 11583 const char *subtype_info;
14f9c5c9 11584
28c85d6c 11585 gdb_assert (raw_type != NULL);
7d93a1e0 11586 gdb_assert (raw_type->name () != NULL);
dddfab26 11587
78134374 11588 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11589 base_type = TYPE_TARGET_TYPE (raw_type);
11590 else
11591 base_type = raw_type;
11592
7d93a1e0 11593 name = raw_type->name ();
14f9c5c9
AS
11594 subtype_info = strstr (name, "___XD");
11595 if (subtype_info == NULL)
690cc4eb 11596 {
43bbcdc2
PH
11597 LONGEST L = ada_discrete_type_low_bound (raw_type);
11598 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11599
690cc4eb
PH
11600 if (L < INT_MIN || U > INT_MAX)
11601 return raw_type;
11602 else
0c9c3474
SA
11603 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11604 L, U);
690cc4eb 11605 }
14f9c5c9
AS
11606 else
11607 {
11608 static char *name_buf = NULL;
11609 static size_t name_len = 0;
11610 int prefix_len = subtype_info - name;
11611 LONGEST L, U;
11612 struct type *type;
108d56a4 11613 const char *bounds_str;
14f9c5c9
AS
11614 int n;
11615
11616 GROW_VECT (name_buf, name_len, prefix_len + 5);
11617 strncpy (name_buf, name, prefix_len);
11618 name_buf[prefix_len] = '\0';
11619
11620 subtype_info += 5;
11621 bounds_str = strchr (subtype_info, '_');
11622 n = 1;
11623
d2e4a39e 11624 if (*subtype_info == 'L')
4c4b4cd2
PH
11625 {
11626 if (!ada_scan_number (bounds_str, n, &L, &n)
11627 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11628 return raw_type;
11629 if (bounds_str[n] == '_')
11630 n += 2;
0963b4bd 11631 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11632 n += 1;
11633 subtype_info += 1;
11634 }
d2e4a39e 11635 else
4c4b4cd2 11636 {
4c4b4cd2 11637 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11638 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11639 {
323e0a4a 11640 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11641 L = 1;
11642 }
11643 }
14f9c5c9 11644
d2e4a39e 11645 if (*subtype_info == 'U')
4c4b4cd2
PH
11646 {
11647 if (!ada_scan_number (bounds_str, n, &U, &n)
11648 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11649 return raw_type;
11650 }
d2e4a39e 11651 else
4c4b4cd2 11652 {
4c4b4cd2 11653 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11654 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11655 {
323e0a4a 11656 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11657 U = L;
11658 }
11659 }
14f9c5c9 11660
0c9c3474
SA
11661 type = create_static_range_type (alloc_type_copy (raw_type),
11662 base_type, L, U);
f5a91472
JB
11663 /* create_static_range_type alters the resulting type's length
11664 to match the size of the base_type, which is not what we want.
11665 Set it back to the original range type's length. */
11666 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11667 type->set_name (name);
14f9c5c9
AS
11668 return type;
11669 }
11670}
11671
4c4b4cd2
PH
11672/* True iff NAME is the name of a range type. */
11673
14f9c5c9 11674int
d2e4a39e 11675ada_is_range_type_name (const char *name)
14f9c5c9
AS
11676{
11677 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11678}
14f9c5c9 11679\f
d2e4a39e 11680
4c4b4cd2
PH
11681 /* Modular types */
11682
11683/* True iff TYPE is an Ada modular type. */
14f9c5c9 11684
14f9c5c9 11685int
d2e4a39e 11686ada_is_modular_type (struct type *type)
14f9c5c9 11687{
18af8284 11688 struct type *subranged_type = get_base_type (type);
14f9c5c9 11689
78134374
SM
11690 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11691 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11692 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11693}
11694
4c4b4cd2
PH
11695/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11696
61ee279c 11697ULONGEST
0056e4d5 11698ada_modulus (struct type *type)
14f9c5c9 11699{
43bbcdc2 11700 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11701}
d2e4a39e 11702\f
f7f9143b
JB
11703
11704/* Ada exception catchpoint support:
11705 ---------------------------------
11706
11707 We support 3 kinds of exception catchpoints:
11708 . catchpoints on Ada exceptions
11709 . catchpoints on unhandled Ada exceptions
11710 . catchpoints on failed assertions
11711
11712 Exceptions raised during failed assertions, or unhandled exceptions
11713 could perfectly be caught with the general catchpoint on Ada exceptions.
11714 However, we can easily differentiate these two special cases, and having
11715 the option to distinguish these two cases from the rest can be useful
11716 to zero-in on certain situations.
11717
11718 Exception catchpoints are a specialized form of breakpoint,
11719 since they rely on inserting breakpoints inside known routines
11720 of the GNAT runtime. The implementation therefore uses a standard
11721 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11722 of breakpoint_ops.
11723
0259addd
JB
11724 Support in the runtime for exception catchpoints have been changed
11725 a few times already, and these changes affect the implementation
11726 of these catchpoints. In order to be able to support several
11727 variants of the runtime, we use a sniffer that will determine
28010a5d 11728 the runtime variant used by the program being debugged. */
f7f9143b 11729
82eacd52
JB
11730/* Ada's standard exceptions.
11731
11732 The Ada 83 standard also defined Numeric_Error. But there so many
11733 situations where it was unclear from the Ada 83 Reference Manual
11734 (RM) whether Constraint_Error or Numeric_Error should be raised,
11735 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11736 Interpretation saying that anytime the RM says that Numeric_Error
11737 should be raised, the implementation may raise Constraint_Error.
11738 Ada 95 went one step further and pretty much removed Numeric_Error
11739 from the list of standard exceptions (it made it a renaming of
11740 Constraint_Error, to help preserve compatibility when compiling
11741 an Ada83 compiler). As such, we do not include Numeric_Error from
11742 this list of standard exceptions. */
3d0b0fa3 11743
a121b7c1 11744static const char *standard_exc[] = {
3d0b0fa3
JB
11745 "constraint_error",
11746 "program_error",
11747 "storage_error",
11748 "tasking_error"
11749};
11750
0259addd
JB
11751typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11752
11753/* A structure that describes how to support exception catchpoints
11754 for a given executable. */
11755
11756struct exception_support_info
11757{
11758 /* The name of the symbol to break on in order to insert
11759 a catchpoint on exceptions. */
11760 const char *catch_exception_sym;
11761
11762 /* The name of the symbol to break on in order to insert
11763 a catchpoint on unhandled exceptions. */
11764 const char *catch_exception_unhandled_sym;
11765
11766 /* The name of the symbol to break on in order to insert
11767 a catchpoint on failed assertions. */
11768 const char *catch_assert_sym;
11769
9f757bf7
XR
11770 /* The name of the symbol to break on in order to insert
11771 a catchpoint on exception handling. */
11772 const char *catch_handlers_sym;
11773
0259addd
JB
11774 /* Assuming that the inferior just triggered an unhandled exception
11775 catchpoint, this function is responsible for returning the address
11776 in inferior memory where the name of that exception is stored.
11777 Return zero if the address could not be computed. */
11778 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11779};
11780
11781static CORE_ADDR ada_unhandled_exception_name_addr (void);
11782static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11783
11784/* The following exception support info structure describes how to
11785 implement exception catchpoints with the latest version of the
ca683e3a 11786 Ada runtime (as of 2019-08-??). */
0259addd
JB
11787
11788static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11789{
11790 "__gnat_debug_raise_exception", /* catch_exception_sym */
11791 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11792 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11793 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11794 ada_unhandled_exception_name_addr
11795};
11796
11797/* The following exception support info structure describes how to
11798 implement exception catchpoints with an earlier version of the
11799 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11800
11801static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11802{
11803 "__gnat_debug_raise_exception", /* catch_exception_sym */
11804 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11805 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11806 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11807 ada_unhandled_exception_name_addr
11808};
11809
11810/* The following exception support info structure describes how to
11811 implement exception catchpoints with a slightly older version
11812 of the Ada runtime. */
11813
11814static const struct exception_support_info exception_support_info_fallback =
11815{
11816 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11817 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11818 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11819 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11820 ada_unhandled_exception_name_addr_from_raise
11821};
11822
f17011e0
JB
11823/* Return nonzero if we can detect the exception support routines
11824 described in EINFO.
11825
11826 This function errors out if an abnormal situation is detected
11827 (for instance, if we find the exception support routines, but
11828 that support is found to be incomplete). */
11829
11830static int
11831ada_has_this_exception_support (const struct exception_support_info *einfo)
11832{
11833 struct symbol *sym;
11834
11835 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11836 that should be compiled with debugging information. As a result, we
11837 expect to find that symbol in the symtabs. */
11838
11839 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11840 if (sym == NULL)
a6af7abe
JB
11841 {
11842 /* Perhaps we did not find our symbol because the Ada runtime was
11843 compiled without debugging info, or simply stripped of it.
11844 It happens on some GNU/Linux distributions for instance, where
11845 users have to install a separate debug package in order to get
11846 the runtime's debugging info. In that situation, let the user
11847 know why we cannot insert an Ada exception catchpoint.
11848
11849 Note: Just for the purpose of inserting our Ada exception
11850 catchpoint, we could rely purely on the associated minimal symbol.
11851 But we would be operating in degraded mode anyway, since we are
11852 still lacking the debugging info needed later on to extract
11853 the name of the exception being raised (this name is printed in
11854 the catchpoint message, and is also used when trying to catch
11855 a specific exception). We do not handle this case for now. */
3b7344d5 11856 struct bound_minimal_symbol msym
1c8e84b0
JB
11857 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11858
3b7344d5 11859 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11860 error (_("Your Ada runtime appears to be missing some debugging "
11861 "information.\nCannot insert Ada exception catchpoint "
11862 "in this configuration."));
11863
11864 return 0;
11865 }
f17011e0
JB
11866
11867 /* Make sure that the symbol we found corresponds to a function. */
11868
11869 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11870 {
11871 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11872 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11873 return 0;
11874 }
11875
11876 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11877 if (sym == NULL)
11878 {
11879 struct bound_minimal_symbol msym
11880 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11881
11882 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11883 error (_("Your Ada runtime appears to be missing some debugging "
11884 "information.\nCannot insert Ada exception catchpoint "
11885 "in this configuration."));
11886
11887 return 0;
11888 }
11889
11890 /* Make sure that the symbol we found corresponds to a function. */
11891
11892 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11893 {
11894 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11895 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11896 return 0;
11897 }
f17011e0
JB
11898
11899 return 1;
11900}
11901
0259addd
JB
11902/* Inspect the Ada runtime and determine which exception info structure
11903 should be used to provide support for exception catchpoints.
11904
3eecfa55
JB
11905 This function will always set the per-inferior exception_info,
11906 or raise an error. */
0259addd
JB
11907
11908static void
11909ada_exception_support_info_sniffer (void)
11910{
3eecfa55 11911 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11912
11913 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11914 if (data->exception_info != NULL)
0259addd
JB
11915 return;
11916
11917 /* Check the latest (default) exception support info. */
f17011e0 11918 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11919 {
3eecfa55 11920 data->exception_info = &default_exception_support_info;
0259addd
JB
11921 return;
11922 }
11923
ca683e3a
AO
11924 /* Try the v0 exception suport info. */
11925 if (ada_has_this_exception_support (&exception_support_info_v0))
11926 {
11927 data->exception_info = &exception_support_info_v0;
11928 return;
11929 }
11930
0259addd 11931 /* Try our fallback exception suport info. */
f17011e0 11932 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11933 {
3eecfa55 11934 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11935 return;
11936 }
11937
11938 /* Sometimes, it is normal for us to not be able to find the routine
11939 we are looking for. This happens when the program is linked with
11940 the shared version of the GNAT runtime, and the program has not been
11941 started yet. Inform the user of these two possible causes if
11942 applicable. */
11943
ccefe4c4 11944 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11945 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11946
11947 /* If the symbol does not exist, then check that the program is
11948 already started, to make sure that shared libraries have been
11949 loaded. If it is not started, this may mean that the symbol is
11950 in a shared library. */
11951
e99b03dc 11952 if (inferior_ptid.pid () == 0)
0259addd
JB
11953 error (_("Unable to insert catchpoint. Try to start the program first."));
11954
11955 /* At this point, we know that we are debugging an Ada program and
11956 that the inferior has been started, but we still are not able to
0963b4bd 11957 find the run-time symbols. That can mean that we are in
0259addd
JB
11958 configurable run time mode, or that a-except as been optimized
11959 out by the linker... In any case, at this point it is not worth
11960 supporting this feature. */
11961
7dda8cff 11962 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11963}
11964
f7f9143b
JB
11965/* True iff FRAME is very likely to be that of a function that is
11966 part of the runtime system. This is all very heuristic, but is
11967 intended to be used as advice as to what frames are uninteresting
11968 to most users. */
11969
11970static int
11971is_known_support_routine (struct frame_info *frame)
11972{
692465f1 11973 enum language func_lang;
f7f9143b 11974 int i;
f35a17b5 11975 const char *fullname;
f7f9143b 11976
4ed6b5be
JB
11977 /* If this code does not have any debugging information (no symtab),
11978 This cannot be any user code. */
f7f9143b 11979
51abb421 11980 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11981 if (sal.symtab == NULL)
11982 return 1;
11983
4ed6b5be
JB
11984 /* If there is a symtab, but the associated source file cannot be
11985 located, then assume this is not user code: Selecting a frame
11986 for which we cannot display the code would not be very helpful
11987 for the user. This should also take care of case such as VxWorks
11988 where the kernel has some debugging info provided for a few units. */
f7f9143b 11989
f35a17b5
JK
11990 fullname = symtab_to_fullname (sal.symtab);
11991 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11992 return 1;
11993
85102364 11994 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11995 We also check the name of the objfile against the name of some
11996 known system libraries that sometimes come with debugging info
11997 too. */
11998
f7f9143b
JB
11999 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12000 {
12001 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12002 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12003 return 1;
eb822aa6
DE
12004 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12005 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12006 return 1;
f7f9143b
JB
12007 }
12008
4ed6b5be 12009 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12010
c6dc63a1
TT
12011 gdb::unique_xmalloc_ptr<char> func_name
12012 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12013 if (func_name == NULL)
12014 return 1;
12015
12016 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12017 {
12018 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12019 if (re_exec (func_name.get ()))
12020 return 1;
f7f9143b
JB
12021 }
12022
12023 return 0;
12024}
12025
12026/* Find the first frame that contains debugging information and that is not
12027 part of the Ada run-time, starting from FI and moving upward. */
12028
0ef643c8 12029void
f7f9143b
JB
12030ada_find_printable_frame (struct frame_info *fi)
12031{
12032 for (; fi != NULL; fi = get_prev_frame (fi))
12033 {
12034 if (!is_known_support_routine (fi))
12035 {
12036 select_frame (fi);
12037 break;
12038 }
12039 }
12040
12041}
12042
12043/* Assuming that the inferior just triggered an unhandled exception
12044 catchpoint, return the address in inferior memory where the name
12045 of the exception is stored.
12046
12047 Return zero if the address could not be computed. */
12048
12049static CORE_ADDR
12050ada_unhandled_exception_name_addr (void)
0259addd
JB
12051{
12052 return parse_and_eval_address ("e.full_name");
12053}
12054
12055/* Same as ada_unhandled_exception_name_addr, except that this function
12056 should be used when the inferior uses an older version of the runtime,
12057 where the exception name needs to be extracted from a specific frame
12058 several frames up in the callstack. */
12059
12060static CORE_ADDR
12061ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12062{
12063 int frame_level;
12064 struct frame_info *fi;
3eecfa55 12065 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12066
12067 /* To determine the name of this exception, we need to select
12068 the frame corresponding to RAISE_SYM_NAME. This frame is
12069 at least 3 levels up, so we simply skip the first 3 frames
12070 without checking the name of their associated function. */
12071 fi = get_current_frame ();
12072 for (frame_level = 0; frame_level < 3; frame_level += 1)
12073 if (fi != NULL)
12074 fi = get_prev_frame (fi);
12075
12076 while (fi != NULL)
12077 {
692465f1
JB
12078 enum language func_lang;
12079
c6dc63a1
TT
12080 gdb::unique_xmalloc_ptr<char> func_name
12081 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12082 if (func_name != NULL)
12083 {
c6dc63a1 12084 if (strcmp (func_name.get (),
55b87a52
KS
12085 data->exception_info->catch_exception_sym) == 0)
12086 break; /* We found the frame we were looking for... */
55b87a52 12087 }
fb44b1a7 12088 fi = get_prev_frame (fi);
f7f9143b
JB
12089 }
12090
12091 if (fi == NULL)
12092 return 0;
12093
12094 select_frame (fi);
12095 return parse_and_eval_address ("id.full_name");
12096}
12097
12098/* Assuming the inferior just triggered an Ada exception catchpoint
12099 (of any type), return the address in inferior memory where the name
12100 of the exception is stored, if applicable.
12101
45db7c09
PA
12102 Assumes the selected frame is the current frame.
12103
f7f9143b
JB
12104 Return zero if the address could not be computed, or if not relevant. */
12105
12106static CORE_ADDR
761269c8 12107ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12108 struct breakpoint *b)
12109{
3eecfa55
JB
12110 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12111
f7f9143b
JB
12112 switch (ex)
12113 {
761269c8 12114 case ada_catch_exception:
f7f9143b
JB
12115 return (parse_and_eval_address ("e.full_name"));
12116 break;
12117
761269c8 12118 case ada_catch_exception_unhandled:
3eecfa55 12119 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12120 break;
9f757bf7
XR
12121
12122 case ada_catch_handlers:
12123 return 0; /* The runtimes does not provide access to the exception
12124 name. */
12125 break;
12126
761269c8 12127 case ada_catch_assert:
f7f9143b
JB
12128 return 0; /* Exception name is not relevant in this case. */
12129 break;
12130
12131 default:
12132 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12133 break;
12134 }
12135
12136 return 0; /* Should never be reached. */
12137}
12138
e547c119
JB
12139/* Assuming the inferior is stopped at an exception catchpoint,
12140 return the message which was associated to the exception, if
12141 available. Return NULL if the message could not be retrieved.
12142
e547c119
JB
12143 Note: The exception message can be associated to an exception
12144 either through the use of the Raise_Exception function, or
12145 more simply (Ada 2005 and later), via:
12146
12147 raise Exception_Name with "exception message";
12148
12149 */
12150
6f46ac85 12151static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12152ada_exception_message_1 (void)
12153{
12154 struct value *e_msg_val;
e547c119 12155 int e_msg_len;
e547c119
JB
12156
12157 /* For runtimes that support this feature, the exception message
12158 is passed as an unbounded string argument called "message". */
12159 e_msg_val = parse_and_eval ("message");
12160 if (e_msg_val == NULL)
12161 return NULL; /* Exception message not supported. */
12162
12163 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12164 gdb_assert (e_msg_val != NULL);
12165 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12166
12167 /* If the message string is empty, then treat it as if there was
12168 no exception message. */
12169 if (e_msg_len <= 0)
12170 return NULL;
12171
6f46ac85
TT
12172 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12173 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12174 e_msg.get ()[e_msg_len] = '\0';
e547c119 12175
e547c119
JB
12176 return e_msg;
12177}
12178
12179/* Same as ada_exception_message_1, except that all exceptions are
12180 contained here (returning NULL instead). */
12181
6f46ac85 12182static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12183ada_exception_message (void)
12184{
6f46ac85 12185 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12186
a70b8144 12187 try
e547c119
JB
12188 {
12189 e_msg = ada_exception_message_1 ();
12190 }
230d2906 12191 catch (const gdb_exception_error &e)
e547c119 12192 {
6f46ac85 12193 e_msg.reset (nullptr);
e547c119 12194 }
e547c119
JB
12195
12196 return e_msg;
12197}
12198
f7f9143b
JB
12199/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12200 any error that ada_exception_name_addr_1 might cause to be thrown.
12201 When an error is intercepted, a warning with the error message is printed,
12202 and zero is returned. */
12203
12204static CORE_ADDR
761269c8 12205ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12206 struct breakpoint *b)
12207{
f7f9143b
JB
12208 CORE_ADDR result = 0;
12209
a70b8144 12210 try
f7f9143b
JB
12211 {
12212 result = ada_exception_name_addr_1 (ex, b);
12213 }
12214
230d2906 12215 catch (const gdb_exception_error &e)
f7f9143b 12216 {
3d6e9d23 12217 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12218 return 0;
12219 }
12220
12221 return result;
12222}
12223
cb7de75e 12224static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12225 (const char *excep_string,
12226 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12227
12228/* Ada catchpoints.
12229
12230 In the case of catchpoints on Ada exceptions, the catchpoint will
12231 stop the target on every exception the program throws. When a user
12232 specifies the name of a specific exception, we translate this
12233 request into a condition expression (in text form), and then parse
12234 it into an expression stored in each of the catchpoint's locations.
12235 We then use this condition to check whether the exception that was
12236 raised is the one the user is interested in. If not, then the
12237 target is resumed again. We store the name of the requested
12238 exception, in order to be able to re-set the condition expression
12239 when symbols change. */
12240
12241/* An instance of this type is used to represent an Ada catchpoint
5625a286 12242 breakpoint location. */
28010a5d 12243
5625a286 12244class ada_catchpoint_location : public bp_location
28010a5d 12245{
5625a286 12246public:
5f486660 12247 ada_catchpoint_location (breakpoint *owner)
f06f1252 12248 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12249 {}
28010a5d
PA
12250
12251 /* The condition that checks whether the exception that was raised
12252 is the specific exception the user specified on catchpoint
12253 creation. */
4d01a485 12254 expression_up excep_cond_expr;
28010a5d
PA
12255};
12256
c1fc2657 12257/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12258
c1fc2657 12259struct ada_catchpoint : public breakpoint
28010a5d 12260{
37f6a7f4
TT
12261 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12262 : m_kind (kind)
12263 {
12264 }
12265
28010a5d 12266 /* The name of the specific exception the user specified. */
bc18fbb5 12267 std::string excep_string;
37f6a7f4
TT
12268
12269 /* What kind of catchpoint this is. */
12270 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12271};
12272
12273/* Parse the exception condition string in the context of each of the
12274 catchpoint's locations, and store them for later evaluation. */
12275
12276static void
9f757bf7
XR
12277create_excep_cond_exprs (struct ada_catchpoint *c,
12278 enum ada_exception_catchpoint_kind ex)
28010a5d 12279{
fccf9de1
TT
12280 struct bp_location *bl;
12281
28010a5d 12282 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12283 if (c->excep_string.empty ())
28010a5d
PA
12284 return;
12285
12286 /* Same if there are no locations... */
c1fc2657 12287 if (c->loc == NULL)
28010a5d
PA
12288 return;
12289
fccf9de1
TT
12290 /* Compute the condition expression in text form, from the specific
12291 expection we want to catch. */
12292 std::string cond_string
12293 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12294
fccf9de1
TT
12295 /* Iterate over all the catchpoint's locations, and parse an
12296 expression for each. */
12297 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12298 {
12299 struct ada_catchpoint_location *ada_loc
fccf9de1 12300 = (struct ada_catchpoint_location *) bl;
4d01a485 12301 expression_up exp;
28010a5d 12302
fccf9de1 12303 if (!bl->shlib_disabled)
28010a5d 12304 {
bbc13ae3 12305 const char *s;
28010a5d 12306
cb7de75e 12307 s = cond_string.c_str ();
a70b8144 12308 try
28010a5d 12309 {
fccf9de1
TT
12310 exp = parse_exp_1 (&s, bl->address,
12311 block_for_pc (bl->address),
036e657b 12312 0);
28010a5d 12313 }
230d2906 12314 catch (const gdb_exception_error &e)
849f2b52
JB
12315 {
12316 warning (_("failed to reevaluate internal exception condition "
12317 "for catchpoint %d: %s"),
3d6e9d23 12318 c->number, e.what ());
849f2b52 12319 }
28010a5d
PA
12320 }
12321
b22e99fd 12322 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12323 }
28010a5d
PA
12324}
12325
28010a5d
PA
12326/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12327 structure for all exception catchpoint kinds. */
12328
12329static struct bp_location *
37f6a7f4 12330allocate_location_exception (struct breakpoint *self)
28010a5d 12331{
5f486660 12332 return new ada_catchpoint_location (self);
28010a5d
PA
12333}
12334
12335/* Implement the RE_SET method in the breakpoint_ops structure for all
12336 exception catchpoint kinds. */
12337
12338static void
37f6a7f4 12339re_set_exception (struct breakpoint *b)
28010a5d
PA
12340{
12341 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12342
12343 /* Call the base class's method. This updates the catchpoint's
12344 locations. */
2060206e 12345 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12346
12347 /* Reparse the exception conditional expressions. One for each
12348 location. */
37f6a7f4 12349 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12350}
12351
12352/* Returns true if we should stop for this breakpoint hit. If the
12353 user specified a specific exception, we only want to cause a stop
12354 if the program thrown that exception. */
12355
12356static int
12357should_stop_exception (const struct bp_location *bl)
12358{
12359 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12360 const struct ada_catchpoint_location *ada_loc
12361 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12362 int stop;
12363
37f6a7f4
TT
12364 struct internalvar *var = lookup_internalvar ("_ada_exception");
12365 if (c->m_kind == ada_catch_assert)
12366 clear_internalvar (var);
12367 else
12368 {
12369 try
12370 {
12371 const char *expr;
12372
12373 if (c->m_kind == ada_catch_handlers)
12374 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12375 ".all.occurrence.id");
12376 else
12377 expr = "e";
12378
12379 struct value *exc = parse_and_eval (expr);
12380 set_internalvar (var, exc);
12381 }
12382 catch (const gdb_exception_error &ex)
12383 {
12384 clear_internalvar (var);
12385 }
12386 }
12387
28010a5d 12388 /* With no specific exception, should always stop. */
bc18fbb5 12389 if (c->excep_string.empty ())
28010a5d
PA
12390 return 1;
12391
12392 if (ada_loc->excep_cond_expr == NULL)
12393 {
12394 /* We will have a NULL expression if back when we were creating
12395 the expressions, this location's had failed to parse. */
12396 return 1;
12397 }
12398
12399 stop = 1;
a70b8144 12400 try
28010a5d
PA
12401 {
12402 struct value *mark;
12403
12404 mark = value_mark ();
4d01a485 12405 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12406 value_free_to_mark (mark);
12407 }
230d2906 12408 catch (const gdb_exception &ex)
492d29ea
PA
12409 {
12410 exception_fprintf (gdb_stderr, ex,
12411 _("Error in testing exception condition:\n"));
12412 }
492d29ea 12413
28010a5d
PA
12414 return stop;
12415}
12416
12417/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12418 for all exception catchpoint kinds. */
12419
12420static void
37f6a7f4 12421check_status_exception (bpstat bs)
28010a5d
PA
12422{
12423 bs->stop = should_stop_exception (bs->bp_location_at);
12424}
12425
f7f9143b
JB
12426/* Implement the PRINT_IT method in the breakpoint_ops structure
12427 for all exception catchpoint kinds. */
12428
12429static enum print_stop_action
37f6a7f4 12430print_it_exception (bpstat bs)
f7f9143b 12431{
79a45e25 12432 struct ui_out *uiout = current_uiout;
348d480f
PA
12433 struct breakpoint *b = bs->breakpoint_at;
12434
956a9fb9 12435 annotate_catchpoint (b->number);
f7f9143b 12436
112e8700 12437 if (uiout->is_mi_like_p ())
f7f9143b 12438 {
112e8700 12439 uiout->field_string ("reason",
956a9fb9 12440 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12441 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12442 }
12443
112e8700
SM
12444 uiout->text (b->disposition == disp_del
12445 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12446 uiout->field_signed ("bkptno", b->number);
112e8700 12447 uiout->text (", ");
f7f9143b 12448
45db7c09
PA
12449 /* ada_exception_name_addr relies on the selected frame being the
12450 current frame. Need to do this here because this function may be
12451 called more than once when printing a stop, and below, we'll
12452 select the first frame past the Ada run-time (see
12453 ada_find_printable_frame). */
12454 select_frame (get_current_frame ());
12455
37f6a7f4
TT
12456 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12457 switch (c->m_kind)
f7f9143b 12458 {
761269c8
JB
12459 case ada_catch_exception:
12460 case ada_catch_exception_unhandled:
9f757bf7 12461 case ada_catch_handlers:
956a9fb9 12462 {
37f6a7f4 12463 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12464 char exception_name[256];
12465
12466 if (addr != 0)
12467 {
c714b426
PA
12468 read_memory (addr, (gdb_byte *) exception_name,
12469 sizeof (exception_name) - 1);
956a9fb9
JB
12470 exception_name [sizeof (exception_name) - 1] = '\0';
12471 }
12472 else
12473 {
12474 /* For some reason, we were unable to read the exception
12475 name. This could happen if the Runtime was compiled
12476 without debugging info, for instance. In that case,
12477 just replace the exception name by the generic string
12478 "exception" - it will read as "an exception" in the
12479 notification we are about to print. */
967cff16 12480 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12481 }
12482 /* In the case of unhandled exception breakpoints, we print
12483 the exception name as "unhandled EXCEPTION_NAME", to make
12484 it clearer to the user which kind of catchpoint just got
12485 hit. We used ui_out_text to make sure that this extra
12486 info does not pollute the exception name in the MI case. */
37f6a7f4 12487 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12488 uiout->text ("unhandled ");
12489 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12490 }
12491 break;
761269c8 12492 case ada_catch_assert:
956a9fb9
JB
12493 /* In this case, the name of the exception is not really
12494 important. Just print "failed assertion" to make it clearer
12495 that his program just hit an assertion-failure catchpoint.
12496 We used ui_out_text because this info does not belong in
12497 the MI output. */
112e8700 12498 uiout->text ("failed assertion");
956a9fb9 12499 break;
f7f9143b 12500 }
e547c119 12501
6f46ac85 12502 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12503 if (exception_message != NULL)
12504 {
e547c119 12505 uiout->text (" (");
6f46ac85 12506 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12507 uiout->text (")");
e547c119
JB
12508 }
12509
112e8700 12510 uiout->text (" at ");
956a9fb9 12511 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12512
12513 return PRINT_SRC_AND_LOC;
12514}
12515
12516/* Implement the PRINT_ONE method in the breakpoint_ops structure
12517 for all exception catchpoint kinds. */
12518
12519static void
37f6a7f4 12520print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12521{
79a45e25 12522 struct ui_out *uiout = current_uiout;
28010a5d 12523 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12524 struct value_print_options opts;
12525
12526 get_user_print_options (&opts);
f06f1252 12527
79a45b7d 12528 if (opts.addressprint)
f06f1252 12529 uiout->field_skip ("addr");
f7f9143b
JB
12530
12531 annotate_field (5);
37f6a7f4 12532 switch (c->m_kind)
f7f9143b 12533 {
761269c8 12534 case ada_catch_exception:
bc18fbb5 12535 if (!c->excep_string.empty ())
f7f9143b 12536 {
bc18fbb5
TT
12537 std::string msg = string_printf (_("`%s' Ada exception"),
12538 c->excep_string.c_str ());
28010a5d 12539
112e8700 12540 uiout->field_string ("what", msg);
f7f9143b
JB
12541 }
12542 else
112e8700 12543 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12544
12545 break;
12546
761269c8 12547 case ada_catch_exception_unhandled:
112e8700 12548 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12549 break;
12550
9f757bf7 12551 case ada_catch_handlers:
bc18fbb5 12552 if (!c->excep_string.empty ())
9f757bf7
XR
12553 {
12554 uiout->field_fmt ("what",
12555 _("`%s' Ada exception handlers"),
bc18fbb5 12556 c->excep_string.c_str ());
9f757bf7
XR
12557 }
12558 else
12559 uiout->field_string ("what", "all Ada exceptions handlers");
12560 break;
12561
761269c8 12562 case ada_catch_assert:
112e8700 12563 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12564 break;
12565
12566 default:
12567 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12568 break;
12569 }
12570}
12571
12572/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575static void
37f6a7f4 12576print_mention_exception (struct breakpoint *b)
f7f9143b 12577{
28010a5d 12578 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12579 struct ui_out *uiout = current_uiout;
28010a5d 12580
112e8700 12581 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12582 : _("Catchpoint "));
381befee 12583 uiout->field_signed ("bkptno", b->number);
112e8700 12584 uiout->text (": ");
00eb2c4a 12585
37f6a7f4 12586 switch (c->m_kind)
f7f9143b 12587 {
761269c8 12588 case ada_catch_exception:
bc18fbb5 12589 if (!c->excep_string.empty ())
00eb2c4a 12590 {
862d101a 12591 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12592 c->excep_string.c_str ());
862d101a 12593 uiout->text (info.c_str ());
00eb2c4a 12594 }
f7f9143b 12595 else
112e8700 12596 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12597 break;
12598
761269c8 12599 case ada_catch_exception_unhandled:
112e8700 12600 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12601 break;
9f757bf7
XR
12602
12603 case ada_catch_handlers:
bc18fbb5 12604 if (!c->excep_string.empty ())
9f757bf7
XR
12605 {
12606 std::string info
12607 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12608 c->excep_string.c_str ());
9f757bf7
XR
12609 uiout->text (info.c_str ());
12610 }
12611 else
12612 uiout->text (_("all Ada exceptions handlers"));
12613 break;
12614
761269c8 12615 case ada_catch_assert:
112e8700 12616 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12617 break;
12618
12619 default:
12620 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12621 break;
12622 }
12623}
12624
6149aea9
PA
12625/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12626 for all exception catchpoint kinds. */
12627
12628static void
37f6a7f4 12629print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12630{
28010a5d
PA
12631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12632
37f6a7f4 12633 switch (c->m_kind)
6149aea9 12634 {
761269c8 12635 case ada_catch_exception:
6149aea9 12636 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12637 if (!c->excep_string.empty ())
12638 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12639 break;
12640
761269c8 12641 case ada_catch_exception_unhandled:
78076abc 12642 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12643 break;
12644
9f757bf7
XR
12645 case ada_catch_handlers:
12646 fprintf_filtered (fp, "catch handlers");
12647 break;
12648
761269c8 12649 case ada_catch_assert:
6149aea9
PA
12650 fprintf_filtered (fp, "catch assert");
12651 break;
12652
12653 default:
12654 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12655 }
d9b3f62e 12656 print_recreate_thread (b, fp);
6149aea9
PA
12657}
12658
37f6a7f4 12659/* Virtual tables for various breakpoint types. */
2060206e 12660static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12661static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12662static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12663static struct breakpoint_ops catch_handlers_breakpoint_ops;
12664
f06f1252
TT
12665/* See ada-lang.h. */
12666
12667bool
12668is_ada_exception_catchpoint (breakpoint *bp)
12669{
12670 return (bp->ops == &catch_exception_breakpoint_ops
12671 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12672 || bp->ops == &catch_assert_breakpoint_ops
12673 || bp->ops == &catch_handlers_breakpoint_ops);
12674}
12675
f7f9143b
JB
12676/* Split the arguments specified in a "catch exception" command.
12677 Set EX to the appropriate catchpoint type.
28010a5d 12678 Set EXCEP_STRING to the name of the specific exception if
5845583d 12679 specified by the user.
9f757bf7
XR
12680 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12681 "catch handlers" command. False otherwise.
5845583d
JB
12682 If a condition is found at the end of the arguments, the condition
12683 expression is stored in COND_STRING (memory must be deallocated
12684 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12685
12686static void
a121b7c1 12687catch_ada_exception_command_split (const char *args,
9f757bf7 12688 bool is_catch_handlers_cmd,
761269c8 12689 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12690 std::string *excep_string,
12691 std::string *cond_string)
f7f9143b 12692{
bc18fbb5 12693 std::string exception_name;
f7f9143b 12694
bc18fbb5
TT
12695 exception_name = extract_arg (&args);
12696 if (exception_name == "if")
5845583d
JB
12697 {
12698 /* This is not an exception name; this is the start of a condition
12699 expression for a catchpoint on all exceptions. So, "un-get"
12700 this token, and set exception_name to NULL. */
bc18fbb5 12701 exception_name.clear ();
5845583d
JB
12702 args -= 2;
12703 }
f7f9143b 12704
5845583d 12705 /* Check to see if we have a condition. */
f7f9143b 12706
f1735a53 12707 args = skip_spaces (args);
61012eef 12708 if (startswith (args, "if")
5845583d
JB
12709 && (isspace (args[2]) || args[2] == '\0'))
12710 {
12711 args += 2;
f1735a53 12712 args = skip_spaces (args);
5845583d
JB
12713
12714 if (args[0] == '\0')
12715 error (_("Condition missing after `if' keyword"));
bc18fbb5 12716 *cond_string = args;
5845583d
JB
12717
12718 args += strlen (args);
12719 }
12720
12721 /* Check that we do not have any more arguments. Anything else
12722 is unexpected. */
f7f9143b
JB
12723
12724 if (args[0] != '\0')
12725 error (_("Junk at end of expression"));
12726
9f757bf7
XR
12727 if (is_catch_handlers_cmd)
12728 {
12729 /* Catch handling of exceptions. */
12730 *ex = ada_catch_handlers;
12731 *excep_string = exception_name;
12732 }
bc18fbb5 12733 else if (exception_name.empty ())
f7f9143b
JB
12734 {
12735 /* Catch all exceptions. */
761269c8 12736 *ex = ada_catch_exception;
bc18fbb5 12737 excep_string->clear ();
f7f9143b 12738 }
bc18fbb5 12739 else if (exception_name == "unhandled")
f7f9143b
JB
12740 {
12741 /* Catch unhandled exceptions. */
761269c8 12742 *ex = ada_catch_exception_unhandled;
bc18fbb5 12743 excep_string->clear ();
f7f9143b
JB
12744 }
12745 else
12746 {
12747 /* Catch a specific exception. */
761269c8 12748 *ex = ada_catch_exception;
28010a5d 12749 *excep_string = exception_name;
f7f9143b
JB
12750 }
12751}
12752
12753/* Return the name of the symbol on which we should break in order to
12754 implement a catchpoint of the EX kind. */
12755
12756static const char *
761269c8 12757ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12758{
3eecfa55
JB
12759 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12760
12761 gdb_assert (data->exception_info != NULL);
0259addd 12762
f7f9143b
JB
12763 switch (ex)
12764 {
761269c8 12765 case ada_catch_exception:
3eecfa55 12766 return (data->exception_info->catch_exception_sym);
f7f9143b 12767 break;
761269c8 12768 case ada_catch_exception_unhandled:
3eecfa55 12769 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12770 break;
761269c8 12771 case ada_catch_assert:
3eecfa55 12772 return (data->exception_info->catch_assert_sym);
f7f9143b 12773 break;
9f757bf7
XR
12774 case ada_catch_handlers:
12775 return (data->exception_info->catch_handlers_sym);
12776 break;
f7f9143b
JB
12777 default:
12778 internal_error (__FILE__, __LINE__,
12779 _("unexpected catchpoint kind (%d)"), ex);
12780 }
12781}
12782
12783/* Return the breakpoint ops "virtual table" used for catchpoints
12784 of the EX kind. */
12785
c0a91b2b 12786static const struct breakpoint_ops *
761269c8 12787ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12788{
12789 switch (ex)
12790 {
761269c8 12791 case ada_catch_exception:
f7f9143b
JB
12792 return (&catch_exception_breakpoint_ops);
12793 break;
761269c8 12794 case ada_catch_exception_unhandled:
f7f9143b
JB
12795 return (&catch_exception_unhandled_breakpoint_ops);
12796 break;
761269c8 12797 case ada_catch_assert:
f7f9143b
JB
12798 return (&catch_assert_breakpoint_ops);
12799 break;
9f757bf7
XR
12800 case ada_catch_handlers:
12801 return (&catch_handlers_breakpoint_ops);
12802 break;
f7f9143b
JB
12803 default:
12804 internal_error (__FILE__, __LINE__,
12805 _("unexpected catchpoint kind (%d)"), ex);
12806 }
12807}
12808
12809/* Return the condition that will be used to match the current exception
12810 being raised with the exception that the user wants to catch. This
12811 assumes that this condition is used when the inferior just triggered
12812 an exception catchpoint.
cb7de75e 12813 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12814
cb7de75e 12815static std::string
9f757bf7
XR
12816ada_exception_catchpoint_cond_string (const char *excep_string,
12817 enum ada_exception_catchpoint_kind ex)
f7f9143b 12818{
3d0b0fa3 12819 int i;
fccf9de1 12820 bool is_standard_exc = false;
cb7de75e 12821 std::string result;
9f757bf7
XR
12822
12823 if (ex == ada_catch_handlers)
12824 {
12825 /* For exception handlers catchpoints, the condition string does
12826 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12827 result = ("long_integer (GNAT_GCC_exception_Access"
12828 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12829 }
12830 else
fccf9de1 12831 result = "long_integer (e)";
3d0b0fa3 12832
0963b4bd 12833 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12834 runtime units that have been compiled without debugging info; if
28010a5d 12835 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12836 exception (e.g. "constraint_error") then, during the evaluation
12837 of the condition expression, the symbol lookup on this name would
0963b4bd 12838 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12839 may then be set only on user-defined exceptions which have the
12840 same not-fully-qualified name (e.g. my_package.constraint_error).
12841
12842 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12843 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12844 exception constraint_error" is rewritten into "catch exception
12845 standard.constraint_error".
12846
85102364 12847 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12848 the inferior program, then the only way to specify this exception as a
12849 breakpoint condition is to use its fully-qualified named:
fccf9de1 12850 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12851
12852 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12853 {
28010a5d 12854 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12855 {
fccf9de1 12856 is_standard_exc = true;
9f757bf7 12857 break;
3d0b0fa3
JB
12858 }
12859 }
9f757bf7 12860
fccf9de1
TT
12861 result += " = ";
12862
12863 if (is_standard_exc)
12864 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12865 else
12866 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12867
9f757bf7 12868 return result;
f7f9143b
JB
12869}
12870
12871/* Return the symtab_and_line that should be used to insert an exception
12872 catchpoint of the TYPE kind.
12873
28010a5d
PA
12874 ADDR_STRING returns the name of the function where the real
12875 breakpoint that implements the catchpoints is set, depending on the
12876 type of catchpoint we need to create. */
f7f9143b
JB
12877
12878static struct symtab_and_line
bc18fbb5 12879ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12880 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12881{
12882 const char *sym_name;
12883 struct symbol *sym;
f7f9143b 12884
0259addd
JB
12885 /* First, find out which exception support info to use. */
12886 ada_exception_support_info_sniffer ();
12887
12888 /* Then lookup the function on which we will break in order to catch
f7f9143b 12889 the Ada exceptions requested by the user. */
f7f9143b
JB
12890 sym_name = ada_exception_sym_name (ex);
12891 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12892
57aff202
JB
12893 if (sym == NULL)
12894 error (_("Catchpoint symbol not found: %s"), sym_name);
12895
12896 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12897 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12898
12899 /* Set ADDR_STRING. */
cc12f4a8 12900 *addr_string = sym_name;
f7f9143b 12901
f7f9143b 12902 /* Set OPS. */
4b9eee8c 12903 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12904
f17011e0 12905 return find_function_start_sal (sym, 1);
f7f9143b
JB
12906}
12907
b4a5b78b 12908/* Create an Ada exception catchpoint.
f7f9143b 12909
b4a5b78b 12910 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12911
bc18fbb5 12912 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12913 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12914 of the exception to which this catchpoint applies.
2df4d1d5 12915
bc18fbb5 12916 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12917
b4a5b78b
JB
12918 TEMPFLAG, if nonzero, means that the underlying breakpoint
12919 should be temporary.
28010a5d 12920
b4a5b78b 12921 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12922
349774ef 12923void
28010a5d 12924create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12925 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12926 const std::string &excep_string,
56ecd069 12927 const std::string &cond_string,
28010a5d 12928 int tempflag,
349774ef 12929 int disabled,
28010a5d
PA
12930 int from_tty)
12931{
cc12f4a8 12932 std::string addr_string;
b4a5b78b 12933 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12934 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12935
37f6a7f4 12936 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12937 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12938 ops, tempflag, disabled, from_tty);
28010a5d 12939 c->excep_string = excep_string;
9f757bf7 12940 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12941 if (!cond_string.empty ())
12942 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12943 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12944}
12945
9ac4176b
PA
12946/* Implement the "catch exception" command. */
12947
12948static void
eb4c3f4a 12949catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12950 struct cmd_list_element *command)
12951{
a121b7c1 12952 const char *arg = arg_entry;
9ac4176b
PA
12953 struct gdbarch *gdbarch = get_current_arch ();
12954 int tempflag;
761269c8 12955 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12956 std::string excep_string;
56ecd069 12957 std::string cond_string;
9ac4176b
PA
12958
12959 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12960
12961 if (!arg)
12962 arg = "";
9f757bf7 12963 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12964 &cond_string);
9f757bf7
XR
12965 create_ada_exception_catchpoint (gdbarch, ex_kind,
12966 excep_string, cond_string,
12967 tempflag, 1 /* enabled */,
12968 from_tty);
12969}
12970
12971/* Implement the "catch handlers" command. */
12972
12973static void
12974catch_ada_handlers_command (const char *arg_entry, int from_tty,
12975 struct cmd_list_element *command)
12976{
12977 const char *arg = arg_entry;
12978 struct gdbarch *gdbarch = get_current_arch ();
12979 int tempflag;
12980 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12981 std::string excep_string;
56ecd069 12982 std::string cond_string;
9f757bf7
XR
12983
12984 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12985
12986 if (!arg)
12987 arg = "";
12988 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12989 &cond_string);
b4a5b78b
JB
12990 create_ada_exception_catchpoint (gdbarch, ex_kind,
12991 excep_string, cond_string,
349774ef
JB
12992 tempflag, 1 /* enabled */,
12993 from_tty);
9ac4176b
PA
12994}
12995
71bed2db
TT
12996/* Completion function for the Ada "catch" commands. */
12997
12998static void
12999catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13000 const char *text, const char *word)
13001{
13002 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13003
13004 for (const ada_exc_info &info : exceptions)
13005 {
13006 if (startswith (info.name, word))
b02f78f9 13007 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13008 }
13009}
13010
b4a5b78b 13011/* Split the arguments specified in a "catch assert" command.
5845583d 13012
b4a5b78b
JB
13013 ARGS contains the command's arguments (or the empty string if
13014 no arguments were passed).
5845583d
JB
13015
13016 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13017 (the memory needs to be deallocated after use). */
5845583d 13018
b4a5b78b 13019static void
56ecd069 13020catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13021{
f1735a53 13022 args = skip_spaces (args);
f7f9143b 13023
5845583d 13024 /* Check whether a condition was provided. */
61012eef 13025 if (startswith (args, "if")
5845583d 13026 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13027 {
5845583d 13028 args += 2;
f1735a53 13029 args = skip_spaces (args);
5845583d
JB
13030 if (args[0] == '\0')
13031 error (_("condition missing after `if' keyword"));
56ecd069 13032 cond_string.assign (args);
f7f9143b
JB
13033 }
13034
5845583d
JB
13035 /* Otherwise, there should be no other argument at the end of
13036 the command. */
13037 else if (args[0] != '\0')
13038 error (_("Junk at end of arguments."));
f7f9143b
JB
13039}
13040
9ac4176b
PA
13041/* Implement the "catch assert" command. */
13042
13043static void
eb4c3f4a 13044catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13045 struct cmd_list_element *command)
13046{
a121b7c1 13047 const char *arg = arg_entry;
9ac4176b
PA
13048 struct gdbarch *gdbarch = get_current_arch ();
13049 int tempflag;
56ecd069 13050 std::string cond_string;
9ac4176b
PA
13051
13052 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13053
13054 if (!arg)
13055 arg = "";
56ecd069 13056 catch_ada_assert_command_split (arg, cond_string);
761269c8 13057 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13058 "", cond_string,
349774ef
JB
13059 tempflag, 1 /* enabled */,
13060 from_tty);
9ac4176b 13061}
778865d3
JB
13062
13063/* Return non-zero if the symbol SYM is an Ada exception object. */
13064
13065static int
13066ada_is_exception_sym (struct symbol *sym)
13067{
7d93a1e0 13068 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
13069
13070 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13071 && SYMBOL_CLASS (sym) != LOC_BLOCK
13072 && SYMBOL_CLASS (sym) != LOC_CONST
13073 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13074 && type_name != NULL && strcmp (type_name, "exception") == 0);
13075}
13076
13077/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13078 Ada exception object. This matches all exceptions except the ones
13079 defined by the Ada language. */
13080
13081static int
13082ada_is_non_standard_exception_sym (struct symbol *sym)
13083{
13084 int i;
13085
13086 if (!ada_is_exception_sym (sym))
13087 return 0;
13088
13089 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13090 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13091 return 0; /* A standard exception. */
13092
13093 /* Numeric_Error is also a standard exception, so exclude it.
13094 See the STANDARD_EXC description for more details as to why
13095 this exception is not listed in that array. */
987012b8 13096 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13097 return 0;
13098
13099 return 1;
13100}
13101
ab816a27 13102/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13103 objects.
13104
13105 The comparison is determined first by exception name, and then
13106 by exception address. */
13107
ab816a27 13108bool
cc536b21 13109ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13110{
778865d3
JB
13111 int result;
13112
ab816a27
TT
13113 result = strcmp (name, other.name);
13114 if (result < 0)
13115 return true;
13116 if (result == 0 && addr < other.addr)
13117 return true;
13118 return false;
13119}
778865d3 13120
ab816a27 13121bool
cc536b21 13122ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13123{
13124 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13125}
13126
13127/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13128 routine, but keeping the first SKIP elements untouched.
13129
13130 All duplicates are also removed. */
13131
13132static void
ab816a27 13133sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13134 int skip)
13135{
ab816a27
TT
13136 std::sort (exceptions->begin () + skip, exceptions->end ());
13137 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13138 exceptions->end ());
778865d3
JB
13139}
13140
778865d3
JB
13141/* Add all exceptions defined by the Ada standard whose name match
13142 a regular expression.
13143
13144 If PREG is not NULL, then this regexp_t object is used to
13145 perform the symbol name matching. Otherwise, no name-based
13146 filtering is performed.
13147
13148 EXCEPTIONS is a vector of exceptions to which matching exceptions
13149 gets pushed. */
13150
13151static void
2d7cc5c7 13152ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13153 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13154{
13155 int i;
13156
13157 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13158 {
13159 if (preg == NULL
2d7cc5c7 13160 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13161 {
13162 struct bound_minimal_symbol msymbol
13163 = ada_lookup_simple_minsym (standard_exc[i]);
13164
13165 if (msymbol.minsym != NULL)
13166 {
13167 struct ada_exc_info info
77e371c0 13168 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13169
ab816a27 13170 exceptions->push_back (info);
778865d3
JB
13171 }
13172 }
13173 }
13174}
13175
13176/* Add all Ada exceptions defined locally and accessible from the given
13177 FRAME.
13178
13179 If PREG is not NULL, then this regexp_t object is used to
13180 perform the symbol name matching. Otherwise, no name-based
13181 filtering is performed.
13182
13183 EXCEPTIONS is a vector of exceptions to which matching exceptions
13184 gets pushed. */
13185
13186static void
2d7cc5c7
PA
13187ada_add_exceptions_from_frame (compiled_regex *preg,
13188 struct frame_info *frame,
ab816a27 13189 std::vector<ada_exc_info> *exceptions)
778865d3 13190{
3977b71f 13191 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13192
13193 while (block != 0)
13194 {
13195 struct block_iterator iter;
13196 struct symbol *sym;
13197
13198 ALL_BLOCK_SYMBOLS (block, iter, sym)
13199 {
13200 switch (SYMBOL_CLASS (sym))
13201 {
13202 case LOC_TYPEDEF:
13203 case LOC_BLOCK:
13204 case LOC_CONST:
13205 break;
13206 default:
13207 if (ada_is_exception_sym (sym))
13208 {
987012b8 13209 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13210 SYMBOL_VALUE_ADDRESS (sym)};
13211
ab816a27 13212 exceptions->push_back (info);
778865d3
JB
13213 }
13214 }
13215 }
13216 if (BLOCK_FUNCTION (block) != NULL)
13217 break;
13218 block = BLOCK_SUPERBLOCK (block);
13219 }
13220}
13221
14bc53a8
PA
13222/* Return true if NAME matches PREG or if PREG is NULL. */
13223
13224static bool
2d7cc5c7 13225name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13226{
13227 return (preg == NULL
f945dedf 13228 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13229}
13230
778865d3
JB
13231/* Add all exceptions defined globally whose name name match
13232 a regular expression, excluding standard exceptions.
13233
13234 The reason we exclude standard exceptions is that they need
13235 to be handled separately: Standard exceptions are defined inside
13236 a runtime unit which is normally not compiled with debugging info,
13237 and thus usually do not show up in our symbol search. However,
13238 if the unit was in fact built with debugging info, we need to
13239 exclude them because they would duplicate the entry we found
13240 during the special loop that specifically searches for those
13241 standard exceptions.
13242
13243 If PREG is not NULL, then this regexp_t object is used to
13244 perform the symbol name matching. Otherwise, no name-based
13245 filtering is performed.
13246
13247 EXCEPTIONS is a vector of exceptions to which matching exceptions
13248 gets pushed. */
13249
13250static void
2d7cc5c7 13251ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13252 std::vector<ada_exc_info> *exceptions)
778865d3 13253{
14bc53a8
PA
13254 /* In Ada, the symbol "search name" is a linkage name, whereas the
13255 regular expression used to do the matching refers to the natural
13256 name. So match against the decoded name. */
13257 expand_symtabs_matching (NULL,
b5ec771e 13258 lookup_name_info::match_any (),
14bc53a8
PA
13259 [&] (const char *search_name)
13260 {
f945dedf
CB
13261 std::string decoded = ada_decode (search_name);
13262 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13263 },
13264 NULL,
13265 VARIABLES_DOMAIN);
778865d3 13266
2030c079 13267 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13268 {
b669c953 13269 for (compunit_symtab *s : objfile->compunits ())
778865d3 13270 {
d8aeb77f
TT
13271 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13272 int i;
778865d3 13273
d8aeb77f
TT
13274 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13275 {
582942f4 13276 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13277 struct block_iterator iter;
13278 struct symbol *sym;
778865d3 13279
d8aeb77f
TT
13280 ALL_BLOCK_SYMBOLS (b, iter, sym)
13281 if (ada_is_non_standard_exception_sym (sym)
987012b8 13282 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13283 {
13284 struct ada_exc_info info
987012b8 13285 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13286
13287 exceptions->push_back (info);
13288 }
13289 }
778865d3
JB
13290 }
13291 }
13292}
13293
13294/* Implements ada_exceptions_list with the regular expression passed
13295 as a regex_t, rather than a string.
13296
13297 If not NULL, PREG is used to filter out exceptions whose names
13298 do not match. Otherwise, all exceptions are listed. */
13299
ab816a27 13300static std::vector<ada_exc_info>
2d7cc5c7 13301ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13302{
ab816a27 13303 std::vector<ada_exc_info> result;
778865d3
JB
13304 int prev_len;
13305
13306 /* First, list the known standard exceptions. These exceptions
13307 need to be handled separately, as they are usually defined in
13308 runtime units that have been compiled without debugging info. */
13309
13310 ada_add_standard_exceptions (preg, &result);
13311
13312 /* Next, find all exceptions whose scope is local and accessible
13313 from the currently selected frame. */
13314
13315 if (has_stack_frames ())
13316 {
ab816a27 13317 prev_len = result.size ();
778865d3
JB
13318 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13319 &result);
ab816a27 13320 if (result.size () > prev_len)
778865d3
JB
13321 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13322 }
13323
13324 /* Add all exceptions whose scope is global. */
13325
ab816a27 13326 prev_len = result.size ();
778865d3 13327 ada_add_global_exceptions (preg, &result);
ab816a27 13328 if (result.size () > prev_len)
778865d3
JB
13329 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13330
778865d3
JB
13331 return result;
13332}
13333
13334/* Return a vector of ada_exc_info.
13335
13336 If REGEXP is NULL, all exceptions are included in the result.
13337 Otherwise, it should contain a valid regular expression,
13338 and only the exceptions whose names match that regular expression
13339 are included in the result.
13340
13341 The exceptions are sorted in the following order:
13342 - Standard exceptions (defined by the Ada language), in
13343 alphabetical order;
13344 - Exceptions only visible from the current frame, in
13345 alphabetical order;
13346 - Exceptions whose scope is global, in alphabetical order. */
13347
ab816a27 13348std::vector<ada_exc_info>
778865d3
JB
13349ada_exceptions_list (const char *regexp)
13350{
2d7cc5c7
PA
13351 if (regexp == NULL)
13352 return ada_exceptions_list_1 (NULL);
778865d3 13353
2d7cc5c7
PA
13354 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13355 return ada_exceptions_list_1 (&reg);
778865d3
JB
13356}
13357
13358/* Implement the "info exceptions" command. */
13359
13360static void
1d12d88f 13361info_exceptions_command (const char *regexp, int from_tty)
778865d3 13362{
778865d3 13363 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13364
ab816a27 13365 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13366
13367 if (regexp != NULL)
13368 printf_filtered
13369 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13370 else
13371 printf_filtered (_("All defined Ada exceptions:\n"));
13372
ab816a27
TT
13373 for (const ada_exc_info &info : exceptions)
13374 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13375}
13376
4c4b4cd2
PH
13377 /* Operators */
13378/* Information about operators given special treatment in functions
13379 below. */
13380/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13381
13382#define ADA_OPERATORS \
13383 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13384 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13385 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13386 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13387 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13388 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13389 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13390 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13391 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13392 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13393 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13394 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13395 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13396 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13397 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13398 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13399 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13400 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13401 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13402
13403static void
554794dc
SDJ
13404ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13405 int *argsp)
4c4b4cd2
PH
13406{
13407 switch (exp->elts[pc - 1].opcode)
13408 {
76a01679 13409 default:
4c4b4cd2
PH
13410 operator_length_standard (exp, pc, oplenp, argsp);
13411 break;
13412
13413#define OP_DEFN(op, len, args, binop) \
13414 case op: *oplenp = len; *argsp = args; break;
13415 ADA_OPERATORS;
13416#undef OP_DEFN
52ce6436
PH
13417
13418 case OP_AGGREGATE:
13419 *oplenp = 3;
13420 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13421 break;
13422
13423 case OP_CHOICES:
13424 *oplenp = 3;
13425 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13426 break;
4c4b4cd2
PH
13427 }
13428}
13429
c0201579
JK
13430/* Implementation of the exp_descriptor method operator_check. */
13431
13432static int
13433ada_operator_check (struct expression *exp, int pos,
13434 int (*objfile_func) (struct objfile *objfile, void *data),
13435 void *data)
13436{
13437 const union exp_element *const elts = exp->elts;
13438 struct type *type = NULL;
13439
13440 switch (elts[pos].opcode)
13441 {
13442 case UNOP_IN_RANGE:
13443 case UNOP_QUAL:
13444 type = elts[pos + 1].type;
13445 break;
13446
13447 default:
13448 return operator_check_standard (exp, pos, objfile_func, data);
13449 }
13450
13451 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13452
13453 if (type && TYPE_OBJFILE (type)
13454 && (*objfile_func) (TYPE_OBJFILE (type), data))
13455 return 1;
13456
13457 return 0;
13458}
13459
a121b7c1 13460static const char *
4c4b4cd2
PH
13461ada_op_name (enum exp_opcode opcode)
13462{
13463 switch (opcode)
13464 {
76a01679 13465 default:
4c4b4cd2 13466 return op_name_standard (opcode);
52ce6436 13467
4c4b4cd2
PH
13468#define OP_DEFN(op, len, args, binop) case op: return #op;
13469 ADA_OPERATORS;
13470#undef OP_DEFN
52ce6436
PH
13471
13472 case OP_AGGREGATE:
13473 return "OP_AGGREGATE";
13474 case OP_CHOICES:
13475 return "OP_CHOICES";
13476 case OP_NAME:
13477 return "OP_NAME";
4c4b4cd2
PH
13478 }
13479}
13480
13481/* As for operator_length, but assumes PC is pointing at the first
13482 element of the operator, and gives meaningful results only for the
52ce6436 13483 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13484
13485static void
76a01679
JB
13486ada_forward_operator_length (struct expression *exp, int pc,
13487 int *oplenp, int *argsp)
4c4b4cd2 13488{
76a01679 13489 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13490 {
13491 default:
13492 *oplenp = *argsp = 0;
13493 break;
52ce6436 13494
4c4b4cd2
PH
13495#define OP_DEFN(op, len, args, binop) \
13496 case op: *oplenp = len; *argsp = args; break;
13497 ADA_OPERATORS;
13498#undef OP_DEFN
52ce6436
PH
13499
13500 case OP_AGGREGATE:
13501 *oplenp = 3;
13502 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13503 break;
13504
13505 case OP_CHOICES:
13506 *oplenp = 3;
13507 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13508 break;
13509
13510 case OP_STRING:
13511 case OP_NAME:
13512 {
13513 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13514
52ce6436
PH
13515 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13516 *argsp = 0;
13517 break;
13518 }
4c4b4cd2
PH
13519 }
13520}
13521
13522static int
13523ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13524{
13525 enum exp_opcode op = exp->elts[elt].opcode;
13526 int oplen, nargs;
13527 int pc = elt;
13528 int i;
76a01679 13529
4c4b4cd2
PH
13530 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13531
76a01679 13532 switch (op)
4c4b4cd2 13533 {
76a01679 13534 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13535 case OP_ATR_FIRST:
13536 case OP_ATR_LAST:
13537 case OP_ATR_LENGTH:
13538 case OP_ATR_IMAGE:
13539 case OP_ATR_MAX:
13540 case OP_ATR_MIN:
13541 case OP_ATR_MODULUS:
13542 case OP_ATR_POS:
13543 case OP_ATR_SIZE:
13544 case OP_ATR_TAG:
13545 case OP_ATR_VAL:
13546 break;
13547
13548 case UNOP_IN_RANGE:
13549 case UNOP_QUAL:
323e0a4a
AC
13550 /* XXX: gdb_sprint_host_address, type_sprint */
13551 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13552 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13553 fprintf_filtered (stream, " (");
13554 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13555 fprintf_filtered (stream, ")");
13556 break;
13557 case BINOP_IN_BOUNDS:
52ce6436
PH
13558 fprintf_filtered (stream, " (%d)",
13559 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13560 break;
13561 case TERNOP_IN_RANGE:
13562 break;
13563
52ce6436
PH
13564 case OP_AGGREGATE:
13565 case OP_OTHERS:
13566 case OP_DISCRETE_RANGE:
13567 case OP_POSITIONAL:
13568 case OP_CHOICES:
13569 break;
13570
13571 case OP_NAME:
13572 case OP_STRING:
13573 {
13574 char *name = &exp->elts[elt + 2].string;
13575 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13576
52ce6436
PH
13577 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13578 break;
13579 }
13580
4c4b4cd2
PH
13581 default:
13582 return dump_subexp_body_standard (exp, stream, elt);
13583 }
13584
13585 elt += oplen;
13586 for (i = 0; i < nargs; i += 1)
13587 elt = dump_subexp (exp, stream, elt);
13588
13589 return elt;
13590}
13591
13592/* The Ada extension of print_subexp (q.v.). */
13593
76a01679
JB
13594static void
13595ada_print_subexp (struct expression *exp, int *pos,
13596 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13597{
52ce6436 13598 int oplen, nargs, i;
4c4b4cd2
PH
13599 int pc = *pos;
13600 enum exp_opcode op = exp->elts[pc].opcode;
13601
13602 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13603
52ce6436 13604 *pos += oplen;
4c4b4cd2
PH
13605 switch (op)
13606 {
13607 default:
52ce6436 13608 *pos -= oplen;
4c4b4cd2
PH
13609 print_subexp_standard (exp, pos, stream, prec);
13610 return;
13611
13612 case OP_VAR_VALUE:
987012b8 13613 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13614 return;
13615
13616 case BINOP_IN_BOUNDS:
323e0a4a 13617 /* XXX: sprint_subexp */
4c4b4cd2 13618 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13619 fputs_filtered (" in ", stream);
4c4b4cd2 13620 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13621 fputs_filtered ("'range", stream);
4c4b4cd2 13622 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13623 fprintf_filtered (stream, "(%ld)",
13624 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13625 return;
13626
13627 case TERNOP_IN_RANGE:
4c4b4cd2 13628 if (prec >= PREC_EQUAL)
76a01679 13629 fputs_filtered ("(", stream);
323e0a4a 13630 /* XXX: sprint_subexp */
4c4b4cd2 13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13632 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13633 print_subexp (exp, pos, stream, PREC_EQUAL);
13634 fputs_filtered (" .. ", stream);
13635 print_subexp (exp, pos, stream, PREC_EQUAL);
13636 if (prec >= PREC_EQUAL)
76a01679
JB
13637 fputs_filtered (")", stream);
13638 return;
4c4b4cd2
PH
13639
13640 case OP_ATR_FIRST:
13641 case OP_ATR_LAST:
13642 case OP_ATR_LENGTH:
13643 case OP_ATR_IMAGE:
13644 case OP_ATR_MAX:
13645 case OP_ATR_MIN:
13646 case OP_ATR_MODULUS:
13647 case OP_ATR_POS:
13648 case OP_ATR_SIZE:
13649 case OP_ATR_TAG:
13650 case OP_ATR_VAL:
4c4b4cd2 13651 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13652 {
78134374 13653 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13654 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13655 &type_print_raw_options);
76a01679
JB
13656 *pos += 3;
13657 }
4c4b4cd2 13658 else
76a01679 13659 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13660 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13661 if (nargs > 1)
76a01679
JB
13662 {
13663 int tem;
5b4ee69b 13664
76a01679
JB
13665 for (tem = 1; tem < nargs; tem += 1)
13666 {
13667 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13668 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13669 }
13670 fputs_filtered (")", stream);
13671 }
4c4b4cd2 13672 return;
14f9c5c9 13673
4c4b4cd2 13674 case UNOP_QUAL:
4c4b4cd2
PH
13675 type_print (exp->elts[pc + 1].type, "", stream, 0);
13676 fputs_filtered ("'(", stream);
13677 print_subexp (exp, pos, stream, PREC_PREFIX);
13678 fputs_filtered (")", stream);
13679 return;
14f9c5c9 13680
4c4b4cd2 13681 case UNOP_IN_RANGE:
323e0a4a 13682 /* XXX: sprint_subexp */
4c4b4cd2 13683 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13684 fputs_filtered (" in ", stream);
79d43c61
TT
13685 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13686 &type_print_raw_options);
4c4b4cd2 13687 return;
52ce6436
PH
13688
13689 case OP_DISCRETE_RANGE:
13690 print_subexp (exp, pos, stream, PREC_SUFFIX);
13691 fputs_filtered ("..", stream);
13692 print_subexp (exp, pos, stream, PREC_SUFFIX);
13693 return;
13694
13695 case OP_OTHERS:
13696 fputs_filtered ("others => ", stream);
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 return;
13699
13700 case OP_CHOICES:
13701 for (i = 0; i < nargs-1; i += 1)
13702 {
13703 if (i > 0)
13704 fputs_filtered ("|", stream);
13705 print_subexp (exp, pos, stream, PREC_SUFFIX);
13706 }
13707 fputs_filtered (" => ", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 return;
13710
13711 case OP_POSITIONAL:
13712 print_subexp (exp, pos, stream, PREC_SUFFIX);
13713 return;
13714
13715 case OP_AGGREGATE:
13716 fputs_filtered ("(", stream);
13717 for (i = 0; i < nargs; i += 1)
13718 {
13719 if (i > 0)
13720 fputs_filtered (", ", stream);
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13722 }
13723 fputs_filtered (")", stream);
13724 return;
4c4b4cd2
PH
13725 }
13726}
14f9c5c9
AS
13727
13728/* Table mapping opcodes into strings for printing operators
13729 and precedences of the operators. */
13730
d2e4a39e
AS
13731static const struct op_print ada_op_print_tab[] = {
13732 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13733 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13734 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13735 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13736 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13737 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13738 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13739 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13740 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13741 {">=", BINOP_GEQ, PREC_ORDER, 0},
13742 {">", BINOP_GTR, PREC_ORDER, 0},
13743 {"<", BINOP_LESS, PREC_ORDER, 0},
13744 {">>", BINOP_RSH, PREC_SHIFT, 0},
13745 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13746 {"+", BINOP_ADD, PREC_ADD, 0},
13747 {"-", BINOP_SUB, PREC_ADD, 0},
13748 {"&", BINOP_CONCAT, PREC_ADD, 0},
13749 {"*", BINOP_MUL, PREC_MUL, 0},
13750 {"/", BINOP_DIV, PREC_MUL, 0},
13751 {"rem", BINOP_REM, PREC_MUL, 0},
13752 {"mod", BINOP_MOD, PREC_MUL, 0},
13753 {"**", BINOP_EXP, PREC_REPEAT, 0},
13754 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13755 {"-", UNOP_NEG, PREC_PREFIX, 0},
13756 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13757 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13758 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13759 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13760 {".all", UNOP_IND, PREC_SUFFIX, 1},
13761 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13762 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13763 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13764};
13765\f
72d5681a
PH
13766enum ada_primitive_types {
13767 ada_primitive_type_int,
13768 ada_primitive_type_long,
13769 ada_primitive_type_short,
13770 ada_primitive_type_char,
13771 ada_primitive_type_float,
13772 ada_primitive_type_double,
13773 ada_primitive_type_void,
13774 ada_primitive_type_long_long,
13775 ada_primitive_type_long_double,
13776 ada_primitive_type_natural,
13777 ada_primitive_type_positive,
13778 ada_primitive_type_system_address,
08f49010 13779 ada_primitive_type_storage_offset,
72d5681a
PH
13780 nr_ada_primitive_types
13781};
6c038f32 13782
6c038f32
PH
13783\f
13784 /* Language vector */
13785
13786/* Not really used, but needed in the ada_language_defn. */
13787
13788static void
6c7a06a3 13789emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13790{
6c7a06a3 13791 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13792}
13793
13794static int
410a0ff2 13795parse (struct parser_state *ps)
6c038f32
PH
13796{
13797 warnings_issued = 0;
410a0ff2 13798 return ada_parse (ps);
6c038f32
PH
13799}
13800
13801static const struct exp_descriptor ada_exp_descriptor = {
13802 ada_print_subexp,
13803 ada_operator_length,
c0201579 13804 ada_operator_check,
6c038f32
PH
13805 ada_op_name,
13806 ada_dump_subexp_body,
13807 ada_evaluate_subexp
13808};
13809
b5ec771e
PA
13810/* symbol_name_matcher_ftype adapter for wild_match. */
13811
13812static bool
13813do_wild_match (const char *symbol_search_name,
13814 const lookup_name_info &lookup_name,
a207cff2 13815 completion_match_result *comp_match_res)
b5ec771e
PA
13816{
13817 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13818}
13819
13820/* symbol_name_matcher_ftype adapter for full_match. */
13821
13822static bool
13823do_full_match (const char *symbol_search_name,
13824 const lookup_name_info &lookup_name,
a207cff2 13825 completion_match_result *comp_match_res)
b5ec771e
PA
13826{
13827 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13828}
13829
a2cd4f14
JB
13830/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13831
13832static bool
13833do_exact_match (const char *symbol_search_name,
13834 const lookup_name_info &lookup_name,
13835 completion_match_result *comp_match_res)
13836{
13837 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13838}
13839
b5ec771e
PA
13840/* Build the Ada lookup name for LOOKUP_NAME. */
13841
13842ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13843{
e0802d59 13844 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13845
13846 if (user_name[0] == '<')
13847 {
13848 if (user_name.back () == '>')
e0802d59
TT
13849 m_encoded_name
13850 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13851 else
e0802d59
TT
13852 m_encoded_name
13853 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13854 m_encoded_p = true;
13855 m_verbatim_p = true;
13856 m_wild_match_p = false;
13857 m_standard_p = false;
13858 }
13859 else
13860 {
13861 m_verbatim_p = false;
13862
e0802d59 13863 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13864
13865 if (!m_encoded_p)
13866 {
e0802d59 13867 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13868 const char *encoded = ada_encode_1 (folded, false);
13869 if (encoded != NULL)
13870 m_encoded_name = encoded;
13871 else
e0802d59 13872 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13873 }
13874 else
e0802d59 13875 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13876
13877 /* Handle the 'package Standard' special case. See description
13878 of m_standard_p. */
13879 if (startswith (m_encoded_name.c_str (), "standard__"))
13880 {
13881 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13882 m_standard_p = true;
13883 }
13884 else
13885 m_standard_p = false;
74ccd7f5 13886
b5ec771e
PA
13887 /* If the name contains a ".", then the user is entering a fully
13888 qualified entity name, and the match must not be done in wild
13889 mode. Similarly, if the user wants to complete what looks
13890 like an encoded name, the match must not be done in wild
13891 mode. Also, in the standard__ special case always do
13892 non-wild matching. */
13893 m_wild_match_p
13894 = (lookup_name.match_type () != symbol_name_match_type::FULL
13895 && !m_encoded_p
13896 && !m_standard_p
13897 && user_name.find ('.') == std::string::npos);
13898 }
13899}
13900
13901/* symbol_name_matcher_ftype method for Ada. This only handles
13902 completion mode. */
13903
13904static bool
13905ada_symbol_name_matches (const char *symbol_search_name,
13906 const lookup_name_info &lookup_name,
a207cff2 13907 completion_match_result *comp_match_res)
74ccd7f5 13908{
b5ec771e
PA
13909 return lookup_name.ada ().matches (symbol_search_name,
13910 lookup_name.match_type (),
a207cff2 13911 comp_match_res);
b5ec771e
PA
13912}
13913
de63c46b
PA
13914/* A name matcher that matches the symbol name exactly, with
13915 strcmp. */
13916
13917static bool
13918literal_symbol_name_matcher (const char *symbol_search_name,
13919 const lookup_name_info &lookup_name,
13920 completion_match_result *comp_match_res)
13921{
e0802d59 13922 gdb::string_view name_view = lookup_name.name ();
de63c46b 13923
e0802d59
TT
13924 if (lookup_name.completion_mode ()
13925 ? (strncmp (symbol_search_name, name_view.data (),
13926 name_view.size ()) == 0)
13927 : symbol_search_name == name_view)
de63c46b
PA
13928 {
13929 if (comp_match_res != NULL)
13930 comp_match_res->set_match (symbol_search_name);
13931 return true;
13932 }
13933 else
13934 return false;
13935}
13936
b5ec771e
PA
13937/* Implement the "la_get_symbol_name_matcher" language_defn method for
13938 Ada. */
13939
13940static symbol_name_matcher_ftype *
13941ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13942{
de63c46b
PA
13943 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13944 return literal_symbol_name_matcher;
13945
b5ec771e
PA
13946 if (lookup_name.completion_mode ())
13947 return ada_symbol_name_matches;
74ccd7f5 13948 else
b5ec771e
PA
13949 {
13950 if (lookup_name.ada ().wild_match_p ())
13951 return do_wild_match;
a2cd4f14
JB
13952 else if (lookup_name.ada ().verbatim_p ())
13953 return do_exact_match;
b5ec771e
PA
13954 else
13955 return do_full_match;
13956 }
74ccd7f5
JB
13957}
13958
56618e20
TT
13959static const char *ada_extensions[] =
13960{
13961 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13962};
13963
0874fd07
AB
13964/* Constant data that describes the Ada language. */
13965
13966extern const struct language_data ada_language_data =
13967{
6c038f32 13968 "ada", /* Language name */
6abde28f 13969 "Ada",
6c038f32 13970 language_ada,
6c038f32 13971 range_check_off,
6c038f32
PH
13972 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13973 that's not quite what this means. */
6c038f32 13974 array_row_major,
9a044a89 13975 macro_expansion_no,
56618e20 13976 ada_extensions,
6c038f32
PH
13977 &ada_exp_descriptor,
13978 parse,
6c038f32
PH
13979 resolve,
13980 ada_printchar, /* Print a character constant */
13981 ada_printstr, /* Function to print string constant */
13982 emit_char, /* Function to print single char (not used) */
6c038f32 13983 ada_print_type, /* Print a type using appropriate syntax */
be942545 13984 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 13985 ada_value_print_inner, /* la_value_print_inner */
6c038f32
PH
13986 ada_value_print, /* Print a top-level value */
13987 NULL, /* Language specific skip_trampoline */
2b2d9e11 13988 NULL, /* name_of_this */
59cc4834 13989 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32 13990 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
6c038f32 13991 ada_la_decode, /* Language specific symbol demangler */
8b302db8 13992 ada_sniff_from_mangled_name,
0963b4bd
MS
13993 NULL, /* Language specific
13994 class_name_from_physname */
6c038f32
PH
13995 ada_op_print_tab, /* expression operators for printing */
13996 0, /* c-style arrays */
13997 1, /* String lower bound */
6c038f32 13998 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13999 ada_collect_symbol_completion_matches,
e2b7af72 14000 ada_watch_location_expression,
b5ec771e 14001 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14002 ada_iterate_over_symbols,
5ffa0793 14003 default_search_name_hash,
a53b64ea 14004 &ada_varobj_ops,
bb2ec1b3 14005 NULL,
721b08c6 14006 NULL,
4be290b2 14007 ada_is_string_type,
721b08c6 14008 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14009};
14010
0874fd07
AB
14011/* Class representing the Ada language. */
14012
14013class ada_language : public language_defn
14014{
14015public:
14016 ada_language ()
14017 : language_defn (language_ada, ada_language_data)
14018 { /* Nothing. */ }
5bd40f2a
AB
14019
14020 /* Print an array element index using the Ada syntax. */
14021
14022 void print_array_index (struct type *index_type,
14023 LONGEST index,
14024 struct ui_file *stream,
14025 const value_print_options *options) const override
14026 {
14027 struct value *index_value = val_atr (index_type, index);
14028
14029 LA_VALUE_PRINT (index_value, stream, options);
14030 fprintf_filtered (stream, " => ");
14031 }
15e5fd35
AB
14032
14033 /* Implement the "read_var_value" language_defn method for Ada. */
14034
14035 struct value *read_var_value (struct symbol *var,
14036 const struct block *var_block,
14037 struct frame_info *frame) const override
14038 {
14039 /* The only case where default_read_var_value is not sufficient
14040 is when VAR is a renaming... */
14041 if (frame != nullptr)
14042 {
14043 const struct block *frame_block = get_frame_block (frame, NULL);
14044 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14045 return ada_read_renaming_var_value (var, frame_block);
14046 }
14047
14048 /* This is a typical case where we expect the default_read_var_value
14049 function to work. */
14050 return language_defn::read_var_value (var, var_block, frame);
14051 }
1fb314aa
AB
14052
14053 /* See language.h. */
14054 void language_arch_info (struct gdbarch *gdbarch,
14055 struct language_arch_info *lai) const override
14056 {
14057 const struct builtin_type *builtin = builtin_type (gdbarch);
14058
14059 lai->primitive_type_vector
14060 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14061 struct type *);
14062
14063 lai->primitive_type_vector [ada_primitive_type_int]
14064 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14065 0, "integer");
14066 lai->primitive_type_vector [ada_primitive_type_long]
14067 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14068 0, "long_integer");
14069 lai->primitive_type_vector [ada_primitive_type_short]
14070 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14071 0, "short_integer");
14072 lai->string_char_type
14073 = lai->primitive_type_vector [ada_primitive_type_char]
14074 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14075 lai->primitive_type_vector [ada_primitive_type_float]
14076 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14077 "float", gdbarch_float_format (gdbarch));
14078 lai->primitive_type_vector [ada_primitive_type_double]
14079 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14080 "long_float", gdbarch_double_format (gdbarch));
14081 lai->primitive_type_vector [ada_primitive_type_long_long]
14082 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14083 0, "long_long_integer");
14084 lai->primitive_type_vector [ada_primitive_type_long_double]
14085 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14086 "long_long_float", gdbarch_long_double_format (gdbarch));
14087 lai->primitive_type_vector [ada_primitive_type_natural]
14088 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14089 0, "natural");
14090 lai->primitive_type_vector [ada_primitive_type_positive]
14091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14092 0, "positive");
14093 lai->primitive_type_vector [ada_primitive_type_void]
14094 = builtin->builtin_void;
14095
14096 lai->primitive_type_vector [ada_primitive_type_system_address]
14097 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14098 "void"));
14099 lai->primitive_type_vector [ada_primitive_type_system_address]
14100 ->set_name ("system__address");
14101
14102 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14103 type. This is a signed integral type whose size is the same as
14104 the size of addresses. */
14105 {
14106 unsigned int addr_length = TYPE_LENGTH
14107 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14108
14109 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14110 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14111 "storage_offset");
14112 }
14113
14114 lai->bool_type_symbol = NULL;
14115 lai->bool_type_default = builtin->builtin_bool;
14116 }
0874fd07
AB
14117};
14118
14119/* Single instance of the Ada language class. */
14120
14121static ada_language ada_language_defn;
14122
5bf03f13
JB
14123/* Command-list for the "set/show ada" prefix command. */
14124static struct cmd_list_element *set_ada_list;
14125static struct cmd_list_element *show_ada_list;
14126
2060206e
PA
14127static void
14128initialize_ada_catchpoint_ops (void)
14129{
14130 struct breakpoint_ops *ops;
14131
14132 initialize_breakpoint_ops ();
14133
14134 ops = &catch_exception_breakpoint_ops;
14135 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14136 ops->allocate_location = allocate_location_exception;
14137 ops->re_set = re_set_exception;
14138 ops->check_status = check_status_exception;
14139 ops->print_it = print_it_exception;
14140 ops->print_one = print_one_exception;
14141 ops->print_mention = print_mention_exception;
14142 ops->print_recreate = print_recreate_exception;
2060206e
PA
14143
14144 ops = &catch_exception_unhandled_breakpoint_ops;
14145 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14146 ops->allocate_location = allocate_location_exception;
14147 ops->re_set = re_set_exception;
14148 ops->check_status = check_status_exception;
14149 ops->print_it = print_it_exception;
14150 ops->print_one = print_one_exception;
14151 ops->print_mention = print_mention_exception;
14152 ops->print_recreate = print_recreate_exception;
2060206e
PA
14153
14154 ops = &catch_assert_breakpoint_ops;
14155 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14156 ops->allocate_location = allocate_location_exception;
14157 ops->re_set = re_set_exception;
14158 ops->check_status = check_status_exception;
14159 ops->print_it = print_it_exception;
14160 ops->print_one = print_one_exception;
14161 ops->print_mention = print_mention_exception;
14162 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14163
14164 ops = &catch_handlers_breakpoint_ops;
14165 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14166 ops->allocate_location = allocate_location_exception;
14167 ops->re_set = re_set_exception;
14168 ops->check_status = check_status_exception;
14169 ops->print_it = print_it_exception;
14170 ops->print_one = print_one_exception;
14171 ops->print_mention = print_mention_exception;
14172 ops->print_recreate = print_recreate_exception;
2060206e
PA
14173}
14174
3d9434b5
JB
14175/* This module's 'new_objfile' observer. */
14176
14177static void
14178ada_new_objfile_observer (struct objfile *objfile)
14179{
14180 ada_clear_symbol_cache ();
14181}
14182
14183/* This module's 'free_objfile' observer. */
14184
14185static void
14186ada_free_objfile_observer (struct objfile *objfile)
14187{
14188 ada_clear_symbol_cache ();
14189}
14190
6c265988 14191void _initialize_ada_language ();
d2e4a39e 14192void
6c265988 14193_initialize_ada_language ()
14f9c5c9 14194{
2060206e
PA
14195 initialize_ada_catchpoint_ops ();
14196
0743fc83
TT
14197 add_basic_prefix_cmd ("ada", no_class,
14198 _("Prefix command for changing Ada-specific settings."),
14199 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14200
0743fc83
TT
14201 add_show_prefix_cmd ("ada", no_class,
14202 _("Generic command for showing Ada-specific settings."),
14203 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14204
14205 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14206 &trust_pad_over_xvs, _("\
590042fc
PW
14207Enable or disable an optimization trusting PAD types over XVS types."), _("\
14208Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14209 _("\
14210This is related to the encoding used by the GNAT compiler. The debugger\n\
14211should normally trust the contents of PAD types, but certain older versions\n\
14212of GNAT have a bug that sometimes causes the information in the PAD type\n\
14213to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14214work around this bug. It is always safe to turn this option \"off\", but\n\
14215this incurs a slight performance penalty, so it is recommended to NOT change\n\
14216this option to \"off\" unless necessary."),
14217 NULL, NULL, &set_ada_list, &show_ada_list);
14218
d72413e6
PMR
14219 add_setshow_boolean_cmd ("print-signatures", class_vars,
14220 &print_signatures, _("\
14221Enable or disable the output of formal and return types for functions in the \
590042fc 14222overloads selection menu."), _("\
d72413e6 14223Show whether the output of formal and return types for functions in the \
590042fc 14224overloads selection menu is activated."),
d72413e6
PMR
14225 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14226
9ac4176b
PA
14227 add_catch_command ("exception", _("\
14228Catch Ada exceptions, when raised.\n\
9bf7038b 14229Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14230Without any argument, stop when any Ada exception is raised.\n\
14231If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14232being raised does not have a handler (and will therefore lead to the task's\n\
14233termination).\n\
14234Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14235raised is the same as ARG.\n\
14236CONDITION is a boolean expression that is evaluated to see whether the\n\
14237exception should cause a stop."),
9ac4176b 14238 catch_ada_exception_command,
71bed2db 14239 catch_ada_completer,
9ac4176b
PA
14240 CATCH_PERMANENT,
14241 CATCH_TEMPORARY);
9f757bf7
XR
14242
14243 add_catch_command ("handlers", _("\
14244Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14245Usage: catch handlers [ARG] [if CONDITION]\n\
14246Without any argument, stop when any Ada exception is handled.\n\
14247With an argument, catch only exceptions with the given name.\n\
14248CONDITION is a boolean expression that is evaluated to see whether the\n\
14249exception should cause a stop."),
9f757bf7 14250 catch_ada_handlers_command,
71bed2db 14251 catch_ada_completer,
9f757bf7
XR
14252 CATCH_PERMANENT,
14253 CATCH_TEMPORARY);
9ac4176b
PA
14254 add_catch_command ("assert", _("\
14255Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14256Usage: catch assert [if CONDITION]\n\
14257CONDITION is a boolean expression that is evaluated to see whether the\n\
14258exception should cause a stop."),
9ac4176b
PA
14259 catch_assert_command,
14260 NULL,
14261 CATCH_PERMANENT,
14262 CATCH_TEMPORARY);
14263
6c038f32 14264 varsize_limit = 65536;
3fcded8f
JB
14265 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14266 &varsize_limit, _("\
14267Set the maximum number of bytes allowed in a variable-size object."), _("\
14268Show the maximum number of bytes allowed in a variable-size object."), _("\
14269Attempts to access an object whose size is not a compile-time constant\n\
14270and exceeds this limit will cause an error."),
14271 NULL, NULL, &setlist, &showlist);
6c038f32 14272
778865d3
JB
14273 add_info ("exceptions", info_exceptions_command,
14274 _("\
14275List all Ada exception names.\n\
9bf7038b 14276Usage: info exceptions [REGEXP]\n\
778865d3
JB
14277If a regular expression is passed as an argument, only those matching\n\
14278the regular expression are listed."));
14279
0743fc83
TT
14280 add_basic_prefix_cmd ("ada", class_maintenance,
14281 _("Set Ada maintenance-related variables."),
14282 &maint_set_ada_cmdlist, "maintenance set ada ",
14283 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14284
0743fc83
TT
14285 add_show_prefix_cmd ("ada", class_maintenance,
14286 _("Show Ada maintenance-related variables."),
14287 &maint_show_ada_cmdlist, "maintenance show ada ",
14288 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14289
14290 add_setshow_boolean_cmd
14291 ("ignore-descriptive-types", class_maintenance,
14292 &ada_ignore_descriptive_types_p,
14293 _("Set whether descriptive types generated by GNAT should be ignored."),
14294 _("Show whether descriptive types generated by GNAT should be ignored."),
14295 _("\
14296When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14297DWARF attribute."),
14298 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14299
459a2e4c
TT
14300 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14301 NULL, xcalloc, xfree);
6b69afc4 14302
3d9434b5 14303 /* The ada-lang observers. */
76727919
TT
14304 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14305 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14306 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14307}
This page took 2.988445 seconds and 4 git commands to generate.