Add completion for Ada catch commands
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 155 const struct block *);
aeb5907d 156
a121b7c1 157static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 158 int, int);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
b4ba55a1
JB
162static struct type *ada_find_parallel_type_with_name (struct type *,
163 const char *);
164
d2e4a39e 165static int is_dynamic_field (struct type *, int);
14f9c5c9 166
10a2c479 167static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 168 const gdb_byte *,
4c4b4cd2
PH
169 CORE_ADDR, struct value *);
170
171static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 172
28c85d6c 173static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 174
d2e4a39e 175static struct type *to_static_fixed_type (struct type *);
f192137b 176static struct type *static_unwrap_type (struct type *type);
14f9c5c9 177
d2e4a39e 178static struct value *unwrap_value (struct value *);
14f9c5c9 179
ad82864c 180static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 181
ad82864c 182static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 183
ad82864c
JB
184static long decode_packed_array_bitsize (struct type *);
185
186static struct value *decode_constrained_packed_array (struct value *);
187
188static int ada_is_packed_array_type (struct type *);
189
190static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 193 struct value **);
14f9c5c9 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 229 struct value **, int, const char *,
2a612529 230 struct type *, int);
4c4b4cd2 231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
f37b313d 381 struct type *tsd_type = nullptr;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
f37b313d 386 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
f37b313d 390static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
391
392/* Return our inferior data for the given inferior (INF).
393
394 This function always returns a valid pointer to an allocated
395 ada_inferior_data structure. If INF's inferior data has not
396 been previously set, this functions creates a new one with all
397 fields set to zero, sets INF's inferior to it, and then returns
398 a pointer to that newly allocated ada_inferior_data. */
399
400static struct ada_inferior_data *
401get_ada_inferior_data (struct inferior *inf)
402{
403 struct ada_inferior_data *data;
404
f37b313d 405 data = ada_inferior_data.get (inf);
e802dbe0 406 if (data == NULL)
f37b313d 407 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
408
409 return data;
410}
411
412/* Perform all necessary cleanups regarding our module's inferior data
413 that is required after the inferior INF just exited. */
414
415static void
416ada_inferior_exit (struct inferior *inf)
417{
f37b313d 418 ada_inferior_data.clear (inf);
e802dbe0
JB
419}
420
ee01b665
JB
421
422 /* program-space-specific data. */
423
424/* This module's per-program-space data. */
425struct ada_pspace_data
426{
f37b313d
TT
427 ~ada_pspace_data ()
428 {
429 if (sym_cache != NULL)
430 ada_free_symbol_cache (sym_cache);
431 }
432
ee01b665 433 /* The Ada symbol cache. */
f37b313d 434 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
435};
436
437/* Key to our per-program-space data. */
f37b313d 438static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
439
440/* Return this module's data for the given program space (PSPACE).
441 If not is found, add a zero'ed one now.
442
443 This function always returns a valid object. */
444
445static struct ada_pspace_data *
446get_ada_pspace_data (struct program_space *pspace)
447{
448 struct ada_pspace_data *data;
449
f37b313d 450 data = ada_pspace_data_handle.get (pspace);
ee01b665 451 if (data == NULL)
f37b313d 452 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
453
454 return data;
455}
456
4c4b4cd2
PH
457 /* Utilities */
458
720d1a40 459/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 460 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
461
462 Normally, we really expect a typedef type to only have 1 typedef layer.
463 In other words, we really expect the target type of a typedef type to be
464 a non-typedef type. This is particularly true for Ada units, because
465 the language does not have a typedef vs not-typedef distinction.
466 In that respect, the Ada compiler has been trying to eliminate as many
467 typedef definitions in the debugging information, since they generally
468 do not bring any extra information (we still use typedef under certain
469 circumstances related mostly to the GNAT encoding).
470
471 Unfortunately, we have seen situations where the debugging information
472 generated by the compiler leads to such multiple typedef layers. For
473 instance, consider the following example with stabs:
474
475 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
476 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
477
478 This is an error in the debugging information which causes type
479 pck__float_array___XUP to be defined twice, and the second time,
480 it is defined as a typedef of a typedef.
481
482 This is on the fringe of legality as far as debugging information is
483 concerned, and certainly unexpected. But it is easy to handle these
484 situations correctly, so we can afford to be lenient in this case. */
485
486static struct type *
487ada_typedef_target_type (struct type *type)
488{
489 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
490 type = TYPE_TARGET_TYPE (type);
491 return type;
492}
493
41d27058
JB
494/* Given DECODED_NAME a string holding a symbol name in its
495 decoded form (ie using the Ada dotted notation), returns
496 its unqualified name. */
497
498static const char *
499ada_unqualified_name (const char *decoded_name)
500{
2b0f535a
JB
501 const char *result;
502
503 /* If the decoded name starts with '<', it means that the encoded
504 name does not follow standard naming conventions, and thus that
505 it is not your typical Ada symbol name. Trying to unqualify it
506 is therefore pointless and possibly erroneous. */
507 if (decoded_name[0] == '<')
508 return decoded_name;
509
510 result = strrchr (decoded_name, '.');
41d27058
JB
511 if (result != NULL)
512 result++; /* Skip the dot... */
513 else
514 result = decoded_name;
515
516 return result;
517}
518
39e7af3e 519/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 520
39e7af3e 521static std::string
41d27058
JB
522add_angle_brackets (const char *str)
523{
39e7af3e 524 return string_printf ("<%s>", str);
41d27058 525}
96d887e8 526
67cb5b2d 527static const char *
4c4b4cd2
PH
528ada_get_gdb_completer_word_break_characters (void)
529{
530 return ada_completer_word_break_characters;
531}
532
e79af960
JB
533/* Print an array element index using the Ada syntax. */
534
535static void
536ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 537 const struct value_print_options *options)
e79af960 538{
79a45b7d 539 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
540 fprintf_filtered (stream, " => ");
541}
542
e2b7af72
JB
543/* la_watch_location_expression for Ada. */
544
545gdb::unique_xmalloc_ptr<char>
546ada_watch_location_expression (struct type *type, CORE_ADDR addr)
547{
548 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
549 std::string name = type_to_string (type);
550 return gdb::unique_xmalloc_ptr<char>
551 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
552}
553
f27cf670 554/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 555 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 556 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 557
f27cf670
AS
558void *
559grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 560{
d2e4a39e
AS
561 if (*size < min_size)
562 {
563 *size *= 2;
564 if (*size < min_size)
4c4b4cd2 565 *size = min_size;
f27cf670 566 vect = xrealloc (vect, *size * element_size);
d2e4a39e 567 }
f27cf670 568 return vect;
14f9c5c9
AS
569}
570
571/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 572 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
573
574static int
ebf56fd3 575field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
576{
577 int len = strlen (target);
5b4ee69b 578
d2e4a39e 579 return
4c4b4cd2
PH
580 (strncmp (field_name, target, len) == 0
581 && (field_name[len] == '\0'
61012eef 582 || (startswith (field_name + len, "___")
76a01679
JB
583 && strcmp (field_name + strlen (field_name) - 6,
584 "___XVN") != 0)));
14f9c5c9
AS
585}
586
587
872c8b51
JB
588/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
589 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
590 and return its index. This function also handles fields whose name
591 have ___ suffixes because the compiler sometimes alters their name
592 by adding such a suffix to represent fields with certain constraints.
593 If the field could not be found, return a negative number if
594 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
595
596int
597ada_get_field_index (const struct type *type, const char *field_name,
598 int maybe_missing)
599{
600 int fieldno;
872c8b51
JB
601 struct type *struct_type = check_typedef ((struct type *) type);
602
603 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
604 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
605 return fieldno;
606
607 if (!maybe_missing)
323e0a4a 608 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 609 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
610
611 return -1;
612}
613
614/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
615
616int
d2e4a39e 617ada_name_prefix_len (const char *name)
14f9c5c9
AS
618{
619 if (name == NULL)
620 return 0;
d2e4a39e 621 else
14f9c5c9 622 {
d2e4a39e 623 const char *p = strstr (name, "___");
5b4ee69b 624
14f9c5c9 625 if (p == NULL)
4c4b4cd2 626 return strlen (name);
14f9c5c9 627 else
4c4b4cd2 628 return p - name;
14f9c5c9
AS
629 }
630}
631
4c4b4cd2
PH
632/* Return non-zero if SUFFIX is a suffix of STR.
633 Return zero if STR is null. */
634
14f9c5c9 635static int
d2e4a39e 636is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
637{
638 int len1, len2;
5b4ee69b 639
14f9c5c9
AS
640 if (str == NULL)
641 return 0;
642 len1 = strlen (str);
643 len2 = strlen (suffix);
4c4b4cd2 644 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
645}
646
4c4b4cd2
PH
647/* The contents of value VAL, treated as a value of type TYPE. The
648 result is an lval in memory if VAL is. */
14f9c5c9 649
d2e4a39e 650static struct value *
4c4b4cd2 651coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 652{
61ee279c 653 type = ada_check_typedef (type);
df407dfe 654 if (value_type (val) == type)
4c4b4cd2 655 return val;
d2e4a39e 656 else
14f9c5c9 657 {
4c4b4cd2
PH
658 struct value *result;
659
660 /* Make sure that the object size is not unreasonable before
661 trying to allocate some memory for it. */
c1b5a1a6 662 ada_ensure_varsize_limit (type);
4c4b4cd2 663
41e8491f
JK
664 if (value_lazy (val)
665 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
666 result = allocate_value_lazy (type);
667 else
668 {
669 result = allocate_value (type);
9a0dc9e3 670 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 671 }
74bcbdf3 672 set_value_component_location (result, val);
9bbda503
AC
673 set_value_bitsize (result, value_bitsize (val));
674 set_value_bitpos (result, value_bitpos (val));
42ae5230 675 set_value_address (result, value_address (val));
14f9c5c9
AS
676 return result;
677 }
678}
679
fc1a4b47
AC
680static const gdb_byte *
681cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
682{
683 if (valaddr == NULL)
684 return NULL;
685 else
686 return valaddr + offset;
687}
688
689static CORE_ADDR
ebf56fd3 690cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
691{
692 if (address == 0)
693 return 0;
d2e4a39e 694 else
14f9c5c9
AS
695 return address + offset;
696}
697
4c4b4cd2
PH
698/* Issue a warning (as for the definition of warning in utils.c, but
699 with exactly one argument rather than ...), unless the limit on the
700 number of warnings has passed during the evaluation of the current
701 expression. */
a2249542 702
77109804
AC
703/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
704 provided by "complaint". */
a0b31db1 705static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 706
14f9c5c9 707static void
a2249542 708lim_warning (const char *format, ...)
14f9c5c9 709{
a2249542 710 va_list args;
a2249542 711
5b4ee69b 712 va_start (args, format);
4c4b4cd2
PH
713 warnings_issued += 1;
714 if (warnings_issued <= warning_limit)
a2249542
MK
715 vwarning (format, args);
716
717 va_end (args);
4c4b4cd2
PH
718}
719
714e53ab
PH
720/* Issue an error if the size of an object of type T is unreasonable,
721 i.e. if it would be a bad idea to allocate a value of this type in
722 GDB. */
723
c1b5a1a6
JB
724void
725ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
726{
727 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 728 error (_("object size is larger than varsize-limit"));
714e53ab
PH
729}
730
0963b4bd 731/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 732static LONGEST
c3e5cd34 733max_of_size (int size)
4c4b4cd2 734{
76a01679 735 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 736
76a01679 737 return top_bit | (top_bit - 1);
4c4b4cd2
PH
738}
739
0963b4bd 740/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 741static LONGEST
c3e5cd34 742min_of_size (int size)
4c4b4cd2 743{
c3e5cd34 744 return -max_of_size (size) - 1;
4c4b4cd2
PH
745}
746
0963b4bd 747/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 748static ULONGEST
c3e5cd34 749umax_of_size (int size)
4c4b4cd2 750{
76a01679 751 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 752
76a01679 753 return top_bit | (top_bit - 1);
4c4b4cd2
PH
754}
755
0963b4bd 756/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
757static LONGEST
758max_of_type (struct type *t)
4c4b4cd2 759{
c3e5cd34
PH
760 if (TYPE_UNSIGNED (t))
761 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
762 else
763 return max_of_size (TYPE_LENGTH (t));
764}
765
0963b4bd 766/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
767static LONGEST
768min_of_type (struct type *t)
769{
770 if (TYPE_UNSIGNED (t))
771 return 0;
772 else
773 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
774}
775
776/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
777LONGEST
778ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 779{
c3345124 780 type = resolve_dynamic_type (type, NULL, 0);
76a01679 781 switch (TYPE_CODE (type))
4c4b4cd2
PH
782 {
783 case TYPE_CODE_RANGE:
690cc4eb 784 return TYPE_HIGH_BOUND (type);
4c4b4cd2 785 case TYPE_CODE_ENUM:
14e75d8e 786 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
787 case TYPE_CODE_BOOL:
788 return 1;
789 case TYPE_CODE_CHAR:
76a01679 790 case TYPE_CODE_INT:
690cc4eb 791 return max_of_type (type);
4c4b4cd2 792 default:
43bbcdc2 793 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
794 }
795}
796
14e75d8e 797/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
798LONGEST
799ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 800{
c3345124 801 type = resolve_dynamic_type (type, NULL, 0);
76a01679 802 switch (TYPE_CODE (type))
4c4b4cd2
PH
803 {
804 case TYPE_CODE_RANGE:
690cc4eb 805 return TYPE_LOW_BOUND (type);
4c4b4cd2 806 case TYPE_CODE_ENUM:
14e75d8e 807 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
808 case TYPE_CODE_BOOL:
809 return 0;
810 case TYPE_CODE_CHAR:
76a01679 811 case TYPE_CODE_INT:
690cc4eb 812 return min_of_type (type);
4c4b4cd2 813 default:
43bbcdc2 814 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
815 }
816}
817
818/* The identity on non-range types. For range types, the underlying
76a01679 819 non-range scalar type. */
4c4b4cd2
PH
820
821static struct type *
18af8284 822get_base_type (struct type *type)
4c4b4cd2
PH
823{
824 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
825 {
76a01679
JB
826 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
827 return type;
4c4b4cd2
PH
828 type = TYPE_TARGET_TYPE (type);
829 }
830 return type;
14f9c5c9 831}
41246937
JB
832
833/* Return a decoded version of the given VALUE. This means returning
834 a value whose type is obtained by applying all the GNAT-specific
835 encondings, making the resulting type a static but standard description
836 of the initial type. */
837
838struct value *
839ada_get_decoded_value (struct value *value)
840{
841 struct type *type = ada_check_typedef (value_type (value));
842
843 if (ada_is_array_descriptor_type (type)
844 || (ada_is_constrained_packed_array_type (type)
845 && TYPE_CODE (type) != TYPE_CODE_PTR))
846 {
847 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
848 value = ada_coerce_to_simple_array_ptr (value);
849 else
850 value = ada_coerce_to_simple_array (value);
851 }
852 else
853 value = ada_to_fixed_value (value);
854
855 return value;
856}
857
858/* Same as ada_get_decoded_value, but with the given TYPE.
859 Because there is no associated actual value for this type,
860 the resulting type might be a best-effort approximation in
861 the case of dynamic types. */
862
863struct type *
864ada_get_decoded_type (struct type *type)
865{
866 type = to_static_fixed_type (type);
867 if (ada_is_constrained_packed_array_type (type))
868 type = ada_coerce_to_simple_array_type (type);
869 return type;
870}
871
4c4b4cd2 872\f
76a01679 873
4c4b4cd2 874 /* Language Selection */
14f9c5c9
AS
875
876/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 877 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 878
14f9c5c9 879enum language
ccefe4c4 880ada_update_initial_language (enum language lang)
14f9c5c9 881{
d2e4a39e 882 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 883 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 884 return language_ada;
14f9c5c9
AS
885
886 return lang;
887}
96d887e8
PH
888
889/* If the main procedure is written in Ada, then return its name.
890 The result is good until the next call. Return NULL if the main
891 procedure doesn't appear to be in Ada. */
892
893char *
894ada_main_name (void)
895{
3b7344d5 896 struct bound_minimal_symbol msym;
e83e4e24 897 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 898
96d887e8
PH
899 /* For Ada, the name of the main procedure is stored in a specific
900 string constant, generated by the binder. Look for that symbol,
901 extract its address, and then read that string. If we didn't find
902 that string, then most probably the main procedure is not written
903 in Ada. */
904 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
905
3b7344d5 906 if (msym.minsym != NULL)
96d887e8 907 {
f9bc20b9
JB
908 CORE_ADDR main_program_name_addr;
909 int err_code;
910
77e371c0 911 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 912 if (main_program_name_addr == 0)
323e0a4a 913 error (_("Invalid address for Ada main program name."));
96d887e8 914
f9bc20b9
JB
915 target_read_string (main_program_name_addr, &main_program_name,
916 1024, &err_code);
917
918 if (err_code != 0)
919 return NULL;
e83e4e24 920 return main_program_name.get ();
96d887e8
PH
921 }
922
923 /* The main procedure doesn't seem to be in Ada. */
924 return NULL;
925}
14f9c5c9 926\f
4c4b4cd2 927 /* Symbols */
d2e4a39e 928
4c4b4cd2
PH
929/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
930 of NULLs. */
14f9c5c9 931
d2e4a39e
AS
932const struct ada_opname_map ada_opname_table[] = {
933 {"Oadd", "\"+\"", BINOP_ADD},
934 {"Osubtract", "\"-\"", BINOP_SUB},
935 {"Omultiply", "\"*\"", BINOP_MUL},
936 {"Odivide", "\"/\"", BINOP_DIV},
937 {"Omod", "\"mod\"", BINOP_MOD},
938 {"Orem", "\"rem\"", BINOP_REM},
939 {"Oexpon", "\"**\"", BINOP_EXP},
940 {"Olt", "\"<\"", BINOP_LESS},
941 {"Ole", "\"<=\"", BINOP_LEQ},
942 {"Ogt", "\">\"", BINOP_GTR},
943 {"Oge", "\">=\"", BINOP_GEQ},
944 {"Oeq", "\"=\"", BINOP_EQUAL},
945 {"One", "\"/=\"", BINOP_NOTEQUAL},
946 {"Oand", "\"and\"", BINOP_BITWISE_AND},
947 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
948 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
949 {"Oconcat", "\"&\"", BINOP_CONCAT},
950 {"Oabs", "\"abs\"", UNOP_ABS},
951 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
952 {"Oadd", "\"+\"", UNOP_PLUS},
953 {"Osubtract", "\"-\"", UNOP_NEG},
954 {NULL, NULL}
14f9c5c9
AS
955};
956
b5ec771e
PA
957/* The "encoded" form of DECODED, according to GNAT conventions. The
958 result is valid until the next call to ada_encode. If
959 THROW_ERRORS, throw an error if invalid operator name is found.
960 Otherwise, return NULL in that case. */
4c4b4cd2 961
b5ec771e
PA
962static char *
963ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 964{
4c4b4cd2
PH
965 static char *encoding_buffer = NULL;
966 static size_t encoding_buffer_size = 0;
d2e4a39e 967 const char *p;
14f9c5c9 968 int k;
d2e4a39e 969
4c4b4cd2 970 if (decoded == NULL)
14f9c5c9
AS
971 return NULL;
972
4c4b4cd2
PH
973 GROW_VECT (encoding_buffer, encoding_buffer_size,
974 2 * strlen (decoded) + 10);
14f9c5c9
AS
975
976 k = 0;
4c4b4cd2 977 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 978 {
cdc7bb92 979 if (*p == '.')
4c4b4cd2
PH
980 {
981 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
982 k += 2;
983 }
14f9c5c9 984 else if (*p == '"')
4c4b4cd2
PH
985 {
986 const struct ada_opname_map *mapping;
987
988 for (mapping = ada_opname_table;
1265e4aa 989 mapping->encoded != NULL
61012eef 990 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
991 ;
992 if (mapping->encoded == NULL)
b5ec771e
PA
993 {
994 if (throw_errors)
995 error (_("invalid Ada operator name: %s"), p);
996 else
997 return NULL;
998 }
4c4b4cd2
PH
999 strcpy (encoding_buffer + k, mapping->encoded);
1000 k += strlen (mapping->encoded);
1001 break;
1002 }
d2e4a39e 1003 else
4c4b4cd2
PH
1004 {
1005 encoding_buffer[k] = *p;
1006 k += 1;
1007 }
14f9c5c9
AS
1008 }
1009
4c4b4cd2
PH
1010 encoding_buffer[k] = '\0';
1011 return encoding_buffer;
14f9c5c9
AS
1012}
1013
b5ec771e
PA
1014/* The "encoded" form of DECODED, according to GNAT conventions.
1015 The result is valid until the next call to ada_encode. */
1016
1017char *
1018ada_encode (const char *decoded)
1019{
1020 return ada_encode_1 (decoded, true);
1021}
1022
14f9c5c9 1023/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
d2e4a39e
AS
1027char *
1028ada_fold_name (const char *name)
14f9c5c9 1029{
d2e4a39e 1030 static char *fold_buffer = NULL;
14f9c5c9
AS
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
d2e4a39e 1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1035
1036 if (name[0] == '\'')
1037 {
d2e4a39e
AS
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1040 }
1041 else
1042 {
1043 int i;
5b4ee69b 1044
14f9c5c9 1045 for (i = 0; i <= len; i += 1)
4c4b4cd2 1046 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1047 }
1048
1049 return fold_buffer;
1050}
1051
529cad9c
PH
1052/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054static int
1055is_lower_alphanum (const char c)
1056{
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058}
1059
c90092fe
JB
1060/* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
29480c32
JB
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
c90092fe 1067
29480c32
JB
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072static void
1073ada_remove_trailing_digits (const char *encoded, int *len)
1074{
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
5b4ee69b 1078
29480c32
JB
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
61012eef 1085 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1086 *len = i - 2;
61012eef 1087 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1088 *len = i - 1;
1089 }
1090}
1091
1092/* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095static void
1096ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097{
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
0963b4bd 1103 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112}
1113
69fadcdf
JB
1114/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116static void
1117ada_remove_Xbn_suffix (const char *encoded, int *len)
1118{
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132}
1133
29480c32
JB
1134/* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
14f9c5c9 1137
4c4b4cd2 1138 The resulting string is valid until the next call of ada_decode.
29480c32 1139 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1140 is returned. */
1141
1142const char *
1143ada_decode (const char *encoded)
14f9c5c9
AS
1144{
1145 int i, j;
1146 int len0;
d2e4a39e 1147 const char *p;
4c4b4cd2 1148 char *decoded;
14f9c5c9 1149 int at_start_name;
4c4b4cd2
PH
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
d2e4a39e 1152
0d81f350
JG
1153 /* With function descriptors on PPC64, the value of a symbol named
1154 ".FN", if it exists, is the entry point of the function "FN". */
1155 if (encoded[0] == '.')
1156 encoded += 1;
1157
29480c32
JB
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
61012eef 1161 if (startswith (encoded, "_ada_"))
4c4b4cd2 1162 encoded += 5;
14f9c5c9 1163
29480c32
JB
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
4c4b4cd2 1167 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1168 goto Suppress;
1169
4c4b4cd2 1170 len0 = strlen (encoded);
4c4b4cd2 1171
29480c32
JB
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1174
4c4b4cd2
PH
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1181 {
1182 if (p[3] == 'X')
4c4b4cd2 1183 len0 = p - encoded;
14f9c5c9 1184 else
4c4b4cd2 1185 goto Suppress;
14f9c5c9 1186 }
4c4b4cd2 1187
29480c32
JB
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1191
61012eef 1192 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1193 len0 -= 3;
76a01679 1194
a10967fa
JB
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1197 bodies. */
1198
61012eef 1199 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1200 len0 -= 2;
1201
29480c32
JB
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1204
61012eef 1205 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1206 len0 -= 1;
1207
4c4b4cd2 1208 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1209
4c4b4cd2
PH
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
14f9c5c9 1212
29480c32
JB
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1214
4c4b4cd2 1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1216 {
4c4b4cd2
PH
1217 i = len0 - 2;
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1220 i -= 1;
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1222 len0 = i - 1;
1223 else if (encoded[i] == '$')
1224 len0 = i;
d2e4a39e 1225 }
14f9c5c9 1226
29480c32
JB
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1229
4c4b4cd2
PH
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
14f9c5c9
AS
1232
1233 at_start_name = 1;
1234 while (i < len0)
1235 {
29480c32 1236 /* Is this a symbol function? */
4c4b4cd2
PH
1237 if (at_start_name && encoded[i] == 'O')
1238 {
1239 int k;
5b4ee69b 1240
4c4b4cd2
PH
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1242 {
1243 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1245 op_len - 1) == 0)
1246 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1247 {
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1249 at_start_name = 0;
1250 i += op_len;
1251 j += strlen (ada_opname_table[k].decoded);
1252 break;
1253 }
1254 }
1255 if (ada_opname_table[k].encoded != NULL)
1256 continue;
1257 }
14f9c5c9
AS
1258 at_start_name = 0;
1259
529cad9c
PH
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1262
61012eef 1263 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1264 i += 2;
529cad9c 1265
29480c32
JB
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1269
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1273 {
1274 int k = i + 5;
1275
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1278
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1282 i = k;
1283 }
1284
529cad9c
PH
1285 /* Remove _E{DIGITS}+[sb] */
1286
1287 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1288 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1292 by a 'B'.
1293
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1297
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1300 {
1301 int k = i + 3;
1302
1303 while (k < len0 && isdigit (encoded[k]))
1304 k++;
1305
1306 if (k < len0
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1308 {
1309 k++;
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1313 if (k == len0
1314 || (k < len0 && encoded[k] == '_'))
1315 i = k;
1316 }
1317 }
1318
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1321
1322 if (i < len0 + 3
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1324 {
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1329
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1331 ptr--;
1332 if (ptr < encoded
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1334 i++;
1335 }
1336
4c4b4cd2
PH
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1338 {
29480c32
JB
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1345 package names. */
4c4b4cd2
PH
1346 do
1347 i += 1;
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1349 if (i < len0)
1350 goto Suppress;
1351 }
cdc7bb92 1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1353 {
29480c32 1354 /* Replace '__' by '.'. */
4c4b4cd2
PH
1355 decoded[j] = '.';
1356 at_start_name = 1;
1357 i += 2;
1358 j += 1;
1359 }
14f9c5c9 1360 else
4c4b4cd2 1361 {
29480c32
JB
1362 /* It's a character part of the decoded name, so just copy it
1363 over. */
4c4b4cd2
PH
1364 decoded[j] = encoded[i];
1365 i += 1;
1366 j += 1;
1367 }
14f9c5c9 1368 }
4c4b4cd2 1369 decoded[j] = '\000';
14f9c5c9 1370
29480c32
JB
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1373
4c4b4cd2
PH
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1376 goto Suppress;
1377
4c4b4cd2
PH
1378 if (strcmp (decoded, encoded) == 0)
1379 return encoded;
1380 else
1381 return decoded;
14f9c5c9
AS
1382
1383Suppress:
4c4b4cd2
PH
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
14f9c5c9 1388 else
88c15c34 1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1390 return decoded;
1391
1392}
1393
1394/* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399static struct htab *decoded_names_store;
1400
1401/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1406 GSYMBOL).
4c4b4cd2
PH
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1409 when a decoded name is cached in it. */
4c4b4cd2 1410
45e6c716 1411const char *
f85f34ed 1412ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1413{
f85f34ed
TT
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
615b3f62 1416 &gsymbol->language_specific.demangled_name;
5b4ee69b 1417
f85f34ed 1418 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1419 {
1420 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1421 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1422
f85f34ed 1423 gsymbol->ada_mangled = 1;
5b4ee69b 1424
f85f34ed 1425 if (obstack != NULL)
224c3ddb
SM
1426 *resultp
1427 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1428 else
76a01679 1429 {
f85f34ed
TT
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
76a01679
JB
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
5b4ee69b 1437
76a01679
JB
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
4c4b4cd2 1442 }
14f9c5c9 1443
4c4b4cd2
PH
1444 return *resultp;
1445}
76a01679 1446
2c0b251b 1447static char *
76a01679 1448ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1449{
1450 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1451}
1452
8b302db8
TT
1453/* Implement la_sniff_from_mangled_name for Ada. */
1454
1455static int
1456ada_sniff_from_mangled_name (const char *mangled, char **out)
1457{
1458 const char *demangled = ada_decode (mangled);
1459
1460 *out = NULL;
1461
1462 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1463 {
1464 /* Set the gsymbol language to Ada, but still return 0.
1465 Two reasons for that:
1466
1467 1. For Ada, we prefer computing the symbol's decoded name
1468 on the fly rather than pre-compute it, in order to save
1469 memory (Ada projects are typically very large).
1470
1471 2. There are some areas in the definition of the GNAT
1472 encoding where, with a bit of bad luck, we might be able
1473 to decode a non-Ada symbol, generating an incorrect
1474 demangled name (Eg: names ending with "TB" for instance
1475 are identified as task bodies and so stripped from
1476 the decoded name returned).
1477
1478 Returning 1, here, but not setting *DEMANGLED, helps us get a
1479 little bit of the best of both worlds. Because we're last,
1480 we should not affect any of the other languages that were
1481 able to demangle the symbol before us; we get to correctly
1482 tag Ada symbols as such; and even if we incorrectly tagged a
1483 non-Ada symbol, which should be rare, any routing through the
1484 Ada language should be transparent (Ada tries to behave much
1485 like C/C++ with non-Ada symbols). */
1486 return 1;
1487 }
1488
1489 return 0;
1490}
1491
14f9c5c9 1492\f
d2e4a39e 1493
4c4b4cd2 1494 /* Arrays */
14f9c5c9 1495
28c85d6c
JB
1496/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1497 generated by the GNAT compiler to describe the index type used
1498 for each dimension of an array, check whether it follows the latest
1499 known encoding. If not, fix it up to conform to the latest encoding.
1500 Otherwise, do nothing. This function also does nothing if
1501 INDEX_DESC_TYPE is NULL.
1502
1503 The GNAT encoding used to describle the array index type evolved a bit.
1504 Initially, the information would be provided through the name of each
1505 field of the structure type only, while the type of these fields was
1506 described as unspecified and irrelevant. The debugger was then expected
1507 to perform a global type lookup using the name of that field in order
1508 to get access to the full index type description. Because these global
1509 lookups can be very expensive, the encoding was later enhanced to make
1510 the global lookup unnecessary by defining the field type as being
1511 the full index type description.
1512
1513 The purpose of this routine is to allow us to support older versions
1514 of the compiler by detecting the use of the older encoding, and by
1515 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1516 we essentially replace each field's meaningless type by the associated
1517 index subtype). */
1518
1519void
1520ada_fixup_array_indexes_type (struct type *index_desc_type)
1521{
1522 int i;
1523
1524 if (index_desc_type == NULL)
1525 return;
1526 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1527
1528 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1529 to check one field only, no need to check them all). If not, return
1530 now.
1531
1532 If our INDEX_DESC_TYPE was generated using the older encoding,
1533 the field type should be a meaningless integer type whose name
1534 is not equal to the field name. */
1535 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1536 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1537 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1538 return;
1539
1540 /* Fixup each field of INDEX_DESC_TYPE. */
1541 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1542 {
0d5cff50 1543 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1544 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1545
1546 if (raw_type)
1547 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1548 }
1549}
1550
4c4b4cd2 1551/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1552
a121b7c1 1553static const char *bound_name[] = {
d2e4a39e 1554 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1555 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1556};
1557
1558/* Maximum number of array dimensions we are prepared to handle. */
1559
4c4b4cd2 1560#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1561
14f9c5c9 1562
4c4b4cd2
PH
1563/* The desc_* routines return primitive portions of array descriptors
1564 (fat pointers). */
14f9c5c9
AS
1565
1566/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1567 level of indirection, if needed. */
1568
d2e4a39e
AS
1569static struct type *
1570desc_base_type (struct type *type)
14f9c5c9
AS
1571{
1572 if (type == NULL)
1573 return NULL;
61ee279c 1574 type = ada_check_typedef (type);
720d1a40
JB
1575 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1576 type = ada_typedef_target_type (type);
1577
1265e4aa
JB
1578 if (type != NULL
1579 && (TYPE_CODE (type) == TYPE_CODE_PTR
1580 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1581 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1582 else
1583 return type;
1584}
1585
4c4b4cd2
PH
1586/* True iff TYPE indicates a "thin" array pointer type. */
1587
14f9c5c9 1588static int
d2e4a39e 1589is_thin_pntr (struct type *type)
14f9c5c9 1590{
d2e4a39e 1591 return
14f9c5c9
AS
1592 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1593 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1594}
1595
4c4b4cd2
PH
1596/* The descriptor type for thin pointer type TYPE. */
1597
d2e4a39e
AS
1598static struct type *
1599thin_descriptor_type (struct type *type)
14f9c5c9 1600{
d2e4a39e 1601 struct type *base_type = desc_base_type (type);
5b4ee69b 1602
14f9c5c9
AS
1603 if (base_type == NULL)
1604 return NULL;
1605 if (is_suffix (ada_type_name (base_type), "___XVE"))
1606 return base_type;
d2e4a39e 1607 else
14f9c5c9 1608 {
d2e4a39e 1609 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1610
14f9c5c9 1611 if (alt_type == NULL)
4c4b4cd2 1612 return base_type;
14f9c5c9 1613 else
4c4b4cd2 1614 return alt_type;
14f9c5c9
AS
1615 }
1616}
1617
4c4b4cd2
PH
1618/* A pointer to the array data for thin-pointer value VAL. */
1619
d2e4a39e
AS
1620static struct value *
1621thin_data_pntr (struct value *val)
14f9c5c9 1622{
828292f2 1623 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1624 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1625
556bdfd4
UW
1626 data_type = lookup_pointer_type (data_type);
1627
14f9c5c9 1628 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1629 return value_cast (data_type, value_copy (val));
d2e4a39e 1630 else
42ae5230 1631 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1632}
1633
4c4b4cd2
PH
1634/* True iff TYPE indicates a "thick" array pointer type. */
1635
14f9c5c9 1636static int
d2e4a39e 1637is_thick_pntr (struct type *type)
14f9c5c9
AS
1638{
1639 type = desc_base_type (type);
1640 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1641 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1642}
1643
4c4b4cd2
PH
1644/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1645 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1646
d2e4a39e
AS
1647static struct type *
1648desc_bounds_type (struct type *type)
14f9c5c9 1649{
d2e4a39e 1650 struct type *r;
14f9c5c9
AS
1651
1652 type = desc_base_type (type);
1653
1654 if (type == NULL)
1655 return NULL;
1656 else if (is_thin_pntr (type))
1657 {
1658 type = thin_descriptor_type (type);
1659 if (type == NULL)
4c4b4cd2 1660 return NULL;
14f9c5c9
AS
1661 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1662 if (r != NULL)
61ee279c 1663 return ada_check_typedef (r);
14f9c5c9
AS
1664 }
1665 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1666 {
1667 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1668 if (r != NULL)
61ee279c 1669 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1670 }
1671 return NULL;
1672}
1673
1674/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1675 one, a pointer to its bounds data. Otherwise NULL. */
1676
d2e4a39e
AS
1677static struct value *
1678desc_bounds (struct value *arr)
14f9c5c9 1679{
df407dfe 1680 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1681
d2e4a39e 1682 if (is_thin_pntr (type))
14f9c5c9 1683 {
d2e4a39e 1684 struct type *bounds_type =
4c4b4cd2 1685 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1686 LONGEST addr;
1687
4cdfadb1 1688 if (bounds_type == NULL)
323e0a4a 1689 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1690
1691 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1692 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1693 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1694 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1695 addr = value_as_long (arr);
d2e4a39e 1696 else
42ae5230 1697 addr = value_address (arr);
14f9c5c9 1698
d2e4a39e 1699 return
4c4b4cd2
PH
1700 value_from_longest (lookup_pointer_type (bounds_type),
1701 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1702 }
1703
1704 else if (is_thick_pntr (type))
05e522ef
JB
1705 {
1706 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1707 _("Bad GNAT array descriptor"));
1708 struct type *p_bounds_type = value_type (p_bounds);
1709
1710 if (p_bounds_type
1711 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1712 {
1713 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1714
1715 if (TYPE_STUB (target_type))
1716 p_bounds = value_cast (lookup_pointer_type
1717 (ada_check_typedef (target_type)),
1718 p_bounds);
1719 }
1720 else
1721 error (_("Bad GNAT array descriptor"));
1722
1723 return p_bounds;
1724 }
14f9c5c9
AS
1725 else
1726 return NULL;
1727}
1728
4c4b4cd2
PH
1729/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1730 position of the field containing the address of the bounds data. */
1731
14f9c5c9 1732static int
d2e4a39e 1733fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1734{
1735 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1736}
1737
1738/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1739 size of the field containing the address of the bounds data. */
1740
14f9c5c9 1741static int
d2e4a39e 1742fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1743{
1744 type = desc_base_type (type);
1745
d2e4a39e 1746 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1747 return TYPE_FIELD_BITSIZE (type, 1);
1748 else
61ee279c 1749 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1750}
1751
4c4b4cd2 1752/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1753 pointer to one, the type of its array data (a array-with-no-bounds type);
1754 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1755 data. */
4c4b4cd2 1756
d2e4a39e 1757static struct type *
556bdfd4 1758desc_data_target_type (struct type *type)
14f9c5c9
AS
1759{
1760 type = desc_base_type (type);
1761
4c4b4cd2 1762 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1763 if (is_thin_pntr (type))
556bdfd4 1764 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1765 else if (is_thick_pntr (type))
556bdfd4
UW
1766 {
1767 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1768
1769 if (data_type
1770 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1771 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1772 }
1773
1774 return NULL;
14f9c5c9
AS
1775}
1776
1777/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1778 its array data. */
4c4b4cd2 1779
d2e4a39e
AS
1780static struct value *
1781desc_data (struct value *arr)
14f9c5c9 1782{
df407dfe 1783 struct type *type = value_type (arr);
5b4ee69b 1784
14f9c5c9
AS
1785 if (is_thin_pntr (type))
1786 return thin_data_pntr (arr);
1787 else if (is_thick_pntr (type))
d2e4a39e 1788 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1789 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1790 else
1791 return NULL;
1792}
1793
1794
1795/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1796 position of the field containing the address of the data. */
1797
14f9c5c9 1798static int
d2e4a39e 1799fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1800{
1801 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1802}
1803
1804/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1805 size of the field containing the address of the data. */
1806
14f9c5c9 1807static int
d2e4a39e 1808fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1809{
1810 type = desc_base_type (type);
1811
1812 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1813 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1814 else
14f9c5c9
AS
1815 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1816}
1817
4c4b4cd2 1818/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1819 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1820 bound, if WHICH is 1. The first bound is I=1. */
1821
d2e4a39e
AS
1822static struct value *
1823desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1824{
d2e4a39e 1825 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1826 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1827}
1828
1829/* If BOUNDS is an array-bounds structure type, return the bit position
1830 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1831 bound, if WHICH is 1. The first bound is I=1. */
1832
14f9c5c9 1833static int
d2e4a39e 1834desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1835{
d2e4a39e 1836 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1837}
1838
1839/* If BOUNDS is an array-bounds structure type, return the bit field size
1840 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
76a01679 1843static int
d2e4a39e 1844desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1845{
1846 type = desc_base_type (type);
1847
d2e4a39e
AS
1848 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1849 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1850 else
1851 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1852}
1853
1854/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1855 Ith bound (numbering from 1). Otherwise, NULL. */
1856
d2e4a39e
AS
1857static struct type *
1858desc_index_type (struct type *type, int i)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
1862 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1863 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1864 else
14f9c5c9
AS
1865 return NULL;
1866}
1867
4c4b4cd2
PH
1868/* The number of index positions in the array-bounds type TYPE.
1869 Return 0 if TYPE is NULL. */
1870
14f9c5c9 1871static int
d2e4a39e 1872desc_arity (struct type *type)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (type != NULL)
1877 return TYPE_NFIELDS (type) / 2;
1878 return 0;
1879}
1880
4c4b4cd2
PH
1881/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1882 an array descriptor type (representing an unconstrained array
1883 type). */
1884
76a01679
JB
1885static int
1886ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1887{
1888 if (type == NULL)
1889 return 0;
61ee279c 1890 type = ada_check_typedef (type);
4c4b4cd2 1891 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1892 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1893}
1894
52ce6436 1895/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1896 * to one. */
52ce6436 1897
2c0b251b 1898static int
52ce6436
PH
1899ada_is_array_type (struct type *type)
1900{
1901 while (type != NULL
1902 && (TYPE_CODE (type) == TYPE_CODE_PTR
1903 || TYPE_CODE (type) == TYPE_CODE_REF))
1904 type = TYPE_TARGET_TYPE (type);
1905 return ada_is_direct_array_type (type);
1906}
1907
4c4b4cd2 1908/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1909
14f9c5c9 1910int
4c4b4cd2 1911ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1912{
1913 if (type == NULL)
1914 return 0;
61ee279c 1915 type = ada_check_typedef (type);
14f9c5c9 1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1917 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1918 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1919 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1920}
1921
4c4b4cd2
PH
1922/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1926{
556bdfd4 1927 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1928
1929 if (type == NULL)
1930 return 0;
61ee279c 1931 type = ada_check_typedef (type);
556bdfd4
UW
1932 return (data_type != NULL
1933 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1934 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1935}
1936
1937/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1938 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1939 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1940 is still needed. */
1941
14f9c5c9 1942int
ebf56fd3 1943ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1944{
d2e4a39e 1945 return
14f9c5c9
AS
1946 type != NULL
1947 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1948 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1949 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1950 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1951}
1952
1953
4c4b4cd2 1954/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1955 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1956 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1957 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1958 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1959 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1960 a descriptor. */
d2e4a39e
AS
1961struct type *
1962ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1963{
ad82864c
JB
1964 if (ada_is_constrained_packed_array_type (value_type (arr)))
1965 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1966
df407dfe
AC
1967 if (!ada_is_array_descriptor_type (value_type (arr)))
1968 return value_type (arr);
d2e4a39e
AS
1969
1970 if (!bounds)
ad82864c
JB
1971 {
1972 struct type *array_type =
1973 ada_check_typedef (desc_data_target_type (value_type (arr)));
1974
1975 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1976 TYPE_FIELD_BITSIZE (array_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978
1979 return array_type;
1980 }
14f9c5c9
AS
1981 else
1982 {
d2e4a39e 1983 struct type *elt_type;
14f9c5c9 1984 int arity;
d2e4a39e 1985 struct value *descriptor;
14f9c5c9 1986
df407dfe
AC
1987 elt_type = ada_array_element_type (value_type (arr), -1);
1988 arity = ada_array_arity (value_type (arr));
14f9c5c9 1989
d2e4a39e 1990 if (elt_type == NULL || arity == 0)
df407dfe 1991 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1992
1993 descriptor = desc_bounds (arr);
d2e4a39e 1994 if (value_as_long (descriptor) == 0)
4c4b4cd2 1995 return NULL;
d2e4a39e 1996 while (arity > 0)
4c4b4cd2 1997 {
e9bb382b
UW
1998 struct type *range_type = alloc_type_copy (value_type (arr));
1999 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2000 struct value *low = desc_one_bound (descriptor, arity, 0);
2001 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2002
5b4ee69b 2003 arity -= 1;
0c9c3474
SA
2004 create_static_range_type (range_type, value_type (low),
2005 longest_to_int (value_as_long (low)),
2006 longest_to_int (value_as_long (high)));
4c4b4cd2 2007 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2008
2009 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2010 {
2011 /* We need to store the element packed bitsize, as well as
2012 recompute the array size, because it was previously
2013 computed based on the unpacked element size. */
2014 LONGEST lo = value_as_long (low);
2015 LONGEST hi = value_as_long (high);
2016
2017 TYPE_FIELD_BITSIZE (elt_type, 0) =
2018 decode_packed_array_bitsize (value_type (arr));
2019 /* If the array has no element, then the size is already
2020 zero, and does not need to be recomputed. */
2021 if (lo < hi)
2022 {
2023 int array_bitsize =
2024 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2025
2026 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2027 }
2028 }
4c4b4cd2 2029 }
14f9c5c9
AS
2030
2031 return lookup_pointer_type (elt_type);
2032 }
2033}
2034
2035/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2036 Otherwise, returns either a standard GDB array with bounds set
2037 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2038 GDB array. Returns NULL if ARR is a null fat pointer. */
2039
d2e4a39e
AS
2040struct value *
2041ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2042{
df407dfe 2043 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2044 {
d2e4a39e 2045 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2046
14f9c5c9 2047 if (arrType == NULL)
4c4b4cd2 2048 return NULL;
14f9c5c9
AS
2049 return value_cast (arrType, value_copy (desc_data (arr)));
2050 }
ad82864c
JB
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2053 else
2054 return arr;
2055}
2056
2057/* If ARR does not represent an array, returns ARR unchanged.
2058 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2059 be ARR itself if it already is in the proper form). */
2060
720d1a40 2061struct value *
d2e4a39e 2062ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2063{
df407dfe 2064 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2065 {
d2e4a39e 2066 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2067
14f9c5c9 2068 if (arrVal == NULL)
323e0a4a 2069 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2070 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2071 return value_ind (arrVal);
2072 }
ad82864c
JB
2073 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2074 return decode_constrained_packed_array (arr);
d2e4a39e 2075 else
14f9c5c9
AS
2076 return arr;
2077}
2078
2079/* If TYPE represents a GNAT array type, return it translated to an
2080 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2081 packing). For other types, is the identity. */
2082
d2e4a39e
AS
2083struct type *
2084ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2085{
ad82864c
JB
2086 if (ada_is_constrained_packed_array_type (type))
2087 return decode_constrained_packed_array_type (type);
17280b9f
UW
2088
2089 if (ada_is_array_descriptor_type (type))
556bdfd4 2090 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2091
2092 return type;
14f9c5c9
AS
2093}
2094
4c4b4cd2
PH
2095/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2096
ad82864c
JB
2097static int
2098ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2099{
2100 if (type == NULL)
2101 return 0;
4c4b4cd2 2102 type = desc_base_type (type);
61ee279c 2103 type = ada_check_typedef (type);
d2e4a39e 2104 return
14f9c5c9
AS
2105 ada_type_name (type) != NULL
2106 && strstr (ada_type_name (type), "___XP") != NULL;
2107}
2108
ad82864c
JB
2109/* Non-zero iff TYPE represents a standard GNAT constrained
2110 packed-array type. */
2111
2112int
2113ada_is_constrained_packed_array_type (struct type *type)
2114{
2115 return ada_is_packed_array_type (type)
2116 && !ada_is_array_descriptor_type (type);
2117}
2118
2119/* Non-zero iff TYPE represents an array descriptor for a
2120 unconstrained packed-array type. */
2121
2122static int
2123ada_is_unconstrained_packed_array_type (struct type *type)
2124{
2125 return ada_is_packed_array_type (type)
2126 && ada_is_array_descriptor_type (type);
2127}
2128
2129/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2130 return the size of its elements in bits. */
2131
2132static long
2133decode_packed_array_bitsize (struct type *type)
2134{
0d5cff50
DE
2135 const char *raw_name;
2136 const char *tail;
ad82864c
JB
2137 long bits;
2138
720d1a40
JB
2139 /* Access to arrays implemented as fat pointers are encoded as a typedef
2140 of the fat pointer type. We need the name of the fat pointer type
2141 to do the decoding, so strip the typedef layer. */
2142 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2143 type = ada_typedef_target_type (type);
2144
2145 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2146 if (!raw_name)
2147 raw_name = ada_type_name (desc_base_type (type));
2148
2149 if (!raw_name)
2150 return 0;
2151
2152 tail = strstr (raw_name, "___XP");
720d1a40 2153 gdb_assert (tail != NULL);
ad82864c
JB
2154
2155 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2156 {
2157 lim_warning
2158 (_("could not understand bit size information on packed array"));
2159 return 0;
2160 }
2161
2162 return bits;
2163}
2164
14f9c5c9
AS
2165/* Given that TYPE is a standard GDB array type with all bounds filled
2166 in, and that the element size of its ultimate scalar constituents
2167 (that is, either its elements, or, if it is an array of arrays, its
2168 elements' elements, etc.) is *ELT_BITS, return an identical type,
2169 but with the bit sizes of its elements (and those of any
2170 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2171 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2172 in bits.
2173
2174 Note that, for arrays whose index type has an XA encoding where
2175 a bound references a record discriminant, getting that discriminant,
2176 and therefore the actual value of that bound, is not possible
2177 because none of the given parameters gives us access to the record.
2178 This function assumes that it is OK in the context where it is being
2179 used to return an array whose bounds are still dynamic and where
2180 the length is arbitrary. */
4c4b4cd2 2181
d2e4a39e 2182static struct type *
ad82864c 2183constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2184{
d2e4a39e
AS
2185 struct type *new_elt_type;
2186 struct type *new_type;
99b1c762
JB
2187 struct type *index_type_desc;
2188 struct type *index_type;
14f9c5c9
AS
2189 LONGEST low_bound, high_bound;
2190
61ee279c 2191 type = ada_check_typedef (type);
14f9c5c9
AS
2192 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2193 return type;
2194
99b1c762
JB
2195 index_type_desc = ada_find_parallel_type (type, "___XA");
2196 if (index_type_desc)
2197 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2198 NULL);
2199 else
2200 index_type = TYPE_INDEX_TYPE (type);
2201
e9bb382b 2202 new_type = alloc_type_copy (type);
ad82864c
JB
2203 new_elt_type =
2204 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2205 elt_bits);
99b1c762 2206 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2207 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2208 TYPE_NAME (new_type) = ada_type_name (type);
2209
4a46959e
JB
2210 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2211 && is_dynamic_type (check_typedef (index_type)))
2212 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2213 low_bound = high_bound = 0;
2214 if (high_bound < low_bound)
2215 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2216 else
14f9c5c9
AS
2217 {
2218 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2219 TYPE_LENGTH (new_type) =
4c4b4cd2 2220 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2221 }
2222
876cecd0 2223 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2224 return new_type;
2225}
2226
ad82864c
JB
2227/* The array type encoded by TYPE, where
2228 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2229
d2e4a39e 2230static struct type *
ad82864c 2231decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2232{
0d5cff50 2233 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2234 char *name;
0d5cff50 2235 const char *tail;
d2e4a39e 2236 struct type *shadow_type;
14f9c5c9 2237 long bits;
14f9c5c9 2238
727e3d2e
JB
2239 if (!raw_name)
2240 raw_name = ada_type_name (desc_base_type (type));
2241
2242 if (!raw_name)
2243 return NULL;
2244
2245 name = (char *) alloca (strlen (raw_name) + 1);
2246 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2247 type = desc_base_type (type);
2248
14f9c5c9
AS
2249 memcpy (name, raw_name, tail - raw_name);
2250 name[tail - raw_name] = '\000';
2251
b4ba55a1
JB
2252 shadow_type = ada_find_parallel_type_with_name (type, name);
2253
2254 if (shadow_type == NULL)
14f9c5c9 2255 {
323e0a4a 2256 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2257 return NULL;
2258 }
f168693b 2259 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2260
2261 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2262 {
0963b4bd
MS
2263 lim_warning (_("could not understand bounds "
2264 "information on packed array"));
14f9c5c9
AS
2265 return NULL;
2266 }
d2e4a39e 2267
ad82864c
JB
2268 bits = decode_packed_array_bitsize (type);
2269 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2270}
2271
ad82864c
JB
2272/* Given that ARR is a struct value *indicating a GNAT constrained packed
2273 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2274 standard GDB array type except that the BITSIZEs of the array
2275 target types are set to the number of bits in each element, and the
4c4b4cd2 2276 type length is set appropriately. */
14f9c5c9 2277
d2e4a39e 2278static struct value *
ad82864c 2279decode_constrained_packed_array (struct value *arr)
14f9c5c9 2280{
4c4b4cd2 2281 struct type *type;
14f9c5c9 2282
11aa919a
PMR
2283 /* If our value is a pointer, then dereference it. Likewise if
2284 the value is a reference. Make sure that this operation does not
2285 cause the target type to be fixed, as this would indirectly cause
2286 this array to be decoded. The rest of the routine assumes that
2287 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2288 and "value_ind" routines to perform the dereferencing, as opposed
2289 to using "ada_coerce_ref" or "ada_value_ind". */
2290 arr = coerce_ref (arr);
828292f2 2291 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2292 arr = value_ind (arr);
4c4b4cd2 2293
ad82864c 2294 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2295 if (type == NULL)
2296 {
323e0a4a 2297 error (_("can't unpack array"));
14f9c5c9
AS
2298 return NULL;
2299 }
61ee279c 2300
50810684 2301 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2302 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2303 {
2304 /* This is a (right-justified) modular type representing a packed
2305 array with no wrapper. In order to interpret the value through
2306 the (left-justified) packed array type we just built, we must
2307 first left-justify it. */
2308 int bit_size, bit_pos;
2309 ULONGEST mod;
2310
df407dfe 2311 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2312 bit_size = 0;
2313 while (mod > 0)
2314 {
2315 bit_size += 1;
2316 mod >>= 1;
2317 }
df407dfe 2318 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2319 arr = ada_value_primitive_packed_val (arr, NULL,
2320 bit_pos / HOST_CHAR_BIT,
2321 bit_pos % HOST_CHAR_BIT,
2322 bit_size,
2323 type);
2324 }
2325
4c4b4cd2 2326 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2327}
2328
2329
2330/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2331 given in IND. ARR must be a simple array. */
14f9c5c9 2332
d2e4a39e
AS
2333static struct value *
2334value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2335{
2336 int i;
2337 int bits, elt_off, bit_off;
2338 long elt_total_bit_offset;
d2e4a39e
AS
2339 struct type *elt_type;
2340 struct value *v;
14f9c5c9
AS
2341
2342 bits = 0;
2343 elt_total_bit_offset = 0;
df407dfe 2344 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2345 for (i = 0; i < arity; i += 1)
14f9c5c9 2346 {
d2e4a39e 2347 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2348 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2349 error
0963b4bd
MS
2350 (_("attempt to do packed indexing of "
2351 "something other than a packed array"));
14f9c5c9 2352 else
4c4b4cd2
PH
2353 {
2354 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2355 LONGEST lowerbound, upperbound;
2356 LONGEST idx;
2357
2358 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2359 {
323e0a4a 2360 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2361 lowerbound = upperbound = 0;
2362 }
2363
3cb382c9 2364 idx = pos_atr (ind[i]);
4c4b4cd2 2365 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2366 lim_warning (_("packed array index %ld out of bounds"),
2367 (long) idx);
4c4b4cd2
PH
2368 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2369 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2370 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2371 }
14f9c5c9
AS
2372 }
2373 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2374 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2375
2376 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2377 bits, elt_type);
14f9c5c9
AS
2378 return v;
2379}
2380
4c4b4cd2 2381/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2382
2383static int
d2e4a39e 2384has_negatives (struct type *type)
14f9c5c9 2385{
d2e4a39e
AS
2386 switch (TYPE_CODE (type))
2387 {
2388 default:
2389 return 0;
2390 case TYPE_CODE_INT:
2391 return !TYPE_UNSIGNED (type);
2392 case TYPE_CODE_RANGE:
2393 return TYPE_LOW_BOUND (type) < 0;
2394 }
14f9c5c9 2395}
d2e4a39e 2396
f93fca70 2397/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2398 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2399 the unpacked buffer.
14f9c5c9 2400
5b639dea
JB
2401 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2402 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2403
f93fca70
JB
2404 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2405 zero otherwise.
14f9c5c9 2406
f93fca70 2407 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2408
f93fca70
JB
2409 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2410
2411static void
2412ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2413 gdb_byte *unpacked, int unpacked_len,
2414 int is_big_endian, int is_signed_type,
2415 int is_scalar)
2416{
a1c95e6b
JB
2417 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2418 int src_idx; /* Index into the source area */
2419 int src_bytes_left; /* Number of source bytes left to process. */
2420 int srcBitsLeft; /* Number of source bits left to move */
2421 int unusedLS; /* Number of bits in next significant
2422 byte of source that are unused */
2423
a1c95e6b
JB
2424 int unpacked_idx; /* Index into the unpacked buffer */
2425 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2426
4c4b4cd2 2427 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2428 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2429 unsigned char sign;
a1c95e6b 2430
4c4b4cd2
PH
2431 /* Transmit bytes from least to most significant; delta is the direction
2432 the indices move. */
f93fca70 2433 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2434
5b639dea
JB
2435 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2436 bits from SRC. .*/
2437 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2438 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2439 bit_size, unpacked_len);
2440
14f9c5c9 2441 srcBitsLeft = bit_size;
086ca51f 2442 src_bytes_left = src_len;
f93fca70 2443 unpacked_bytes_left = unpacked_len;
14f9c5c9 2444 sign = 0;
f93fca70
JB
2445
2446 if (is_big_endian)
14f9c5c9 2447 {
086ca51f 2448 src_idx = src_len - 1;
f93fca70
JB
2449 if (is_signed_type
2450 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2451 sign = ~0;
d2e4a39e
AS
2452
2453 unusedLS =
4c4b4cd2
PH
2454 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2455 % HOST_CHAR_BIT;
14f9c5c9 2456
f93fca70
JB
2457 if (is_scalar)
2458 {
2459 accumSize = 0;
2460 unpacked_idx = unpacked_len - 1;
2461 }
2462 else
2463 {
4c4b4cd2
PH
2464 /* Non-scalar values must be aligned at a byte boundary... */
2465 accumSize =
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2468 of the target. */
086ca51f
JB
2469 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2470 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2471 }
14f9c5c9 2472 }
d2e4a39e 2473 else
14f9c5c9
AS
2474 {
2475 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2476
086ca51f 2477 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2478 unusedLS = bit_offset;
2479 accumSize = 0;
2480
f93fca70 2481 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2482 sign = ~0;
14f9c5c9 2483 }
d2e4a39e 2484
14f9c5c9 2485 accum = 0;
086ca51f 2486 while (src_bytes_left > 0)
14f9c5c9
AS
2487 {
2488 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2489 part of the value. */
d2e4a39e 2490 unsigned int unusedMSMask =
4c4b4cd2
PH
2491 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2492 1;
2493 /* Sign-extend bits for this byte. */
14f9c5c9 2494 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2495
d2e4a39e 2496 accum |=
086ca51f 2497 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2498 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2499 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2500 {
db297a65 2501 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2502 accumSize -= HOST_CHAR_BIT;
2503 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2504 unpacked_bytes_left -= 1;
2505 unpacked_idx += delta;
4c4b4cd2 2506 }
14f9c5c9
AS
2507 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2508 unusedLS = 0;
086ca51f
JB
2509 src_bytes_left -= 1;
2510 src_idx += delta;
14f9c5c9 2511 }
086ca51f 2512 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2513 {
2514 accum |= sign << accumSize;
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2516 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2517 if (accumSize < 0)
2518 accumSize = 0;
14f9c5c9 2519 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2520 unpacked_bytes_left -= 1;
2521 unpacked_idx += delta;
14f9c5c9 2522 }
f93fca70
JB
2523}
2524
2525/* Create a new value of type TYPE from the contents of OBJ starting
2526 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2527 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2528 assigning through the result will set the field fetched from.
2529 VALADDR is ignored unless OBJ is NULL, in which case,
2530 VALADDR+OFFSET must address the start of storage containing the
2531 packed value. The value returned in this case is never an lval.
2532 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2533
2534struct value *
2535ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2536 long offset, int bit_offset, int bit_size,
2537 struct type *type)
2538{
2539 struct value *v;
bfb1c796 2540 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2541 gdb_byte *unpacked;
220475ed 2542 const int is_scalar = is_scalar_type (type);
d0a9e810 2543 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2544 gdb::byte_vector staging;
f93fca70
JB
2545
2546 type = ada_check_typedef (type);
2547
d0a9e810 2548 if (obj == NULL)
bfb1c796 2549 src = valaddr + offset;
d0a9e810 2550 else
bfb1c796 2551 src = value_contents (obj) + offset;
d0a9e810
JB
2552
2553 if (is_dynamic_type (type))
2554 {
2555 /* The length of TYPE might by dynamic, so we need to resolve
2556 TYPE in order to know its actual size, which we then use
2557 to create the contents buffer of the value we return.
2558 The difficulty is that the data containing our object is
2559 packed, and therefore maybe not at a byte boundary. So, what
2560 we do, is unpack the data into a byte-aligned buffer, and then
2561 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2562 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2563 staging.resize (staging_len);
d0a9e810
JB
2564
2565 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2566 staging.data (), staging.size (),
d0a9e810
JB
2567 is_big_endian, has_negatives (type),
2568 is_scalar);
d5722aa2 2569 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2570 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2571 {
2572 /* This happens when the length of the object is dynamic,
2573 and is actually smaller than the space reserved for it.
2574 For instance, in an array of variant records, the bit_size
2575 we're given is the array stride, which is constant and
2576 normally equal to the maximum size of its element.
2577 But, in reality, each element only actually spans a portion
2578 of that stride. */
2579 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2580 }
d0a9e810
JB
2581 }
2582
f93fca70
JB
2583 if (obj == NULL)
2584 {
2585 v = allocate_value (type);
bfb1c796 2586 src = valaddr + offset;
f93fca70
JB
2587 }
2588 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2589 {
0cafa88c 2590 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2591 gdb_byte *buf;
0cafa88c 2592
f93fca70 2593 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2594 buf = (gdb_byte *) alloca (src_len);
2595 read_memory (value_address (v), buf, src_len);
2596 src = buf;
f93fca70
JB
2597 }
2598 else
2599 {
2600 v = allocate_value (type);
bfb1c796 2601 src = value_contents (obj) + offset;
f93fca70
JB
2602 }
2603
2604 if (obj != NULL)
2605 {
2606 long new_offset = offset;
2607
2608 set_value_component_location (v, obj);
2609 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2610 set_value_bitsize (v, bit_size);
2611 if (value_bitpos (v) >= HOST_CHAR_BIT)
2612 {
2613 ++new_offset;
2614 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2615 }
2616 set_value_offset (v, new_offset);
2617
2618 /* Also set the parent value. This is needed when trying to
2619 assign a new value (in inferior memory). */
2620 set_value_parent (v, obj);
2621 }
2622 else
2623 set_value_bitsize (v, bit_size);
bfb1c796 2624 unpacked = value_contents_writeable (v);
f93fca70
JB
2625
2626 if (bit_size == 0)
2627 {
2628 memset (unpacked, 0, TYPE_LENGTH (type));
2629 return v;
2630 }
2631
d5722aa2 2632 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2633 {
d0a9e810
JB
2634 /* Small short-cut: If we've unpacked the data into a buffer
2635 of the same size as TYPE's length, then we can reuse that,
2636 instead of doing the unpacking again. */
d5722aa2 2637 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2638 }
d0a9e810
JB
2639 else
2640 ada_unpack_from_contents (src, bit_offset, bit_size,
2641 unpacked, TYPE_LENGTH (type),
2642 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2643
14f9c5c9
AS
2644 return v;
2645}
d2e4a39e 2646
14f9c5c9
AS
2647/* Store the contents of FROMVAL into the location of TOVAL.
2648 Return a new value with the location of TOVAL and contents of
2649 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2650 floating-point or non-scalar types. */
14f9c5c9 2651
d2e4a39e
AS
2652static struct value *
2653ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2654{
df407dfe
AC
2655 struct type *type = value_type (toval);
2656 int bits = value_bitsize (toval);
14f9c5c9 2657
52ce6436
PH
2658 toval = ada_coerce_ref (toval);
2659 fromval = ada_coerce_ref (fromval);
2660
2661 if (ada_is_direct_array_type (value_type (toval)))
2662 toval = ada_coerce_to_simple_array (toval);
2663 if (ada_is_direct_array_type (value_type (fromval)))
2664 fromval = ada_coerce_to_simple_array (fromval);
2665
88e3b34b 2666 if (!deprecated_value_modifiable (toval))
323e0a4a 2667 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2668
d2e4a39e 2669 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2670 && bits > 0
d2e4a39e 2671 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2672 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2673 {
df407dfe
AC
2674 int len = (value_bitpos (toval)
2675 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2676 int from_size;
224c3ddb 2677 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2678 struct value *val;
42ae5230 2679 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2680
2681 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2682 fromval = value_cast (type, fromval);
14f9c5c9 2683
52ce6436 2684 read_memory (to_addr, buffer, len);
aced2898
PH
2685 from_size = value_bitsize (fromval);
2686 if (from_size == 0)
2687 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2688
2689 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2690 ULONGEST from_offset = 0;
2691 if (is_big_endian && is_scalar_type (value_type (fromval)))
2692 from_offset = from_size - bits;
2693 copy_bitwise (buffer, value_bitpos (toval),
2694 value_contents (fromval), from_offset,
2695 bits, is_big_endian);
972daa01 2696 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2697
14f9c5c9 2698 val = value_copy (toval);
0fd88904 2699 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2700 TYPE_LENGTH (type));
04624583 2701 deprecated_set_value_type (val, type);
d2e4a39e 2702
14f9c5c9
AS
2703 return val;
2704 }
2705
2706 return value_assign (toval, fromval);
2707}
2708
2709
7c512744
JB
2710/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2711 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2712 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2713 COMPONENT, and not the inferior's memory. The current contents
2714 of COMPONENT are ignored.
2715
2716 Although not part of the initial design, this function also works
2717 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2718 had a null address, and COMPONENT had an address which is equal to
2719 its offset inside CONTAINER. */
2720
52ce6436
PH
2721static void
2722value_assign_to_component (struct value *container, struct value *component,
2723 struct value *val)
2724{
2725 LONGEST offset_in_container =
42ae5230 2726 (LONGEST) (value_address (component) - value_address (container));
7c512744 2727 int bit_offset_in_container =
52ce6436
PH
2728 value_bitpos (component) - value_bitpos (container);
2729 int bits;
7c512744 2730
52ce6436
PH
2731 val = value_cast (value_type (component), val);
2732
2733 if (value_bitsize (component) == 0)
2734 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2735 else
2736 bits = value_bitsize (component);
2737
50810684 2738 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2739 {
2740 int src_offset;
2741
2742 if (is_scalar_type (check_typedef (value_type (component))))
2743 src_offset
2744 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2745 else
2746 src_offset = 0;
a99bc3d2
JB
2747 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2748 value_bitpos (container) + bit_offset_in_container,
2749 value_contents (val), src_offset, bits, 1);
2a62dfa9 2750 }
52ce6436 2751 else
a99bc3d2
JB
2752 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2753 value_bitpos (container) + bit_offset_in_container,
2754 value_contents (val), 0, bits, 0);
7c512744
JB
2755}
2756
736ade86
XR
2757/* Determine if TYPE is an access to an unconstrained array. */
2758
d91e9ea8 2759bool
736ade86
XR
2760ada_is_access_to_unconstrained_array (struct type *type)
2761{
2762 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2763 && is_thick_pntr (ada_typedef_target_type (type)));
2764}
2765
4c4b4cd2
PH
2766/* The value of the element of array ARR at the ARITY indices given in IND.
2767 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2768 thereto. */
2769
d2e4a39e
AS
2770struct value *
2771ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2772{
2773 int k;
d2e4a39e
AS
2774 struct value *elt;
2775 struct type *elt_type;
14f9c5c9
AS
2776
2777 elt = ada_coerce_to_simple_array (arr);
2778
df407dfe 2779 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2780 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2781 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2782 return value_subscript_packed (elt, arity, ind);
2783
2784 for (k = 0; k < arity; k += 1)
2785 {
b9c50e9a
XR
2786 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2787
14f9c5c9 2788 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2789 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2790
2497b498 2791 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2792
2793 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2794 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2795 {
2796 /* The element is a typedef to an unconstrained array,
2797 except that the value_subscript call stripped the
2798 typedef layer. The typedef layer is GNAT's way to
2799 specify that the element is, at the source level, an
2800 access to the unconstrained array, rather than the
2801 unconstrained array. So, we need to restore that
2802 typedef layer, which we can do by forcing the element's
2803 type back to its original type. Otherwise, the returned
2804 value is going to be printed as the array, rather
2805 than as an access. Another symptom of the same issue
2806 would be that an expression trying to dereference the
2807 element would also be improperly rejected. */
2808 deprecated_set_value_type (elt, saved_elt_type);
2809 }
2810
2811 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2812 }
b9c50e9a 2813
14f9c5c9
AS
2814 return elt;
2815}
2816
deede10c
JB
2817/* Assuming ARR is a pointer to a GDB array, the value of the element
2818 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2819 Does not read the entire array into memory.
2820
2821 Note: Unlike what one would expect, this function is used instead of
2822 ada_value_subscript for basically all non-packed array types. The reason
2823 for this is that a side effect of doing our own pointer arithmetics instead
2824 of relying on value_subscript is that there is no implicit typedef peeling.
2825 This is important for arrays of array accesses, where it allows us to
2826 preserve the fact that the array's element is an array access, where the
2827 access part os encoded in a typedef layer. */
14f9c5c9 2828
2c0b251b 2829static struct value *
deede10c 2830ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2831{
2832 int k;
919e6dbe 2833 struct value *array_ind = ada_value_ind (arr);
deede10c 2834 struct type *type
919e6dbe
PMR
2835 = check_typedef (value_enclosing_type (array_ind));
2836
2837 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2838 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2839 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2840
2841 for (k = 0; k < arity; k += 1)
2842 {
2843 LONGEST lwb, upb;
aa715135 2844 struct value *lwb_value;
14f9c5c9
AS
2845
2846 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2847 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2848 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2849 value_copy (arr));
14f9c5c9 2850 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2851 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2852 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2853 type = TYPE_TARGET_TYPE (type);
2854 }
2855
2856 return value_ind (arr);
2857}
2858
0b5d8877 2859/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2860 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2861 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2862 this array is LOW, as per Ada rules. */
0b5d8877 2863static struct value *
f5938064
JG
2864ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2865 int low, int high)
0b5d8877 2866{
b0dd7688 2867 struct type *type0 = ada_check_typedef (type);
aa715135 2868 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2869 struct type *index_type
aa715135 2870 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2871 struct type *slice_type = create_array_type_with_stride
2872 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2873 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2874 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2875 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2876 LONGEST base_low_pos, low_pos;
2877 CORE_ADDR base;
2878
2879 if (!discrete_position (base_index_type, low, &low_pos)
2880 || !discrete_position (base_index_type, base_low, &base_low_pos))
2881 {
2882 warning (_("unable to get positions in slice, use bounds instead"));
2883 low_pos = low;
2884 base_low_pos = base_low;
2885 }
5b4ee69b 2886
aa715135
JG
2887 base = value_as_address (array_ptr)
2888 + ((low_pos - base_low_pos)
2889 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2890 return value_at_lazy (slice_type, base);
0b5d8877
PH
2891}
2892
2893
2894static struct value *
2895ada_value_slice (struct value *array, int low, int high)
2896{
b0dd7688 2897 struct type *type = ada_check_typedef (value_type (array));
aa715135 2898 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2899 struct type *index_type
2900 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2901 struct type *slice_type = create_array_type_with_stride
2902 (NULL, TYPE_TARGET_TYPE (type), index_type,
2903 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2904 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2905 LONGEST low_pos, high_pos;
5b4ee69b 2906
aa715135
JG
2907 if (!discrete_position (base_index_type, low, &low_pos)
2908 || !discrete_position (base_index_type, high, &high_pos))
2909 {
2910 warning (_("unable to get positions in slice, use bounds instead"));
2911 low_pos = low;
2912 high_pos = high;
2913 }
2914
2915 return value_cast (slice_type,
2916 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2917}
2918
14f9c5c9
AS
2919/* If type is a record type in the form of a standard GNAT array
2920 descriptor, returns the number of dimensions for type. If arr is a
2921 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2922 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2923
2924int
d2e4a39e 2925ada_array_arity (struct type *type)
14f9c5c9
AS
2926{
2927 int arity;
2928
2929 if (type == NULL)
2930 return 0;
2931
2932 type = desc_base_type (type);
2933
2934 arity = 0;
d2e4a39e 2935 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2936 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2937 else
2938 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2939 {
4c4b4cd2 2940 arity += 1;
61ee279c 2941 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2942 }
d2e4a39e 2943
14f9c5c9
AS
2944 return arity;
2945}
2946
2947/* If TYPE is a record type in the form of a standard GNAT array
2948 descriptor or a simple array type, returns the element type for
2949 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2950 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2951
d2e4a39e
AS
2952struct type *
2953ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2954{
2955 type = desc_base_type (type);
2956
d2e4a39e 2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2958 {
2959 int k;
d2e4a39e 2960 struct type *p_array_type;
14f9c5c9 2961
556bdfd4 2962 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2963
2964 k = ada_array_arity (type);
2965 if (k == 0)
4c4b4cd2 2966 return NULL;
d2e4a39e 2967
4c4b4cd2 2968 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2969 if (nindices >= 0 && k > nindices)
4c4b4cd2 2970 k = nindices;
d2e4a39e 2971 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2972 {
61ee279c 2973 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2974 k -= 1;
2975 }
14f9c5c9
AS
2976 return p_array_type;
2977 }
2978 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2979 {
2980 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2981 {
2982 type = TYPE_TARGET_TYPE (type);
2983 nindices -= 1;
2984 }
14f9c5c9
AS
2985 return type;
2986 }
2987
2988 return NULL;
2989}
2990
4c4b4cd2 2991/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2992 Does not examine memory. Throws an error if N is invalid or TYPE
2993 is not an array type. NAME is the name of the Ada attribute being
2994 evaluated ('range, 'first, 'last, or 'length); it is used in building
2995 the error message. */
14f9c5c9 2996
1eea4ebd
UW
2997static struct type *
2998ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2999{
4c4b4cd2
PH
3000 struct type *result_type;
3001
14f9c5c9
AS
3002 type = desc_base_type (type);
3003
1eea4ebd
UW
3004 if (n < 0 || n > ada_array_arity (type))
3005 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3006
4c4b4cd2 3007 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3008 {
3009 int i;
3010
3011 for (i = 1; i < n; i += 1)
4c4b4cd2 3012 type = TYPE_TARGET_TYPE (type);
262452ec 3013 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3014 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3015 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3016 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3017 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3018 result_type = NULL;
14f9c5c9 3019 }
d2e4a39e 3020 else
1eea4ebd
UW
3021 {
3022 result_type = desc_index_type (desc_bounds_type (type), n);
3023 if (result_type == NULL)
3024 error (_("attempt to take bound of something that is not an array"));
3025 }
3026
3027 return result_type;
14f9c5c9
AS
3028}
3029
3030/* Given that arr is an array type, returns the lower bound of the
3031 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3032 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3033 array-descriptor type. It works for other arrays with bounds supplied
3034 by run-time quantities other than discriminants. */
14f9c5c9 3035
abb68b3e 3036static LONGEST
fb5e3d5c 3037ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3038{
8a48ac95 3039 struct type *type, *index_type_desc, *index_type;
1ce677a4 3040 int i;
262452ec
JK
3041
3042 gdb_assert (which == 0 || which == 1);
14f9c5c9 3043
ad82864c
JB
3044 if (ada_is_constrained_packed_array_type (arr_type))
3045 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3046
4c4b4cd2 3047 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3048 return (LONGEST) - which;
14f9c5c9
AS
3049
3050 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3051 type = TYPE_TARGET_TYPE (arr_type);
3052 else
3053 type = arr_type;
3054
bafffb51
JB
3055 if (TYPE_FIXED_INSTANCE (type))
3056 {
3057 /* The array has already been fixed, so we do not need to
3058 check the parallel ___XA type again. That encoding has
3059 already been applied, so ignore it now. */
3060 index_type_desc = NULL;
3061 }
3062 else
3063 {
3064 index_type_desc = ada_find_parallel_type (type, "___XA");
3065 ada_fixup_array_indexes_type (index_type_desc);
3066 }
3067
262452ec 3068 if (index_type_desc != NULL)
28c85d6c
JB
3069 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3070 NULL);
262452ec 3071 else
8a48ac95
JB
3072 {
3073 struct type *elt_type = check_typedef (type);
3074
3075 for (i = 1; i < n; i++)
3076 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3077
3078 index_type = TYPE_INDEX_TYPE (elt_type);
3079 }
262452ec 3080
43bbcdc2
PH
3081 return
3082 (LONGEST) (which == 0
3083 ? ada_discrete_type_low_bound (index_type)
3084 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3085}
3086
3087/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3088 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3089 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3090 supplied by run-time quantities other than discriminants. */
14f9c5c9 3091
1eea4ebd 3092static LONGEST
4dc81987 3093ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3094{
eb479039
JB
3095 struct type *arr_type;
3096
3097 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3098 arr = value_ind (arr);
3099 arr_type = value_enclosing_type (arr);
14f9c5c9 3100
ad82864c
JB
3101 if (ada_is_constrained_packed_array_type (arr_type))
3102 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3103 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3104 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3105 else
1eea4ebd 3106 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3107}
3108
3109/* Given that arr is an array value, returns the length of the
3110 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3111 supplied by run-time quantities other than discriminants.
3112 Does not work for arrays indexed by enumeration types with representation
3113 clauses at the moment. */
14f9c5c9 3114
1eea4ebd 3115static LONGEST
d2e4a39e 3116ada_array_length (struct value *arr, int n)
14f9c5c9 3117{
aa715135
JG
3118 struct type *arr_type, *index_type;
3119 int low, high;
eb479039
JB
3120
3121 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3122 arr = value_ind (arr);
3123 arr_type = value_enclosing_type (arr);
14f9c5c9 3124
ad82864c
JB
3125 if (ada_is_constrained_packed_array_type (arr_type))
3126 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3127
4c4b4cd2 3128 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3129 {
3130 low = ada_array_bound_from_type (arr_type, n, 0);
3131 high = ada_array_bound_from_type (arr_type, n, 1);
3132 }
14f9c5c9 3133 else
aa715135
JG
3134 {
3135 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3136 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3137 }
3138
f168693b 3139 arr_type = check_typedef (arr_type);
7150d33c 3140 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3141 if (index_type != NULL)
3142 {
3143 struct type *base_type;
3144 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3145 base_type = TYPE_TARGET_TYPE (index_type);
3146 else
3147 base_type = index_type;
3148
3149 low = pos_atr (value_from_longest (base_type, low));
3150 high = pos_atr (value_from_longest (base_type, high));
3151 }
3152 return high - low + 1;
4c4b4cd2
PH
3153}
3154
bff8c71f
TT
3155/* An array whose type is that of ARR_TYPE (an array type), with
3156 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3157 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3158
3159static struct value *
bff8c71f 3160empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3161{
b0dd7688 3162 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3163 struct type *index_type
3164 = create_static_range_type
bff8c71f
TT
3165 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3166 high < low ? low - 1 : high);
b0dd7688 3167 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3168
0b5d8877 3169 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3170}
14f9c5c9 3171\f
d2e4a39e 3172
4c4b4cd2 3173 /* Name resolution */
14f9c5c9 3174
4c4b4cd2
PH
3175/* The "decoded" name for the user-definable Ada operator corresponding
3176 to OP. */
14f9c5c9 3177
d2e4a39e 3178static const char *
4c4b4cd2 3179ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3180{
3181 int i;
3182
4c4b4cd2 3183 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3184 {
3185 if (ada_opname_table[i].op == op)
4c4b4cd2 3186 return ada_opname_table[i].decoded;
14f9c5c9 3187 }
323e0a4a 3188 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3189}
3190
3191
4c4b4cd2
PH
3192/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3193 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3194 undefined namespace) and converts operators that are
3195 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3196 non-null, it provides a preferred result type [at the moment, only
3197 type void has any effect---causing procedures to be preferred over
3198 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3199 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3200
4c4b4cd2 3201static void
699bd4cf
TT
3202resolve (expression_up *expp, int void_context_p, int parse_completion,
3203 innermost_block_tracker *tracker)
14f9c5c9 3204{
30b15541
UW
3205 struct type *context_type = NULL;
3206 int pc = 0;
3207
3208 if (void_context_p)
3209 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3210
699bd4cf 3211 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3212}
3213
4c4b4cd2
PH
3214/* Resolve the operator of the subexpression beginning at
3215 position *POS of *EXPP. "Resolving" consists of replacing
3216 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3217 with their resolutions, replacing built-in operators with
3218 function calls to user-defined operators, where appropriate, and,
3219 when DEPROCEDURE_P is non-zero, converting function-valued variables
3220 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3221 are as in ada_resolve, above. */
14f9c5c9 3222
d2e4a39e 3223static struct value *
e9d9f57e 3224resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3225 struct type *context_type, int parse_completion,
3226 innermost_block_tracker *tracker)
14f9c5c9
AS
3227{
3228 int pc = *pos;
3229 int i;
4c4b4cd2 3230 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3231 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3232 struct value **argvec; /* Vector of operand types (alloca'ed). */
3233 int nargs; /* Number of operands. */
52ce6436 3234 int oplen;
14f9c5c9
AS
3235
3236 argvec = NULL;
3237 nargs = 0;
e9d9f57e 3238 exp = expp->get ();
14f9c5c9 3239
52ce6436
PH
3240 /* Pass one: resolve operands, saving their types and updating *pos,
3241 if needed. */
14f9c5c9
AS
3242 switch (op)
3243 {
4c4b4cd2
PH
3244 case OP_FUNCALL:
3245 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3246 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3247 *pos += 7;
4c4b4cd2
PH
3248 else
3249 {
3250 *pos += 3;
699bd4cf 3251 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3252 }
3253 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3254 break;
3255
14f9c5c9 3256 case UNOP_ADDR:
4c4b4cd2 3257 *pos += 1;
699bd4cf 3258 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3259 break;
3260
52ce6436
PH
3261 case UNOP_QUAL:
3262 *pos += 3;
2a612529 3263 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3264 parse_completion, tracker);
4c4b4cd2
PH
3265 break;
3266
52ce6436 3267 case OP_ATR_MODULUS:
4c4b4cd2
PH
3268 case OP_ATR_SIZE:
3269 case OP_ATR_TAG:
4c4b4cd2
PH
3270 case OP_ATR_FIRST:
3271 case OP_ATR_LAST:
3272 case OP_ATR_LENGTH:
3273 case OP_ATR_POS:
3274 case OP_ATR_VAL:
4c4b4cd2
PH
3275 case OP_ATR_MIN:
3276 case OP_ATR_MAX:
52ce6436
PH
3277 case TERNOP_IN_RANGE:
3278 case BINOP_IN_BOUNDS:
3279 case UNOP_IN_RANGE:
3280 case OP_AGGREGATE:
3281 case OP_OTHERS:
3282 case OP_CHOICES:
3283 case OP_POSITIONAL:
3284 case OP_DISCRETE_RANGE:
3285 case OP_NAME:
3286 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3287 *pos += oplen;
14f9c5c9
AS
3288 break;
3289
3290 case BINOP_ASSIGN:
3291 {
4c4b4cd2
PH
3292 struct value *arg1;
3293
3294 *pos += 1;
699bd4cf 3295 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3296 if (arg1 == NULL)
699bd4cf 3297 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3298 else
699bd4cf
TT
3299 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3300 tracker);
4c4b4cd2 3301 break;
14f9c5c9
AS
3302 }
3303
4c4b4cd2 3304 case UNOP_CAST:
4c4b4cd2
PH
3305 *pos += 3;
3306 nargs = 1;
3307 break;
14f9c5c9 3308
4c4b4cd2
PH
3309 case BINOP_ADD:
3310 case BINOP_SUB:
3311 case BINOP_MUL:
3312 case BINOP_DIV:
3313 case BINOP_REM:
3314 case BINOP_MOD:
3315 case BINOP_EXP:
3316 case BINOP_CONCAT:
3317 case BINOP_LOGICAL_AND:
3318 case BINOP_LOGICAL_OR:
3319 case BINOP_BITWISE_AND:
3320 case BINOP_BITWISE_IOR:
3321 case BINOP_BITWISE_XOR:
14f9c5c9 3322
4c4b4cd2
PH
3323 case BINOP_EQUAL:
3324 case BINOP_NOTEQUAL:
3325 case BINOP_LESS:
3326 case BINOP_GTR:
3327 case BINOP_LEQ:
3328 case BINOP_GEQ:
14f9c5c9 3329
4c4b4cd2
PH
3330 case BINOP_REPEAT:
3331 case BINOP_SUBSCRIPT:
3332 case BINOP_COMMA:
40c8aaa9
JB
3333 *pos += 1;
3334 nargs = 2;
3335 break;
14f9c5c9 3336
4c4b4cd2
PH
3337 case UNOP_NEG:
3338 case UNOP_PLUS:
3339 case UNOP_LOGICAL_NOT:
3340 case UNOP_ABS:
3341 case UNOP_IND:
3342 *pos += 1;
3343 nargs = 1;
3344 break;
14f9c5c9 3345
4c4b4cd2 3346 case OP_LONG:
edd079d9 3347 case OP_FLOAT:
4c4b4cd2 3348 case OP_VAR_VALUE:
74ea4be4 3349 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3350 *pos += 4;
3351 break;
14f9c5c9 3352
4c4b4cd2
PH
3353 case OP_TYPE:
3354 case OP_BOOL:
3355 case OP_LAST:
4c4b4cd2
PH
3356 case OP_INTERNALVAR:
3357 *pos += 3;
3358 break;
14f9c5c9 3359
4c4b4cd2
PH
3360 case UNOP_MEMVAL:
3361 *pos += 3;
3362 nargs = 1;
3363 break;
3364
67f3407f
DJ
3365 case OP_REGISTER:
3366 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3367 break;
3368
4c4b4cd2
PH
3369 case STRUCTOP_STRUCT:
3370 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3371 nargs = 1;
3372 break;
3373
4c4b4cd2 3374 case TERNOP_SLICE:
4c4b4cd2
PH
3375 *pos += 1;
3376 nargs = 3;
3377 break;
3378
52ce6436 3379 case OP_STRING:
14f9c5c9 3380 break;
4c4b4cd2
PH
3381
3382 default:
323e0a4a 3383 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3384 }
3385
8d749320 3386 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3387 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3388 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3389 tracker);
4c4b4cd2 3390 argvec[i] = NULL;
e9d9f57e 3391 exp = expp->get ();
4c4b4cd2
PH
3392
3393 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3394 switch (op)
3395 {
3396 default:
3397 break;
3398
14f9c5c9 3399 case OP_VAR_VALUE:
4c4b4cd2 3400 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3401 {
54d343a2 3402 std::vector<struct block_symbol> candidates;
76a01679
JB
3403 int n_candidates;
3404
3405 n_candidates =
3406 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3407 (exp->elts[pc + 2].symbol),
3408 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3409 &candidates);
76a01679
JB
3410
3411 if (n_candidates > 1)
3412 {
3413 /* Types tend to get re-introduced locally, so if there
3414 are any local symbols that are not types, first filter
3415 out all types. */
3416 int j;
3417 for (j = 0; j < n_candidates; j += 1)
d12307c1 3418 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3419 {
3420 case LOC_REGISTER:
3421 case LOC_ARG:
3422 case LOC_REF_ARG:
76a01679
JB
3423 case LOC_REGPARM_ADDR:
3424 case LOC_LOCAL:
76a01679 3425 case LOC_COMPUTED:
76a01679
JB
3426 goto FoundNonType;
3427 default:
3428 break;
3429 }
3430 FoundNonType:
3431 if (j < n_candidates)
3432 {
3433 j = 0;
3434 while (j < n_candidates)
3435 {
d12307c1 3436 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3437 {
3438 candidates[j] = candidates[n_candidates - 1];
3439 n_candidates -= 1;
3440 }
3441 else
3442 j += 1;
3443 }
3444 }
3445 }
3446
3447 if (n_candidates == 0)
323e0a4a 3448 error (_("No definition found for %s"),
76a01679
JB
3449 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3450 else if (n_candidates == 1)
3451 i = 0;
3452 else if (deprocedure_p
54d343a2 3453 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3454 {
06d5cf63 3455 i = ada_resolve_function
54d343a2 3456 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3457 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3458 context_type, parse_completion);
76a01679 3459 if (i < 0)
323e0a4a 3460 error (_("Could not find a match for %s"),
76a01679
JB
3461 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3462 }
3463 else
3464 {
323e0a4a 3465 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3467 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3468 i = 0;
3469 }
3470
3471 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3472 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3473 tracker->update (candidates[i]);
76a01679
JB
3474 }
3475
3476 if (deprocedure_p
3477 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3478 == TYPE_CODE_FUNC))
3479 {
424da6cf 3480 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3481 exp->elts[pc + 2].symbol,
3482 exp->elts[pc + 1].block);
e9d9f57e 3483 exp = expp->get ();
76a01679 3484 }
14f9c5c9
AS
3485 break;
3486
3487 case OP_FUNCALL:
3488 {
4c4b4cd2 3489 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3490 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3491 {
54d343a2 3492 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3493 int n_candidates;
3494
3495 n_candidates =
76a01679
JB
3496 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3497 (exp->elts[pc + 5].symbol),
3498 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3499 &candidates);
ec6a20c2 3500
4c4b4cd2
PH
3501 if (n_candidates == 1)
3502 i = 0;
3503 else
3504 {
06d5cf63 3505 i = ada_resolve_function
54d343a2 3506 (candidates.data (), n_candidates,
06d5cf63
JB
3507 argvec, nargs,
3508 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3509 context_type, parse_completion);
4c4b4cd2 3510 if (i < 0)
323e0a4a 3511 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3512 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3513 }
3514
3515 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3516 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3517 tracker->update (candidates[i]);
4c4b4cd2 3518 }
14f9c5c9
AS
3519 }
3520 break;
3521 case BINOP_ADD:
3522 case BINOP_SUB:
3523 case BINOP_MUL:
3524 case BINOP_DIV:
3525 case BINOP_REM:
3526 case BINOP_MOD:
3527 case BINOP_CONCAT:
3528 case BINOP_BITWISE_AND:
3529 case BINOP_BITWISE_IOR:
3530 case BINOP_BITWISE_XOR:
3531 case BINOP_EQUAL:
3532 case BINOP_NOTEQUAL:
3533 case BINOP_LESS:
3534 case BINOP_GTR:
3535 case BINOP_LEQ:
3536 case BINOP_GEQ:
3537 case BINOP_EXP:
3538 case UNOP_NEG:
3539 case UNOP_PLUS:
3540 case UNOP_LOGICAL_NOT:
3541 case UNOP_ABS:
3542 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3543 {
54d343a2 3544 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3545 int n_candidates;
3546
3547 n_candidates =
b5ec771e 3548 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3549 NULL, VAR_DOMAIN,
4eeaa230 3550 &candidates);
ec6a20c2 3551
54d343a2 3552 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3553 nargs, ada_decoded_op_name (op), NULL,
3554 parse_completion);
4c4b4cd2
PH
3555 if (i < 0)
3556 break;
3557
d12307c1
PMR
3558 replace_operator_with_call (expp, pc, nargs, 1,
3559 candidates[i].symbol,
3560 candidates[i].block);
e9d9f57e 3561 exp = expp->get ();
4c4b4cd2 3562 }
14f9c5c9 3563 break;
4c4b4cd2
PH
3564
3565 case OP_TYPE:
b3dbf008 3566 case OP_REGISTER:
4c4b4cd2 3567 return NULL;
14f9c5c9
AS
3568 }
3569
3570 *pos = pc;
ced9779b
JB
3571 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3572 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3573 exp->elts[pc + 1].objfile,
3574 exp->elts[pc + 2].msymbol);
3575 else
3576 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3577}
3578
3579/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3580 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3581 a non-pointer. */
14f9c5c9 3582/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3583 liberal. */
14f9c5c9
AS
3584
3585static int
4dc81987 3586ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3587{
61ee279c
PH
3588 ftype = ada_check_typedef (ftype);
3589 atype = ada_check_typedef (atype);
14f9c5c9
AS
3590
3591 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3592 ftype = TYPE_TARGET_TYPE (ftype);
3593 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3594 atype = TYPE_TARGET_TYPE (atype);
3595
d2e4a39e 3596 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3597 {
3598 default:
5b3d5b7d 3599 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3600 case TYPE_CODE_PTR:
3601 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3602 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3603 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3604 else
1265e4aa
JB
3605 return (may_deref
3606 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3607 case TYPE_CODE_INT:
3608 case TYPE_CODE_ENUM:
3609 case TYPE_CODE_RANGE:
3610 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3611 {
3612 case TYPE_CODE_INT:
3613 case TYPE_CODE_ENUM:
3614 case TYPE_CODE_RANGE:
3615 return 1;
3616 default:
3617 return 0;
3618 }
14f9c5c9
AS
3619
3620 case TYPE_CODE_ARRAY:
d2e4a39e 3621 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3622 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3623
3624 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3625 if (ada_is_array_descriptor_type (ftype))
3626 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3627 || ada_is_array_descriptor_type (atype));
14f9c5c9 3628 else
4c4b4cd2
PH
3629 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3630 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3631
3632 case TYPE_CODE_UNION:
3633 case TYPE_CODE_FLT:
3634 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3635 }
3636}
3637
3638/* Return non-zero if the formals of FUNC "sufficiently match" the
3639 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3640 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3641 argument function. */
14f9c5c9
AS
3642
3643static int
d2e4a39e 3644ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3645{
3646 int i;
d2e4a39e 3647 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3648
1265e4aa
JB
3649 if (SYMBOL_CLASS (func) == LOC_CONST
3650 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3651 return (n_actuals == 0);
3652 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3653 return 0;
3654
3655 if (TYPE_NFIELDS (func_type) != n_actuals)
3656 return 0;
3657
3658 for (i = 0; i < n_actuals; i += 1)
3659 {
4c4b4cd2 3660 if (actuals[i] == NULL)
76a01679
JB
3661 return 0;
3662 else
3663 {
5b4ee69b
MS
3664 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3665 i));
df407dfe 3666 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3667
76a01679
JB
3668 if (!ada_type_match (ftype, atype, 1))
3669 return 0;
3670 }
14f9c5c9
AS
3671 }
3672 return 1;
3673}
3674
3675/* False iff function type FUNC_TYPE definitely does not produce a value
3676 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3677 FUNC_TYPE is not a valid function type with a non-null return type
3678 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3679
3680static int
d2e4a39e 3681return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3682{
d2e4a39e 3683 struct type *return_type;
14f9c5c9
AS
3684
3685 if (func_type == NULL)
3686 return 1;
3687
4c4b4cd2 3688 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3689 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3690 else
18af8284 3691 return_type = get_base_type (func_type);
14f9c5c9
AS
3692 if (return_type == NULL)
3693 return 1;
3694
18af8284 3695 context_type = get_base_type (context_type);
14f9c5c9
AS
3696
3697 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3698 return context_type == NULL || return_type == context_type;
3699 else if (context_type == NULL)
3700 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3701 else
3702 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3703}
3704
3705
4c4b4cd2 3706/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3707 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3708 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3709 that returns that type, then eliminate matches that don't. If
3710 CONTEXT_TYPE is void and there is at least one match that does not
3711 return void, eliminate all matches that do.
3712
14f9c5c9
AS
3713 Asks the user if there is more than one match remaining. Returns -1
3714 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3715 solely for messages. May re-arrange and modify SYMS in
3716 the process; the index returned is for the modified vector. */
14f9c5c9 3717
4c4b4cd2 3718static int
d12307c1 3719ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3720 int nsyms, struct value **args, int nargs,
2a612529
TT
3721 const char *name, struct type *context_type,
3722 int parse_completion)
14f9c5c9 3723{
30b15541 3724 int fallback;
14f9c5c9 3725 int k;
4c4b4cd2 3726 int m; /* Number of hits */
14f9c5c9 3727
d2e4a39e 3728 m = 0;
30b15541
UW
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3733 {
3734 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3735 {
d12307c1 3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3737
d12307c1 3738 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3739 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
14f9c5c9
AS
3745 }
3746
dc5c8746
PMR
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3751 if (m == 0)
3752 return -1;
dc5c8746 3753 else if (m > 1 && !parse_completion)
14f9c5c9 3754 {
323e0a4a 3755 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3756 user_select_syms (syms, m, 1);
14f9c5c9
AS
3757 return 0;
3758 }
3759 return 0;
3760}
3761
4c4b4cd2
PH
3762/* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
14f9c5c9 3768static int
0d5cff50 3769encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3770{
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
5b4ee69b 3778
d2e4a39e 3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3780 ;
d2e4a39e 3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3782 ;
d2e4a39e 3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
5b4ee69b 3787
4c4b4cd2
PH
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
14f9c5c9
AS
3797 return (strcmp (N0, N1) < 0);
3798 }
3799}
d2e4a39e 3800
4c4b4cd2
PH
3801/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
d2e4a39e 3804static void
d12307c1 3805sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3806{
4c4b4cd2 3807 int i;
5b4ee69b 3808
d2e4a39e 3809 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3810 {
d12307c1 3811 struct block_symbol sym = syms[i];
14f9c5c9
AS
3812 int j;
3813
d2e4a39e 3814 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3815 {
d12307c1
PMR
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
d2e4a39e 3821 syms[j + 1] = sym;
14f9c5c9
AS
3822 }
3823}
3824
d72413e6
PMR
3825/* Whether GDB should display formals and return types for functions in the
3826 overloads selection menu. */
3827static int print_signatures = 1;
3828
3829/* Print the signature for SYM on STREAM according to the FLAGS options. For
3830 all but functions, the signature is just the name of the symbol. For
3831 functions, this is the name of the function, the list of types for formals
3832 and the return type (if any). */
3833
3834static void
3835ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3836 const struct type_print_options *flags)
3837{
3838 struct type *type = SYMBOL_TYPE (sym);
3839
3840 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3841 if (!print_signatures
3842 || type == NULL
3843 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3844 return;
3845
3846 if (TYPE_NFIELDS (type) > 0)
3847 {
3848 int i;
3849
3850 fprintf_filtered (stream, " (");
3851 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3852 {
3853 if (i > 0)
3854 fprintf_filtered (stream, "; ");
3855 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3856 flags);
3857 }
3858 fprintf_filtered (stream, ")");
3859 }
3860 if (TYPE_TARGET_TYPE (type) != NULL
3861 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3862 {
3863 fprintf_filtered (stream, " return ");
3864 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3865 }
3866}
3867
4c4b4cd2
PH
3868/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3869 by asking the user (if necessary), returning the number selected,
3870 and setting the first elements of SYMS items. Error if no symbols
3871 selected. */
14f9c5c9
AS
3872
3873/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3874 to be re-integrated one of these days. */
14f9c5c9
AS
3875
3876int
d12307c1 3877user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3878{
3879 int i;
8d749320 3880 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3881 int n_chosen;
3882 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3883 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3884
3885 if (max_results < 1)
323e0a4a 3886 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3887 if (nsyms <= 1)
3888 return nsyms;
3889
717d2f5a
JB
3890 if (select_mode == multiple_symbols_cancel)
3891 error (_("\
3892canceled because the command is ambiguous\n\
3893See set/show multiple-symbol."));
a0087920 3894
717d2f5a
JB
3895 /* If select_mode is "all", then return all possible symbols.
3896 Only do that if more than one symbol can be selected, of course.
3897 Otherwise, display the menu as usual. */
3898 if (select_mode == multiple_symbols_all && max_results > 1)
3899 return nsyms;
3900
a0087920 3901 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3902 if (max_results > 1)
a0087920 3903 printf_filtered (_("[1] all\n"));
14f9c5c9 3904
4c4b4cd2 3905 sort_choices (syms, nsyms);
14f9c5c9
AS
3906
3907 for (i = 0; i < nsyms; i += 1)
3908 {
d12307c1 3909 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3910 continue;
3911
d12307c1 3912 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3913 {
76a01679 3914 struct symtab_and_line sal =
d12307c1 3915 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3916
a0087920 3917 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3918 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3919 &type_print_raw_options);
323e0a4a 3920 if (sal.symtab == NULL)
a0087920
TT
3921 printf_filtered (_(" at <no source file available>:%d\n"),
3922 sal.line);
323e0a4a 3923 else
a0087920
TT
3924 printf_filtered (_(" at %s:%d\n"),
3925 symtab_to_filename_for_display (sal.symtab),
3926 sal.line);
4c4b4cd2
PH
3927 continue;
3928 }
d2e4a39e 3929 else
4c4b4cd2
PH
3930 {
3931 int is_enumeral =
d12307c1
PMR
3932 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3933 && SYMBOL_TYPE (syms[i].symbol) != NULL
3934 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3935 struct symtab *symtab = NULL;
3936
d12307c1
PMR
3937 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3938 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3939
d12307c1 3940 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3941 {
a0087920 3942 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
a0087920
TT
3945 printf_filtered (_(" at %s:%d\n"),
3946 symtab_to_filename_for_display (symtab),
3947 SYMBOL_LINE (syms[i].symbol));
d72413e6 3948 }
76a01679 3949 else if (is_enumeral
d12307c1 3950 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3951 {
a0087920 3952 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3953 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3954 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3955 printf_filtered (_("'(%s) (enumeral)\n"),
3956 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3957 }
d72413e6
PMR
3958 else
3959 {
a0087920 3960 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
3963
3964 if (symtab != NULL)
a0087920
TT
3965 printf_filtered (is_enumeral
3966 ? _(" in %s (enumeral)\n")
3967 : _(" at %s:?\n"),
3968 symtab_to_filename_for_display (symtab));
d72413e6 3969 else
a0087920
TT
3970 printf_filtered (is_enumeral
3971 ? _(" (enumeral)\n")
3972 : _(" at ?\n"));
d72413e6 3973 }
4c4b4cd2 3974 }
14f9c5c9 3975 }
d2e4a39e 3976
14f9c5c9 3977 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3978 "overload-choice");
14f9c5c9
AS
3979
3980 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3981 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3982
3983 return n_chosen;
3984}
3985
3986/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3987 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3988 order in CHOICES[0 .. N-1], and return N.
3989
3990 The user types choices as a sequence of numbers on one line
3991 separated by blanks, encoding them as follows:
3992
4c4b4cd2 3993 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3994 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3995 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3996
4c4b4cd2 3997 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3998
3999 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4000 prompts (for use with the -f switch). */
14f9c5c9
AS
4001
4002int
d2e4a39e 4003get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4004 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4005{
d2e4a39e 4006 char *args;
a121b7c1 4007 const char *prompt;
14f9c5c9
AS
4008 int n_chosen;
4009 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4010
14f9c5c9
AS
4011 prompt = getenv ("PS2");
4012 if (prompt == NULL)
0bcd0149 4013 prompt = "> ";
14f9c5c9 4014
89fbedf3 4015 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4016
14f9c5c9 4017 if (args == NULL)
323e0a4a 4018 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4019
4020 n_chosen = 0;
76a01679 4021
4c4b4cd2
PH
4022 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4023 order, as given in args. Choices are validated. */
14f9c5c9
AS
4024 while (1)
4025 {
d2e4a39e 4026 char *args2;
14f9c5c9
AS
4027 int choice, j;
4028
0fcd72ba 4029 args = skip_spaces (args);
14f9c5c9 4030 if (*args == '\0' && n_chosen == 0)
323e0a4a 4031 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4032 else if (*args == '\0')
4c4b4cd2 4033 break;
14f9c5c9
AS
4034
4035 choice = strtol (args, &args2, 10);
d2e4a39e 4036 if (args == args2 || choice < 0
4c4b4cd2 4037 || choice > n_choices + first_choice - 1)
323e0a4a 4038 error (_("Argument must be choice number"));
14f9c5c9
AS
4039 args = args2;
4040
d2e4a39e 4041 if (choice == 0)
323e0a4a 4042 error (_("cancelled"));
14f9c5c9
AS
4043
4044 if (choice < first_choice)
4c4b4cd2
PH
4045 {
4046 n_chosen = n_choices;
4047 for (j = 0; j < n_choices; j += 1)
4048 choices[j] = j;
4049 break;
4050 }
14f9c5c9
AS
4051 choice -= first_choice;
4052
d2e4a39e 4053 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4054 {
4055 }
14f9c5c9
AS
4056
4057 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4058 {
4059 int k;
5b4ee69b 4060
4c4b4cd2
PH
4061 for (k = n_chosen - 1; k > j; k -= 1)
4062 choices[k + 1] = choices[k];
4063 choices[j + 1] = choice;
4064 n_chosen += 1;
4065 }
14f9c5c9
AS
4066 }
4067
4068 if (n_chosen > max_results)
323e0a4a 4069 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4070
14f9c5c9
AS
4071 return n_chosen;
4072}
4073
4c4b4cd2
PH
4074/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4075 on the function identified by SYM and BLOCK, and taking NARGS
4076 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4077
4078static void
e9d9f57e 4079replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4080 int oplen, struct symbol *sym,
270140bd 4081 const struct block *block)
14f9c5c9
AS
4082{
4083 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4084 symbol, -oplen for operator being replaced). */
d2e4a39e 4085 struct expression *newexp = (struct expression *)
8c1a34e7 4086 xzalloc (sizeof (struct expression)
4c4b4cd2 4087 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4088 struct expression *exp = expp->get ();
14f9c5c9
AS
4089
4090 newexp->nelts = exp->nelts + 7 - oplen;
4091 newexp->language_defn = exp->language_defn;
3489610d 4092 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4093 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4094 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4095 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4096
4097 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4098 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4099
4100 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4101 newexp->elts[pc + 4].block = block;
4102 newexp->elts[pc + 5].symbol = sym;
4103
e9d9f57e 4104 expp->reset (newexp);
d2e4a39e 4105}
14f9c5c9
AS
4106
4107/* Type-class predicates */
4108
4c4b4cd2
PH
4109/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4110 or FLOAT). */
14f9c5c9
AS
4111
4112static int
d2e4a39e 4113numeric_type_p (struct type *type)
14f9c5c9
AS
4114{
4115 if (type == NULL)
4116 return 0;
d2e4a39e
AS
4117 else
4118 {
4119 switch (TYPE_CODE (type))
4c4b4cd2
PH
4120 {
4121 case TYPE_CODE_INT:
4122 case TYPE_CODE_FLT:
4123 return 1;
4124 case TYPE_CODE_RANGE:
4125 return (type == TYPE_TARGET_TYPE (type)
4126 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4127 default:
4128 return 0;
4129 }
d2e4a39e 4130 }
14f9c5c9
AS
4131}
4132
4c4b4cd2 4133/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4134
4135static int
d2e4a39e 4136integer_type_p (struct type *type)
14f9c5c9
AS
4137{
4138 if (type == NULL)
4139 return 0;
d2e4a39e
AS
4140 else
4141 {
4142 switch (TYPE_CODE (type))
4c4b4cd2
PH
4143 {
4144 case TYPE_CODE_INT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || integer_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
d2e4a39e 4152 }
14f9c5c9
AS
4153}
4154
4c4b4cd2 4155/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4156
4157static int
d2e4a39e 4158scalar_type_p (struct type *type)
14f9c5c9
AS
4159{
4160 if (type == NULL)
4161 return 0;
d2e4a39e
AS
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4c4b4cd2
PH
4165 {
4166 case TYPE_CODE_INT:
4167 case TYPE_CODE_RANGE:
4168 case TYPE_CODE_ENUM:
4169 case TYPE_CODE_FLT:
4170 return 1;
4171 default:
4172 return 0;
4173 }
d2e4a39e 4174 }
14f9c5c9
AS
4175}
4176
4c4b4cd2 4177/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4178
4179static int
d2e4a39e 4180discrete_type_p (struct type *type)
14f9c5c9
AS
4181{
4182 if (type == NULL)
4183 return 0;
d2e4a39e
AS
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4c4b4cd2
PH
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
872f0337 4191 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4192 return 1;
4193 default:
4194 return 0;
4195 }
d2e4a39e 4196 }
14f9c5c9
AS
4197}
4198
4c4b4cd2
PH
4199/* Returns non-zero if OP with operands in the vector ARGS could be
4200 a user-defined function. Errs on the side of pre-defined operators
4201 (i.e., result 0). */
14f9c5c9
AS
4202
4203static int
d2e4a39e 4204possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4205{
76a01679 4206 struct type *type0 =
df407dfe 4207 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4208 struct type *type1 =
df407dfe 4209 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4210
4c4b4cd2
PH
4211 if (type0 == NULL)
4212 return 0;
4213
14f9c5c9
AS
4214 switch (op)
4215 {
4216 default:
4217 return 0;
4218
4219 case BINOP_ADD:
4220 case BINOP_SUB:
4221 case BINOP_MUL:
4222 case BINOP_DIV:
d2e4a39e 4223 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4224
4225 case BINOP_REM:
4226 case BINOP_MOD:
4227 case BINOP_BITWISE_AND:
4228 case BINOP_BITWISE_IOR:
4229 case BINOP_BITWISE_XOR:
d2e4a39e 4230 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4231
4232 case BINOP_EQUAL:
4233 case BINOP_NOTEQUAL:
4234 case BINOP_LESS:
4235 case BINOP_GTR:
4236 case BINOP_LEQ:
4237 case BINOP_GEQ:
d2e4a39e 4238 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4239
4240 case BINOP_CONCAT:
ee90b9ab 4241 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4242
4243 case BINOP_EXP:
d2e4a39e 4244 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4245
4246 case UNOP_NEG:
4247 case UNOP_PLUS:
4248 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4249 case UNOP_ABS:
4250 return (!numeric_type_p (type0));
14f9c5c9
AS
4251
4252 }
4253}
4254\f
4c4b4cd2 4255 /* Renaming */
14f9c5c9 4256
aeb5907d
JB
4257/* NOTES:
4258
4259 1. In the following, we assume that a renaming type's name may
4260 have an ___XD suffix. It would be nice if this went away at some
4261 point.
4262 2. We handle both the (old) purely type-based representation of
4263 renamings and the (new) variable-based encoding. At some point,
4264 it is devoutly to be hoped that the former goes away
4265 (FIXME: hilfinger-2007-07-09).
4266 3. Subprogram renamings are not implemented, although the XRS
4267 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4268
4269/* If SYM encodes a renaming,
4270
4271 <renaming> renames <renamed entity>,
4272
4273 sets *LEN to the length of the renamed entity's name,
4274 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4275 the string describing the subcomponent selected from the renamed
0963b4bd 4276 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4277 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4278 are undefined). Otherwise, returns a value indicating the category
4279 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4280 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4281 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4282 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4283 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4284 may be NULL, in which case they are not assigned.
4285
4286 [Currently, however, GCC does not generate subprogram renamings.] */
4287
4288enum ada_renaming_category
4289ada_parse_renaming (struct symbol *sym,
4290 const char **renamed_entity, int *len,
4291 const char **renaming_expr)
4292{
4293 enum ada_renaming_category kind;
4294 const char *info;
4295 const char *suffix;
4296
4297 if (sym == NULL)
4298 return ADA_NOT_RENAMING;
4299 switch (SYMBOL_CLASS (sym))
14f9c5c9 4300 {
aeb5907d
JB
4301 default:
4302 return ADA_NOT_RENAMING;
4303 case LOC_TYPEDEF:
4304 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4305 renamed_entity, len, renaming_expr);
4306 case LOC_LOCAL:
4307 case LOC_STATIC:
4308 case LOC_COMPUTED:
4309 case LOC_OPTIMIZED_OUT:
4310 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4311 if (info == NULL)
4312 return ADA_NOT_RENAMING;
4313 switch (info[5])
4314 {
4315 case '_':
4316 kind = ADA_OBJECT_RENAMING;
4317 info += 6;
4318 break;
4319 case 'E':
4320 kind = ADA_EXCEPTION_RENAMING;
4321 info += 7;
4322 break;
4323 case 'P':
4324 kind = ADA_PACKAGE_RENAMING;
4325 info += 7;
4326 break;
4327 case 'S':
4328 kind = ADA_SUBPROGRAM_RENAMING;
4329 info += 7;
4330 break;
4331 default:
4332 return ADA_NOT_RENAMING;
4333 }
14f9c5c9 4334 }
4c4b4cd2 4335
aeb5907d
JB
4336 if (renamed_entity != NULL)
4337 *renamed_entity = info;
4338 suffix = strstr (info, "___XE");
4339 if (suffix == NULL || suffix == info)
4340 return ADA_NOT_RENAMING;
4341 if (len != NULL)
4342 *len = strlen (info) - strlen (suffix);
4343 suffix += 5;
4344 if (renaming_expr != NULL)
4345 *renaming_expr = suffix;
4346 return kind;
4347}
4348
4349/* Assuming TYPE encodes a renaming according to the old encoding in
4350 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4351 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4352 ADA_NOT_RENAMING otherwise. */
4353static enum ada_renaming_category
4354parse_old_style_renaming (struct type *type,
4355 const char **renamed_entity, int *len,
4356 const char **renaming_expr)
4357{
4358 enum ada_renaming_category kind;
4359 const char *name;
4360 const char *info;
4361 const char *suffix;
14f9c5c9 4362
aeb5907d
JB
4363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4364 || TYPE_NFIELDS (type) != 1)
4365 return ADA_NOT_RENAMING;
14f9c5c9 4366
a737d952 4367 name = TYPE_NAME (type);
aeb5907d
JB
4368 if (name == NULL)
4369 return ADA_NOT_RENAMING;
4370
4371 name = strstr (name, "___XR");
4372 if (name == NULL)
4373 return ADA_NOT_RENAMING;
4374 switch (name[5])
4375 {
4376 case '\0':
4377 case '_':
4378 kind = ADA_OBJECT_RENAMING;
4379 break;
4380 case 'E':
4381 kind = ADA_EXCEPTION_RENAMING;
4382 break;
4383 case 'P':
4384 kind = ADA_PACKAGE_RENAMING;
4385 break;
4386 case 'S':
4387 kind = ADA_SUBPROGRAM_RENAMING;
4388 break;
4389 default:
4390 return ADA_NOT_RENAMING;
4391 }
14f9c5c9 4392
aeb5907d
JB
4393 info = TYPE_FIELD_NAME (type, 0);
4394 if (info == NULL)
4395 return ADA_NOT_RENAMING;
4396 if (renamed_entity != NULL)
4397 *renamed_entity = info;
4398 suffix = strstr (info, "___XE");
4399 if (renaming_expr != NULL)
4400 *renaming_expr = suffix + 5;
4401 if (suffix == NULL || suffix == info)
4402 return ADA_NOT_RENAMING;
4403 if (len != NULL)
4404 *len = suffix - info;
4405 return kind;
a5ee536b
JB
4406}
4407
4408/* Compute the value of the given RENAMING_SYM, which is expected to
4409 be a symbol encoding a renaming expression. BLOCK is the block
4410 used to evaluate the renaming. */
52ce6436 4411
a5ee536b
JB
4412static struct value *
4413ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4414 const struct block *block)
a5ee536b 4415{
bbc13ae3 4416 const char *sym_name;
a5ee536b 4417
bbc13ae3 4418 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4419 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4420 return evaluate_expression (expr.get ());
a5ee536b 4421}
14f9c5c9 4422\f
d2e4a39e 4423
4c4b4cd2 4424 /* Evaluation: Function Calls */
14f9c5c9 4425
4c4b4cd2 4426/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4427 lvalues, and otherwise has the side-effect of allocating memory
4428 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4429
d2e4a39e 4430static struct value *
40bc484c 4431ensure_lval (struct value *val)
14f9c5c9 4432{
40bc484c
JB
4433 if (VALUE_LVAL (val) == not_lval
4434 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4435 {
df407dfe 4436 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4437 const CORE_ADDR addr =
4438 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4439
a84a8a0d 4440 VALUE_LVAL (val) = lval_memory;
1a088441 4441 set_value_address (val, addr);
40bc484c 4442 write_memory (addr, value_contents (val), len);
c3e5cd34 4443 }
14f9c5c9
AS
4444
4445 return val;
4446}
4447
4448/* Return the value ACTUAL, converted to be an appropriate value for a
4449 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4450 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4451 values not residing in memory, updating it as needed. */
14f9c5c9 4452
a93c0eb6 4453struct value *
40bc484c 4454ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4455{
df407dfe 4456 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4457 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4458 struct type *formal_target =
4459 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4460 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4461 struct type *actual_target =
4462 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4463 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4464
4c4b4cd2 4465 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4466 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4467 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4468 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4469 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4470 {
a84a8a0d 4471 struct value *result;
5b4ee69b 4472
14f9c5c9 4473 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4474 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4475 result = desc_data (actual);
cb923fcc 4476 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4477 {
4478 if (VALUE_LVAL (actual) != lval_memory)
4479 {
4480 struct value *val;
5b4ee69b 4481
df407dfe 4482 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4483 val = allocate_value (actual_type);
990a07ab 4484 memcpy ((char *) value_contents_raw (val),
0fd88904 4485 (char *) value_contents (actual),
4c4b4cd2 4486 TYPE_LENGTH (actual_type));
40bc484c 4487 actual = ensure_lval (val);
4c4b4cd2 4488 }
a84a8a0d 4489 result = value_addr (actual);
4c4b4cd2 4490 }
a84a8a0d
JB
4491 else
4492 return actual;
b1af9e97 4493 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4494 }
4495 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4496 return ada_value_ind (actual);
8344af1e
JB
4497 else if (ada_is_aligner_type (formal_type))
4498 {
4499 /* We need to turn this parameter into an aligner type
4500 as well. */
4501 struct value *aligner = allocate_value (formal_type);
4502 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4503
4504 value_assign_to_component (aligner, component, actual);
4505 return aligner;
4506 }
14f9c5c9
AS
4507
4508 return actual;
4509}
4510
438c98a1
JB
4511/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4512 type TYPE. This is usually an inefficient no-op except on some targets
4513 (such as AVR) where the representation of a pointer and an address
4514 differs. */
4515
4516static CORE_ADDR
4517value_pointer (struct value *value, struct type *type)
4518{
4519 struct gdbarch *gdbarch = get_type_arch (type);
4520 unsigned len = TYPE_LENGTH (type);
224c3ddb 4521 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4522 CORE_ADDR addr;
4523
4524 addr = value_address (value);
4525 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4526 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4527 return addr;
4528}
4529
14f9c5c9 4530
4c4b4cd2
PH
4531/* Push a descriptor of type TYPE for array value ARR on the stack at
4532 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4533 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4534 to-descriptor type rather than a descriptor type), a struct value *
4535 representing a pointer to this descriptor. */
14f9c5c9 4536
d2e4a39e 4537static struct value *
40bc484c 4538make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4539{
d2e4a39e
AS
4540 struct type *bounds_type = desc_bounds_type (type);
4541 struct type *desc_type = desc_base_type (type);
4542 struct value *descriptor = allocate_value (desc_type);
4543 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4544 int i;
d2e4a39e 4545
0963b4bd
MS
4546 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4547 i > 0; i -= 1)
14f9c5c9 4548 {
19f220c3
JK
4549 modify_field (value_type (bounds), value_contents_writeable (bounds),
4550 ada_array_bound (arr, i, 0),
4551 desc_bound_bitpos (bounds_type, i, 0),
4552 desc_bound_bitsize (bounds_type, i, 0));
4553 modify_field (value_type (bounds), value_contents_writeable (bounds),
4554 ada_array_bound (arr, i, 1),
4555 desc_bound_bitpos (bounds_type, i, 1),
4556 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4557 }
d2e4a39e 4558
40bc484c 4559 bounds = ensure_lval (bounds);
d2e4a39e 4560
19f220c3
JK
4561 modify_field (value_type (descriptor),
4562 value_contents_writeable (descriptor),
4563 value_pointer (ensure_lval (arr),
4564 TYPE_FIELD_TYPE (desc_type, 0)),
4565 fat_pntr_data_bitpos (desc_type),
4566 fat_pntr_data_bitsize (desc_type));
4567
4568 modify_field (value_type (descriptor),
4569 value_contents_writeable (descriptor),
4570 value_pointer (bounds,
4571 TYPE_FIELD_TYPE (desc_type, 1)),
4572 fat_pntr_bounds_bitpos (desc_type),
4573 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4574
40bc484c 4575 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4576
4577 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4578 return value_addr (descriptor);
4579 else
4580 return descriptor;
4581}
14f9c5c9 4582\f
3d9434b5
JB
4583 /* Symbol Cache Module */
4584
3d9434b5 4585/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4586 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4587 on the type of entity being printed, the cache can make it as much
4588 as an order of magnitude faster than without it.
4589
4590 The descriptive type DWARF extension has significantly reduced
4591 the need for this cache, at least when DWARF is being used. However,
4592 even in this case, some expensive name-based symbol searches are still
4593 sometimes necessary - to find an XVZ variable, mostly. */
4594
ee01b665 4595/* Initialize the contents of SYM_CACHE. */
3d9434b5 4596
ee01b665
JB
4597static void
4598ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4599{
4600 obstack_init (&sym_cache->cache_space);
4601 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4602}
3d9434b5 4603
ee01b665
JB
4604/* Free the memory used by SYM_CACHE. */
4605
4606static void
4607ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4608{
ee01b665
JB
4609 obstack_free (&sym_cache->cache_space, NULL);
4610 xfree (sym_cache);
4611}
3d9434b5 4612
ee01b665
JB
4613/* Return the symbol cache associated to the given program space PSPACE.
4614 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4615
ee01b665
JB
4616static struct ada_symbol_cache *
4617ada_get_symbol_cache (struct program_space *pspace)
4618{
4619 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4620
66c168ae 4621 if (pspace_data->sym_cache == NULL)
ee01b665 4622 {
66c168ae
JB
4623 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4624 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4625 }
4626
66c168ae 4627 return pspace_data->sym_cache;
ee01b665 4628}
3d9434b5
JB
4629
4630/* Clear all entries from the symbol cache. */
4631
4632static void
4633ada_clear_symbol_cache (void)
4634{
ee01b665
JB
4635 struct ada_symbol_cache *sym_cache
4636 = ada_get_symbol_cache (current_program_space);
4637
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4640}
4641
fe978cb0 4642/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4643 Return it if found, or NULL otherwise. */
4644
4645static struct cache_entry **
fe978cb0 4646find_entry (const char *name, domain_enum domain)
3d9434b5 4647{
ee01b665
JB
4648 struct ada_symbol_cache *sym_cache
4649 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4650 int h = msymbol_hash (name) % HASH_SIZE;
4651 struct cache_entry **e;
4652
ee01b665 4653 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4654 {
fe978cb0 4655 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4656 return e;
4657 }
4658 return NULL;
4659}
4660
fe978cb0 4661/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4662 Return 1 if found, 0 otherwise.
4663
4664 If an entry was found and SYM is not NULL, set *SYM to the entry's
4665 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4666
96d887e8 4667static int
fe978cb0 4668lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4669 struct symbol **sym, const struct block **block)
96d887e8 4670{
fe978cb0 4671 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4672
4673 if (e == NULL)
4674 return 0;
4675 if (sym != NULL)
4676 *sym = (*e)->sym;
4677 if (block != NULL)
4678 *block = (*e)->block;
4679 return 1;
96d887e8
PH
4680}
4681
3d9434b5 4682/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4683 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4684
96d887e8 4685static void
fe978cb0 4686cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4687 const struct block *block)
96d887e8 4688{
ee01b665
JB
4689 struct ada_symbol_cache *sym_cache
4690 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4691 int h;
4692 char *copy;
4693 struct cache_entry *e;
4694
1994afbf
DE
4695 /* Symbols for builtin types don't have a block.
4696 For now don't cache such symbols. */
4697 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4698 return;
4699
3d9434b5
JB
4700 /* If the symbol is a local symbol, then do not cache it, as a search
4701 for that symbol depends on the context. To determine whether
4702 the symbol is local or not, we check the block where we found it
4703 against the global and static blocks of its associated symtab. */
4704 if (sym
08be3fe3 4705 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4706 GLOBAL_BLOCK) != block
08be3fe3 4707 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4708 STATIC_BLOCK) != block)
3d9434b5
JB
4709 return;
4710
4711 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4712 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4713 e->next = sym_cache->root[h];
4714 sym_cache->root[h] = e;
224c3ddb
SM
4715 e->name = copy
4716 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4717 strcpy (copy, name);
4718 e->sym = sym;
fe978cb0 4719 e->domain = domain;
3d9434b5 4720 e->block = block;
96d887e8 4721}
4c4b4cd2
PH
4722\f
4723 /* Symbol Lookup */
4724
b5ec771e
PA
4725/* Return the symbol name match type that should be used used when
4726 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4727
4728 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4729 for Ada lookups. */
c0431670 4730
b5ec771e
PA
4731static symbol_name_match_type
4732name_match_type_from_name (const char *lookup_name)
c0431670 4733{
b5ec771e
PA
4734 return (strstr (lookup_name, "__") == NULL
4735 ? symbol_name_match_type::WILD
4736 : symbol_name_match_type::FULL);
c0431670
JB
4737}
4738
4c4b4cd2
PH
4739/* Return the result of a standard (literal, C-like) lookup of NAME in
4740 given DOMAIN, visible from lexical block BLOCK. */
4741
4742static struct symbol *
4743standard_lookup (const char *name, const struct block *block,
4744 domain_enum domain)
4745{
acbd605d 4746 /* Initialize it just to avoid a GCC false warning. */
6640a367 4747 struct block_symbol sym = {};
4c4b4cd2 4748
d12307c1
PMR
4749 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4750 return sym.symbol;
a2cd4f14 4751 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4752 cache_symbol (name, domain, sym.symbol, sym.block);
4753 return sym.symbol;
4c4b4cd2
PH
4754}
4755
4756
4757/* Non-zero iff there is at least one non-function/non-enumeral symbol
4758 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4759 since they contend in overloading in the same way. */
4760static int
d12307c1 4761is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4762{
4763 int i;
4764
4765 for (i = 0; i < n; i += 1)
d12307c1
PMR
4766 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4767 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4768 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4769 return 1;
4770
4771 return 0;
4772}
4773
4774/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4775 struct types. Otherwise, they may not. */
14f9c5c9
AS
4776
4777static int
d2e4a39e 4778equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4779{
d2e4a39e 4780 if (type0 == type1)
14f9c5c9 4781 return 1;
d2e4a39e 4782 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4783 || TYPE_CODE (type0) != TYPE_CODE (type1))
4784 return 0;
d2e4a39e 4785 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4786 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4787 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4788 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4789 return 1;
d2e4a39e 4790
14f9c5c9
AS
4791 return 0;
4792}
4793
4794/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4795 no more defined than that of SYM1. */
14f9c5c9
AS
4796
4797static int
d2e4a39e 4798lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4799{
4800 if (sym0 == sym1)
4801 return 1;
176620f1 4802 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4803 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4804 return 0;
4805
d2e4a39e 4806 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4807 {
4808 case LOC_UNDEF:
4809 return 1;
4810 case LOC_TYPEDEF:
4811 {
4c4b4cd2
PH
4812 struct type *type0 = SYMBOL_TYPE (sym0);
4813 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4814 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4815 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4816 int len0 = strlen (name0);
5b4ee69b 4817
4c4b4cd2
PH
4818 return
4819 TYPE_CODE (type0) == TYPE_CODE (type1)
4820 && (equiv_types (type0, type1)
4821 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4822 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4823 }
4824 case LOC_CONST:
4825 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4826 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4827 default:
4828 return 0;
14f9c5c9
AS
4829 }
4830}
4831
d12307c1 4832/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4833 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4834
4835static void
76a01679
JB
4836add_defn_to_vec (struct obstack *obstackp,
4837 struct symbol *sym,
f0c5f9b2 4838 const struct block *block)
14f9c5c9
AS
4839{
4840 int i;
d12307c1 4841 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4842
529cad9c
PH
4843 /* Do not try to complete stub types, as the debugger is probably
4844 already scanning all symbols matching a certain name at the
4845 time when this function is called. Trying to replace the stub
4846 type by its associated full type will cause us to restart a scan
4847 which may lead to an infinite recursion. Instead, the client
4848 collecting the matching symbols will end up collecting several
4849 matches, with at least one of them complete. It can then filter
4850 out the stub ones if needed. */
4851
4c4b4cd2
PH
4852 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4853 {
d12307c1 4854 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4855 return;
d12307c1 4856 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4857 {
d12307c1 4858 prevDefns[i].symbol = sym;
4c4b4cd2 4859 prevDefns[i].block = block;
4c4b4cd2 4860 return;
76a01679 4861 }
4c4b4cd2
PH
4862 }
4863
4864 {
d12307c1 4865 struct block_symbol info;
4c4b4cd2 4866
d12307c1 4867 info.symbol = sym;
4c4b4cd2 4868 info.block = block;
d12307c1 4869 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4870 }
4871}
4872
d12307c1
PMR
4873/* Number of block_symbol structures currently collected in current vector in
4874 OBSTACKP. */
4c4b4cd2 4875
76a01679
JB
4876static int
4877num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4878{
d12307c1 4879 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4880}
4881
d12307c1
PMR
4882/* Vector of block_symbol structures currently collected in current vector in
4883 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4884
d12307c1 4885static struct block_symbol *
4c4b4cd2
PH
4886defns_collected (struct obstack *obstackp, int finish)
4887{
4888 if (finish)
224c3ddb 4889 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4890 else
d12307c1 4891 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4892}
4893
7c7b6655
TT
4894/* Return a bound minimal symbol matching NAME according to Ada
4895 decoding rules. Returns an invalid symbol if there is no such
4896 minimal symbol. Names prefixed with "standard__" are handled
4897 specially: "standard__" is first stripped off, and only static and
4898 global symbols are searched. */
4c4b4cd2 4899
7c7b6655 4900struct bound_minimal_symbol
96d887e8 4901ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4902{
7c7b6655 4903 struct bound_minimal_symbol result;
4c4b4cd2 4904
7c7b6655
TT
4905 memset (&result, 0, sizeof (result));
4906
b5ec771e
PA
4907 symbol_name_match_type match_type = name_match_type_from_name (name);
4908 lookup_name_info lookup_name (name, match_type);
4909
4910 symbol_name_matcher_ftype *match_name
4911 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4912
2030c079 4913 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4914 {
7932255d 4915 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4916 {
4917 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4918 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4919 {
4920 result.minsym = msymbol;
4921 result.objfile = objfile;
4922 break;
4923 }
4924 }
4925 }
4c4b4cd2 4926
7c7b6655 4927 return result;
96d887e8 4928}
4c4b4cd2 4929
2ff0a947
TT
4930/* Return all the bound minimal symbols matching NAME according to Ada
4931 decoding rules. Returns an empty vector if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936static std::vector<struct bound_minimal_symbol>
4937ada_lookup_simple_minsyms (const char *name)
4938{
4939 std::vector<struct bound_minimal_symbol> result;
4940
4941 symbol_name_match_type match_type = name_match_type_from_name (name);
4942 lookup_name_info lookup_name (name, match_type);
4943
4944 symbol_name_matcher_ftype *match_name
4945 = ada_get_symbol_name_matcher (lookup_name);
4946
4947 for (objfile *objfile : current_program_space->objfiles ())
4948 {
4949 for (minimal_symbol *msymbol : objfile->msymbols ())
4950 {
4951 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4952 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4953 result.push_back ({msymbol, objfile});
4954 }
4955 }
4956
4957 return result;
4958}
4959
96d887e8
PH
4960/* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4c4b4cd2 4965
96d887e8
PH
4966static void
4967add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
96d887e8 4970{
96d887e8 4971}
14f9c5c9 4972
96d887e8
PH
4973/* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
14f9c5c9 4975
96d887e8
PH
4976static int
4977is_nondebugging_type (struct type *type)
4978{
0d5cff50 4979 const char *name = ada_type_name (type);
5b4ee69b 4980
96d887e8
PH
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982}
4c4b4cd2 4983
8f17729f
JB
4984/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991static int
4992ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993{
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
0d5cff50
DE
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025}
5026
5027/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047static int
54d343a2 5048symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5049{
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
54d343a2 5060 for (i = 0; i < syms.size (); i++)
d12307c1 5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
54d343a2 5065 for (i = 1; i < syms.size (); i++)
d12307c1 5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5070 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
54d343a2 5078 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 return 1;
5084}
5085
54d343a2 5086/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
4c4b4cd2 5092
96d887e8 5093static int
54d343a2 5094remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5095{
5096 int i, j;
4c4b4cd2 5097
8f17729f
JB
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
54d343a2
TT
5101 if (syms->size () < 2)
5102 return syms->size ();
8f17729f 5103
96d887e8 5104 i = 0;
54d343a2 5105 while (i < syms->size ())
96d887e8 5106 {
a35ddb44 5107 int remove_p = 0;
339c13b6
JB
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
54d343a2
TT
5112 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5113 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5114 {
54d343a2 5115 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5116 {
5117 if (j != i
54d343a2
TT
5118 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5119 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5121 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5122 remove_p = 1;
339c13b6
JB
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
54d343a2
TT
5129 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5130 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5132 {
54d343a2 5133 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5134 {
5135 if (i != j
54d343a2
TT
5136 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5138 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5139 && SYMBOL_CLASS ((*syms)[i].symbol)
5140 == SYMBOL_CLASS ((*syms)[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5143 remove_p = 1;
4c4b4cd2 5144 }
4c4b4cd2 5145 }
339c13b6 5146
a35ddb44 5147 if (remove_p)
54d343a2 5148 syms->erase (syms->begin () + i);
339c13b6 5149
96d887e8 5150 i += 1;
14f9c5c9 5151 }
8f17729f
JB
5152
5153 /* If all the remaining symbols are identical enumerals, then
5154 just keep the first one and discard the rest.
5155
5156 Unlike what we did previously, we do not discard any entry
5157 unless they are ALL identical. This is because the symbol
5158 comparison is not a strict comparison, but rather a practical
5159 comparison. If all symbols are considered identical, then
5160 we can just go ahead and use the first one and discard the rest.
5161 But if we cannot reduce the list to a single element, we have
5162 to ask the user to disambiguate anyways. And if we have to
5163 present a multiple-choice menu, it's less confusing if the list
5164 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5165 if (symbols_are_identical_enums (*syms))
5166 syms->resize (1);
8f17729f 5167
54d343a2 5168 return syms->size ();
14f9c5c9
AS
5169}
5170
96d887e8
PH
5171/* Given a type that corresponds to a renaming entity, use the type name
5172 to extract the scope (package name or function name, fully qualified,
5173 and following the GNAT encoding convention) where this renaming has been
49d83361 5174 defined. */
4c4b4cd2 5175
49d83361 5176static std::string
96d887e8 5177xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5178{
96d887e8 5179 /* The renaming types adhere to the following convention:
0963b4bd 5180 <scope>__<rename>___<XR extension>.
96d887e8
PH
5181 So, to extract the scope, we search for the "___XR" extension,
5182 and then backtrack until we find the first "__". */
76a01679 5183
a737d952 5184 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5185 const char *suffix = strstr (name, "___XR");
5186 const char *last;
14f9c5c9 5187
96d887e8
PH
5188 /* Now, backtrack a bit until we find the first "__". Start looking
5189 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5190
96d887e8
PH
5191 for (last = suffix - 3; last > name; last--)
5192 if (last[0] == '_' && last[1] == '_')
5193 break;
76a01679 5194
96d887e8 5195 /* Make a copy of scope and return it. */
49d83361 5196 return std::string (name, last);
4c4b4cd2
PH
5197}
5198
96d887e8 5199/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5200
96d887e8
PH
5201static int
5202is_package_name (const char *name)
4c4b4cd2 5203{
96d887e8
PH
5204 /* Here, We take advantage of the fact that no symbols are generated
5205 for packages, while symbols are generated for each function.
5206 So the condition for NAME represent a package becomes equivalent
5207 to NAME not existing in our list of symbols. There is only one
5208 small complication with library-level functions (see below). */
4c4b4cd2 5209
96d887e8
PH
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
14f9c5c9 5214
96d887e8
PH
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
14f9c5c9 5217
96d887e8 5218 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5219 functions names cannot contain "__" in them. */
96d887e8
PH
5220 if (strstr (name, "__") != NULL)
5221 return 0;
4c4b4cd2 5222
528e1572 5223 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5224
528e1572 5225 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5226}
14f9c5c9 5227
96d887e8 5228/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5229 not visible from FUNCTION_NAME. */
14f9c5c9 5230
96d887e8 5231static int
0d5cff50 5232old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5233{
aeb5907d
JB
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
49d83361 5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5238
96d887e8 5239 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
76a01679 5245
96d887e8
PH
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
61012eef 5250 if (startswith (function_name, "_ada_"))
96d887e8 5251 function_name += 5;
f26caa11 5252
49d83361 5253 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5254}
5255
aeb5907d
JB
5256/* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
96d887e8
PH
5261
5262 Rationale:
aeb5907d
JB
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
f26caa11 5275
96d887e8
PH
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
4c4b4cd2 5292
14f9c5c9 5293static int
54d343a2
TT
5294remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
4c4b4cd2
PH
5296{
5297 struct symbol *current_function;
0d5cff50 5298 const char *current_function_name;
4c4b4cd2 5299 int i;
aeb5907d
JB
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
0963b4bd 5304 First, zero out such symbols, then compress. */
aeb5907d 5305 is_new_style_renaming = 0;
54d343a2 5306 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5307 {
54d343a2
TT
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = SYMBOL_LINKAGE_NAME (sym);
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5b4ee69b 5322
aeb5907d 5323 is_new_style_renaming = 1;
54d343a2
TT
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5327 name_len) == 0
54d343a2
TT
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
aeb5907d
JB
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
54d343a2
TT
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
aeb5907d 5338 {
54d343a2 5339 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5340 k += 1;
5341 }
5342 return k;
5343 }
4c4b4cd2
PH
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
76a01679 5347
4c4b4cd2 5348 if (current_block == NULL)
54d343a2 5349 return syms->size ();
76a01679 5350
7f0df278 5351 current_function = block_linkage_function (current_block);
4c4b4cd2 5352 if (current_function == NULL)
54d343a2 5353 return syms->size ();
4c4b4cd2
PH
5354
5355 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5356 if (current_function_name == NULL)
54d343a2 5357 return syms->size ();
4c4b4cd2
PH
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
54d343a2 5364 while (i < syms->size ())
4c4b4cd2 5365 {
54d343a2 5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5367 == ADA_OBJECT_RENAMING
54d343a2
TT
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5371 else
5372 i += 1;
5373 }
5374
54d343a2 5375 return syms->size ();
4c4b4cd2
PH
5376}
5377
339c13b6
JB
5378/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388static void
b5ec771e
PA
5389ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
339c13b6
JB
5392{
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
b5ec771e 5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5412}
5413
ccefe4c4 5414/* An object of this type is used as the user_data argument when
40658b94 5415 calling the map_matching_symbols method. */
ccefe4c4 5416
40658b94 5417struct match_data
ccefe4c4 5418{
40658b94 5419 struct objfile *objfile;
ccefe4c4 5420 struct obstack *obstackp;
40658b94
PH
5421 struct symbol *arg_sym;
5422 int found_sym;
ccefe4c4
TT
5423};
5424
22cee43f 5425/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5426 to a list of symbols. DATA0 is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
ccefe4c4 5433
40658b94 5434static int
582942f4
TT
5435aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5436 void *data0)
ccefe4c4 5437{
40658b94
PH
5438 struct match_data *data = (struct match_data *) data0;
5439
5440 if (sym == NULL)
5441 {
5442 if (!data->found_sym && data->arg_sym != NULL)
5443 add_defn_to_vec (data->obstackp,
5444 fixup_symbol_section (data->arg_sym, data->objfile),
5445 block);
5446 data->found_sym = 0;
5447 data->arg_sym = NULL;
5448 }
5449 else
5450 {
5451 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5452 return 0;
5453 else if (SYMBOL_IS_ARGUMENT (sym))
5454 data->arg_sym = sym;
5455 else
5456 {
5457 data->found_sym = 1;
5458 add_defn_to_vec (data->obstackp,
5459 fixup_symbol_section (sym, data->objfile),
5460 block);
5461 }
5462 }
5463 return 0;
5464}
5465
b5ec771e
PA
5466/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5467 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5468 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5469
5470static int
5471ada_add_block_renamings (struct obstack *obstackp,
5472 const struct block *block,
b5ec771e
PA
5473 const lookup_name_info &lookup_name,
5474 domain_enum domain)
22cee43f
PMR
5475{
5476 struct using_direct *renaming;
5477 int defns_mark = num_defns_collected (obstackp);
5478
b5ec771e
PA
5479 symbol_name_matcher_ftype *name_match
5480 = ada_get_symbol_name_matcher (lookup_name);
5481
22cee43f
PMR
5482 for (renaming = block_using (block);
5483 renaming != NULL;
5484 renaming = renaming->next)
5485 {
5486 const char *r_name;
22cee43f
PMR
5487
5488 /* Avoid infinite recursions: skip this renaming if we are actually
5489 already traversing it.
5490
5491 Currently, symbol lookup in Ada don't use the namespace machinery from
5492 C++/Fortran support: skip namespace imports that use them. */
5493 if (renaming->searched
5494 || (renaming->import_src != NULL
5495 && renaming->import_src[0] != '\0')
5496 || (renaming->import_dest != NULL
5497 && renaming->import_dest[0] != '\0'))
5498 continue;
5499 renaming->searched = 1;
5500
5501 /* TODO: here, we perform another name-based symbol lookup, which can
5502 pull its own multiple overloads. In theory, we should be able to do
5503 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5504 not a simple name. But in order to do this, we would need to enhance
5505 the DWARF reader to associate a symbol to this renaming, instead of a
5506 name. So, for now, we do something simpler: re-use the C++/Fortran
5507 namespace machinery. */
5508 r_name = (renaming->alias != NULL
5509 ? renaming->alias
5510 : renaming->declaration);
b5ec771e
PA
5511 if (name_match (r_name, lookup_name, NULL))
5512 {
5513 lookup_name_info decl_lookup_name (renaming->declaration,
5514 lookup_name.match_type ());
5515 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5516 1, NULL);
5517 }
22cee43f
PMR
5518 renaming->searched = 0;
5519 }
5520 return num_defns_collected (obstackp) != defns_mark;
5521}
5522
db230ce3
JB
5523/* Implements compare_names, but only applying the comparision using
5524 the given CASING. */
5b4ee69b 5525
40658b94 5526static int
db230ce3
JB
5527compare_names_with_case (const char *string1, const char *string2,
5528 enum case_sensitivity casing)
40658b94
PH
5529{
5530 while (*string1 != '\0' && *string2 != '\0')
5531 {
db230ce3
JB
5532 char c1, c2;
5533
40658b94
PH
5534 if (isspace (*string1) || isspace (*string2))
5535 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5536
5537 if (casing == case_sensitive_off)
5538 {
5539 c1 = tolower (*string1);
5540 c2 = tolower (*string2);
5541 }
5542 else
5543 {
5544 c1 = *string1;
5545 c2 = *string2;
5546 }
5547 if (c1 != c2)
40658b94 5548 break;
db230ce3 5549
40658b94
PH
5550 string1 += 1;
5551 string2 += 1;
5552 }
db230ce3 5553
40658b94
PH
5554 switch (*string1)
5555 {
5556 case '(':
5557 return strcmp_iw_ordered (string1, string2);
5558 case '_':
5559 if (*string2 == '\0')
5560 {
052874e8 5561 if (is_name_suffix (string1))
40658b94
PH
5562 return 0;
5563 else
1a1d5513 5564 return 1;
40658b94 5565 }
dbb8534f 5566 /* FALLTHROUGH */
40658b94
PH
5567 default:
5568 if (*string2 == '(')
5569 return strcmp_iw_ordered (string1, string2);
5570 else
db230ce3
JB
5571 {
5572 if (casing == case_sensitive_off)
5573 return tolower (*string1) - tolower (*string2);
5574 else
5575 return *string1 - *string2;
5576 }
40658b94 5577 }
ccefe4c4
TT
5578}
5579
db230ce3
JB
5580/* Compare STRING1 to STRING2, with results as for strcmp.
5581 Compatible with strcmp_iw_ordered in that...
5582
5583 strcmp_iw_ordered (STRING1, STRING2) <= 0
5584
5585 ... implies...
5586
5587 compare_names (STRING1, STRING2) <= 0
5588
5589 (they may differ as to what symbols compare equal). */
5590
5591static int
5592compare_names (const char *string1, const char *string2)
5593{
5594 int result;
5595
5596 /* Similar to what strcmp_iw_ordered does, we need to perform
5597 a case-insensitive comparison first, and only resort to
5598 a second, case-sensitive, comparison if the first one was
5599 not sufficient to differentiate the two strings. */
5600
5601 result = compare_names_with_case (string1, string2, case_sensitive_off);
5602 if (result == 0)
5603 result = compare_names_with_case (string1, string2, case_sensitive_on);
5604
5605 return result;
5606}
5607
b5ec771e
PA
5608/* Convenience function to get at the Ada encoded lookup name for
5609 LOOKUP_NAME, as a C string. */
5610
5611static const char *
5612ada_lookup_name (const lookup_name_info &lookup_name)
5613{
5614 return lookup_name.ada ().lookup_name ().c_str ();
5615}
5616
339c13b6 5617/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5618 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5619 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5620 symbols otherwise. */
339c13b6
JB
5621
5622static void
b5ec771e
PA
5623add_nonlocal_symbols (struct obstack *obstackp,
5624 const lookup_name_info &lookup_name,
5625 domain_enum domain, int global)
339c13b6 5626{
40658b94 5627 struct match_data data;
339c13b6 5628
6475f2fe 5629 memset (&data, 0, sizeof data);
ccefe4c4 5630 data.obstackp = obstackp;
339c13b6 5631
b5ec771e
PA
5632 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5633
2030c079 5634 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5635 {
5636 data.objfile = objfile;
5637
5638 if (is_wild_match)
b5ec771e
PA
5639 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5640 domain, global,
4186eb54 5641 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5642 symbol_name_match_type::WILD,
5643 NULL);
40658b94 5644 else
b5ec771e
PA
5645 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5646 domain, global,
4186eb54 5647 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5648 symbol_name_match_type::FULL,
5649 compare_names);
22cee43f 5650
b669c953 5651 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5652 {
5653 const struct block *global_block
5654 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5655
b5ec771e
PA
5656 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5657 domain))
22cee43f
PMR
5658 data.found_sym = 1;
5659 }
40658b94
PH
5660 }
5661
5662 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5663 {
b5ec771e
PA
5664 const char *name = ada_lookup_name (lookup_name);
5665 std::string name1 = std::string ("<_ada_") + name + '>';
5666
2030c079 5667 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5668 {
40658b94 5669 data.objfile = objfile;
b5ec771e
PA
5670 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5671 domain, global,
0963b4bd
MS
5672 aux_add_nonlocal_symbols,
5673 &data,
b5ec771e
PA
5674 symbol_name_match_type::FULL,
5675 compare_names);
40658b94
PH
5676 }
5677 }
339c13b6
JB
5678}
5679
b5ec771e
PA
5680/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5681 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5682 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5683
22cee43f
PMR
5684 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5685 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5686 is the one match returned (no other matches in that or
d9680e73 5687 enclosing blocks is returned). If there are any matches in or
22cee43f 5688 surrounding BLOCK, then these alone are returned.
4eeaa230 5689
b5ec771e
PA
5690 Names prefixed with "standard__" are handled specially:
5691 "standard__" is first stripped off (by the lookup_name
5692 constructor), and only static and global symbols are searched.
14f9c5c9 5693
22cee43f
PMR
5694 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5695 to lookup global symbols. */
5696
5697static void
5698ada_add_all_symbols (struct obstack *obstackp,
5699 const struct block *block,
b5ec771e 5700 const lookup_name_info &lookup_name,
22cee43f
PMR
5701 domain_enum domain,
5702 int full_search,
5703 int *made_global_lookup_p)
14f9c5c9
AS
5704{
5705 struct symbol *sym;
14f9c5c9 5706
22cee43f
PMR
5707 if (made_global_lookup_p)
5708 *made_global_lookup_p = 0;
339c13b6
JB
5709
5710 /* Special case: If the user specifies a symbol name inside package
5711 Standard, do a non-wild matching of the symbol name without
5712 the "standard__" prefix. This was primarily introduced in order
5713 to allow the user to specifically access the standard exceptions
5714 using, for instance, Standard.Constraint_Error when Constraint_Error
5715 is ambiguous (due to the user defining its own Constraint_Error
5716 entity inside its program). */
b5ec771e
PA
5717 if (lookup_name.ada ().standard_p ())
5718 block = NULL;
4c4b4cd2 5719
339c13b6 5720 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5721
4eeaa230
DE
5722 if (block != NULL)
5723 {
5724 if (full_search)
b5ec771e 5725 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5726 else
5727 {
5728 /* In the !full_search case we're are being called by
5729 ada_iterate_over_symbols, and we don't want to search
5730 superblocks. */
b5ec771e 5731 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5732 }
22cee43f
PMR
5733 if (num_defns_collected (obstackp) > 0 || !full_search)
5734 return;
4eeaa230 5735 }
d2e4a39e 5736
339c13b6
JB
5737 /* No non-global symbols found. Check our cache to see if we have
5738 already performed this search before. If we have, then return
5739 the same result. */
5740
b5ec771e
PA
5741 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5742 domain, &sym, &block))
4c4b4cd2
PH
5743 {
5744 if (sym != NULL)
b5ec771e 5745 add_defn_to_vec (obstackp, sym, block);
22cee43f 5746 return;
4c4b4cd2 5747 }
14f9c5c9 5748
22cee43f
PMR
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 1;
b1eedac9 5751
339c13b6
JB
5752 /* Search symbols from all global blocks. */
5753
b5ec771e 5754 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5755
4c4b4cd2 5756 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5757 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5758
22cee43f 5759 if (num_defns_collected (obstackp) == 0)
b5ec771e 5760 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5761}
5762
b5ec771e
PA
5763/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5764 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5765 matches.
54d343a2
TT
5766 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5767 found and the blocks and symbol tables (if any) in which they were
5768 found.
22cee43f
PMR
5769
5770 When full_search is non-zero, any non-function/non-enumeral
5771 symbol match within the nest of blocks whose innermost member is BLOCK,
5772 is the one match returned (no other matches in that or
5773 enclosing blocks is returned). If there are any matches in or
5774 surrounding BLOCK, then these alone are returned.
5775
5776 Names prefixed with "standard__" are handled specially: "standard__"
5777 is first stripped off, and only static and global symbols are searched. */
5778
5779static int
b5ec771e
PA
5780ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5781 const struct block *block,
22cee43f 5782 domain_enum domain,
54d343a2 5783 std::vector<struct block_symbol> *results,
22cee43f
PMR
5784 int full_search)
5785{
22cee43f
PMR
5786 int syms_from_global_search;
5787 int ndefns;
ec6a20c2 5788 auto_obstack obstack;
22cee43f 5789
ec6a20c2 5790 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5791 domain, full_search, &syms_from_global_search);
14f9c5c9 5792
ec6a20c2
JB
5793 ndefns = num_defns_collected (&obstack);
5794
54d343a2
TT
5795 struct block_symbol *base = defns_collected (&obstack, 1);
5796 for (int i = 0; i < ndefns; ++i)
5797 results->push_back (base[i]);
4c4b4cd2 5798
54d343a2 5799 ndefns = remove_extra_symbols (results);
4c4b4cd2 5800
b1eedac9 5801 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5802 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5803
b1eedac9 5804 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5805 cache_symbol (ada_lookup_name (lookup_name), domain,
5806 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5807
54d343a2 5808 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5809
14f9c5c9
AS
5810 return ndefns;
5811}
5812
b5ec771e 5813/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5814 in global scopes, returning the number of matches, and filling *RESULTS
5815 with (SYM,BLOCK) tuples.
ec6a20c2 5816
4eeaa230
DE
5817 See ada_lookup_symbol_list_worker for further details. */
5818
5819int
b5ec771e 5820ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5821 domain_enum domain,
5822 std::vector<struct block_symbol> *results)
4eeaa230 5823{
b5ec771e
PA
5824 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5825 lookup_name_info lookup_name (name, name_match_type);
5826
5827 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5828}
5829
5830/* Implementation of the la_iterate_over_symbols method. */
5831
5832static void
14bc53a8 5833ada_iterate_over_symbols
b5ec771e
PA
5834 (const struct block *block, const lookup_name_info &name,
5835 domain_enum domain,
14bc53a8 5836 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5837{
5838 int ndefs, i;
54d343a2 5839 std::vector<struct block_symbol> results;
4eeaa230
DE
5840
5841 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5842
4eeaa230
DE
5843 for (i = 0; i < ndefs; ++i)
5844 {
7e41c8db 5845 if (!callback (&results[i]))
4eeaa230
DE
5846 break;
5847 }
5848}
5849
4e5c77fe
JB
5850/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5851 to 1, but choosing the first symbol found if there are multiple
5852 choices.
5853
5e2336be
JB
5854 The result is stored in *INFO, which must be non-NULL.
5855 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5856
5857void
5858ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5859 domain_enum domain,
d12307c1 5860 struct block_symbol *info)
14f9c5c9 5861{
b5ec771e
PA
5862 /* Since we already have an encoded name, wrap it in '<>' to force a
5863 verbatim match. Otherwise, if the name happens to not look like
5864 an encoded name (because it doesn't include a "__"),
5865 ada_lookup_name_info would re-encode/fold it again, and that
5866 would e.g., incorrectly lowercase object renaming names like
5867 "R28b" -> "r28b". */
5868 std::string verbatim = std::string ("<") + name + '>';
5869
5e2336be 5870 gdb_assert (info != NULL);
f98fc17b 5871 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5872}
aeb5907d
JB
5873
5874/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5875 scope and in global scopes, or NULL if none. NAME is folded and
5876 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5877 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5878 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5879
d12307c1 5880struct block_symbol
aeb5907d 5881ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5882 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5883{
5884 if (is_a_field_of_this != NULL)
5885 *is_a_field_of_this = 0;
5886
54d343a2 5887 std::vector<struct block_symbol> candidates;
f98fc17b 5888 int n_candidates;
f98fc17b
PA
5889
5890 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5891
5892 if (n_candidates == 0)
54d343a2 5893 return {};
f98fc17b
PA
5894
5895 block_symbol info = candidates[0];
5896 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5897 return info;
4c4b4cd2 5898}
14f9c5c9 5899
d12307c1 5900static struct block_symbol
f606139a
DE
5901ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5902 const char *name,
76a01679 5903 const struct block *block,
21b556f4 5904 const domain_enum domain)
4c4b4cd2 5905{
d12307c1 5906 struct block_symbol sym;
04dccad0
JB
5907
5908 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5909 if (sym.symbol != NULL)
04dccad0
JB
5910 return sym;
5911
5912 /* If we haven't found a match at this point, try the primitive
5913 types. In other languages, this search is performed before
5914 searching for global symbols in order to short-circuit that
5915 global-symbol search if it happens that the name corresponds
5916 to a primitive type. But we cannot do the same in Ada, because
5917 it is perfectly legitimate for a program to declare a type which
5918 has the same name as a standard type. If looking up a type in
5919 that situation, we have traditionally ignored the primitive type
5920 in favor of user-defined types. This is why, unlike most other
5921 languages, we search the primitive types this late and only after
5922 having searched the global symbols without success. */
5923
5924 if (domain == VAR_DOMAIN)
5925 {
5926 struct gdbarch *gdbarch;
5927
5928 if (block == NULL)
5929 gdbarch = target_gdbarch ();
5930 else
5931 gdbarch = block_gdbarch (block);
d12307c1
PMR
5932 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5933 if (sym.symbol != NULL)
04dccad0
JB
5934 return sym;
5935 }
5936
6640a367 5937 return {};
14f9c5c9
AS
5938}
5939
5940
4c4b4cd2
PH
5941/* True iff STR is a possible encoded suffix of a normal Ada name
5942 that is to be ignored for matching purposes. Suffixes of parallel
5943 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5944 are given by any of the regular expressions:
4c4b4cd2 5945
babe1480
JB
5946 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5947 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5948 TKB [subprogram suffix for task bodies]
babe1480 5949 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5950 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5951
5952 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5953 match is performed. This sequence is used to differentiate homonyms,
5954 is an optional part of a valid name suffix. */
4c4b4cd2 5955
14f9c5c9 5956static int
d2e4a39e 5957is_name_suffix (const char *str)
14f9c5c9
AS
5958{
5959 int k;
4c4b4cd2
PH
5960 const char *matching;
5961 const int len = strlen (str);
5962
babe1480
JB
5963 /* Skip optional leading __[0-9]+. */
5964
4c4b4cd2
PH
5965 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5966 {
babe1480
JB
5967 str += 3;
5968 while (isdigit (str[0]))
5969 str += 1;
4c4b4cd2 5970 }
babe1480
JB
5971
5972 /* [.$][0-9]+ */
4c4b4cd2 5973
babe1480 5974 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5975 {
babe1480 5976 matching = str + 1;
4c4b4cd2
PH
5977 while (isdigit (matching[0]))
5978 matching += 1;
5979 if (matching[0] == '\0')
5980 return 1;
5981 }
5982
5983 /* ___[0-9]+ */
babe1480 5984
4c4b4cd2
PH
5985 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5986 {
5987 matching = str + 3;
5988 while (isdigit (matching[0]))
5989 matching += 1;
5990 if (matching[0] == '\0')
5991 return 1;
5992 }
5993
9ac7f98e
JB
5994 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5995
5996 if (strcmp (str, "TKB") == 0)
5997 return 1;
5998
529cad9c
PH
5999#if 0
6000 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6001 with a N at the end. Unfortunately, the compiler uses the same
6002 convention for other internal types it creates. So treating
529cad9c 6003 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6004 some regressions. For instance, consider the case of an enumerated
6005 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6006 name ends with N.
6007 Having a single character like this as a suffix carrying some
0963b4bd 6008 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6009 to be something like "_N" instead. In the meantime, do not do
6010 the following check. */
6011 /* Protected Object Subprograms */
6012 if (len == 1 && str [0] == 'N')
6013 return 1;
6014#endif
6015
6016 /* _E[0-9]+[bs]$ */
6017 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6018 {
6019 matching = str + 3;
6020 while (isdigit (matching[0]))
6021 matching += 1;
6022 if ((matching[0] == 'b' || matching[0] == 's')
6023 && matching [1] == '\0')
6024 return 1;
6025 }
6026
4c4b4cd2
PH
6027 /* ??? We should not modify STR directly, as we are doing below. This
6028 is fine in this case, but may become problematic later if we find
6029 that this alternative did not work, and want to try matching
6030 another one from the begining of STR. Since we modified it, we
6031 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6032 if (str[0] == 'X')
6033 {
6034 str += 1;
d2e4a39e 6035 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6036 {
6037 if (str[0] != 'n' && str[0] != 'b')
6038 return 0;
6039 str += 1;
6040 }
14f9c5c9 6041 }
babe1480 6042
14f9c5c9
AS
6043 if (str[0] == '\000')
6044 return 1;
babe1480 6045
d2e4a39e 6046 if (str[0] == '_')
14f9c5c9
AS
6047 {
6048 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6049 return 0;
d2e4a39e 6050 if (str[2] == '_')
4c4b4cd2 6051 {
61ee279c
PH
6052 if (strcmp (str + 3, "JM") == 0)
6053 return 1;
6054 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6055 the LJM suffix in favor of the JM one. But we will
6056 still accept LJM as a valid suffix for a reasonable
6057 amount of time, just to allow ourselves to debug programs
6058 compiled using an older version of GNAT. */
4c4b4cd2
PH
6059 if (strcmp (str + 3, "LJM") == 0)
6060 return 1;
6061 if (str[3] != 'X')
6062 return 0;
1265e4aa
JB
6063 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6064 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6065 return 1;
6066 if (str[4] == 'R' && str[5] != 'T')
6067 return 1;
6068 return 0;
6069 }
6070 if (!isdigit (str[2]))
6071 return 0;
6072 for (k = 3; str[k] != '\0'; k += 1)
6073 if (!isdigit (str[k]) && str[k] != '_')
6074 return 0;
14f9c5c9
AS
6075 return 1;
6076 }
4c4b4cd2 6077 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6078 {
4c4b4cd2
PH
6079 for (k = 2; str[k] != '\0'; k += 1)
6080 if (!isdigit (str[k]) && str[k] != '_')
6081 return 0;
14f9c5c9
AS
6082 return 1;
6083 }
6084 return 0;
6085}
d2e4a39e 6086
aeb5907d
JB
6087/* Return non-zero if the string starting at NAME and ending before
6088 NAME_END contains no capital letters. */
529cad9c
PH
6089
6090static int
6091is_valid_name_for_wild_match (const char *name0)
6092{
6093 const char *decoded_name = ada_decode (name0);
6094 int i;
6095
5823c3ef
JB
6096 /* If the decoded name starts with an angle bracket, it means that
6097 NAME0 does not follow the GNAT encoding format. It should then
6098 not be allowed as a possible wild match. */
6099 if (decoded_name[0] == '<')
6100 return 0;
6101
529cad9c
PH
6102 for (i=0; decoded_name[i] != '\0'; i++)
6103 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6104 return 0;
6105
6106 return 1;
6107}
6108
73589123
PH
6109/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6110 that could start a simple name. Assumes that *NAMEP points into
6111 the string beginning at NAME0. */
4c4b4cd2 6112
14f9c5c9 6113static int
73589123 6114advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6115{
73589123 6116 const char *name = *namep;
5b4ee69b 6117
5823c3ef 6118 while (1)
14f9c5c9 6119 {
aa27d0b3 6120 int t0, t1;
73589123
PH
6121
6122 t0 = *name;
6123 if (t0 == '_')
6124 {
6125 t1 = name[1];
6126 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6127 {
6128 name += 1;
61012eef 6129 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6130 break;
6131 else
6132 name += 1;
6133 }
aa27d0b3
JB
6134 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6135 || name[2] == target0))
73589123
PH
6136 {
6137 name += 2;
6138 break;
6139 }
6140 else
6141 return 0;
6142 }
6143 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6144 name += 1;
6145 else
5823c3ef 6146 return 0;
73589123
PH
6147 }
6148
6149 *namep = name;
6150 return 1;
6151}
6152
b5ec771e
PA
6153/* Return true iff NAME encodes a name of the form prefix.PATN.
6154 Ignores any informational suffixes of NAME (i.e., for which
6155 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6156 simple name. */
73589123 6157
b5ec771e 6158static bool
73589123
PH
6159wild_match (const char *name, const char *patn)
6160{
22e048c9 6161 const char *p;
73589123
PH
6162 const char *name0 = name;
6163
6164 while (1)
6165 {
6166 const char *match = name;
6167
6168 if (*name == *patn)
6169 {
6170 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6171 if (*p != *name)
6172 break;
6173 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6174 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6175
6176 if (name[-1] == '_')
6177 name -= 1;
6178 }
6179 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6180 return false;
96d887e8 6181 }
96d887e8
PH
6182}
6183
b5ec771e
PA
6184/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6185 any trailing suffixes that encode debugging information or leading
6186 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6187 information that is ignored). */
40658b94 6188
b5ec771e 6189static bool
c4d840bd
PH
6190full_match (const char *sym_name, const char *search_name)
6191{
b5ec771e
PA
6192 size_t search_name_len = strlen (search_name);
6193
6194 if (strncmp (sym_name, search_name, search_name_len) == 0
6195 && is_name_suffix (sym_name + search_name_len))
6196 return true;
6197
6198 if (startswith (sym_name, "_ada_")
6199 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6200 && is_name_suffix (sym_name + search_name_len + 5))
6201 return true;
c4d840bd 6202
b5ec771e
PA
6203 return false;
6204}
c4d840bd 6205
b5ec771e
PA
6206/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6207 *defn_symbols, updating the list of symbols in OBSTACKP (if
6208 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6209
6210static void
6211ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6212 const struct block *block,
6213 const lookup_name_info &lookup_name,
6214 domain_enum domain, struct objfile *objfile)
96d887e8 6215{
8157b174 6216 struct block_iterator iter;
96d887e8
PH
6217 /* A matching argument symbol, if any. */
6218 struct symbol *arg_sym;
6219 /* Set true when we find a matching non-argument symbol. */
6220 int found_sym;
6221 struct symbol *sym;
6222
6223 arg_sym = NULL;
6224 found_sym = 0;
b5ec771e
PA
6225 for (sym = block_iter_match_first (block, lookup_name, &iter);
6226 sym != NULL;
6227 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6228 {
b5ec771e
PA
6229 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6230 SYMBOL_DOMAIN (sym), domain))
6231 {
6232 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6233 {
6234 if (SYMBOL_IS_ARGUMENT (sym))
6235 arg_sym = sym;
6236 else
6237 {
6238 found_sym = 1;
6239 add_defn_to_vec (obstackp,
6240 fixup_symbol_section (sym, objfile),
6241 block);
6242 }
6243 }
6244 }
96d887e8
PH
6245 }
6246
22cee43f
PMR
6247 /* Handle renamings. */
6248
b5ec771e 6249 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6250 found_sym = 1;
6251
96d887e8
PH
6252 if (!found_sym && arg_sym != NULL)
6253 {
76a01679
JB
6254 add_defn_to_vec (obstackp,
6255 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6256 block);
96d887e8
PH
6257 }
6258
b5ec771e 6259 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6260 {
6261 arg_sym = NULL;
6262 found_sym = 0;
b5ec771e
PA
6263 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6264 const char *name = ada_lookup_name.c_str ();
6265 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6266
6267 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6268 {
4186eb54
KS
6269 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6270 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6271 {
6272 int cmp;
6273
6274 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6275 if (cmp == 0)
6276 {
61012eef 6277 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6278 if (cmp == 0)
6279 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6280 name_len);
6281 }
6282
6283 if (cmp == 0
6284 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6285 {
2a2d4dc3
AS
6286 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6287 {
6288 if (SYMBOL_IS_ARGUMENT (sym))
6289 arg_sym = sym;
6290 else
6291 {
6292 found_sym = 1;
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (sym, objfile),
6295 block);
6296 }
6297 }
76a01679
JB
6298 }
6299 }
76a01679 6300 }
96d887e8
PH
6301
6302 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6303 They aren't parameters, right? */
6304 if (!found_sym && arg_sym != NULL)
6305 {
6306 add_defn_to_vec (obstackp,
76a01679 6307 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6308 block);
96d887e8
PH
6309 }
6310 }
6311}
6312\f
41d27058
JB
6313
6314 /* Symbol Completion */
6315
b5ec771e 6316/* See symtab.h. */
41d27058 6317
b5ec771e
PA
6318bool
6319ada_lookup_name_info::matches
6320 (const char *sym_name,
6321 symbol_name_match_type match_type,
a207cff2 6322 completion_match_result *comp_match_res) const
41d27058 6323{
b5ec771e
PA
6324 bool match = false;
6325 const char *text = m_encoded_name.c_str ();
6326 size_t text_len = m_encoded_name.size ();
41d27058
JB
6327
6328 /* First, test against the fully qualified name of the symbol. */
6329
6330 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6331 match = true;
41d27058 6332
b5ec771e 6333 if (match && !m_encoded_p)
41d27058
JB
6334 {
6335 /* One needed check before declaring a positive match is to verify
6336 that iff we are doing a verbatim match, the decoded version
6337 of the symbol name starts with '<'. Otherwise, this symbol name
6338 is not a suitable completion. */
6339 const char *sym_name_copy = sym_name;
b5ec771e 6340 bool has_angle_bracket;
41d27058
JB
6341
6342 sym_name = ada_decode (sym_name);
6343 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6344 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6345 sym_name = sym_name_copy;
6346 }
6347
b5ec771e 6348 if (match && !m_verbatim_p)
41d27058
JB
6349 {
6350 /* When doing non-verbatim match, another check that needs to
6351 be done is to verify that the potentially matching symbol name
6352 does not include capital letters, because the ada-mode would
6353 not be able to understand these symbol names without the
6354 angle bracket notation. */
6355 const char *tmp;
6356
6357 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6358 if (*tmp != '\0')
b5ec771e 6359 match = false;
41d27058
JB
6360 }
6361
6362 /* Second: Try wild matching... */
6363
b5ec771e 6364 if (!match && m_wild_match_p)
41d27058
JB
6365 {
6366 /* Since we are doing wild matching, this means that TEXT
6367 may represent an unqualified symbol name. We therefore must
6368 also compare TEXT against the unqualified name of the symbol. */
6369 sym_name = ada_unqualified_name (ada_decode (sym_name));
6370
6371 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6372 match = true;
41d27058
JB
6373 }
6374
b5ec771e 6375 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6376
6377 if (!match)
b5ec771e 6378 return false;
41d27058 6379
a207cff2 6380 if (comp_match_res != NULL)
b5ec771e 6381 {
a207cff2 6382 std::string &match_str = comp_match_res->match.storage ();
41d27058 6383
b5ec771e 6384 if (!m_encoded_p)
a207cff2 6385 match_str = ada_decode (sym_name);
b5ec771e
PA
6386 else
6387 {
6388 if (m_verbatim_p)
6389 match_str = add_angle_brackets (sym_name);
6390 else
6391 match_str = sym_name;
41d27058 6392
b5ec771e 6393 }
a207cff2
PA
6394
6395 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6396 }
6397
b5ec771e 6398 return true;
41d27058
JB
6399}
6400
b5ec771e 6401/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6402 WORD is the entire command on which completion is made. */
41d27058 6403
eb3ff9a5
PA
6404static void
6405ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6406 complete_symbol_mode mode,
b5ec771e
PA
6407 symbol_name_match_type name_match_type,
6408 const char *text, const char *word,
eb3ff9a5 6409 enum type_code code)
41d27058 6410{
41d27058 6411 struct symbol *sym;
3977b71f 6412 const struct block *b, *surrounding_static_block = 0;
8157b174 6413 struct block_iterator iter;
41d27058 6414
2f68a895
TT
6415 gdb_assert (code == TYPE_CODE_UNDEF);
6416
1b026119 6417 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6418
6419 /* First, look at the partial symtab symbols. */
14bc53a8 6420 expand_symtabs_matching (NULL,
b5ec771e
PA
6421 lookup_name,
6422 NULL,
14bc53a8
PA
6423 NULL,
6424 ALL_DOMAIN);
41d27058
JB
6425
6426 /* At this point scan through the misc symbol vectors and add each
6427 symbol you find to the list. Eventually we want to ignore
6428 anything that isn't a text symbol (everything else will be
6429 handled by the psymtab code above). */
6430
2030c079 6431 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6432 {
7932255d 6433 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6434 {
6435 QUIT;
6436
6437 if (completion_skip_symbol (mode, msymbol))
6438 continue;
6439
6440 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6441
6442 /* Ada minimal symbols won't have their language set to Ada. If
6443 we let completion_list_add_name compare using the
6444 default/C-like matcher, then when completing e.g., symbols in a
6445 package named "pck", we'd match internal Ada symbols like
6446 "pckS", which are invalid in an Ada expression, unless you wrap
6447 them in '<' '>' to request a verbatim match.
6448
6449 Unfortunately, some Ada encoded names successfully demangle as
6450 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6451 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6452 with the wrong language set. Paper over that issue here. */
6453 if (symbol_language == language_auto
6454 || symbol_language == language_cplus)
6455 symbol_language = language_ada;
6456
6457 completion_list_add_name (tracker,
6458 symbol_language,
6459 MSYMBOL_LINKAGE_NAME (msymbol),
6460 lookup_name, text, word);
6461 }
6462 }
41d27058
JB
6463
6464 /* Search upwards from currently selected frame (so that we can
6465 complete on local vars. */
6466
6467 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6468 {
6469 if (!BLOCK_SUPERBLOCK (b))
6470 surrounding_static_block = b; /* For elmin of dups */
6471
6472 ALL_BLOCK_SYMBOLS (b, iter, sym)
6473 {
f9d67a22
PA
6474 if (completion_skip_symbol (mode, sym))
6475 continue;
6476
b5ec771e
PA
6477 completion_list_add_name (tracker,
6478 SYMBOL_LANGUAGE (sym),
6479 SYMBOL_LINKAGE_NAME (sym),
1b026119 6480 lookup_name, text, word);
41d27058
JB
6481 }
6482 }
6483
6484 /* Go through the symtabs and check the externs and statics for
43f3e411 6485 symbols which match. */
41d27058 6486
2030c079 6487 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6488 {
b669c953 6489 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6490 {
6491 QUIT;
6492 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6493 ALL_BLOCK_SYMBOLS (b, iter, sym)
6494 {
6495 if (completion_skip_symbol (mode, sym))
6496 continue;
f9d67a22 6497
d8aeb77f
TT
6498 completion_list_add_name (tracker,
6499 SYMBOL_LANGUAGE (sym),
6500 SYMBOL_LINKAGE_NAME (sym),
6501 lookup_name, text, word);
6502 }
6503 }
41d27058 6504 }
41d27058 6505
2030c079 6506 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6507 {
b669c953 6508 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6509 {
6510 QUIT;
6511 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6512 /* Don't do this block twice. */
6513 if (b == surrounding_static_block)
6514 continue;
6515 ALL_BLOCK_SYMBOLS (b, iter, sym)
6516 {
6517 if (completion_skip_symbol (mode, sym))
6518 continue;
f9d67a22 6519
d8aeb77f
TT
6520 completion_list_add_name (tracker,
6521 SYMBOL_LANGUAGE (sym),
6522 SYMBOL_LINKAGE_NAME (sym),
6523 lookup_name, text, word);
6524 }
6525 }
41d27058 6526 }
41d27058
JB
6527}
6528
963a6417 6529 /* Field Access */
96d887e8 6530
73fb9985
JB
6531/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6532 for tagged types. */
6533
6534static int
6535ada_is_dispatch_table_ptr_type (struct type *type)
6536{
0d5cff50 6537 const char *name;
73fb9985
JB
6538
6539 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6540 return 0;
6541
6542 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6547}
6548
ac4a2da4
JG
6549/* Return non-zero if TYPE is an interface tag. */
6550
6551static int
6552ada_is_interface_tag (struct type *type)
6553{
6554 const char *name = TYPE_NAME (type);
6555
6556 if (name == NULL)
6557 return 0;
6558
6559 return (strcmp (name, "ada__tags__interface_tag") == 0);
6560}
6561
963a6417
PH
6562/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6563 to be invisible to users. */
96d887e8 6564
963a6417
PH
6565int
6566ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6567{
963a6417
PH
6568 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6569 return 1;
ffde82bf 6570
73fb9985
JB
6571 /* Check the name of that field. */
6572 {
6573 const char *name = TYPE_FIELD_NAME (type, field_num);
6574
6575 /* Anonymous field names should not be printed.
6576 brobecker/2007-02-20: I don't think this can actually happen
6577 but we don't want to print the value of annonymous fields anyway. */
6578 if (name == NULL)
6579 return 1;
6580
ffde82bf
JB
6581 /* Normally, fields whose name start with an underscore ("_")
6582 are fields that have been internally generated by the compiler,
6583 and thus should not be printed. The "_parent" field is special,
6584 however: This is a field internally generated by the compiler
6585 for tagged types, and it contains the components inherited from
6586 the parent type. This field should not be printed as is, but
6587 should not be ignored either. */
61012eef 6588 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6589 return 1;
6590 }
6591
ac4a2da4
JG
6592 /* If this is the dispatch table of a tagged type or an interface tag,
6593 then ignore. */
73fb9985 6594 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6595 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6596 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6597 return 1;
6598
6599 /* Not a special field, so it should not be ignored. */
6600 return 0;
963a6417 6601}
96d887e8 6602
963a6417 6603/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6604 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6605
963a6417
PH
6606int
6607ada_is_tagged_type (struct type *type, int refok)
6608{
988f6b3d 6609 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6610}
96d887e8 6611
963a6417 6612/* True iff TYPE represents the type of X'Tag */
96d887e8 6613
963a6417
PH
6614int
6615ada_is_tag_type (struct type *type)
6616{
460efde1
JB
6617 type = ada_check_typedef (type);
6618
963a6417
PH
6619 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6620 return 0;
6621 else
96d887e8 6622 {
963a6417 6623 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6624
963a6417
PH
6625 return (name != NULL
6626 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6627 }
96d887e8
PH
6628}
6629
963a6417 6630/* The type of the tag on VAL. */
76a01679 6631
963a6417
PH
6632struct type *
6633ada_tag_type (struct value *val)
96d887e8 6634{
988f6b3d 6635 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6636}
96d887e8 6637
b50d69b5
JG
6638/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6639 retired at Ada 05). */
6640
6641static int
6642is_ada95_tag (struct value *tag)
6643{
6644 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6645}
6646
963a6417 6647/* The value of the tag on VAL. */
96d887e8 6648
963a6417
PH
6649struct value *
6650ada_value_tag (struct value *val)
6651{
03ee6b2e 6652 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6653}
6654
963a6417
PH
6655/* The value of the tag on the object of type TYPE whose contents are
6656 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6657 ADDRESS. */
96d887e8 6658
963a6417 6659static struct value *
10a2c479 6660value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6661 const gdb_byte *valaddr,
963a6417 6662 CORE_ADDR address)
96d887e8 6663{
b5385fc0 6664 int tag_byte_offset;
963a6417 6665 struct type *tag_type;
5b4ee69b 6666
963a6417 6667 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6668 NULL, NULL, NULL))
96d887e8 6669 {
fc1a4b47 6670 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6671 ? NULL
6672 : valaddr + tag_byte_offset);
963a6417 6673 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6674
963a6417 6675 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6676 }
963a6417
PH
6677 return NULL;
6678}
96d887e8 6679
963a6417
PH
6680static struct type *
6681type_from_tag (struct value *tag)
6682{
6683 const char *type_name = ada_tag_name (tag);
5b4ee69b 6684
963a6417
PH
6685 if (type_name != NULL)
6686 return ada_find_any_type (ada_encode (type_name));
6687 return NULL;
6688}
96d887e8 6689
b50d69b5
JG
6690/* Given a value OBJ of a tagged type, return a value of this
6691 type at the base address of the object. The base address, as
6692 defined in Ada.Tags, it is the address of the primary tag of
6693 the object, and therefore where the field values of its full
6694 view can be fetched. */
6695
6696struct value *
6697ada_tag_value_at_base_address (struct value *obj)
6698{
b50d69b5
JG
6699 struct value *val;
6700 LONGEST offset_to_top = 0;
6701 struct type *ptr_type, *obj_type;
6702 struct value *tag;
6703 CORE_ADDR base_address;
6704
6705 obj_type = value_type (obj);
6706
6707 /* It is the responsability of the caller to deref pointers. */
6708
6709 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6710 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6711 return obj;
6712
6713 tag = ada_value_tag (obj);
6714 if (!tag)
6715 return obj;
6716
6717 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6718
6719 if (is_ada95_tag (tag))
6720 return obj;
6721
08f49010
XR
6722 ptr_type = language_lookup_primitive_type
6723 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6724 ptr_type = lookup_pointer_type (ptr_type);
6725 val = value_cast (ptr_type, tag);
6726 if (!val)
6727 return obj;
6728
6729 /* It is perfectly possible that an exception be raised while
6730 trying to determine the base address, just like for the tag;
6731 see ada_tag_name for more details. We do not print the error
6732 message for the same reason. */
6733
a70b8144 6734 try
b50d69b5
JG
6735 {
6736 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6737 }
6738
230d2906 6739 catch (const gdb_exception_error &e)
492d29ea
PA
6740 {
6741 return obj;
6742 }
b50d69b5
JG
6743
6744 /* If offset is null, nothing to do. */
6745
6746 if (offset_to_top == 0)
6747 return obj;
6748
6749 /* -1 is a special case in Ada.Tags; however, what should be done
6750 is not quite clear from the documentation. So do nothing for
6751 now. */
6752
6753 if (offset_to_top == -1)
6754 return obj;
6755
08f49010
XR
6756 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6757 from the base address. This was however incompatible with
6758 C++ dispatch table: C++ uses a *negative* value to *add*
6759 to the base address. Ada's convention has therefore been
6760 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6761 use the same convention. Here, we support both cases by
6762 checking the sign of OFFSET_TO_TOP. */
6763
6764 if (offset_to_top > 0)
6765 offset_to_top = -offset_to_top;
6766
6767 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6768 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6769
6770 /* Make sure that we have a proper tag at the new address.
6771 Otherwise, offset_to_top is bogus (which can happen when
6772 the object is not initialized yet). */
6773
6774 if (!tag)
6775 return obj;
6776
6777 obj_type = type_from_tag (tag);
6778
6779 if (!obj_type)
6780 return obj;
6781
6782 return value_from_contents_and_address (obj_type, NULL, base_address);
6783}
6784
1b611343
JB
6785/* Return the "ada__tags__type_specific_data" type. */
6786
6787static struct type *
6788ada_get_tsd_type (struct inferior *inf)
963a6417 6789{
1b611343 6790 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6791
1b611343
JB
6792 if (data->tsd_type == 0)
6793 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6794 return data->tsd_type;
6795}
529cad9c 6796
1b611343
JB
6797/* Return the TSD (type-specific data) associated to the given TAG.
6798 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6799
1b611343 6800 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6801
1b611343
JB
6802static struct value *
6803ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6804{
4c4b4cd2 6805 struct value *val;
1b611343 6806 struct type *type;
5b4ee69b 6807
1b611343
JB
6808 /* First option: The TSD is simply stored as a field of our TAG.
6809 Only older versions of GNAT would use this format, but we have
6810 to test it first, because there are no visible markers for
6811 the current approach except the absence of that field. */
529cad9c 6812
1b611343
JB
6813 val = ada_value_struct_elt (tag, "tsd", 1);
6814 if (val)
6815 return val;
e802dbe0 6816
1b611343
JB
6817 /* Try the second representation for the dispatch table (in which
6818 there is no explicit 'tsd' field in the referent of the tag pointer,
6819 and instead the tsd pointer is stored just before the dispatch
6820 table. */
e802dbe0 6821
1b611343
JB
6822 type = ada_get_tsd_type (current_inferior());
6823 if (type == NULL)
6824 return NULL;
6825 type = lookup_pointer_type (lookup_pointer_type (type));
6826 val = value_cast (type, tag);
6827 if (val == NULL)
6828 return NULL;
6829 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6830}
6831
1b611343
JB
6832/* Given the TSD of a tag (type-specific data), return a string
6833 containing the name of the associated type.
6834
6835 The returned value is good until the next call. May return NULL
6836 if we are unable to determine the tag name. */
6837
6838static char *
6839ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6840{
529cad9c
PH
6841 static char name[1024];
6842 char *p;
1b611343 6843 struct value *val;
529cad9c 6844
1b611343 6845 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6846 if (val == NULL)
1b611343 6847 return NULL;
4c4b4cd2
PH
6848 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6849 for (p = name; *p != '\0'; p += 1)
6850 if (isalpha (*p))
6851 *p = tolower (*p);
1b611343 6852 return name;
4c4b4cd2
PH
6853}
6854
6855/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6856 a C string.
6857
6858 Return NULL if the TAG is not an Ada tag, or if we were unable to
6859 determine the name of that tag. The result is good until the next
6860 call. */
4c4b4cd2
PH
6861
6862const char *
6863ada_tag_name (struct value *tag)
6864{
1b611343 6865 char *name = NULL;
5b4ee69b 6866
df407dfe 6867 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6868 return NULL;
1b611343
JB
6869
6870 /* It is perfectly possible that an exception be raised while trying
6871 to determine the TAG's name, even under normal circumstances:
6872 The associated variable may be uninitialized or corrupted, for
6873 instance. We do not let any exception propagate past this point.
6874 instead we return NULL.
6875
6876 We also do not print the error message either (which often is very
6877 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6878 the caller print a more meaningful message if necessary. */
a70b8144 6879 try
1b611343
JB
6880 {
6881 struct value *tsd = ada_get_tsd_from_tag (tag);
6882
6883 if (tsd != NULL)
6884 name = ada_tag_name_from_tsd (tsd);
6885 }
230d2906 6886 catch (const gdb_exception_error &e)
492d29ea
PA
6887 {
6888 }
1b611343
JB
6889
6890 return name;
4c4b4cd2
PH
6891}
6892
6893/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6894
d2e4a39e 6895struct type *
ebf56fd3 6896ada_parent_type (struct type *type)
14f9c5c9
AS
6897{
6898 int i;
6899
61ee279c 6900 type = ada_check_typedef (type);
14f9c5c9
AS
6901
6902 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6903 return NULL;
6904
6905 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6906 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6907 {
6908 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6909
6910 /* If the _parent field is a pointer, then dereference it. */
6911 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6912 parent_type = TYPE_TARGET_TYPE (parent_type);
6913 /* If there is a parallel XVS type, get the actual base type. */
6914 parent_type = ada_get_base_type (parent_type);
6915
6916 return ada_check_typedef (parent_type);
6917 }
14f9c5c9
AS
6918
6919 return NULL;
6920}
6921
4c4b4cd2
PH
6922/* True iff field number FIELD_NUM of structure type TYPE contains the
6923 parent-type (inherited) fields of a derived type. Assumes TYPE is
6924 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6925
6926int
ebf56fd3 6927ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6928{
61ee279c 6929 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6930
4c4b4cd2 6931 return (name != NULL
61012eef
GB
6932 && (startswith (name, "PARENT")
6933 || startswith (name, "_parent")));
14f9c5c9
AS
6934}
6935
4c4b4cd2 6936/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6937 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6938 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6939 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6940 structures. */
14f9c5c9
AS
6941
6942int
ebf56fd3 6943ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6944{
d2e4a39e 6945 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6946
dddc0e16
JB
6947 if (name != NULL && strcmp (name, "RETVAL") == 0)
6948 {
6949 /* This happens in functions with "out" or "in out" parameters
6950 which are passed by copy. For such functions, GNAT describes
6951 the function's return type as being a struct where the return
6952 value is in a field called RETVAL, and where the other "out"
6953 or "in out" parameters are fields of that struct. This is not
6954 a wrapper. */
6955 return 0;
6956 }
6957
d2e4a39e 6958 return (name != NULL
61012eef 6959 && (startswith (name, "PARENT")
4c4b4cd2 6960 || strcmp (name, "REP") == 0
61012eef 6961 || startswith (name, "_parent")
4c4b4cd2 6962 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6963}
6964
4c4b4cd2
PH
6965/* True iff field number FIELD_NUM of structure or union type TYPE
6966 is a variant wrapper. Assumes TYPE is a structure type with at least
6967 FIELD_NUM+1 fields. */
14f9c5c9
AS
6968
6969int
ebf56fd3 6970ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6971{
8ecb59f8
TT
6972 /* Only Ada types are eligible. */
6973 if (!ADA_TYPE_P (type))
6974 return 0;
6975
d2e4a39e 6976 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6977
14f9c5c9 6978 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6979 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6980 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6981 == TYPE_CODE_UNION)));
14f9c5c9
AS
6982}
6983
6984/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6985 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6986 returns the type of the controlling discriminant for the variant.
6987 May return NULL if the type could not be found. */
14f9c5c9 6988
d2e4a39e 6989struct type *
ebf56fd3 6990ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6991{
a121b7c1 6992 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6993
988f6b3d 6994 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6995}
6996
4c4b4cd2 6997/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6998 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6999 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7000
7001int
ebf56fd3 7002ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7003{
d2e4a39e 7004 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7005
14f9c5c9
AS
7006 return (name != NULL && name[0] == 'O');
7007}
7008
7009/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7010 returns the name of the discriminant controlling the variant.
7011 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7012
a121b7c1 7013const char *
ebf56fd3 7014ada_variant_discrim_name (struct type *type0)
14f9c5c9 7015{
d2e4a39e 7016 static char *result = NULL;
14f9c5c9 7017 static size_t result_len = 0;
d2e4a39e
AS
7018 struct type *type;
7019 const char *name;
7020 const char *discrim_end;
7021 const char *discrim_start;
14f9c5c9
AS
7022
7023 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7024 type = TYPE_TARGET_TYPE (type0);
7025 else
7026 type = type0;
7027
7028 name = ada_type_name (type);
7029
7030 if (name == NULL || name[0] == '\000')
7031 return "";
7032
7033 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7034 discrim_end -= 1)
7035 {
61012eef 7036 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7037 break;
14f9c5c9
AS
7038 }
7039 if (discrim_end == name)
7040 return "";
7041
d2e4a39e 7042 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7043 discrim_start -= 1)
7044 {
d2e4a39e 7045 if (discrim_start == name + 1)
4c4b4cd2 7046 return "";
76a01679 7047 if ((discrim_start > name + 3
61012eef 7048 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7049 || discrim_start[-1] == '.')
7050 break;
14f9c5c9
AS
7051 }
7052
7053 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7054 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7055 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7056 return result;
7057}
7058
4c4b4cd2
PH
7059/* Scan STR for a subtype-encoded number, beginning at position K.
7060 Put the position of the character just past the number scanned in
7061 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7062 Return 1 if there was a valid number at the given position, and 0
7063 otherwise. A "subtype-encoded" number consists of the absolute value
7064 in decimal, followed by the letter 'm' to indicate a negative number.
7065 Assumes 0m does not occur. */
14f9c5c9
AS
7066
7067int
d2e4a39e 7068ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7069{
7070 ULONGEST RU;
7071
d2e4a39e 7072 if (!isdigit (str[k]))
14f9c5c9
AS
7073 return 0;
7074
4c4b4cd2 7075 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7076 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7077 LONGEST. */
14f9c5c9
AS
7078 RU = 0;
7079 while (isdigit (str[k]))
7080 {
d2e4a39e 7081 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7082 k += 1;
7083 }
7084
d2e4a39e 7085 if (str[k] == 'm')
14f9c5c9
AS
7086 {
7087 if (R != NULL)
4c4b4cd2 7088 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7089 k += 1;
7090 }
7091 else if (R != NULL)
7092 *R = (LONGEST) RU;
7093
4c4b4cd2 7094 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7095 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7096 number representable as a LONGEST (although either would probably work
7097 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7098 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7099
7100 if (new_k != NULL)
7101 *new_k = k;
7102 return 1;
7103}
7104
4c4b4cd2
PH
7105/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7106 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7107 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7108
d2e4a39e 7109int
ebf56fd3 7110ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7111{
d2e4a39e 7112 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7113 int p;
7114
7115 p = 0;
7116 while (1)
7117 {
d2e4a39e 7118 switch (name[p])
4c4b4cd2
PH
7119 {
7120 case '\0':
7121 return 0;
7122 case 'S':
7123 {
7124 LONGEST W;
5b4ee69b 7125
4c4b4cd2
PH
7126 if (!ada_scan_number (name, p + 1, &W, &p))
7127 return 0;
7128 if (val == W)
7129 return 1;
7130 break;
7131 }
7132 case 'R':
7133 {
7134 LONGEST L, U;
5b4ee69b 7135
4c4b4cd2
PH
7136 if (!ada_scan_number (name, p + 1, &L, &p)
7137 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7138 return 0;
7139 if (val >= L && val <= U)
7140 return 1;
7141 break;
7142 }
7143 case 'O':
7144 return 1;
7145 default:
7146 return 0;
7147 }
7148 }
7149}
7150
0963b4bd 7151/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7152
7153/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7154 ARG_TYPE, extract and return the value of one of its (non-static)
7155 fields. FIELDNO says which field. Differs from value_primitive_field
7156 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7157
4c4b4cd2 7158static struct value *
d2e4a39e 7159ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7160 struct type *arg_type)
14f9c5c9 7161{
14f9c5c9
AS
7162 struct type *type;
7163
61ee279c 7164 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7165 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7166
4504bbde
TT
7167 /* Handle packed fields. It might be that the field is not packed
7168 relative to its containing structure, but the structure itself is
7169 packed; in this case we must take the bit-field path. */
7170 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7171 {
7172 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7173 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7174
0fd88904 7175 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7176 offset + bit_pos / 8,
7177 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7178 }
7179 else
7180 return value_primitive_field (arg1, offset, fieldno, arg_type);
7181}
7182
52ce6436
PH
7183/* Find field with name NAME in object of type TYPE. If found,
7184 set the following for each argument that is non-null:
7185 - *FIELD_TYPE_P to the field's type;
7186 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7187 an object of that type;
7188 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7189 - *BIT_SIZE_P to its size in bits if the field is packed, and
7190 0 otherwise;
7191 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7192 fields up to but not including the desired field, or by the total
7193 number of fields if not found. A NULL value of NAME never
7194 matches; the function just counts visible fields in this case.
7195
828d5846
XR
7196 Notice that we need to handle when a tagged record hierarchy
7197 has some components with the same name, like in this scenario:
7198
7199 type Top_T is tagged record
7200 N : Integer := 1;
7201 U : Integer := 974;
7202 A : Integer := 48;
7203 end record;
7204
7205 type Middle_T is new Top.Top_T with record
7206 N : Character := 'a';
7207 C : Integer := 3;
7208 end record;
7209
7210 type Bottom_T is new Middle.Middle_T with record
7211 N : Float := 4.0;
7212 C : Character := '5';
7213 X : Integer := 6;
7214 A : Character := 'J';
7215 end record;
7216
7217 Let's say we now have a variable declared and initialized as follow:
7218
7219 TC : Top_A := new Bottom_T;
7220
7221 And then we use this variable to call this function
7222
7223 procedure Assign (Obj: in out Top_T; TV : Integer);
7224
7225 as follow:
7226
7227 Assign (Top_T (B), 12);
7228
7229 Now, we're in the debugger, and we're inside that procedure
7230 then and we want to print the value of obj.c:
7231
7232 Usually, the tagged record or one of the parent type owns the
7233 component to print and there's no issue but in this particular
7234 case, what does it mean to ask for Obj.C? Since the actual
7235 type for object is type Bottom_T, it could mean two things: type
7236 component C from the Middle_T view, but also component C from
7237 Bottom_T. So in that "undefined" case, when the component is
7238 not found in the non-resolved type (which includes all the
7239 components of the parent type), then resolve it and see if we
7240 get better luck once expanded.
7241
7242 In the case of homonyms in the derived tagged type, we don't
7243 guaranty anything, and pick the one that's easiest for us
7244 to program.
7245
0963b4bd 7246 Returns 1 if found, 0 otherwise. */
52ce6436 7247
4c4b4cd2 7248static int
0d5cff50 7249find_struct_field (const char *name, struct type *type, int offset,
76a01679 7250 struct type **field_type_p,
52ce6436
PH
7251 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7252 int *index_p)
4c4b4cd2
PH
7253{
7254 int i;
828d5846 7255 int parent_offset = -1;
4c4b4cd2 7256
61ee279c 7257 type = ada_check_typedef (type);
76a01679 7258
52ce6436
PH
7259 if (field_type_p != NULL)
7260 *field_type_p = NULL;
7261 if (byte_offset_p != NULL)
d5d6fca5 7262 *byte_offset_p = 0;
52ce6436
PH
7263 if (bit_offset_p != NULL)
7264 *bit_offset_p = 0;
7265 if (bit_size_p != NULL)
7266 *bit_size_p = 0;
7267
7268 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7269 {
7270 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7271 int fld_offset = offset + bit_pos / 8;
0d5cff50 7272 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7273
4c4b4cd2
PH
7274 if (t_field_name == NULL)
7275 continue;
7276
828d5846
XR
7277 else if (ada_is_parent_field (type, i))
7278 {
7279 /* This is a field pointing us to the parent type of a tagged
7280 type. As hinted in this function's documentation, we give
7281 preference to fields in the current record first, so what
7282 we do here is just record the index of this field before
7283 we skip it. If it turns out we couldn't find our field
7284 in the current record, then we'll get back to it and search
7285 inside it whether the field might exist in the parent. */
7286
7287 parent_offset = i;
7288 continue;
7289 }
7290
52ce6436 7291 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7292 {
7293 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7294
52ce6436
PH
7295 if (field_type_p != NULL)
7296 *field_type_p = TYPE_FIELD_TYPE (type, i);
7297 if (byte_offset_p != NULL)
7298 *byte_offset_p = fld_offset;
7299 if (bit_offset_p != NULL)
7300 *bit_offset_p = bit_pos % 8;
7301 if (bit_size_p != NULL)
7302 *bit_size_p = bit_size;
76a01679
JB
7303 return 1;
7304 }
4c4b4cd2
PH
7305 else if (ada_is_wrapper_field (type, i))
7306 {
52ce6436
PH
7307 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7308 field_type_p, byte_offset_p, bit_offset_p,
7309 bit_size_p, index_p))
76a01679
JB
7310 return 1;
7311 }
4c4b4cd2
PH
7312 else if (ada_is_variant_part (type, i))
7313 {
52ce6436
PH
7314 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7315 fixed type?? */
4c4b4cd2 7316 int j;
52ce6436
PH
7317 struct type *field_type
7318 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7319
52ce6436 7320 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7321 {
76a01679
JB
7322 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7323 fld_offset
7324 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7325 field_type_p, byte_offset_p,
52ce6436 7326 bit_offset_p, bit_size_p, index_p))
76a01679 7327 return 1;
4c4b4cd2
PH
7328 }
7329 }
52ce6436
PH
7330 else if (index_p != NULL)
7331 *index_p += 1;
4c4b4cd2 7332 }
828d5846
XR
7333
7334 /* Field not found so far. If this is a tagged type which
7335 has a parent, try finding that field in the parent now. */
7336
7337 if (parent_offset != -1)
7338 {
7339 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7340 int fld_offset = offset + bit_pos / 8;
7341
7342 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7343 fld_offset, field_type_p, byte_offset_p,
7344 bit_offset_p, bit_size_p, index_p))
7345 return 1;
7346 }
7347
4c4b4cd2
PH
7348 return 0;
7349}
7350
0963b4bd 7351/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7352
52ce6436
PH
7353static int
7354num_visible_fields (struct type *type)
7355{
7356 int n;
5b4ee69b 7357
52ce6436
PH
7358 n = 0;
7359 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7360 return n;
7361}
14f9c5c9 7362
4c4b4cd2 7363/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7364 and search in it assuming it has (class) type TYPE.
7365 If found, return value, else return NULL.
7366
828d5846
XR
7367 Searches recursively through wrapper fields (e.g., '_parent').
7368
7369 In the case of homonyms in the tagged types, please refer to the
7370 long explanation in find_struct_field's function documentation. */
14f9c5c9 7371
4c4b4cd2 7372static struct value *
108d56a4 7373ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7374 struct type *type)
14f9c5c9
AS
7375{
7376 int i;
828d5846 7377 int parent_offset = -1;
14f9c5c9 7378
5b4ee69b 7379 type = ada_check_typedef (type);
52ce6436 7380 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7381 {
0d5cff50 7382 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7383
7384 if (t_field_name == NULL)
4c4b4cd2 7385 continue;
14f9c5c9 7386
828d5846
XR
7387 else if (ada_is_parent_field (type, i))
7388 {
7389 /* This is a field pointing us to the parent type of a tagged
7390 type. As hinted in this function's documentation, we give
7391 preference to fields in the current record first, so what
7392 we do here is just record the index of this field before
7393 we skip it. If it turns out we couldn't find our field
7394 in the current record, then we'll get back to it and search
7395 inside it whether the field might exist in the parent. */
7396
7397 parent_offset = i;
7398 continue;
7399 }
7400
14f9c5c9 7401 else if (field_name_match (t_field_name, name))
4c4b4cd2 7402 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7403
7404 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7405 {
0963b4bd 7406 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7407 ada_search_struct_field (name, arg,
7408 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7409 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7410
4c4b4cd2
PH
7411 if (v != NULL)
7412 return v;
7413 }
14f9c5c9
AS
7414
7415 else if (ada_is_variant_part (type, i))
4c4b4cd2 7416 {
0963b4bd 7417 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7418 int j;
5b4ee69b
MS
7419 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7420 i));
4c4b4cd2
PH
7421 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7422
52ce6436 7423 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7424 {
0963b4bd
MS
7425 struct value *v = ada_search_struct_field /* Force line
7426 break. */
06d5cf63
JB
7427 (name, arg,
7428 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7429 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7430
4c4b4cd2
PH
7431 if (v != NULL)
7432 return v;
7433 }
7434 }
14f9c5c9 7435 }
828d5846
XR
7436
7437 /* Field not found so far. If this is a tagged type which
7438 has a parent, try finding that field in the parent now. */
7439
7440 if (parent_offset != -1)
7441 {
7442 struct value *v = ada_search_struct_field (
7443 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7444 TYPE_FIELD_TYPE (type, parent_offset));
7445
7446 if (v != NULL)
7447 return v;
7448 }
7449
14f9c5c9
AS
7450 return NULL;
7451}
d2e4a39e 7452
52ce6436
PH
7453static struct value *ada_index_struct_field_1 (int *, struct value *,
7454 int, struct type *);
7455
7456
7457/* Return field #INDEX in ARG, where the index is that returned by
7458 * find_struct_field through its INDEX_P argument. Adjust the address
7459 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7460 * If found, return value, else return NULL. */
52ce6436
PH
7461
7462static struct value *
7463ada_index_struct_field (int index, struct value *arg, int offset,
7464 struct type *type)
7465{
7466 return ada_index_struct_field_1 (&index, arg, offset, type);
7467}
7468
7469
7470/* Auxiliary function for ada_index_struct_field. Like
7471 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7472 * *INDEX_P. */
52ce6436
PH
7473
7474static struct value *
7475ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7476 struct type *type)
7477{
7478 int i;
7479 type = ada_check_typedef (type);
7480
7481 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7482 {
7483 if (TYPE_FIELD_NAME (type, i) == NULL)
7484 continue;
7485 else if (ada_is_wrapper_field (type, i))
7486 {
0963b4bd 7487 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7488 ada_index_struct_field_1 (index_p, arg,
7489 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7490 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7491
52ce6436
PH
7492 if (v != NULL)
7493 return v;
7494 }
7495
7496 else if (ada_is_variant_part (type, i))
7497 {
7498 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7499 find_struct_field. */
52ce6436
PH
7500 error (_("Cannot assign this kind of variant record"));
7501 }
7502 else if (*index_p == 0)
7503 return ada_value_primitive_field (arg, offset, i, type);
7504 else
7505 *index_p -= 1;
7506 }
7507 return NULL;
7508}
7509
4c4b4cd2
PH
7510/* Given ARG, a value of type (pointer or reference to a)*
7511 structure/union, extract the component named NAME from the ultimate
7512 target structure/union and return it as a value with its
f5938064 7513 appropriate type.
14f9c5c9 7514
4c4b4cd2
PH
7515 The routine searches for NAME among all members of the structure itself
7516 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7517 (e.g., '_parent').
7518
03ee6b2e
PH
7519 If NO_ERR, then simply return NULL in case of error, rather than
7520 calling error. */
14f9c5c9 7521
d2e4a39e 7522struct value *
a121b7c1 7523ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7524{
4c4b4cd2 7525 struct type *t, *t1;
d2e4a39e 7526 struct value *v;
1f5d1570 7527 int check_tag;
14f9c5c9 7528
4c4b4cd2 7529 v = NULL;
df407dfe 7530 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7531 if (TYPE_CODE (t) == TYPE_CODE_REF)
7532 {
7533 t1 = TYPE_TARGET_TYPE (t);
7534 if (t1 == NULL)
03ee6b2e 7535 goto BadValue;
61ee279c 7536 t1 = ada_check_typedef (t1);
4c4b4cd2 7537 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7538 {
994b9211 7539 arg = coerce_ref (arg);
76a01679
JB
7540 t = t1;
7541 }
4c4b4cd2 7542 }
14f9c5c9 7543
4c4b4cd2
PH
7544 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7545 {
7546 t1 = TYPE_TARGET_TYPE (t);
7547 if (t1 == NULL)
03ee6b2e 7548 goto BadValue;
61ee279c 7549 t1 = ada_check_typedef (t1);
4c4b4cd2 7550 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7551 {
7552 arg = value_ind (arg);
7553 t = t1;
7554 }
4c4b4cd2 7555 else
76a01679 7556 break;
4c4b4cd2 7557 }
14f9c5c9 7558
4c4b4cd2 7559 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7560 goto BadValue;
14f9c5c9 7561
4c4b4cd2
PH
7562 if (t1 == t)
7563 v = ada_search_struct_field (name, arg, 0, t);
7564 else
7565 {
7566 int bit_offset, bit_size, byte_offset;
7567 struct type *field_type;
7568 CORE_ADDR address;
7569
76a01679 7570 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7571 address = value_address (ada_value_ind (arg));
4c4b4cd2 7572 else
b50d69b5 7573 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7574
828d5846
XR
7575 /* Check to see if this is a tagged type. We also need to handle
7576 the case where the type is a reference to a tagged type, but
7577 we have to be careful to exclude pointers to tagged types.
7578 The latter should be shown as usual (as a pointer), whereas
7579 a reference should mostly be transparent to the user. */
7580
7581 if (ada_is_tagged_type (t1, 0)
7582 || (TYPE_CODE (t1) == TYPE_CODE_REF
7583 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7584 {
7585 /* We first try to find the searched field in the current type.
7586 If not found then let's look in the fixed type. */
7587
7588 if (!find_struct_field (name, t1, 0,
7589 &field_type, &byte_offset, &bit_offset,
7590 &bit_size, NULL))
1f5d1570
JG
7591 check_tag = 1;
7592 else
7593 check_tag = 0;
828d5846
XR
7594 }
7595 else
1f5d1570
JG
7596 check_tag = 0;
7597
7598 /* Convert to fixed type in all cases, so that we have proper
7599 offsets to each field in unconstrained record types. */
7600 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7601 address, NULL, check_tag);
828d5846 7602
76a01679
JB
7603 if (find_struct_field (name, t1, 0,
7604 &field_type, &byte_offset, &bit_offset,
52ce6436 7605 &bit_size, NULL))
76a01679
JB
7606 {
7607 if (bit_size != 0)
7608 {
714e53ab
PH
7609 if (TYPE_CODE (t) == TYPE_CODE_REF)
7610 arg = ada_coerce_ref (arg);
7611 else
7612 arg = ada_value_ind (arg);
76a01679
JB
7613 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7614 bit_offset, bit_size,
7615 field_type);
7616 }
7617 else
f5938064 7618 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7619 }
7620 }
7621
03ee6b2e
PH
7622 if (v != NULL || no_err)
7623 return v;
7624 else
323e0a4a 7625 error (_("There is no member named %s."), name);
14f9c5c9 7626
03ee6b2e
PH
7627 BadValue:
7628 if (no_err)
7629 return NULL;
7630 else
0963b4bd
MS
7631 error (_("Attempt to extract a component of "
7632 "a value that is not a record."));
14f9c5c9
AS
7633}
7634
3b4de39c 7635/* Return a string representation of type TYPE. */
99bbb428 7636
3b4de39c 7637static std::string
99bbb428
PA
7638type_as_string (struct type *type)
7639{
d7e74731 7640 string_file tmp_stream;
99bbb428 7641
d7e74731 7642 type_print (type, "", &tmp_stream, -1);
99bbb428 7643
d7e74731 7644 return std::move (tmp_stream.string ());
99bbb428
PA
7645}
7646
14f9c5c9 7647/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7648 If DISPP is non-null, add its byte displacement from the beginning of a
7649 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7650 work for packed fields).
7651
7652 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7653 followed by "___".
14f9c5c9 7654
0963b4bd 7655 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7656 be a (pointer or reference)+ to a struct or union, and the
7657 ultimate target type will be searched.
14f9c5c9
AS
7658
7659 Looks recursively into variant clauses and parent types.
7660
828d5846
XR
7661 In the case of homonyms in the tagged types, please refer to the
7662 long explanation in find_struct_field's function documentation.
7663
4c4b4cd2
PH
7664 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7665 TYPE is not a type of the right kind. */
14f9c5c9 7666
4c4b4cd2 7667static struct type *
a121b7c1 7668ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7669 int noerr)
14f9c5c9
AS
7670{
7671 int i;
828d5846 7672 int parent_offset = -1;
14f9c5c9
AS
7673
7674 if (name == NULL)
7675 goto BadName;
7676
76a01679 7677 if (refok && type != NULL)
4c4b4cd2
PH
7678 while (1)
7679 {
61ee279c 7680 type = ada_check_typedef (type);
76a01679
JB
7681 if (TYPE_CODE (type) != TYPE_CODE_PTR
7682 && TYPE_CODE (type) != TYPE_CODE_REF)
7683 break;
7684 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7685 }
14f9c5c9 7686
76a01679 7687 if (type == NULL
1265e4aa
JB
7688 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7689 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7690 {
4c4b4cd2 7691 if (noerr)
76a01679 7692 return NULL;
99bbb428 7693
3b4de39c
PA
7694 error (_("Type %s is not a structure or union type"),
7695 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7696 }
7697
7698 type = to_static_fixed_type (type);
7699
7700 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7701 {
0d5cff50 7702 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7703 struct type *t;
d2e4a39e 7704
14f9c5c9 7705 if (t_field_name == NULL)
4c4b4cd2 7706 continue;
14f9c5c9 7707
828d5846
XR
7708 else if (ada_is_parent_field (type, i))
7709 {
7710 /* This is a field pointing us to the parent type of a tagged
7711 type. As hinted in this function's documentation, we give
7712 preference to fields in the current record first, so what
7713 we do here is just record the index of this field before
7714 we skip it. If it turns out we couldn't find our field
7715 in the current record, then we'll get back to it and search
7716 inside it whether the field might exist in the parent. */
7717
7718 parent_offset = i;
7719 continue;
7720 }
7721
14f9c5c9 7722 else if (field_name_match (t_field_name, name))
988f6b3d 7723 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7724
7725 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7726 {
4c4b4cd2 7727 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7728 0, 1);
4c4b4cd2 7729 if (t != NULL)
988f6b3d 7730 return t;
4c4b4cd2 7731 }
14f9c5c9
AS
7732
7733 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7734 {
7735 int j;
5b4ee69b
MS
7736 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7737 i));
4c4b4cd2
PH
7738
7739 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7740 {
b1f33ddd
JB
7741 /* FIXME pnh 2008/01/26: We check for a field that is
7742 NOT wrapped in a struct, since the compiler sometimes
7743 generates these for unchecked variant types. Revisit
0963b4bd 7744 if the compiler changes this practice. */
0d5cff50 7745 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7746
b1f33ddd
JB
7747 if (v_field_name != NULL
7748 && field_name_match (v_field_name, name))
460efde1 7749 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7750 else
0963b4bd
MS
7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7752 j),
988f6b3d 7753 name, 0, 1);
b1f33ddd 7754
4c4b4cd2 7755 if (t != NULL)
988f6b3d 7756 return t;
4c4b4cd2
PH
7757 }
7758 }
14f9c5c9
AS
7759
7760 }
7761
828d5846
XR
7762 /* Field not found so far. If this is a tagged type which
7763 has a parent, try finding that field in the parent now. */
7764
7765 if (parent_offset != -1)
7766 {
7767 struct type *t;
7768
7769 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7770 name, 0, 1);
7771 if (t != NULL)
7772 return t;
7773 }
7774
14f9c5c9 7775BadName:
d2e4a39e 7776 if (!noerr)
14f9c5c9 7777 {
2b2798cc 7778 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7779
7780 error (_("Type %s has no component named %s"),
3b4de39c 7781 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7782 }
7783
7784 return NULL;
7785}
7786
b1f33ddd
JB
7787/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7788 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7789 represents an unchecked union (that is, the variant part of a
0963b4bd 7790 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7791
7792static int
7793is_unchecked_variant (struct type *var_type, struct type *outer_type)
7794{
a121b7c1 7795 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7796
988f6b3d 7797 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7798}
7799
7800
14f9c5c9
AS
7801/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7802 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7803 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7804 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7805
d2e4a39e 7806int
ebf56fd3 7807ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7808 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7809{
7810 int others_clause;
7811 int i;
a121b7c1 7812 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7813 struct value *outer;
7814 struct value *discrim;
14f9c5c9
AS
7815 LONGEST discrim_val;
7816
012370f6
TT
7817 /* Using plain value_from_contents_and_address here causes problems
7818 because we will end up trying to resolve a type that is currently
7819 being constructed. */
7820 outer = value_from_contents_and_address_unresolved (outer_type,
7821 outer_valaddr, 0);
0c281816
JB
7822 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7823 if (discrim == NULL)
14f9c5c9 7824 return -1;
0c281816 7825 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7826
7827 others_clause = -1;
7828 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7829 {
7830 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7831 others_clause = i;
14f9c5c9 7832 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7833 return i;
14f9c5c9
AS
7834 }
7835
7836 return others_clause;
7837}
d2e4a39e 7838\f
14f9c5c9
AS
7839
7840
4c4b4cd2 7841 /* Dynamic-Sized Records */
14f9c5c9
AS
7842
7843/* Strategy: The type ostensibly attached to a value with dynamic size
7844 (i.e., a size that is not statically recorded in the debugging
7845 data) does not accurately reflect the size or layout of the value.
7846 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7847 conventional types that are constructed on the fly. */
14f9c5c9
AS
7848
7849/* There is a subtle and tricky problem here. In general, we cannot
7850 determine the size of dynamic records without its data. However,
7851 the 'struct value' data structure, which GDB uses to represent
7852 quantities in the inferior process (the target), requires the size
7853 of the type at the time of its allocation in order to reserve space
7854 for GDB's internal copy of the data. That's why the
7855 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7856 rather than struct value*s.
14f9c5c9
AS
7857
7858 However, GDB's internal history variables ($1, $2, etc.) are
7859 struct value*s containing internal copies of the data that are not, in
7860 general, the same as the data at their corresponding addresses in
7861 the target. Fortunately, the types we give to these values are all
7862 conventional, fixed-size types (as per the strategy described
7863 above), so that we don't usually have to perform the
7864 'to_fixed_xxx_type' conversions to look at their values.
7865 Unfortunately, there is one exception: if one of the internal
7866 history variables is an array whose elements are unconstrained
7867 records, then we will need to create distinct fixed types for each
7868 element selected. */
7869
7870/* The upshot of all of this is that many routines take a (type, host
7871 address, target address) triple as arguments to represent a value.
7872 The host address, if non-null, is supposed to contain an internal
7873 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7874 target at the target address. */
14f9c5c9
AS
7875
7876/* Assuming that VAL0 represents a pointer value, the result of
7877 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7878 dynamic-sized types. */
14f9c5c9 7879
d2e4a39e
AS
7880struct value *
7881ada_value_ind (struct value *val0)
14f9c5c9 7882{
c48db5ca 7883 struct value *val = value_ind (val0);
5b4ee69b 7884
b50d69b5
JG
7885 if (ada_is_tagged_type (value_type (val), 0))
7886 val = ada_tag_value_at_base_address (val);
7887
4c4b4cd2 7888 return ada_to_fixed_value (val);
14f9c5c9
AS
7889}
7890
7891/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7892 qualifiers on VAL0. */
7893
d2e4a39e
AS
7894static struct value *
7895ada_coerce_ref (struct value *val0)
7896{
df407dfe 7897 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7898 {
7899 struct value *val = val0;
5b4ee69b 7900
994b9211 7901 val = coerce_ref (val);
b50d69b5
JG
7902
7903 if (ada_is_tagged_type (value_type (val), 0))
7904 val = ada_tag_value_at_base_address (val);
7905
4c4b4cd2 7906 return ada_to_fixed_value (val);
d2e4a39e
AS
7907 }
7908 else
14f9c5c9
AS
7909 return val0;
7910}
7911
7912/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7913 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7914
7915static unsigned int
ebf56fd3 7916align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7917{
7918 return (off + alignment - 1) & ~(alignment - 1);
7919}
7920
4c4b4cd2 7921/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7922
7923static unsigned int
ebf56fd3 7924field_alignment (struct type *type, int f)
14f9c5c9 7925{
d2e4a39e 7926 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7927 int len;
14f9c5c9
AS
7928 int align_offset;
7929
64a1bf19
JB
7930 /* The field name should never be null, unless the debugging information
7931 is somehow malformed. In this case, we assume the field does not
7932 require any alignment. */
7933 if (name == NULL)
7934 return 1;
7935
7936 len = strlen (name);
7937
4c4b4cd2
PH
7938 if (!isdigit (name[len - 1]))
7939 return 1;
14f9c5c9 7940
d2e4a39e 7941 if (isdigit (name[len - 2]))
14f9c5c9
AS
7942 align_offset = len - 2;
7943 else
7944 align_offset = len - 1;
7945
61012eef 7946 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7947 return TARGET_CHAR_BIT;
7948
4c4b4cd2
PH
7949 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7950}
7951
852dff6c 7952/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7953
852dff6c
JB
7954static struct symbol *
7955ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7956{
7957 struct symbol *sym;
7958
7959 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7960 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7961 return sym;
7962
4186eb54
KS
7963 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7964 return sym;
14f9c5c9
AS
7965}
7966
dddfab26
UW
7967/* Find a type named NAME. Ignores ambiguity. This routine will look
7968 solely for types defined by debug info, it will not search the GDB
7969 primitive types. */
4c4b4cd2 7970
852dff6c 7971static struct type *
ebf56fd3 7972ada_find_any_type (const char *name)
14f9c5c9 7973{
852dff6c 7974 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7975
14f9c5c9 7976 if (sym != NULL)
dddfab26 7977 return SYMBOL_TYPE (sym);
14f9c5c9 7978
dddfab26 7979 return NULL;
14f9c5c9
AS
7980}
7981
739593e0
JB
7982/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7983 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7984 symbol, in which case it is returned. Otherwise, this looks for
7985 symbols whose name is that of NAME_SYM suffixed with "___XR".
7986 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7987
7988struct symbol *
270140bd 7989ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7990{
739593e0 7991 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7992 struct symbol *sym;
7993
739593e0
JB
7994 if (strstr (name, "___XR") != NULL)
7995 return name_sym;
7996
aeb5907d
JB
7997 sym = find_old_style_renaming_symbol (name, block);
7998
7999 if (sym != NULL)
8000 return sym;
8001
0963b4bd 8002 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8003 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8004 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8005 return sym;
8006 else
8007 return NULL;
8008}
8009
8010static struct symbol *
270140bd 8011find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8012{
7f0df278 8013 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8014 char *rename;
8015
8016 if (function_sym != NULL)
8017 {
8018 /* If the symbol is defined inside a function, NAME is not fully
8019 qualified. This means we need to prepend the function name
8020 as well as adding the ``___XR'' suffix to build the name of
8021 the associated renaming symbol. */
0d5cff50 8022 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8023 /* Function names sometimes contain suffixes used
8024 for instance to qualify nested subprograms. When building
8025 the XR type name, we need to make sure that this suffix is
8026 not included. So do not include any suffix in the function
8027 name length below. */
69fadcdf 8028 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8029 const int rename_len = function_name_len + 2 /* "__" */
8030 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8031
529cad9c 8032 /* Strip the suffix if necessary. */
69fadcdf
JB
8033 ada_remove_trailing_digits (function_name, &function_name_len);
8034 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8035 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8036
4c4b4cd2
PH
8037 /* Library-level functions are a special case, as GNAT adds
8038 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8039 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8040 have this prefix, so we need to skip this prefix if present. */
8041 if (function_name_len > 5 /* "_ada_" */
8042 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8043 {
8044 function_name += 5;
8045 function_name_len -= 5;
8046 }
4c4b4cd2
PH
8047
8048 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8049 strncpy (rename, function_name, function_name_len);
8050 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8051 "__%s___XR", name);
4c4b4cd2
PH
8052 }
8053 else
8054 {
8055 const int rename_len = strlen (name) + 6;
5b4ee69b 8056
4c4b4cd2 8057 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8058 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8059 }
8060
852dff6c 8061 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8062}
8063
14f9c5c9 8064/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8065 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8066 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8067 otherwise return 0. */
8068
14f9c5c9 8069int
d2e4a39e 8070ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8071{
8072 if (type1 == NULL)
8073 return 1;
8074 else if (type0 == NULL)
8075 return 0;
8076 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8077 return 1;
8078 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8079 return 0;
4c4b4cd2
PH
8080 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8081 return 1;
ad82864c 8082 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8083 return 1;
4c4b4cd2
PH
8084 else if (ada_is_array_descriptor_type (type0)
8085 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8086 return 1;
aeb5907d
JB
8087 else
8088 {
a737d952
TT
8089 const char *type0_name = TYPE_NAME (type0);
8090 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8091
8092 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8093 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8094 return 1;
8095 }
14f9c5c9
AS
8096 return 0;
8097}
8098
e86ca25f
TT
8099/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8100 null. */
4c4b4cd2 8101
0d5cff50 8102const char *
d2e4a39e 8103ada_type_name (struct type *type)
14f9c5c9 8104{
d2e4a39e 8105 if (type == NULL)
14f9c5c9 8106 return NULL;
e86ca25f 8107 return TYPE_NAME (type);
14f9c5c9
AS
8108}
8109
b4ba55a1
JB
8110/* Search the list of "descriptive" types associated to TYPE for a type
8111 whose name is NAME. */
8112
8113static struct type *
8114find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8115{
931e5bc3 8116 struct type *result, *tmp;
b4ba55a1 8117
c6044dd1
JB
8118 if (ada_ignore_descriptive_types_p)
8119 return NULL;
8120
b4ba55a1
JB
8121 /* If there no descriptive-type info, then there is no parallel type
8122 to be found. */
8123 if (!HAVE_GNAT_AUX_INFO (type))
8124 return NULL;
8125
8126 result = TYPE_DESCRIPTIVE_TYPE (type);
8127 while (result != NULL)
8128 {
0d5cff50 8129 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8130
8131 if (result_name == NULL)
8132 {
8133 warning (_("unexpected null name on descriptive type"));
8134 return NULL;
8135 }
8136
8137 /* If the names match, stop. */
8138 if (strcmp (result_name, name) == 0)
8139 break;
8140
8141 /* Otherwise, look at the next item on the list, if any. */
8142 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8143 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8144 else
8145 tmp = NULL;
8146
8147 /* If not found either, try after having resolved the typedef. */
8148 if (tmp != NULL)
8149 result = tmp;
b4ba55a1 8150 else
931e5bc3 8151 {
f168693b 8152 result = check_typedef (result);
931e5bc3
JG
8153 if (HAVE_GNAT_AUX_INFO (result))
8154 result = TYPE_DESCRIPTIVE_TYPE (result);
8155 else
8156 result = NULL;
8157 }
b4ba55a1
JB
8158 }
8159
8160 /* If we didn't find a match, see whether this is a packed array. With
8161 older compilers, the descriptive type information is either absent or
8162 irrelevant when it comes to packed arrays so the above lookup fails.
8163 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8164 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8165 return ada_find_any_type (name);
8166
8167 return result;
8168}
8169
8170/* Find a parallel type to TYPE with the specified NAME, using the
8171 descriptive type taken from the debugging information, if available,
8172 and otherwise using the (slower) name-based method. */
8173
8174static struct type *
8175ada_find_parallel_type_with_name (struct type *type, const char *name)
8176{
8177 struct type *result = NULL;
8178
8179 if (HAVE_GNAT_AUX_INFO (type))
8180 result = find_parallel_type_by_descriptive_type (type, name);
8181 else
8182 result = ada_find_any_type (name);
8183
8184 return result;
8185}
8186
8187/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8188 SUFFIX to the name of TYPE. */
14f9c5c9 8189
d2e4a39e 8190struct type *
ebf56fd3 8191ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8192{
0d5cff50 8193 char *name;
fe978cb0 8194 const char *type_name = ada_type_name (type);
14f9c5c9 8195 int len;
d2e4a39e 8196
fe978cb0 8197 if (type_name == NULL)
14f9c5c9
AS
8198 return NULL;
8199
fe978cb0 8200 len = strlen (type_name);
14f9c5c9 8201
b4ba55a1 8202 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8203
fe978cb0 8204 strcpy (name, type_name);
14f9c5c9
AS
8205 strcpy (name + len, suffix);
8206
b4ba55a1 8207 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8208}
8209
14f9c5c9 8210/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8211 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8212
d2e4a39e
AS
8213static struct type *
8214dynamic_template_type (struct type *type)
14f9c5c9 8215{
61ee279c 8216 type = ada_check_typedef (type);
14f9c5c9
AS
8217
8218 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8219 || ada_type_name (type) == NULL)
14f9c5c9 8220 return NULL;
d2e4a39e 8221 else
14f9c5c9
AS
8222 {
8223 int len = strlen (ada_type_name (type));
5b4ee69b 8224
4c4b4cd2
PH
8225 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8226 return type;
14f9c5c9 8227 else
4c4b4cd2 8228 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8229 }
8230}
8231
8232/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8233 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8234
d2e4a39e
AS
8235static int
8236is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8237{
8238 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8239
d2e4a39e 8240 return name != NULL
14f9c5c9
AS
8241 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8242 && strstr (name, "___XVL") != NULL;
8243}
8244
4c4b4cd2
PH
8245/* The index of the variant field of TYPE, or -1 if TYPE does not
8246 represent a variant record type. */
14f9c5c9 8247
d2e4a39e 8248static int
4c4b4cd2 8249variant_field_index (struct type *type)
14f9c5c9
AS
8250{
8251 int f;
8252
4c4b4cd2
PH
8253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8254 return -1;
8255
8256 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8257 {
8258 if (ada_is_variant_part (type, f))
8259 return f;
8260 }
8261 return -1;
14f9c5c9
AS
8262}
8263
4c4b4cd2
PH
8264/* A record type with no fields. */
8265
d2e4a39e 8266static struct type *
fe978cb0 8267empty_record (struct type *templ)
14f9c5c9 8268{
fe978cb0 8269 struct type *type = alloc_type_copy (templ);
5b4ee69b 8270
14f9c5c9
AS
8271 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8272 TYPE_NFIELDS (type) = 0;
8273 TYPE_FIELDS (type) = NULL;
8ecb59f8 8274 INIT_NONE_SPECIFIC (type);
14f9c5c9 8275 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8276 TYPE_LENGTH (type) = 0;
8277 return type;
8278}
8279
8280/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8281 the value of type TYPE at VALADDR or ADDRESS (see comments at
8282 the beginning of this section) VAL according to GNAT conventions.
8283 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8284 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8285 an outer-level type (i.e., as opposed to a branch of a variant.) A
8286 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8287 of the variant.
14f9c5c9 8288
4c4b4cd2
PH
8289 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8290 length are not statically known are discarded. As a consequence,
8291 VALADDR, ADDRESS and DVAL0 are ignored.
8292
8293 NOTE: Limitations: For now, we assume that dynamic fields and
8294 variants occupy whole numbers of bytes. However, they need not be
8295 byte-aligned. */
8296
8297struct type *
10a2c479 8298ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8299 const gdb_byte *valaddr,
4c4b4cd2
PH
8300 CORE_ADDR address, struct value *dval0,
8301 int keep_dynamic_fields)
14f9c5c9 8302{
d2e4a39e
AS
8303 struct value *mark = value_mark ();
8304 struct value *dval;
8305 struct type *rtype;
14f9c5c9 8306 int nfields, bit_len;
4c4b4cd2 8307 int variant_field;
14f9c5c9 8308 long off;
d94e4f4f 8309 int fld_bit_len;
14f9c5c9
AS
8310 int f;
8311
4c4b4cd2
PH
8312 /* Compute the number of fields in this record type that are going
8313 to be processed: unless keep_dynamic_fields, this includes only
8314 fields whose position and length are static will be processed. */
8315 if (keep_dynamic_fields)
8316 nfields = TYPE_NFIELDS (type);
8317 else
8318 {
8319 nfields = 0;
76a01679 8320 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8321 && !ada_is_variant_part (type, nfields)
8322 && !is_dynamic_field (type, nfields))
8323 nfields++;
8324 }
8325
e9bb382b 8326 rtype = alloc_type_copy (type);
14f9c5c9 8327 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8328 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8329 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8330 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8331 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8332 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8333 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8334 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8335
d2e4a39e
AS
8336 off = 0;
8337 bit_len = 0;
4c4b4cd2
PH
8338 variant_field = -1;
8339
14f9c5c9
AS
8340 for (f = 0; f < nfields; f += 1)
8341 {
6c038f32
PH
8342 off = align_value (off, field_alignment (type, f))
8343 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8344 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8345 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8346
d2e4a39e 8347 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8348 {
8349 variant_field = f;
d94e4f4f 8350 fld_bit_len = 0;
4c4b4cd2 8351 }
14f9c5c9 8352 else if (is_dynamic_field (type, f))
4c4b4cd2 8353 {
284614f0
JB
8354 const gdb_byte *field_valaddr = valaddr;
8355 CORE_ADDR field_address = address;
8356 struct type *field_type =
8357 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8358
4c4b4cd2 8359 if (dval0 == NULL)
b5304971
JG
8360 {
8361 /* rtype's length is computed based on the run-time
8362 value of discriminants. If the discriminants are not
8363 initialized, the type size may be completely bogus and
0963b4bd 8364 GDB may fail to allocate a value for it. So check the
b5304971 8365 size first before creating the value. */
c1b5a1a6 8366 ada_ensure_varsize_limit (rtype);
012370f6
TT
8367 /* Using plain value_from_contents_and_address here
8368 causes problems because we will end up trying to
8369 resolve a type that is currently being
8370 constructed. */
8371 dval = value_from_contents_and_address_unresolved (rtype,
8372 valaddr,
8373 address);
9f1f738a 8374 rtype = value_type (dval);
b5304971 8375 }
4c4b4cd2
PH
8376 else
8377 dval = dval0;
8378
284614f0
JB
8379 /* If the type referenced by this field is an aligner type, we need
8380 to unwrap that aligner type, because its size might not be set.
8381 Keeping the aligner type would cause us to compute the wrong
8382 size for this field, impacting the offset of the all the fields
8383 that follow this one. */
8384 if (ada_is_aligner_type (field_type))
8385 {
8386 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8387
8388 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8389 field_address = cond_offset_target (field_address, field_offset);
8390 field_type = ada_aligned_type (field_type);
8391 }
8392
8393 field_valaddr = cond_offset_host (field_valaddr,
8394 off / TARGET_CHAR_BIT);
8395 field_address = cond_offset_target (field_address,
8396 off / TARGET_CHAR_BIT);
8397
8398 /* Get the fixed type of the field. Note that, in this case,
8399 we do not want to get the real type out of the tag: if
8400 the current field is the parent part of a tagged record,
8401 we will get the tag of the object. Clearly wrong: the real
8402 type of the parent is not the real type of the child. We
8403 would end up in an infinite loop. */
8404 field_type = ada_get_base_type (field_type);
8405 field_type = ada_to_fixed_type (field_type, field_valaddr,
8406 field_address, dval, 0);
27f2a97b
JB
8407 /* If the field size is already larger than the maximum
8408 object size, then the record itself will necessarily
8409 be larger than the maximum object size. We need to make
8410 this check now, because the size might be so ridiculously
8411 large (due to an uninitialized variable in the inferior)
8412 that it would cause an overflow when adding it to the
8413 record size. */
c1b5a1a6 8414 ada_ensure_varsize_limit (field_type);
284614f0
JB
8415
8416 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8417 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8418 /* The multiplication can potentially overflow. But because
8419 the field length has been size-checked just above, and
8420 assuming that the maximum size is a reasonable value,
8421 an overflow should not happen in practice. So rather than
8422 adding overflow recovery code to this already complex code,
8423 we just assume that it's not going to happen. */
d94e4f4f 8424 fld_bit_len =
4c4b4cd2
PH
8425 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8426 }
14f9c5c9 8427 else
4c4b4cd2 8428 {
5ded5331
JB
8429 /* Note: If this field's type is a typedef, it is important
8430 to preserve the typedef layer.
8431
8432 Otherwise, we might be transforming a typedef to a fat
8433 pointer (encoding a pointer to an unconstrained array),
8434 into a basic fat pointer (encoding an unconstrained
8435 array). As both types are implemented using the same
8436 structure, the typedef is the only clue which allows us
8437 to distinguish between the two options. Stripping it
8438 would prevent us from printing this field appropriately. */
8439 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8440 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8441 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8442 fld_bit_len =
4c4b4cd2
PH
8443 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8444 else
5ded5331
JB
8445 {
8446 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8447
8448 /* We need to be careful of typedefs when computing
8449 the length of our field. If this is a typedef,
8450 get the length of the target type, not the length
8451 of the typedef. */
8452 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8453 field_type = ada_typedef_target_type (field_type);
8454
8455 fld_bit_len =
8456 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8457 }
4c4b4cd2 8458 }
14f9c5c9 8459 if (off + fld_bit_len > bit_len)
4c4b4cd2 8460 bit_len = off + fld_bit_len;
d94e4f4f 8461 off += fld_bit_len;
4c4b4cd2
PH
8462 TYPE_LENGTH (rtype) =
8463 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8464 }
4c4b4cd2
PH
8465
8466 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8467 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8468 the record. This can happen in the presence of representation
8469 clauses. */
8470 if (variant_field >= 0)
8471 {
8472 struct type *branch_type;
8473
8474 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8475
8476 if (dval0 == NULL)
9f1f738a 8477 {
012370f6
TT
8478 /* Using plain value_from_contents_and_address here causes
8479 problems because we will end up trying to resolve a type
8480 that is currently being constructed. */
8481 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8482 address);
9f1f738a
SA
8483 rtype = value_type (dval);
8484 }
4c4b4cd2
PH
8485 else
8486 dval = dval0;
8487
8488 branch_type =
8489 to_fixed_variant_branch_type
8490 (TYPE_FIELD_TYPE (type, variant_field),
8491 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8492 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8493 if (branch_type == NULL)
8494 {
8495 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8496 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8497 TYPE_NFIELDS (rtype) -= 1;
8498 }
8499 else
8500 {
8501 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8502 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8503 fld_bit_len =
8504 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8505 TARGET_CHAR_BIT;
8506 if (off + fld_bit_len > bit_len)
8507 bit_len = off + fld_bit_len;
8508 TYPE_LENGTH (rtype) =
8509 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8510 }
8511 }
8512
714e53ab
PH
8513 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8514 should contain the alignment of that record, which should be a strictly
8515 positive value. If null or negative, then something is wrong, most
8516 probably in the debug info. In that case, we don't round up the size
0963b4bd 8517 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8518 the current RTYPE length might be good enough for our purposes. */
8519 if (TYPE_LENGTH (type) <= 0)
8520 {
323e0a4a 8521 if (TYPE_NAME (rtype))
cc1defb1
KS
8522 warning (_("Invalid type size for `%s' detected: %s."),
8523 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8524 else
cc1defb1
KS
8525 warning (_("Invalid type size for <unnamed> detected: %s."),
8526 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8527 }
8528 else
8529 {
8530 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8531 TYPE_LENGTH (type));
8532 }
14f9c5c9
AS
8533
8534 value_free_to_mark (mark);
d2e4a39e 8535 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8536 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8537 return rtype;
8538}
8539
4c4b4cd2
PH
8540/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8541 of 1. */
14f9c5c9 8542
d2e4a39e 8543static struct type *
fc1a4b47 8544template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8545 CORE_ADDR address, struct value *dval0)
8546{
8547 return ada_template_to_fixed_record_type_1 (type, valaddr,
8548 address, dval0, 1);
8549}
8550
8551/* An ordinary record type in which ___XVL-convention fields and
8552 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8553 static approximations, containing all possible fields. Uses
8554 no runtime values. Useless for use in values, but that's OK,
8555 since the results are used only for type determinations. Works on both
8556 structs and unions. Representation note: to save space, we memorize
8557 the result of this function in the TYPE_TARGET_TYPE of the
8558 template type. */
8559
8560static struct type *
8561template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8562{
8563 struct type *type;
8564 int nfields;
8565 int f;
8566
9e195661
PMR
8567 /* No need no do anything if the input type is already fixed. */
8568 if (TYPE_FIXED_INSTANCE (type0))
8569 return type0;
8570
8571 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8572 if (TYPE_TARGET_TYPE (type0) != NULL)
8573 return TYPE_TARGET_TYPE (type0);
8574
9e195661 8575 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8576 type = type0;
9e195661
PMR
8577 nfields = TYPE_NFIELDS (type0);
8578
8579 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8580 recompute all over next time. */
8581 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8582
8583 for (f = 0; f < nfields; f += 1)
8584 {
460efde1 8585 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8586 struct type *new_type;
14f9c5c9 8587
4c4b4cd2 8588 if (is_dynamic_field (type0, f))
460efde1
JB
8589 {
8590 field_type = ada_check_typedef (field_type);
8591 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8592 }
14f9c5c9 8593 else
f192137b 8594 new_type = static_unwrap_type (field_type);
9e195661
PMR
8595
8596 if (new_type != field_type)
8597 {
8598 /* Clone TYPE0 only the first time we get a new field type. */
8599 if (type == type0)
8600 {
8601 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8602 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8603 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8604 TYPE_NFIELDS (type) = nfields;
8605 TYPE_FIELDS (type) = (struct field *)
8606 TYPE_ALLOC (type, nfields * sizeof (struct field));
8607 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8608 sizeof (struct field) * nfields);
8609 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8610 TYPE_FIXED_INSTANCE (type) = 1;
8611 TYPE_LENGTH (type) = 0;
8612 }
8613 TYPE_FIELD_TYPE (type, f) = new_type;
8614 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8615 }
14f9c5c9 8616 }
9e195661 8617
14f9c5c9
AS
8618 return type;
8619}
8620
4c4b4cd2 8621/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8622 whose address in memory is ADDRESS, returns a revision of TYPE,
8623 which should be a non-dynamic-sized record, in which the variant
8624 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8625 for discriminant values in DVAL0, which can be NULL if the record
8626 contains the necessary discriminant values. */
8627
d2e4a39e 8628static struct type *
fc1a4b47 8629to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8630 CORE_ADDR address, struct value *dval0)
14f9c5c9 8631{
d2e4a39e 8632 struct value *mark = value_mark ();
4c4b4cd2 8633 struct value *dval;
d2e4a39e 8634 struct type *rtype;
14f9c5c9
AS
8635 struct type *branch_type;
8636 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8637 int variant_field = variant_field_index (type);
14f9c5c9 8638
4c4b4cd2 8639 if (variant_field == -1)
14f9c5c9
AS
8640 return type;
8641
4c4b4cd2 8642 if (dval0 == NULL)
9f1f738a
SA
8643 {
8644 dval = value_from_contents_and_address (type, valaddr, address);
8645 type = value_type (dval);
8646 }
4c4b4cd2
PH
8647 else
8648 dval = dval0;
8649
e9bb382b 8650 rtype = alloc_type_copy (type);
14f9c5c9 8651 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8652 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8653 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8654 TYPE_FIELDS (rtype) =
8655 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8656 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8657 sizeof (struct field) * nfields);
14f9c5c9 8658 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8659 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8660 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8661
4c4b4cd2
PH
8662 branch_type = to_fixed_variant_branch_type
8663 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8664 cond_offset_host (valaddr,
4c4b4cd2
PH
8665 TYPE_FIELD_BITPOS (type, variant_field)
8666 / TARGET_CHAR_BIT),
d2e4a39e 8667 cond_offset_target (address,
4c4b4cd2
PH
8668 TYPE_FIELD_BITPOS (type, variant_field)
8669 / TARGET_CHAR_BIT), dval);
d2e4a39e 8670 if (branch_type == NULL)
14f9c5c9 8671 {
4c4b4cd2 8672 int f;
5b4ee69b 8673
4c4b4cd2
PH
8674 for (f = variant_field + 1; f < nfields; f += 1)
8675 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8676 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8677 }
8678 else
8679 {
4c4b4cd2
PH
8680 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8681 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8682 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8683 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8684 }
4c4b4cd2 8685 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8686
4c4b4cd2 8687 value_free_to_mark (mark);
14f9c5c9
AS
8688 return rtype;
8689}
8690
8691/* An ordinary record type (with fixed-length fields) that describes
8692 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8693 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8694 should be in DVAL, a record value; it may be NULL if the object
8695 at ADDR itself contains any necessary discriminant values.
8696 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8697 values from the record are needed. Except in the case that DVAL,
8698 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8699 unchecked) is replaced by a particular branch of the variant.
8700
8701 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8702 is questionable and may be removed. It can arise during the
8703 processing of an unconstrained-array-of-record type where all the
8704 variant branches have exactly the same size. This is because in
8705 such cases, the compiler does not bother to use the XVS convention
8706 when encoding the record. I am currently dubious of this
8707 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8708
d2e4a39e 8709static struct type *
fc1a4b47 8710to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8711 CORE_ADDR address, struct value *dval)
14f9c5c9 8712{
d2e4a39e 8713 struct type *templ_type;
14f9c5c9 8714
876cecd0 8715 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8716 return type0;
8717
d2e4a39e 8718 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8719
8720 if (templ_type != NULL)
8721 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8722 else if (variant_field_index (type0) >= 0)
8723 {
8724 if (dval == NULL && valaddr == NULL && address == 0)
8725 return type0;
8726 return to_record_with_fixed_variant_part (type0, valaddr, address,
8727 dval);
8728 }
14f9c5c9
AS
8729 else
8730 {
876cecd0 8731 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8732 return type0;
8733 }
8734
8735}
8736
8737/* An ordinary record type (with fixed-length fields) that describes
8738 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8739 union type. Any necessary discriminants' values should be in DVAL,
8740 a record value. That is, this routine selects the appropriate
8741 branch of the union at ADDR according to the discriminant value
b1f33ddd 8742 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8743 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8744
d2e4a39e 8745static struct type *
fc1a4b47 8746to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8747 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8748{
8749 int which;
d2e4a39e
AS
8750 struct type *templ_type;
8751 struct type *var_type;
14f9c5c9
AS
8752
8753 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8754 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8755 else
14f9c5c9
AS
8756 var_type = var_type0;
8757
8758 templ_type = ada_find_parallel_type (var_type, "___XVU");
8759
8760 if (templ_type != NULL)
8761 var_type = templ_type;
8762
b1f33ddd
JB
8763 if (is_unchecked_variant (var_type, value_type (dval)))
8764 return var_type0;
d2e4a39e
AS
8765 which =
8766 ada_which_variant_applies (var_type,
0fd88904 8767 value_type (dval), value_contents (dval));
14f9c5c9
AS
8768
8769 if (which < 0)
e9bb382b 8770 return empty_record (var_type);
14f9c5c9 8771 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8772 return to_fixed_record_type
d2e4a39e
AS
8773 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8774 valaddr, address, dval);
4c4b4cd2 8775 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8776 return
8777 to_fixed_record_type
8778 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8779 else
8780 return TYPE_FIELD_TYPE (var_type, which);
8781}
8782
8908fca5
JB
8783/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8784 ENCODING_TYPE, a type following the GNAT conventions for discrete
8785 type encodings, only carries redundant information. */
8786
8787static int
8788ada_is_redundant_range_encoding (struct type *range_type,
8789 struct type *encoding_type)
8790{
108d56a4 8791 const char *bounds_str;
8908fca5
JB
8792 int n;
8793 LONGEST lo, hi;
8794
8795 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8796
005e2509
JB
8797 if (TYPE_CODE (get_base_type (range_type))
8798 != TYPE_CODE (get_base_type (encoding_type)))
8799 {
8800 /* The compiler probably used a simple base type to describe
8801 the range type instead of the range's actual base type,
8802 expecting us to get the real base type from the encoding
8803 anyway. In this situation, the encoding cannot be ignored
8804 as redundant. */
8805 return 0;
8806 }
8807
8908fca5
JB
8808 if (is_dynamic_type (range_type))
8809 return 0;
8810
8811 if (TYPE_NAME (encoding_type) == NULL)
8812 return 0;
8813
8814 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8815 if (bounds_str == NULL)
8816 return 0;
8817
8818 n = 8; /* Skip "___XDLU_". */
8819 if (!ada_scan_number (bounds_str, n, &lo, &n))
8820 return 0;
8821 if (TYPE_LOW_BOUND (range_type) != lo)
8822 return 0;
8823
8824 n += 2; /* Skip the "__" separator between the two bounds. */
8825 if (!ada_scan_number (bounds_str, n, &hi, &n))
8826 return 0;
8827 if (TYPE_HIGH_BOUND (range_type) != hi)
8828 return 0;
8829
8830 return 1;
8831}
8832
8833/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8834 a type following the GNAT encoding for describing array type
8835 indices, only carries redundant information. */
8836
8837static int
8838ada_is_redundant_index_type_desc (struct type *array_type,
8839 struct type *desc_type)
8840{
8841 struct type *this_layer = check_typedef (array_type);
8842 int i;
8843
8844 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8845 {
8846 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8847 TYPE_FIELD_TYPE (desc_type, i)))
8848 return 0;
8849 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8850 }
8851
8852 return 1;
8853}
8854
14f9c5c9
AS
8855/* Assuming that TYPE0 is an array type describing the type of a value
8856 at ADDR, and that DVAL describes a record containing any
8857 discriminants used in TYPE0, returns a type for the value that
8858 contains no dynamic components (that is, no components whose sizes
8859 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8860 true, gives an error message if the resulting type's size is over
4c4b4cd2 8861 varsize_limit. */
14f9c5c9 8862
d2e4a39e
AS
8863static struct type *
8864to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8865 int ignore_too_big)
14f9c5c9 8866{
d2e4a39e
AS
8867 struct type *index_type_desc;
8868 struct type *result;
ad82864c 8869 int constrained_packed_array_p;
931e5bc3 8870 static const char *xa_suffix = "___XA";
14f9c5c9 8871
b0dd7688 8872 type0 = ada_check_typedef (type0);
284614f0 8873 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8874 return type0;
14f9c5c9 8875
ad82864c
JB
8876 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8877 if (constrained_packed_array_p)
8878 type0 = decode_constrained_packed_array_type (type0);
284614f0 8879
931e5bc3
JG
8880 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8881
8882 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8883 encoding suffixed with 'P' may still be generated. If so,
8884 it should be used to find the XA type. */
8885
8886 if (index_type_desc == NULL)
8887 {
1da0522e 8888 const char *type_name = ada_type_name (type0);
931e5bc3 8889
1da0522e 8890 if (type_name != NULL)
931e5bc3 8891 {
1da0522e 8892 const int len = strlen (type_name);
931e5bc3
JG
8893 char *name = (char *) alloca (len + strlen (xa_suffix));
8894
1da0522e 8895 if (type_name[len - 1] == 'P')
931e5bc3 8896 {
1da0522e 8897 strcpy (name, type_name);
931e5bc3
JG
8898 strcpy (name + len - 1, xa_suffix);
8899 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8900 }
8901 }
8902 }
8903
28c85d6c 8904 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8905 if (index_type_desc != NULL
8906 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8907 {
8908 /* Ignore this ___XA parallel type, as it does not bring any
8909 useful information. This allows us to avoid creating fixed
8910 versions of the array's index types, which would be identical
8911 to the original ones. This, in turn, can also help avoid
8912 the creation of fixed versions of the array itself. */
8913 index_type_desc = NULL;
8914 }
8915
14f9c5c9
AS
8916 if (index_type_desc == NULL)
8917 {
61ee279c 8918 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8919
14f9c5c9 8920 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8921 depend on the contents of the array in properly constructed
8922 debugging data. */
529cad9c
PH
8923 /* Create a fixed version of the array element type.
8924 We're not providing the address of an element here,
e1d5a0d2 8925 and thus the actual object value cannot be inspected to do
529cad9c
PH
8926 the conversion. This should not be a problem, since arrays of
8927 unconstrained objects are not allowed. In particular, all
8928 the elements of an array of a tagged type should all be of
8929 the same type specified in the debugging info. No need to
8930 consult the object tag. */
1ed6ede0 8931 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8932
284614f0
JB
8933 /* Make sure we always create a new array type when dealing with
8934 packed array types, since we're going to fix-up the array
8935 type length and element bitsize a little further down. */
ad82864c 8936 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8937 result = type0;
14f9c5c9 8938 else
e9bb382b 8939 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8940 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8941 }
8942 else
8943 {
8944 int i;
8945 struct type *elt_type0;
8946
8947 elt_type0 = type0;
8948 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8949 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8950
8951 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8952 depend on the contents of the array in properly constructed
8953 debugging data. */
529cad9c
PH
8954 /* Create a fixed version of the array element type.
8955 We're not providing the address of an element here,
e1d5a0d2 8956 and thus the actual object value cannot be inspected to do
529cad9c
PH
8957 the conversion. This should not be a problem, since arrays of
8958 unconstrained objects are not allowed. In particular, all
8959 the elements of an array of a tagged type should all be of
8960 the same type specified in the debugging info. No need to
8961 consult the object tag. */
1ed6ede0
JB
8962 result =
8963 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8964
8965 elt_type0 = type0;
14f9c5c9 8966 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8967 {
8968 struct type *range_type =
28c85d6c 8969 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8970
e9bb382b 8971 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8972 result, range_type);
1ce677a4 8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8974 }
d2e4a39e 8975 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8976 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8977 }
8978
2e6fda7d
JB
8979 /* We want to preserve the type name. This can be useful when
8980 trying to get the type name of a value that has already been
8981 printed (for instance, if the user did "print VAR; whatis $". */
8982 TYPE_NAME (result) = TYPE_NAME (type0);
8983
ad82864c 8984 if (constrained_packed_array_p)
284614f0
JB
8985 {
8986 /* So far, the resulting type has been created as if the original
8987 type was a regular (non-packed) array type. As a result, the
8988 bitsize of the array elements needs to be set again, and the array
8989 length needs to be recomputed based on that bitsize. */
8990 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8991 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8992
8993 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8994 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8995 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8996 TYPE_LENGTH (result)++;
8997 }
8998
876cecd0 8999 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9000 return result;
d2e4a39e 9001}
14f9c5c9
AS
9002
9003
9004/* A standard type (containing no dynamically sized components)
9005 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9006 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9007 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9008 ADDRESS or in VALADDR contains these discriminants.
9009
1ed6ede0
JB
9010 If CHECK_TAG is not null, in the case of tagged types, this function
9011 attempts to locate the object's tag and use it to compute the actual
9012 type. However, when ADDRESS is null, we cannot use it to determine the
9013 location of the tag, and therefore compute the tagged type's actual type.
9014 So we return the tagged type without consulting the tag. */
529cad9c 9015
f192137b
JB
9016static struct type *
9017ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9018 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9019{
61ee279c 9020 type = ada_check_typedef (type);
8ecb59f8
TT
9021
9022 /* Only un-fixed types need to be handled here. */
9023 if (!HAVE_GNAT_AUX_INFO (type))
9024 return type;
9025
d2e4a39e
AS
9026 switch (TYPE_CODE (type))
9027 {
9028 default:
14f9c5c9 9029 return type;
d2e4a39e 9030 case TYPE_CODE_STRUCT:
4c4b4cd2 9031 {
76a01679 9032 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9033 struct type *fixed_record_type =
9034 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9035
529cad9c
PH
9036 /* If STATIC_TYPE is a tagged type and we know the object's address,
9037 then we can determine its tag, and compute the object's actual
0963b4bd 9038 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9039 type (the parent part of the record may have dynamic fields
9040 and the way the location of _tag is expressed may depend on
9041 them). */
529cad9c 9042
1ed6ede0 9043 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9044 {
b50d69b5
JG
9045 struct value *tag =
9046 value_tag_from_contents_and_address
9047 (fixed_record_type,
9048 valaddr,
9049 address);
9050 struct type *real_type = type_from_tag (tag);
9051 struct value *obj =
9052 value_from_contents_and_address (fixed_record_type,
9053 valaddr,
9054 address);
9f1f738a 9055 fixed_record_type = value_type (obj);
76a01679 9056 if (real_type != NULL)
b50d69b5
JG
9057 return to_fixed_record_type
9058 (real_type, NULL,
9059 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9060 }
4af88198
JB
9061
9062 /* Check to see if there is a parallel ___XVZ variable.
9063 If there is, then it provides the actual size of our type. */
9064 else if (ada_type_name (fixed_record_type) != NULL)
9065 {
0d5cff50 9066 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9067 char *xvz_name
9068 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9069 bool xvz_found = false;
4af88198
JB
9070 LONGEST size;
9071
88c15c34 9072 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 9073 try
eccab96d
JB
9074 {
9075 xvz_found = get_int_var_value (xvz_name, size);
9076 }
230d2906 9077 catch (const gdb_exception_error &except)
eccab96d
JB
9078 {
9079 /* We found the variable, but somehow failed to read
9080 its value. Rethrow the same error, but with a little
9081 bit more information, to help the user understand
9082 what went wrong (Eg: the variable might have been
9083 optimized out). */
9084 throw_error (except.error,
9085 _("unable to read value of %s (%s)"),
3d6e9d23 9086 xvz_name, except.what ());
eccab96d 9087 }
eccab96d
JB
9088
9089 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9090 {
9091 fixed_record_type = copy_type (fixed_record_type);
9092 TYPE_LENGTH (fixed_record_type) = size;
9093
9094 /* The FIXED_RECORD_TYPE may have be a stub. We have
9095 observed this when the debugging info is STABS, and
9096 apparently it is something that is hard to fix.
9097
9098 In practice, we don't need the actual type definition
9099 at all, because the presence of the XVZ variable allows us
9100 to assume that there must be a XVS type as well, which we
9101 should be able to use later, when we need the actual type
9102 definition.
9103
9104 In the meantime, pretend that the "fixed" type we are
9105 returning is NOT a stub, because this can cause trouble
9106 when using this type to create new types targeting it.
9107 Indeed, the associated creation routines often check
9108 whether the target type is a stub and will try to replace
0963b4bd 9109 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9110 might cause the new type to have the wrong size too.
9111 Consider the case of an array, for instance, where the size
9112 of the array is computed from the number of elements in
9113 our array multiplied by the size of its element. */
9114 TYPE_STUB (fixed_record_type) = 0;
9115 }
9116 }
1ed6ede0 9117 return fixed_record_type;
4c4b4cd2 9118 }
d2e4a39e 9119 case TYPE_CODE_ARRAY:
4c4b4cd2 9120 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9121 case TYPE_CODE_UNION:
9122 if (dval == NULL)
4c4b4cd2 9123 return type;
d2e4a39e 9124 else
4c4b4cd2 9125 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9126 }
14f9c5c9
AS
9127}
9128
f192137b
JB
9129/* The same as ada_to_fixed_type_1, except that it preserves the type
9130 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9131
9132 The typedef layer needs be preserved in order to differentiate between
9133 arrays and array pointers when both types are implemented using the same
9134 fat pointer. In the array pointer case, the pointer is encoded as
9135 a typedef of the pointer type. For instance, considering:
9136
9137 type String_Access is access String;
9138 S1 : String_Access := null;
9139
9140 To the debugger, S1 is defined as a typedef of type String. But
9141 to the user, it is a pointer. So if the user tries to print S1,
9142 we should not dereference the array, but print the array address
9143 instead.
9144
9145 If we didn't preserve the typedef layer, we would lose the fact that
9146 the type is to be presented as a pointer (needs de-reference before
9147 being printed). And we would also use the source-level type name. */
f192137b
JB
9148
9149struct type *
9150ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9151 CORE_ADDR address, struct value *dval, int check_tag)
9152
9153{
9154 struct type *fixed_type =
9155 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9156
96dbd2c1
JB
9157 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9158 then preserve the typedef layer.
9159
9160 Implementation note: We can only check the main-type portion of
9161 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9162 from TYPE now returns a type that has the same instance flags
9163 as TYPE. For instance, if TYPE is a "typedef const", and its
9164 target type is a "struct", then the typedef elimination will return
9165 a "const" version of the target type. See check_typedef for more
9166 details about how the typedef layer elimination is done.
9167
9168 brobecker/2010-11-19: It seems to me that the only case where it is
9169 useful to preserve the typedef layer is when dealing with fat pointers.
9170 Perhaps, we could add a check for that and preserve the typedef layer
9171 only in that situation. But this seems unecessary so far, probably
9172 because we call check_typedef/ada_check_typedef pretty much everywhere.
9173 */
f192137b 9174 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9175 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9176 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9177 return type;
9178
9179 return fixed_type;
9180}
9181
14f9c5c9 9182/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9183 TYPE0, but based on no runtime data. */
14f9c5c9 9184
d2e4a39e
AS
9185static struct type *
9186to_static_fixed_type (struct type *type0)
14f9c5c9 9187{
d2e4a39e 9188 struct type *type;
14f9c5c9
AS
9189
9190 if (type0 == NULL)
9191 return NULL;
9192
876cecd0 9193 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9194 return type0;
9195
61ee279c 9196 type0 = ada_check_typedef (type0);
d2e4a39e 9197
14f9c5c9
AS
9198 switch (TYPE_CODE (type0))
9199 {
9200 default:
9201 return type0;
9202 case TYPE_CODE_STRUCT:
9203 type = dynamic_template_type (type0);
d2e4a39e 9204 if (type != NULL)
4c4b4cd2
PH
9205 return template_to_static_fixed_type (type);
9206 else
9207 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9208 case TYPE_CODE_UNION:
9209 type = ada_find_parallel_type (type0, "___XVU");
9210 if (type != NULL)
4c4b4cd2
PH
9211 return template_to_static_fixed_type (type);
9212 else
9213 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9214 }
9215}
9216
4c4b4cd2
PH
9217/* A static approximation of TYPE with all type wrappers removed. */
9218
d2e4a39e
AS
9219static struct type *
9220static_unwrap_type (struct type *type)
14f9c5c9
AS
9221{
9222 if (ada_is_aligner_type (type))
9223 {
61ee279c 9224 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9225 if (ada_type_name (type1) == NULL)
4c4b4cd2 9226 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9227
9228 return static_unwrap_type (type1);
9229 }
d2e4a39e 9230 else
14f9c5c9 9231 {
d2e4a39e 9232 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9233
d2e4a39e 9234 if (raw_real_type == type)
4c4b4cd2 9235 return type;
14f9c5c9 9236 else
4c4b4cd2 9237 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9238 }
9239}
9240
9241/* In some cases, incomplete and private types require
4c4b4cd2 9242 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9243 type Foo;
9244 type FooP is access Foo;
9245 V: FooP;
9246 type Foo is array ...;
4c4b4cd2 9247 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9248 cross-references to such types, we instead substitute for FooP a
9249 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9250 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9251
9252/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9253 exists, otherwise TYPE. */
9254
d2e4a39e 9255struct type *
61ee279c 9256ada_check_typedef (struct type *type)
14f9c5c9 9257{
727e3d2e
JB
9258 if (type == NULL)
9259 return NULL;
9260
736ade86
XR
9261 /* If our type is an access to an unconstrained array, which is encoded
9262 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9263 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9264 what allows us to distinguish between fat pointers that represent
9265 array types, and fat pointers that represent array access types
9266 (in both cases, the compiler implements them as fat pointers). */
736ade86 9267 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9268 return type;
9269
f168693b 9270 type = check_typedef (type);
14f9c5c9 9271 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9272 || !TYPE_STUB (type)
e86ca25f 9273 || TYPE_NAME (type) == NULL)
14f9c5c9 9274 return type;
d2e4a39e 9275 else
14f9c5c9 9276 {
e86ca25f 9277 const char *name = TYPE_NAME (type);
d2e4a39e 9278 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9279
05e522ef
JB
9280 if (type1 == NULL)
9281 return type;
9282
9283 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9284 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9285 types, only for the typedef-to-array types). If that's the case,
9286 strip the typedef layer. */
9287 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9288 type1 = ada_check_typedef (type1);
9289
9290 return type1;
14f9c5c9
AS
9291 }
9292}
9293
9294/* A value representing the data at VALADDR/ADDRESS as described by
9295 type TYPE0, but with a standard (static-sized) type that correctly
9296 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9297 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9298 creation of struct values]. */
14f9c5c9 9299
4c4b4cd2
PH
9300static struct value *
9301ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9302 struct value *val0)
14f9c5c9 9303{
1ed6ede0 9304 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9305
14f9c5c9
AS
9306 if (type == type0 && val0 != NULL)
9307 return val0;
cc0e770c
JB
9308
9309 if (VALUE_LVAL (val0) != lval_memory)
9310 {
9311 /* Our value does not live in memory; it could be a convenience
9312 variable, for instance. Create a not_lval value using val0's
9313 contents. */
9314 return value_from_contents (type, value_contents (val0));
9315 }
9316
9317 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9318}
9319
9320/* A value representing VAL, but with a standard (static-sized) type
9321 that correctly describes it. Does not necessarily create a new
9322 value. */
9323
0c3acc09 9324struct value *
4c4b4cd2
PH
9325ada_to_fixed_value (struct value *val)
9326{
c48db5ca 9327 val = unwrap_value (val);
d8ce9127 9328 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9329 return val;
14f9c5c9 9330}
d2e4a39e 9331\f
14f9c5c9 9332
14f9c5c9
AS
9333/* Attributes */
9334
4c4b4cd2
PH
9335/* Table mapping attribute numbers to names.
9336 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9337
d2e4a39e 9338static const char *attribute_names[] = {
14f9c5c9
AS
9339 "<?>",
9340
d2e4a39e 9341 "first",
14f9c5c9
AS
9342 "last",
9343 "length",
9344 "image",
14f9c5c9
AS
9345 "max",
9346 "min",
4c4b4cd2
PH
9347 "modulus",
9348 "pos",
9349 "size",
9350 "tag",
14f9c5c9 9351 "val",
14f9c5c9
AS
9352 0
9353};
9354
d2e4a39e 9355const char *
4c4b4cd2 9356ada_attribute_name (enum exp_opcode n)
14f9c5c9 9357{
4c4b4cd2
PH
9358 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9359 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9360 else
9361 return attribute_names[0];
9362}
9363
4c4b4cd2 9364/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9365
4c4b4cd2
PH
9366static LONGEST
9367pos_atr (struct value *arg)
14f9c5c9 9368{
24209737
PH
9369 struct value *val = coerce_ref (arg);
9370 struct type *type = value_type (val);
aa715135 9371 LONGEST result;
14f9c5c9 9372
d2e4a39e 9373 if (!discrete_type_p (type))
323e0a4a 9374 error (_("'POS only defined on discrete types"));
14f9c5c9 9375
aa715135
JG
9376 if (!discrete_position (type, value_as_long (val), &result))
9377 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9378
aa715135 9379 return result;
4c4b4cd2
PH
9380}
9381
9382static struct value *
3cb382c9 9383value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9384{
3cb382c9 9385 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9386}
9387
4c4b4cd2 9388/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9389
d2e4a39e
AS
9390static struct value *
9391value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9392{
d2e4a39e 9393 if (!discrete_type_p (type))
323e0a4a 9394 error (_("'VAL only defined on discrete types"));
df407dfe 9395 if (!integer_type_p (value_type (arg)))
323e0a4a 9396 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9397
9398 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9399 {
9400 long pos = value_as_long (arg);
5b4ee69b 9401
14f9c5c9 9402 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9403 error (_("argument to 'VAL out of range"));
14e75d8e 9404 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9405 }
9406 else
9407 return value_from_longest (type, value_as_long (arg));
9408}
14f9c5c9 9409\f
d2e4a39e 9410
4c4b4cd2 9411 /* Evaluation */
14f9c5c9 9412
4c4b4cd2
PH
9413/* True if TYPE appears to be an Ada character type.
9414 [At the moment, this is true only for Character and Wide_Character;
9415 It is a heuristic test that could stand improvement]. */
14f9c5c9 9416
fc913e53 9417bool
d2e4a39e 9418ada_is_character_type (struct type *type)
14f9c5c9 9419{
7b9f71f2
JB
9420 const char *name;
9421
9422 /* If the type code says it's a character, then assume it really is,
9423 and don't check any further. */
9424 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9425 return true;
7b9f71f2
JB
9426
9427 /* Otherwise, assume it's a character type iff it is a discrete type
9428 with a known character type name. */
9429 name = ada_type_name (type);
9430 return (name != NULL
9431 && (TYPE_CODE (type) == TYPE_CODE_INT
9432 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9433 && (strcmp (name, "character") == 0
9434 || strcmp (name, "wide_character") == 0
5a517ebd 9435 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9436 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9437}
9438
4c4b4cd2 9439/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9440
fc913e53 9441bool
ebf56fd3 9442ada_is_string_type (struct type *type)
14f9c5c9 9443{
61ee279c 9444 type = ada_check_typedef (type);
d2e4a39e 9445 if (type != NULL
14f9c5c9 9446 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9447 && (ada_is_simple_array_type (type)
9448 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9449 && ada_array_arity (type) == 1)
9450 {
9451 struct type *elttype = ada_array_element_type (type, 1);
9452
9453 return ada_is_character_type (elttype);
9454 }
d2e4a39e 9455 else
fc913e53 9456 return false;
14f9c5c9
AS
9457}
9458
5bf03f13
JB
9459/* The compiler sometimes provides a parallel XVS type for a given
9460 PAD type. Normally, it is safe to follow the PAD type directly,
9461 but older versions of the compiler have a bug that causes the offset
9462 of its "F" field to be wrong. Following that field in that case
9463 would lead to incorrect results, but this can be worked around
9464 by ignoring the PAD type and using the associated XVS type instead.
9465
9466 Set to True if the debugger should trust the contents of PAD types.
9467 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9468static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9469
9470/* True if TYPE is a struct type introduced by the compiler to force the
9471 alignment of a value. Such types have a single field with a
4c4b4cd2 9472 distinctive name. */
14f9c5c9
AS
9473
9474int
ebf56fd3 9475ada_is_aligner_type (struct type *type)
14f9c5c9 9476{
61ee279c 9477 type = ada_check_typedef (type);
714e53ab 9478
5bf03f13 9479 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9480 return 0;
9481
14f9c5c9 9482 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9483 && TYPE_NFIELDS (type) == 1
9484 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9485}
9486
9487/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9488 the parallel type. */
14f9c5c9 9489
d2e4a39e
AS
9490struct type *
9491ada_get_base_type (struct type *raw_type)
14f9c5c9 9492{
d2e4a39e
AS
9493 struct type *real_type_namer;
9494 struct type *raw_real_type;
14f9c5c9
AS
9495
9496 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9497 return raw_type;
9498
284614f0
JB
9499 if (ada_is_aligner_type (raw_type))
9500 /* The encoding specifies that we should always use the aligner type.
9501 So, even if this aligner type has an associated XVS type, we should
9502 simply ignore it.
9503
9504 According to the compiler gurus, an XVS type parallel to an aligner
9505 type may exist because of a stabs limitation. In stabs, aligner
9506 types are empty because the field has a variable-sized type, and
9507 thus cannot actually be used as an aligner type. As a result,
9508 we need the associated parallel XVS type to decode the type.
9509 Since the policy in the compiler is to not change the internal
9510 representation based on the debugging info format, we sometimes
9511 end up having a redundant XVS type parallel to the aligner type. */
9512 return raw_type;
9513
14f9c5c9 9514 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9515 if (real_type_namer == NULL
14f9c5c9
AS
9516 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9517 || TYPE_NFIELDS (real_type_namer) != 1)
9518 return raw_type;
9519
f80d3ff2
JB
9520 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9521 {
9522 /* This is an older encoding form where the base type needs to be
9523 looked up by name. We prefer the newer enconding because it is
9524 more efficient. */
9525 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9526 if (raw_real_type == NULL)
9527 return raw_type;
9528 else
9529 return raw_real_type;
9530 }
9531
9532 /* The field in our XVS type is a reference to the base type. */
9533 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9534}
14f9c5c9 9535
4c4b4cd2 9536/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9537
d2e4a39e
AS
9538struct type *
9539ada_aligned_type (struct type *type)
14f9c5c9
AS
9540{
9541 if (ada_is_aligner_type (type))
9542 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9543 else
9544 return ada_get_base_type (type);
9545}
9546
9547
9548/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9549 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9550
fc1a4b47
AC
9551const gdb_byte *
9552ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9553{
d2e4a39e 9554 if (ada_is_aligner_type (type))
14f9c5c9 9555 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9556 valaddr +
9557 TYPE_FIELD_BITPOS (type,
9558 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9559 else
9560 return valaddr;
9561}
9562
4c4b4cd2
PH
9563
9564
14f9c5c9 9565/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9566 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9567const char *
9568ada_enum_name (const char *name)
14f9c5c9 9569{
4c4b4cd2
PH
9570 static char *result;
9571 static size_t result_len = 0;
e6a959d6 9572 const char *tmp;
14f9c5c9 9573
4c4b4cd2
PH
9574 /* First, unqualify the enumeration name:
9575 1. Search for the last '.' character. If we find one, then skip
177b42fe 9576 all the preceding characters, the unqualified name starts
76a01679 9577 right after that dot.
4c4b4cd2 9578 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9579 translates dots into "__". Search forward for double underscores,
9580 but stop searching when we hit an overloading suffix, which is
9581 of the form "__" followed by digits. */
4c4b4cd2 9582
c3e5cd34
PH
9583 tmp = strrchr (name, '.');
9584 if (tmp != NULL)
4c4b4cd2
PH
9585 name = tmp + 1;
9586 else
14f9c5c9 9587 {
4c4b4cd2
PH
9588 while ((tmp = strstr (name, "__")) != NULL)
9589 {
9590 if (isdigit (tmp[2]))
9591 break;
9592 else
9593 name = tmp + 2;
9594 }
14f9c5c9
AS
9595 }
9596
9597 if (name[0] == 'Q')
9598 {
14f9c5c9 9599 int v;
5b4ee69b 9600
14f9c5c9 9601 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9602 {
9603 if (sscanf (name + 2, "%x", &v) != 1)
9604 return name;
9605 }
14f9c5c9 9606 else
4c4b4cd2 9607 return name;
14f9c5c9 9608
4c4b4cd2 9609 GROW_VECT (result, result_len, 16);
14f9c5c9 9610 if (isascii (v) && isprint (v))
88c15c34 9611 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9612 else if (name[1] == 'U')
88c15c34 9613 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9614 else
88c15c34 9615 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9616
9617 return result;
9618 }
d2e4a39e 9619 else
4c4b4cd2 9620 {
c3e5cd34
PH
9621 tmp = strstr (name, "__");
9622 if (tmp == NULL)
9623 tmp = strstr (name, "$");
9624 if (tmp != NULL)
4c4b4cd2
PH
9625 {
9626 GROW_VECT (result, result_len, tmp - name + 1);
9627 strncpy (result, name, tmp - name);
9628 result[tmp - name] = '\0';
9629 return result;
9630 }
9631
9632 return name;
9633 }
14f9c5c9
AS
9634}
9635
14f9c5c9
AS
9636/* Evaluate the subexpression of EXP starting at *POS as for
9637 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9638 expression. */
14f9c5c9 9639
d2e4a39e
AS
9640static struct value *
9641evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9642{
4b27a620 9643 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9644}
9645
9646/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9647 value it wraps. */
14f9c5c9 9648
d2e4a39e
AS
9649static struct value *
9650unwrap_value (struct value *val)
14f9c5c9 9651{
df407dfe 9652 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9653
14f9c5c9
AS
9654 if (ada_is_aligner_type (type))
9655 {
de4d072f 9656 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9657 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9658
14f9c5c9 9659 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9660 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9661
9662 return unwrap_value (v);
9663 }
d2e4a39e 9664 else
14f9c5c9 9665 {
d2e4a39e 9666 struct type *raw_real_type =
61ee279c 9667 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9668
5bf03f13
JB
9669 /* If there is no parallel XVS or XVE type, then the value is
9670 already unwrapped. Return it without further modification. */
9671 if ((type == raw_real_type)
9672 && ada_find_parallel_type (type, "___XVE") == NULL)
9673 return val;
14f9c5c9 9674
d2e4a39e 9675 return
4c4b4cd2
PH
9676 coerce_unspec_val_to_type
9677 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9678 value_address (val),
1ed6ede0 9679 NULL, 1));
14f9c5c9
AS
9680 }
9681}
d2e4a39e
AS
9682
9683static struct value *
50eff16b 9684cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9685{
50eff16b
UW
9686 struct value *scale = ada_scaling_factor (value_type (arg));
9687 arg = value_cast (value_type (scale), arg);
14f9c5c9 9688
50eff16b
UW
9689 arg = value_binop (arg, scale, BINOP_MUL);
9690 return value_cast (type, arg);
14f9c5c9
AS
9691}
9692
d2e4a39e 9693static struct value *
50eff16b 9694cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9695{
50eff16b
UW
9696 if (type == value_type (arg))
9697 return arg;
5b4ee69b 9698
50eff16b
UW
9699 struct value *scale = ada_scaling_factor (type);
9700 if (ada_is_fixed_point_type (value_type (arg)))
9701 arg = cast_from_fixed (value_type (scale), arg);
9702 else
9703 arg = value_cast (value_type (scale), arg);
9704
9705 arg = value_binop (arg, scale, BINOP_DIV);
9706 return value_cast (type, arg);
14f9c5c9
AS
9707}
9708
d99dcf51
JB
9709/* Given two array types T1 and T2, return nonzero iff both arrays
9710 contain the same number of elements. */
9711
9712static int
9713ada_same_array_size_p (struct type *t1, struct type *t2)
9714{
9715 LONGEST lo1, hi1, lo2, hi2;
9716
9717 /* Get the array bounds in order to verify that the size of
9718 the two arrays match. */
9719 if (!get_array_bounds (t1, &lo1, &hi1)
9720 || !get_array_bounds (t2, &lo2, &hi2))
9721 error (_("unable to determine array bounds"));
9722
9723 /* To make things easier for size comparison, normalize a bit
9724 the case of empty arrays by making sure that the difference
9725 between upper bound and lower bound is always -1. */
9726 if (lo1 > hi1)
9727 hi1 = lo1 - 1;
9728 if (lo2 > hi2)
9729 hi2 = lo2 - 1;
9730
9731 return (hi1 - lo1 == hi2 - lo2);
9732}
9733
9734/* Assuming that VAL is an array of integrals, and TYPE represents
9735 an array with the same number of elements, but with wider integral
9736 elements, return an array "casted" to TYPE. In practice, this
9737 means that the returned array is built by casting each element
9738 of the original array into TYPE's (wider) element type. */
9739
9740static struct value *
9741ada_promote_array_of_integrals (struct type *type, struct value *val)
9742{
9743 struct type *elt_type = TYPE_TARGET_TYPE (type);
9744 LONGEST lo, hi;
9745 struct value *res;
9746 LONGEST i;
9747
9748 /* Verify that both val and type are arrays of scalars, and
9749 that the size of val's elements is smaller than the size
9750 of type's element. */
9751 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9752 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9753 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9754 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9755 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9756 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9757
9758 if (!get_array_bounds (type, &lo, &hi))
9759 error (_("unable to determine array bounds"));
9760
9761 res = allocate_value (type);
9762
9763 /* Promote each array element. */
9764 for (i = 0; i < hi - lo + 1; i++)
9765 {
9766 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9767
9768 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9769 value_contents_all (elt), TYPE_LENGTH (elt_type));
9770 }
9771
9772 return res;
9773}
9774
4c4b4cd2
PH
9775/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9776 return the converted value. */
9777
d2e4a39e
AS
9778static struct value *
9779coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9780{
df407dfe 9781 struct type *type2 = value_type (val);
5b4ee69b 9782
14f9c5c9
AS
9783 if (type == type2)
9784 return val;
9785
61ee279c
PH
9786 type2 = ada_check_typedef (type2);
9787 type = ada_check_typedef (type);
14f9c5c9 9788
d2e4a39e
AS
9789 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9790 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9791 {
9792 val = ada_value_ind (val);
df407dfe 9793 type2 = value_type (val);
14f9c5c9
AS
9794 }
9795
d2e4a39e 9796 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9797 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9798 {
d99dcf51
JB
9799 if (!ada_same_array_size_p (type, type2))
9800 error (_("cannot assign arrays of different length"));
9801
9802 if (is_integral_type (TYPE_TARGET_TYPE (type))
9803 && is_integral_type (TYPE_TARGET_TYPE (type2))
9804 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9805 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9806 {
9807 /* Allow implicit promotion of the array elements to
9808 a wider type. */
9809 return ada_promote_array_of_integrals (type, val);
9810 }
9811
9812 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9813 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9814 error (_("Incompatible types in assignment"));
04624583 9815 deprecated_set_value_type (val, type);
14f9c5c9 9816 }
d2e4a39e 9817 return val;
14f9c5c9
AS
9818}
9819
4c4b4cd2
PH
9820static struct value *
9821ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9822{
9823 struct value *val;
9824 struct type *type1, *type2;
9825 LONGEST v, v1, v2;
9826
994b9211
AC
9827 arg1 = coerce_ref (arg1);
9828 arg2 = coerce_ref (arg2);
18af8284
JB
9829 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9830 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9831
76a01679
JB
9832 if (TYPE_CODE (type1) != TYPE_CODE_INT
9833 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9834 return value_binop (arg1, arg2, op);
9835
76a01679 9836 switch (op)
4c4b4cd2
PH
9837 {
9838 case BINOP_MOD:
9839 case BINOP_DIV:
9840 case BINOP_REM:
9841 break;
9842 default:
9843 return value_binop (arg1, arg2, op);
9844 }
9845
9846 v2 = value_as_long (arg2);
9847 if (v2 == 0)
323e0a4a 9848 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9849
9850 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9851 return value_binop (arg1, arg2, op);
9852
9853 v1 = value_as_long (arg1);
9854 switch (op)
9855 {
9856 case BINOP_DIV:
9857 v = v1 / v2;
76a01679
JB
9858 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9859 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9860 break;
9861 case BINOP_REM:
9862 v = v1 % v2;
76a01679
JB
9863 if (v * v1 < 0)
9864 v -= v2;
4c4b4cd2
PH
9865 break;
9866 default:
9867 /* Should not reach this point. */
9868 v = 0;
9869 }
9870
9871 val = allocate_value (type1);
990a07ab 9872 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9873 TYPE_LENGTH (value_type (val)),
9874 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9875 return val;
9876}
9877
9878static int
9879ada_value_equal (struct value *arg1, struct value *arg2)
9880{
df407dfe
AC
9881 if (ada_is_direct_array_type (value_type (arg1))
9882 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9883 {
79e8fcaa
JB
9884 struct type *arg1_type, *arg2_type;
9885
f58b38bf
JB
9886 /* Automatically dereference any array reference before
9887 we attempt to perform the comparison. */
9888 arg1 = ada_coerce_ref (arg1);
9889 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9890
4c4b4cd2
PH
9891 arg1 = ada_coerce_to_simple_array (arg1);
9892 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9893
9894 arg1_type = ada_check_typedef (value_type (arg1));
9895 arg2_type = ada_check_typedef (value_type (arg2));
9896
9897 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9898 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9899 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9900 /* FIXME: The following works only for types whose
76a01679
JB
9901 representations use all bits (no padding or undefined bits)
9902 and do not have user-defined equality. */
79e8fcaa
JB
9903 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9904 && memcmp (value_contents (arg1), value_contents (arg2),
9905 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9906 }
9907 return value_equal (arg1, arg2);
9908}
9909
52ce6436
PH
9910/* Total number of component associations in the aggregate starting at
9911 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9912 OP_AGGREGATE. */
52ce6436
PH
9913
9914static int
9915num_component_specs (struct expression *exp, int pc)
9916{
9917 int n, m, i;
5b4ee69b 9918
52ce6436
PH
9919 m = exp->elts[pc + 1].longconst;
9920 pc += 3;
9921 n = 0;
9922 for (i = 0; i < m; i += 1)
9923 {
9924 switch (exp->elts[pc].opcode)
9925 {
9926 default:
9927 n += 1;
9928 break;
9929 case OP_CHOICES:
9930 n += exp->elts[pc + 1].longconst;
9931 break;
9932 }
9933 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9934 }
9935 return n;
9936}
9937
9938/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9939 component of LHS (a simple array or a record), updating *POS past
9940 the expression, assuming that LHS is contained in CONTAINER. Does
9941 not modify the inferior's memory, nor does it modify LHS (unless
9942 LHS == CONTAINER). */
9943
9944static void
9945assign_component (struct value *container, struct value *lhs, LONGEST index,
9946 struct expression *exp, int *pos)
9947{
9948 struct value *mark = value_mark ();
9949 struct value *elt;
0e2da9f0 9950 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9951
0e2da9f0 9952 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9953 {
22601c15
UW
9954 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9955 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9956
52ce6436
PH
9957 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9958 }
9959 else
9960 {
9961 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9962 elt = ada_to_fixed_value (elt);
52ce6436
PH
9963 }
9964
9965 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9966 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9967 else
9968 value_assign_to_component (container, elt,
9969 ada_evaluate_subexp (NULL, exp, pos,
9970 EVAL_NORMAL));
9971
9972 value_free_to_mark (mark);
9973}
9974
9975/* Assuming that LHS represents an lvalue having a record or array
9976 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9977 of that aggregate's value to LHS, advancing *POS past the
9978 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9979 lvalue containing LHS (possibly LHS itself). Does not modify
9980 the inferior's memory, nor does it modify the contents of
0963b4bd 9981 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9982
9983static struct value *
9984assign_aggregate (struct value *container,
9985 struct value *lhs, struct expression *exp,
9986 int *pos, enum noside noside)
9987{
9988 struct type *lhs_type;
9989 int n = exp->elts[*pos+1].longconst;
9990 LONGEST low_index, high_index;
9991 int num_specs;
9992 LONGEST *indices;
9993 int max_indices, num_indices;
52ce6436 9994 int i;
52ce6436
PH
9995
9996 *pos += 3;
9997 if (noside != EVAL_NORMAL)
9998 {
52ce6436
PH
9999 for (i = 0; i < n; i += 1)
10000 ada_evaluate_subexp (NULL, exp, pos, noside);
10001 return container;
10002 }
10003
10004 container = ada_coerce_ref (container);
10005 if (ada_is_direct_array_type (value_type (container)))
10006 container = ada_coerce_to_simple_array (container);
10007 lhs = ada_coerce_ref (lhs);
10008 if (!deprecated_value_modifiable (lhs))
10009 error (_("Left operand of assignment is not a modifiable lvalue."));
10010
0e2da9f0 10011 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10012 if (ada_is_direct_array_type (lhs_type))
10013 {
10014 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10015 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10016 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10017 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10018 }
10019 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10020 {
10021 low_index = 0;
10022 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10023 }
10024 else
10025 error (_("Left-hand side must be array or record."));
10026
10027 num_specs = num_component_specs (exp, *pos - 3);
10028 max_indices = 4 * num_specs + 4;
8d749320 10029 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10030 indices[0] = indices[1] = low_index - 1;
10031 indices[2] = indices[3] = high_index + 1;
10032 num_indices = 4;
10033
10034 for (i = 0; i < n; i += 1)
10035 {
10036 switch (exp->elts[*pos].opcode)
10037 {
1fbf5ada
JB
10038 case OP_CHOICES:
10039 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10040 &num_indices, max_indices,
10041 low_index, high_index);
10042 break;
10043 case OP_POSITIONAL:
10044 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10045 &num_indices, max_indices,
10046 low_index, high_index);
1fbf5ada
JB
10047 break;
10048 case OP_OTHERS:
10049 if (i != n-1)
10050 error (_("Misplaced 'others' clause"));
10051 aggregate_assign_others (container, lhs, exp, pos, indices,
10052 num_indices, low_index, high_index);
10053 break;
10054 default:
10055 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10056 }
10057 }
10058
10059 return container;
10060}
10061
10062/* Assign into the component of LHS indexed by the OP_POSITIONAL
10063 construct at *POS, updating *POS past the construct, given that
10064 the positions are relative to lower bound LOW, where HIGH is the
10065 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10066 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10067 assign_aggregate. */
52ce6436
PH
10068static void
10069aggregate_assign_positional (struct value *container,
10070 struct value *lhs, struct expression *exp,
10071 int *pos, LONGEST *indices, int *num_indices,
10072 int max_indices, LONGEST low, LONGEST high)
10073{
10074 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10075
10076 if (ind - 1 == high)
e1d5a0d2 10077 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10078 if (ind <= high)
10079 {
10080 add_component_interval (ind, ind, indices, num_indices, max_indices);
10081 *pos += 3;
10082 assign_component (container, lhs, ind, exp, pos);
10083 }
10084 else
10085 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10086}
10087
10088/* Assign into the components of LHS indexed by the OP_CHOICES
10089 construct at *POS, updating *POS past the construct, given that
10090 the allowable indices are LOW..HIGH. Record the indices assigned
10091 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10092 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10093static void
10094aggregate_assign_from_choices (struct value *container,
10095 struct value *lhs, struct expression *exp,
10096 int *pos, LONGEST *indices, int *num_indices,
10097 int max_indices, LONGEST low, LONGEST high)
10098{
10099 int j;
10100 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10101 int choice_pos, expr_pc;
10102 int is_array = ada_is_direct_array_type (value_type (lhs));
10103
10104 choice_pos = *pos += 3;
10105
10106 for (j = 0; j < n_choices; j += 1)
10107 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10108 expr_pc = *pos;
10109 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10110
10111 for (j = 0; j < n_choices; j += 1)
10112 {
10113 LONGEST lower, upper;
10114 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10115
52ce6436
PH
10116 if (op == OP_DISCRETE_RANGE)
10117 {
10118 choice_pos += 1;
10119 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10120 EVAL_NORMAL));
10121 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10122 EVAL_NORMAL));
10123 }
10124 else if (is_array)
10125 {
10126 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10127 EVAL_NORMAL));
10128 upper = lower;
10129 }
10130 else
10131 {
10132 int ind;
0d5cff50 10133 const char *name;
5b4ee69b 10134
52ce6436
PH
10135 switch (op)
10136 {
10137 case OP_NAME:
10138 name = &exp->elts[choice_pos + 2].string;
10139 break;
10140 case OP_VAR_VALUE:
10141 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10142 break;
10143 default:
10144 error (_("Invalid record component association."));
10145 }
10146 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10147 ind = 0;
10148 if (! find_struct_field (name, value_type (lhs), 0,
10149 NULL, NULL, NULL, NULL, &ind))
10150 error (_("Unknown component name: %s."), name);
10151 lower = upper = ind;
10152 }
10153
10154 if (lower <= upper && (lower < low || upper > high))
10155 error (_("Index in component association out of bounds."));
10156
10157 add_component_interval (lower, upper, indices, num_indices,
10158 max_indices);
10159 while (lower <= upper)
10160 {
10161 int pos1;
5b4ee69b 10162
52ce6436
PH
10163 pos1 = expr_pc;
10164 assign_component (container, lhs, lower, exp, &pos1);
10165 lower += 1;
10166 }
10167 }
10168}
10169
10170/* Assign the value of the expression in the OP_OTHERS construct in
10171 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10172 have not been previously assigned. The index intervals already assigned
10173 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10174 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10175static void
10176aggregate_assign_others (struct value *container,
10177 struct value *lhs, struct expression *exp,
10178 int *pos, LONGEST *indices, int num_indices,
10179 LONGEST low, LONGEST high)
10180{
10181 int i;
5ce64950 10182 int expr_pc = *pos + 1;
52ce6436
PH
10183
10184 for (i = 0; i < num_indices - 2; i += 2)
10185 {
10186 LONGEST ind;
5b4ee69b 10187
52ce6436
PH
10188 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10189 {
5ce64950 10190 int localpos;
5b4ee69b 10191
5ce64950
MS
10192 localpos = expr_pc;
10193 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10194 }
10195 }
10196 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10197}
10198
10199/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10200 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10201 modifying *SIZE as needed. It is an error if *SIZE exceeds
10202 MAX_SIZE. The resulting intervals do not overlap. */
10203static void
10204add_component_interval (LONGEST low, LONGEST high,
10205 LONGEST* indices, int *size, int max_size)
10206{
10207 int i, j;
5b4ee69b 10208
52ce6436
PH
10209 for (i = 0; i < *size; i += 2) {
10210 if (high >= indices[i] && low <= indices[i + 1])
10211 {
10212 int kh;
5b4ee69b 10213
52ce6436
PH
10214 for (kh = i + 2; kh < *size; kh += 2)
10215 if (high < indices[kh])
10216 break;
10217 if (low < indices[i])
10218 indices[i] = low;
10219 indices[i + 1] = indices[kh - 1];
10220 if (high > indices[i + 1])
10221 indices[i + 1] = high;
10222 memcpy (indices + i + 2, indices + kh, *size - kh);
10223 *size -= kh - i - 2;
10224 return;
10225 }
10226 else if (high < indices[i])
10227 break;
10228 }
10229
10230 if (*size == max_size)
10231 error (_("Internal error: miscounted aggregate components."));
10232 *size += 2;
10233 for (j = *size-1; j >= i+2; j -= 1)
10234 indices[j] = indices[j - 2];
10235 indices[i] = low;
10236 indices[i + 1] = high;
10237}
10238
6e48bd2c
JB
10239/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10240 is different. */
10241
10242static struct value *
b7e22850 10243ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10244{
10245 if (type == ada_check_typedef (value_type (arg2)))
10246 return arg2;
10247
10248 if (ada_is_fixed_point_type (type))
95f39a5b 10249 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10250
10251 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10252 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10253
10254 return value_cast (type, arg2);
10255}
10256
284614f0
JB
10257/* Evaluating Ada expressions, and printing their result.
10258 ------------------------------------------------------
10259
21649b50
JB
10260 1. Introduction:
10261 ----------------
10262
284614f0
JB
10263 We usually evaluate an Ada expression in order to print its value.
10264 We also evaluate an expression in order to print its type, which
10265 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10266 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10267 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10268 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10269 similar.
10270
10271 Evaluating expressions is a little more complicated for Ada entities
10272 than it is for entities in languages such as C. The main reason for
10273 this is that Ada provides types whose definition might be dynamic.
10274 One example of such types is variant records. Or another example
10275 would be an array whose bounds can only be known at run time.
10276
10277 The following description is a general guide as to what should be
10278 done (and what should NOT be done) in order to evaluate an expression
10279 involving such types, and when. This does not cover how the semantic
10280 information is encoded by GNAT as this is covered separatly. For the
10281 document used as the reference for the GNAT encoding, see exp_dbug.ads
10282 in the GNAT sources.
10283
10284 Ideally, we should embed each part of this description next to its
10285 associated code. Unfortunately, the amount of code is so vast right
10286 now that it's hard to see whether the code handling a particular
10287 situation might be duplicated or not. One day, when the code is
10288 cleaned up, this guide might become redundant with the comments
10289 inserted in the code, and we might want to remove it.
10290
21649b50
JB
10291 2. ``Fixing'' an Entity, the Simple Case:
10292 -----------------------------------------
10293
284614f0
JB
10294 When evaluating Ada expressions, the tricky issue is that they may
10295 reference entities whose type contents and size are not statically
10296 known. Consider for instance a variant record:
10297
10298 type Rec (Empty : Boolean := True) is record
10299 case Empty is
10300 when True => null;
10301 when False => Value : Integer;
10302 end case;
10303 end record;
10304 Yes : Rec := (Empty => False, Value => 1);
10305 No : Rec := (empty => True);
10306
10307 The size and contents of that record depends on the value of the
10308 descriminant (Rec.Empty). At this point, neither the debugging
10309 information nor the associated type structure in GDB are able to
10310 express such dynamic types. So what the debugger does is to create
10311 "fixed" versions of the type that applies to the specific object.
10312 We also informally refer to this opperation as "fixing" an object,
10313 which means creating its associated fixed type.
10314
10315 Example: when printing the value of variable "Yes" above, its fixed
10316 type would look like this:
10317
10318 type Rec is record
10319 Empty : Boolean;
10320 Value : Integer;
10321 end record;
10322
10323 On the other hand, if we printed the value of "No", its fixed type
10324 would become:
10325
10326 type Rec is record
10327 Empty : Boolean;
10328 end record;
10329
10330 Things become a little more complicated when trying to fix an entity
10331 with a dynamic type that directly contains another dynamic type,
10332 such as an array of variant records, for instance. There are
10333 two possible cases: Arrays, and records.
10334
21649b50
JB
10335 3. ``Fixing'' Arrays:
10336 ---------------------
10337
10338 The type structure in GDB describes an array in terms of its bounds,
10339 and the type of its elements. By design, all elements in the array
10340 have the same type and we cannot represent an array of variant elements
10341 using the current type structure in GDB. When fixing an array,
10342 we cannot fix the array element, as we would potentially need one
10343 fixed type per element of the array. As a result, the best we can do
10344 when fixing an array is to produce an array whose bounds and size
10345 are correct (allowing us to read it from memory), but without having
10346 touched its element type. Fixing each element will be done later,
10347 when (if) necessary.
10348
10349 Arrays are a little simpler to handle than records, because the same
10350 amount of memory is allocated for each element of the array, even if
1b536f04 10351 the amount of space actually used by each element differs from element
21649b50 10352 to element. Consider for instance the following array of type Rec:
284614f0
JB
10353
10354 type Rec_Array is array (1 .. 2) of Rec;
10355
1b536f04
JB
10356 The actual amount of memory occupied by each element might be different
10357 from element to element, depending on the value of their discriminant.
21649b50 10358 But the amount of space reserved for each element in the array remains
1b536f04 10359 fixed regardless. So we simply need to compute that size using
21649b50
JB
10360 the debugging information available, from which we can then determine
10361 the array size (we multiply the number of elements of the array by
10362 the size of each element).
10363
10364 The simplest case is when we have an array of a constrained element
10365 type. For instance, consider the following type declarations:
10366
10367 type Bounded_String (Max_Size : Integer) is
10368 Length : Integer;
10369 Buffer : String (1 .. Max_Size);
10370 end record;
10371 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10372
10373 In this case, the compiler describes the array as an array of
10374 variable-size elements (identified by its XVS suffix) for which
10375 the size can be read in the parallel XVZ variable.
10376
10377 In the case of an array of an unconstrained element type, the compiler
10378 wraps the array element inside a private PAD type. This type should not
10379 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10380 that we also use the adjective "aligner" in our code to designate
10381 these wrapper types.
10382
1b536f04 10383 In some cases, the size allocated for each element is statically
21649b50
JB
10384 known. In that case, the PAD type already has the correct size,
10385 and the array element should remain unfixed.
10386
10387 But there are cases when this size is not statically known.
10388 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10389
10390 type Dynamic is array (1 .. Five) of Integer;
10391 type Wrapper (Has_Length : Boolean := False) is record
10392 Data : Dynamic;
10393 case Has_Length is
10394 when True => Length : Integer;
10395 when False => null;
10396 end case;
10397 end record;
10398 type Wrapper_Array is array (1 .. 2) of Wrapper;
10399
10400 Hello : Wrapper_Array := (others => (Has_Length => True,
10401 Data => (others => 17),
10402 Length => 1));
10403
10404
10405 The debugging info would describe variable Hello as being an
10406 array of a PAD type. The size of that PAD type is not statically
10407 known, but can be determined using a parallel XVZ variable.
10408 In that case, a copy of the PAD type with the correct size should
10409 be used for the fixed array.
10410
21649b50
JB
10411 3. ``Fixing'' record type objects:
10412 ----------------------------------
10413
10414 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10415 record types. In this case, in order to compute the associated
10416 fixed type, we need to determine the size and offset of each of
10417 its components. This, in turn, requires us to compute the fixed
10418 type of each of these components.
10419
10420 Consider for instance the example:
10421
10422 type Bounded_String (Max_Size : Natural) is record
10423 Str : String (1 .. Max_Size);
10424 Length : Natural;
10425 end record;
10426 My_String : Bounded_String (Max_Size => 10);
10427
10428 In that case, the position of field "Length" depends on the size
10429 of field Str, which itself depends on the value of the Max_Size
21649b50 10430 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10431 we need to fix the type of field Str. Therefore, fixing a variant
10432 record requires us to fix each of its components.
10433
10434 However, if a component does not have a dynamic size, the component
10435 should not be fixed. In particular, fields that use a PAD type
10436 should not fixed. Here is an example where this might happen
10437 (assuming type Rec above):
10438
10439 type Container (Big : Boolean) is record
10440 First : Rec;
10441 After : Integer;
10442 case Big is
10443 when True => Another : Integer;
10444 when False => null;
10445 end case;
10446 end record;
10447 My_Container : Container := (Big => False,
10448 First => (Empty => True),
10449 After => 42);
10450
10451 In that example, the compiler creates a PAD type for component First,
10452 whose size is constant, and then positions the component After just
10453 right after it. The offset of component After is therefore constant
10454 in this case.
10455
10456 The debugger computes the position of each field based on an algorithm
10457 that uses, among other things, the actual position and size of the field
21649b50
JB
10458 preceding it. Let's now imagine that the user is trying to print
10459 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10460 end up computing the offset of field After based on the size of the
10461 fixed version of field First. And since in our example First has
10462 only one actual field, the size of the fixed type is actually smaller
10463 than the amount of space allocated to that field, and thus we would
10464 compute the wrong offset of field After.
10465
21649b50
JB
10466 To make things more complicated, we need to watch out for dynamic
10467 components of variant records (identified by the ___XVL suffix in
10468 the component name). Even if the target type is a PAD type, the size
10469 of that type might not be statically known. So the PAD type needs
10470 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10471 we might end up with the wrong size for our component. This can be
10472 observed with the following type declarations:
284614f0
JB
10473
10474 type Octal is new Integer range 0 .. 7;
10475 type Octal_Array is array (Positive range <>) of Octal;
10476 pragma Pack (Octal_Array);
10477
10478 type Octal_Buffer (Size : Positive) is record
10479 Buffer : Octal_Array (1 .. Size);
10480 Length : Integer;
10481 end record;
10482
10483 In that case, Buffer is a PAD type whose size is unset and needs
10484 to be computed by fixing the unwrapped type.
10485
21649b50
JB
10486 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10487 ----------------------------------------------------------
10488
10489 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10490 thus far, be actually fixed?
10491
10492 The answer is: Only when referencing that element. For instance
10493 when selecting one component of a record, this specific component
10494 should be fixed at that point in time. Or when printing the value
10495 of a record, each component should be fixed before its value gets
10496 printed. Similarly for arrays, the element of the array should be
10497 fixed when printing each element of the array, or when extracting
10498 one element out of that array. On the other hand, fixing should
10499 not be performed on the elements when taking a slice of an array!
10500
31432a67 10501 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10502 size of each field is that we end up also miscomputing the size
10503 of the containing type. This can have adverse results when computing
10504 the value of an entity. GDB fetches the value of an entity based
10505 on the size of its type, and thus a wrong size causes GDB to fetch
10506 the wrong amount of memory. In the case where the computed size is
10507 too small, GDB fetches too little data to print the value of our
31432a67 10508 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10509 past the buffer containing the data =:-o. */
10510
ced9779b
JB
10511/* Evaluate a subexpression of EXP, at index *POS, and return a value
10512 for that subexpression cast to TO_TYPE. Advance *POS over the
10513 subexpression. */
10514
10515static value *
10516ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10517 enum noside noside, struct type *to_type)
10518{
10519 int pc = *pos;
10520
10521 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10522 || exp->elts[pc].opcode == OP_VAR_VALUE)
10523 {
10524 (*pos) += 4;
10525
10526 value *val;
10527 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10528 {
10529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10530 return value_zero (to_type, not_lval);
10531
10532 val = evaluate_var_msym_value (noside,
10533 exp->elts[pc + 1].objfile,
10534 exp->elts[pc + 2].msymbol);
10535 }
10536 else
10537 val = evaluate_var_value (noside,
10538 exp->elts[pc + 1].block,
10539 exp->elts[pc + 2].symbol);
10540
10541 if (noside == EVAL_SKIP)
10542 return eval_skip_value (exp);
10543
10544 val = ada_value_cast (to_type, val);
10545
10546 /* Follow the Ada language semantics that do not allow taking
10547 an address of the result of a cast (view conversion in Ada). */
10548 if (VALUE_LVAL (val) == lval_memory)
10549 {
10550 if (value_lazy (val))
10551 value_fetch_lazy (val);
10552 VALUE_LVAL (val) = not_lval;
10553 }
10554 return val;
10555 }
10556
10557 value *val = evaluate_subexp (to_type, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
10559 return eval_skip_value (exp);
10560 return ada_value_cast (to_type, val);
10561}
10562
284614f0
JB
10563/* Implement the evaluate_exp routine in the exp_descriptor structure
10564 for the Ada language. */
10565
52ce6436 10566static struct value *
ebf56fd3 10567ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10568 int *pos, enum noside noside)
14f9c5c9
AS
10569{
10570 enum exp_opcode op;
b5385fc0 10571 int tem;
14f9c5c9 10572 int pc;
5ec18f2b 10573 int preeval_pos;
14f9c5c9
AS
10574 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10575 struct type *type;
52ce6436 10576 int nargs, oplen;
d2e4a39e 10577 struct value **argvec;
14f9c5c9 10578
d2e4a39e
AS
10579 pc = *pos;
10580 *pos += 1;
14f9c5c9
AS
10581 op = exp->elts[pc].opcode;
10582
d2e4a39e 10583 switch (op)
14f9c5c9
AS
10584 {
10585 default:
10586 *pos -= 1;
6e48bd2c 10587 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10588
10589 if (noside == EVAL_NORMAL)
10590 arg1 = unwrap_value (arg1);
6e48bd2c 10591
edd079d9 10592 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10593 then we need to perform the conversion manually, because
10594 evaluate_subexp_standard doesn't do it. This conversion is
10595 necessary in Ada because the different kinds of float/fixed
10596 types in Ada have different representations.
10597
10598 Similarly, we need to perform the conversion from OP_LONG
10599 ourselves. */
edd079d9 10600 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10601 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10602
10603 return arg1;
4c4b4cd2
PH
10604
10605 case OP_STRING:
10606 {
76a01679 10607 struct value *result;
5b4ee69b 10608
76a01679
JB
10609 *pos -= 1;
10610 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10611 /* The result type will have code OP_STRING, bashed there from
10612 OP_ARRAY. Bash it back. */
df407dfe
AC
10613 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10614 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10615 return result;
4c4b4cd2 10616 }
14f9c5c9
AS
10617
10618 case UNOP_CAST:
10619 (*pos) += 2;
10620 type = exp->elts[pc + 1].type;
ced9779b 10621 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10622
4c4b4cd2
PH
10623 case UNOP_QUAL:
10624 (*pos) += 2;
10625 type = exp->elts[pc + 1].type;
10626 return ada_evaluate_subexp (type, exp, pos, noside);
10627
14f9c5c9
AS
10628 case BINOP_ASSIGN:
10629 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10630 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10631 {
10632 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10633 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10634 return arg1;
10635 return ada_value_assign (arg1, arg1);
10636 }
003f3813
JB
10637 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10638 except if the lhs of our assignment is a convenience variable.
10639 In the case of assigning to a convenience variable, the lhs
10640 should be exactly the result of the evaluation of the rhs. */
10641 type = value_type (arg1);
10642 if (VALUE_LVAL (arg1) == lval_internalvar)
10643 type = NULL;
10644 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10645 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10646 return arg1;
df407dfe
AC
10647 if (ada_is_fixed_point_type (value_type (arg1)))
10648 arg2 = cast_to_fixed (value_type (arg1), arg2);
10649 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10650 error
323e0a4a 10651 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10652 else
df407dfe 10653 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10654 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10655
10656 case BINOP_ADD:
10657 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10658 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10659 if (noside == EVAL_SKIP)
4c4b4cd2 10660 goto nosideret;
2ac8a782
JB
10661 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10662 return (value_from_longest
10663 (value_type (arg1),
10664 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10665 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10666 return (value_from_longest
10667 (value_type (arg2),
10668 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10669 if ((ada_is_fixed_point_type (value_type (arg1))
10670 || ada_is_fixed_point_type (value_type (arg2)))
10671 && value_type (arg1) != value_type (arg2))
323e0a4a 10672 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10673 /* Do the addition, and cast the result to the type of the first
10674 argument. We cannot cast the result to a reference type, so if
10675 ARG1 is a reference type, find its underlying type. */
10676 type = value_type (arg1);
10677 while (TYPE_CODE (type) == TYPE_CODE_REF)
10678 type = TYPE_TARGET_TYPE (type);
f44316fa 10679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10680 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10681
10682 case BINOP_SUB:
10683 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10684 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10685 if (noside == EVAL_SKIP)
4c4b4cd2 10686 goto nosideret;
2ac8a782
JB
10687 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10688 return (value_from_longest
10689 (value_type (arg1),
10690 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10691 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10692 return (value_from_longest
10693 (value_type (arg2),
10694 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10695 if ((ada_is_fixed_point_type (value_type (arg1))
10696 || ada_is_fixed_point_type (value_type (arg2)))
10697 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10698 error (_("Operands of fixed-point subtraction "
10699 "must have the same type"));
b7789565
JB
10700 /* Do the substraction, and cast the result to the type of the first
10701 argument. We cannot cast the result to a reference type, so if
10702 ARG1 is a reference type, find its underlying type. */
10703 type = value_type (arg1);
10704 while (TYPE_CODE (type) == TYPE_CODE_REF)
10705 type = TYPE_TARGET_TYPE (type);
f44316fa 10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10707 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10708
10709 case BINOP_MUL:
10710 case BINOP_DIV:
e1578042
JB
10711 case BINOP_REM:
10712 case BINOP_MOD:
14f9c5c9
AS
10713 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10714 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10715 if (noside == EVAL_SKIP)
4c4b4cd2 10716 goto nosideret;
e1578042 10717 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10718 {
10719 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10720 return value_zero (value_type (arg1), not_lval);
10721 }
14f9c5c9 10722 else
4c4b4cd2 10723 {
a53b7a21 10724 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10725 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10726 arg1 = cast_from_fixed (type, arg1);
df407dfe 10727 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10728 arg2 = cast_from_fixed (type, arg2);
f44316fa 10729 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10730 return ada_value_binop (arg1, arg2, op);
10731 }
10732
4c4b4cd2
PH
10733 case BINOP_EQUAL:
10734 case BINOP_NOTEQUAL:
14f9c5c9 10735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10736 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10737 if (noside == EVAL_SKIP)
76a01679 10738 goto nosideret;
4c4b4cd2 10739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10740 tem = 0;
4c4b4cd2 10741 else
f44316fa
UW
10742 {
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744 tem = ada_value_equal (arg1, arg2);
10745 }
4c4b4cd2 10746 if (op == BINOP_NOTEQUAL)
76a01679 10747 tem = !tem;
fbb06eb1
UW
10748 type = language_bool_type (exp->language_defn, exp->gdbarch);
10749 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10750
10751 case UNOP_NEG:
10752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10753 if (noside == EVAL_SKIP)
10754 goto nosideret;
df407dfe
AC
10755 else if (ada_is_fixed_point_type (value_type (arg1)))
10756 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10757 else
f44316fa
UW
10758 {
10759 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10760 return value_neg (arg1);
10761 }
4c4b4cd2 10762
2330c6c6
JB
10763 case BINOP_LOGICAL_AND:
10764 case BINOP_LOGICAL_OR:
10765 case UNOP_LOGICAL_NOT:
000d5124
JB
10766 {
10767 struct value *val;
10768
10769 *pos -= 1;
10770 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10771 type = language_bool_type (exp->language_defn, exp->gdbarch);
10772 return value_cast (type, val);
000d5124 10773 }
2330c6c6
JB
10774
10775 case BINOP_BITWISE_AND:
10776 case BINOP_BITWISE_IOR:
10777 case BINOP_BITWISE_XOR:
000d5124
JB
10778 {
10779 struct value *val;
10780
10781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10782 *pos = pc;
10783 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10784
10785 return value_cast (value_type (arg1), val);
10786 }
2330c6c6 10787
14f9c5c9
AS
10788 case OP_VAR_VALUE:
10789 *pos -= 1;
6799def4 10790
14f9c5c9 10791 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10792 {
10793 *pos += 4;
10794 goto nosideret;
10795 }
da5c522f
JB
10796
10797 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10798 /* Only encountered when an unresolved symbol occurs in a
10799 context other than a function call, in which case, it is
52ce6436 10800 invalid. */
323e0a4a 10801 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10802 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10803
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10805 {
0c1f74cf 10806 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10807 /* Check to see if this is a tagged type. We also need to handle
10808 the case where the type is a reference to a tagged type, but
10809 we have to be careful to exclude pointers to tagged types.
10810 The latter should be shown as usual (as a pointer), whereas
10811 a reference should mostly be transparent to the user. */
10812 if (ada_is_tagged_type (type, 0)
023db19c 10813 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10814 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10815 {
10816 /* Tagged types are a little special in the fact that the real
10817 type is dynamic and can only be determined by inspecting the
10818 object's tag. This means that we need to get the object's
10819 value first (EVAL_NORMAL) and then extract the actual object
10820 type from its tag.
10821
10822 Note that we cannot skip the final step where we extract
10823 the object type from its tag, because the EVAL_NORMAL phase
10824 results in dynamic components being resolved into fixed ones.
10825 This can cause problems when trying to print the type
10826 description of tagged types whose parent has a dynamic size:
10827 We use the type name of the "_parent" component in order
10828 to print the name of the ancestor type in the type description.
10829 If that component had a dynamic size, the resolution into
10830 a fixed type would result in the loss of that type name,
10831 thus preventing us from printing the name of the ancestor
10832 type in the type description. */
10833 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10834
10835 if (TYPE_CODE (type) != TYPE_CODE_REF)
10836 {
10837 struct type *actual_type;
10838
10839 actual_type = type_from_tag (ada_value_tag (arg1));
10840 if (actual_type == NULL)
10841 /* If, for some reason, we were unable to determine
10842 the actual type from the tag, then use the static
10843 approximation that we just computed as a fallback.
10844 This can happen if the debugging information is
10845 incomplete, for instance. */
10846 actual_type = type;
10847 return value_zero (actual_type, not_lval);
10848 }
10849 else
10850 {
10851 /* In the case of a ref, ada_coerce_ref takes care
10852 of determining the actual type. But the evaluation
10853 should return a ref as it should be valid to ask
10854 for its address; so rebuild a ref after coerce. */
10855 arg1 = ada_coerce_ref (arg1);
a65cfae5 10856 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10857 }
10858 }
0c1f74cf 10859
84754697
JB
10860 /* Records and unions for which GNAT encodings have been
10861 generated need to be statically fixed as well.
10862 Otherwise, non-static fixing produces a type where
10863 all dynamic properties are removed, which prevents "ptype"
10864 from being able to completely describe the type.
10865 For instance, a case statement in a variant record would be
10866 replaced by the relevant components based on the actual
10867 value of the discriminants. */
10868 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10869 && dynamic_template_type (type) != NULL)
10870 || (TYPE_CODE (type) == TYPE_CODE_UNION
10871 && ada_find_parallel_type (type, "___XVU") != NULL))
10872 {
10873 *pos += 4;
10874 return value_zero (to_static_fixed_type (type), not_lval);
10875 }
4c4b4cd2 10876 }
da5c522f
JB
10877
10878 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10879 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10880
10881 case OP_FUNCALL:
10882 (*pos) += 2;
10883
10884 /* Allocate arg vector, including space for the function to be
10885 called in argvec[0] and a terminating NULL. */
10886 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10887 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10888
10889 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10890 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10891 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10892 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10893 else
10894 {
10895 for (tem = 0; tem <= nargs; tem += 1)
10896 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10897 argvec[tem] = 0;
10898
10899 if (noside == EVAL_SKIP)
10900 goto nosideret;
10901 }
10902
ad82864c
JB
10903 if (ada_is_constrained_packed_array_type
10904 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10905 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10906 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10907 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10908 /* This is a packed array that has already been fixed, and
10909 therefore already coerced to a simple array. Nothing further
10910 to do. */
10911 ;
e6c2c623
PMR
10912 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10913 {
10914 /* Make sure we dereference references so that all the code below
10915 feels like it's really handling the referenced value. Wrapping
10916 types (for alignment) may be there, so make sure we strip them as
10917 well. */
10918 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10919 }
10920 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10921 && VALUE_LVAL (argvec[0]) == lval_memory)
10922 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10923
df407dfe 10924 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10925
10926 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10927 them. So, if this is an array typedef (encoding use for array
10928 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10929 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10930 type = ada_typedef_target_type (type);
10931
4c4b4cd2
PH
10932 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10933 {
61ee279c 10934 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10935 {
10936 case TYPE_CODE_FUNC:
61ee279c 10937 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10938 break;
10939 case TYPE_CODE_ARRAY:
10940 break;
10941 case TYPE_CODE_STRUCT:
10942 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10943 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10944 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10945 break;
10946 default:
323e0a4a 10947 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10948 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10949 break;
10950 }
10951 }
10952
10953 switch (TYPE_CODE (type))
10954 {
10955 case TYPE_CODE_FUNC:
10956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10957 {
7022349d
PA
10958 if (TYPE_TARGET_TYPE (type) == NULL)
10959 error_call_unknown_return_type (NULL);
10960 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10961 }
e71585ff
PA
10962 return call_function_by_hand (argvec[0], NULL,
10963 gdb::make_array_view (argvec + 1,
10964 nargs));
c8ea1972
PH
10965 case TYPE_CODE_INTERNAL_FUNCTION:
10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10967 /* We don't know anything about what the internal
10968 function might return, but we have to return
10969 something. */
10970 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10971 not_lval);
10972 else
10973 return call_internal_function (exp->gdbarch, exp->language_defn,
10974 argvec[0], nargs, argvec + 1);
10975
4c4b4cd2
PH
10976 case TYPE_CODE_STRUCT:
10977 {
10978 int arity;
10979
4c4b4cd2
PH
10980 arity = ada_array_arity (type);
10981 type = ada_array_element_type (type, nargs);
10982 if (type == NULL)
323e0a4a 10983 error (_("cannot subscript or call a record"));
4c4b4cd2 10984 if (arity != nargs)
323e0a4a 10985 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10987 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10988 return
10989 unwrap_value (ada_value_subscript
10990 (argvec[0], nargs, argvec + 1));
10991 }
10992 case TYPE_CODE_ARRAY:
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 {
10995 type = ada_array_element_type (type, nargs);
10996 if (type == NULL)
323e0a4a 10997 error (_("element type of array unknown"));
4c4b4cd2 10998 else
0a07e705 10999 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11000 }
11001 return
11002 unwrap_value (ada_value_subscript
11003 (ada_coerce_to_simple_array (argvec[0]),
11004 nargs, argvec + 1));
11005 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11007 {
deede10c 11008 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11009 type = ada_array_element_type (type, nargs);
11010 if (type == NULL)
323e0a4a 11011 error (_("element type of array unknown"));
4c4b4cd2 11012 else
0a07e705 11013 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11014 }
11015 return
deede10c
JB
11016 unwrap_value (ada_value_ptr_subscript (argvec[0],
11017 nargs, argvec + 1));
4c4b4cd2
PH
11018
11019 default:
e1d5a0d2
PH
11020 error (_("Attempt to index or call something other than an "
11021 "array or function"));
4c4b4cd2
PH
11022 }
11023
11024 case TERNOP_SLICE:
11025 {
11026 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11027 struct value *low_bound_val =
11028 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11029 struct value *high_bound_val =
11030 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11031 LONGEST low_bound;
11032 LONGEST high_bound;
5b4ee69b 11033
994b9211
AC
11034 low_bound_val = coerce_ref (low_bound_val);
11035 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11036 low_bound = value_as_long (low_bound_val);
11037 high_bound = value_as_long (high_bound_val);
963a6417 11038
4c4b4cd2
PH
11039 if (noside == EVAL_SKIP)
11040 goto nosideret;
11041
4c4b4cd2
PH
11042 /* If this is a reference to an aligner type, then remove all
11043 the aligners. */
df407dfe
AC
11044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11045 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11046 TYPE_TARGET_TYPE (value_type (array)) =
11047 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11048
ad82864c 11049 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11050 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11051
11052 /* If this is a reference to an array or an array lvalue,
11053 convert to a pointer. */
df407dfe
AC
11054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11055 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11056 && VALUE_LVAL (array) == lval_memory))
11057 array = value_addr (array);
11058
1265e4aa 11059 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11060 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11061 (value_type (array))))
bff8c71f
TT
11062 return empty_array (ada_type_of_array (array, 0), low_bound,
11063 high_bound);
4c4b4cd2
PH
11064
11065 array = ada_coerce_to_simple_array_ptr (array);
11066
714e53ab
PH
11067 /* If we have more than one level of pointer indirection,
11068 dereference the value until we get only one level. */
df407dfe
AC
11069 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11070 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11071 == TYPE_CODE_PTR))
11072 array = value_ind (array);
11073
11074 /* Make sure we really do have an array type before going further,
11075 to avoid a SEGV when trying to get the index type or the target
11076 type later down the road if the debug info generated by
11077 the compiler is incorrect or incomplete. */
df407dfe 11078 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11079 error (_("cannot take slice of non-array"));
714e53ab 11080
828292f2
JB
11081 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11082 == TYPE_CODE_PTR)
4c4b4cd2 11083 {
828292f2
JB
11084 struct type *type0 = ada_check_typedef (value_type (array));
11085
0b5d8877 11086 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11087 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11088 else
11089 {
11090 struct type *arr_type0 =
828292f2 11091 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11092
f5938064
JG
11093 return ada_value_slice_from_ptr (array, arr_type0,
11094 longest_to_int (low_bound),
11095 longest_to_int (high_bound));
4c4b4cd2
PH
11096 }
11097 }
11098 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 return array;
11100 else if (high_bound < low_bound)
bff8c71f 11101 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11102 else
529cad9c
PH
11103 return ada_value_slice (array, longest_to_int (low_bound),
11104 longest_to_int (high_bound));
4c4b4cd2 11105 }
14f9c5c9 11106
4c4b4cd2
PH
11107 case UNOP_IN_RANGE:
11108 (*pos) += 2;
11109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11110 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11111
14f9c5c9 11112 if (noside == EVAL_SKIP)
4c4b4cd2 11113 goto nosideret;
14f9c5c9 11114
4c4b4cd2
PH
11115 switch (TYPE_CODE (type))
11116 {
11117 default:
e1d5a0d2
PH
11118 lim_warning (_("Membership test incompletely implemented; "
11119 "always returns true"));
fbb06eb1
UW
11120 type = language_bool_type (exp->language_defn, exp->gdbarch);
11121 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11122
11123 case TYPE_CODE_RANGE:
030b4912
UW
11124 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11125 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11128 type = language_bool_type (exp->language_defn, exp->gdbarch);
11129 return
11130 value_from_longest (type,
4c4b4cd2
PH
11131 (value_less (arg1, arg3)
11132 || value_equal (arg1, arg3))
11133 && (value_less (arg2, arg1)
11134 || value_equal (arg2, arg1)));
11135 }
11136
11137 case BINOP_IN_BOUNDS:
14f9c5c9 11138 (*pos) += 2;
4c4b4cd2
PH
11139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11141
4c4b4cd2
PH
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
14f9c5c9 11144
4c4b4cd2 11145 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11146 {
11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
11148 return value_zero (type, not_lval);
11149 }
14f9c5c9 11150
4c4b4cd2 11151 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11152
1eea4ebd
UW
11153 type = ada_index_type (value_type (arg2), tem, "range");
11154 if (!type)
11155 type = value_type (arg1);
14f9c5c9 11156
1eea4ebd
UW
11157 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11158 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11159
f44316fa
UW
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11163 return
fbb06eb1 11164 value_from_longest (type,
4c4b4cd2
PH
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11169
11170 case TERNOP_IN_RANGE:
11171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11172 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11173 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177
f44316fa
UW
11178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11180 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11181 return
fbb06eb1 11182 value_from_longest (type,
4c4b4cd2
PH
11183 (value_less (arg1, arg3)
11184 || value_equal (arg1, arg3))
11185 && (value_less (arg2, arg1)
11186 || value_equal (arg2, arg1)));
11187
11188 case OP_ATR_FIRST:
11189 case OP_ATR_LAST:
11190 case OP_ATR_LENGTH:
11191 {
76a01679 11192 struct type *type_arg;
5b4ee69b 11193
76a01679
JB
11194 if (exp->elts[*pos].opcode == OP_TYPE)
11195 {
11196 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11197 arg1 = NULL;
5bc23cb3 11198 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11199 }
11200 else
11201 {
11202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11203 type_arg = NULL;
11204 }
11205
11206 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11207 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11208 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11209 *pos += 4;
11210
11211 if (noside == EVAL_SKIP)
11212 goto nosideret;
11213
11214 if (type_arg == NULL)
11215 {
11216 arg1 = ada_coerce_ref (arg1);
11217
ad82864c 11218 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11219 arg1 = ada_coerce_to_simple_array (arg1);
11220
aa4fb036 11221 if (op == OP_ATR_LENGTH)
1eea4ebd 11222 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11223 else
11224 {
11225 type = ada_index_type (value_type (arg1), tem,
11226 ada_attribute_name (op));
11227 if (type == NULL)
11228 type = builtin_type (exp->gdbarch)->builtin_int;
11229 }
76a01679
JB
11230
11231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11232 return allocate_value (type);
76a01679
JB
11233
11234 switch (op)
11235 {
11236 default: /* Should never happen. */
323e0a4a 11237 error (_("unexpected attribute encountered"));
76a01679 11238 case OP_ATR_FIRST:
1eea4ebd
UW
11239 return value_from_longest
11240 (type, ada_array_bound (arg1, tem, 0));
76a01679 11241 case OP_ATR_LAST:
1eea4ebd
UW
11242 return value_from_longest
11243 (type, ada_array_bound (arg1, tem, 1));
76a01679 11244 case OP_ATR_LENGTH:
1eea4ebd
UW
11245 return value_from_longest
11246 (type, ada_array_length (arg1, tem));
76a01679
JB
11247 }
11248 }
11249 else if (discrete_type_p (type_arg))
11250 {
11251 struct type *range_type;
0d5cff50 11252 const char *name = ada_type_name (type_arg);
5b4ee69b 11253
76a01679
JB
11254 range_type = NULL;
11255 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11256 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11257 if (range_type == NULL)
11258 range_type = type_arg;
11259 switch (op)
11260 {
11261 default:
323e0a4a 11262 error (_("unexpected attribute encountered"));
76a01679 11263 case OP_ATR_FIRST:
690cc4eb 11264 return value_from_longest
43bbcdc2 11265 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11266 case OP_ATR_LAST:
690cc4eb 11267 return value_from_longest
43bbcdc2 11268 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11269 case OP_ATR_LENGTH:
323e0a4a 11270 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11271 }
11272 }
11273 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11274 error (_("unimplemented type attribute"));
76a01679
JB
11275 else
11276 {
11277 LONGEST low, high;
11278
ad82864c
JB
11279 if (ada_is_constrained_packed_array_type (type_arg))
11280 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11281
aa4fb036 11282 if (op == OP_ATR_LENGTH)
1eea4ebd 11283 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11284 else
11285 {
11286 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11287 if (type == NULL)
11288 type = builtin_type (exp->gdbarch)->builtin_int;
11289 }
1eea4ebd 11290
76a01679
JB
11291 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11292 return allocate_value (type);
11293
11294 switch (op)
11295 {
11296 default:
323e0a4a 11297 error (_("unexpected attribute encountered"));
76a01679 11298 case OP_ATR_FIRST:
1eea4ebd 11299 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11300 return value_from_longest (type, low);
11301 case OP_ATR_LAST:
1eea4ebd 11302 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11303 return value_from_longest (type, high);
11304 case OP_ATR_LENGTH:
1eea4ebd
UW
11305 low = ada_array_bound_from_type (type_arg, tem, 0);
11306 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11307 return value_from_longest (type, high - low + 1);
11308 }
11309 }
14f9c5c9
AS
11310 }
11311
4c4b4cd2
PH
11312 case OP_ATR_TAG:
11313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11314 if (noside == EVAL_SKIP)
76a01679 11315 goto nosideret;
4c4b4cd2
PH
11316
11317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11318 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11319
11320 return ada_value_tag (arg1);
11321
11322 case OP_ATR_MIN:
11323 case OP_ATR_MAX:
11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11325 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11326 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11327 if (noside == EVAL_SKIP)
76a01679 11328 goto nosideret;
d2e4a39e 11329 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11330 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11331 else
f44316fa
UW
11332 {
11333 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11334 return value_binop (arg1, arg2,
11335 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11336 }
14f9c5c9 11337
4c4b4cd2
PH
11338 case OP_ATR_MODULUS:
11339 {
31dedfee 11340 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11341
5b4ee69b 11342 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11343 if (noside == EVAL_SKIP)
11344 goto nosideret;
4c4b4cd2 11345
76a01679 11346 if (!ada_is_modular_type (type_arg))
323e0a4a 11347 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11348
76a01679
JB
11349 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11350 ada_modulus (type_arg));
4c4b4cd2
PH
11351 }
11352
11353
11354 case OP_ATR_POS:
11355 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11356 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11357 if (noside == EVAL_SKIP)
76a01679 11358 goto nosideret;
3cb382c9
UW
11359 type = builtin_type (exp->gdbarch)->builtin_int;
11360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11361 return value_zero (type, not_lval);
14f9c5c9 11362 else
3cb382c9 11363 return value_pos_atr (type, arg1);
14f9c5c9 11364
4c4b4cd2
PH
11365 case OP_ATR_SIZE:
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11367 type = value_type (arg1);
11368
11369 /* If the argument is a reference, then dereference its type, since
11370 the user is really asking for the size of the actual object,
11371 not the size of the pointer. */
11372 if (TYPE_CODE (type) == TYPE_CODE_REF)
11373 type = TYPE_TARGET_TYPE (type);
11374
4c4b4cd2 11375 if (noside == EVAL_SKIP)
76a01679 11376 goto nosideret;
4c4b4cd2 11377 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11378 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11379 else
22601c15 11380 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11381 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11382
11383 case OP_ATR_VAL:
11384 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11386 type = exp->elts[pc + 2].type;
14f9c5c9 11387 if (noside == EVAL_SKIP)
76a01679 11388 goto nosideret;
4c4b4cd2 11389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11390 return value_zero (type, not_lval);
4c4b4cd2 11391 else
76a01679 11392 return value_val_atr (type, arg1);
4c4b4cd2
PH
11393
11394 case BINOP_EXP:
11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11396 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11400 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11401 else
f44316fa
UW
11402 {
11403 /* For integer exponentiation operations,
11404 only promote the first argument. */
11405 if (is_integral_type (value_type (arg2)))
11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11407 else
11408 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11409
11410 return value_binop (arg1, arg2, op);
11411 }
4c4b4cd2
PH
11412
11413 case UNOP_PLUS:
11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11415 if (noside == EVAL_SKIP)
11416 goto nosideret;
11417 else
11418 return arg1;
11419
11420 case UNOP_ABS:
11421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11422 if (noside == EVAL_SKIP)
11423 goto nosideret;
f44316fa 11424 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11425 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11426 return value_neg (arg1);
14f9c5c9 11427 else
4c4b4cd2 11428 return arg1;
14f9c5c9
AS
11429
11430 case UNOP_IND:
5ec18f2b 11431 preeval_pos = *pos;
6b0d7253 11432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11433 if (noside == EVAL_SKIP)
4c4b4cd2 11434 goto nosideret;
df407dfe 11435 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11436 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11437 {
11438 if (ada_is_array_descriptor_type (type))
11439 /* GDB allows dereferencing GNAT array descriptors. */
11440 {
11441 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11442
4c4b4cd2 11443 if (arrType == NULL)
323e0a4a 11444 error (_("Attempt to dereference null array pointer."));
00a4c844 11445 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11446 }
11447 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11448 || TYPE_CODE (type) == TYPE_CODE_REF
11449 /* In C you can dereference an array to get the 1st elt. */
11450 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11451 {
5ec18f2b
JG
11452 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11453 only be determined by inspecting the object's tag.
11454 This means that we need to evaluate completely the
11455 expression in order to get its type. */
11456
023db19c
JB
11457 if ((TYPE_CODE (type) == TYPE_CODE_REF
11458 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11459 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11460 {
11461 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11462 EVAL_NORMAL);
11463 type = value_type (ada_value_ind (arg1));
11464 }
11465 else
11466 {
11467 type = to_static_fixed_type
11468 (ada_aligned_type
11469 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11470 }
c1b5a1a6 11471 ada_ensure_varsize_limit (type);
714e53ab
PH
11472 return value_zero (type, lval_memory);
11473 }
4c4b4cd2 11474 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11475 {
11476 /* GDB allows dereferencing an int. */
11477 if (expect_type == NULL)
11478 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11479 lval_memory);
11480 else
11481 {
11482 expect_type =
11483 to_static_fixed_type (ada_aligned_type (expect_type));
11484 return value_zero (expect_type, lval_memory);
11485 }
11486 }
4c4b4cd2 11487 else
323e0a4a 11488 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11489 }
0963b4bd 11490 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11491 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11492
96967637
JB
11493 if (TYPE_CODE (type) == TYPE_CODE_INT)
11494 /* GDB allows dereferencing an int. If we were given
11495 the expect_type, then use that as the target type.
11496 Otherwise, assume that the target type is an int. */
11497 {
11498 if (expect_type != NULL)
11499 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11500 arg1));
11501 else
11502 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11503 (CORE_ADDR) value_as_address (arg1));
11504 }
6b0d7253 11505
4c4b4cd2
PH
11506 if (ada_is_array_descriptor_type (type))
11507 /* GDB allows dereferencing GNAT array descriptors. */
11508 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11509 else
4c4b4cd2 11510 return ada_value_ind (arg1);
14f9c5c9
AS
11511
11512 case STRUCTOP_STRUCT:
11513 tem = longest_to_int (exp->elts[pc + 1].longconst);
11514 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11515 preeval_pos = *pos;
14f9c5c9
AS
11516 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11517 if (noside == EVAL_SKIP)
4c4b4cd2 11518 goto nosideret;
14f9c5c9 11519 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11520 {
df407dfe 11521 struct type *type1 = value_type (arg1);
5b4ee69b 11522
76a01679
JB
11523 if (ada_is_tagged_type (type1, 1))
11524 {
11525 type = ada_lookup_struct_elt_type (type1,
11526 &exp->elts[pc + 2].string,
988f6b3d 11527 1, 1);
5ec18f2b
JG
11528
11529 /* If the field is not found, check if it exists in the
11530 extension of this object's type. This means that we
11531 need to evaluate completely the expression. */
11532
76a01679 11533 if (type == NULL)
5ec18f2b
JG
11534 {
11535 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11536 EVAL_NORMAL);
11537 arg1 = ada_value_struct_elt (arg1,
11538 &exp->elts[pc + 2].string,
11539 0);
11540 arg1 = unwrap_value (arg1);
11541 type = value_type (ada_to_fixed_value (arg1));
11542 }
76a01679
JB
11543 }
11544 else
11545 type =
11546 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11547 0);
76a01679
JB
11548
11549 return value_zero (ada_aligned_type (type), lval_memory);
11550 }
14f9c5c9 11551 else
a579cd9a
MW
11552 {
11553 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11554 arg1 = unwrap_value (arg1);
11555 return ada_to_fixed_value (arg1);
11556 }
284614f0 11557
14f9c5c9 11558 case OP_TYPE:
4c4b4cd2
PH
11559 /* The value is not supposed to be used. This is here to make it
11560 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11561 (*pos) += 2;
11562 if (noside == EVAL_SKIP)
4c4b4cd2 11563 goto nosideret;
14f9c5c9 11564 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11565 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11566 else
323e0a4a 11567 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11568
11569 case OP_AGGREGATE:
11570 case OP_CHOICES:
11571 case OP_OTHERS:
11572 case OP_DISCRETE_RANGE:
11573 case OP_POSITIONAL:
11574 case OP_NAME:
11575 if (noside == EVAL_NORMAL)
11576 switch (op)
11577 {
11578 case OP_NAME:
11579 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11580 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11581 case OP_AGGREGATE:
11582 error (_("Aggregates only allowed on the right of an assignment"));
11583 default:
0963b4bd
MS
11584 internal_error (__FILE__, __LINE__,
11585 _("aggregate apparently mangled"));
52ce6436
PH
11586 }
11587
11588 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11589 *pos += oplen - 1;
11590 for (tem = 0; tem < nargs; tem += 1)
11591 ada_evaluate_subexp (NULL, exp, pos, noside);
11592 goto nosideret;
14f9c5c9
AS
11593 }
11594
11595nosideret:
ced9779b 11596 return eval_skip_value (exp);
14f9c5c9 11597}
14f9c5c9 11598\f
d2e4a39e 11599
4c4b4cd2 11600 /* Fixed point */
14f9c5c9
AS
11601
11602/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11603 type name that encodes the 'small and 'delta information.
4c4b4cd2 11604 Otherwise, return NULL. */
14f9c5c9 11605
d2e4a39e 11606static const char *
ebf56fd3 11607fixed_type_info (struct type *type)
14f9c5c9 11608{
d2e4a39e 11609 const char *name = ada_type_name (type);
14f9c5c9
AS
11610 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11611
d2e4a39e
AS
11612 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11613 {
14f9c5c9 11614 const char *tail = strstr (name, "___XF_");
5b4ee69b 11615
14f9c5c9 11616 if (tail == NULL)
4c4b4cd2 11617 return NULL;
d2e4a39e 11618 else
4c4b4cd2 11619 return tail + 5;
14f9c5c9
AS
11620 }
11621 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11622 return fixed_type_info (TYPE_TARGET_TYPE (type));
11623 else
11624 return NULL;
11625}
11626
4c4b4cd2 11627/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11628
11629int
ebf56fd3 11630ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11631{
11632 return fixed_type_info (type) != NULL;
11633}
11634
4c4b4cd2
PH
11635/* Return non-zero iff TYPE represents a System.Address type. */
11636
11637int
11638ada_is_system_address_type (struct type *type)
11639{
11640 return (TYPE_NAME (type)
11641 && strcmp (TYPE_NAME (type), "system__address") == 0);
11642}
11643
14f9c5c9 11644/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11645 type, return the target floating-point type to be used to represent
11646 of this type during internal computation. */
11647
11648static struct type *
11649ada_scaling_type (struct type *type)
11650{
11651 return builtin_type (get_type_arch (type))->builtin_long_double;
11652}
11653
11654/* Assuming that TYPE is the representation of an Ada fixed-point
11655 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11656 delta cannot be determined. */
14f9c5c9 11657
50eff16b 11658struct value *
ebf56fd3 11659ada_delta (struct type *type)
14f9c5c9
AS
11660{
11661 const char *encoding = fixed_type_info (type);
50eff16b
UW
11662 struct type *scale_type = ada_scaling_type (type);
11663
11664 long long num, den;
11665
11666 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11667 return nullptr;
d2e4a39e 11668 else
50eff16b
UW
11669 return value_binop (value_from_longest (scale_type, num),
11670 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11671}
11672
11673/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11674 factor ('SMALL value) associated with the type. */
14f9c5c9 11675
50eff16b
UW
11676struct value *
11677ada_scaling_factor (struct type *type)
14f9c5c9
AS
11678{
11679 const char *encoding = fixed_type_info (type);
50eff16b
UW
11680 struct type *scale_type = ada_scaling_type (type);
11681
11682 long long num0, den0, num1, den1;
14f9c5c9 11683 int n;
d2e4a39e 11684
50eff16b 11685 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11686 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11687
11688 if (n < 2)
50eff16b 11689 return value_from_longest (scale_type, 1);
14f9c5c9 11690 else if (n == 4)
50eff16b
UW
11691 return value_binop (value_from_longest (scale_type, num1),
11692 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11693 else
50eff16b
UW
11694 return value_binop (value_from_longest (scale_type, num0),
11695 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11696}
11697
14f9c5c9 11698\f
d2e4a39e 11699
4c4b4cd2 11700 /* Range types */
14f9c5c9
AS
11701
11702/* Scan STR beginning at position K for a discriminant name, and
11703 return the value of that discriminant field of DVAL in *PX. If
11704 PNEW_K is not null, put the position of the character beyond the
11705 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11706 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11707
11708static int
108d56a4 11709scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11710 int *pnew_k)
14f9c5c9
AS
11711{
11712 static char *bound_buffer = NULL;
11713 static size_t bound_buffer_len = 0;
5da1a4d3 11714 const char *pstart, *pend, *bound;
d2e4a39e 11715 struct value *bound_val;
14f9c5c9
AS
11716
11717 if (dval == NULL || str == NULL || str[k] == '\0')
11718 return 0;
11719
5da1a4d3
SM
11720 pstart = str + k;
11721 pend = strstr (pstart, "__");
14f9c5c9
AS
11722 if (pend == NULL)
11723 {
5da1a4d3 11724 bound = pstart;
14f9c5c9
AS
11725 k += strlen (bound);
11726 }
d2e4a39e 11727 else
14f9c5c9 11728 {
5da1a4d3
SM
11729 int len = pend - pstart;
11730
11731 /* Strip __ and beyond. */
11732 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11733 strncpy (bound_buffer, pstart, len);
11734 bound_buffer[len] = '\0';
11735
14f9c5c9 11736 bound = bound_buffer;
d2e4a39e 11737 k = pend - str;
14f9c5c9 11738 }
d2e4a39e 11739
df407dfe 11740 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11741 if (bound_val == NULL)
11742 return 0;
11743
11744 *px = value_as_long (bound_val);
11745 if (pnew_k != NULL)
11746 *pnew_k = k;
11747 return 1;
11748}
11749
11750/* Value of variable named NAME in the current environment. If
11751 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11752 otherwise causes an error with message ERR_MSG. */
11753
d2e4a39e 11754static struct value *
edb0c9cb 11755get_var_value (const char *name, const char *err_msg)
14f9c5c9 11756{
b5ec771e 11757 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11758
54d343a2 11759 std::vector<struct block_symbol> syms;
b5ec771e
PA
11760 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11761 get_selected_block (0),
11762 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11763
11764 if (nsyms != 1)
11765 {
11766 if (err_msg == NULL)
4c4b4cd2 11767 return 0;
14f9c5c9 11768 else
8a3fe4f8 11769 error (("%s"), err_msg);
14f9c5c9
AS
11770 }
11771
54d343a2 11772 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11773}
d2e4a39e 11774
edb0c9cb
PA
11775/* Value of integer variable named NAME in the current environment.
11776 If no such variable is found, returns false. Otherwise, sets VALUE
11777 to the variable's value and returns true. */
4c4b4cd2 11778
edb0c9cb
PA
11779bool
11780get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11781{
4c4b4cd2 11782 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11783
14f9c5c9 11784 if (var_val == 0)
edb0c9cb
PA
11785 return false;
11786
11787 value = value_as_long (var_val);
11788 return true;
14f9c5c9 11789}
d2e4a39e 11790
14f9c5c9
AS
11791
11792/* Return a range type whose base type is that of the range type named
11793 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11794 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11795 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11796 corresponding range type from debug information; fall back to using it
11797 if symbol lookup fails. If a new type must be created, allocate it
11798 like ORIG_TYPE was. The bounds information, in general, is encoded
11799 in NAME, the base type given in the named range type. */
14f9c5c9 11800
d2e4a39e 11801static struct type *
28c85d6c 11802to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11803{
0d5cff50 11804 const char *name;
14f9c5c9 11805 struct type *base_type;
108d56a4 11806 const char *subtype_info;
14f9c5c9 11807
28c85d6c
JB
11808 gdb_assert (raw_type != NULL);
11809 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11810
1ce677a4 11811 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11812 base_type = TYPE_TARGET_TYPE (raw_type);
11813 else
11814 base_type = raw_type;
11815
28c85d6c 11816 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11817 subtype_info = strstr (name, "___XD");
11818 if (subtype_info == NULL)
690cc4eb 11819 {
43bbcdc2
PH
11820 LONGEST L = ada_discrete_type_low_bound (raw_type);
11821 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11822
690cc4eb
PH
11823 if (L < INT_MIN || U > INT_MAX)
11824 return raw_type;
11825 else
0c9c3474
SA
11826 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11827 L, U);
690cc4eb 11828 }
14f9c5c9
AS
11829 else
11830 {
11831 static char *name_buf = NULL;
11832 static size_t name_len = 0;
11833 int prefix_len = subtype_info - name;
11834 LONGEST L, U;
11835 struct type *type;
108d56a4 11836 const char *bounds_str;
14f9c5c9
AS
11837 int n;
11838
11839 GROW_VECT (name_buf, name_len, prefix_len + 5);
11840 strncpy (name_buf, name, prefix_len);
11841 name_buf[prefix_len] = '\0';
11842
11843 subtype_info += 5;
11844 bounds_str = strchr (subtype_info, '_');
11845 n = 1;
11846
d2e4a39e 11847 if (*subtype_info == 'L')
4c4b4cd2
PH
11848 {
11849 if (!ada_scan_number (bounds_str, n, &L, &n)
11850 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11851 return raw_type;
11852 if (bounds_str[n] == '_')
11853 n += 2;
0963b4bd 11854 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11855 n += 1;
11856 subtype_info += 1;
11857 }
d2e4a39e 11858 else
4c4b4cd2 11859 {
4c4b4cd2 11860 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11861 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11862 {
323e0a4a 11863 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11864 L = 1;
11865 }
11866 }
14f9c5c9 11867
d2e4a39e 11868 if (*subtype_info == 'U')
4c4b4cd2
PH
11869 {
11870 if (!ada_scan_number (bounds_str, n, &U, &n)
11871 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11872 return raw_type;
11873 }
d2e4a39e 11874 else
4c4b4cd2 11875 {
4c4b4cd2 11876 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11877 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11878 {
323e0a4a 11879 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11880 U = L;
11881 }
11882 }
14f9c5c9 11883
0c9c3474
SA
11884 type = create_static_range_type (alloc_type_copy (raw_type),
11885 base_type, L, U);
f5a91472
JB
11886 /* create_static_range_type alters the resulting type's length
11887 to match the size of the base_type, which is not what we want.
11888 Set it back to the original range type's length. */
11889 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11890 TYPE_NAME (type) = name;
14f9c5c9
AS
11891 return type;
11892 }
11893}
11894
4c4b4cd2
PH
11895/* True iff NAME is the name of a range type. */
11896
14f9c5c9 11897int
d2e4a39e 11898ada_is_range_type_name (const char *name)
14f9c5c9
AS
11899{
11900 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11901}
14f9c5c9 11902\f
d2e4a39e 11903
4c4b4cd2
PH
11904 /* Modular types */
11905
11906/* True iff TYPE is an Ada modular type. */
14f9c5c9 11907
14f9c5c9 11908int
d2e4a39e 11909ada_is_modular_type (struct type *type)
14f9c5c9 11910{
18af8284 11911 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11912
11913 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11914 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11915 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11916}
11917
4c4b4cd2
PH
11918/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11919
61ee279c 11920ULONGEST
0056e4d5 11921ada_modulus (struct type *type)
14f9c5c9 11922{
43bbcdc2 11923 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11924}
d2e4a39e 11925\f
f7f9143b
JB
11926
11927/* Ada exception catchpoint support:
11928 ---------------------------------
11929
11930 We support 3 kinds of exception catchpoints:
11931 . catchpoints on Ada exceptions
11932 . catchpoints on unhandled Ada exceptions
11933 . catchpoints on failed assertions
11934
11935 Exceptions raised during failed assertions, or unhandled exceptions
11936 could perfectly be caught with the general catchpoint on Ada exceptions.
11937 However, we can easily differentiate these two special cases, and having
11938 the option to distinguish these two cases from the rest can be useful
11939 to zero-in on certain situations.
11940
11941 Exception catchpoints are a specialized form of breakpoint,
11942 since they rely on inserting breakpoints inside known routines
11943 of the GNAT runtime. The implementation therefore uses a standard
11944 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11945 of breakpoint_ops.
11946
0259addd
JB
11947 Support in the runtime for exception catchpoints have been changed
11948 a few times already, and these changes affect the implementation
11949 of these catchpoints. In order to be able to support several
11950 variants of the runtime, we use a sniffer that will determine
28010a5d 11951 the runtime variant used by the program being debugged. */
f7f9143b 11952
82eacd52
JB
11953/* Ada's standard exceptions.
11954
11955 The Ada 83 standard also defined Numeric_Error. But there so many
11956 situations where it was unclear from the Ada 83 Reference Manual
11957 (RM) whether Constraint_Error or Numeric_Error should be raised,
11958 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11959 Interpretation saying that anytime the RM says that Numeric_Error
11960 should be raised, the implementation may raise Constraint_Error.
11961 Ada 95 went one step further and pretty much removed Numeric_Error
11962 from the list of standard exceptions (it made it a renaming of
11963 Constraint_Error, to help preserve compatibility when compiling
11964 an Ada83 compiler). As such, we do not include Numeric_Error from
11965 this list of standard exceptions. */
3d0b0fa3 11966
a121b7c1 11967static const char *standard_exc[] = {
3d0b0fa3
JB
11968 "constraint_error",
11969 "program_error",
11970 "storage_error",
11971 "tasking_error"
11972};
11973
0259addd
JB
11974typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11975
11976/* A structure that describes how to support exception catchpoints
11977 for a given executable. */
11978
11979struct exception_support_info
11980{
11981 /* The name of the symbol to break on in order to insert
11982 a catchpoint on exceptions. */
11983 const char *catch_exception_sym;
11984
11985 /* The name of the symbol to break on in order to insert
11986 a catchpoint on unhandled exceptions. */
11987 const char *catch_exception_unhandled_sym;
11988
11989 /* The name of the symbol to break on in order to insert
11990 a catchpoint on failed assertions. */
11991 const char *catch_assert_sym;
11992
9f757bf7
XR
11993 /* The name of the symbol to break on in order to insert
11994 a catchpoint on exception handling. */
11995 const char *catch_handlers_sym;
11996
0259addd
JB
11997 /* Assuming that the inferior just triggered an unhandled exception
11998 catchpoint, this function is responsible for returning the address
11999 in inferior memory where the name of that exception is stored.
12000 Return zero if the address could not be computed. */
12001 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12002};
12003
12004static CORE_ADDR ada_unhandled_exception_name_addr (void);
12005static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12006
12007/* The following exception support info structure describes how to
12008 implement exception catchpoints with the latest version of the
12009 Ada runtime (as of 2007-03-06). */
12010
12011static const struct exception_support_info default_exception_support_info =
12012{
12013 "__gnat_debug_raise_exception", /* catch_exception_sym */
12014 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12015 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12016 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12017 ada_unhandled_exception_name_addr
12018};
12019
12020/* The following exception support info structure describes how to
12021 implement exception catchpoints with a slightly older version
12022 of the Ada runtime. */
12023
12024static const struct exception_support_info exception_support_info_fallback =
12025{
12026 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12027 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12028 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12029 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12030 ada_unhandled_exception_name_addr_from_raise
12031};
12032
f17011e0
JB
12033/* Return nonzero if we can detect the exception support routines
12034 described in EINFO.
12035
12036 This function errors out if an abnormal situation is detected
12037 (for instance, if we find the exception support routines, but
12038 that support is found to be incomplete). */
12039
12040static int
12041ada_has_this_exception_support (const struct exception_support_info *einfo)
12042{
12043 struct symbol *sym;
12044
12045 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12046 that should be compiled with debugging information. As a result, we
12047 expect to find that symbol in the symtabs. */
12048
12049 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12050 if (sym == NULL)
a6af7abe
JB
12051 {
12052 /* Perhaps we did not find our symbol because the Ada runtime was
12053 compiled without debugging info, or simply stripped of it.
12054 It happens on some GNU/Linux distributions for instance, where
12055 users have to install a separate debug package in order to get
12056 the runtime's debugging info. In that situation, let the user
12057 know why we cannot insert an Ada exception catchpoint.
12058
12059 Note: Just for the purpose of inserting our Ada exception
12060 catchpoint, we could rely purely on the associated minimal symbol.
12061 But we would be operating in degraded mode anyway, since we are
12062 still lacking the debugging info needed later on to extract
12063 the name of the exception being raised (this name is printed in
12064 the catchpoint message, and is also used when trying to catch
12065 a specific exception). We do not handle this case for now. */
3b7344d5 12066 struct bound_minimal_symbol msym
1c8e84b0
JB
12067 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12068
3b7344d5 12069 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12070 error (_("Your Ada runtime appears to be missing some debugging "
12071 "information.\nCannot insert Ada exception catchpoint "
12072 "in this configuration."));
12073
12074 return 0;
12075 }
f17011e0
JB
12076
12077 /* Make sure that the symbol we found corresponds to a function. */
12078
12079 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12080 error (_("Symbol \"%s\" is not a function (class = %d)"),
12081 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12082
12083 return 1;
12084}
12085
0259addd
JB
12086/* Inspect the Ada runtime and determine which exception info structure
12087 should be used to provide support for exception catchpoints.
12088
3eecfa55
JB
12089 This function will always set the per-inferior exception_info,
12090 or raise an error. */
0259addd
JB
12091
12092static void
12093ada_exception_support_info_sniffer (void)
12094{
3eecfa55 12095 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12096
12097 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12098 if (data->exception_info != NULL)
0259addd
JB
12099 return;
12100
12101 /* Check the latest (default) exception support info. */
f17011e0 12102 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12103 {
3eecfa55 12104 data->exception_info = &default_exception_support_info;
0259addd
JB
12105 return;
12106 }
12107
12108 /* Try our fallback exception suport info. */
f17011e0 12109 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12110 {
3eecfa55 12111 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12112 return;
12113 }
12114
12115 /* Sometimes, it is normal for us to not be able to find the routine
12116 we are looking for. This happens when the program is linked with
12117 the shared version of the GNAT runtime, and the program has not been
12118 started yet. Inform the user of these two possible causes if
12119 applicable. */
12120
ccefe4c4 12121 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12122 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12123
12124 /* If the symbol does not exist, then check that the program is
12125 already started, to make sure that shared libraries have been
12126 loaded. If it is not started, this may mean that the symbol is
12127 in a shared library. */
12128
e99b03dc 12129 if (inferior_ptid.pid () == 0)
0259addd
JB
12130 error (_("Unable to insert catchpoint. Try to start the program first."));
12131
12132 /* At this point, we know that we are debugging an Ada program and
12133 that the inferior has been started, but we still are not able to
0963b4bd 12134 find the run-time symbols. That can mean that we are in
0259addd
JB
12135 configurable run time mode, or that a-except as been optimized
12136 out by the linker... In any case, at this point it is not worth
12137 supporting this feature. */
12138
7dda8cff 12139 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12140}
12141
f7f9143b
JB
12142/* True iff FRAME is very likely to be that of a function that is
12143 part of the runtime system. This is all very heuristic, but is
12144 intended to be used as advice as to what frames are uninteresting
12145 to most users. */
12146
12147static int
12148is_known_support_routine (struct frame_info *frame)
12149{
692465f1 12150 enum language func_lang;
f7f9143b 12151 int i;
f35a17b5 12152 const char *fullname;
f7f9143b 12153
4ed6b5be
JB
12154 /* If this code does not have any debugging information (no symtab),
12155 This cannot be any user code. */
f7f9143b 12156
51abb421 12157 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12158 if (sal.symtab == NULL)
12159 return 1;
12160
4ed6b5be
JB
12161 /* If there is a symtab, but the associated source file cannot be
12162 located, then assume this is not user code: Selecting a frame
12163 for which we cannot display the code would not be very helpful
12164 for the user. This should also take care of case such as VxWorks
12165 where the kernel has some debugging info provided for a few units. */
f7f9143b 12166
f35a17b5
JK
12167 fullname = symtab_to_fullname (sal.symtab);
12168 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12169 return 1;
12170
4ed6b5be
JB
12171 /* Check the unit filename againt the Ada runtime file naming.
12172 We also check the name of the objfile against the name of some
12173 known system libraries that sometimes come with debugging info
12174 too. */
12175
f7f9143b
JB
12176 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12177 {
12178 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12179 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12180 return 1;
eb822aa6
DE
12181 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12182 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12183 return 1;
f7f9143b
JB
12184 }
12185
4ed6b5be 12186 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12187
c6dc63a1
TT
12188 gdb::unique_xmalloc_ptr<char> func_name
12189 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12190 if (func_name == NULL)
12191 return 1;
12192
12193 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12194 {
12195 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12196 if (re_exec (func_name.get ()))
12197 return 1;
f7f9143b
JB
12198 }
12199
12200 return 0;
12201}
12202
12203/* Find the first frame that contains debugging information and that is not
12204 part of the Ada run-time, starting from FI and moving upward. */
12205
0ef643c8 12206void
f7f9143b
JB
12207ada_find_printable_frame (struct frame_info *fi)
12208{
12209 for (; fi != NULL; fi = get_prev_frame (fi))
12210 {
12211 if (!is_known_support_routine (fi))
12212 {
12213 select_frame (fi);
12214 break;
12215 }
12216 }
12217
12218}
12219
12220/* Assuming that the inferior just triggered an unhandled exception
12221 catchpoint, return the address in inferior memory where the name
12222 of the exception is stored.
12223
12224 Return zero if the address could not be computed. */
12225
12226static CORE_ADDR
12227ada_unhandled_exception_name_addr (void)
0259addd
JB
12228{
12229 return parse_and_eval_address ("e.full_name");
12230}
12231
12232/* Same as ada_unhandled_exception_name_addr, except that this function
12233 should be used when the inferior uses an older version of the runtime,
12234 where the exception name needs to be extracted from a specific frame
12235 several frames up in the callstack. */
12236
12237static CORE_ADDR
12238ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12239{
12240 int frame_level;
12241 struct frame_info *fi;
3eecfa55 12242 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12243
12244 /* To determine the name of this exception, we need to select
12245 the frame corresponding to RAISE_SYM_NAME. This frame is
12246 at least 3 levels up, so we simply skip the first 3 frames
12247 without checking the name of their associated function. */
12248 fi = get_current_frame ();
12249 for (frame_level = 0; frame_level < 3; frame_level += 1)
12250 if (fi != NULL)
12251 fi = get_prev_frame (fi);
12252
12253 while (fi != NULL)
12254 {
692465f1
JB
12255 enum language func_lang;
12256
c6dc63a1
TT
12257 gdb::unique_xmalloc_ptr<char> func_name
12258 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12259 if (func_name != NULL)
12260 {
c6dc63a1 12261 if (strcmp (func_name.get (),
55b87a52
KS
12262 data->exception_info->catch_exception_sym) == 0)
12263 break; /* We found the frame we were looking for... */
55b87a52 12264 }
fb44b1a7 12265 fi = get_prev_frame (fi);
f7f9143b
JB
12266 }
12267
12268 if (fi == NULL)
12269 return 0;
12270
12271 select_frame (fi);
12272 return parse_and_eval_address ("id.full_name");
12273}
12274
12275/* Assuming the inferior just triggered an Ada exception catchpoint
12276 (of any type), return the address in inferior memory where the name
12277 of the exception is stored, if applicable.
12278
45db7c09
PA
12279 Assumes the selected frame is the current frame.
12280
f7f9143b
JB
12281 Return zero if the address could not be computed, or if not relevant. */
12282
12283static CORE_ADDR
761269c8 12284ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12285 struct breakpoint *b)
12286{
3eecfa55
JB
12287 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12288
f7f9143b
JB
12289 switch (ex)
12290 {
761269c8 12291 case ada_catch_exception:
f7f9143b
JB
12292 return (parse_and_eval_address ("e.full_name"));
12293 break;
12294
761269c8 12295 case ada_catch_exception_unhandled:
3eecfa55 12296 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12297 break;
9f757bf7
XR
12298
12299 case ada_catch_handlers:
12300 return 0; /* The runtimes does not provide access to the exception
12301 name. */
12302 break;
12303
761269c8 12304 case ada_catch_assert:
f7f9143b
JB
12305 return 0; /* Exception name is not relevant in this case. */
12306 break;
12307
12308 default:
12309 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12310 break;
12311 }
12312
12313 return 0; /* Should never be reached. */
12314}
12315
e547c119
JB
12316/* Assuming the inferior is stopped at an exception catchpoint,
12317 return the message which was associated to the exception, if
12318 available. Return NULL if the message could not be retrieved.
12319
e547c119
JB
12320 Note: The exception message can be associated to an exception
12321 either through the use of the Raise_Exception function, or
12322 more simply (Ada 2005 and later), via:
12323
12324 raise Exception_Name with "exception message";
12325
12326 */
12327
6f46ac85 12328static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12329ada_exception_message_1 (void)
12330{
12331 struct value *e_msg_val;
e547c119 12332 int e_msg_len;
e547c119
JB
12333
12334 /* For runtimes that support this feature, the exception message
12335 is passed as an unbounded string argument called "message". */
12336 e_msg_val = parse_and_eval ("message");
12337 if (e_msg_val == NULL)
12338 return NULL; /* Exception message not supported. */
12339
12340 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12341 gdb_assert (e_msg_val != NULL);
12342 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12343
12344 /* If the message string is empty, then treat it as if there was
12345 no exception message. */
12346 if (e_msg_len <= 0)
12347 return NULL;
12348
6f46ac85
TT
12349 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12350 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12351 e_msg.get ()[e_msg_len] = '\0';
e547c119 12352
e547c119
JB
12353 return e_msg;
12354}
12355
12356/* Same as ada_exception_message_1, except that all exceptions are
12357 contained here (returning NULL instead). */
12358
6f46ac85 12359static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12360ada_exception_message (void)
12361{
6f46ac85 12362 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12363
a70b8144 12364 try
e547c119
JB
12365 {
12366 e_msg = ada_exception_message_1 ();
12367 }
230d2906 12368 catch (const gdb_exception_error &e)
e547c119 12369 {
6f46ac85 12370 e_msg.reset (nullptr);
e547c119 12371 }
e547c119
JB
12372
12373 return e_msg;
12374}
12375
f7f9143b
JB
12376/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12377 any error that ada_exception_name_addr_1 might cause to be thrown.
12378 When an error is intercepted, a warning with the error message is printed,
12379 and zero is returned. */
12380
12381static CORE_ADDR
761269c8 12382ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12383 struct breakpoint *b)
12384{
f7f9143b
JB
12385 CORE_ADDR result = 0;
12386
a70b8144 12387 try
f7f9143b
JB
12388 {
12389 result = ada_exception_name_addr_1 (ex, b);
12390 }
12391
230d2906 12392 catch (const gdb_exception_error &e)
f7f9143b 12393 {
3d6e9d23 12394 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12395 return 0;
12396 }
12397
12398 return result;
12399}
12400
cb7de75e 12401static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12402 (const char *excep_string,
12403 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12404
12405/* Ada catchpoints.
12406
12407 In the case of catchpoints on Ada exceptions, the catchpoint will
12408 stop the target on every exception the program throws. When a user
12409 specifies the name of a specific exception, we translate this
12410 request into a condition expression (in text form), and then parse
12411 it into an expression stored in each of the catchpoint's locations.
12412 We then use this condition to check whether the exception that was
12413 raised is the one the user is interested in. If not, then the
12414 target is resumed again. We store the name of the requested
12415 exception, in order to be able to re-set the condition expression
12416 when symbols change. */
12417
12418/* An instance of this type is used to represent an Ada catchpoint
5625a286 12419 breakpoint location. */
28010a5d 12420
5625a286 12421class ada_catchpoint_location : public bp_location
28010a5d 12422{
5625a286 12423public:
5f486660
TT
12424 ada_catchpoint_location (breakpoint *owner)
12425 : bp_location (owner)
5625a286 12426 {}
28010a5d
PA
12427
12428 /* The condition that checks whether the exception that was raised
12429 is the specific exception the user specified on catchpoint
12430 creation. */
4d01a485 12431 expression_up excep_cond_expr;
28010a5d
PA
12432};
12433
c1fc2657 12434/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12435
c1fc2657 12436struct ada_catchpoint : public breakpoint
28010a5d 12437{
28010a5d 12438 /* The name of the specific exception the user specified. */
bc18fbb5 12439 std::string excep_string;
28010a5d
PA
12440};
12441
12442/* Parse the exception condition string in the context of each of the
12443 catchpoint's locations, and store them for later evaluation. */
12444
12445static void
9f757bf7
XR
12446create_excep_cond_exprs (struct ada_catchpoint *c,
12447 enum ada_exception_catchpoint_kind ex)
28010a5d 12448{
28010a5d 12449 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12450 if (c->excep_string.empty ())
28010a5d
PA
12451 return;
12452
12453 /* Same if there are no locations... */
c1fc2657 12454 if (c->loc == NULL)
28010a5d
PA
12455 return;
12456
2ff0a947
TT
12457 /* We have to compute the expression once for each program space,
12458 because the expression may hold the addresses of multiple symbols
12459 in some cases. */
12460 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12461 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12462 loc_map.emplace (bl->pspace, bl);
28010a5d 12463
2ff0a947
TT
12464 scoped_restore_current_program_space save_pspace;
12465
12466 std::string cond_string;
12467 program_space *last_ps = nullptr;
12468 for (auto iter : loc_map)
28010a5d
PA
12469 {
12470 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12471 = (struct ada_catchpoint_location *) iter.second;
12472
12473 if (ada_loc->pspace != last_ps)
12474 {
12475 last_ps = ada_loc->pspace;
12476 set_current_program_space (last_ps);
12477
12478 /* Compute the condition expression in text form, from the
12479 specific expection we want to catch. */
12480 cond_string
12481 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12482 ex);
12483 }
12484
4d01a485 12485 expression_up exp;
28010a5d 12486
2ff0a947 12487 if (!ada_loc->shlib_disabled)
28010a5d 12488 {
bbc13ae3 12489 const char *s;
28010a5d 12490
cb7de75e 12491 s = cond_string.c_str ();
a70b8144 12492 try
28010a5d 12493 {
2ff0a947
TT
12494 exp = parse_exp_1 (&s, ada_loc->address,
12495 block_for_pc (ada_loc->address),
036e657b 12496 0);
28010a5d 12497 }
230d2906 12498 catch (const gdb_exception_error &e)
849f2b52
JB
12499 {
12500 warning (_("failed to reevaluate internal exception condition "
12501 "for catchpoint %d: %s"),
3d6e9d23 12502 c->number, e.what ());
849f2b52 12503 }
28010a5d
PA
12504 }
12505
b22e99fd 12506 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12507 }
28010a5d
PA
12508}
12509
28010a5d
PA
12510/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12511 structure for all exception catchpoint kinds. */
12512
12513static struct bp_location *
761269c8 12514allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12515 struct breakpoint *self)
12516{
5f486660 12517 return new ada_catchpoint_location (self);
28010a5d
PA
12518}
12519
12520/* Implement the RE_SET method in the breakpoint_ops structure for all
12521 exception catchpoint kinds. */
12522
12523static void
761269c8 12524re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12525{
12526 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12527
12528 /* Call the base class's method. This updates the catchpoint's
12529 locations. */
2060206e 12530 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12531
12532 /* Reparse the exception conditional expressions. One for each
12533 location. */
9f757bf7 12534 create_excep_cond_exprs (c, ex);
28010a5d
PA
12535}
12536
12537/* Returns true if we should stop for this breakpoint hit. If the
12538 user specified a specific exception, we only want to cause a stop
12539 if the program thrown that exception. */
12540
12541static int
12542should_stop_exception (const struct bp_location *bl)
12543{
12544 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12545 const struct ada_catchpoint_location *ada_loc
12546 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12547 int stop;
12548
12549 /* With no specific exception, should always stop. */
bc18fbb5 12550 if (c->excep_string.empty ())
28010a5d
PA
12551 return 1;
12552
12553 if (ada_loc->excep_cond_expr == NULL)
12554 {
12555 /* We will have a NULL expression if back when we were creating
12556 the expressions, this location's had failed to parse. */
12557 return 1;
12558 }
12559
12560 stop = 1;
a70b8144 12561 try
28010a5d
PA
12562 {
12563 struct value *mark;
12564
12565 mark = value_mark ();
4d01a485 12566 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12567 value_free_to_mark (mark);
12568 }
230d2906 12569 catch (const gdb_exception &ex)
492d29ea
PA
12570 {
12571 exception_fprintf (gdb_stderr, ex,
12572 _("Error in testing exception condition:\n"));
12573 }
492d29ea 12574
28010a5d
PA
12575 return stop;
12576}
12577
12578/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12579 for all exception catchpoint kinds. */
12580
12581static void
761269c8 12582check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12583{
12584 bs->stop = should_stop_exception (bs->bp_location_at);
12585}
12586
f7f9143b
JB
12587/* Implement the PRINT_IT method in the breakpoint_ops structure
12588 for all exception catchpoint kinds. */
12589
12590static enum print_stop_action
761269c8 12591print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12592{
79a45e25 12593 struct ui_out *uiout = current_uiout;
348d480f
PA
12594 struct breakpoint *b = bs->breakpoint_at;
12595
956a9fb9 12596 annotate_catchpoint (b->number);
f7f9143b 12597
112e8700 12598 if (uiout->is_mi_like_p ())
f7f9143b 12599 {
112e8700 12600 uiout->field_string ("reason",
956a9fb9 12601 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12602 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12603 }
12604
112e8700
SM
12605 uiout->text (b->disposition == disp_del
12606 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12607 uiout->field_int ("bkptno", b->number);
12608 uiout->text (", ");
f7f9143b 12609
45db7c09
PA
12610 /* ada_exception_name_addr relies on the selected frame being the
12611 current frame. Need to do this here because this function may be
12612 called more than once when printing a stop, and below, we'll
12613 select the first frame past the Ada run-time (see
12614 ada_find_printable_frame). */
12615 select_frame (get_current_frame ());
12616
f7f9143b
JB
12617 switch (ex)
12618 {
761269c8
JB
12619 case ada_catch_exception:
12620 case ada_catch_exception_unhandled:
9f757bf7 12621 case ada_catch_handlers:
956a9fb9
JB
12622 {
12623 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12624 char exception_name[256];
12625
12626 if (addr != 0)
12627 {
c714b426
PA
12628 read_memory (addr, (gdb_byte *) exception_name,
12629 sizeof (exception_name) - 1);
956a9fb9
JB
12630 exception_name [sizeof (exception_name) - 1] = '\0';
12631 }
12632 else
12633 {
12634 /* For some reason, we were unable to read the exception
12635 name. This could happen if the Runtime was compiled
12636 without debugging info, for instance. In that case,
12637 just replace the exception name by the generic string
12638 "exception" - it will read as "an exception" in the
12639 notification we are about to print. */
967cff16 12640 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12641 }
12642 /* In the case of unhandled exception breakpoints, we print
12643 the exception name as "unhandled EXCEPTION_NAME", to make
12644 it clearer to the user which kind of catchpoint just got
12645 hit. We used ui_out_text to make sure that this extra
12646 info does not pollute the exception name in the MI case. */
761269c8 12647 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12648 uiout->text ("unhandled ");
12649 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12650 }
12651 break;
761269c8 12652 case ada_catch_assert:
956a9fb9
JB
12653 /* In this case, the name of the exception is not really
12654 important. Just print "failed assertion" to make it clearer
12655 that his program just hit an assertion-failure catchpoint.
12656 We used ui_out_text because this info does not belong in
12657 the MI output. */
112e8700 12658 uiout->text ("failed assertion");
956a9fb9 12659 break;
f7f9143b 12660 }
e547c119 12661
6f46ac85 12662 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12663 if (exception_message != NULL)
12664 {
e547c119 12665 uiout->text (" (");
6f46ac85 12666 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12667 uiout->text (")");
e547c119
JB
12668 }
12669
112e8700 12670 uiout->text (" at ");
956a9fb9 12671 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12672
12673 return PRINT_SRC_AND_LOC;
12674}
12675
12676/* Implement the PRINT_ONE method in the breakpoint_ops structure
12677 for all exception catchpoint kinds. */
12678
12679static void
761269c8 12680print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12681 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12682{
79a45e25 12683 struct ui_out *uiout = current_uiout;
28010a5d 12684 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12685 struct value_print_options opts;
12686
12687 get_user_print_options (&opts);
12688 if (opts.addressprint)
f7f9143b
JB
12689 {
12690 annotate_field (4);
112e8700 12691 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12692 }
12693
12694 annotate_field (5);
a6d9a66e 12695 *last_loc = b->loc;
f7f9143b
JB
12696 switch (ex)
12697 {
761269c8 12698 case ada_catch_exception:
bc18fbb5 12699 if (!c->excep_string.empty ())
f7f9143b 12700 {
bc18fbb5
TT
12701 std::string msg = string_printf (_("`%s' Ada exception"),
12702 c->excep_string.c_str ());
28010a5d 12703
112e8700 12704 uiout->field_string ("what", msg);
f7f9143b
JB
12705 }
12706 else
112e8700 12707 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12708
12709 break;
12710
761269c8 12711 case ada_catch_exception_unhandled:
112e8700 12712 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12713 break;
12714
9f757bf7 12715 case ada_catch_handlers:
bc18fbb5 12716 if (!c->excep_string.empty ())
9f757bf7
XR
12717 {
12718 uiout->field_fmt ("what",
12719 _("`%s' Ada exception handlers"),
bc18fbb5 12720 c->excep_string.c_str ());
9f757bf7
XR
12721 }
12722 else
12723 uiout->field_string ("what", "all Ada exceptions handlers");
12724 break;
12725
761269c8 12726 case ada_catch_assert:
112e8700 12727 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12728 break;
12729
12730 default:
12731 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12732 break;
12733 }
12734}
12735
12736/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12737 for all exception catchpoint kinds. */
12738
12739static void
761269c8 12740print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12741 struct breakpoint *b)
12742{
28010a5d 12743 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12744 struct ui_out *uiout = current_uiout;
28010a5d 12745
112e8700 12746 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12747 : _("Catchpoint "));
112e8700
SM
12748 uiout->field_int ("bkptno", b->number);
12749 uiout->text (": ");
00eb2c4a 12750
f7f9143b
JB
12751 switch (ex)
12752 {
761269c8 12753 case ada_catch_exception:
bc18fbb5 12754 if (!c->excep_string.empty ())
00eb2c4a 12755 {
862d101a 12756 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12757 c->excep_string.c_str ());
862d101a 12758 uiout->text (info.c_str ());
00eb2c4a 12759 }
f7f9143b 12760 else
112e8700 12761 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12762 break;
12763
761269c8 12764 case ada_catch_exception_unhandled:
112e8700 12765 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12766 break;
9f757bf7
XR
12767
12768 case ada_catch_handlers:
bc18fbb5 12769 if (!c->excep_string.empty ())
9f757bf7
XR
12770 {
12771 std::string info
12772 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12773 c->excep_string.c_str ());
9f757bf7
XR
12774 uiout->text (info.c_str ());
12775 }
12776 else
12777 uiout->text (_("all Ada exceptions handlers"));
12778 break;
12779
761269c8 12780 case ada_catch_assert:
112e8700 12781 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12782 break;
12783
12784 default:
12785 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12786 break;
12787 }
12788}
12789
6149aea9
PA
12790/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12791 for all exception catchpoint kinds. */
12792
12793static void
761269c8 12794print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12795 struct breakpoint *b, struct ui_file *fp)
12796{
28010a5d
PA
12797 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12798
6149aea9
PA
12799 switch (ex)
12800 {
761269c8 12801 case ada_catch_exception:
6149aea9 12802 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12803 if (!c->excep_string.empty ())
12804 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12805 break;
12806
761269c8 12807 case ada_catch_exception_unhandled:
78076abc 12808 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12809 break;
12810
9f757bf7
XR
12811 case ada_catch_handlers:
12812 fprintf_filtered (fp, "catch handlers");
12813 break;
12814
761269c8 12815 case ada_catch_assert:
6149aea9
PA
12816 fprintf_filtered (fp, "catch assert");
12817 break;
12818
12819 default:
12820 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12821 }
d9b3f62e 12822 print_recreate_thread (b, fp);
6149aea9
PA
12823}
12824
f7f9143b
JB
12825/* Virtual table for "catch exception" breakpoints. */
12826
28010a5d
PA
12827static struct bp_location *
12828allocate_location_catch_exception (struct breakpoint *self)
12829{
761269c8 12830 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12831}
12832
12833static void
12834re_set_catch_exception (struct breakpoint *b)
12835{
761269c8 12836 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12837}
12838
12839static void
12840check_status_catch_exception (bpstat bs)
12841{
761269c8 12842 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12843}
12844
f7f9143b 12845static enum print_stop_action
348d480f 12846print_it_catch_exception (bpstat bs)
f7f9143b 12847{
761269c8 12848 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12849}
12850
12851static void
a6d9a66e 12852print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12853{
761269c8 12854 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12855}
12856
12857static void
12858print_mention_catch_exception (struct breakpoint *b)
12859{
761269c8 12860 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12861}
12862
6149aea9
PA
12863static void
12864print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12865{
761269c8 12866 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12867}
12868
2060206e 12869static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12870
12871/* Virtual table for "catch exception unhandled" breakpoints. */
12872
28010a5d
PA
12873static struct bp_location *
12874allocate_location_catch_exception_unhandled (struct breakpoint *self)
12875{
761269c8 12876 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12877}
12878
12879static void
12880re_set_catch_exception_unhandled (struct breakpoint *b)
12881{
761269c8 12882 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12883}
12884
12885static void
12886check_status_catch_exception_unhandled (bpstat bs)
12887{
761269c8 12888 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12889}
12890
f7f9143b 12891static enum print_stop_action
348d480f 12892print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12893{
761269c8 12894 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12895}
12896
12897static void
a6d9a66e
UW
12898print_one_catch_exception_unhandled (struct breakpoint *b,
12899 struct bp_location **last_loc)
f7f9143b 12900{
761269c8 12901 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12902}
12903
12904static void
12905print_mention_catch_exception_unhandled (struct breakpoint *b)
12906{
761269c8 12907 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12908}
12909
6149aea9
PA
12910static void
12911print_recreate_catch_exception_unhandled (struct breakpoint *b,
12912 struct ui_file *fp)
12913{
761269c8 12914 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12915}
12916
2060206e 12917static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12918
12919/* Virtual table for "catch assert" breakpoints. */
12920
28010a5d
PA
12921static struct bp_location *
12922allocate_location_catch_assert (struct breakpoint *self)
12923{
761269c8 12924 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12925}
12926
12927static void
12928re_set_catch_assert (struct breakpoint *b)
12929{
761269c8 12930 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12931}
12932
12933static void
12934check_status_catch_assert (bpstat bs)
12935{
761269c8 12936 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12937}
12938
f7f9143b 12939static enum print_stop_action
348d480f 12940print_it_catch_assert (bpstat bs)
f7f9143b 12941{
761269c8 12942 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12943}
12944
12945static void
a6d9a66e 12946print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12947{
761269c8 12948 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12949}
12950
12951static void
12952print_mention_catch_assert (struct breakpoint *b)
12953{
761269c8 12954 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12955}
12956
6149aea9
PA
12957static void
12958print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12959{
761269c8 12960 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12961}
12962
2060206e 12963static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12964
9f757bf7
XR
12965/* Virtual table for "catch handlers" breakpoints. */
12966
12967static struct bp_location *
12968allocate_location_catch_handlers (struct breakpoint *self)
12969{
12970 return allocate_location_exception (ada_catch_handlers, self);
12971}
12972
12973static void
12974re_set_catch_handlers (struct breakpoint *b)
12975{
12976 re_set_exception (ada_catch_handlers, b);
12977}
12978
12979static void
12980check_status_catch_handlers (bpstat bs)
12981{
12982 check_status_exception (ada_catch_handlers, bs);
12983}
12984
12985static enum print_stop_action
12986print_it_catch_handlers (bpstat bs)
12987{
12988 return print_it_exception (ada_catch_handlers, bs);
12989}
12990
12991static void
12992print_one_catch_handlers (struct breakpoint *b,
12993 struct bp_location **last_loc)
12994{
12995 print_one_exception (ada_catch_handlers, b, last_loc);
12996}
12997
12998static void
12999print_mention_catch_handlers (struct breakpoint *b)
13000{
13001 print_mention_exception (ada_catch_handlers, b);
13002}
13003
13004static void
13005print_recreate_catch_handlers (struct breakpoint *b,
13006 struct ui_file *fp)
13007{
13008 print_recreate_exception (ada_catch_handlers, b, fp);
13009}
13010
13011static struct breakpoint_ops catch_handlers_breakpoint_ops;
13012
f7f9143b
JB
13013/* Split the arguments specified in a "catch exception" command.
13014 Set EX to the appropriate catchpoint type.
28010a5d 13015 Set EXCEP_STRING to the name of the specific exception if
5845583d 13016 specified by the user.
9f757bf7
XR
13017 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13018 "catch handlers" command. False otherwise.
5845583d
JB
13019 If a condition is found at the end of the arguments, the condition
13020 expression is stored in COND_STRING (memory must be deallocated
13021 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13022
13023static void
a121b7c1 13024catch_ada_exception_command_split (const char *args,
9f757bf7 13025 bool is_catch_handlers_cmd,
761269c8 13026 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13027 std::string *excep_string,
13028 std::string *cond_string)
f7f9143b 13029{
bc18fbb5 13030 std::string exception_name;
f7f9143b 13031
bc18fbb5
TT
13032 exception_name = extract_arg (&args);
13033 if (exception_name == "if")
5845583d
JB
13034 {
13035 /* This is not an exception name; this is the start of a condition
13036 expression for a catchpoint on all exceptions. So, "un-get"
13037 this token, and set exception_name to NULL. */
bc18fbb5 13038 exception_name.clear ();
5845583d
JB
13039 args -= 2;
13040 }
f7f9143b 13041
5845583d 13042 /* Check to see if we have a condition. */
f7f9143b 13043
f1735a53 13044 args = skip_spaces (args);
61012eef 13045 if (startswith (args, "if")
5845583d
JB
13046 && (isspace (args[2]) || args[2] == '\0'))
13047 {
13048 args += 2;
f1735a53 13049 args = skip_spaces (args);
5845583d
JB
13050
13051 if (args[0] == '\0')
13052 error (_("Condition missing after `if' keyword"));
bc18fbb5 13053 *cond_string = args;
5845583d
JB
13054
13055 args += strlen (args);
13056 }
13057
13058 /* Check that we do not have any more arguments. Anything else
13059 is unexpected. */
f7f9143b
JB
13060
13061 if (args[0] != '\0')
13062 error (_("Junk at end of expression"));
13063
9f757bf7
XR
13064 if (is_catch_handlers_cmd)
13065 {
13066 /* Catch handling of exceptions. */
13067 *ex = ada_catch_handlers;
13068 *excep_string = exception_name;
13069 }
bc18fbb5 13070 else if (exception_name.empty ())
f7f9143b
JB
13071 {
13072 /* Catch all exceptions. */
761269c8 13073 *ex = ada_catch_exception;
bc18fbb5 13074 excep_string->clear ();
f7f9143b 13075 }
bc18fbb5 13076 else if (exception_name == "unhandled")
f7f9143b
JB
13077 {
13078 /* Catch unhandled exceptions. */
761269c8 13079 *ex = ada_catch_exception_unhandled;
bc18fbb5 13080 excep_string->clear ();
f7f9143b
JB
13081 }
13082 else
13083 {
13084 /* Catch a specific exception. */
761269c8 13085 *ex = ada_catch_exception;
28010a5d 13086 *excep_string = exception_name;
f7f9143b
JB
13087 }
13088}
13089
13090/* Return the name of the symbol on which we should break in order to
13091 implement a catchpoint of the EX kind. */
13092
13093static const char *
761269c8 13094ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13095{
3eecfa55
JB
13096 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13097
13098 gdb_assert (data->exception_info != NULL);
0259addd 13099
f7f9143b
JB
13100 switch (ex)
13101 {
761269c8 13102 case ada_catch_exception:
3eecfa55 13103 return (data->exception_info->catch_exception_sym);
f7f9143b 13104 break;
761269c8 13105 case ada_catch_exception_unhandled:
3eecfa55 13106 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13107 break;
761269c8 13108 case ada_catch_assert:
3eecfa55 13109 return (data->exception_info->catch_assert_sym);
f7f9143b 13110 break;
9f757bf7
XR
13111 case ada_catch_handlers:
13112 return (data->exception_info->catch_handlers_sym);
13113 break;
f7f9143b
JB
13114 default:
13115 internal_error (__FILE__, __LINE__,
13116 _("unexpected catchpoint kind (%d)"), ex);
13117 }
13118}
13119
13120/* Return the breakpoint ops "virtual table" used for catchpoints
13121 of the EX kind. */
13122
c0a91b2b 13123static const struct breakpoint_ops *
761269c8 13124ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13125{
13126 switch (ex)
13127 {
761269c8 13128 case ada_catch_exception:
f7f9143b
JB
13129 return (&catch_exception_breakpoint_ops);
13130 break;
761269c8 13131 case ada_catch_exception_unhandled:
f7f9143b
JB
13132 return (&catch_exception_unhandled_breakpoint_ops);
13133 break;
761269c8 13134 case ada_catch_assert:
f7f9143b
JB
13135 return (&catch_assert_breakpoint_ops);
13136 break;
9f757bf7
XR
13137 case ada_catch_handlers:
13138 return (&catch_handlers_breakpoint_ops);
13139 break;
f7f9143b
JB
13140 default:
13141 internal_error (__FILE__, __LINE__,
13142 _("unexpected catchpoint kind (%d)"), ex);
13143 }
13144}
13145
13146/* Return the condition that will be used to match the current exception
13147 being raised with the exception that the user wants to catch. This
13148 assumes that this condition is used when the inferior just triggered
13149 an exception catchpoint.
cb7de75e 13150 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13151
cb7de75e 13152static std::string
9f757bf7
XR
13153ada_exception_catchpoint_cond_string (const char *excep_string,
13154 enum ada_exception_catchpoint_kind ex)
f7f9143b 13155{
3d0b0fa3 13156 int i;
cb7de75e 13157 std::string result;
2ff0a947 13158 const char *name;
9f757bf7
XR
13159
13160 if (ex == ada_catch_handlers)
13161 {
13162 /* For exception handlers catchpoints, the condition string does
13163 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13164 name = ("long_integer (GNAT_GCC_exception_Access"
13165 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13166 }
13167 else
2ff0a947 13168 name = "long_integer (e)";
3d0b0fa3 13169
0963b4bd 13170 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13171 runtime units that have been compiled without debugging info; if
28010a5d 13172 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13173 exception (e.g. "constraint_error") then, during the evaluation
13174 of the condition expression, the symbol lookup on this name would
0963b4bd 13175 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13176 may then be set only on user-defined exceptions which have the
13177 same not-fully-qualified name (e.g. my_package.constraint_error).
13178
13179 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13180 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13181 exception constraint_error" is rewritten into "catch exception
13182 standard.constraint_error".
13183
13184 If an exception named contraint_error is defined in another package of
13185 the inferior program, then the only way to specify this exception as a
13186 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13187 e.g. my_package.constraint_error.
13188
13189 Furthermore, in some situations a standard exception's symbol may
13190 be present in more than one objfile, because the compiler may
13191 choose to emit copy relocations for them. So, we have to compare
13192 against all the possible addresses. */
3d0b0fa3 13193
2ff0a947
TT
13194 /* Storage for a rewritten symbol name. */
13195 std::string std_name;
3d0b0fa3
JB
13196 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13197 {
28010a5d 13198 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13199 {
2ff0a947
TT
13200 std_name = std::string ("standard.") + excep_string;
13201 excep_string = std_name.c_str ();
9f757bf7 13202 break;
3d0b0fa3
JB
13203 }
13204 }
9f757bf7 13205
2ff0a947
TT
13206 excep_string = ada_encode (excep_string);
13207 std::vector<struct bound_minimal_symbol> symbols
13208 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13209 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13210 {
13211 if (!result.empty ())
13212 result += " or ";
13213 string_appendf (result, "%s = %s", name,
13214 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13215 }
9f757bf7 13216
9f757bf7 13217 return result;
f7f9143b
JB
13218}
13219
13220/* Return the symtab_and_line that should be used to insert an exception
13221 catchpoint of the TYPE kind.
13222
28010a5d
PA
13223 ADDR_STRING returns the name of the function where the real
13224 breakpoint that implements the catchpoints is set, depending on the
13225 type of catchpoint we need to create. */
f7f9143b
JB
13226
13227static struct symtab_and_line
bc18fbb5 13228ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13229 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13230{
13231 const char *sym_name;
13232 struct symbol *sym;
f7f9143b 13233
0259addd
JB
13234 /* First, find out which exception support info to use. */
13235 ada_exception_support_info_sniffer ();
13236
13237 /* Then lookup the function on which we will break in order to catch
f7f9143b 13238 the Ada exceptions requested by the user. */
f7f9143b
JB
13239 sym_name = ada_exception_sym_name (ex);
13240 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13241
57aff202
JB
13242 if (sym == NULL)
13243 error (_("Catchpoint symbol not found: %s"), sym_name);
13244
13245 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13246 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13247
13248 /* Set ADDR_STRING. */
cc12f4a8 13249 *addr_string = sym_name;
f7f9143b 13250
f7f9143b 13251 /* Set OPS. */
4b9eee8c 13252 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13253
f17011e0 13254 return find_function_start_sal (sym, 1);
f7f9143b
JB
13255}
13256
b4a5b78b 13257/* Create an Ada exception catchpoint.
f7f9143b 13258
b4a5b78b 13259 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13260
bc18fbb5 13261 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13262 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13263 of the exception to which this catchpoint applies.
2df4d1d5 13264
bc18fbb5 13265 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13266
b4a5b78b
JB
13267 TEMPFLAG, if nonzero, means that the underlying breakpoint
13268 should be temporary.
28010a5d 13269
b4a5b78b 13270 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13271
349774ef 13272void
28010a5d 13273create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13274 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13275 const std::string &excep_string,
56ecd069 13276 const std::string &cond_string,
28010a5d 13277 int tempflag,
349774ef 13278 int disabled,
28010a5d
PA
13279 int from_tty)
13280{
cc12f4a8 13281 std::string addr_string;
b4a5b78b 13282 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13283 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13284
b270e6f9 13285 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13286 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13287 ops, tempflag, disabled, from_tty);
28010a5d 13288 c->excep_string = excep_string;
9f757bf7 13289 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13290 if (!cond_string.empty ())
13291 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13292 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13293}
13294
9ac4176b
PA
13295/* Implement the "catch exception" command. */
13296
13297static void
eb4c3f4a 13298catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13299 struct cmd_list_element *command)
13300{
a121b7c1 13301 const char *arg = arg_entry;
9ac4176b
PA
13302 struct gdbarch *gdbarch = get_current_arch ();
13303 int tempflag;
761269c8 13304 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13305 std::string excep_string;
56ecd069 13306 std::string cond_string;
9ac4176b
PA
13307
13308 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13309
13310 if (!arg)
13311 arg = "";
9f757bf7 13312 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13313 &cond_string);
9f757bf7
XR
13314 create_ada_exception_catchpoint (gdbarch, ex_kind,
13315 excep_string, cond_string,
13316 tempflag, 1 /* enabled */,
13317 from_tty);
13318}
13319
13320/* Implement the "catch handlers" command. */
13321
13322static void
13323catch_ada_handlers_command (const char *arg_entry, int from_tty,
13324 struct cmd_list_element *command)
13325{
13326 const char *arg = arg_entry;
13327 struct gdbarch *gdbarch = get_current_arch ();
13328 int tempflag;
13329 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13330 std::string excep_string;
56ecd069 13331 std::string cond_string;
9f757bf7
XR
13332
13333 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13334
13335 if (!arg)
13336 arg = "";
13337 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13338 &cond_string);
b4a5b78b
JB
13339 create_ada_exception_catchpoint (gdbarch, ex_kind,
13340 excep_string, cond_string,
349774ef
JB
13341 tempflag, 1 /* enabled */,
13342 from_tty);
9ac4176b
PA
13343}
13344
71bed2db
TT
13345/* Completion function for the Ada "catch" commands. */
13346
13347static void
13348catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13349 const char *text, const char *word)
13350{
13351 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13352
13353 for (const ada_exc_info &info : exceptions)
13354 {
13355 if (startswith (info.name, word))
13356 tracker.add_completion
13357 (gdb::unique_xmalloc_ptr<char> (xstrdup (info.name)));
13358 }
13359}
13360
b4a5b78b 13361/* Split the arguments specified in a "catch assert" command.
5845583d 13362
b4a5b78b
JB
13363 ARGS contains the command's arguments (or the empty string if
13364 no arguments were passed).
5845583d
JB
13365
13366 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13367 (the memory needs to be deallocated after use). */
5845583d 13368
b4a5b78b 13369static void
56ecd069 13370catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13371{
f1735a53 13372 args = skip_spaces (args);
f7f9143b 13373
5845583d 13374 /* Check whether a condition was provided. */
61012eef 13375 if (startswith (args, "if")
5845583d 13376 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13377 {
5845583d 13378 args += 2;
f1735a53 13379 args = skip_spaces (args);
5845583d
JB
13380 if (args[0] == '\0')
13381 error (_("condition missing after `if' keyword"));
56ecd069 13382 cond_string.assign (args);
f7f9143b
JB
13383 }
13384
5845583d
JB
13385 /* Otherwise, there should be no other argument at the end of
13386 the command. */
13387 else if (args[0] != '\0')
13388 error (_("Junk at end of arguments."));
f7f9143b
JB
13389}
13390
9ac4176b
PA
13391/* Implement the "catch assert" command. */
13392
13393static void
eb4c3f4a 13394catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13395 struct cmd_list_element *command)
13396{
a121b7c1 13397 const char *arg = arg_entry;
9ac4176b
PA
13398 struct gdbarch *gdbarch = get_current_arch ();
13399 int tempflag;
56ecd069 13400 std::string cond_string;
9ac4176b
PA
13401
13402 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13403
13404 if (!arg)
13405 arg = "";
56ecd069 13406 catch_ada_assert_command_split (arg, cond_string);
761269c8 13407 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13408 "", cond_string,
349774ef
JB
13409 tempflag, 1 /* enabled */,
13410 from_tty);
9ac4176b 13411}
778865d3
JB
13412
13413/* Return non-zero if the symbol SYM is an Ada exception object. */
13414
13415static int
13416ada_is_exception_sym (struct symbol *sym)
13417{
a737d952 13418 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13419
13420 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13421 && SYMBOL_CLASS (sym) != LOC_BLOCK
13422 && SYMBOL_CLASS (sym) != LOC_CONST
13423 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13424 && type_name != NULL && strcmp (type_name, "exception") == 0);
13425}
13426
13427/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13428 Ada exception object. This matches all exceptions except the ones
13429 defined by the Ada language. */
13430
13431static int
13432ada_is_non_standard_exception_sym (struct symbol *sym)
13433{
13434 int i;
13435
13436 if (!ada_is_exception_sym (sym))
13437 return 0;
13438
13439 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13440 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13441 return 0; /* A standard exception. */
13442
13443 /* Numeric_Error is also a standard exception, so exclude it.
13444 See the STANDARD_EXC description for more details as to why
13445 this exception is not listed in that array. */
13446 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13447 return 0;
13448
13449 return 1;
13450}
13451
ab816a27 13452/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13453 objects.
13454
13455 The comparison is determined first by exception name, and then
13456 by exception address. */
13457
ab816a27 13458bool
cc536b21 13459ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13460{
778865d3
JB
13461 int result;
13462
ab816a27
TT
13463 result = strcmp (name, other.name);
13464 if (result < 0)
13465 return true;
13466 if (result == 0 && addr < other.addr)
13467 return true;
13468 return false;
13469}
778865d3 13470
ab816a27 13471bool
cc536b21 13472ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13473{
13474 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13475}
13476
13477/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13478 routine, but keeping the first SKIP elements untouched.
13479
13480 All duplicates are also removed. */
13481
13482static void
ab816a27 13483sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13484 int skip)
13485{
ab816a27
TT
13486 std::sort (exceptions->begin () + skip, exceptions->end ());
13487 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13488 exceptions->end ());
778865d3
JB
13489}
13490
778865d3
JB
13491/* Add all exceptions defined by the Ada standard whose name match
13492 a regular expression.
13493
13494 If PREG is not NULL, then this regexp_t object is used to
13495 perform the symbol name matching. Otherwise, no name-based
13496 filtering is performed.
13497
13498 EXCEPTIONS is a vector of exceptions to which matching exceptions
13499 gets pushed. */
13500
13501static void
2d7cc5c7 13502ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13503 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13504{
13505 int i;
13506
13507 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13508 {
13509 if (preg == NULL
2d7cc5c7 13510 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13511 {
13512 struct bound_minimal_symbol msymbol
13513 = ada_lookup_simple_minsym (standard_exc[i]);
13514
13515 if (msymbol.minsym != NULL)
13516 {
13517 struct ada_exc_info info
77e371c0 13518 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13519
ab816a27 13520 exceptions->push_back (info);
778865d3
JB
13521 }
13522 }
13523 }
13524}
13525
13526/* Add all Ada exceptions defined locally and accessible from the given
13527 FRAME.
13528
13529 If PREG is not NULL, then this regexp_t object is used to
13530 perform the symbol name matching. Otherwise, no name-based
13531 filtering is performed.
13532
13533 EXCEPTIONS is a vector of exceptions to which matching exceptions
13534 gets pushed. */
13535
13536static void
2d7cc5c7
PA
13537ada_add_exceptions_from_frame (compiled_regex *preg,
13538 struct frame_info *frame,
ab816a27 13539 std::vector<ada_exc_info> *exceptions)
778865d3 13540{
3977b71f 13541 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13542
13543 while (block != 0)
13544 {
13545 struct block_iterator iter;
13546 struct symbol *sym;
13547
13548 ALL_BLOCK_SYMBOLS (block, iter, sym)
13549 {
13550 switch (SYMBOL_CLASS (sym))
13551 {
13552 case LOC_TYPEDEF:
13553 case LOC_BLOCK:
13554 case LOC_CONST:
13555 break;
13556 default:
13557 if (ada_is_exception_sym (sym))
13558 {
13559 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13560 SYMBOL_VALUE_ADDRESS (sym)};
13561
ab816a27 13562 exceptions->push_back (info);
778865d3
JB
13563 }
13564 }
13565 }
13566 if (BLOCK_FUNCTION (block) != NULL)
13567 break;
13568 block = BLOCK_SUPERBLOCK (block);
13569 }
13570}
13571
14bc53a8
PA
13572/* Return true if NAME matches PREG or if PREG is NULL. */
13573
13574static bool
2d7cc5c7 13575name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13576{
13577 return (preg == NULL
2d7cc5c7 13578 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13579}
13580
778865d3
JB
13581/* Add all exceptions defined globally whose name name match
13582 a regular expression, excluding standard exceptions.
13583
13584 The reason we exclude standard exceptions is that they need
13585 to be handled separately: Standard exceptions are defined inside
13586 a runtime unit which is normally not compiled with debugging info,
13587 and thus usually do not show up in our symbol search. However,
13588 if the unit was in fact built with debugging info, we need to
13589 exclude them because they would duplicate the entry we found
13590 during the special loop that specifically searches for those
13591 standard exceptions.
13592
13593 If PREG is not NULL, then this regexp_t object is used to
13594 perform the symbol name matching. Otherwise, no name-based
13595 filtering is performed.
13596
13597 EXCEPTIONS is a vector of exceptions to which matching exceptions
13598 gets pushed. */
13599
13600static void
2d7cc5c7 13601ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13602 std::vector<ada_exc_info> *exceptions)
778865d3 13603{
14bc53a8
PA
13604 /* In Ada, the symbol "search name" is a linkage name, whereas the
13605 regular expression used to do the matching refers to the natural
13606 name. So match against the decoded name. */
13607 expand_symtabs_matching (NULL,
b5ec771e 13608 lookup_name_info::match_any (),
14bc53a8
PA
13609 [&] (const char *search_name)
13610 {
13611 const char *decoded = ada_decode (search_name);
13612 return name_matches_regex (decoded, preg);
13613 },
13614 NULL,
13615 VARIABLES_DOMAIN);
778865d3 13616
2030c079 13617 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13618 {
b669c953 13619 for (compunit_symtab *s : objfile->compunits ())
778865d3 13620 {
d8aeb77f
TT
13621 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13622 int i;
778865d3 13623
d8aeb77f
TT
13624 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13625 {
582942f4 13626 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13627 struct block_iterator iter;
13628 struct symbol *sym;
778865d3 13629
d8aeb77f
TT
13630 ALL_BLOCK_SYMBOLS (b, iter, sym)
13631 if (ada_is_non_standard_exception_sym (sym)
13632 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13633 {
13634 struct ada_exc_info info
13635 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13636
13637 exceptions->push_back (info);
13638 }
13639 }
778865d3
JB
13640 }
13641 }
13642}
13643
13644/* Implements ada_exceptions_list with the regular expression passed
13645 as a regex_t, rather than a string.
13646
13647 If not NULL, PREG is used to filter out exceptions whose names
13648 do not match. Otherwise, all exceptions are listed. */
13649
ab816a27 13650static std::vector<ada_exc_info>
2d7cc5c7 13651ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13652{
ab816a27 13653 std::vector<ada_exc_info> result;
778865d3
JB
13654 int prev_len;
13655
13656 /* First, list the known standard exceptions. These exceptions
13657 need to be handled separately, as they are usually defined in
13658 runtime units that have been compiled without debugging info. */
13659
13660 ada_add_standard_exceptions (preg, &result);
13661
13662 /* Next, find all exceptions whose scope is local and accessible
13663 from the currently selected frame. */
13664
13665 if (has_stack_frames ())
13666 {
ab816a27 13667 prev_len = result.size ();
778865d3
JB
13668 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13669 &result);
ab816a27 13670 if (result.size () > prev_len)
778865d3
JB
13671 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13672 }
13673
13674 /* Add all exceptions whose scope is global. */
13675
ab816a27 13676 prev_len = result.size ();
778865d3 13677 ada_add_global_exceptions (preg, &result);
ab816a27 13678 if (result.size () > prev_len)
778865d3
JB
13679 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13680
778865d3
JB
13681 return result;
13682}
13683
13684/* Return a vector of ada_exc_info.
13685
13686 If REGEXP is NULL, all exceptions are included in the result.
13687 Otherwise, it should contain a valid regular expression,
13688 and only the exceptions whose names match that regular expression
13689 are included in the result.
13690
13691 The exceptions are sorted in the following order:
13692 - Standard exceptions (defined by the Ada language), in
13693 alphabetical order;
13694 - Exceptions only visible from the current frame, in
13695 alphabetical order;
13696 - Exceptions whose scope is global, in alphabetical order. */
13697
ab816a27 13698std::vector<ada_exc_info>
778865d3
JB
13699ada_exceptions_list (const char *regexp)
13700{
2d7cc5c7
PA
13701 if (regexp == NULL)
13702 return ada_exceptions_list_1 (NULL);
778865d3 13703
2d7cc5c7
PA
13704 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13705 return ada_exceptions_list_1 (&reg);
778865d3
JB
13706}
13707
13708/* Implement the "info exceptions" command. */
13709
13710static void
1d12d88f 13711info_exceptions_command (const char *regexp, int from_tty)
778865d3 13712{
778865d3 13713 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13714
ab816a27 13715 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13716
13717 if (regexp != NULL)
13718 printf_filtered
13719 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13720 else
13721 printf_filtered (_("All defined Ada exceptions:\n"));
13722
ab816a27
TT
13723 for (const ada_exc_info &info : exceptions)
13724 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13725}
13726
4c4b4cd2
PH
13727 /* Operators */
13728/* Information about operators given special treatment in functions
13729 below. */
13730/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13731
13732#define ADA_OPERATORS \
13733 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13734 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13735 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13736 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13737 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13738 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13739 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13741 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13742 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13743 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13744 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13745 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13746 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13747 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13748 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13749 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13750 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13751 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13752
13753static void
554794dc
SDJ
13754ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13755 int *argsp)
4c4b4cd2
PH
13756{
13757 switch (exp->elts[pc - 1].opcode)
13758 {
76a01679 13759 default:
4c4b4cd2
PH
13760 operator_length_standard (exp, pc, oplenp, argsp);
13761 break;
13762
13763#define OP_DEFN(op, len, args, binop) \
13764 case op: *oplenp = len; *argsp = args; break;
13765 ADA_OPERATORS;
13766#undef OP_DEFN
52ce6436
PH
13767
13768 case OP_AGGREGATE:
13769 *oplenp = 3;
13770 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13771 break;
13772
13773 case OP_CHOICES:
13774 *oplenp = 3;
13775 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13776 break;
4c4b4cd2
PH
13777 }
13778}
13779
c0201579
JK
13780/* Implementation of the exp_descriptor method operator_check. */
13781
13782static int
13783ada_operator_check (struct expression *exp, int pos,
13784 int (*objfile_func) (struct objfile *objfile, void *data),
13785 void *data)
13786{
13787 const union exp_element *const elts = exp->elts;
13788 struct type *type = NULL;
13789
13790 switch (elts[pos].opcode)
13791 {
13792 case UNOP_IN_RANGE:
13793 case UNOP_QUAL:
13794 type = elts[pos + 1].type;
13795 break;
13796
13797 default:
13798 return operator_check_standard (exp, pos, objfile_func, data);
13799 }
13800
13801 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13802
13803 if (type && TYPE_OBJFILE (type)
13804 && (*objfile_func) (TYPE_OBJFILE (type), data))
13805 return 1;
13806
13807 return 0;
13808}
13809
a121b7c1 13810static const char *
4c4b4cd2
PH
13811ada_op_name (enum exp_opcode opcode)
13812{
13813 switch (opcode)
13814 {
76a01679 13815 default:
4c4b4cd2 13816 return op_name_standard (opcode);
52ce6436 13817
4c4b4cd2
PH
13818#define OP_DEFN(op, len, args, binop) case op: return #op;
13819 ADA_OPERATORS;
13820#undef OP_DEFN
52ce6436
PH
13821
13822 case OP_AGGREGATE:
13823 return "OP_AGGREGATE";
13824 case OP_CHOICES:
13825 return "OP_CHOICES";
13826 case OP_NAME:
13827 return "OP_NAME";
4c4b4cd2
PH
13828 }
13829}
13830
13831/* As for operator_length, but assumes PC is pointing at the first
13832 element of the operator, and gives meaningful results only for the
52ce6436 13833 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13834
13835static void
76a01679
JB
13836ada_forward_operator_length (struct expression *exp, int pc,
13837 int *oplenp, int *argsp)
4c4b4cd2 13838{
76a01679 13839 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13840 {
13841 default:
13842 *oplenp = *argsp = 0;
13843 break;
52ce6436 13844
4c4b4cd2
PH
13845#define OP_DEFN(op, len, args, binop) \
13846 case op: *oplenp = len; *argsp = args; break;
13847 ADA_OPERATORS;
13848#undef OP_DEFN
52ce6436
PH
13849
13850 case OP_AGGREGATE:
13851 *oplenp = 3;
13852 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13853 break;
13854
13855 case OP_CHOICES:
13856 *oplenp = 3;
13857 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13858 break;
13859
13860 case OP_STRING:
13861 case OP_NAME:
13862 {
13863 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13864
52ce6436
PH
13865 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13866 *argsp = 0;
13867 break;
13868 }
4c4b4cd2
PH
13869 }
13870}
13871
13872static int
13873ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13874{
13875 enum exp_opcode op = exp->elts[elt].opcode;
13876 int oplen, nargs;
13877 int pc = elt;
13878 int i;
76a01679 13879
4c4b4cd2
PH
13880 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13881
76a01679 13882 switch (op)
4c4b4cd2 13883 {
76a01679 13884 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13885 case OP_ATR_FIRST:
13886 case OP_ATR_LAST:
13887 case OP_ATR_LENGTH:
13888 case OP_ATR_IMAGE:
13889 case OP_ATR_MAX:
13890 case OP_ATR_MIN:
13891 case OP_ATR_MODULUS:
13892 case OP_ATR_POS:
13893 case OP_ATR_SIZE:
13894 case OP_ATR_TAG:
13895 case OP_ATR_VAL:
13896 break;
13897
13898 case UNOP_IN_RANGE:
13899 case UNOP_QUAL:
323e0a4a
AC
13900 /* XXX: gdb_sprint_host_address, type_sprint */
13901 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13902 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13903 fprintf_filtered (stream, " (");
13904 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13905 fprintf_filtered (stream, ")");
13906 break;
13907 case BINOP_IN_BOUNDS:
52ce6436
PH
13908 fprintf_filtered (stream, " (%d)",
13909 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13910 break;
13911 case TERNOP_IN_RANGE:
13912 break;
13913
52ce6436
PH
13914 case OP_AGGREGATE:
13915 case OP_OTHERS:
13916 case OP_DISCRETE_RANGE:
13917 case OP_POSITIONAL:
13918 case OP_CHOICES:
13919 break;
13920
13921 case OP_NAME:
13922 case OP_STRING:
13923 {
13924 char *name = &exp->elts[elt + 2].string;
13925 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13926
52ce6436
PH
13927 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13928 break;
13929 }
13930
4c4b4cd2
PH
13931 default:
13932 return dump_subexp_body_standard (exp, stream, elt);
13933 }
13934
13935 elt += oplen;
13936 for (i = 0; i < nargs; i += 1)
13937 elt = dump_subexp (exp, stream, elt);
13938
13939 return elt;
13940}
13941
13942/* The Ada extension of print_subexp (q.v.). */
13943
76a01679
JB
13944static void
13945ada_print_subexp (struct expression *exp, int *pos,
13946 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13947{
52ce6436 13948 int oplen, nargs, i;
4c4b4cd2
PH
13949 int pc = *pos;
13950 enum exp_opcode op = exp->elts[pc].opcode;
13951
13952 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13953
52ce6436 13954 *pos += oplen;
4c4b4cd2
PH
13955 switch (op)
13956 {
13957 default:
52ce6436 13958 *pos -= oplen;
4c4b4cd2
PH
13959 print_subexp_standard (exp, pos, stream, prec);
13960 return;
13961
13962 case OP_VAR_VALUE:
4c4b4cd2
PH
13963 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13964 return;
13965
13966 case BINOP_IN_BOUNDS:
323e0a4a 13967 /* XXX: sprint_subexp */
4c4b4cd2 13968 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13969 fputs_filtered (" in ", stream);
4c4b4cd2 13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13971 fputs_filtered ("'range", stream);
4c4b4cd2 13972 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13973 fprintf_filtered (stream, "(%ld)",
13974 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13975 return;
13976
13977 case TERNOP_IN_RANGE:
4c4b4cd2 13978 if (prec >= PREC_EQUAL)
76a01679 13979 fputs_filtered ("(", stream);
323e0a4a 13980 /* XXX: sprint_subexp */
4c4b4cd2 13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13982 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13983 print_subexp (exp, pos, stream, PREC_EQUAL);
13984 fputs_filtered (" .. ", stream);
13985 print_subexp (exp, pos, stream, PREC_EQUAL);
13986 if (prec >= PREC_EQUAL)
76a01679
JB
13987 fputs_filtered (")", stream);
13988 return;
4c4b4cd2
PH
13989
13990 case OP_ATR_FIRST:
13991 case OP_ATR_LAST:
13992 case OP_ATR_LENGTH:
13993 case OP_ATR_IMAGE:
13994 case OP_ATR_MAX:
13995 case OP_ATR_MIN:
13996 case OP_ATR_MODULUS:
13997 case OP_ATR_POS:
13998 case OP_ATR_SIZE:
13999 case OP_ATR_TAG:
14000 case OP_ATR_VAL:
4c4b4cd2 14001 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14002 {
14003 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14004 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14005 &type_print_raw_options);
76a01679
JB
14006 *pos += 3;
14007 }
4c4b4cd2 14008 else
76a01679 14009 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14010 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14011 if (nargs > 1)
76a01679
JB
14012 {
14013 int tem;
5b4ee69b 14014
76a01679
JB
14015 for (tem = 1; tem < nargs; tem += 1)
14016 {
14017 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14018 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14019 }
14020 fputs_filtered (")", stream);
14021 }
4c4b4cd2 14022 return;
14f9c5c9 14023
4c4b4cd2 14024 case UNOP_QUAL:
4c4b4cd2
PH
14025 type_print (exp->elts[pc + 1].type, "", stream, 0);
14026 fputs_filtered ("'(", stream);
14027 print_subexp (exp, pos, stream, PREC_PREFIX);
14028 fputs_filtered (")", stream);
14029 return;
14f9c5c9 14030
4c4b4cd2 14031 case UNOP_IN_RANGE:
323e0a4a 14032 /* XXX: sprint_subexp */
4c4b4cd2 14033 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14034 fputs_filtered (" in ", stream);
79d43c61
TT
14035 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14036 &type_print_raw_options);
4c4b4cd2 14037 return;
52ce6436
PH
14038
14039 case OP_DISCRETE_RANGE:
14040 print_subexp (exp, pos, stream, PREC_SUFFIX);
14041 fputs_filtered ("..", stream);
14042 print_subexp (exp, pos, stream, PREC_SUFFIX);
14043 return;
14044
14045 case OP_OTHERS:
14046 fputs_filtered ("others => ", stream);
14047 print_subexp (exp, pos, stream, PREC_SUFFIX);
14048 return;
14049
14050 case OP_CHOICES:
14051 for (i = 0; i < nargs-1; i += 1)
14052 {
14053 if (i > 0)
14054 fputs_filtered ("|", stream);
14055 print_subexp (exp, pos, stream, PREC_SUFFIX);
14056 }
14057 fputs_filtered (" => ", stream);
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 return;
14060
14061 case OP_POSITIONAL:
14062 print_subexp (exp, pos, stream, PREC_SUFFIX);
14063 return;
14064
14065 case OP_AGGREGATE:
14066 fputs_filtered ("(", stream);
14067 for (i = 0; i < nargs; i += 1)
14068 {
14069 if (i > 0)
14070 fputs_filtered (", ", stream);
14071 print_subexp (exp, pos, stream, PREC_SUFFIX);
14072 }
14073 fputs_filtered (")", stream);
14074 return;
4c4b4cd2
PH
14075 }
14076}
14f9c5c9
AS
14077
14078/* Table mapping opcodes into strings for printing operators
14079 and precedences of the operators. */
14080
d2e4a39e
AS
14081static const struct op_print ada_op_print_tab[] = {
14082 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14083 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14084 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14085 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14086 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14087 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14088 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14089 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14090 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14091 {">=", BINOP_GEQ, PREC_ORDER, 0},
14092 {">", BINOP_GTR, PREC_ORDER, 0},
14093 {"<", BINOP_LESS, PREC_ORDER, 0},
14094 {">>", BINOP_RSH, PREC_SHIFT, 0},
14095 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14096 {"+", BINOP_ADD, PREC_ADD, 0},
14097 {"-", BINOP_SUB, PREC_ADD, 0},
14098 {"&", BINOP_CONCAT, PREC_ADD, 0},
14099 {"*", BINOP_MUL, PREC_MUL, 0},
14100 {"/", BINOP_DIV, PREC_MUL, 0},
14101 {"rem", BINOP_REM, PREC_MUL, 0},
14102 {"mod", BINOP_MOD, PREC_MUL, 0},
14103 {"**", BINOP_EXP, PREC_REPEAT, 0},
14104 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14105 {"-", UNOP_NEG, PREC_PREFIX, 0},
14106 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14107 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14108 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14109 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14110 {".all", UNOP_IND, PREC_SUFFIX, 1},
14111 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14112 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14113 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14114};
14115\f
72d5681a
PH
14116enum ada_primitive_types {
14117 ada_primitive_type_int,
14118 ada_primitive_type_long,
14119 ada_primitive_type_short,
14120 ada_primitive_type_char,
14121 ada_primitive_type_float,
14122 ada_primitive_type_double,
14123 ada_primitive_type_void,
14124 ada_primitive_type_long_long,
14125 ada_primitive_type_long_double,
14126 ada_primitive_type_natural,
14127 ada_primitive_type_positive,
14128 ada_primitive_type_system_address,
08f49010 14129 ada_primitive_type_storage_offset,
72d5681a
PH
14130 nr_ada_primitive_types
14131};
6c038f32
PH
14132
14133static void
d4a9a881 14134ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14135 struct language_arch_info *lai)
14136{
d4a9a881 14137 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14138
72d5681a 14139 lai->primitive_type_vector
d4a9a881 14140 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14141 struct type *);
e9bb382b
UW
14142
14143 lai->primitive_type_vector [ada_primitive_type_int]
14144 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14145 0, "integer");
14146 lai->primitive_type_vector [ada_primitive_type_long]
14147 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14148 0, "long_integer");
14149 lai->primitive_type_vector [ada_primitive_type_short]
14150 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14151 0, "short_integer");
14152 lai->string_char_type
14153 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14154 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14155 lai->primitive_type_vector [ada_primitive_type_float]
14156 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14157 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14158 lai->primitive_type_vector [ada_primitive_type_double]
14159 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14160 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14161 lai->primitive_type_vector [ada_primitive_type_long_long]
14162 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14163 0, "long_long_integer");
14164 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14165 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14166 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14167 lai->primitive_type_vector [ada_primitive_type_natural]
14168 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14169 0, "natural");
14170 lai->primitive_type_vector [ada_primitive_type_positive]
14171 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14172 0, "positive");
14173 lai->primitive_type_vector [ada_primitive_type_void]
14174 = builtin->builtin_void;
14175
14176 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14177 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14178 "void"));
72d5681a
PH
14179 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14180 = "system__address";
fbb06eb1 14181
08f49010
XR
14182 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14183 type. This is a signed integral type whose size is the same as
14184 the size of addresses. */
14185 {
14186 unsigned int addr_length = TYPE_LENGTH
14187 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14188
14189 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14190 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14191 "storage_offset");
14192 }
14193
47e729a8 14194 lai->bool_type_symbol = NULL;
fbb06eb1 14195 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14196}
6c038f32
PH
14197\f
14198 /* Language vector */
14199
14200/* Not really used, but needed in the ada_language_defn. */
14201
14202static void
6c7a06a3 14203emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14204{
6c7a06a3 14205 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14206}
14207
14208static int
410a0ff2 14209parse (struct parser_state *ps)
6c038f32
PH
14210{
14211 warnings_issued = 0;
410a0ff2 14212 return ada_parse (ps);
6c038f32
PH
14213}
14214
14215static const struct exp_descriptor ada_exp_descriptor = {
14216 ada_print_subexp,
14217 ada_operator_length,
c0201579 14218 ada_operator_check,
6c038f32
PH
14219 ada_op_name,
14220 ada_dump_subexp_body,
14221 ada_evaluate_subexp
14222};
14223
b5ec771e
PA
14224/* symbol_name_matcher_ftype adapter for wild_match. */
14225
14226static bool
14227do_wild_match (const char *symbol_search_name,
14228 const lookup_name_info &lookup_name,
a207cff2 14229 completion_match_result *comp_match_res)
b5ec771e
PA
14230{
14231 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14232}
14233
14234/* symbol_name_matcher_ftype adapter for full_match. */
14235
14236static bool
14237do_full_match (const char *symbol_search_name,
14238 const lookup_name_info &lookup_name,
a207cff2 14239 completion_match_result *comp_match_res)
b5ec771e
PA
14240{
14241 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14242}
14243
a2cd4f14
JB
14244/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14245
14246static bool
14247do_exact_match (const char *symbol_search_name,
14248 const lookup_name_info &lookup_name,
14249 completion_match_result *comp_match_res)
14250{
14251 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14252}
14253
b5ec771e
PA
14254/* Build the Ada lookup name for LOOKUP_NAME. */
14255
14256ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14257{
14258 const std::string &user_name = lookup_name.name ();
14259
14260 if (user_name[0] == '<')
14261 {
14262 if (user_name.back () == '>')
14263 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14264 else
14265 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14266 m_encoded_p = true;
14267 m_verbatim_p = true;
14268 m_wild_match_p = false;
14269 m_standard_p = false;
14270 }
14271 else
14272 {
14273 m_verbatim_p = false;
14274
14275 m_encoded_p = user_name.find ("__") != std::string::npos;
14276
14277 if (!m_encoded_p)
14278 {
14279 const char *folded = ada_fold_name (user_name.c_str ());
14280 const char *encoded = ada_encode_1 (folded, false);
14281 if (encoded != NULL)
14282 m_encoded_name = encoded;
14283 else
14284 m_encoded_name = user_name;
14285 }
14286 else
14287 m_encoded_name = user_name;
14288
14289 /* Handle the 'package Standard' special case. See description
14290 of m_standard_p. */
14291 if (startswith (m_encoded_name.c_str (), "standard__"))
14292 {
14293 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14294 m_standard_p = true;
14295 }
14296 else
14297 m_standard_p = false;
74ccd7f5 14298
b5ec771e
PA
14299 /* If the name contains a ".", then the user is entering a fully
14300 qualified entity name, and the match must not be done in wild
14301 mode. Similarly, if the user wants to complete what looks
14302 like an encoded name, the match must not be done in wild
14303 mode. Also, in the standard__ special case always do
14304 non-wild matching. */
14305 m_wild_match_p
14306 = (lookup_name.match_type () != symbol_name_match_type::FULL
14307 && !m_encoded_p
14308 && !m_standard_p
14309 && user_name.find ('.') == std::string::npos);
14310 }
14311}
14312
14313/* symbol_name_matcher_ftype method for Ada. This only handles
14314 completion mode. */
14315
14316static bool
14317ada_symbol_name_matches (const char *symbol_search_name,
14318 const lookup_name_info &lookup_name,
a207cff2 14319 completion_match_result *comp_match_res)
74ccd7f5 14320{
b5ec771e
PA
14321 return lookup_name.ada ().matches (symbol_search_name,
14322 lookup_name.match_type (),
a207cff2 14323 comp_match_res);
b5ec771e
PA
14324}
14325
de63c46b
PA
14326/* A name matcher that matches the symbol name exactly, with
14327 strcmp. */
14328
14329static bool
14330literal_symbol_name_matcher (const char *symbol_search_name,
14331 const lookup_name_info &lookup_name,
14332 completion_match_result *comp_match_res)
14333{
14334 const std::string &name = lookup_name.name ();
14335
14336 int cmp = (lookup_name.completion_mode ()
14337 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14338 : strcmp (symbol_search_name, name.c_str ()));
14339 if (cmp == 0)
14340 {
14341 if (comp_match_res != NULL)
14342 comp_match_res->set_match (symbol_search_name);
14343 return true;
14344 }
14345 else
14346 return false;
14347}
14348
b5ec771e
PA
14349/* Implement the "la_get_symbol_name_matcher" language_defn method for
14350 Ada. */
14351
14352static symbol_name_matcher_ftype *
14353ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14354{
de63c46b
PA
14355 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14356 return literal_symbol_name_matcher;
14357
b5ec771e
PA
14358 if (lookup_name.completion_mode ())
14359 return ada_symbol_name_matches;
74ccd7f5 14360 else
b5ec771e
PA
14361 {
14362 if (lookup_name.ada ().wild_match_p ())
14363 return do_wild_match;
a2cd4f14
JB
14364 else if (lookup_name.ada ().verbatim_p ())
14365 return do_exact_match;
b5ec771e
PA
14366 else
14367 return do_full_match;
14368 }
74ccd7f5
JB
14369}
14370
a5ee536b
JB
14371/* Implement the "la_read_var_value" language_defn method for Ada. */
14372
14373static struct value *
63e43d3a
PMR
14374ada_read_var_value (struct symbol *var, const struct block *var_block,
14375 struct frame_info *frame)
a5ee536b 14376{
3977b71f 14377 const struct block *frame_block = NULL;
a5ee536b
JB
14378 struct symbol *renaming_sym = NULL;
14379
14380 /* The only case where default_read_var_value is not sufficient
14381 is when VAR is a renaming... */
14382 if (frame)
14383 frame_block = get_frame_block (frame, NULL);
14384 if (frame_block)
14385 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14386 if (renaming_sym != NULL)
14387 return ada_read_renaming_var_value (renaming_sym, frame_block);
14388
14389 /* This is a typical case where we expect the default_read_var_value
14390 function to work. */
63e43d3a 14391 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14392}
14393
56618e20
TT
14394static const char *ada_extensions[] =
14395{
14396 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14397};
14398
47e77640 14399extern const struct language_defn ada_language_defn = {
6c038f32 14400 "ada", /* Language name */
6abde28f 14401 "Ada",
6c038f32 14402 language_ada,
6c038f32 14403 range_check_off,
6c038f32
PH
14404 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14405 that's not quite what this means. */
6c038f32 14406 array_row_major,
9a044a89 14407 macro_expansion_no,
56618e20 14408 ada_extensions,
6c038f32
PH
14409 &ada_exp_descriptor,
14410 parse,
6c038f32
PH
14411 resolve,
14412 ada_printchar, /* Print a character constant */
14413 ada_printstr, /* Function to print string constant */
14414 emit_char, /* Function to print single char (not used) */
6c038f32 14415 ada_print_type, /* Print a type using appropriate syntax */
be942545 14416 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14417 ada_val_print, /* Print a value using appropriate syntax */
14418 ada_value_print, /* Print a top-level value */
a5ee536b 14419 ada_read_var_value, /* la_read_var_value */
6c038f32 14420 NULL, /* Language specific skip_trampoline */
2b2d9e11 14421 NULL, /* name_of_this */
59cc4834 14422 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14423 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14424 basic_lookup_transparent_type, /* lookup_transparent_type */
14425 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14426 ada_sniff_from_mangled_name,
0963b4bd
MS
14427 NULL, /* Language specific
14428 class_name_from_physname */
6c038f32
PH
14429 ada_op_print_tab, /* expression operators for printing */
14430 0, /* c-style arrays */
14431 1, /* String lower bound */
6c038f32 14432 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14433 ada_collect_symbol_completion_matches,
72d5681a 14434 ada_language_arch_info,
e79af960 14435 ada_print_array_index,
41f1b697 14436 default_pass_by_reference,
ae6a3a4c 14437 c_get_string,
e2b7af72 14438 ada_watch_location_expression,
b5ec771e 14439 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14440 ada_iterate_over_symbols,
5ffa0793 14441 default_search_name_hash,
a53b64ea 14442 &ada_varobj_ops,
bb2ec1b3 14443 NULL,
721b08c6 14444 NULL,
4be290b2 14445 ada_is_string_type,
721b08c6 14446 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14447};
14448
5bf03f13
JB
14449/* Command-list for the "set/show ada" prefix command. */
14450static struct cmd_list_element *set_ada_list;
14451static struct cmd_list_element *show_ada_list;
14452
14453/* Implement the "set ada" prefix command. */
14454
14455static void
981a3fb3 14456set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14457{
14458 printf_unfiltered (_(\
14459"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14460 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14461}
14462
14463/* Implement the "show ada" prefix command. */
14464
14465static void
981a3fb3 14466show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14467{
14468 cmd_show_list (show_ada_list, from_tty, "");
14469}
14470
2060206e
PA
14471static void
14472initialize_ada_catchpoint_ops (void)
14473{
14474 struct breakpoint_ops *ops;
14475
14476 initialize_breakpoint_ops ();
14477
14478 ops = &catch_exception_breakpoint_ops;
14479 *ops = bkpt_breakpoint_ops;
2060206e
PA
14480 ops->allocate_location = allocate_location_catch_exception;
14481 ops->re_set = re_set_catch_exception;
14482 ops->check_status = check_status_catch_exception;
14483 ops->print_it = print_it_catch_exception;
14484 ops->print_one = print_one_catch_exception;
14485 ops->print_mention = print_mention_catch_exception;
14486 ops->print_recreate = print_recreate_catch_exception;
14487
14488 ops = &catch_exception_unhandled_breakpoint_ops;
14489 *ops = bkpt_breakpoint_ops;
2060206e
PA
14490 ops->allocate_location = allocate_location_catch_exception_unhandled;
14491 ops->re_set = re_set_catch_exception_unhandled;
14492 ops->check_status = check_status_catch_exception_unhandled;
14493 ops->print_it = print_it_catch_exception_unhandled;
14494 ops->print_one = print_one_catch_exception_unhandled;
14495 ops->print_mention = print_mention_catch_exception_unhandled;
14496 ops->print_recreate = print_recreate_catch_exception_unhandled;
14497
14498 ops = &catch_assert_breakpoint_ops;
14499 *ops = bkpt_breakpoint_ops;
2060206e
PA
14500 ops->allocate_location = allocate_location_catch_assert;
14501 ops->re_set = re_set_catch_assert;
14502 ops->check_status = check_status_catch_assert;
14503 ops->print_it = print_it_catch_assert;
14504 ops->print_one = print_one_catch_assert;
14505 ops->print_mention = print_mention_catch_assert;
14506 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14507
14508 ops = &catch_handlers_breakpoint_ops;
14509 *ops = bkpt_breakpoint_ops;
14510 ops->allocate_location = allocate_location_catch_handlers;
14511 ops->re_set = re_set_catch_handlers;
14512 ops->check_status = check_status_catch_handlers;
14513 ops->print_it = print_it_catch_handlers;
14514 ops->print_one = print_one_catch_handlers;
14515 ops->print_mention = print_mention_catch_handlers;
14516 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14517}
14518
3d9434b5
JB
14519/* This module's 'new_objfile' observer. */
14520
14521static void
14522ada_new_objfile_observer (struct objfile *objfile)
14523{
14524 ada_clear_symbol_cache ();
14525}
14526
14527/* This module's 'free_objfile' observer. */
14528
14529static void
14530ada_free_objfile_observer (struct objfile *objfile)
14531{
14532 ada_clear_symbol_cache ();
14533}
14534
d2e4a39e 14535void
6c038f32 14536_initialize_ada_language (void)
14f9c5c9 14537{
2060206e
PA
14538 initialize_ada_catchpoint_ops ();
14539
5bf03f13 14540 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14541 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14542 &set_ada_list, "set ada ", 0, &setlist);
14543
14544 add_prefix_cmd ("ada", no_class, show_ada_command,
14545 _("Generic command for showing Ada-specific settings."),
14546 &show_ada_list, "show ada ", 0, &showlist);
14547
14548 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14549 &trust_pad_over_xvs, _("\
14550Enable or disable an optimization trusting PAD types over XVS types"), _("\
14551Show whether an optimization trusting PAD types over XVS types is activated"),
14552 _("\
14553This is related to the encoding used by the GNAT compiler. The debugger\n\
14554should normally trust the contents of PAD types, but certain older versions\n\
14555of GNAT have a bug that sometimes causes the information in the PAD type\n\
14556to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14557work around this bug. It is always safe to turn this option \"off\", but\n\
14558this incurs a slight performance penalty, so it is recommended to NOT change\n\
14559this option to \"off\" unless necessary."),
14560 NULL, NULL, &set_ada_list, &show_ada_list);
14561
d72413e6
PMR
14562 add_setshow_boolean_cmd ("print-signatures", class_vars,
14563 &print_signatures, _("\
14564Enable or disable the output of formal and return types for functions in the \
14565overloads selection menu"), _("\
14566Show whether the output of formal and return types for functions in the \
14567overloads selection menu is activated"),
14568 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14569
9ac4176b
PA
14570 add_catch_command ("exception", _("\
14571Catch Ada exceptions, when raised.\n\
60a90376
JB
14572Usage: catch exception [ ARG ]\n\
14573\n\
14574Without any argument, stop when any Ada exception is raised.\n\
14575If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14576being raised does not have a handler (and will therefore lead to the task's\n\
14577termination).\n\
14578Otherwise, the catchpoint only stops when the name of the exception being\n\
14579raised is the same as ARG."),
9ac4176b 14580 catch_ada_exception_command,
71bed2db 14581 catch_ada_completer,
9ac4176b
PA
14582 CATCH_PERMANENT,
14583 CATCH_TEMPORARY);
9f757bf7
XR
14584
14585 add_catch_command ("handlers", _("\
14586Catch Ada exceptions, when handled.\n\
14587With an argument, catch only exceptions with the given name."),
14588 catch_ada_handlers_command,
71bed2db 14589 catch_ada_completer,
9f757bf7
XR
14590 CATCH_PERMANENT,
14591 CATCH_TEMPORARY);
9ac4176b
PA
14592 add_catch_command ("assert", _("\
14593Catch failed Ada assertions, when raised.\n\
14594With an argument, catch only exceptions with the given name."),
14595 catch_assert_command,
14596 NULL,
14597 CATCH_PERMANENT,
14598 CATCH_TEMPORARY);
14599
6c038f32 14600 varsize_limit = 65536;
3fcded8f
JB
14601 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14602 &varsize_limit, _("\
14603Set the maximum number of bytes allowed in a variable-size object."), _("\
14604Show the maximum number of bytes allowed in a variable-size object."), _("\
14605Attempts to access an object whose size is not a compile-time constant\n\
14606and exceeds this limit will cause an error."),
14607 NULL, NULL, &setlist, &showlist);
6c038f32 14608
778865d3
JB
14609 add_info ("exceptions", info_exceptions_command,
14610 _("\
14611List all Ada exception names.\n\
14612If a regular expression is passed as an argument, only those matching\n\
14613the regular expression are listed."));
14614
c6044dd1
JB
14615 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14616 _("Set Ada maintenance-related variables."),
14617 &maint_set_ada_cmdlist, "maintenance set ada ",
14618 0/*allow-unknown*/, &maintenance_set_cmdlist);
14619
14620 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14621 _("Show Ada maintenance-related variables"),
14622 &maint_show_ada_cmdlist, "maintenance show ada ",
14623 0/*allow-unknown*/, &maintenance_show_cmdlist);
14624
14625 add_setshow_boolean_cmd
14626 ("ignore-descriptive-types", class_maintenance,
14627 &ada_ignore_descriptive_types_p,
14628 _("Set whether descriptive types generated by GNAT should be ignored."),
14629 _("Show whether descriptive types generated by GNAT should be ignored."),
14630 _("\
14631When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14632DWARF attribute."),
14633 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14634
459a2e4c
TT
14635 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14636 NULL, xcalloc, xfree);
6b69afc4 14637
3d9434b5 14638 /* The ada-lang observers. */
76727919
TT
14639 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14640 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14641 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14642}
This page took 2.583248 seconds and 4 git commands to generate.