* tracepoint.c (tfile_get_trace_state_variable_value): Look for
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
2fa15f23 584 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
45e6c716 1299const char *
76a01679 1300ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1301{
45e6c716
TT
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1304
4c4b4cd2
PH
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1308
714835d5 1309 if (gsymbol->obj_section != NULL)
76a01679 1310 {
714835d5 1311 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1312
10f0c4bb
TT
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
76a01679 1315 }
4c4b4cd2 1316 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
4c4b4cd2 1320 if (*resultp == NULL)
76a01679
JB
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
5b4ee69b 1324
76a01679
JB
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
4c4b4cd2 1329 }
14f9c5c9 1330
4c4b4cd2
PH
1331 return *resultp;
1332}
76a01679 1333
2c0b251b 1334static char *
76a01679 1335ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1336{
1337 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1338}
1339
1340/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
14f9c5c9 1346
2c0b251b 1347static int
40658b94 1348match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1349{
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
73589123 1353 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1354 else
1355 {
1356 int len_name = strlen (name);
5b4ee69b 1357
4c4b4cd2
PH
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1363 }
14f9c5c9 1364}
14f9c5c9 1365\f
d2e4a39e 1366
4c4b4cd2 1367 /* Arrays */
14f9c5c9 1368
28c85d6c
JB
1369/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392void
1393ada_fixup_array_indexes_type (struct type *index_desc_type)
1394{
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
0d5cff50 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422}
1423
4c4b4cd2 1424/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1425
d2e4a39e
AS
1426static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429};
1430
1431/* Maximum number of array dimensions we are prepared to handle. */
1432
4c4b4cd2 1433#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1434
14f9c5c9 1435
4c4b4cd2
PH
1436/* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
14f9c5c9
AS
1438
1439/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1440 level of indirection, if needed. */
1441
d2e4a39e
AS
1442static struct type *
1443desc_base_type (struct type *type)
14f9c5c9
AS
1444{
1445 if (type == NULL)
1446 return NULL;
61ee279c 1447 type = ada_check_typedef (type);
720d1a40
JB
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1265e4aa
JB
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1455 else
1456 return type;
1457}
1458
4c4b4cd2
PH
1459/* True iff TYPE indicates a "thin" array pointer type. */
1460
14f9c5c9 1461static int
d2e4a39e 1462is_thin_pntr (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 return
14f9c5c9
AS
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467}
1468
4c4b4cd2
PH
1469/* The descriptor type for thin pointer type TYPE. */
1470
d2e4a39e
AS
1471static struct type *
1472thin_descriptor_type (struct type *type)
14f9c5c9 1473{
d2e4a39e 1474 struct type *base_type = desc_base_type (type);
5b4ee69b 1475
14f9c5c9
AS
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
d2e4a39e 1480 else
14f9c5c9 1481 {
d2e4a39e 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1483
14f9c5c9 1484 if (alt_type == NULL)
4c4b4cd2 1485 return base_type;
14f9c5c9 1486 else
4c4b4cd2 1487 return alt_type;
14f9c5c9
AS
1488 }
1489}
1490
4c4b4cd2
PH
1491/* A pointer to the array data for thin-pointer value VAL. */
1492
d2e4a39e
AS
1493static struct value *
1494thin_data_pntr (struct value *val)
14f9c5c9 1495{
828292f2 1496 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1498
556bdfd4
UW
1499 data_type = lookup_pointer_type (data_type);
1500
14f9c5c9 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1502 return value_cast (data_type, value_copy (val));
d2e4a39e 1503 else
42ae5230 1504 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* True iff TYPE indicates a "thick" array pointer type. */
1508
14f9c5c9 1509static int
d2e4a39e 1510is_thick_pntr (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1515}
1516
4c4b4cd2
PH
1517/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1519
d2e4a39e
AS
1520static struct type *
1521desc_bounds_type (struct type *type)
14f9c5c9 1522{
d2e4a39e 1523 struct type *r;
14f9c5c9
AS
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
4c4b4cd2 1533 return NULL;
14f9c5c9
AS
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
61ee279c 1536 return ada_check_typedef (r);
14f9c5c9
AS
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
61ee279c 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1543 }
1544 return NULL;
1545}
1546
1547/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
d2e4a39e
AS
1550static struct value *
1551desc_bounds (struct value *arr)
14f9c5c9 1552{
df407dfe 1553 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1554
d2e4a39e 1555 if (is_thin_pntr (type))
14f9c5c9 1556 {
d2e4a39e 1557 struct type *bounds_type =
4c4b4cd2 1558 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1559 LONGEST addr;
1560
4cdfadb1 1561 if (bounds_type == NULL)
323e0a4a 1562 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1563
1564 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1565 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1566 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1568 addr = value_as_long (arr);
d2e4a39e 1569 else
42ae5230 1570 addr = value_address (arr);
14f9c5c9 1571
d2e4a39e 1572 return
4c4b4cd2
PH
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1575 }
1576
1577 else if (is_thick_pntr (type))
05e522ef
JB
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
14f9c5c9
AS
1598 else
1599 return NULL;
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
14f9c5c9 1605static int
d2e4a39e 1606fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1607{
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609}
1610
1611/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1612 size of the field containing the address of the bounds data. */
1613
14f9c5c9 1614static int
d2e4a39e 1615fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618
d2e4a39e 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
61ee279c 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1623}
1624
4c4b4cd2 1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
4c4b4cd2 1629
d2e4a39e 1630static struct type *
556bdfd4 1631desc_data_target_type (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
4c4b4cd2 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1636 if (is_thin_pntr (type))
556bdfd4 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1638 else if (is_thick_pntr (type))
556bdfd4
UW
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1645 }
1646
1647 return NULL;
14f9c5c9
AS
1648}
1649
1650/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
4c4b4cd2 1652
d2e4a39e
AS
1653static struct value *
1654desc_data (struct value *arr)
14f9c5c9 1655{
df407dfe 1656 struct type *type = value_type (arr);
5b4ee69b 1657
14f9c5c9
AS
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
d2e4a39e 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1662 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
1667
1668/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1669 position of the field containing the address of the data. */
1670
14f9c5c9 1671static int
d2e4a39e 1672fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1673{
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675}
1676
1677/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1678 size of the field containing the address of the data. */
1679
14f9c5c9 1680static int
d2e4a39e 1681fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1687 else
14f9c5c9
AS
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689}
1690
4c4b4cd2 1691/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1697{
d2e4a39e 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1699 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
14f9c5c9 1706static int
d2e4a39e 1707desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1708{
d2e4a39e 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1710}
1711
1712/* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
76a01679 1716static int
d2e4a39e 1717desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
d2e4a39e
AS
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1725}
1726
1727/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
d2e4a39e
AS
1730static struct type *
1731desc_index_type (struct type *type, int i)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
14f9c5c9
AS
1738 return NULL;
1739}
1740
4c4b4cd2
PH
1741/* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
14f9c5c9 1744static int
d2e4a39e 1745desc_arity (struct type *type)
14f9c5c9
AS
1746{
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752}
1753
4c4b4cd2
PH
1754/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
76a01679
JB
1758static int
1759ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1760{
1761 if (type == NULL)
1762 return 0;
61ee279c 1763 type = ada_check_typedef (type);
4c4b4cd2 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1765 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1766}
1767
52ce6436 1768/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1769 * to one. */
52ce6436 1770
2c0b251b 1771static int
52ce6436
PH
1772ada_is_array_type (struct type *type)
1773{
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779}
1780
4c4b4cd2 1781/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1785{
1786 if (type == NULL)
1787 return 0;
61ee279c 1788 type = ada_check_typedef (type);
14f9c5c9 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1793}
1794
4c4b4cd2
PH
1795/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
14f9c5c9 1797int
4c4b4cd2 1798ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1799{
556bdfd4 1800 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1801
1802 if (type == NULL)
1803 return 0;
61ee279c 1804 type = ada_check_typedef (type);
556bdfd4
UW
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1808}
1809
1810/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1811 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1812 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1813 is still needed. */
1814
14f9c5c9 1815int
ebf56fd3 1816ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1817{
d2e4a39e 1818 return
14f9c5c9
AS
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1824}
1825
1826
4c4b4cd2 1827/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1828 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1830 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1833 a descriptor. */
d2e4a39e
AS
1834struct type *
1835ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1836{
ad82864c
JB
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1839
df407dfe
AC
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
d2e4a39e
AS
1842
1843 if (!bounds)
ad82864c
JB
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
14f9c5c9
AS
1854 else
1855 {
d2e4a39e 1856 struct type *elt_type;
14f9c5c9 1857 int arity;
d2e4a39e 1858 struct value *descriptor;
14f9c5c9 1859
df407dfe
AC
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
14f9c5c9 1862
d2e4a39e 1863 if (elt_type == NULL || arity == 0)
df407dfe 1864 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1865
1866 descriptor = desc_bounds (arr);
d2e4a39e 1867 if (value_as_long (descriptor) == 0)
4c4b4cd2 1868 return NULL;
d2e4a39e 1869 while (arity > 0)
4c4b4cd2 1870 {
e9bb382b
UW
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1875
5b4ee69b 1876 arity -= 1;
df407dfe 1877 create_range_type (range_type, value_type (low),
529cad9c
PH
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
4c4b4cd2 1880 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
4c4b4cd2 1902 }
14f9c5c9
AS
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906}
1907
1908/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
d2e4a39e
AS
1913struct value *
1914ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1915{
df407dfe 1916 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1917 {
d2e4a39e 1918 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1919
14f9c5c9 1920 if (arrType == NULL)
4c4b4cd2 1921 return NULL;
14f9c5c9
AS
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
ad82864c
JB
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1926 else
1927 return arr;
1928}
1929
1930/* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1932 be ARR itself if it already is in the proper form). */
1933
720d1a40 1934struct value *
d2e4a39e 1935ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1936{
df407dfe 1937 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1938 {
d2e4a39e 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1940
14f9c5c9 1941 if (arrVal == NULL)
323e0a4a 1942 error (_("Bounds unavailable for null array pointer."));
529cad9c 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1944 return value_ind (arrVal);
1945 }
ad82864c
JB
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
d2e4a39e 1948 else
14f9c5c9
AS
1949 return arr;
1950}
1951
1952/* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1954 packing). For other types, is the identity. */
1955
d2e4a39e
AS
1956struct type *
1957ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1958{
ad82864c
JB
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
17280b9f
UW
1961
1962 if (ada_is_array_descriptor_type (type))
556bdfd4 1963 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1964
1965 return type;
14f9c5c9
AS
1966}
1967
4c4b4cd2
PH
1968/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
ad82864c
JB
1970static int
1971ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1972{
1973 if (type == NULL)
1974 return 0;
4c4b4cd2 1975 type = desc_base_type (type);
61ee279c 1976 type = ada_check_typedef (type);
d2e4a39e 1977 return
14f9c5c9
AS
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980}
1981
ad82864c
JB
1982/* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985int
1986ada_is_constrained_packed_array_type (struct type *type)
1987{
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990}
1991
1992/* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995static int
1996ada_is_unconstrained_packed_array_type (struct type *type)
1997{
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000}
2001
2002/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005static long
2006decode_packed_array_bitsize (struct type *type)
2007{
0d5cff50
DE
2008 const char *raw_name;
2009 const char *tail;
ad82864c
JB
2010 long bits;
2011
720d1a40
JB
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
720d1a40 2026 gdb_assert (tail != NULL);
ad82864c
JB
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036}
2037
14f9c5c9
AS
2038/* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
d2e4a39e 2047static struct type *
ad82864c 2048constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2049{
d2e4a39e
AS
2050 struct type *new_elt_type;
2051 struct type *new_type;
99b1c762
JB
2052 struct type *index_type_desc;
2053 struct type *index_type;
14f9c5c9
AS
2054 LONGEST low_bound, high_bound;
2055
61ee279c 2056 type = ada_check_typedef (type);
14f9c5c9
AS
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
99b1c762
JB
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
e9bb382b 2067 new_type = alloc_type_copy (type);
ad82864c
JB
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
99b1c762 2071 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
99b1c762 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2079 else
14f9c5c9
AS
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2082 TYPE_LENGTH (new_type) =
4c4b4cd2 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2084 }
2085
876cecd0 2086 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2087 return new_type;
2088}
2089
ad82864c
JB
2090/* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2092
d2e4a39e 2093static struct type *
ad82864c 2094decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2095{
0d5cff50 2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2097 char *name;
0d5cff50 2098 const char *tail;
d2e4a39e 2099 struct type *shadow_type;
14f9c5c9 2100 long bits;
14f9c5c9 2101
727e3d2e
JB
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2110 type = desc_base_type (type);
2111
14f9c5c9
AS
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
b4ba55a1
JB
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
14f9c5c9 2118 {
323e0a4a 2119 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2120 return NULL;
2121 }
cb249c71 2122 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
0963b4bd
MS
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
d2e4a39e 2130
ad82864c
JB
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2133}
2134
ad82864c
JB
2135/* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
4c4b4cd2 2139 type length is set appropriately. */
14f9c5c9 2140
d2e4a39e 2141static struct value *
ad82864c 2142decode_constrained_packed_array (struct value *arr)
14f9c5c9 2143{
4c4b4cd2 2144 struct type *type;
14f9c5c9 2145
4c4b4cd2 2146 arr = ada_coerce_ref (arr);
284614f0
JB
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
828292f2 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2155 arr = value_ind (arr);
4c4b4cd2 2156
ad82864c 2157 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2158 if (type == NULL)
2159 {
323e0a4a 2160 error (_("can't unpack array"));
14f9c5c9
AS
2161 return NULL;
2162 }
61ee279c 2163
50810684 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2165 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
df407dfe 2174 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
df407dfe 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
4c4b4cd2 2189 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2190}
2191
2192
2193/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2194 given in IND. ARR must be a simple array. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2198{
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
d2e4a39e
AS
2202 struct type *elt_type;
2203 struct value *v;
14f9c5c9
AS
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
df407dfe 2207 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2208 for (i = 0; i < arity; i += 1)
14f9c5c9 2209 {
d2e4a39e 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
0963b4bd
MS
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
14f9c5c9 2215 else
4c4b4cd2
PH
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
323e0a4a 2223 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2224 lowerbound = upperbound = 0;
2225 }
2226
3cb382c9 2227 idx = pos_atr (ind[i]);
4c4b4cd2 2228 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
4c4b4cd2
PH
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2234 }
14f9c5c9
AS
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2240 bits, elt_type);
14f9c5c9
AS
2241 return v;
2242}
2243
4c4b4cd2 2244/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2245
2246static int
d2e4a39e 2247has_negatives (struct type *type)
14f9c5c9 2248{
d2e4a39e
AS
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
14f9c5c9 2258}
d2e4a39e 2259
14f9c5c9
AS
2260
2261/* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2264 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2269
d2e4a39e 2270struct value *
fc1a4b47 2271ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2272 long offset, int bit_offset, int bit_size,
4c4b4cd2 2273 struct type *type)
14f9c5c9 2274{
d2e4a39e 2275 struct value *v;
4c4b4cd2
PH
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2284 unsigned char *unpacked;
4c4b4cd2 2285 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
50810684 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2291
61ee279c 2292 type = ada_check_typedef (type);
14f9c5c9
AS
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
d2e4a39e 2297 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2298 }
9214ee5f 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2300 {
53ba8333 2301 v = value_at (type, value_address (obj));
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
53ba8333 2303 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
53ba8333 2313 long new_offset = offset;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
9bbda503
AC
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
df407dfe 2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2319 {
53ba8333 2320 ++new_offset;
9bbda503 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2322 }
53ba8333
JB
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
14f9c5c9
AS
2329 }
2330 else
9bbda503 2331 set_value_bitsize (v, bit_size);
0fd88904 2332 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
50810684 2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2344 {
d2e4a39e 2345 src = len - 1;
1265e4aa
JB
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2348 sign = ~0;
d2e4a39e
AS
2349
2350 unusedLS =
4c4b4cd2
PH
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
14f9c5c9
AS
2353
2354 switch (TYPE_CODE (type))
4c4b4cd2
PH
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
529cad9c 2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2365 ntarg = targ + 1;
4c4b4cd2
PH
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
14f9c5c9 2372 }
d2e4a39e 2373 else
14f9c5c9
AS
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
d2e4a39e 2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2382 sign = ~0;
14f9c5c9 2383 }
d2e4a39e 2384
14f9c5c9
AS
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2389 part of the value. */
d2e4a39e 2390 unsigned int unusedMSMask =
4c4b4cd2
PH
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
14f9c5c9 2394 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2395
d2e4a39e 2396 accum |=
4c4b4cd2 2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2398 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2399 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
14f9c5c9
AS
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423}
d2e4a39e 2424
14f9c5c9
AS
2425/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2427 not overlap. */
14f9c5c9 2428static void
fc1a4b47 2429move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2430 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2431{
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
50810684 2439 if (bits_big_endian_p)
14f9c5c9
AS
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
d2e4a39e 2445 while (n > 0)
4c4b4cd2
PH
2446 {
2447 int unused_right;
5b4ee69b 2448
4c4b4cd2
PH
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
14f9c5c9
AS
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
d2e4a39e 2472 while (n > 0)
4c4b4cd2
PH
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
14f9c5c9
AS
2488 }
2489}
2490
14f9c5c9
AS
2491/* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2494 floating-point or non-scalar types. */
14f9c5c9 2495
d2e4a39e
AS
2496static struct value *
2497ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2498{
df407dfe
AC
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
14f9c5c9 2501
52ce6436
PH
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
88e3b34b 2510 if (!deprecated_value_modifiable (toval))
323e0a4a 2511 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2512
d2e4a39e 2513 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2514 && bits > 0
d2e4a39e 2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2517 {
df407dfe
AC
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2520 int from_size;
d2e4a39e
AS
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
42ae5230 2523 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2526 fromval = value_cast (type, fromval);
14f9c5c9 2527
52ce6436 2528 read_memory (to_addr, buffer, len);
aced2898
PH
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2533 move_bits (buffer, value_bitpos (toval),
50810684 2534 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2535 else
50810684
UW
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
972daa01 2538 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2539
14f9c5c9 2540 val = value_copy (toval);
0fd88904 2541 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2542 TYPE_LENGTH (type));
04624583 2543 deprecated_set_value_type (val, type);
d2e4a39e 2544
14f9c5c9
AS
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549}
2550
2551
52ce6436
PH
2552/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557static void
2558value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560{
2561 LONGEST offset_in_container =
42ae5230 2562 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
50810684 2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2579 bits, 1);
52ce6436
PH
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
50810684 2583 value_contents (val), 0, bits, 0);
52ce6436
PH
2584}
2585
4c4b4cd2
PH
2586/* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2588 thereto. */
2589
d2e4a39e
AS
2590struct value *
2591ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2592{
2593 int k;
d2e4a39e
AS
2594 struct value *elt;
2595 struct type *elt_type;
14f9c5c9
AS
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
df407dfe 2599 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2607 error (_("too many subscripts (%d expected)"), k);
2497b498 2608 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2609 }
2610 return elt;
2611}
2612
2613/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2615 IND. Does not read the entire array into memory. */
14f9c5c9 2616
2c0b251b 2617static struct value *
d2e4a39e 2618ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2619 struct value **ind)
14f9c5c9
AS
2620{
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
14f9c5c9
AS
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2628 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2630 value_copy (arr));
14f9c5c9 2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637}
2638
0b5d8877 2639/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2642 per Ada rules. */
0b5d8877 2643static struct value *
f5938064
JG
2644ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
0b5d8877 2646{
b0dd7688 2647 struct type *type0 = ada_check_typedef (type);
6c038f32 2648 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2651 struct type *index_type =
b0dd7688 2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2653 low, high);
6c038f32 2654 struct type *slice_type =
b0dd7688 2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2656
f5938064 2657 return value_at_lazy (slice_type, base);
0b5d8877
PH
2658}
2659
2660
2661static struct value *
2662ada_value_slice (struct value *array, int low, int high)
2663{
b0dd7688 2664 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2665 struct type *index_type =
0b5d8877 2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2667 struct type *slice_type =
0b5d8877 2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2669
6c038f32 2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2671}
2672
14f9c5c9
AS
2673/* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2676 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2677
2678int
d2e4a39e 2679ada_array_arity (struct type *type)
14f9c5c9
AS
2680{
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
d2e4a39e 2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2690 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2693 {
4c4b4cd2 2694 arity += 1;
61ee279c 2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2696 }
d2e4a39e 2697
14f9c5c9
AS
2698 return arity;
2699}
2700
2701/* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2704 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2705
d2e4a39e
AS
2706struct type *
2707ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2708{
2709 type = desc_base_type (type);
2710
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2712 {
2713 int k;
d2e4a39e 2714 struct type *p_array_type;
14f9c5c9 2715
556bdfd4 2716 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
4c4b4cd2 2720 return NULL;
d2e4a39e 2721
4c4b4cd2 2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2723 if (nindices >= 0 && k > nindices)
4c4b4cd2 2724 k = nindices;
d2e4a39e 2725 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2726 {
61ee279c 2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2728 k -= 1;
2729 }
14f9c5c9
AS
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
14f9c5c9
AS
2739 return type;
2740 }
2741
2742 return NULL;
2743}
2744
4c4b4cd2 2745/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
14f9c5c9 2750
1eea4ebd
UW
2751static struct type *
2752ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2753{
4c4b4cd2
PH
2754 struct type *result_type;
2755
14f9c5c9
AS
2756 type = desc_base_type (type);
2757
1eea4ebd
UW
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2760
4c4b4cd2 2761 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
4c4b4cd2 2766 type = TYPE_TARGET_TYPE (type);
262452ec 2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2770 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
14f9c5c9 2773 }
d2e4a39e 2774 else
1eea4ebd
UW
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
14f9c5c9
AS
2782}
2783
2784/* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
14f9c5c9 2789
abb68b3e 2790static LONGEST
1eea4ebd 2791ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2792{
1ce677a4 2793 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2794 int i;
262452ec
JK
2795
2796 gdb_assert (which == 0 || which == 1);
14f9c5c9 2797
ad82864c
JB
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2800
4c4b4cd2 2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2802 return (LONGEST) - which;
14f9c5c9
AS
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
1ce677a4
UW
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
14f9c5c9 2813 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2814 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2815 if (index_type_desc != NULL)
28c85d6c
JB
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
262452ec 2818 else
1ce677a4 2819 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2820
43bbcdc2
PH
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2825}
2826
2827/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2830 supplied by run-time quantities other than discriminants. */
14f9c5c9 2831
1eea4ebd 2832static LONGEST
4dc81987 2833ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2834{
df407dfe 2835 struct type *arr_type = value_type (arr);
14f9c5c9 2836
ad82864c
JB
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2839 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2840 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2841 else
1eea4ebd 2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2843}
2844
2845/* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
14f9c5c9 2850
1eea4ebd 2851static LONGEST
d2e4a39e 2852ada_array_length (struct value *arr, int n)
14f9c5c9 2853{
df407dfe 2854 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2855
ad82864c
JB
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2858
4c4b4cd2 2859 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2862 else
1eea4ebd
UW
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2865}
2866
2867/* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870static struct value *
2871empty_array (struct type *arr_type, int low)
2872{
b0dd7688 2873 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2874 struct type *index_type =
b0dd7688 2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2876 low, low - 1);
b0dd7688 2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2878
0b5d8877 2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2880}
14f9c5c9 2881\f
d2e4a39e 2882
4c4b4cd2 2883 /* Name resolution */
14f9c5c9 2884
4c4b4cd2
PH
2885/* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
14f9c5c9 2887
d2e4a39e 2888static const char *
4c4b4cd2 2889ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2890{
2891 int i;
2892
4c4b4cd2 2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2894 {
2895 if (ada_opname_table[i].op == op)
4c4b4cd2 2896 return ada_opname_table[i].decoded;
14f9c5c9 2897 }
323e0a4a 2898 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2899}
2900
2901
4c4b4cd2
PH
2902/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2909 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2910
4c4b4cd2
PH
2911static void
2912resolve (struct expression **expp, int void_context_p)
14f9c5c9 2913{
30b15541
UW
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2921}
2922
4c4b4cd2
PH
2923/* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
14f9c5c9 2931
d2e4a39e 2932static struct value *
4c4b4cd2 2933resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2934 struct type *context_type)
14f9c5c9
AS
2935{
2936 int pc = *pos;
2937 int i;
4c4b4cd2 2938 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
52ce6436 2942 int oplen;
14f9c5c9
AS
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
52ce6436
PH
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
14f9c5c9
AS
2950 switch (op)
2951 {
4c4b4cd2
PH
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
4c4b4cd2
PH
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2962 break;
2963
14f9c5c9 2964 case UNOP_ADDR:
4c4b4cd2
PH
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
52ce6436
PH
2969 case UNOP_QUAL:
2970 *pos += 3;
17466c1a 2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2972 break;
2973
52ce6436 2974 case OP_ATR_MODULUS:
4c4b4cd2
PH
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
4c4b4cd2
PH
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
4c4b4cd2
PH
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
52ce6436
PH
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
14f9c5c9
AS
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
4c4b4cd2
PH
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
df407dfe 3006 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3007 break;
14f9c5c9
AS
3008 }
3009
4c4b4cd2 3010 case UNOP_CAST:
4c4b4cd2
PH
3011 *pos += 3;
3012 nargs = 1;
3013 break;
14f9c5c9 3014
4c4b4cd2
PH
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
14f9c5c9 3028
4c4b4cd2
PH
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
14f9c5c9 3035
4c4b4cd2
PH
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
40c8aaa9
JB
3039 *pos += 1;
3040 nargs = 2;
3041 break;
14f9c5c9 3042
4c4b4cd2
PH
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
14f9c5c9 3051
4c4b4cd2
PH
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
14f9c5c9 3057
4c4b4cd2
PH
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
4c4b4cd2
PH
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
14f9c5c9 3064
4c4b4cd2
PH
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
67f3407f
DJ
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
4c4b4cd2
PH
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
4c4b4cd2 3079 case TERNOP_SLICE:
4c4b4cd2
PH
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
52ce6436 3084 case OP_STRING:
14f9c5c9 3085 break;
4c4b4cd2
PH
3086
3087 default:
323e0a4a 3088 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3089 }
3090
76a01679 3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
14f9c5c9 3103 case OP_VAR_VALUE:
4c4b4cd2 3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3113 &candidates);
76a01679
JB
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
76a01679
JB
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
76a01679 3129 case LOC_COMPUTED:
76a01679
JB
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
323e0a4a 3152 error (_("No definition found for %s"),
76a01679
JB
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
06d5cf63
JB
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
76a01679 3163 if (i < 0)
323e0a4a 3164 error (_("Could not find a match for %s"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
323e0a4a 3169 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
14f9c5c9
AS
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
4c4b4cd2 3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
76a01679
JB
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3205 &candidates);
4c4b4cd2
PH
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
06d5cf63
JB
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
4c4b4cd2 3215 if (i < 0)
323e0a4a 3216 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3224 innermost_block = candidates[i].block;
3225 }
14f9c5c9
AS
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3257 &candidates);
4c4b4cd2 3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3259 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3260 if (i < 0)
3261 break;
3262
76a01679
JB
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3265 exp = *expp;
3266 }
14f9c5c9 3267 break;
4c4b4cd2
PH
3268
3269 case OP_TYPE:
b3dbf008 3270 case OP_REGISTER:
4c4b4cd2 3271 return NULL;
14f9c5c9
AS
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276}
3277
3278/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3280 a non-pointer. */
14f9c5c9 3281/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3282 liberal. */
14f9c5c9
AS
3283
3284static int
4dc81987 3285ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3286{
61ee279c
PH
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
14f9c5c9
AS
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
d2e4a39e 3295 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3296 {
3297 default:
5b3d5b7d 3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3303 else
1265e4aa
JB
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
14f9c5c9
AS
3318
3319 case TYPE_CODE_ARRAY:
d2e4a39e 3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3321 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3322
3323 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
14f9c5c9 3327 else
4c4b4cd2
PH
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335}
3336
3337/* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3340 argument function. */
14f9c5c9
AS
3341
3342static int
d2e4a39e 3343ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3344{
3345 int i;
d2e4a39e 3346 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3347
1265e4aa
JB
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
4c4b4cd2 3359 if (actuals[i] == NULL)
76a01679
JB
3360 return 0;
3361 else
3362 {
5b4ee69b
MS
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
df407dfe 3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3366
76a01679
JB
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
14f9c5c9
AS
3370 }
3371 return 1;
3372}
3373
3374/* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379static int
d2e4a39e 3380return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3381{
d2e4a39e 3382 struct type *return_type;
14f9c5c9
AS
3383
3384 if (func_type == NULL)
3385 return 1;
3386
4c4b4cd2 3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3389 else
18af8284 3390 return_type = get_base_type (func_type);
14f9c5c9
AS
3391 if (return_type == NULL)
3392 return 1;
3393
18af8284 3394 context_type = get_base_type (context_type);
14f9c5c9
AS
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402}
3403
3404
4c4b4cd2 3405/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3406 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
14f9c5c9
AS
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
14f9c5c9 3416
4c4b4cd2
PH
3417static int
3418ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
14f9c5c9 3421{
30b15541 3422 int fallback;
14f9c5c9 3423 int k;
4c4b4cd2 3424 int m; /* Number of hits */
14f9c5c9 3425
d2e4a39e 3426 m = 0;
30b15541
UW
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3431 {
3432 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3433 {
61ee279c 3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3437 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
323e0a4a 3449 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3450 user_select_syms (syms, m, 1);
14f9c5c9
AS
3451 return 0;
3452 }
3453 return 0;
3454}
3455
4c4b4cd2
PH
3456/* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
14f9c5c9 3462static int
0d5cff50 3463encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3464{
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
5b4ee69b 3472
d2e4a39e 3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3474 ;
d2e4a39e 3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
5b4ee69b 3481
4c4b4cd2
PH
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
14f9c5c9
AS
3491 return (strcmp (N0, N1) < 0);
3492 }
3493}
d2e4a39e 3494
4c4b4cd2
PH
3495/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
d2e4a39e 3498static void
4c4b4cd2 3499sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3500{
4c4b4cd2 3501 int i;
5b4ee69b 3502
d2e4a39e 3503 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3504 {
4c4b4cd2 3505 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3506 int j;
3507
d2e4a39e 3508 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
d2e4a39e 3515 syms[j + 1] = sym;
14f9c5c9
AS
3516 }
3517}
3518
4c4b4cd2
PH
3519/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
14f9c5c9
AS
3523
3524/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3525 to be re-integrated one of these days. */
14f9c5c9
AS
3526
3527int
4c4b4cd2 3528user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3529{
3530 int i;
d2e4a39e 3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3534 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3535
3536 if (max_results < 1)
323e0a4a 3537 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3538 if (nsyms <= 1)
3539 return nsyms;
3540
717d2f5a
JB
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543canceled because the command is ambiguous\n\
3544See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
323e0a4a 3552 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3553 if (max_results > 1)
323e0a4a 3554 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3555
4c4b4cd2 3556 sort_choices (syms, nsyms);
14f9c5c9
AS
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
4c4b4cd2
PH
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
76a01679
JB
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3567
323e0a4a
AC
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
4c4b4cd2
PH
3578 continue;
3579 }
d2e4a39e 3580 else
4c4b4cd2
PH
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3596 {
a3f17187 3597 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3599 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
323e0a4a
AC
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3609 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3610 else
3611 printf_unfiltered (is_enumeral
323e0a4a
AC
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
14f9c5c9 3617 }
d2e4a39e 3618
14f9c5c9 3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3620 "overload-choice");
14f9c5c9
AS
3621
3622 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3623 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3624
3625 return n_chosen;
3626}
3627
3628/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3629 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
4c4b4cd2 3635 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
4c4b4cd2 3639 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3642 prompts (for use with the -f switch). */
14f9c5c9
AS
3643
3644int
d2e4a39e 3645get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3646 int is_all_choice, char *annotation_suffix)
14f9c5c9 3647{
d2e4a39e 3648 char *args;
0bcd0149 3649 char *prompt;
14f9c5c9
AS
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3652
14f9c5c9
AS
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
0bcd0149 3655 prompt = "> ";
14f9c5c9 3656
0bcd0149 3657 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3658
14f9c5c9 3659 if (args == NULL)
323e0a4a 3660 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3661
3662 n_chosen = 0;
76a01679 3663
4c4b4cd2
PH
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
14f9c5c9
AS
3666 while (1)
3667 {
d2e4a39e 3668 char *args2;
14f9c5c9
AS
3669 int choice, j;
3670
0fcd72ba 3671 args = skip_spaces (args);
14f9c5c9 3672 if (*args == '\0' && n_chosen == 0)
323e0a4a 3673 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3674 else if (*args == '\0')
4c4b4cd2 3675 break;
14f9c5c9
AS
3676
3677 choice = strtol (args, &args2, 10);
d2e4a39e 3678 if (args == args2 || choice < 0
4c4b4cd2 3679 || choice > n_choices + first_choice - 1)
323e0a4a 3680 error (_("Argument must be choice number"));
14f9c5c9
AS
3681 args = args2;
3682
d2e4a39e 3683 if (choice == 0)
323e0a4a 3684 error (_("cancelled"));
14f9c5c9
AS
3685
3686 if (choice < first_choice)
4c4b4cd2
PH
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
14f9c5c9
AS
3693 choice -= first_choice;
3694
d2e4a39e 3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3696 {
3697 }
14f9c5c9
AS
3698
3699 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3700 {
3701 int k;
5b4ee69b 3702
4c4b4cd2
PH
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
14f9c5c9
AS
3708 }
3709
3710 if (n_chosen > max_results)
323e0a4a 3711 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3712
14f9c5c9
AS
3713 return n_chosen;
3714}
3715
4c4b4cd2
PH
3716/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3719
3720static void
d2e4a39e 3721replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3722 int oplen, struct symbol *sym,
270140bd 3723 const struct block *block)
14f9c5c9
AS
3724{
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3726 symbol, -oplen for operator being replaced). */
d2e4a39e 3727 struct expression *newexp = (struct expression *)
8c1a34e7 3728 xzalloc (sizeof (struct expression)
4c4b4cd2 3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3730 struct expression *exp = *expp;
14f9c5c9
AS
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3489610d 3734 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
aacb1f0a 3747 xfree (exp);
d2e4a39e 3748}
14f9c5c9
AS
3749
3750/* Type-class predicates */
3751
4c4b4cd2
PH
3752/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
14f9c5c9
AS
3754
3755static int
d2e4a39e 3756numeric_type_p (struct type *type)
14f9c5c9
AS
3757{
3758 if (type == NULL)
3759 return 0;
d2e4a39e
AS
3760 else
3761 {
3762 switch (TYPE_CODE (type))
4c4b4cd2
PH
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
d2e4a39e 3773 }
14f9c5c9
AS
3774}
3775
4c4b4cd2 3776/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3777
3778static int
d2e4a39e 3779integer_type_p (struct type *type)
14f9c5c9
AS
3780{
3781 if (type == NULL)
3782 return 0;
d2e4a39e
AS
3783 else
3784 {
3785 switch (TYPE_CODE (type))
4c4b4cd2
PH
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
d2e4a39e 3795 }
14f9c5c9
AS
3796}
3797
4c4b4cd2 3798/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3799
3800static int
d2e4a39e 3801scalar_type_p (struct type *type)
14f9c5c9
AS
3802{
3803 if (type == NULL)
3804 return 0;
d2e4a39e
AS
3805 else
3806 {
3807 switch (TYPE_CODE (type))
4c4b4cd2
PH
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
d2e4a39e 3817 }
14f9c5c9
AS
3818}
3819
4c4b4cd2 3820/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3821
3822static int
d2e4a39e 3823discrete_type_p (struct type *type)
14f9c5c9
AS
3824{
3825 if (type == NULL)
3826 return 0;
d2e4a39e
AS
3827 else
3828 {
3829 switch (TYPE_CODE (type))
4c4b4cd2
PH
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
872f0337 3834 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3835 return 1;
3836 default:
3837 return 0;
3838 }
d2e4a39e 3839 }
14f9c5c9
AS
3840}
3841
4c4b4cd2
PH
3842/* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
14f9c5c9
AS
3845
3846static int
d2e4a39e 3847possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3848{
76a01679 3849 struct type *type0 =
df407dfe 3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3851 struct type *type1 =
df407dfe 3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3853
4c4b4cd2
PH
3854 if (type0 == NULL)
3855 return 0;
3856
14f9c5c9
AS
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
d2e4a39e 3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
d2e4a39e 3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
d2e4a39e 3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3882
3883 case BINOP_CONCAT:
ee90b9ab 3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3885
3886 case BINOP_EXP:
d2e4a39e 3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
14f9c5c9
AS
3894
3895 }
3896}
3897\f
4c4b4cd2 3898 /* Renaming */
14f9c5c9 3899
aeb5907d
JB
3900/* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912/* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
0963b4bd 3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931enum ada_renaming_category
3932ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935{
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
14f9c5c9 3943 {
aeb5907d
JB
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
14f9c5c9 3977 }
4c4b4cd2 3978
aeb5907d
JB
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990}
3991
3992/* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996static enum ada_renaming_category
3997parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000{
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
14f9c5c9 4005
aeb5907d
JB
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
14f9c5c9 4009
aeb5907d
JB
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
14f9c5c9 4035
aeb5907d
JB
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
a5ee536b
JB
4049}
4050
4051/* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
52ce6436 4054
a5ee536b
JB
4055static struct value *
4056ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058{
bbc13ae3 4059 const char *sym_name;
a5ee536b
JB
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
bbc13ae3 4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4066 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071}
14f9c5c9 4072\f
d2e4a39e 4073
4c4b4cd2 4074 /* Evaluation: Function Calls */
14f9c5c9 4075
4c4b4cd2 4076/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4079
d2e4a39e 4080static struct value *
40bc484c 4081ensure_lval (struct value *val)
14f9c5c9 4082{
40bc484c
JB
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4085 {
df407dfe 4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4089
40bc484c 4090 set_value_address (val, addr);
a84a8a0d 4091 VALUE_LVAL (val) = lval_memory;
40bc484c 4092 write_memory (addr, value_contents (val), len);
c3e5cd34 4093 }
14f9c5c9
AS
4094
4095 return val;
4096}
4097
4098/* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4101 values not residing in memory, updating it as needed. */
14f9c5c9 4102
a93c0eb6 4103struct value *
40bc484c 4104ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4105{
df407dfe 4106 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4107 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4114
4c4b4cd2 4115 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4117 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4120 {
a84a8a0d 4121 struct value *result;
5b4ee69b 4122
14f9c5c9 4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4124 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4125 result = desc_data (actual);
14f9c5c9 4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
5b4ee69b 4131
df407dfe 4132 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4133 val = allocate_value (actual_type);
990a07ab 4134 memcpy ((char *) value_contents_raw (val),
0fd88904 4135 (char *) value_contents (actual),
4c4b4cd2 4136 TYPE_LENGTH (actual_type));
40bc484c 4137 actual = ensure_lval (val);
4c4b4cd2 4138 }
a84a8a0d 4139 result = value_addr (actual);
4c4b4cd2 4140 }
a84a8a0d
JB
4141 else
4142 return actual;
b1af9e97 4143 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149}
4150
438c98a1
JB
4151/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156static CORE_ADDR
4157value_pointer (struct value *value, struct type *type)
4158{
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168}
4169
14f9c5c9 4170
4c4b4cd2
PH
4171/* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
14f9c5c9 4176
d2e4a39e 4177static struct value *
40bc484c 4178make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4179{
d2e4a39e
AS
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4184 int i;
d2e4a39e 4185
0963b4bd
MS
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
14f9c5c9 4188 {
19f220c3
JK
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4197 }
d2e4a39e 4198
40bc484c 4199 bounds = ensure_lval (bounds);
d2e4a39e 4200
19f220c3
JK
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4214
40bc484c 4215 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221}
14f9c5c9 4222\f
963a6417 4223/* Dummy definitions for an experimental caching module that is not
0963b4bd 4224 * used in the public sources. */
96d887e8 4225
96d887e8
PH
4226static int
4227lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4228 struct symbol **sym, struct block **block)
96d887e8
PH
4229{
4230 return 0;
4231}
4232
4233static void
4234cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4235 const struct block *block)
96d887e8
PH
4236{
4237}
4c4b4cd2
PH
4238\f
4239 /* Symbol Lookup */
4240
c0431670
JB
4241/* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247static int
4248should_use_wild_match (const char *lookup_name)
4249{
4250 return (strstr (lookup_name, "__") == NULL);
4251}
4252
4c4b4cd2
PH
4253/* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256static struct symbol *
4257standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259{
acbd605d
MGD
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4c4b4cd2 4262
2570f2b7 4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4264 return sym;
2570f2b7
UW
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4267 return sym;
4268}
4269
4270
4271/* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274static int
4275is_nonfunction (struct ada_symbol_info syms[], int n)
4276{
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4283 return 1;
4284
4285 return 0;
4286}
4287
4288/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4289 struct types. Otherwise, they may not. */
14f9c5c9
AS
4290
4291static int
d2e4a39e 4292equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4293{
d2e4a39e 4294 if (type0 == type1)
14f9c5c9 4295 return 1;
d2e4a39e 4296 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
d2e4a39e 4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4303 return 1;
d2e4a39e 4304
14f9c5c9
AS
4305 return 0;
4306}
4307
4308/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4309 no more defined than that of SYM1. */
14f9c5c9
AS
4310
4311static int
d2e4a39e 4312lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4313{
4314 if (sym0 == sym1)
4315 return 1;
176620f1 4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
d2e4a39e 4320 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4c4b4cd2
PH
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4330 int len0 = strlen (name0);
5b4ee69b 4331
4c4b4cd2
PH
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4341 default:
4342 return 0;
14f9c5c9
AS
4343 }
4344}
4345
4c4b4cd2
PH
4346/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4348
4349static void
76a01679
JB
4350add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
2570f2b7 4352 struct block *block)
14f9c5c9
AS
4353{
4354 int i;
4c4b4cd2 4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4356
529cad9c
PH
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4c4b4cd2
PH
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4c4b4cd2 4374 return;
76a01679 4375 }
4c4b4cd2
PH
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4c4b4cd2
PH
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385}
4386
4387/* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
76a01679
JB
4390static int
4391num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4392{
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394}
4395
4396/* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
76a01679 4400static struct ada_symbol_info *
4c4b4cd2
PH
4401defns_collected (struct obstack *obstackp, int finish)
4402{
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407}
4408
96d887e8 4409/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4412 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4413
96d887e8
PH
4414struct minimal_symbol *
4415ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4416{
4c4b4cd2 4417 struct objfile *objfile;
96d887e8 4418 struct minimal_symbol *msymbol;
dc4024cd 4419 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4420
c0431670
JB
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
96d887e8 4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4429 name += sizeof ("standard__") - 1;
4c4b4cd2 4430
96d887e8
PH
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
dc4024cd 4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4c4b4cd2 4437
96d887e8
PH
4438 return NULL;
4439}
4c4b4cd2 4440
96d887e8
PH
4441/* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4c4b4cd2 4446
96d887e8
PH
4447static void
4448add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4449 const char *name, domain_enum namespace,
48b78332 4450 int wild_match_p)
96d887e8 4451{
96d887e8 4452}
14f9c5c9 4453
96d887e8
PH
4454/* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
14f9c5c9 4456
96d887e8
PH
4457static int
4458is_nondebugging_type (struct type *type)
4459{
0d5cff50 4460 const char *name = ada_type_name (type);
5b4ee69b 4461
96d887e8
PH
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463}
4c4b4cd2 4464
8f17729f
JB
4465/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472static int
4473ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474{
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
0d5cff50
DE
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506}
4507
4508/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528static int
4529symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530{
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565}
4566
96d887e8
PH
4567/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4c4b4cd2 4573
96d887e8
PH
4574static int
4575remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576{
4577 int i, j;
4c4b4cd2 4578
8f17729f
JB
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
96d887e8
PH
4585 i = 0;
4586 while (i < nsyms)
4587 {
a35ddb44 4588 int remove_p = 0;
339c13b6
JB
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4603 remove_p = 1;
339c13b6
JB
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4623 remove_p = 1;
4c4b4cd2 4624 }
4c4b4cd2 4625 }
339c13b6 4626
a35ddb44 4627 if (remove_p)
339c13b6
JB
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
96d887e8 4634 i += 1;
14f9c5c9 4635 }
8f17729f
JB
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
96d887e8 4652 return nsyms;
14f9c5c9
AS
4653}
4654
96d887e8
PH
4655/* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4659
96d887e8
PH
4660static char *
4661xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4662{
96d887e8 4663 /* The renaming types adhere to the following convention:
0963b4bd 4664 <scope>__<rename>___<XR extension>.
96d887e8
PH
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
76a01679 4667
96d887e8
PH
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
14f9c5c9 4673
96d887e8
PH
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4676
96d887e8
PH
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
76a01679 4680
96d887e8 4681 /* Make a copy of scope and return it. */
14f9c5c9 4682
96d887e8
PH
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4685
96d887e8
PH
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4c4b4cd2 4688
96d887e8 4689 return scope;
4c4b4cd2
PH
4690}
4691
96d887e8 4692/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4693
96d887e8
PH
4694static int
4695is_package_name (const char *name)
4c4b4cd2 4696{
96d887e8
PH
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4c4b4cd2 4702
96d887e8 4703 char *fun_name;
76a01679 4704
96d887e8
PH
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
14f9c5c9 4709
96d887e8
PH
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
14f9c5c9 4712
96d887e8 4713 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4714 functions names cannot contain "__" in them. */
96d887e8
PH
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4c4b4cd2 4717
b435e160 4718 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4719
96d887e8
PH
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721}
14f9c5c9 4722
96d887e8 4723/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4724 not visible from FUNCTION_NAME. */
14f9c5c9 4725
96d887e8 4726static int
0d5cff50 4727old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4728{
aeb5907d
JB
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4735
96d887e8 4736 make_cleanup (xfree, scope);
14f9c5c9 4737
96d887e8
PH
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
aeb5907d 4740 return 0;
14f9c5c9 4741
96d887e8
PH
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
76a01679 4744
96d887e8
PH
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
f26caa11 4751
aeb5907d 4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4753}
4754
aeb5907d
JB
4755/* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
96d887e8
PH
4760
4761 Rationale:
aeb5907d
JB
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
f26caa11 4774
96d887e8
PH
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4c4b4cd2 4791
14f9c5c9 4792static int
aeb5907d
JB
4793remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4795{
4796 struct symbol *current_function;
0d5cff50 4797 const char *current_function_name;
4c4b4cd2 4798 int i;
aeb5907d
JB
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
0963b4bd 4803 First, zero out such symbols, then compress. */
aeb5907d
JB
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
270140bd 4808 const struct block *block = syms[i].block;
aeb5907d
JB
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
5b4ee69b 4821
aeb5907d
JB
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4c4b4cd2
PH
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
76a01679 4846
4c4b4cd2
PH
4847 if (current_block == NULL)
4848 return nsyms;
76a01679 4849
7f0df278 4850 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
aeb5907d
JB
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4868 {
4869 int j;
5b4ee69b 4870
aeb5907d 4871 for (j = i + 1; j < nsyms; j += 1)
76a01679 4872 syms[j - 1] = syms[j];
4c4b4cd2
PH
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880}
4881
339c13b6
JB
4882/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892static void
4893ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
d0a8ab18 4895 int wild_match_p)
339c13b6
JB
4896{
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
d0a8ab18
JB
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
339c13b6
JB
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4917}
4918
ccefe4c4 4919/* An object of this type is used as the user_data argument when
40658b94 4920 calling the map_matching_symbols method. */
ccefe4c4 4921
40658b94 4922struct match_data
ccefe4c4 4923{
40658b94 4924 struct objfile *objfile;
ccefe4c4 4925 struct obstack *obstackp;
40658b94
PH
4926 struct symbol *arg_sym;
4927 int found_sym;
ccefe4c4
TT
4928};
4929
40658b94
PH
4930/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
ccefe4c4 4938
40658b94
PH
4939static int
4940aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4941{
40658b94
PH
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968}
4969
4970/* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
5b4ee69b 4974
40658b94
PH
4975static int
4976compare_names (const char *string1, const char *string2)
4977{
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
052874e8 4994 if (is_name_suffix (string1))
40658b94
PH
4995 return 0;
4996 else
1a1d5513 4997 return 1;
40658b94 4998 }
dbb8534f 4999 /* FALLTHROUGH */
40658b94
PH
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
ccefe4c4
TT
5006}
5007
339c13b6
JB
5008/* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012static void
40658b94
PH
5013add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
339c13b6
JB
5016{
5017 struct objfile *objfile;
40658b94 5018 struct match_data data;
339c13b6 5019
6475f2fe 5020 memset (&data, 0, sizeof data);
ccefe4c4 5021 data.obstackp = obstackp;
339c13b6 5022
ccefe4c4 5023 ALL_OBJFILES (objfile)
40658b94
PH
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
0963b4bd
MS
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
40658b94
PH
5049 full_match, compare_names);
5050 }
5051 }
339c13b6
JB
5052}
5053
4eeaa230
DE
5054/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5055 non-zero, enclosing scope and in global scopes, returning the number of
5056 matches.
9f88c959 5057 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5058 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5059 any) in which they were found. This vector is transient---good only to
5060 the next call of ada_lookup_symbol_list.
5061
5062 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5063 symbol match within the nest of blocks whose innermost member is BLOCK0,
5064 is the one match returned (no other matches in that or
d9680e73 5065 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5066 surrounding BLOCK0, then these alone are returned.
5067
9f88c959 5068 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5069 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5070
4eeaa230
DE
5071static int
5072ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5073 domain_enum namespace,
5074 struct ada_symbol_info **results,
5075 int full_search)
14f9c5c9
AS
5076{
5077 struct symbol *sym;
14f9c5c9 5078 struct block *block;
4c4b4cd2 5079 const char *name;
82ccd55e 5080 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5081 int cacheIfUnique;
4c4b4cd2 5082 int ndefns;
14f9c5c9 5083
4c4b4cd2
PH
5084 obstack_free (&symbol_list_obstack, NULL);
5085 obstack_init (&symbol_list_obstack);
14f9c5c9 5086
14f9c5c9
AS
5087 cacheIfUnique = 0;
5088
5089 /* Search specified block and its superiors. */
5090
4c4b4cd2 5091 name = name0;
76a01679
JB
5092 block = (struct block *) block0; /* FIXME: No cast ought to be
5093 needed, but adding const will
5094 have a cascade effect. */
339c13b6
JB
5095
5096 /* Special case: If the user specifies a symbol name inside package
5097 Standard, do a non-wild matching of the symbol name without
5098 the "standard__" prefix. This was primarily introduced in order
5099 to allow the user to specifically access the standard exceptions
5100 using, for instance, Standard.Constraint_Error when Constraint_Error
5101 is ambiguous (due to the user defining its own Constraint_Error
5102 entity inside its program). */
4c4b4cd2
PH
5103 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5104 {
4c4b4cd2
PH
5105 block = NULL;
5106 name = name0 + sizeof ("standard__") - 1;
5107 }
5108
339c13b6 5109 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5110
4eeaa230
DE
5111 if (block != NULL)
5112 {
5113 if (full_search)
5114 {
5115 ada_add_local_symbols (&symbol_list_obstack, name, block,
5116 namespace, wild_match_p);
5117 }
5118 else
5119 {
5120 /* In the !full_search case we're are being called by
5121 ada_iterate_over_symbols, and we don't want to search
5122 superblocks. */
5123 ada_add_block_symbols (&symbol_list_obstack, block, name,
5124 namespace, NULL, wild_match_p);
5125 }
5126 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5127 goto done;
5128 }
d2e4a39e 5129
339c13b6
JB
5130 /* No non-global symbols found. Check our cache to see if we have
5131 already performed this search before. If we have, then return
5132 the same result. */
5133
14f9c5c9 5134 cacheIfUnique = 1;
2570f2b7 5135 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5136 {
5137 if (sym != NULL)
2570f2b7 5138 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5139 goto done;
5140 }
14f9c5c9 5141
339c13b6
JB
5142 /* Search symbols from all global blocks. */
5143
40658b94 5144 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5145 wild_match_p);
d2e4a39e 5146
4c4b4cd2 5147 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5148 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5149
4c4b4cd2 5150 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5152 wild_match_p);
14f9c5c9 5153
4c4b4cd2
PH
5154done:
5155 ndefns = num_defns_collected (&symbol_list_obstack);
5156 *results = defns_collected (&symbol_list_obstack, 1);
5157
5158 ndefns = remove_extra_symbols (*results, ndefns);
5159
2ad01556 5160 if (ndefns == 0 && full_search)
2570f2b7 5161 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5162
2ad01556 5163 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5164 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5165
aeb5907d 5166 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5167
14f9c5c9
AS
5168 return ndefns;
5169}
5170
4eeaa230
DE
5171/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5172 in global scopes, returning the number of matches, and setting *RESULTS
5173 to a vector of (SYM,BLOCK) tuples.
5174 See ada_lookup_symbol_list_worker for further details. */
5175
5176int
5177ada_lookup_symbol_list (const char *name0, const struct block *block0,
5178 domain_enum domain, struct ada_symbol_info **results)
5179{
5180 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5181}
5182
5183/* Implementation of the la_iterate_over_symbols method. */
5184
5185static void
5186ada_iterate_over_symbols (const struct block *block,
5187 const char *name, domain_enum domain,
5188 symbol_found_callback_ftype *callback,
5189 void *data)
5190{
5191 int ndefs, i;
5192 struct ada_symbol_info *results;
5193
5194 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5195 for (i = 0; i < ndefs; ++i)
5196 {
5197 if (! (*callback) (results[i].sym, data))
5198 break;
5199 }
5200}
5201
f8eba3c6
TT
5202/* If NAME is the name of an entity, return a string that should
5203 be used to look that entity up in Ada units. This string should
5204 be deallocated after use using xfree.
5205
5206 NAME can have any form that the "break" or "print" commands might
5207 recognize. In other words, it does not have to be the "natural"
5208 name, or the "encoded" name. */
5209
5210char *
5211ada_name_for_lookup (const char *name)
5212{
5213 char *canon;
5214 int nlen = strlen (name);
5215
5216 if (name[0] == '<' && name[nlen - 1] == '>')
5217 {
5218 canon = xmalloc (nlen - 1);
5219 memcpy (canon, name + 1, nlen - 2);
5220 canon[nlen - 2] = '\0';
5221 }
5222 else
5223 canon = xstrdup (ada_encode (ada_fold_name (name)));
5224 return canon;
5225}
5226
4e5c77fe
JB
5227/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5228 to 1, but choosing the first symbol found if there are multiple
5229 choices.
5230
5e2336be
JB
5231 The result is stored in *INFO, which must be non-NULL.
5232 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5233
5234void
5235ada_lookup_encoded_symbol (const char *name, const struct block *block,
5236 domain_enum namespace,
5e2336be 5237 struct ada_symbol_info *info)
14f9c5c9 5238{
4c4b4cd2 5239 struct ada_symbol_info *candidates;
14f9c5c9
AS
5240 int n_candidates;
5241
5e2336be
JB
5242 gdb_assert (info != NULL);
5243 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5244
4eeaa230 5245 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5246 if (n_candidates == 0)
4e5c77fe 5247 return;
4c4b4cd2 5248
5e2336be
JB
5249 *info = candidates[0];
5250 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5251}
aeb5907d
JB
5252
5253/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5254 scope and in global scopes, or NULL if none. NAME is folded and
5255 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5256 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5257 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5258
aeb5907d
JB
5259struct symbol *
5260ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5261 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5262{
5e2336be 5263 struct ada_symbol_info info;
4e5c77fe 5264
aeb5907d
JB
5265 if (is_a_field_of_this != NULL)
5266 *is_a_field_of_this = 0;
5267
4e5c77fe 5268 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5269 block0, namespace, &info);
5270 return info.sym;
4c4b4cd2 5271}
14f9c5c9 5272
4c4b4cd2
PH
5273static struct symbol *
5274ada_lookup_symbol_nonlocal (const char *name,
76a01679 5275 const struct block *block,
21b556f4 5276 const domain_enum domain)
4c4b4cd2 5277{
94af9270 5278 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5279}
5280
5281
4c4b4cd2
PH
5282/* True iff STR is a possible encoded suffix of a normal Ada name
5283 that is to be ignored for matching purposes. Suffixes of parallel
5284 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5285 are given by any of the regular expressions:
4c4b4cd2 5286
babe1480
JB
5287 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5288 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5289 TKB [subprogram suffix for task bodies]
babe1480 5290 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5291 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5292
5293 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5294 match is performed. This sequence is used to differentiate homonyms,
5295 is an optional part of a valid name suffix. */
4c4b4cd2 5296
14f9c5c9 5297static int
d2e4a39e 5298is_name_suffix (const char *str)
14f9c5c9
AS
5299{
5300 int k;
4c4b4cd2
PH
5301 const char *matching;
5302 const int len = strlen (str);
5303
babe1480
JB
5304 /* Skip optional leading __[0-9]+. */
5305
4c4b4cd2
PH
5306 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5307 {
babe1480
JB
5308 str += 3;
5309 while (isdigit (str[0]))
5310 str += 1;
4c4b4cd2 5311 }
babe1480
JB
5312
5313 /* [.$][0-9]+ */
4c4b4cd2 5314
babe1480 5315 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5316 {
babe1480 5317 matching = str + 1;
4c4b4cd2
PH
5318 while (isdigit (matching[0]))
5319 matching += 1;
5320 if (matching[0] == '\0')
5321 return 1;
5322 }
5323
5324 /* ___[0-9]+ */
babe1480 5325
4c4b4cd2
PH
5326 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5327 {
5328 matching = str + 3;
5329 while (isdigit (matching[0]))
5330 matching += 1;
5331 if (matching[0] == '\0')
5332 return 1;
5333 }
5334
9ac7f98e
JB
5335 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5336
5337 if (strcmp (str, "TKB") == 0)
5338 return 1;
5339
529cad9c
PH
5340#if 0
5341 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5342 with a N at the end. Unfortunately, the compiler uses the same
5343 convention for other internal types it creates. So treating
529cad9c 5344 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5345 some regressions. For instance, consider the case of an enumerated
5346 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5347 name ends with N.
5348 Having a single character like this as a suffix carrying some
0963b4bd 5349 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5350 to be something like "_N" instead. In the meantime, do not do
5351 the following check. */
5352 /* Protected Object Subprograms */
5353 if (len == 1 && str [0] == 'N')
5354 return 1;
5355#endif
5356
5357 /* _E[0-9]+[bs]$ */
5358 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5359 {
5360 matching = str + 3;
5361 while (isdigit (matching[0]))
5362 matching += 1;
5363 if ((matching[0] == 'b' || matching[0] == 's')
5364 && matching [1] == '\0')
5365 return 1;
5366 }
5367
4c4b4cd2
PH
5368 /* ??? We should not modify STR directly, as we are doing below. This
5369 is fine in this case, but may become problematic later if we find
5370 that this alternative did not work, and want to try matching
5371 another one from the begining of STR. Since we modified it, we
5372 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5373 if (str[0] == 'X')
5374 {
5375 str += 1;
d2e4a39e 5376 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5377 {
5378 if (str[0] != 'n' && str[0] != 'b')
5379 return 0;
5380 str += 1;
5381 }
14f9c5c9 5382 }
babe1480 5383
14f9c5c9
AS
5384 if (str[0] == '\000')
5385 return 1;
babe1480 5386
d2e4a39e 5387 if (str[0] == '_')
14f9c5c9
AS
5388 {
5389 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5390 return 0;
d2e4a39e 5391 if (str[2] == '_')
4c4b4cd2 5392 {
61ee279c
PH
5393 if (strcmp (str + 3, "JM") == 0)
5394 return 1;
5395 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5396 the LJM suffix in favor of the JM one. But we will
5397 still accept LJM as a valid suffix for a reasonable
5398 amount of time, just to allow ourselves to debug programs
5399 compiled using an older version of GNAT. */
4c4b4cd2
PH
5400 if (strcmp (str + 3, "LJM") == 0)
5401 return 1;
5402 if (str[3] != 'X')
5403 return 0;
1265e4aa
JB
5404 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5405 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5406 return 1;
5407 if (str[4] == 'R' && str[5] != 'T')
5408 return 1;
5409 return 0;
5410 }
5411 if (!isdigit (str[2]))
5412 return 0;
5413 for (k = 3; str[k] != '\0'; k += 1)
5414 if (!isdigit (str[k]) && str[k] != '_')
5415 return 0;
14f9c5c9
AS
5416 return 1;
5417 }
4c4b4cd2 5418 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5419 {
4c4b4cd2
PH
5420 for (k = 2; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5422 return 0;
14f9c5c9
AS
5423 return 1;
5424 }
5425 return 0;
5426}
d2e4a39e 5427
aeb5907d
JB
5428/* Return non-zero if the string starting at NAME and ending before
5429 NAME_END contains no capital letters. */
529cad9c
PH
5430
5431static int
5432is_valid_name_for_wild_match (const char *name0)
5433{
5434 const char *decoded_name = ada_decode (name0);
5435 int i;
5436
5823c3ef
JB
5437 /* If the decoded name starts with an angle bracket, it means that
5438 NAME0 does not follow the GNAT encoding format. It should then
5439 not be allowed as a possible wild match. */
5440 if (decoded_name[0] == '<')
5441 return 0;
5442
529cad9c
PH
5443 for (i=0; decoded_name[i] != '\0'; i++)
5444 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5445 return 0;
5446
5447 return 1;
5448}
5449
73589123
PH
5450/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5451 that could start a simple name. Assumes that *NAMEP points into
5452 the string beginning at NAME0. */
4c4b4cd2 5453
14f9c5c9 5454static int
73589123 5455advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5456{
73589123 5457 const char *name = *namep;
5b4ee69b 5458
5823c3ef 5459 while (1)
14f9c5c9 5460 {
aa27d0b3 5461 int t0, t1;
73589123
PH
5462
5463 t0 = *name;
5464 if (t0 == '_')
5465 {
5466 t1 = name[1];
5467 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5468 {
5469 name += 1;
5470 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5471 break;
5472 else
5473 name += 1;
5474 }
aa27d0b3
JB
5475 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5476 || name[2] == target0))
73589123
PH
5477 {
5478 name += 2;
5479 break;
5480 }
5481 else
5482 return 0;
5483 }
5484 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5485 name += 1;
5486 else
5823c3ef 5487 return 0;
73589123
PH
5488 }
5489
5490 *namep = name;
5491 return 1;
5492}
5493
5494/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5495 informational suffixes of NAME (i.e., for which is_name_suffix is
5496 true). Assumes that PATN is a lower-cased Ada simple name. */
5497
5498static int
5499wild_match (const char *name, const char *patn)
5500{
22e048c9 5501 const char *p;
73589123
PH
5502 const char *name0 = name;
5503
5504 while (1)
5505 {
5506 const char *match = name;
5507
5508 if (*name == *patn)
5509 {
5510 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5511 if (*p != *name)
5512 break;
5513 if (*p == '\0' && is_name_suffix (name))
5514 return match != name0 && !is_valid_name_for_wild_match (name0);
5515
5516 if (name[-1] == '_')
5517 name -= 1;
5518 }
5519 if (!advance_wild_match (&name, name0, *patn))
5520 return 1;
96d887e8 5521 }
96d887e8
PH
5522}
5523
40658b94
PH
5524/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5525 informational suffix. */
5526
c4d840bd
PH
5527static int
5528full_match (const char *sym_name, const char *search_name)
5529{
40658b94 5530 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5531}
5532
5533
96d887e8
PH
5534/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5535 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5536 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5537 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5538
5539static void
5540ada_add_block_symbols (struct obstack *obstackp,
76a01679 5541 struct block *block, const char *name,
96d887e8 5542 domain_enum domain, struct objfile *objfile,
2570f2b7 5543 int wild)
96d887e8 5544{
8157b174 5545 struct block_iterator iter;
96d887e8
PH
5546 int name_len = strlen (name);
5547 /* A matching argument symbol, if any. */
5548 struct symbol *arg_sym;
5549 /* Set true when we find a matching non-argument symbol. */
5550 int found_sym;
5551 struct symbol *sym;
5552
5553 arg_sym = NULL;
5554 found_sym = 0;
5555 if (wild)
5556 {
8157b174
TT
5557 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5558 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5559 {
5eeb2539
AR
5560 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5561 SYMBOL_DOMAIN (sym), domain)
73589123 5562 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5563 {
2a2d4dc3
AS
5564 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5565 continue;
5566 else if (SYMBOL_IS_ARGUMENT (sym))
5567 arg_sym = sym;
5568 else
5569 {
76a01679
JB
5570 found_sym = 1;
5571 add_defn_to_vec (obstackp,
5572 fixup_symbol_section (sym, objfile),
2570f2b7 5573 block);
76a01679
JB
5574 }
5575 }
5576 }
96d887e8
PH
5577 }
5578 else
5579 {
8157b174
TT
5580 for (sym = block_iter_match_first (block, name, full_match, &iter);
5581 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5582 {
5eeb2539
AR
5583 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5584 SYMBOL_DOMAIN (sym), domain))
76a01679 5585 {
c4d840bd
PH
5586 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5587 {
5588 if (SYMBOL_IS_ARGUMENT (sym))
5589 arg_sym = sym;
5590 else
2a2d4dc3 5591 {
c4d840bd
PH
5592 found_sym = 1;
5593 add_defn_to_vec (obstackp,
5594 fixup_symbol_section (sym, objfile),
5595 block);
2a2d4dc3 5596 }
c4d840bd 5597 }
76a01679
JB
5598 }
5599 }
96d887e8
PH
5600 }
5601
5602 if (!found_sym && arg_sym != NULL)
5603 {
76a01679
JB
5604 add_defn_to_vec (obstackp,
5605 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5606 block);
96d887e8
PH
5607 }
5608
5609 if (!wild)
5610 {
5611 arg_sym = NULL;
5612 found_sym = 0;
5613
5614 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5615 {
5eeb2539
AR
5616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5617 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5618 {
5619 int cmp;
5620
5621 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5622 if (cmp == 0)
5623 {
5624 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5625 if (cmp == 0)
5626 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5627 name_len);
5628 }
5629
5630 if (cmp == 0
5631 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5632 {
2a2d4dc3
AS
5633 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5634 {
5635 if (SYMBOL_IS_ARGUMENT (sym))
5636 arg_sym = sym;
5637 else
5638 {
5639 found_sym = 1;
5640 add_defn_to_vec (obstackp,
5641 fixup_symbol_section (sym, objfile),
5642 block);
5643 }
5644 }
76a01679
JB
5645 }
5646 }
76a01679 5647 }
96d887e8
PH
5648
5649 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5650 They aren't parameters, right? */
5651 if (!found_sym && arg_sym != NULL)
5652 {
5653 add_defn_to_vec (obstackp,
76a01679 5654 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5655 block);
96d887e8
PH
5656 }
5657 }
5658}
5659\f
41d27058
JB
5660
5661 /* Symbol Completion */
5662
5663/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5664 name in a form that's appropriate for the completion. The result
5665 does not need to be deallocated, but is only good until the next call.
5666
5667 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5668 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5669 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5670 in its encoded form. */
5671
5672static const char *
5673symbol_completion_match (const char *sym_name,
5674 const char *text, int text_len,
6ea35997 5675 int wild_match_p, int encoded_p)
41d27058 5676{
41d27058
JB
5677 const int verbatim_match = (text[0] == '<');
5678 int match = 0;
5679
5680 if (verbatim_match)
5681 {
5682 /* Strip the leading angle bracket. */
5683 text = text + 1;
5684 text_len--;
5685 }
5686
5687 /* First, test against the fully qualified name of the symbol. */
5688
5689 if (strncmp (sym_name, text, text_len) == 0)
5690 match = 1;
5691
6ea35997 5692 if (match && !encoded_p)
41d27058
JB
5693 {
5694 /* One needed check before declaring a positive match is to verify
5695 that iff we are doing a verbatim match, the decoded version
5696 of the symbol name starts with '<'. Otherwise, this symbol name
5697 is not a suitable completion. */
5698 const char *sym_name_copy = sym_name;
5699 int has_angle_bracket;
5700
5701 sym_name = ada_decode (sym_name);
5702 has_angle_bracket = (sym_name[0] == '<');
5703 match = (has_angle_bracket == verbatim_match);
5704 sym_name = sym_name_copy;
5705 }
5706
5707 if (match && !verbatim_match)
5708 {
5709 /* When doing non-verbatim match, another check that needs to
5710 be done is to verify that the potentially matching symbol name
5711 does not include capital letters, because the ada-mode would
5712 not be able to understand these symbol names without the
5713 angle bracket notation. */
5714 const char *tmp;
5715
5716 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5717 if (*tmp != '\0')
5718 match = 0;
5719 }
5720
5721 /* Second: Try wild matching... */
5722
e701b3c0 5723 if (!match && wild_match_p)
41d27058
JB
5724 {
5725 /* Since we are doing wild matching, this means that TEXT
5726 may represent an unqualified symbol name. We therefore must
5727 also compare TEXT against the unqualified name of the symbol. */
5728 sym_name = ada_unqualified_name (ada_decode (sym_name));
5729
5730 if (strncmp (sym_name, text, text_len) == 0)
5731 match = 1;
5732 }
5733
5734 /* Finally: If we found a mach, prepare the result to return. */
5735
5736 if (!match)
5737 return NULL;
5738
5739 if (verbatim_match)
5740 sym_name = add_angle_brackets (sym_name);
5741
6ea35997 5742 if (!encoded_p)
41d27058
JB
5743 sym_name = ada_decode (sym_name);
5744
5745 return sym_name;
5746}
5747
5748/* A companion function to ada_make_symbol_completion_list().
5749 Check if SYM_NAME represents a symbol which name would be suitable
5750 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5751 it is appended at the end of the given string vector SV.
5752
5753 ORIG_TEXT is the string original string from the user command
5754 that needs to be completed. WORD is the entire command on which
5755 completion should be performed. These two parameters are used to
5756 determine which part of the symbol name should be added to the
5757 completion vector.
c0af1706 5758 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5759 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5760 encoded formed (in which case the completion should also be
5761 encoded). */
5762
5763static void
d6565258 5764symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5765 const char *sym_name,
5766 const char *text, int text_len,
5767 const char *orig_text, const char *word,
cb8e9b97 5768 int wild_match_p, int encoded_p)
41d27058
JB
5769{
5770 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5771 wild_match_p, encoded_p);
41d27058
JB
5772 char *completion;
5773
5774 if (match == NULL)
5775 return;
5776
5777 /* We found a match, so add the appropriate completion to the given
5778 string vector. */
5779
5780 if (word == orig_text)
5781 {
5782 completion = xmalloc (strlen (match) + 5);
5783 strcpy (completion, match);
5784 }
5785 else if (word > orig_text)
5786 {
5787 /* Return some portion of sym_name. */
5788 completion = xmalloc (strlen (match) + 5);
5789 strcpy (completion, match + (word - orig_text));
5790 }
5791 else
5792 {
5793 /* Return some of ORIG_TEXT plus sym_name. */
5794 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5795 strncpy (completion, word, orig_text - word);
5796 completion[orig_text - word] = '\0';
5797 strcat (completion, match);
5798 }
5799
d6565258 5800 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5801}
5802
ccefe4c4 5803/* An object of this type is passed as the user_data argument to the
7b08b9eb 5804 expand_partial_symbol_names method. */
ccefe4c4
TT
5805struct add_partial_datum
5806{
5807 VEC(char_ptr) **completions;
5808 char *text;
5809 int text_len;
5810 char *text0;
5811 char *word;
5812 int wild_match;
5813 int encoded;
5814};
5815
7b08b9eb
JK
5816/* A callback for expand_partial_symbol_names. */
5817static int
e078317b 5818ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5819{
5820 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5821
5822 return symbol_completion_match (name, data->text, data->text_len,
5823 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5824}
5825
49c4e619
TT
5826/* Return a list of possible symbol names completing TEXT0. WORD is
5827 the entire command on which completion is made. */
41d27058 5828
49c4e619 5829static VEC (char_ptr) *
2f68a895 5830ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
41d27058
JB
5831{
5832 char *text;
5833 int text_len;
b1ed564a
JB
5834 int wild_match_p;
5835 int encoded_p;
2ba95b9b 5836 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5837 struct symbol *sym;
5838 struct symtab *s;
41d27058
JB
5839 struct minimal_symbol *msymbol;
5840 struct objfile *objfile;
5841 struct block *b, *surrounding_static_block = 0;
5842 int i;
8157b174 5843 struct block_iterator iter;
41d27058 5844
2f68a895
TT
5845 gdb_assert (code == TYPE_CODE_UNDEF);
5846
41d27058
JB
5847 if (text0[0] == '<')
5848 {
5849 text = xstrdup (text0);
5850 make_cleanup (xfree, text);
5851 text_len = strlen (text);
b1ed564a
JB
5852 wild_match_p = 0;
5853 encoded_p = 1;
41d27058
JB
5854 }
5855 else
5856 {
5857 text = xstrdup (ada_encode (text0));
5858 make_cleanup (xfree, text);
5859 text_len = strlen (text);
5860 for (i = 0; i < text_len; i++)
5861 text[i] = tolower (text[i]);
5862
b1ed564a 5863 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5864 /* If the name contains a ".", then the user is entering a fully
5865 qualified entity name, and the match must not be done in wild
5866 mode. Similarly, if the user wants to complete what looks like
5867 an encoded name, the match must not be done in wild mode. */
b1ed564a 5868 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5869 }
5870
5871 /* First, look at the partial symtab symbols. */
41d27058 5872 {
ccefe4c4
TT
5873 struct add_partial_datum data;
5874
5875 data.completions = &completions;
5876 data.text = text;
5877 data.text_len = text_len;
5878 data.text0 = text0;
5879 data.word = word;
b1ed564a
JB
5880 data.wild_match = wild_match_p;
5881 data.encoded = encoded_p;
7b08b9eb 5882 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5883 }
5884
5885 /* At this point scan through the misc symbol vectors and add each
5886 symbol you find to the list. Eventually we want to ignore
5887 anything that isn't a text symbol (everything else will be
5888 handled by the psymtab code above). */
5889
5890 ALL_MSYMBOLS (objfile, msymbol)
5891 {
5892 QUIT;
d6565258 5893 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5894 text, text_len, text0, word, wild_match_p,
5895 encoded_p);
41d27058
JB
5896 }
5897
5898 /* Search upwards from currently selected frame (so that we can
5899 complete on local vars. */
5900
5901 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5902 {
5903 if (!BLOCK_SUPERBLOCK (b))
5904 surrounding_static_block = b; /* For elmin of dups */
5905
5906 ALL_BLOCK_SYMBOLS (b, iter, sym)
5907 {
d6565258 5908 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5909 text, text_len, text0, word,
b1ed564a 5910 wild_match_p, encoded_p);
41d27058
JB
5911 }
5912 }
5913
5914 /* Go through the symtabs and check the externs and statics for
5915 symbols which match. */
5916
5917 ALL_SYMTABS (objfile, s)
5918 {
5919 QUIT;
5920 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5921 ALL_BLOCK_SYMBOLS (b, iter, sym)
5922 {
d6565258 5923 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5924 text, text_len, text0, word,
b1ed564a 5925 wild_match_p, encoded_p);
41d27058
JB
5926 }
5927 }
5928
5929 ALL_SYMTABS (objfile, s)
5930 {
5931 QUIT;
5932 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5933 /* Don't do this block twice. */
5934 if (b == surrounding_static_block)
5935 continue;
5936 ALL_BLOCK_SYMBOLS (b, iter, sym)
5937 {
d6565258 5938 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5939 text, text_len, text0, word,
b1ed564a 5940 wild_match_p, encoded_p);
41d27058
JB
5941 }
5942 }
5943
49c4e619 5944 return completions;
41d27058
JB
5945}
5946
963a6417 5947 /* Field Access */
96d887e8 5948
73fb9985
JB
5949/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5950 for tagged types. */
5951
5952static int
5953ada_is_dispatch_table_ptr_type (struct type *type)
5954{
0d5cff50 5955 const char *name;
73fb9985
JB
5956
5957 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5958 return 0;
5959
5960 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5961 if (name == NULL)
5962 return 0;
5963
5964 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5965}
5966
ac4a2da4
JG
5967/* Return non-zero if TYPE is an interface tag. */
5968
5969static int
5970ada_is_interface_tag (struct type *type)
5971{
5972 const char *name = TYPE_NAME (type);
5973
5974 if (name == NULL)
5975 return 0;
5976
5977 return (strcmp (name, "ada__tags__interface_tag") == 0);
5978}
5979
963a6417
PH
5980/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5981 to be invisible to users. */
96d887e8 5982
963a6417
PH
5983int
5984ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5985{
963a6417
PH
5986 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5987 return 1;
ffde82bf 5988
73fb9985
JB
5989 /* Check the name of that field. */
5990 {
5991 const char *name = TYPE_FIELD_NAME (type, field_num);
5992
5993 /* Anonymous field names should not be printed.
5994 brobecker/2007-02-20: I don't think this can actually happen
5995 but we don't want to print the value of annonymous fields anyway. */
5996 if (name == NULL)
5997 return 1;
5998
ffde82bf
JB
5999 /* Normally, fields whose name start with an underscore ("_")
6000 are fields that have been internally generated by the compiler,
6001 and thus should not be printed. The "_parent" field is special,
6002 however: This is a field internally generated by the compiler
6003 for tagged types, and it contains the components inherited from
6004 the parent type. This field should not be printed as is, but
6005 should not be ignored either. */
73fb9985
JB
6006 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6007 return 1;
6008 }
6009
ac4a2da4
JG
6010 /* If this is the dispatch table of a tagged type or an interface tag,
6011 then ignore. */
73fb9985 6012 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6013 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6014 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6015 return 1;
6016
6017 /* Not a special field, so it should not be ignored. */
6018 return 0;
963a6417 6019}
96d887e8 6020
963a6417 6021/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6022 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6023
963a6417
PH
6024int
6025ada_is_tagged_type (struct type *type, int refok)
6026{
6027 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6028}
96d887e8 6029
963a6417 6030/* True iff TYPE represents the type of X'Tag */
96d887e8 6031
963a6417
PH
6032int
6033ada_is_tag_type (struct type *type)
6034{
6035 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6036 return 0;
6037 else
96d887e8 6038 {
963a6417 6039 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6040
963a6417
PH
6041 return (name != NULL
6042 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6043 }
96d887e8
PH
6044}
6045
963a6417 6046/* The type of the tag on VAL. */
76a01679 6047
963a6417
PH
6048struct type *
6049ada_tag_type (struct value *val)
96d887e8 6050{
df407dfe 6051 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6052}
96d887e8 6053
b50d69b5
JG
6054/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6055 retired at Ada 05). */
6056
6057static int
6058is_ada95_tag (struct value *tag)
6059{
6060 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6061}
6062
963a6417 6063/* The value of the tag on VAL. */
96d887e8 6064
963a6417
PH
6065struct value *
6066ada_value_tag (struct value *val)
6067{
03ee6b2e 6068 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6069}
6070
963a6417
PH
6071/* The value of the tag on the object of type TYPE whose contents are
6072 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6073 ADDRESS. */
96d887e8 6074
963a6417 6075static struct value *
10a2c479 6076value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6077 const gdb_byte *valaddr,
963a6417 6078 CORE_ADDR address)
96d887e8 6079{
b5385fc0 6080 int tag_byte_offset;
963a6417 6081 struct type *tag_type;
5b4ee69b 6082
963a6417 6083 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6084 NULL, NULL, NULL))
96d887e8 6085 {
fc1a4b47 6086 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6087 ? NULL
6088 : valaddr + tag_byte_offset);
963a6417 6089 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6090
963a6417 6091 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6092 }
963a6417
PH
6093 return NULL;
6094}
96d887e8 6095
963a6417
PH
6096static struct type *
6097type_from_tag (struct value *tag)
6098{
6099 const char *type_name = ada_tag_name (tag);
5b4ee69b 6100
963a6417
PH
6101 if (type_name != NULL)
6102 return ada_find_any_type (ada_encode (type_name));
6103 return NULL;
6104}
96d887e8 6105
b50d69b5
JG
6106/* Given a value OBJ of a tagged type, return a value of this
6107 type at the base address of the object. The base address, as
6108 defined in Ada.Tags, it is the address of the primary tag of
6109 the object, and therefore where the field values of its full
6110 view can be fetched. */
6111
6112struct value *
6113ada_tag_value_at_base_address (struct value *obj)
6114{
6115 volatile struct gdb_exception e;
6116 struct value *val;
6117 LONGEST offset_to_top = 0;
6118 struct type *ptr_type, *obj_type;
6119 struct value *tag;
6120 CORE_ADDR base_address;
6121
6122 obj_type = value_type (obj);
6123
6124 /* It is the responsability of the caller to deref pointers. */
6125
6126 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6127 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6128 return obj;
6129
6130 tag = ada_value_tag (obj);
6131 if (!tag)
6132 return obj;
6133
6134 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6135
6136 if (is_ada95_tag (tag))
6137 return obj;
6138
6139 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6140 ptr_type = lookup_pointer_type (ptr_type);
6141 val = value_cast (ptr_type, tag);
6142 if (!val)
6143 return obj;
6144
6145 /* It is perfectly possible that an exception be raised while
6146 trying to determine the base address, just like for the tag;
6147 see ada_tag_name for more details. We do not print the error
6148 message for the same reason. */
6149
6150 TRY_CATCH (e, RETURN_MASK_ERROR)
6151 {
6152 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6153 }
6154
6155 if (e.reason < 0)
6156 return obj;
6157
6158 /* If offset is null, nothing to do. */
6159
6160 if (offset_to_top == 0)
6161 return obj;
6162
6163 /* -1 is a special case in Ada.Tags; however, what should be done
6164 is not quite clear from the documentation. So do nothing for
6165 now. */
6166
6167 if (offset_to_top == -1)
6168 return obj;
6169
6170 base_address = value_address (obj) - offset_to_top;
6171 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6172
6173 /* Make sure that we have a proper tag at the new address.
6174 Otherwise, offset_to_top is bogus (which can happen when
6175 the object is not initialized yet). */
6176
6177 if (!tag)
6178 return obj;
6179
6180 obj_type = type_from_tag (tag);
6181
6182 if (!obj_type)
6183 return obj;
6184
6185 return value_from_contents_and_address (obj_type, NULL, base_address);
6186}
6187
1b611343
JB
6188/* Return the "ada__tags__type_specific_data" type. */
6189
6190static struct type *
6191ada_get_tsd_type (struct inferior *inf)
963a6417 6192{
1b611343 6193 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6194
1b611343
JB
6195 if (data->tsd_type == 0)
6196 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6197 return data->tsd_type;
6198}
529cad9c 6199
1b611343
JB
6200/* Return the TSD (type-specific data) associated to the given TAG.
6201 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6202
1b611343 6203 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6204
1b611343
JB
6205static struct value *
6206ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6207{
4c4b4cd2 6208 struct value *val;
1b611343 6209 struct type *type;
5b4ee69b 6210
1b611343
JB
6211 /* First option: The TSD is simply stored as a field of our TAG.
6212 Only older versions of GNAT would use this format, but we have
6213 to test it first, because there are no visible markers for
6214 the current approach except the absence of that field. */
529cad9c 6215
1b611343
JB
6216 val = ada_value_struct_elt (tag, "tsd", 1);
6217 if (val)
6218 return val;
e802dbe0 6219
1b611343
JB
6220 /* Try the second representation for the dispatch table (in which
6221 there is no explicit 'tsd' field in the referent of the tag pointer,
6222 and instead the tsd pointer is stored just before the dispatch
6223 table. */
e802dbe0 6224
1b611343
JB
6225 type = ada_get_tsd_type (current_inferior());
6226 if (type == NULL)
6227 return NULL;
6228 type = lookup_pointer_type (lookup_pointer_type (type));
6229 val = value_cast (type, tag);
6230 if (val == NULL)
6231 return NULL;
6232 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6233}
6234
1b611343
JB
6235/* Given the TSD of a tag (type-specific data), return a string
6236 containing the name of the associated type.
6237
6238 The returned value is good until the next call. May return NULL
6239 if we are unable to determine the tag name. */
6240
6241static char *
6242ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6243{
529cad9c
PH
6244 static char name[1024];
6245 char *p;
1b611343 6246 struct value *val;
529cad9c 6247
1b611343 6248 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6249 if (val == NULL)
1b611343 6250 return NULL;
4c4b4cd2
PH
6251 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6252 for (p = name; *p != '\0'; p += 1)
6253 if (isalpha (*p))
6254 *p = tolower (*p);
1b611343 6255 return name;
4c4b4cd2
PH
6256}
6257
6258/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6259 a C string.
6260
6261 Return NULL if the TAG is not an Ada tag, or if we were unable to
6262 determine the name of that tag. The result is good until the next
6263 call. */
4c4b4cd2
PH
6264
6265const char *
6266ada_tag_name (struct value *tag)
6267{
1b611343
JB
6268 volatile struct gdb_exception e;
6269 char *name = NULL;
5b4ee69b 6270
df407dfe 6271 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6272 return NULL;
1b611343
JB
6273
6274 /* It is perfectly possible that an exception be raised while trying
6275 to determine the TAG's name, even under normal circumstances:
6276 The associated variable may be uninitialized or corrupted, for
6277 instance. We do not let any exception propagate past this point.
6278 instead we return NULL.
6279
6280 We also do not print the error message either (which often is very
6281 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6282 the caller print a more meaningful message if necessary. */
6283 TRY_CATCH (e, RETURN_MASK_ERROR)
6284 {
6285 struct value *tsd = ada_get_tsd_from_tag (tag);
6286
6287 if (tsd != NULL)
6288 name = ada_tag_name_from_tsd (tsd);
6289 }
6290
6291 return name;
4c4b4cd2
PH
6292}
6293
6294/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6295
d2e4a39e 6296struct type *
ebf56fd3 6297ada_parent_type (struct type *type)
14f9c5c9
AS
6298{
6299 int i;
6300
61ee279c 6301 type = ada_check_typedef (type);
14f9c5c9
AS
6302
6303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6304 return NULL;
6305
6306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6307 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6308 {
6309 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6310
6311 /* If the _parent field is a pointer, then dereference it. */
6312 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6313 parent_type = TYPE_TARGET_TYPE (parent_type);
6314 /* If there is a parallel XVS type, get the actual base type. */
6315 parent_type = ada_get_base_type (parent_type);
6316
6317 return ada_check_typedef (parent_type);
6318 }
14f9c5c9
AS
6319
6320 return NULL;
6321}
6322
4c4b4cd2
PH
6323/* True iff field number FIELD_NUM of structure type TYPE contains the
6324 parent-type (inherited) fields of a derived type. Assumes TYPE is
6325 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6326
6327int
ebf56fd3 6328ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6329{
61ee279c 6330 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6331
4c4b4cd2
PH
6332 return (name != NULL
6333 && (strncmp (name, "PARENT", 6) == 0
6334 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6335}
6336
4c4b4cd2 6337/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6338 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6339 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6340 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6341 structures. */
14f9c5c9
AS
6342
6343int
ebf56fd3 6344ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6345{
d2e4a39e 6346 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6347
d2e4a39e 6348 return (name != NULL
4c4b4cd2
PH
6349 && (strncmp (name, "PARENT", 6) == 0
6350 || strcmp (name, "REP") == 0
6351 || strncmp (name, "_parent", 7) == 0
6352 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6353}
6354
4c4b4cd2
PH
6355/* True iff field number FIELD_NUM of structure or union type TYPE
6356 is a variant wrapper. Assumes TYPE is a structure type with at least
6357 FIELD_NUM+1 fields. */
14f9c5c9
AS
6358
6359int
ebf56fd3 6360ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6361{
d2e4a39e 6362 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6363
14f9c5c9 6364 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6365 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6366 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6367 == TYPE_CODE_UNION)));
14f9c5c9
AS
6368}
6369
6370/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6371 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6372 returns the type of the controlling discriminant for the variant.
6373 May return NULL if the type could not be found. */
14f9c5c9 6374
d2e4a39e 6375struct type *
ebf56fd3 6376ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6377{
d2e4a39e 6378 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6379
7c964f07 6380 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6381}
6382
4c4b4cd2 6383/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6384 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6385 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6386
6387int
ebf56fd3 6388ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6389{
d2e4a39e 6390 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6391
14f9c5c9
AS
6392 return (name != NULL && name[0] == 'O');
6393}
6394
6395/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6396 returns the name of the discriminant controlling the variant.
6397 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6398
d2e4a39e 6399char *
ebf56fd3 6400ada_variant_discrim_name (struct type *type0)
14f9c5c9 6401{
d2e4a39e 6402 static char *result = NULL;
14f9c5c9 6403 static size_t result_len = 0;
d2e4a39e
AS
6404 struct type *type;
6405 const char *name;
6406 const char *discrim_end;
6407 const char *discrim_start;
14f9c5c9
AS
6408
6409 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6410 type = TYPE_TARGET_TYPE (type0);
6411 else
6412 type = type0;
6413
6414 name = ada_type_name (type);
6415
6416 if (name == NULL || name[0] == '\000')
6417 return "";
6418
6419 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6420 discrim_end -= 1)
6421 {
4c4b4cd2
PH
6422 if (strncmp (discrim_end, "___XVN", 6) == 0)
6423 break;
14f9c5c9
AS
6424 }
6425 if (discrim_end == name)
6426 return "";
6427
d2e4a39e 6428 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6429 discrim_start -= 1)
6430 {
d2e4a39e 6431 if (discrim_start == name + 1)
4c4b4cd2 6432 return "";
76a01679 6433 if ((discrim_start > name + 3
4c4b4cd2
PH
6434 && strncmp (discrim_start - 3, "___", 3) == 0)
6435 || discrim_start[-1] == '.')
6436 break;
14f9c5c9
AS
6437 }
6438
6439 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6440 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6441 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6442 return result;
6443}
6444
4c4b4cd2
PH
6445/* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
14f9c5c9
AS
6452
6453int
d2e4a39e 6454ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6455{
6456 ULONGEST RU;
6457
d2e4a39e 6458 if (!isdigit (str[k]))
14f9c5c9
AS
6459 return 0;
6460
4c4b4cd2 6461 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6462 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6463 LONGEST. */
14f9c5c9
AS
6464 RU = 0;
6465 while (isdigit (str[k]))
6466 {
d2e4a39e 6467 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6468 k += 1;
6469 }
6470
d2e4a39e 6471 if (str[k] == 'm')
14f9c5c9
AS
6472 {
6473 if (R != NULL)
4c4b4cd2 6474 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6475 k += 1;
6476 }
6477 else if (R != NULL)
6478 *R = (LONGEST) RU;
6479
4c4b4cd2 6480 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6484 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6485
6486 if (new_k != NULL)
6487 *new_k = k;
6488 return 1;
6489}
6490
4c4b4cd2
PH
6491/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6494
d2e4a39e 6495int
ebf56fd3 6496ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6497{
d2e4a39e 6498 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6499 int p;
6500
6501 p = 0;
6502 while (1)
6503 {
d2e4a39e 6504 switch (name[p])
4c4b4cd2
PH
6505 {
6506 case '\0':
6507 return 0;
6508 case 'S':
6509 {
6510 LONGEST W;
5b4ee69b 6511
4c4b4cd2
PH
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6513 return 0;
6514 if (val == W)
6515 return 1;
6516 break;
6517 }
6518 case 'R':
6519 {
6520 LONGEST L, U;
5b4ee69b 6521
4c4b4cd2
PH
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6524 return 0;
6525 if (val >= L && val <= U)
6526 return 1;
6527 break;
6528 }
6529 case 'O':
6530 return 1;
6531 default:
6532 return 0;
6533 }
6534 }
6535}
6536
0963b4bd 6537/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6538
6539/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6543
4c4b4cd2 6544static struct value *
d2e4a39e 6545ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6546 struct type *arg_type)
14f9c5c9 6547{
14f9c5c9
AS
6548 struct type *type;
6549
61ee279c 6550 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6551 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6552
4c4b4cd2 6553 /* Handle packed fields. */
14f9c5c9
AS
6554
6555 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6556 {
6557 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6558 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6559
0fd88904 6560 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6561 offset + bit_pos / 8,
6562 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6563 }
6564 else
6565 return value_primitive_field (arg1, offset, fieldno, arg_type);
6566}
6567
52ce6436
PH
6568/* Find field with name NAME in object of type TYPE. If found,
6569 set the following for each argument that is non-null:
6570 - *FIELD_TYPE_P to the field's type;
6571 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6572 an object of that type;
6573 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6574 - *BIT_SIZE_P to its size in bits if the field is packed, and
6575 0 otherwise;
6576 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6577 fields up to but not including the desired field, or by the total
6578 number of fields if not found. A NULL value of NAME never
6579 matches; the function just counts visible fields in this case.
6580
0963b4bd 6581 Returns 1 if found, 0 otherwise. */
52ce6436 6582
4c4b4cd2 6583static int
0d5cff50 6584find_struct_field (const char *name, struct type *type, int offset,
76a01679 6585 struct type **field_type_p,
52ce6436
PH
6586 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6587 int *index_p)
4c4b4cd2
PH
6588{
6589 int i;
6590
61ee279c 6591 type = ada_check_typedef (type);
76a01679 6592
52ce6436
PH
6593 if (field_type_p != NULL)
6594 *field_type_p = NULL;
6595 if (byte_offset_p != NULL)
d5d6fca5 6596 *byte_offset_p = 0;
52ce6436
PH
6597 if (bit_offset_p != NULL)
6598 *bit_offset_p = 0;
6599 if (bit_size_p != NULL)
6600 *bit_size_p = 0;
6601
6602 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6603 {
6604 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6605 int fld_offset = offset + bit_pos / 8;
0d5cff50 6606 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6607
4c4b4cd2
PH
6608 if (t_field_name == NULL)
6609 continue;
6610
52ce6436 6611 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6612 {
6613 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6614
52ce6436
PH
6615 if (field_type_p != NULL)
6616 *field_type_p = TYPE_FIELD_TYPE (type, i);
6617 if (byte_offset_p != NULL)
6618 *byte_offset_p = fld_offset;
6619 if (bit_offset_p != NULL)
6620 *bit_offset_p = bit_pos % 8;
6621 if (bit_size_p != NULL)
6622 *bit_size_p = bit_size;
76a01679
JB
6623 return 1;
6624 }
4c4b4cd2
PH
6625 else if (ada_is_wrapper_field (type, i))
6626 {
52ce6436
PH
6627 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6628 field_type_p, byte_offset_p, bit_offset_p,
6629 bit_size_p, index_p))
76a01679
JB
6630 return 1;
6631 }
4c4b4cd2
PH
6632 else if (ada_is_variant_part (type, i))
6633 {
52ce6436
PH
6634 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6635 fixed type?? */
4c4b4cd2 6636 int j;
52ce6436
PH
6637 struct type *field_type
6638 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6639
52ce6436 6640 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6641 {
76a01679
JB
6642 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6643 fld_offset
6644 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6645 field_type_p, byte_offset_p,
52ce6436 6646 bit_offset_p, bit_size_p, index_p))
76a01679 6647 return 1;
4c4b4cd2
PH
6648 }
6649 }
52ce6436
PH
6650 else if (index_p != NULL)
6651 *index_p += 1;
4c4b4cd2
PH
6652 }
6653 return 0;
6654}
6655
0963b4bd 6656/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6657
52ce6436
PH
6658static int
6659num_visible_fields (struct type *type)
6660{
6661 int n;
5b4ee69b 6662
52ce6436
PH
6663 n = 0;
6664 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6665 return n;
6666}
14f9c5c9 6667
4c4b4cd2 6668/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6669 and search in it assuming it has (class) type TYPE.
6670 If found, return value, else return NULL.
6671
4c4b4cd2 6672 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6673
4c4b4cd2 6674static struct value *
d2e4a39e 6675ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6676 struct type *type)
14f9c5c9
AS
6677{
6678 int i;
14f9c5c9 6679
5b4ee69b 6680 type = ada_check_typedef (type);
52ce6436 6681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6682 {
0d5cff50 6683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6684
6685 if (t_field_name == NULL)
4c4b4cd2 6686 continue;
14f9c5c9
AS
6687
6688 else if (field_name_match (t_field_name, name))
4c4b4cd2 6689 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6690
6691 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6692 {
0963b4bd 6693 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6694 ada_search_struct_field (name, arg,
6695 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6696 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6697
4c4b4cd2
PH
6698 if (v != NULL)
6699 return v;
6700 }
14f9c5c9
AS
6701
6702 else if (ada_is_variant_part (type, i))
4c4b4cd2 6703 {
0963b4bd 6704 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6705 int j;
5b4ee69b
MS
6706 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6707 i));
4c4b4cd2
PH
6708 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6709
52ce6436 6710 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6711 {
0963b4bd
MS
6712 struct value *v = ada_search_struct_field /* Force line
6713 break. */
06d5cf63
JB
6714 (name, arg,
6715 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6716 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6717
4c4b4cd2
PH
6718 if (v != NULL)
6719 return v;
6720 }
6721 }
14f9c5c9
AS
6722 }
6723 return NULL;
6724}
d2e4a39e 6725
52ce6436
PH
6726static struct value *ada_index_struct_field_1 (int *, struct value *,
6727 int, struct type *);
6728
6729
6730/* Return field #INDEX in ARG, where the index is that returned by
6731 * find_struct_field through its INDEX_P argument. Adjust the address
6732 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6733 * If found, return value, else return NULL. */
52ce6436
PH
6734
6735static struct value *
6736ada_index_struct_field (int index, struct value *arg, int offset,
6737 struct type *type)
6738{
6739 return ada_index_struct_field_1 (&index, arg, offset, type);
6740}
6741
6742
6743/* Auxiliary function for ada_index_struct_field. Like
6744 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6745 * *INDEX_P. */
52ce6436
PH
6746
6747static struct value *
6748ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6749 struct type *type)
6750{
6751 int i;
6752 type = ada_check_typedef (type);
6753
6754 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6755 {
6756 if (TYPE_FIELD_NAME (type, i) == NULL)
6757 continue;
6758 else if (ada_is_wrapper_field (type, i))
6759 {
0963b4bd 6760 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6761 ada_index_struct_field_1 (index_p, arg,
6762 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6763 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6764
52ce6436
PH
6765 if (v != NULL)
6766 return v;
6767 }
6768
6769 else if (ada_is_variant_part (type, i))
6770 {
6771 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6772 find_struct_field. */
52ce6436
PH
6773 error (_("Cannot assign this kind of variant record"));
6774 }
6775 else if (*index_p == 0)
6776 return ada_value_primitive_field (arg, offset, i, type);
6777 else
6778 *index_p -= 1;
6779 }
6780 return NULL;
6781}
6782
4c4b4cd2
PH
6783/* Given ARG, a value of type (pointer or reference to a)*
6784 structure/union, extract the component named NAME from the ultimate
6785 target structure/union and return it as a value with its
f5938064 6786 appropriate type.
14f9c5c9 6787
4c4b4cd2
PH
6788 The routine searches for NAME among all members of the structure itself
6789 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6790 (e.g., '_parent').
6791
03ee6b2e
PH
6792 If NO_ERR, then simply return NULL in case of error, rather than
6793 calling error. */
14f9c5c9 6794
d2e4a39e 6795struct value *
03ee6b2e 6796ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6797{
4c4b4cd2 6798 struct type *t, *t1;
d2e4a39e 6799 struct value *v;
14f9c5c9 6800
4c4b4cd2 6801 v = NULL;
df407dfe 6802 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6803 if (TYPE_CODE (t) == TYPE_CODE_REF)
6804 {
6805 t1 = TYPE_TARGET_TYPE (t);
6806 if (t1 == NULL)
03ee6b2e 6807 goto BadValue;
61ee279c 6808 t1 = ada_check_typedef (t1);
4c4b4cd2 6809 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6810 {
994b9211 6811 arg = coerce_ref (arg);
76a01679
JB
6812 t = t1;
6813 }
4c4b4cd2 6814 }
14f9c5c9 6815
4c4b4cd2
PH
6816 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6817 {
6818 t1 = TYPE_TARGET_TYPE (t);
6819 if (t1 == NULL)
03ee6b2e 6820 goto BadValue;
61ee279c 6821 t1 = ada_check_typedef (t1);
4c4b4cd2 6822 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6823 {
6824 arg = value_ind (arg);
6825 t = t1;
6826 }
4c4b4cd2 6827 else
76a01679 6828 break;
4c4b4cd2 6829 }
14f9c5c9 6830
4c4b4cd2 6831 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6832 goto BadValue;
14f9c5c9 6833
4c4b4cd2
PH
6834 if (t1 == t)
6835 v = ada_search_struct_field (name, arg, 0, t);
6836 else
6837 {
6838 int bit_offset, bit_size, byte_offset;
6839 struct type *field_type;
6840 CORE_ADDR address;
6841
76a01679 6842 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6843 address = value_address (ada_value_ind (arg));
4c4b4cd2 6844 else
b50d69b5 6845 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6846
1ed6ede0 6847 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6848 if (find_struct_field (name, t1, 0,
6849 &field_type, &byte_offset, &bit_offset,
52ce6436 6850 &bit_size, NULL))
76a01679
JB
6851 {
6852 if (bit_size != 0)
6853 {
714e53ab
PH
6854 if (TYPE_CODE (t) == TYPE_CODE_REF)
6855 arg = ada_coerce_ref (arg);
6856 else
6857 arg = ada_value_ind (arg);
76a01679
JB
6858 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6859 bit_offset, bit_size,
6860 field_type);
6861 }
6862 else
f5938064 6863 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6864 }
6865 }
6866
03ee6b2e
PH
6867 if (v != NULL || no_err)
6868 return v;
6869 else
323e0a4a 6870 error (_("There is no member named %s."), name);
14f9c5c9 6871
03ee6b2e
PH
6872 BadValue:
6873 if (no_err)
6874 return NULL;
6875 else
0963b4bd
MS
6876 error (_("Attempt to extract a component of "
6877 "a value that is not a record."));
14f9c5c9
AS
6878}
6879
6880/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6881 If DISPP is non-null, add its byte displacement from the beginning of a
6882 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6883 work for packed fields).
6884
6885 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6886 followed by "___".
14f9c5c9 6887
0963b4bd 6888 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6889 be a (pointer or reference)+ to a struct or union, and the
6890 ultimate target type will be searched.
14f9c5c9
AS
6891
6892 Looks recursively into variant clauses and parent types.
6893
4c4b4cd2
PH
6894 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6895 TYPE is not a type of the right kind. */
14f9c5c9 6896
4c4b4cd2 6897static struct type *
76a01679
JB
6898ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6899 int noerr, int *dispp)
14f9c5c9
AS
6900{
6901 int i;
6902
6903 if (name == NULL)
6904 goto BadName;
6905
76a01679 6906 if (refok && type != NULL)
4c4b4cd2
PH
6907 while (1)
6908 {
61ee279c 6909 type = ada_check_typedef (type);
76a01679
JB
6910 if (TYPE_CODE (type) != TYPE_CODE_PTR
6911 && TYPE_CODE (type) != TYPE_CODE_REF)
6912 break;
6913 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6914 }
14f9c5c9 6915
76a01679 6916 if (type == NULL
1265e4aa
JB
6917 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6918 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6919 {
4c4b4cd2 6920 if (noerr)
76a01679 6921 return NULL;
4c4b4cd2 6922 else
76a01679
JB
6923 {
6924 target_terminal_ours ();
6925 gdb_flush (gdb_stdout);
323e0a4a
AC
6926 if (type == NULL)
6927 error (_("Type (null) is not a structure or union type"));
6928 else
6929 {
6930 /* XXX: type_sprint */
6931 fprintf_unfiltered (gdb_stderr, _("Type "));
6932 type_print (type, "", gdb_stderr, -1);
6933 error (_(" is not a structure or union type"));
6934 }
76a01679 6935 }
14f9c5c9
AS
6936 }
6937
6938 type = to_static_fixed_type (type);
6939
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 {
0d5cff50 6942 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6943 struct type *t;
6944 int disp;
d2e4a39e 6945
14f9c5c9 6946 if (t_field_name == NULL)
4c4b4cd2 6947 continue;
14f9c5c9
AS
6948
6949 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6950 {
6951 if (dispp != NULL)
6952 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6953 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6954 }
14f9c5c9
AS
6955
6956 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6957 {
6958 disp = 0;
6959 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6960 0, 1, &disp);
6961 if (t != NULL)
6962 {
6963 if (dispp != NULL)
6964 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6965 return t;
6966 }
6967 }
14f9c5c9
AS
6968
6969 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6970 {
6971 int j;
5b4ee69b
MS
6972 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6973 i));
4c4b4cd2
PH
6974
6975 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6976 {
b1f33ddd
JB
6977 /* FIXME pnh 2008/01/26: We check for a field that is
6978 NOT wrapped in a struct, since the compiler sometimes
6979 generates these for unchecked variant types. Revisit
0963b4bd 6980 if the compiler changes this practice. */
0d5cff50 6981 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6982 disp = 0;
b1f33ddd
JB
6983 if (v_field_name != NULL
6984 && field_name_match (v_field_name, name))
6985 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6986 else
0963b4bd
MS
6987 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6988 j),
b1f33ddd
JB
6989 name, 0, 1, &disp);
6990
4c4b4cd2
PH
6991 if (t != NULL)
6992 {
6993 if (dispp != NULL)
6994 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6995 return t;
6996 }
6997 }
6998 }
14f9c5c9
AS
6999
7000 }
7001
7002BadName:
d2e4a39e 7003 if (!noerr)
14f9c5c9
AS
7004 {
7005 target_terminal_ours ();
7006 gdb_flush (gdb_stdout);
323e0a4a
AC
7007 if (name == NULL)
7008 {
7009 /* XXX: type_sprint */
7010 fprintf_unfiltered (gdb_stderr, _("Type "));
7011 type_print (type, "", gdb_stderr, -1);
7012 error (_(" has no component named <null>"));
7013 }
7014 else
7015 {
7016 /* XXX: type_sprint */
7017 fprintf_unfiltered (gdb_stderr, _("Type "));
7018 type_print (type, "", gdb_stderr, -1);
7019 error (_(" has no component named %s"), name);
7020 }
14f9c5c9
AS
7021 }
7022
7023 return NULL;
7024}
7025
b1f33ddd
JB
7026/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7027 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7028 represents an unchecked union (that is, the variant part of a
0963b4bd 7029 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7030
7031static int
7032is_unchecked_variant (struct type *var_type, struct type *outer_type)
7033{
7034 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7035
b1f33ddd
JB
7036 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7037 == NULL);
7038}
7039
7040
14f9c5c9
AS
7041/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7042 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7043 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7044 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7045
d2e4a39e 7046int
ebf56fd3 7047ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7048 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7049{
7050 int others_clause;
7051 int i;
d2e4a39e 7052 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7053 struct value *outer;
7054 struct value *discrim;
14f9c5c9
AS
7055 LONGEST discrim_val;
7056
0c281816
JB
7057 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7058 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7059 if (discrim == NULL)
14f9c5c9 7060 return -1;
0c281816 7061 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7062
7063 others_clause = -1;
7064 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7065 {
7066 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7067 others_clause = i;
14f9c5c9 7068 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7069 return i;
14f9c5c9
AS
7070 }
7071
7072 return others_clause;
7073}
d2e4a39e 7074\f
14f9c5c9
AS
7075
7076
4c4b4cd2 7077 /* Dynamic-Sized Records */
14f9c5c9
AS
7078
7079/* Strategy: The type ostensibly attached to a value with dynamic size
7080 (i.e., a size that is not statically recorded in the debugging
7081 data) does not accurately reflect the size or layout of the value.
7082 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7083 conventional types that are constructed on the fly. */
14f9c5c9
AS
7084
7085/* There is a subtle and tricky problem here. In general, we cannot
7086 determine the size of dynamic records without its data. However,
7087 the 'struct value' data structure, which GDB uses to represent
7088 quantities in the inferior process (the target), requires the size
7089 of the type at the time of its allocation in order to reserve space
7090 for GDB's internal copy of the data. That's why the
7091 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7092 rather than struct value*s.
14f9c5c9
AS
7093
7094 However, GDB's internal history variables ($1, $2, etc.) are
7095 struct value*s containing internal copies of the data that are not, in
7096 general, the same as the data at their corresponding addresses in
7097 the target. Fortunately, the types we give to these values are all
7098 conventional, fixed-size types (as per the strategy described
7099 above), so that we don't usually have to perform the
7100 'to_fixed_xxx_type' conversions to look at their values.
7101 Unfortunately, there is one exception: if one of the internal
7102 history variables is an array whose elements are unconstrained
7103 records, then we will need to create distinct fixed types for each
7104 element selected. */
7105
7106/* The upshot of all of this is that many routines take a (type, host
7107 address, target address) triple as arguments to represent a value.
7108 The host address, if non-null, is supposed to contain an internal
7109 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7110 target at the target address. */
14f9c5c9
AS
7111
7112/* Assuming that VAL0 represents a pointer value, the result of
7113 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7114 dynamic-sized types. */
14f9c5c9 7115
d2e4a39e
AS
7116struct value *
7117ada_value_ind (struct value *val0)
14f9c5c9 7118{
c48db5ca 7119 struct value *val = value_ind (val0);
5b4ee69b 7120
b50d69b5
JG
7121 if (ada_is_tagged_type (value_type (val), 0))
7122 val = ada_tag_value_at_base_address (val);
7123
4c4b4cd2 7124 return ada_to_fixed_value (val);
14f9c5c9
AS
7125}
7126
7127/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7128 qualifiers on VAL0. */
7129
d2e4a39e
AS
7130static struct value *
7131ada_coerce_ref (struct value *val0)
7132{
df407dfe 7133 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7134 {
7135 struct value *val = val0;
5b4ee69b 7136
994b9211 7137 val = coerce_ref (val);
b50d69b5
JG
7138
7139 if (ada_is_tagged_type (value_type (val), 0))
7140 val = ada_tag_value_at_base_address (val);
7141
4c4b4cd2 7142 return ada_to_fixed_value (val);
d2e4a39e
AS
7143 }
7144 else
14f9c5c9
AS
7145 return val0;
7146}
7147
7148/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7149 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7150
7151static unsigned int
ebf56fd3 7152align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7153{
7154 return (off + alignment - 1) & ~(alignment - 1);
7155}
7156
4c4b4cd2 7157/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7158
7159static unsigned int
ebf56fd3 7160field_alignment (struct type *type, int f)
14f9c5c9 7161{
d2e4a39e 7162 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7163 int len;
14f9c5c9
AS
7164 int align_offset;
7165
64a1bf19
JB
7166 /* The field name should never be null, unless the debugging information
7167 is somehow malformed. In this case, we assume the field does not
7168 require any alignment. */
7169 if (name == NULL)
7170 return 1;
7171
7172 len = strlen (name);
7173
4c4b4cd2
PH
7174 if (!isdigit (name[len - 1]))
7175 return 1;
14f9c5c9 7176
d2e4a39e 7177 if (isdigit (name[len - 2]))
14f9c5c9
AS
7178 align_offset = len - 2;
7179 else
7180 align_offset = len - 1;
7181
4c4b4cd2 7182 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7183 return TARGET_CHAR_BIT;
7184
4c4b4cd2
PH
7185 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7186}
7187
852dff6c 7188/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7189
852dff6c
JB
7190static struct symbol *
7191ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7192{
7193 struct symbol *sym;
7194
7195 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7196 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7197 return sym;
7198
7199 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7200 return sym;
14f9c5c9
AS
7201}
7202
dddfab26
UW
7203/* Find a type named NAME. Ignores ambiguity. This routine will look
7204 solely for types defined by debug info, it will not search the GDB
7205 primitive types. */
4c4b4cd2 7206
852dff6c 7207static struct type *
ebf56fd3 7208ada_find_any_type (const char *name)
14f9c5c9 7209{
852dff6c 7210 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7211
14f9c5c9 7212 if (sym != NULL)
dddfab26 7213 return SYMBOL_TYPE (sym);
14f9c5c9 7214
dddfab26 7215 return NULL;
14f9c5c9
AS
7216}
7217
739593e0
JB
7218/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7219 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7220 symbol, in which case it is returned. Otherwise, this looks for
7221 symbols whose name is that of NAME_SYM suffixed with "___XR".
7222 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7223
7224struct symbol *
270140bd 7225ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7226{
739593e0 7227 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7228 struct symbol *sym;
7229
739593e0
JB
7230 if (strstr (name, "___XR") != NULL)
7231 return name_sym;
7232
aeb5907d
JB
7233 sym = find_old_style_renaming_symbol (name, block);
7234
7235 if (sym != NULL)
7236 return sym;
7237
0963b4bd 7238 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7239 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7240 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7241 return sym;
7242 else
7243 return NULL;
7244}
7245
7246static struct symbol *
270140bd 7247find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7248{
7f0df278 7249 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7250 char *rename;
7251
7252 if (function_sym != NULL)
7253 {
7254 /* If the symbol is defined inside a function, NAME is not fully
7255 qualified. This means we need to prepend the function name
7256 as well as adding the ``___XR'' suffix to build the name of
7257 the associated renaming symbol. */
0d5cff50 7258 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7259 /* Function names sometimes contain suffixes used
7260 for instance to qualify nested subprograms. When building
7261 the XR type name, we need to make sure that this suffix is
7262 not included. So do not include any suffix in the function
7263 name length below. */
69fadcdf 7264 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7265 const int rename_len = function_name_len + 2 /* "__" */
7266 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7267
529cad9c 7268 /* Strip the suffix if necessary. */
69fadcdf
JB
7269 ada_remove_trailing_digits (function_name, &function_name_len);
7270 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7271 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7272
4c4b4cd2
PH
7273 /* Library-level functions are a special case, as GNAT adds
7274 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7275 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7276 have this prefix, so we need to skip this prefix if present. */
7277 if (function_name_len > 5 /* "_ada_" */
7278 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7279 {
7280 function_name += 5;
7281 function_name_len -= 5;
7282 }
4c4b4cd2
PH
7283
7284 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7285 strncpy (rename, function_name, function_name_len);
7286 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7287 "__%s___XR", name);
4c4b4cd2
PH
7288 }
7289 else
7290 {
7291 const int rename_len = strlen (name) + 6;
5b4ee69b 7292
4c4b4cd2 7293 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7294 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7295 }
7296
852dff6c 7297 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7298}
7299
14f9c5c9 7300/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7301 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7302 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7303 otherwise return 0. */
7304
14f9c5c9 7305int
d2e4a39e 7306ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7307{
7308 if (type1 == NULL)
7309 return 1;
7310 else if (type0 == NULL)
7311 return 0;
7312 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7313 return 1;
7314 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7315 return 0;
4c4b4cd2
PH
7316 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7317 return 1;
ad82864c 7318 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7319 return 1;
4c4b4cd2
PH
7320 else if (ada_is_array_descriptor_type (type0)
7321 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7322 return 1;
aeb5907d
JB
7323 else
7324 {
7325 const char *type0_name = type_name_no_tag (type0);
7326 const char *type1_name = type_name_no_tag (type1);
7327
7328 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7329 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7330 return 1;
7331 }
14f9c5c9
AS
7332 return 0;
7333}
7334
7335/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7336 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7337
0d5cff50 7338const char *
d2e4a39e 7339ada_type_name (struct type *type)
14f9c5c9 7340{
d2e4a39e 7341 if (type == NULL)
14f9c5c9
AS
7342 return NULL;
7343 else if (TYPE_NAME (type) != NULL)
7344 return TYPE_NAME (type);
7345 else
7346 return TYPE_TAG_NAME (type);
7347}
7348
b4ba55a1
JB
7349/* Search the list of "descriptive" types associated to TYPE for a type
7350 whose name is NAME. */
7351
7352static struct type *
7353find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7354{
7355 struct type *result;
7356
7357 /* If there no descriptive-type info, then there is no parallel type
7358 to be found. */
7359 if (!HAVE_GNAT_AUX_INFO (type))
7360 return NULL;
7361
7362 result = TYPE_DESCRIPTIVE_TYPE (type);
7363 while (result != NULL)
7364 {
0d5cff50 7365 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7366
7367 if (result_name == NULL)
7368 {
7369 warning (_("unexpected null name on descriptive type"));
7370 return NULL;
7371 }
7372
7373 /* If the names match, stop. */
7374 if (strcmp (result_name, name) == 0)
7375 break;
7376
7377 /* Otherwise, look at the next item on the list, if any. */
7378 if (HAVE_GNAT_AUX_INFO (result))
7379 result = TYPE_DESCRIPTIVE_TYPE (result);
7380 else
7381 result = NULL;
7382 }
7383
7384 /* If we didn't find a match, see whether this is a packed array. With
7385 older compilers, the descriptive type information is either absent or
7386 irrelevant when it comes to packed arrays so the above lookup fails.
7387 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7388 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7389 return ada_find_any_type (name);
7390
7391 return result;
7392}
7393
7394/* Find a parallel type to TYPE with the specified NAME, using the
7395 descriptive type taken from the debugging information, if available,
7396 and otherwise using the (slower) name-based method. */
7397
7398static struct type *
7399ada_find_parallel_type_with_name (struct type *type, const char *name)
7400{
7401 struct type *result = NULL;
7402
7403 if (HAVE_GNAT_AUX_INFO (type))
7404 result = find_parallel_type_by_descriptive_type (type, name);
7405 else
7406 result = ada_find_any_type (name);
7407
7408 return result;
7409}
7410
7411/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7412 SUFFIX to the name of TYPE. */
14f9c5c9 7413
d2e4a39e 7414struct type *
ebf56fd3 7415ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7416{
0d5cff50
DE
7417 char *name;
7418 const char *typename = ada_type_name (type);
14f9c5c9 7419 int len;
d2e4a39e 7420
14f9c5c9
AS
7421 if (typename == NULL)
7422 return NULL;
7423
7424 len = strlen (typename);
7425
b4ba55a1 7426 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7427
7428 strcpy (name, typename);
7429 strcpy (name + len, suffix);
7430
b4ba55a1 7431 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7432}
7433
14f9c5c9 7434/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7435 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7436
d2e4a39e
AS
7437static struct type *
7438dynamic_template_type (struct type *type)
14f9c5c9 7439{
61ee279c 7440 type = ada_check_typedef (type);
14f9c5c9
AS
7441
7442 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7443 || ada_type_name (type) == NULL)
14f9c5c9 7444 return NULL;
d2e4a39e 7445 else
14f9c5c9
AS
7446 {
7447 int len = strlen (ada_type_name (type));
5b4ee69b 7448
4c4b4cd2
PH
7449 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7450 return type;
14f9c5c9 7451 else
4c4b4cd2 7452 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7453 }
7454}
7455
7456/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7457 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7458
d2e4a39e
AS
7459static int
7460is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7461{
7462 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7463
d2e4a39e 7464 return name != NULL
14f9c5c9
AS
7465 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7466 && strstr (name, "___XVL") != NULL;
7467}
7468
4c4b4cd2
PH
7469/* The index of the variant field of TYPE, or -1 if TYPE does not
7470 represent a variant record type. */
14f9c5c9 7471
d2e4a39e 7472static int
4c4b4cd2 7473variant_field_index (struct type *type)
14f9c5c9
AS
7474{
7475 int f;
7476
4c4b4cd2
PH
7477 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7478 return -1;
7479
7480 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7481 {
7482 if (ada_is_variant_part (type, f))
7483 return f;
7484 }
7485 return -1;
14f9c5c9
AS
7486}
7487
4c4b4cd2
PH
7488/* A record type with no fields. */
7489
d2e4a39e 7490static struct type *
e9bb382b 7491empty_record (struct type *template)
14f9c5c9 7492{
e9bb382b 7493 struct type *type = alloc_type_copy (template);
5b4ee69b 7494
14f9c5c9
AS
7495 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7496 TYPE_NFIELDS (type) = 0;
7497 TYPE_FIELDS (type) = NULL;
b1f33ddd 7498 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7499 TYPE_NAME (type) = "<empty>";
7500 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7501 TYPE_LENGTH (type) = 0;
7502 return type;
7503}
7504
7505/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7506 the value of type TYPE at VALADDR or ADDRESS (see comments at
7507 the beginning of this section) VAL according to GNAT conventions.
7508 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7509 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7510 an outer-level type (i.e., as opposed to a branch of a variant.) A
7511 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7512 of the variant.
14f9c5c9 7513
4c4b4cd2
PH
7514 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7515 length are not statically known are discarded. As a consequence,
7516 VALADDR, ADDRESS and DVAL0 are ignored.
7517
7518 NOTE: Limitations: For now, we assume that dynamic fields and
7519 variants occupy whole numbers of bytes. However, they need not be
7520 byte-aligned. */
7521
7522struct type *
10a2c479 7523ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7524 const gdb_byte *valaddr,
4c4b4cd2
PH
7525 CORE_ADDR address, struct value *dval0,
7526 int keep_dynamic_fields)
14f9c5c9 7527{
d2e4a39e
AS
7528 struct value *mark = value_mark ();
7529 struct value *dval;
7530 struct type *rtype;
14f9c5c9 7531 int nfields, bit_len;
4c4b4cd2 7532 int variant_field;
14f9c5c9 7533 long off;
d94e4f4f 7534 int fld_bit_len;
14f9c5c9
AS
7535 int f;
7536
4c4b4cd2
PH
7537 /* Compute the number of fields in this record type that are going
7538 to be processed: unless keep_dynamic_fields, this includes only
7539 fields whose position and length are static will be processed. */
7540 if (keep_dynamic_fields)
7541 nfields = TYPE_NFIELDS (type);
7542 else
7543 {
7544 nfields = 0;
76a01679 7545 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7546 && !ada_is_variant_part (type, nfields)
7547 && !is_dynamic_field (type, nfields))
7548 nfields++;
7549 }
7550
e9bb382b 7551 rtype = alloc_type_copy (type);
14f9c5c9
AS
7552 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7553 INIT_CPLUS_SPECIFIC (rtype);
7554 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7555 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7556 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7557 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7558 TYPE_NAME (rtype) = ada_type_name (type);
7559 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7560 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7561
d2e4a39e
AS
7562 off = 0;
7563 bit_len = 0;
4c4b4cd2
PH
7564 variant_field = -1;
7565
14f9c5c9
AS
7566 for (f = 0; f < nfields; f += 1)
7567 {
6c038f32
PH
7568 off = align_value (off, field_alignment (type, f))
7569 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7570 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7571 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7572
d2e4a39e 7573 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7574 {
7575 variant_field = f;
d94e4f4f 7576 fld_bit_len = 0;
4c4b4cd2 7577 }
14f9c5c9 7578 else if (is_dynamic_field (type, f))
4c4b4cd2 7579 {
284614f0
JB
7580 const gdb_byte *field_valaddr = valaddr;
7581 CORE_ADDR field_address = address;
7582 struct type *field_type =
7583 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7584
4c4b4cd2 7585 if (dval0 == NULL)
b5304971
JG
7586 {
7587 /* rtype's length is computed based on the run-time
7588 value of discriminants. If the discriminants are not
7589 initialized, the type size may be completely bogus and
0963b4bd 7590 GDB may fail to allocate a value for it. So check the
b5304971
JG
7591 size first before creating the value. */
7592 check_size (rtype);
7593 dval = value_from_contents_and_address (rtype, valaddr, address);
7594 }
4c4b4cd2
PH
7595 else
7596 dval = dval0;
7597
284614f0
JB
7598 /* If the type referenced by this field is an aligner type, we need
7599 to unwrap that aligner type, because its size might not be set.
7600 Keeping the aligner type would cause us to compute the wrong
7601 size for this field, impacting the offset of the all the fields
7602 that follow this one. */
7603 if (ada_is_aligner_type (field_type))
7604 {
7605 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7606
7607 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7608 field_address = cond_offset_target (field_address, field_offset);
7609 field_type = ada_aligned_type (field_type);
7610 }
7611
7612 field_valaddr = cond_offset_host (field_valaddr,
7613 off / TARGET_CHAR_BIT);
7614 field_address = cond_offset_target (field_address,
7615 off / TARGET_CHAR_BIT);
7616
7617 /* Get the fixed type of the field. Note that, in this case,
7618 we do not want to get the real type out of the tag: if
7619 the current field is the parent part of a tagged record,
7620 we will get the tag of the object. Clearly wrong: the real
7621 type of the parent is not the real type of the child. We
7622 would end up in an infinite loop. */
7623 field_type = ada_get_base_type (field_type);
7624 field_type = ada_to_fixed_type (field_type, field_valaddr,
7625 field_address, dval, 0);
27f2a97b
JB
7626 /* If the field size is already larger than the maximum
7627 object size, then the record itself will necessarily
7628 be larger than the maximum object size. We need to make
7629 this check now, because the size might be so ridiculously
7630 large (due to an uninitialized variable in the inferior)
7631 that it would cause an overflow when adding it to the
7632 record size. */
7633 check_size (field_type);
284614f0
JB
7634
7635 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7636 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7637 /* The multiplication can potentially overflow. But because
7638 the field length has been size-checked just above, and
7639 assuming that the maximum size is a reasonable value,
7640 an overflow should not happen in practice. So rather than
7641 adding overflow recovery code to this already complex code,
7642 we just assume that it's not going to happen. */
d94e4f4f 7643 fld_bit_len =
4c4b4cd2
PH
7644 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7645 }
14f9c5c9 7646 else
4c4b4cd2 7647 {
5ded5331
JB
7648 /* Note: If this field's type is a typedef, it is important
7649 to preserve the typedef layer.
7650
7651 Otherwise, we might be transforming a typedef to a fat
7652 pointer (encoding a pointer to an unconstrained array),
7653 into a basic fat pointer (encoding an unconstrained
7654 array). As both types are implemented using the same
7655 structure, the typedef is the only clue which allows us
7656 to distinguish between the two options. Stripping it
7657 would prevent us from printing this field appropriately. */
7658 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7659 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7660 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7661 fld_bit_len =
4c4b4cd2
PH
7662 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7663 else
5ded5331
JB
7664 {
7665 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7666
7667 /* We need to be careful of typedefs when computing
7668 the length of our field. If this is a typedef,
7669 get the length of the target type, not the length
7670 of the typedef. */
7671 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7672 field_type = ada_typedef_target_type (field_type);
7673
7674 fld_bit_len =
7675 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7676 }
4c4b4cd2 7677 }
14f9c5c9 7678 if (off + fld_bit_len > bit_len)
4c4b4cd2 7679 bit_len = off + fld_bit_len;
d94e4f4f 7680 off += fld_bit_len;
4c4b4cd2
PH
7681 TYPE_LENGTH (rtype) =
7682 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7683 }
4c4b4cd2
PH
7684
7685 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7686 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7687 the record. This can happen in the presence of representation
7688 clauses. */
7689 if (variant_field >= 0)
7690 {
7691 struct type *branch_type;
7692
7693 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7694
7695 if (dval0 == NULL)
7696 dval = value_from_contents_and_address (rtype, valaddr, address);
7697 else
7698 dval = dval0;
7699
7700 branch_type =
7701 to_fixed_variant_branch_type
7702 (TYPE_FIELD_TYPE (type, variant_field),
7703 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7704 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7705 if (branch_type == NULL)
7706 {
7707 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7708 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7709 TYPE_NFIELDS (rtype) -= 1;
7710 }
7711 else
7712 {
7713 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7714 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7715 fld_bit_len =
7716 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7717 TARGET_CHAR_BIT;
7718 if (off + fld_bit_len > bit_len)
7719 bit_len = off + fld_bit_len;
7720 TYPE_LENGTH (rtype) =
7721 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7722 }
7723 }
7724
714e53ab
PH
7725 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7726 should contain the alignment of that record, which should be a strictly
7727 positive value. If null or negative, then something is wrong, most
7728 probably in the debug info. In that case, we don't round up the size
0963b4bd 7729 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7730 the current RTYPE length might be good enough for our purposes. */
7731 if (TYPE_LENGTH (type) <= 0)
7732 {
323e0a4a
AC
7733 if (TYPE_NAME (rtype))
7734 warning (_("Invalid type size for `%s' detected: %d."),
7735 TYPE_NAME (rtype), TYPE_LENGTH (type));
7736 else
7737 warning (_("Invalid type size for <unnamed> detected: %d."),
7738 TYPE_LENGTH (type));
714e53ab
PH
7739 }
7740 else
7741 {
7742 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7743 TYPE_LENGTH (type));
7744 }
14f9c5c9
AS
7745
7746 value_free_to_mark (mark);
d2e4a39e 7747 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7748 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7749 return rtype;
7750}
7751
4c4b4cd2
PH
7752/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7753 of 1. */
14f9c5c9 7754
d2e4a39e 7755static struct type *
fc1a4b47 7756template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7757 CORE_ADDR address, struct value *dval0)
7758{
7759 return ada_template_to_fixed_record_type_1 (type, valaddr,
7760 address, dval0, 1);
7761}
7762
7763/* An ordinary record type in which ___XVL-convention fields and
7764 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7765 static approximations, containing all possible fields. Uses
7766 no runtime values. Useless for use in values, but that's OK,
7767 since the results are used only for type determinations. Works on both
7768 structs and unions. Representation note: to save space, we memorize
7769 the result of this function in the TYPE_TARGET_TYPE of the
7770 template type. */
7771
7772static struct type *
7773template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7774{
7775 struct type *type;
7776 int nfields;
7777 int f;
7778
4c4b4cd2
PH
7779 if (TYPE_TARGET_TYPE (type0) != NULL)
7780 return TYPE_TARGET_TYPE (type0);
7781
7782 nfields = TYPE_NFIELDS (type0);
7783 type = type0;
14f9c5c9
AS
7784
7785 for (f = 0; f < nfields; f += 1)
7786 {
61ee279c 7787 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7788 struct type *new_type;
14f9c5c9 7789
4c4b4cd2
PH
7790 if (is_dynamic_field (type0, f))
7791 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7792 else
f192137b 7793 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7794 if (type == type0 && new_type != field_type)
7795 {
e9bb382b 7796 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7797 TYPE_CODE (type) = TYPE_CODE (type0);
7798 INIT_CPLUS_SPECIFIC (type);
7799 TYPE_NFIELDS (type) = nfields;
7800 TYPE_FIELDS (type) = (struct field *)
7801 TYPE_ALLOC (type, nfields * sizeof (struct field));
7802 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7803 sizeof (struct field) * nfields);
7804 TYPE_NAME (type) = ada_type_name (type0);
7805 TYPE_TAG_NAME (type) = NULL;
876cecd0 7806 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7807 TYPE_LENGTH (type) = 0;
7808 }
7809 TYPE_FIELD_TYPE (type, f) = new_type;
7810 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7811 }
14f9c5c9
AS
7812 return type;
7813}
7814
4c4b4cd2 7815/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7816 whose address in memory is ADDRESS, returns a revision of TYPE,
7817 which should be a non-dynamic-sized record, in which the variant
7818 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7819 for discriminant values in DVAL0, which can be NULL if the record
7820 contains the necessary discriminant values. */
7821
d2e4a39e 7822static struct type *
fc1a4b47 7823to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7824 CORE_ADDR address, struct value *dval0)
14f9c5c9 7825{
d2e4a39e 7826 struct value *mark = value_mark ();
4c4b4cd2 7827 struct value *dval;
d2e4a39e 7828 struct type *rtype;
14f9c5c9
AS
7829 struct type *branch_type;
7830 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7831 int variant_field = variant_field_index (type);
14f9c5c9 7832
4c4b4cd2 7833 if (variant_field == -1)
14f9c5c9
AS
7834 return type;
7835
4c4b4cd2
PH
7836 if (dval0 == NULL)
7837 dval = value_from_contents_and_address (type, valaddr, address);
7838 else
7839 dval = dval0;
7840
e9bb382b 7841 rtype = alloc_type_copy (type);
14f9c5c9 7842 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7843 INIT_CPLUS_SPECIFIC (rtype);
7844 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7845 TYPE_FIELDS (rtype) =
7846 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7847 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7848 sizeof (struct field) * nfields);
14f9c5c9
AS
7849 TYPE_NAME (rtype) = ada_type_name (type);
7850 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7851 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7852 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7853
4c4b4cd2
PH
7854 branch_type = to_fixed_variant_branch_type
7855 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7856 cond_offset_host (valaddr,
4c4b4cd2
PH
7857 TYPE_FIELD_BITPOS (type, variant_field)
7858 / TARGET_CHAR_BIT),
d2e4a39e 7859 cond_offset_target (address,
4c4b4cd2
PH
7860 TYPE_FIELD_BITPOS (type, variant_field)
7861 / TARGET_CHAR_BIT), dval);
d2e4a39e 7862 if (branch_type == NULL)
14f9c5c9 7863 {
4c4b4cd2 7864 int f;
5b4ee69b 7865
4c4b4cd2
PH
7866 for (f = variant_field + 1; f < nfields; f += 1)
7867 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7868 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7869 }
7870 else
7871 {
4c4b4cd2
PH
7872 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7873 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7874 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7875 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7876 }
4c4b4cd2 7877 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7878
4c4b4cd2 7879 value_free_to_mark (mark);
14f9c5c9
AS
7880 return rtype;
7881}
7882
7883/* An ordinary record type (with fixed-length fields) that describes
7884 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7885 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7886 should be in DVAL, a record value; it may be NULL if the object
7887 at ADDR itself contains any necessary discriminant values.
7888 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7889 values from the record are needed. Except in the case that DVAL,
7890 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7891 unchecked) is replaced by a particular branch of the variant.
7892
7893 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7894 is questionable and may be removed. It can arise during the
7895 processing of an unconstrained-array-of-record type where all the
7896 variant branches have exactly the same size. This is because in
7897 such cases, the compiler does not bother to use the XVS convention
7898 when encoding the record. I am currently dubious of this
7899 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7900
d2e4a39e 7901static struct type *
fc1a4b47 7902to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7903 CORE_ADDR address, struct value *dval)
14f9c5c9 7904{
d2e4a39e 7905 struct type *templ_type;
14f9c5c9 7906
876cecd0 7907 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7908 return type0;
7909
d2e4a39e 7910 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7911
7912 if (templ_type != NULL)
7913 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7914 else if (variant_field_index (type0) >= 0)
7915 {
7916 if (dval == NULL && valaddr == NULL && address == 0)
7917 return type0;
7918 return to_record_with_fixed_variant_part (type0, valaddr, address,
7919 dval);
7920 }
14f9c5c9
AS
7921 else
7922 {
876cecd0 7923 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7924 return type0;
7925 }
7926
7927}
7928
7929/* An ordinary record type (with fixed-length fields) that describes
7930 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7931 union type. Any necessary discriminants' values should be in DVAL,
7932 a record value. That is, this routine selects the appropriate
7933 branch of the union at ADDR according to the discriminant value
b1f33ddd 7934 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7935 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7936
d2e4a39e 7937static struct type *
fc1a4b47 7938to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7939 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7940{
7941 int which;
d2e4a39e
AS
7942 struct type *templ_type;
7943 struct type *var_type;
14f9c5c9
AS
7944
7945 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7946 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7947 else
14f9c5c9
AS
7948 var_type = var_type0;
7949
7950 templ_type = ada_find_parallel_type (var_type, "___XVU");
7951
7952 if (templ_type != NULL)
7953 var_type = templ_type;
7954
b1f33ddd
JB
7955 if (is_unchecked_variant (var_type, value_type (dval)))
7956 return var_type0;
d2e4a39e
AS
7957 which =
7958 ada_which_variant_applies (var_type,
0fd88904 7959 value_type (dval), value_contents (dval));
14f9c5c9
AS
7960
7961 if (which < 0)
e9bb382b 7962 return empty_record (var_type);
14f9c5c9 7963 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7964 return to_fixed_record_type
d2e4a39e
AS
7965 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7966 valaddr, address, dval);
4c4b4cd2 7967 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7968 return
7969 to_fixed_record_type
7970 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7971 else
7972 return TYPE_FIELD_TYPE (var_type, which);
7973}
7974
7975/* Assuming that TYPE0 is an array type describing the type of a value
7976 at ADDR, and that DVAL describes a record containing any
7977 discriminants used in TYPE0, returns a type for the value that
7978 contains no dynamic components (that is, no components whose sizes
7979 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7980 true, gives an error message if the resulting type's size is over
4c4b4cd2 7981 varsize_limit. */
14f9c5c9 7982
d2e4a39e
AS
7983static struct type *
7984to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7985 int ignore_too_big)
14f9c5c9 7986{
d2e4a39e
AS
7987 struct type *index_type_desc;
7988 struct type *result;
ad82864c 7989 int constrained_packed_array_p;
14f9c5c9 7990
b0dd7688 7991 type0 = ada_check_typedef (type0);
284614f0 7992 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7993 return type0;
14f9c5c9 7994
ad82864c
JB
7995 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7996 if (constrained_packed_array_p)
7997 type0 = decode_constrained_packed_array_type (type0);
284614f0 7998
14f9c5c9 7999 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8000 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8001 if (index_type_desc == NULL)
8002 {
61ee279c 8003 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8004
14f9c5c9 8005 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8006 depend on the contents of the array in properly constructed
8007 debugging data. */
529cad9c
PH
8008 /* Create a fixed version of the array element type.
8009 We're not providing the address of an element here,
e1d5a0d2 8010 and thus the actual object value cannot be inspected to do
529cad9c
PH
8011 the conversion. This should not be a problem, since arrays of
8012 unconstrained objects are not allowed. In particular, all
8013 the elements of an array of a tagged type should all be of
8014 the same type specified in the debugging info. No need to
8015 consult the object tag. */
1ed6ede0 8016 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8017
284614f0
JB
8018 /* Make sure we always create a new array type when dealing with
8019 packed array types, since we're going to fix-up the array
8020 type length and element bitsize a little further down. */
ad82864c 8021 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8022 result = type0;
14f9c5c9 8023 else
e9bb382b 8024 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8025 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8026 }
8027 else
8028 {
8029 int i;
8030 struct type *elt_type0;
8031
8032 elt_type0 = type0;
8033 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8034 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8035
8036 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8037 depend on the contents of the array in properly constructed
8038 debugging data. */
529cad9c
PH
8039 /* Create a fixed version of the array element type.
8040 We're not providing the address of an element here,
e1d5a0d2 8041 and thus the actual object value cannot be inspected to do
529cad9c
PH
8042 the conversion. This should not be a problem, since arrays of
8043 unconstrained objects are not allowed. In particular, all
8044 the elements of an array of a tagged type should all be of
8045 the same type specified in the debugging info. No need to
8046 consult the object tag. */
1ed6ede0
JB
8047 result =
8048 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8049
8050 elt_type0 = type0;
14f9c5c9 8051 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8052 {
8053 struct type *range_type =
28c85d6c 8054 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8055
e9bb382b 8056 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8057 result, range_type);
1ce677a4 8058 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8059 }
d2e4a39e 8060 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8061 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8062 }
8063
2e6fda7d
JB
8064 /* We want to preserve the type name. This can be useful when
8065 trying to get the type name of a value that has already been
8066 printed (for instance, if the user did "print VAR; whatis $". */
8067 TYPE_NAME (result) = TYPE_NAME (type0);
8068
ad82864c 8069 if (constrained_packed_array_p)
284614f0
JB
8070 {
8071 /* So far, the resulting type has been created as if the original
8072 type was a regular (non-packed) array type. As a result, the
8073 bitsize of the array elements needs to be set again, and the array
8074 length needs to be recomputed based on that bitsize. */
8075 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8076 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8077
8078 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8079 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8080 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8081 TYPE_LENGTH (result)++;
8082 }
8083
876cecd0 8084 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8085 return result;
d2e4a39e 8086}
14f9c5c9
AS
8087
8088
8089/* A standard type (containing no dynamically sized components)
8090 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8091 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8092 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8093 ADDRESS or in VALADDR contains these discriminants.
8094
1ed6ede0
JB
8095 If CHECK_TAG is not null, in the case of tagged types, this function
8096 attempts to locate the object's tag and use it to compute the actual
8097 type. However, when ADDRESS is null, we cannot use it to determine the
8098 location of the tag, and therefore compute the tagged type's actual type.
8099 So we return the tagged type without consulting the tag. */
529cad9c 8100
f192137b
JB
8101static struct type *
8102ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8103 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8104{
61ee279c 8105 type = ada_check_typedef (type);
d2e4a39e
AS
8106 switch (TYPE_CODE (type))
8107 {
8108 default:
14f9c5c9 8109 return type;
d2e4a39e 8110 case TYPE_CODE_STRUCT:
4c4b4cd2 8111 {
76a01679 8112 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8113 struct type *fixed_record_type =
8114 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8115
529cad9c
PH
8116 /* If STATIC_TYPE is a tagged type and we know the object's address,
8117 then we can determine its tag, and compute the object's actual
0963b4bd 8118 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8119 type (the parent part of the record may have dynamic fields
8120 and the way the location of _tag is expressed may depend on
8121 them). */
529cad9c 8122
1ed6ede0 8123 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8124 {
b50d69b5
JG
8125 struct value *tag =
8126 value_tag_from_contents_and_address
8127 (fixed_record_type,
8128 valaddr,
8129 address);
8130 struct type *real_type = type_from_tag (tag);
8131 struct value *obj =
8132 value_from_contents_and_address (fixed_record_type,
8133 valaddr,
8134 address);
76a01679 8135 if (real_type != NULL)
b50d69b5
JG
8136 return to_fixed_record_type
8137 (real_type, NULL,
8138 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8139 }
4af88198
JB
8140
8141 /* Check to see if there is a parallel ___XVZ variable.
8142 If there is, then it provides the actual size of our type. */
8143 else if (ada_type_name (fixed_record_type) != NULL)
8144 {
0d5cff50 8145 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8146 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8147 int xvz_found = 0;
8148 LONGEST size;
8149
88c15c34 8150 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8151 size = get_int_var_value (xvz_name, &xvz_found);
8152 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8153 {
8154 fixed_record_type = copy_type (fixed_record_type);
8155 TYPE_LENGTH (fixed_record_type) = size;
8156
8157 /* The FIXED_RECORD_TYPE may have be a stub. We have
8158 observed this when the debugging info is STABS, and
8159 apparently it is something that is hard to fix.
8160
8161 In practice, we don't need the actual type definition
8162 at all, because the presence of the XVZ variable allows us
8163 to assume that there must be a XVS type as well, which we
8164 should be able to use later, when we need the actual type
8165 definition.
8166
8167 In the meantime, pretend that the "fixed" type we are
8168 returning is NOT a stub, because this can cause trouble
8169 when using this type to create new types targeting it.
8170 Indeed, the associated creation routines often check
8171 whether the target type is a stub and will try to replace
0963b4bd 8172 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8173 might cause the new type to have the wrong size too.
8174 Consider the case of an array, for instance, where the size
8175 of the array is computed from the number of elements in
8176 our array multiplied by the size of its element. */
8177 TYPE_STUB (fixed_record_type) = 0;
8178 }
8179 }
1ed6ede0 8180 return fixed_record_type;
4c4b4cd2 8181 }
d2e4a39e 8182 case TYPE_CODE_ARRAY:
4c4b4cd2 8183 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8184 case TYPE_CODE_UNION:
8185 if (dval == NULL)
4c4b4cd2 8186 return type;
d2e4a39e 8187 else
4c4b4cd2 8188 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8189 }
14f9c5c9
AS
8190}
8191
f192137b
JB
8192/* The same as ada_to_fixed_type_1, except that it preserves the type
8193 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8194
8195 The typedef layer needs be preserved in order to differentiate between
8196 arrays and array pointers when both types are implemented using the same
8197 fat pointer. In the array pointer case, the pointer is encoded as
8198 a typedef of the pointer type. For instance, considering:
8199
8200 type String_Access is access String;
8201 S1 : String_Access := null;
8202
8203 To the debugger, S1 is defined as a typedef of type String. But
8204 to the user, it is a pointer. So if the user tries to print S1,
8205 we should not dereference the array, but print the array address
8206 instead.
8207
8208 If we didn't preserve the typedef layer, we would lose the fact that
8209 the type is to be presented as a pointer (needs de-reference before
8210 being printed). And we would also use the source-level type name. */
f192137b
JB
8211
8212struct type *
8213ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8214 CORE_ADDR address, struct value *dval, int check_tag)
8215
8216{
8217 struct type *fixed_type =
8218 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8219
96dbd2c1
JB
8220 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8221 then preserve the typedef layer.
8222
8223 Implementation note: We can only check the main-type portion of
8224 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8225 from TYPE now returns a type that has the same instance flags
8226 as TYPE. For instance, if TYPE is a "typedef const", and its
8227 target type is a "struct", then the typedef elimination will return
8228 a "const" version of the target type. See check_typedef for more
8229 details about how the typedef layer elimination is done.
8230
8231 brobecker/2010-11-19: It seems to me that the only case where it is
8232 useful to preserve the typedef layer is when dealing with fat pointers.
8233 Perhaps, we could add a check for that and preserve the typedef layer
8234 only in that situation. But this seems unecessary so far, probably
8235 because we call check_typedef/ada_check_typedef pretty much everywhere.
8236 */
f192137b 8237 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8238 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8239 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8240 return type;
8241
8242 return fixed_type;
8243}
8244
14f9c5c9 8245/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8246 TYPE0, but based on no runtime data. */
14f9c5c9 8247
d2e4a39e
AS
8248static struct type *
8249to_static_fixed_type (struct type *type0)
14f9c5c9 8250{
d2e4a39e 8251 struct type *type;
14f9c5c9
AS
8252
8253 if (type0 == NULL)
8254 return NULL;
8255
876cecd0 8256 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8257 return type0;
8258
61ee279c 8259 type0 = ada_check_typedef (type0);
d2e4a39e 8260
14f9c5c9
AS
8261 switch (TYPE_CODE (type0))
8262 {
8263 default:
8264 return type0;
8265 case TYPE_CODE_STRUCT:
8266 type = dynamic_template_type (type0);
d2e4a39e 8267 if (type != NULL)
4c4b4cd2
PH
8268 return template_to_static_fixed_type (type);
8269 else
8270 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8271 case TYPE_CODE_UNION:
8272 type = ada_find_parallel_type (type0, "___XVU");
8273 if (type != NULL)
4c4b4cd2
PH
8274 return template_to_static_fixed_type (type);
8275 else
8276 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8277 }
8278}
8279
4c4b4cd2
PH
8280/* A static approximation of TYPE with all type wrappers removed. */
8281
d2e4a39e
AS
8282static struct type *
8283static_unwrap_type (struct type *type)
14f9c5c9
AS
8284{
8285 if (ada_is_aligner_type (type))
8286 {
61ee279c 8287 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8288 if (ada_type_name (type1) == NULL)
4c4b4cd2 8289 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8290
8291 return static_unwrap_type (type1);
8292 }
d2e4a39e 8293 else
14f9c5c9 8294 {
d2e4a39e 8295 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8296
d2e4a39e 8297 if (raw_real_type == type)
4c4b4cd2 8298 return type;
14f9c5c9 8299 else
4c4b4cd2 8300 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8301 }
8302}
8303
8304/* In some cases, incomplete and private types require
4c4b4cd2 8305 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8306 type Foo;
8307 type FooP is access Foo;
8308 V: FooP;
8309 type Foo is array ...;
4c4b4cd2 8310 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8311 cross-references to such types, we instead substitute for FooP a
8312 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8313 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8314
8315/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8316 exists, otherwise TYPE. */
8317
d2e4a39e 8318struct type *
61ee279c 8319ada_check_typedef (struct type *type)
14f9c5c9 8320{
727e3d2e
JB
8321 if (type == NULL)
8322 return NULL;
8323
720d1a40
JB
8324 /* If our type is a typedef type of a fat pointer, then we're done.
8325 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8326 what allows us to distinguish between fat pointers that represent
8327 array types, and fat pointers that represent array access types
8328 (in both cases, the compiler implements them as fat pointers). */
8329 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8330 && is_thick_pntr (ada_typedef_target_type (type)))
8331 return type;
8332
14f9c5c9
AS
8333 CHECK_TYPEDEF (type);
8334 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8335 || !TYPE_STUB (type)
14f9c5c9
AS
8336 || TYPE_TAG_NAME (type) == NULL)
8337 return type;
d2e4a39e 8338 else
14f9c5c9 8339 {
0d5cff50 8340 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8341 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8342
05e522ef
JB
8343 if (type1 == NULL)
8344 return type;
8345
8346 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8347 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8348 types, only for the typedef-to-array types). If that's the case,
8349 strip the typedef layer. */
8350 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8351 type1 = ada_check_typedef (type1);
8352
8353 return type1;
14f9c5c9
AS
8354 }
8355}
8356
8357/* A value representing the data at VALADDR/ADDRESS as described by
8358 type TYPE0, but with a standard (static-sized) type that correctly
8359 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8360 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8361 creation of struct values]. */
14f9c5c9 8362
4c4b4cd2
PH
8363static struct value *
8364ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8365 struct value *val0)
14f9c5c9 8366{
1ed6ede0 8367 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8368
14f9c5c9
AS
8369 if (type == type0 && val0 != NULL)
8370 return val0;
d2e4a39e 8371 else
4c4b4cd2
PH
8372 return value_from_contents_and_address (type, 0, address);
8373}
8374
8375/* A value representing VAL, but with a standard (static-sized) type
8376 that correctly describes it. Does not necessarily create a new
8377 value. */
8378
0c3acc09 8379struct value *
4c4b4cd2
PH
8380ada_to_fixed_value (struct value *val)
8381{
c48db5ca
JB
8382 val = unwrap_value (val);
8383 val = ada_to_fixed_value_create (value_type (val),
8384 value_address (val),
8385 val);
8386 return val;
14f9c5c9 8387}
d2e4a39e 8388\f
14f9c5c9 8389
14f9c5c9
AS
8390/* Attributes */
8391
4c4b4cd2
PH
8392/* Table mapping attribute numbers to names.
8393 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8394
d2e4a39e 8395static const char *attribute_names[] = {
14f9c5c9
AS
8396 "<?>",
8397
d2e4a39e 8398 "first",
14f9c5c9
AS
8399 "last",
8400 "length",
8401 "image",
14f9c5c9
AS
8402 "max",
8403 "min",
4c4b4cd2
PH
8404 "modulus",
8405 "pos",
8406 "size",
8407 "tag",
14f9c5c9 8408 "val",
14f9c5c9
AS
8409 0
8410};
8411
d2e4a39e 8412const char *
4c4b4cd2 8413ada_attribute_name (enum exp_opcode n)
14f9c5c9 8414{
4c4b4cd2
PH
8415 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8416 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8417 else
8418 return attribute_names[0];
8419}
8420
4c4b4cd2 8421/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8422
4c4b4cd2
PH
8423static LONGEST
8424pos_atr (struct value *arg)
14f9c5c9 8425{
24209737
PH
8426 struct value *val = coerce_ref (arg);
8427 struct type *type = value_type (val);
14f9c5c9 8428
d2e4a39e 8429 if (!discrete_type_p (type))
323e0a4a 8430 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8431
8432 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8433 {
8434 int i;
24209737 8435 LONGEST v = value_as_long (val);
14f9c5c9 8436
d2e4a39e 8437 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8438 {
14e75d8e 8439 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8440 return i;
8441 }
323e0a4a 8442 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8443 }
8444 else
24209737 8445 return value_as_long (val);
4c4b4cd2
PH
8446}
8447
8448static struct value *
3cb382c9 8449value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8450{
3cb382c9 8451 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8452}
8453
4c4b4cd2 8454/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8455
d2e4a39e
AS
8456static struct value *
8457value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8458{
d2e4a39e 8459 if (!discrete_type_p (type))
323e0a4a 8460 error (_("'VAL only defined on discrete types"));
df407dfe 8461 if (!integer_type_p (value_type (arg)))
323e0a4a 8462 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8463
8464 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8465 {
8466 long pos = value_as_long (arg);
5b4ee69b 8467
14f9c5c9 8468 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8469 error (_("argument to 'VAL out of range"));
14e75d8e 8470 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8471 }
8472 else
8473 return value_from_longest (type, value_as_long (arg));
8474}
14f9c5c9 8475\f
d2e4a39e 8476
4c4b4cd2 8477 /* Evaluation */
14f9c5c9 8478
4c4b4cd2
PH
8479/* True if TYPE appears to be an Ada character type.
8480 [At the moment, this is true only for Character and Wide_Character;
8481 It is a heuristic test that could stand improvement]. */
14f9c5c9 8482
d2e4a39e
AS
8483int
8484ada_is_character_type (struct type *type)
14f9c5c9 8485{
7b9f71f2
JB
8486 const char *name;
8487
8488 /* If the type code says it's a character, then assume it really is,
8489 and don't check any further. */
8490 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8491 return 1;
8492
8493 /* Otherwise, assume it's a character type iff it is a discrete type
8494 with a known character type name. */
8495 name = ada_type_name (type);
8496 return (name != NULL
8497 && (TYPE_CODE (type) == TYPE_CODE_INT
8498 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8499 && (strcmp (name, "character") == 0
8500 || strcmp (name, "wide_character") == 0
5a517ebd 8501 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8502 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8503}
8504
4c4b4cd2 8505/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8506
8507int
ebf56fd3 8508ada_is_string_type (struct type *type)
14f9c5c9 8509{
61ee279c 8510 type = ada_check_typedef (type);
d2e4a39e 8511 if (type != NULL
14f9c5c9 8512 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8513 && (ada_is_simple_array_type (type)
8514 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8515 && ada_array_arity (type) == 1)
8516 {
8517 struct type *elttype = ada_array_element_type (type, 1);
8518
8519 return ada_is_character_type (elttype);
8520 }
d2e4a39e 8521 else
14f9c5c9
AS
8522 return 0;
8523}
8524
5bf03f13
JB
8525/* The compiler sometimes provides a parallel XVS type for a given
8526 PAD type. Normally, it is safe to follow the PAD type directly,
8527 but older versions of the compiler have a bug that causes the offset
8528 of its "F" field to be wrong. Following that field in that case
8529 would lead to incorrect results, but this can be worked around
8530 by ignoring the PAD type and using the associated XVS type instead.
8531
8532 Set to True if the debugger should trust the contents of PAD types.
8533 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8534static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8535
8536/* True if TYPE is a struct type introduced by the compiler to force the
8537 alignment of a value. Such types have a single field with a
4c4b4cd2 8538 distinctive name. */
14f9c5c9
AS
8539
8540int
ebf56fd3 8541ada_is_aligner_type (struct type *type)
14f9c5c9 8542{
61ee279c 8543 type = ada_check_typedef (type);
714e53ab 8544
5bf03f13 8545 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8546 return 0;
8547
14f9c5c9 8548 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8549 && TYPE_NFIELDS (type) == 1
8550 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8551}
8552
8553/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8554 the parallel type. */
14f9c5c9 8555
d2e4a39e
AS
8556struct type *
8557ada_get_base_type (struct type *raw_type)
14f9c5c9 8558{
d2e4a39e
AS
8559 struct type *real_type_namer;
8560 struct type *raw_real_type;
14f9c5c9
AS
8561
8562 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8563 return raw_type;
8564
284614f0
JB
8565 if (ada_is_aligner_type (raw_type))
8566 /* The encoding specifies that we should always use the aligner type.
8567 So, even if this aligner type has an associated XVS type, we should
8568 simply ignore it.
8569
8570 According to the compiler gurus, an XVS type parallel to an aligner
8571 type may exist because of a stabs limitation. In stabs, aligner
8572 types are empty because the field has a variable-sized type, and
8573 thus cannot actually be used as an aligner type. As a result,
8574 we need the associated parallel XVS type to decode the type.
8575 Since the policy in the compiler is to not change the internal
8576 representation based on the debugging info format, we sometimes
8577 end up having a redundant XVS type parallel to the aligner type. */
8578 return raw_type;
8579
14f9c5c9 8580 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8581 if (real_type_namer == NULL
14f9c5c9
AS
8582 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8583 || TYPE_NFIELDS (real_type_namer) != 1)
8584 return raw_type;
8585
f80d3ff2
JB
8586 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8587 {
8588 /* This is an older encoding form where the base type needs to be
8589 looked up by name. We prefer the newer enconding because it is
8590 more efficient. */
8591 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8592 if (raw_real_type == NULL)
8593 return raw_type;
8594 else
8595 return raw_real_type;
8596 }
8597
8598 /* The field in our XVS type is a reference to the base type. */
8599 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8600}
14f9c5c9 8601
4c4b4cd2 8602/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8603
d2e4a39e
AS
8604struct type *
8605ada_aligned_type (struct type *type)
14f9c5c9
AS
8606{
8607 if (ada_is_aligner_type (type))
8608 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8609 else
8610 return ada_get_base_type (type);
8611}
8612
8613
8614/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8615 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8616
fc1a4b47
AC
8617const gdb_byte *
8618ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8619{
d2e4a39e 8620 if (ada_is_aligner_type (type))
14f9c5c9 8621 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8622 valaddr +
8623 TYPE_FIELD_BITPOS (type,
8624 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8625 else
8626 return valaddr;
8627}
8628
4c4b4cd2
PH
8629
8630
14f9c5c9 8631/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8632 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8633const char *
8634ada_enum_name (const char *name)
14f9c5c9 8635{
4c4b4cd2
PH
8636 static char *result;
8637 static size_t result_len = 0;
d2e4a39e 8638 char *tmp;
14f9c5c9 8639
4c4b4cd2
PH
8640 /* First, unqualify the enumeration name:
8641 1. Search for the last '.' character. If we find one, then skip
177b42fe 8642 all the preceding characters, the unqualified name starts
76a01679 8643 right after that dot.
4c4b4cd2 8644 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8645 translates dots into "__". Search forward for double underscores,
8646 but stop searching when we hit an overloading suffix, which is
8647 of the form "__" followed by digits. */
4c4b4cd2 8648
c3e5cd34
PH
8649 tmp = strrchr (name, '.');
8650 if (tmp != NULL)
4c4b4cd2
PH
8651 name = tmp + 1;
8652 else
14f9c5c9 8653 {
4c4b4cd2
PH
8654 while ((tmp = strstr (name, "__")) != NULL)
8655 {
8656 if (isdigit (tmp[2]))
8657 break;
8658 else
8659 name = tmp + 2;
8660 }
14f9c5c9
AS
8661 }
8662
8663 if (name[0] == 'Q')
8664 {
14f9c5c9 8665 int v;
5b4ee69b 8666
14f9c5c9 8667 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8668 {
8669 if (sscanf (name + 2, "%x", &v) != 1)
8670 return name;
8671 }
14f9c5c9 8672 else
4c4b4cd2 8673 return name;
14f9c5c9 8674
4c4b4cd2 8675 GROW_VECT (result, result_len, 16);
14f9c5c9 8676 if (isascii (v) && isprint (v))
88c15c34 8677 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8678 else if (name[1] == 'U')
88c15c34 8679 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8680 else
88c15c34 8681 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8682
8683 return result;
8684 }
d2e4a39e 8685 else
4c4b4cd2 8686 {
c3e5cd34
PH
8687 tmp = strstr (name, "__");
8688 if (tmp == NULL)
8689 tmp = strstr (name, "$");
8690 if (tmp != NULL)
4c4b4cd2
PH
8691 {
8692 GROW_VECT (result, result_len, tmp - name + 1);
8693 strncpy (result, name, tmp - name);
8694 result[tmp - name] = '\0';
8695 return result;
8696 }
8697
8698 return name;
8699 }
14f9c5c9
AS
8700}
8701
14f9c5c9
AS
8702/* Evaluate the subexpression of EXP starting at *POS as for
8703 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8704 expression. */
14f9c5c9 8705
d2e4a39e
AS
8706static struct value *
8707evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8708{
4b27a620 8709 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8710}
8711
8712/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8713 value it wraps. */
14f9c5c9 8714
d2e4a39e
AS
8715static struct value *
8716unwrap_value (struct value *val)
14f9c5c9 8717{
df407dfe 8718 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8719
14f9c5c9
AS
8720 if (ada_is_aligner_type (type))
8721 {
de4d072f 8722 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8723 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8724
14f9c5c9 8725 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8726 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8727
8728 return unwrap_value (v);
8729 }
d2e4a39e 8730 else
14f9c5c9 8731 {
d2e4a39e 8732 struct type *raw_real_type =
61ee279c 8733 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8734
5bf03f13
JB
8735 /* If there is no parallel XVS or XVE type, then the value is
8736 already unwrapped. Return it without further modification. */
8737 if ((type == raw_real_type)
8738 && ada_find_parallel_type (type, "___XVE") == NULL)
8739 return val;
14f9c5c9 8740
d2e4a39e 8741 return
4c4b4cd2
PH
8742 coerce_unspec_val_to_type
8743 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8744 value_address (val),
1ed6ede0 8745 NULL, 1));
14f9c5c9
AS
8746 }
8747}
d2e4a39e
AS
8748
8749static struct value *
8750cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8751{
8752 LONGEST val;
8753
df407dfe 8754 if (type == value_type (arg))
14f9c5c9 8755 return arg;
df407dfe 8756 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8757 val = ada_float_to_fixed (type,
df407dfe 8758 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8759 value_as_long (arg)));
d2e4a39e 8760 else
14f9c5c9 8761 {
a53b7a21 8762 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8763
14f9c5c9
AS
8764 val = ada_float_to_fixed (type, argd);
8765 }
8766
8767 return value_from_longest (type, val);
8768}
8769
d2e4a39e 8770static struct value *
a53b7a21 8771cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8772{
df407dfe 8773 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8774 value_as_long (arg));
5b4ee69b 8775
a53b7a21 8776 return value_from_double (type, val);
14f9c5c9
AS
8777}
8778
d99dcf51
JB
8779/* Given two array types T1 and T2, return nonzero iff both arrays
8780 contain the same number of elements. */
8781
8782static int
8783ada_same_array_size_p (struct type *t1, struct type *t2)
8784{
8785 LONGEST lo1, hi1, lo2, hi2;
8786
8787 /* Get the array bounds in order to verify that the size of
8788 the two arrays match. */
8789 if (!get_array_bounds (t1, &lo1, &hi1)
8790 || !get_array_bounds (t2, &lo2, &hi2))
8791 error (_("unable to determine array bounds"));
8792
8793 /* To make things easier for size comparison, normalize a bit
8794 the case of empty arrays by making sure that the difference
8795 between upper bound and lower bound is always -1. */
8796 if (lo1 > hi1)
8797 hi1 = lo1 - 1;
8798 if (lo2 > hi2)
8799 hi2 = lo2 - 1;
8800
8801 return (hi1 - lo1 == hi2 - lo2);
8802}
8803
8804/* Assuming that VAL is an array of integrals, and TYPE represents
8805 an array with the same number of elements, but with wider integral
8806 elements, return an array "casted" to TYPE. In practice, this
8807 means that the returned array is built by casting each element
8808 of the original array into TYPE's (wider) element type. */
8809
8810static struct value *
8811ada_promote_array_of_integrals (struct type *type, struct value *val)
8812{
8813 struct type *elt_type = TYPE_TARGET_TYPE (type);
8814 LONGEST lo, hi;
8815 struct value *res;
8816 LONGEST i;
8817
8818 /* Verify that both val and type are arrays of scalars, and
8819 that the size of val's elements is smaller than the size
8820 of type's element. */
8821 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8822 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8823 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8825 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8826 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8827
8828 if (!get_array_bounds (type, &lo, &hi))
8829 error (_("unable to determine array bounds"));
8830
8831 res = allocate_value (type);
8832
8833 /* Promote each array element. */
8834 for (i = 0; i < hi - lo + 1; i++)
8835 {
8836 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8837
8838 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8839 value_contents_all (elt), TYPE_LENGTH (elt_type));
8840 }
8841
8842 return res;
8843}
8844
4c4b4cd2
PH
8845/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8846 return the converted value. */
8847
d2e4a39e
AS
8848static struct value *
8849coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8850{
df407dfe 8851 struct type *type2 = value_type (val);
5b4ee69b 8852
14f9c5c9
AS
8853 if (type == type2)
8854 return val;
8855
61ee279c
PH
8856 type2 = ada_check_typedef (type2);
8857 type = ada_check_typedef (type);
14f9c5c9 8858
d2e4a39e
AS
8859 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8860 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8861 {
8862 val = ada_value_ind (val);
df407dfe 8863 type2 = value_type (val);
14f9c5c9
AS
8864 }
8865
d2e4a39e 8866 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8867 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8868 {
d99dcf51
JB
8869 if (!ada_same_array_size_p (type, type2))
8870 error (_("cannot assign arrays of different length"));
8871
8872 if (is_integral_type (TYPE_TARGET_TYPE (type))
8873 && is_integral_type (TYPE_TARGET_TYPE (type2))
8874 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8875 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8876 {
8877 /* Allow implicit promotion of the array elements to
8878 a wider type. */
8879 return ada_promote_array_of_integrals (type, val);
8880 }
8881
8882 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8883 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8884 error (_("Incompatible types in assignment"));
04624583 8885 deprecated_set_value_type (val, type);
14f9c5c9 8886 }
d2e4a39e 8887 return val;
14f9c5c9
AS
8888}
8889
4c4b4cd2
PH
8890static struct value *
8891ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8892{
8893 struct value *val;
8894 struct type *type1, *type2;
8895 LONGEST v, v1, v2;
8896
994b9211
AC
8897 arg1 = coerce_ref (arg1);
8898 arg2 = coerce_ref (arg2);
18af8284
JB
8899 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8900 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8901
76a01679
JB
8902 if (TYPE_CODE (type1) != TYPE_CODE_INT
8903 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8904 return value_binop (arg1, arg2, op);
8905
76a01679 8906 switch (op)
4c4b4cd2
PH
8907 {
8908 case BINOP_MOD:
8909 case BINOP_DIV:
8910 case BINOP_REM:
8911 break;
8912 default:
8913 return value_binop (arg1, arg2, op);
8914 }
8915
8916 v2 = value_as_long (arg2);
8917 if (v2 == 0)
323e0a4a 8918 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8919
8920 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8921 return value_binop (arg1, arg2, op);
8922
8923 v1 = value_as_long (arg1);
8924 switch (op)
8925 {
8926 case BINOP_DIV:
8927 v = v1 / v2;
76a01679
JB
8928 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8929 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8930 break;
8931 case BINOP_REM:
8932 v = v1 % v2;
76a01679
JB
8933 if (v * v1 < 0)
8934 v -= v2;
4c4b4cd2
PH
8935 break;
8936 default:
8937 /* Should not reach this point. */
8938 v = 0;
8939 }
8940
8941 val = allocate_value (type1);
990a07ab 8942 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8943 TYPE_LENGTH (value_type (val)),
8944 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8945 return val;
8946}
8947
8948static int
8949ada_value_equal (struct value *arg1, struct value *arg2)
8950{
df407dfe
AC
8951 if (ada_is_direct_array_type (value_type (arg1))
8952 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8953 {
f58b38bf
JB
8954 /* Automatically dereference any array reference before
8955 we attempt to perform the comparison. */
8956 arg1 = ada_coerce_ref (arg1);
8957 arg2 = ada_coerce_ref (arg2);
8958
4c4b4cd2
PH
8959 arg1 = ada_coerce_to_simple_array (arg1);
8960 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8961 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8962 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8963 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8964 /* FIXME: The following works only for types whose
76a01679
JB
8965 representations use all bits (no padding or undefined bits)
8966 and do not have user-defined equality. */
8967 return
df407dfe 8968 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8969 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8970 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8971 }
8972 return value_equal (arg1, arg2);
8973}
8974
52ce6436
PH
8975/* Total number of component associations in the aggregate starting at
8976 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8977 OP_AGGREGATE. */
52ce6436
PH
8978
8979static int
8980num_component_specs (struct expression *exp, int pc)
8981{
8982 int n, m, i;
5b4ee69b 8983
52ce6436
PH
8984 m = exp->elts[pc + 1].longconst;
8985 pc += 3;
8986 n = 0;
8987 for (i = 0; i < m; i += 1)
8988 {
8989 switch (exp->elts[pc].opcode)
8990 {
8991 default:
8992 n += 1;
8993 break;
8994 case OP_CHOICES:
8995 n += exp->elts[pc + 1].longconst;
8996 break;
8997 }
8998 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8999 }
9000 return n;
9001}
9002
9003/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9004 component of LHS (a simple array or a record), updating *POS past
9005 the expression, assuming that LHS is contained in CONTAINER. Does
9006 not modify the inferior's memory, nor does it modify LHS (unless
9007 LHS == CONTAINER). */
9008
9009static void
9010assign_component (struct value *container, struct value *lhs, LONGEST index,
9011 struct expression *exp, int *pos)
9012{
9013 struct value *mark = value_mark ();
9014 struct value *elt;
5b4ee69b 9015
52ce6436
PH
9016 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9017 {
22601c15
UW
9018 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9019 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9020
52ce6436
PH
9021 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9022 }
9023 else
9024 {
9025 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9026 elt = ada_to_fixed_value (elt);
52ce6436
PH
9027 }
9028
9029 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9030 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9031 else
9032 value_assign_to_component (container, elt,
9033 ada_evaluate_subexp (NULL, exp, pos,
9034 EVAL_NORMAL));
9035
9036 value_free_to_mark (mark);
9037}
9038
9039/* Assuming that LHS represents an lvalue having a record or array
9040 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9041 of that aggregate's value to LHS, advancing *POS past the
9042 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9043 lvalue containing LHS (possibly LHS itself). Does not modify
9044 the inferior's memory, nor does it modify the contents of
0963b4bd 9045 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9046
9047static struct value *
9048assign_aggregate (struct value *container,
9049 struct value *lhs, struct expression *exp,
9050 int *pos, enum noside noside)
9051{
9052 struct type *lhs_type;
9053 int n = exp->elts[*pos+1].longconst;
9054 LONGEST low_index, high_index;
9055 int num_specs;
9056 LONGEST *indices;
9057 int max_indices, num_indices;
52ce6436 9058 int i;
52ce6436
PH
9059
9060 *pos += 3;
9061 if (noside != EVAL_NORMAL)
9062 {
52ce6436
PH
9063 for (i = 0; i < n; i += 1)
9064 ada_evaluate_subexp (NULL, exp, pos, noside);
9065 return container;
9066 }
9067
9068 container = ada_coerce_ref (container);
9069 if (ada_is_direct_array_type (value_type (container)))
9070 container = ada_coerce_to_simple_array (container);
9071 lhs = ada_coerce_ref (lhs);
9072 if (!deprecated_value_modifiable (lhs))
9073 error (_("Left operand of assignment is not a modifiable lvalue."));
9074
9075 lhs_type = value_type (lhs);
9076 if (ada_is_direct_array_type (lhs_type))
9077 {
9078 lhs = ada_coerce_to_simple_array (lhs);
9079 lhs_type = value_type (lhs);
9080 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9081 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9082 }
9083 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9084 {
9085 low_index = 0;
9086 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9087 }
9088 else
9089 error (_("Left-hand side must be array or record."));
9090
9091 num_specs = num_component_specs (exp, *pos - 3);
9092 max_indices = 4 * num_specs + 4;
9093 indices = alloca (max_indices * sizeof (indices[0]));
9094 indices[0] = indices[1] = low_index - 1;
9095 indices[2] = indices[3] = high_index + 1;
9096 num_indices = 4;
9097
9098 for (i = 0; i < n; i += 1)
9099 {
9100 switch (exp->elts[*pos].opcode)
9101 {
1fbf5ada
JB
9102 case OP_CHOICES:
9103 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9104 &num_indices, max_indices,
9105 low_index, high_index);
9106 break;
9107 case OP_POSITIONAL:
9108 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9109 &num_indices, max_indices,
9110 low_index, high_index);
1fbf5ada
JB
9111 break;
9112 case OP_OTHERS:
9113 if (i != n-1)
9114 error (_("Misplaced 'others' clause"));
9115 aggregate_assign_others (container, lhs, exp, pos, indices,
9116 num_indices, low_index, high_index);
9117 break;
9118 default:
9119 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9120 }
9121 }
9122
9123 return container;
9124}
9125
9126/* Assign into the component of LHS indexed by the OP_POSITIONAL
9127 construct at *POS, updating *POS past the construct, given that
9128 the positions are relative to lower bound LOW, where HIGH is the
9129 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9130 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9131 assign_aggregate. */
52ce6436
PH
9132static void
9133aggregate_assign_positional (struct value *container,
9134 struct value *lhs, struct expression *exp,
9135 int *pos, LONGEST *indices, int *num_indices,
9136 int max_indices, LONGEST low, LONGEST high)
9137{
9138 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9139
9140 if (ind - 1 == high)
e1d5a0d2 9141 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9142 if (ind <= high)
9143 {
9144 add_component_interval (ind, ind, indices, num_indices, max_indices);
9145 *pos += 3;
9146 assign_component (container, lhs, ind, exp, pos);
9147 }
9148 else
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150}
9151
9152/* Assign into the components of LHS indexed by the OP_CHOICES
9153 construct at *POS, updating *POS past the construct, given that
9154 the allowable indices are LOW..HIGH. Record the indices assigned
9155 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9156 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9157static void
9158aggregate_assign_from_choices (struct value *container,
9159 struct value *lhs, struct expression *exp,
9160 int *pos, LONGEST *indices, int *num_indices,
9161 int max_indices, LONGEST low, LONGEST high)
9162{
9163 int j;
9164 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9165 int choice_pos, expr_pc;
9166 int is_array = ada_is_direct_array_type (value_type (lhs));
9167
9168 choice_pos = *pos += 3;
9169
9170 for (j = 0; j < n_choices; j += 1)
9171 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9172 expr_pc = *pos;
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9174
9175 for (j = 0; j < n_choices; j += 1)
9176 {
9177 LONGEST lower, upper;
9178 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9179
52ce6436
PH
9180 if (op == OP_DISCRETE_RANGE)
9181 {
9182 choice_pos += 1;
9183 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9184 EVAL_NORMAL));
9185 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9186 EVAL_NORMAL));
9187 }
9188 else if (is_array)
9189 {
9190 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9191 EVAL_NORMAL));
9192 upper = lower;
9193 }
9194 else
9195 {
9196 int ind;
0d5cff50 9197 const char *name;
5b4ee69b 9198
52ce6436
PH
9199 switch (op)
9200 {
9201 case OP_NAME:
9202 name = &exp->elts[choice_pos + 2].string;
9203 break;
9204 case OP_VAR_VALUE:
9205 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9206 break;
9207 default:
9208 error (_("Invalid record component association."));
9209 }
9210 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9211 ind = 0;
9212 if (! find_struct_field (name, value_type (lhs), 0,
9213 NULL, NULL, NULL, NULL, &ind))
9214 error (_("Unknown component name: %s."), name);
9215 lower = upper = ind;
9216 }
9217
9218 if (lower <= upper && (lower < low || upper > high))
9219 error (_("Index in component association out of bounds."));
9220
9221 add_component_interval (lower, upper, indices, num_indices,
9222 max_indices);
9223 while (lower <= upper)
9224 {
9225 int pos1;
5b4ee69b 9226
52ce6436
PH
9227 pos1 = expr_pc;
9228 assign_component (container, lhs, lower, exp, &pos1);
9229 lower += 1;
9230 }
9231 }
9232}
9233
9234/* Assign the value of the expression in the OP_OTHERS construct in
9235 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9236 have not been previously assigned. The index intervals already assigned
9237 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9238 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9239static void
9240aggregate_assign_others (struct value *container,
9241 struct value *lhs, struct expression *exp,
9242 int *pos, LONGEST *indices, int num_indices,
9243 LONGEST low, LONGEST high)
9244{
9245 int i;
5ce64950 9246 int expr_pc = *pos + 1;
52ce6436
PH
9247
9248 for (i = 0; i < num_indices - 2; i += 2)
9249 {
9250 LONGEST ind;
5b4ee69b 9251
52ce6436
PH
9252 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9253 {
5ce64950 9254 int localpos;
5b4ee69b 9255
5ce64950
MS
9256 localpos = expr_pc;
9257 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9258 }
9259 }
9260 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9261}
9262
9263/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9264 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9265 modifying *SIZE as needed. It is an error if *SIZE exceeds
9266 MAX_SIZE. The resulting intervals do not overlap. */
9267static void
9268add_component_interval (LONGEST low, LONGEST high,
9269 LONGEST* indices, int *size, int max_size)
9270{
9271 int i, j;
5b4ee69b 9272
52ce6436
PH
9273 for (i = 0; i < *size; i += 2) {
9274 if (high >= indices[i] && low <= indices[i + 1])
9275 {
9276 int kh;
5b4ee69b 9277
52ce6436
PH
9278 for (kh = i + 2; kh < *size; kh += 2)
9279 if (high < indices[kh])
9280 break;
9281 if (low < indices[i])
9282 indices[i] = low;
9283 indices[i + 1] = indices[kh - 1];
9284 if (high > indices[i + 1])
9285 indices[i + 1] = high;
9286 memcpy (indices + i + 2, indices + kh, *size - kh);
9287 *size -= kh - i - 2;
9288 return;
9289 }
9290 else if (high < indices[i])
9291 break;
9292 }
9293
9294 if (*size == max_size)
9295 error (_("Internal error: miscounted aggregate components."));
9296 *size += 2;
9297 for (j = *size-1; j >= i+2; j -= 1)
9298 indices[j] = indices[j - 2];
9299 indices[i] = low;
9300 indices[i + 1] = high;
9301}
9302
6e48bd2c
JB
9303/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9304 is different. */
9305
9306static struct value *
9307ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9308{
9309 if (type == ada_check_typedef (value_type (arg2)))
9310 return arg2;
9311
9312 if (ada_is_fixed_point_type (type))
9313 return (cast_to_fixed (type, arg2));
9314
9315 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9316 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9317
9318 return value_cast (type, arg2);
9319}
9320
284614f0
JB
9321/* Evaluating Ada expressions, and printing their result.
9322 ------------------------------------------------------
9323
21649b50
JB
9324 1. Introduction:
9325 ----------------
9326
284614f0
JB
9327 We usually evaluate an Ada expression in order to print its value.
9328 We also evaluate an expression in order to print its type, which
9329 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9330 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9331 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9332 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9333 similar.
9334
9335 Evaluating expressions is a little more complicated for Ada entities
9336 than it is for entities in languages such as C. The main reason for
9337 this is that Ada provides types whose definition might be dynamic.
9338 One example of such types is variant records. Or another example
9339 would be an array whose bounds can only be known at run time.
9340
9341 The following description is a general guide as to what should be
9342 done (and what should NOT be done) in order to evaluate an expression
9343 involving such types, and when. This does not cover how the semantic
9344 information is encoded by GNAT as this is covered separatly. For the
9345 document used as the reference for the GNAT encoding, see exp_dbug.ads
9346 in the GNAT sources.
9347
9348 Ideally, we should embed each part of this description next to its
9349 associated code. Unfortunately, the amount of code is so vast right
9350 now that it's hard to see whether the code handling a particular
9351 situation might be duplicated or not. One day, when the code is
9352 cleaned up, this guide might become redundant with the comments
9353 inserted in the code, and we might want to remove it.
9354
21649b50
JB
9355 2. ``Fixing'' an Entity, the Simple Case:
9356 -----------------------------------------
9357
284614f0
JB
9358 When evaluating Ada expressions, the tricky issue is that they may
9359 reference entities whose type contents and size are not statically
9360 known. Consider for instance a variant record:
9361
9362 type Rec (Empty : Boolean := True) is record
9363 case Empty is
9364 when True => null;
9365 when False => Value : Integer;
9366 end case;
9367 end record;
9368 Yes : Rec := (Empty => False, Value => 1);
9369 No : Rec := (empty => True);
9370
9371 The size and contents of that record depends on the value of the
9372 descriminant (Rec.Empty). At this point, neither the debugging
9373 information nor the associated type structure in GDB are able to
9374 express such dynamic types. So what the debugger does is to create
9375 "fixed" versions of the type that applies to the specific object.
9376 We also informally refer to this opperation as "fixing" an object,
9377 which means creating its associated fixed type.
9378
9379 Example: when printing the value of variable "Yes" above, its fixed
9380 type would look like this:
9381
9382 type Rec is record
9383 Empty : Boolean;
9384 Value : Integer;
9385 end record;
9386
9387 On the other hand, if we printed the value of "No", its fixed type
9388 would become:
9389
9390 type Rec is record
9391 Empty : Boolean;
9392 end record;
9393
9394 Things become a little more complicated when trying to fix an entity
9395 with a dynamic type that directly contains another dynamic type,
9396 such as an array of variant records, for instance. There are
9397 two possible cases: Arrays, and records.
9398
21649b50
JB
9399 3. ``Fixing'' Arrays:
9400 ---------------------
9401
9402 The type structure in GDB describes an array in terms of its bounds,
9403 and the type of its elements. By design, all elements in the array
9404 have the same type and we cannot represent an array of variant elements
9405 using the current type structure in GDB. When fixing an array,
9406 we cannot fix the array element, as we would potentially need one
9407 fixed type per element of the array. As a result, the best we can do
9408 when fixing an array is to produce an array whose bounds and size
9409 are correct (allowing us to read it from memory), but without having
9410 touched its element type. Fixing each element will be done later,
9411 when (if) necessary.
9412
9413 Arrays are a little simpler to handle than records, because the same
9414 amount of memory is allocated for each element of the array, even if
1b536f04 9415 the amount of space actually used by each element differs from element
21649b50 9416 to element. Consider for instance the following array of type Rec:
284614f0
JB
9417
9418 type Rec_Array is array (1 .. 2) of Rec;
9419
1b536f04
JB
9420 The actual amount of memory occupied by each element might be different
9421 from element to element, depending on the value of their discriminant.
21649b50 9422 But the amount of space reserved for each element in the array remains
1b536f04 9423 fixed regardless. So we simply need to compute that size using
21649b50
JB
9424 the debugging information available, from which we can then determine
9425 the array size (we multiply the number of elements of the array by
9426 the size of each element).
9427
9428 The simplest case is when we have an array of a constrained element
9429 type. For instance, consider the following type declarations:
9430
9431 type Bounded_String (Max_Size : Integer) is
9432 Length : Integer;
9433 Buffer : String (1 .. Max_Size);
9434 end record;
9435 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9436
9437 In this case, the compiler describes the array as an array of
9438 variable-size elements (identified by its XVS suffix) for which
9439 the size can be read in the parallel XVZ variable.
9440
9441 In the case of an array of an unconstrained element type, the compiler
9442 wraps the array element inside a private PAD type. This type should not
9443 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9444 that we also use the adjective "aligner" in our code to designate
9445 these wrapper types.
9446
1b536f04 9447 In some cases, the size allocated for each element is statically
21649b50
JB
9448 known. In that case, the PAD type already has the correct size,
9449 and the array element should remain unfixed.
9450
9451 But there are cases when this size is not statically known.
9452 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9453
9454 type Dynamic is array (1 .. Five) of Integer;
9455 type Wrapper (Has_Length : Boolean := False) is record
9456 Data : Dynamic;
9457 case Has_Length is
9458 when True => Length : Integer;
9459 when False => null;
9460 end case;
9461 end record;
9462 type Wrapper_Array is array (1 .. 2) of Wrapper;
9463
9464 Hello : Wrapper_Array := (others => (Has_Length => True,
9465 Data => (others => 17),
9466 Length => 1));
9467
9468
9469 The debugging info would describe variable Hello as being an
9470 array of a PAD type. The size of that PAD type is not statically
9471 known, but can be determined using a parallel XVZ variable.
9472 In that case, a copy of the PAD type with the correct size should
9473 be used for the fixed array.
9474
21649b50
JB
9475 3. ``Fixing'' record type objects:
9476 ----------------------------------
9477
9478 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9479 record types. In this case, in order to compute the associated
9480 fixed type, we need to determine the size and offset of each of
9481 its components. This, in turn, requires us to compute the fixed
9482 type of each of these components.
9483
9484 Consider for instance the example:
9485
9486 type Bounded_String (Max_Size : Natural) is record
9487 Str : String (1 .. Max_Size);
9488 Length : Natural;
9489 end record;
9490 My_String : Bounded_String (Max_Size => 10);
9491
9492 In that case, the position of field "Length" depends on the size
9493 of field Str, which itself depends on the value of the Max_Size
21649b50 9494 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9495 we need to fix the type of field Str. Therefore, fixing a variant
9496 record requires us to fix each of its components.
9497
9498 However, if a component does not have a dynamic size, the component
9499 should not be fixed. In particular, fields that use a PAD type
9500 should not fixed. Here is an example where this might happen
9501 (assuming type Rec above):
9502
9503 type Container (Big : Boolean) is record
9504 First : Rec;
9505 After : Integer;
9506 case Big is
9507 when True => Another : Integer;
9508 when False => null;
9509 end case;
9510 end record;
9511 My_Container : Container := (Big => False,
9512 First => (Empty => True),
9513 After => 42);
9514
9515 In that example, the compiler creates a PAD type for component First,
9516 whose size is constant, and then positions the component After just
9517 right after it. The offset of component After is therefore constant
9518 in this case.
9519
9520 The debugger computes the position of each field based on an algorithm
9521 that uses, among other things, the actual position and size of the field
21649b50
JB
9522 preceding it. Let's now imagine that the user is trying to print
9523 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9524 end up computing the offset of field After based on the size of the
9525 fixed version of field First. And since in our example First has
9526 only one actual field, the size of the fixed type is actually smaller
9527 than the amount of space allocated to that field, and thus we would
9528 compute the wrong offset of field After.
9529
21649b50
JB
9530 To make things more complicated, we need to watch out for dynamic
9531 components of variant records (identified by the ___XVL suffix in
9532 the component name). Even if the target type is a PAD type, the size
9533 of that type might not be statically known. So the PAD type needs
9534 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9535 we might end up with the wrong size for our component. This can be
9536 observed with the following type declarations:
284614f0
JB
9537
9538 type Octal is new Integer range 0 .. 7;
9539 type Octal_Array is array (Positive range <>) of Octal;
9540 pragma Pack (Octal_Array);
9541
9542 type Octal_Buffer (Size : Positive) is record
9543 Buffer : Octal_Array (1 .. Size);
9544 Length : Integer;
9545 end record;
9546
9547 In that case, Buffer is a PAD type whose size is unset and needs
9548 to be computed by fixing the unwrapped type.
9549
21649b50
JB
9550 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9551 ----------------------------------------------------------
9552
9553 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9554 thus far, be actually fixed?
9555
9556 The answer is: Only when referencing that element. For instance
9557 when selecting one component of a record, this specific component
9558 should be fixed at that point in time. Or when printing the value
9559 of a record, each component should be fixed before its value gets
9560 printed. Similarly for arrays, the element of the array should be
9561 fixed when printing each element of the array, or when extracting
9562 one element out of that array. On the other hand, fixing should
9563 not be performed on the elements when taking a slice of an array!
9564
9565 Note that one of the side-effects of miscomputing the offset and
9566 size of each field is that we end up also miscomputing the size
9567 of the containing type. This can have adverse results when computing
9568 the value of an entity. GDB fetches the value of an entity based
9569 on the size of its type, and thus a wrong size causes GDB to fetch
9570 the wrong amount of memory. In the case where the computed size is
9571 too small, GDB fetches too little data to print the value of our
9572 entiry. Results in this case as unpredicatble, as we usually read
9573 past the buffer containing the data =:-o. */
9574
9575/* Implement the evaluate_exp routine in the exp_descriptor structure
9576 for the Ada language. */
9577
52ce6436 9578static struct value *
ebf56fd3 9579ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9580 int *pos, enum noside noside)
14f9c5c9
AS
9581{
9582 enum exp_opcode op;
b5385fc0 9583 int tem;
14f9c5c9
AS
9584 int pc;
9585 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9586 struct type *type;
52ce6436 9587 int nargs, oplen;
d2e4a39e 9588 struct value **argvec;
14f9c5c9 9589
d2e4a39e
AS
9590 pc = *pos;
9591 *pos += 1;
14f9c5c9
AS
9592 op = exp->elts[pc].opcode;
9593
d2e4a39e 9594 switch (op)
14f9c5c9
AS
9595 {
9596 default:
9597 *pos -= 1;
6e48bd2c 9598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9599
9600 if (noside == EVAL_NORMAL)
9601 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9602
9603 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9604 then we need to perform the conversion manually, because
9605 evaluate_subexp_standard doesn't do it. This conversion is
9606 necessary in Ada because the different kinds of float/fixed
9607 types in Ada have different representations.
9608
9609 Similarly, we need to perform the conversion from OP_LONG
9610 ourselves. */
9611 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9612 arg1 = ada_value_cast (expect_type, arg1, noside);
9613
9614 return arg1;
4c4b4cd2
PH
9615
9616 case OP_STRING:
9617 {
76a01679 9618 struct value *result;
5b4ee69b 9619
76a01679
JB
9620 *pos -= 1;
9621 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9622 /* The result type will have code OP_STRING, bashed there from
9623 OP_ARRAY. Bash it back. */
df407dfe
AC
9624 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9625 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9626 return result;
4c4b4cd2 9627 }
14f9c5c9
AS
9628
9629 case UNOP_CAST:
9630 (*pos) += 2;
9631 type = exp->elts[pc + 1].type;
9632 arg1 = evaluate_subexp (type, exp, pos, noside);
9633 if (noside == EVAL_SKIP)
4c4b4cd2 9634 goto nosideret;
6e48bd2c 9635 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9636 return arg1;
9637
4c4b4cd2
PH
9638 case UNOP_QUAL:
9639 (*pos) += 2;
9640 type = exp->elts[pc + 1].type;
9641 return ada_evaluate_subexp (type, exp, pos, noside);
9642
14f9c5c9
AS
9643 case BINOP_ASSIGN:
9644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9645 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9646 {
9647 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9648 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9649 return arg1;
9650 return ada_value_assign (arg1, arg1);
9651 }
003f3813
JB
9652 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9653 except if the lhs of our assignment is a convenience variable.
9654 In the case of assigning to a convenience variable, the lhs
9655 should be exactly the result of the evaluation of the rhs. */
9656 type = value_type (arg1);
9657 if (VALUE_LVAL (arg1) == lval_internalvar)
9658 type = NULL;
9659 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9660 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9661 return arg1;
df407dfe
AC
9662 if (ada_is_fixed_point_type (value_type (arg1)))
9663 arg2 = cast_to_fixed (value_type (arg1), arg2);
9664 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9665 error
323e0a4a 9666 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9667 else
df407dfe 9668 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9669 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9670
9671 case BINOP_ADD:
9672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 if (noside == EVAL_SKIP)
4c4b4cd2 9675 goto nosideret;
2ac8a782
JB
9676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9677 return (value_from_longest
9678 (value_type (arg1),
9679 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9680 if ((ada_is_fixed_point_type (value_type (arg1))
9681 || ada_is_fixed_point_type (value_type (arg2)))
9682 && value_type (arg1) != value_type (arg2))
323e0a4a 9683 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9684 /* Do the addition, and cast the result to the type of the first
9685 argument. We cannot cast the result to a reference type, so if
9686 ARG1 is a reference type, find its underlying type. */
9687 type = value_type (arg1);
9688 while (TYPE_CODE (type) == TYPE_CODE_REF)
9689 type = TYPE_TARGET_TYPE (type);
f44316fa 9690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9691 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9692
9693 case BINOP_SUB:
9694 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9695 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9696 if (noside == EVAL_SKIP)
4c4b4cd2 9697 goto nosideret;
2ac8a782
JB
9698 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9699 return (value_from_longest
9700 (value_type (arg1),
9701 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9702 if ((ada_is_fixed_point_type (value_type (arg1))
9703 || ada_is_fixed_point_type (value_type (arg2)))
9704 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9705 error (_("Operands of fixed-point subtraction "
9706 "must have the same type"));
b7789565
JB
9707 /* Do the substraction, and cast the result to the type of the first
9708 argument. We cannot cast the result to a reference type, so if
9709 ARG1 is a reference type, find its underlying type. */
9710 type = value_type (arg1);
9711 while (TYPE_CODE (type) == TYPE_CODE_REF)
9712 type = TYPE_TARGET_TYPE (type);
f44316fa 9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9714 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9715
9716 case BINOP_MUL:
9717 case BINOP_DIV:
e1578042
JB
9718 case BINOP_REM:
9719 case BINOP_MOD:
14f9c5c9
AS
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 if (noside == EVAL_SKIP)
4c4b4cd2 9723 goto nosideret;
e1578042 9724 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 return value_zero (value_type (arg1), not_lval);
9728 }
14f9c5c9 9729 else
4c4b4cd2 9730 {
a53b7a21 9731 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9732 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9733 arg1 = cast_from_fixed (type, arg1);
df407dfe 9734 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9735 arg2 = cast_from_fixed (type, arg2);
f44316fa 9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9737 return ada_value_binop (arg1, arg2, op);
9738 }
9739
4c4b4cd2
PH
9740 case BINOP_EQUAL:
9741 case BINOP_NOTEQUAL:
14f9c5c9 9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9743 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9744 if (noside == EVAL_SKIP)
76a01679 9745 goto nosideret;
4c4b4cd2 9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9747 tem = 0;
4c4b4cd2 9748 else
f44316fa
UW
9749 {
9750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9751 tem = ada_value_equal (arg1, arg2);
9752 }
4c4b4cd2 9753 if (op == BINOP_NOTEQUAL)
76a01679 9754 tem = !tem;
fbb06eb1
UW
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9757
9758 case UNOP_NEG:
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
9761 goto nosideret;
df407dfe
AC
9762 else if (ada_is_fixed_point_type (value_type (arg1)))
9763 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9764 else
f44316fa
UW
9765 {
9766 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9767 return value_neg (arg1);
9768 }
4c4b4cd2 9769
2330c6c6
JB
9770 case BINOP_LOGICAL_AND:
9771 case BINOP_LOGICAL_OR:
9772 case UNOP_LOGICAL_NOT:
000d5124
JB
9773 {
9774 struct value *val;
9775
9776 *pos -= 1;
9777 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9778 type = language_bool_type (exp->language_defn, exp->gdbarch);
9779 return value_cast (type, val);
000d5124 9780 }
2330c6c6
JB
9781
9782 case BINOP_BITWISE_AND:
9783 case BINOP_BITWISE_IOR:
9784 case BINOP_BITWISE_XOR:
000d5124
JB
9785 {
9786 struct value *val;
9787
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9789 *pos = pc;
9790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9791
9792 return value_cast (value_type (arg1), val);
9793 }
2330c6c6 9794
14f9c5c9
AS
9795 case OP_VAR_VALUE:
9796 *pos -= 1;
6799def4 9797
14f9c5c9 9798 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9799 {
9800 *pos += 4;
9801 goto nosideret;
9802 }
9803 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9804 /* Only encountered when an unresolved symbol occurs in a
9805 context other than a function call, in which case, it is
52ce6436 9806 invalid. */
323e0a4a 9807 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9808 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9809 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9810 {
0c1f74cf 9811 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9812 /* Check to see if this is a tagged type. We also need to handle
9813 the case where the type is a reference to a tagged type, but
9814 we have to be careful to exclude pointers to tagged types.
9815 The latter should be shown as usual (as a pointer), whereas
9816 a reference should mostly be transparent to the user. */
9817 if (ada_is_tagged_type (type, 0)
9818 || (TYPE_CODE(type) == TYPE_CODE_REF
9819 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9820 {
9821 /* Tagged types are a little special in the fact that the real
9822 type is dynamic and can only be determined by inspecting the
9823 object's tag. This means that we need to get the object's
9824 value first (EVAL_NORMAL) and then extract the actual object
9825 type from its tag.
9826
9827 Note that we cannot skip the final step where we extract
9828 the object type from its tag, because the EVAL_NORMAL phase
9829 results in dynamic components being resolved into fixed ones.
9830 This can cause problems when trying to print the type
9831 description of tagged types whose parent has a dynamic size:
9832 We use the type name of the "_parent" component in order
9833 to print the name of the ancestor type in the type description.
9834 If that component had a dynamic size, the resolution into
9835 a fixed type would result in the loss of that type name,
9836 thus preventing us from printing the name of the ancestor
9837 type in the type description. */
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9839
9840 if (TYPE_CODE (type) != TYPE_CODE_REF)
9841 {
9842 struct type *actual_type;
9843
9844 actual_type = type_from_tag (ada_value_tag (arg1));
9845 if (actual_type == NULL)
9846 /* If, for some reason, we were unable to determine
9847 the actual type from the tag, then use the static
9848 approximation that we just computed as a fallback.
9849 This can happen if the debugging information is
9850 incomplete, for instance. */
9851 actual_type = type;
9852 return value_zero (actual_type, not_lval);
9853 }
9854 else
9855 {
9856 /* In the case of a ref, ada_coerce_ref takes care
9857 of determining the actual type. But the evaluation
9858 should return a ref as it should be valid to ask
9859 for its address; so rebuild a ref after coerce. */
9860 arg1 = ada_coerce_ref (arg1);
9861 return value_ref (arg1);
9862 }
0c1f74cf
JB
9863 }
9864
4c4b4cd2
PH
9865 *pos += 4;
9866 return value_zero
9867 (to_static_fixed_type
9868 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9869 not_lval);
9870 }
d2e4a39e 9871 else
4c4b4cd2 9872 {
284614f0 9873 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9874 return ada_to_fixed_value (arg1);
9875 }
9876
9877 case OP_FUNCALL:
9878 (*pos) += 2;
9879
9880 /* Allocate arg vector, including space for the function to be
9881 called in argvec[0] and a terminating NULL. */
9882 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9883 argvec =
9884 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9885
9886 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9888 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9889 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9890 else
9891 {
9892 for (tem = 0; tem <= nargs; tem += 1)
9893 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9894 argvec[tem] = 0;
9895
9896 if (noside == EVAL_SKIP)
9897 goto nosideret;
9898 }
9899
ad82864c
JB
9900 if (ada_is_constrained_packed_array_type
9901 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9902 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9903 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9904 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9905 /* This is a packed array that has already been fixed, and
9906 therefore already coerced to a simple array. Nothing further
9907 to do. */
9908 ;
df407dfe
AC
9909 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9910 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9911 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9912 argvec[0] = value_addr (argvec[0]);
9913
df407dfe 9914 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9915
9916 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9917 them. So, if this is an array typedef (encoding use for array
9918 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9919 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9920 type = ada_typedef_target_type (type);
9921
4c4b4cd2
PH
9922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9923 {
61ee279c 9924 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9925 {
9926 case TYPE_CODE_FUNC:
61ee279c 9927 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9928 break;
9929 case TYPE_CODE_ARRAY:
9930 break;
9931 case TYPE_CODE_STRUCT:
9932 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9933 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9934 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9935 break;
9936 default:
323e0a4a 9937 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9938 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9939 break;
9940 }
9941 }
9942
9943 switch (TYPE_CODE (type))
9944 {
9945 case TYPE_CODE_FUNC:
9946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9947 {
9948 struct type *rtype = TYPE_TARGET_TYPE (type);
9949
9950 if (TYPE_GNU_IFUNC (type))
9951 return allocate_value (TYPE_TARGET_TYPE (rtype));
9952 return allocate_value (rtype);
9953 }
4c4b4cd2 9954 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9955 case TYPE_CODE_INTERNAL_FUNCTION:
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9957 /* We don't know anything about what the internal
9958 function might return, but we have to return
9959 something. */
9960 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9961 not_lval);
9962 else
9963 return call_internal_function (exp->gdbarch, exp->language_defn,
9964 argvec[0], nargs, argvec + 1);
9965
4c4b4cd2
PH
9966 case TYPE_CODE_STRUCT:
9967 {
9968 int arity;
9969
4c4b4cd2
PH
9970 arity = ada_array_arity (type);
9971 type = ada_array_element_type (type, nargs);
9972 if (type == NULL)
323e0a4a 9973 error (_("cannot subscript or call a record"));
4c4b4cd2 9974 if (arity != nargs)
323e0a4a 9975 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9977 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9978 return
9979 unwrap_value (ada_value_subscript
9980 (argvec[0], nargs, argvec + 1));
9981 }
9982 case TYPE_CODE_ARRAY:
9983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9984 {
9985 type = ada_array_element_type (type, nargs);
9986 if (type == NULL)
323e0a4a 9987 error (_("element type of array unknown"));
4c4b4cd2 9988 else
0a07e705 9989 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9990 }
9991 return
9992 unwrap_value (ada_value_subscript
9993 (ada_coerce_to_simple_array (argvec[0]),
9994 nargs, argvec + 1));
9995 case TYPE_CODE_PTR: /* Pointer to array */
9996 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9998 {
9999 type = ada_array_element_type (type, nargs);
10000 if (type == NULL)
323e0a4a 10001 error (_("element type of array unknown"));
4c4b4cd2 10002 else
0a07e705 10003 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10004 }
10005 return
10006 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10007 nargs, argvec + 1));
10008
10009 default:
e1d5a0d2
PH
10010 error (_("Attempt to index or call something other than an "
10011 "array or function"));
4c4b4cd2
PH
10012 }
10013
10014 case TERNOP_SLICE:
10015 {
10016 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 struct value *low_bound_val =
10018 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10019 struct value *high_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 LONGEST low_bound;
10022 LONGEST high_bound;
5b4ee69b 10023
994b9211
AC
10024 low_bound_val = coerce_ref (low_bound_val);
10025 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10026 low_bound = pos_atr (low_bound_val);
10027 high_bound = pos_atr (high_bound_val);
963a6417 10028
4c4b4cd2
PH
10029 if (noside == EVAL_SKIP)
10030 goto nosideret;
10031
4c4b4cd2
PH
10032 /* If this is a reference to an aligner type, then remove all
10033 the aligners. */
df407dfe
AC
10034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10035 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10036 TYPE_TARGET_TYPE (value_type (array)) =
10037 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10038
ad82864c 10039 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10040 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10041
10042 /* If this is a reference to an array or an array lvalue,
10043 convert to a pointer. */
df407dfe
AC
10044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10045 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10046 && VALUE_LVAL (array) == lval_memory))
10047 array = value_addr (array);
10048
1265e4aa 10049 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10050 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10051 (value_type (array))))
0b5d8877 10052 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10053
10054 array = ada_coerce_to_simple_array_ptr (array);
10055
714e53ab
PH
10056 /* If we have more than one level of pointer indirection,
10057 dereference the value until we get only one level. */
df407dfe
AC
10058 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10059 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10060 == TYPE_CODE_PTR))
10061 array = value_ind (array);
10062
10063 /* Make sure we really do have an array type before going further,
10064 to avoid a SEGV when trying to get the index type or the target
10065 type later down the road if the debug info generated by
10066 the compiler is incorrect or incomplete. */
df407dfe 10067 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10068 error (_("cannot take slice of non-array"));
714e53ab 10069
828292f2
JB
10070 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10071 == TYPE_CODE_PTR)
4c4b4cd2 10072 {
828292f2
JB
10073 struct type *type0 = ada_check_typedef (value_type (array));
10074
0b5d8877 10075 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10076 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10077 else
10078 {
10079 struct type *arr_type0 =
828292f2 10080 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10081
f5938064
JG
10082 return ada_value_slice_from_ptr (array, arr_type0,
10083 longest_to_int (low_bound),
10084 longest_to_int (high_bound));
4c4b4cd2
PH
10085 }
10086 }
10087 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10088 return array;
10089 else if (high_bound < low_bound)
df407dfe 10090 return empty_array (value_type (array), low_bound);
4c4b4cd2 10091 else
529cad9c
PH
10092 return ada_value_slice (array, longest_to_int (low_bound),
10093 longest_to_int (high_bound));
4c4b4cd2 10094 }
14f9c5c9 10095
4c4b4cd2
PH
10096 case UNOP_IN_RANGE:
10097 (*pos) += 2;
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10099 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10100
14f9c5c9 10101 if (noside == EVAL_SKIP)
4c4b4cd2 10102 goto nosideret;
14f9c5c9 10103
4c4b4cd2
PH
10104 switch (TYPE_CODE (type))
10105 {
10106 default:
e1d5a0d2
PH
10107 lim_warning (_("Membership test incompletely implemented; "
10108 "always returns true"));
fbb06eb1
UW
10109 type = language_bool_type (exp->language_defn, exp->gdbarch);
10110 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10111
10112 case TYPE_CODE_RANGE:
030b4912
UW
10113 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10114 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10117 type = language_bool_type (exp->language_defn, exp->gdbarch);
10118 return
10119 value_from_longest (type,
4c4b4cd2
PH
10120 (value_less (arg1, arg3)
10121 || value_equal (arg1, arg3))
10122 && (value_less (arg2, arg1)
10123 || value_equal (arg2, arg1)));
10124 }
10125
10126 case BINOP_IN_BOUNDS:
14f9c5c9 10127 (*pos) += 2;
4c4b4cd2
PH
10128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10130
4c4b4cd2
PH
10131 if (noside == EVAL_SKIP)
10132 goto nosideret;
14f9c5c9 10133
4c4b4cd2 10134 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10135 {
10136 type = language_bool_type (exp->language_defn, exp->gdbarch);
10137 return value_zero (type, not_lval);
10138 }
14f9c5c9 10139
4c4b4cd2 10140 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10141
1eea4ebd
UW
10142 type = ada_index_type (value_type (arg2), tem, "range");
10143 if (!type)
10144 type = value_type (arg1);
14f9c5c9 10145
1eea4ebd
UW
10146 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10147 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10148
f44316fa
UW
10149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10151 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10152 return
fbb06eb1 10153 value_from_longest (type,
4c4b4cd2
PH
10154 (value_less (arg1, arg3)
10155 || value_equal (arg1, arg3))
10156 && (value_less (arg2, arg1)
10157 || value_equal (arg2, arg1)));
10158
10159 case TERNOP_IN_RANGE:
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10161 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163
10164 if (noside == EVAL_SKIP)
10165 goto nosideret;
10166
f44316fa
UW
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10169 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10170 return
fbb06eb1 10171 value_from_longest (type,
4c4b4cd2
PH
10172 (value_less (arg1, arg3)
10173 || value_equal (arg1, arg3))
10174 && (value_less (arg2, arg1)
10175 || value_equal (arg2, arg1)));
10176
10177 case OP_ATR_FIRST:
10178 case OP_ATR_LAST:
10179 case OP_ATR_LENGTH:
10180 {
76a01679 10181 struct type *type_arg;
5b4ee69b 10182
76a01679
JB
10183 if (exp->elts[*pos].opcode == OP_TYPE)
10184 {
10185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10186 arg1 = NULL;
5bc23cb3 10187 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10188 }
10189 else
10190 {
10191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10192 type_arg = NULL;
10193 }
10194
10195 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10196 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10197 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10198 *pos += 4;
10199
10200 if (noside == EVAL_SKIP)
10201 goto nosideret;
10202
10203 if (type_arg == NULL)
10204 {
10205 arg1 = ada_coerce_ref (arg1);
10206
ad82864c 10207 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10208 arg1 = ada_coerce_to_simple_array (arg1);
10209
1eea4ebd
UW
10210 type = ada_index_type (value_type (arg1), tem,
10211 ada_attribute_name (op));
10212 if (type == NULL)
10213 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10214
10215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10216 return allocate_value (type);
76a01679
JB
10217
10218 switch (op)
10219 {
10220 default: /* Should never happen. */
323e0a4a 10221 error (_("unexpected attribute encountered"));
76a01679 10222 case OP_ATR_FIRST:
1eea4ebd
UW
10223 return value_from_longest
10224 (type, ada_array_bound (arg1, tem, 0));
76a01679 10225 case OP_ATR_LAST:
1eea4ebd
UW
10226 return value_from_longest
10227 (type, ada_array_bound (arg1, tem, 1));
76a01679 10228 case OP_ATR_LENGTH:
1eea4ebd
UW
10229 return value_from_longest
10230 (type, ada_array_length (arg1, tem));
76a01679
JB
10231 }
10232 }
10233 else if (discrete_type_p (type_arg))
10234 {
10235 struct type *range_type;
0d5cff50 10236 const char *name = ada_type_name (type_arg);
5b4ee69b 10237
76a01679
JB
10238 range_type = NULL;
10239 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10240 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10241 if (range_type == NULL)
10242 range_type = type_arg;
10243 switch (op)
10244 {
10245 default:
323e0a4a 10246 error (_("unexpected attribute encountered"));
76a01679 10247 case OP_ATR_FIRST:
690cc4eb 10248 return value_from_longest
43bbcdc2 10249 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10250 case OP_ATR_LAST:
690cc4eb 10251 return value_from_longest
43bbcdc2 10252 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10253 case OP_ATR_LENGTH:
323e0a4a 10254 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10255 }
10256 }
10257 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10258 error (_("unimplemented type attribute"));
76a01679
JB
10259 else
10260 {
10261 LONGEST low, high;
10262
ad82864c
JB
10263 if (ada_is_constrained_packed_array_type (type_arg))
10264 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10265
1eea4ebd 10266 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10267 if (type == NULL)
1eea4ebd
UW
10268 type = builtin_type (exp->gdbarch)->builtin_int;
10269
76a01679
JB
10270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10271 return allocate_value (type);
10272
10273 switch (op)
10274 {
10275 default:
323e0a4a 10276 error (_("unexpected attribute encountered"));
76a01679 10277 case OP_ATR_FIRST:
1eea4ebd 10278 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10279 return value_from_longest (type, low);
10280 case OP_ATR_LAST:
1eea4ebd 10281 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10282 return value_from_longest (type, high);
10283 case OP_ATR_LENGTH:
1eea4ebd
UW
10284 low = ada_array_bound_from_type (type_arg, tem, 0);
10285 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10286 return value_from_longest (type, high - low + 1);
10287 }
10288 }
14f9c5c9
AS
10289 }
10290
4c4b4cd2
PH
10291 case OP_ATR_TAG:
10292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10293 if (noside == EVAL_SKIP)
76a01679 10294 goto nosideret;
4c4b4cd2
PH
10295
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10297 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10298
10299 return ada_value_tag (arg1);
10300
10301 case OP_ATR_MIN:
10302 case OP_ATR_MAX:
10303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10306 if (noside == EVAL_SKIP)
76a01679 10307 goto nosideret;
d2e4a39e 10308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10309 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10310 else
f44316fa
UW
10311 {
10312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10313 return value_binop (arg1, arg2,
10314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10315 }
14f9c5c9 10316
4c4b4cd2
PH
10317 case OP_ATR_MODULUS:
10318 {
31dedfee 10319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10320
5b4ee69b 10321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10322 if (noside == EVAL_SKIP)
10323 goto nosideret;
4c4b4cd2 10324
76a01679 10325 if (!ada_is_modular_type (type_arg))
323e0a4a 10326 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10327
76a01679
JB
10328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10329 ada_modulus (type_arg));
4c4b4cd2
PH
10330 }
10331
10332
10333 case OP_ATR_POS:
10334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 if (noside == EVAL_SKIP)
76a01679 10337 goto nosideret;
3cb382c9
UW
10338 type = builtin_type (exp->gdbarch)->builtin_int;
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (type, not_lval);
14f9c5c9 10341 else
3cb382c9 10342 return value_pos_atr (type, arg1);
14f9c5c9 10343
4c4b4cd2
PH
10344 case OP_ATR_SIZE:
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10346 type = value_type (arg1);
10347
10348 /* If the argument is a reference, then dereference its type, since
10349 the user is really asking for the size of the actual object,
10350 not the size of the pointer. */
10351 if (TYPE_CODE (type) == TYPE_CODE_REF)
10352 type = TYPE_TARGET_TYPE (type);
10353
4c4b4cd2 10354 if (noside == EVAL_SKIP)
76a01679 10355 goto nosideret;
4c4b4cd2 10356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10358 else
22601c15 10359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10361
10362 case OP_ATR_VAL:
10363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10365 type = exp->elts[pc + 2].type;
14f9c5c9 10366 if (noside == EVAL_SKIP)
76a01679 10367 goto nosideret;
4c4b4cd2 10368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10369 return value_zero (type, not_lval);
4c4b4cd2 10370 else
76a01679 10371 return value_val_atr (type, arg1);
4c4b4cd2
PH
10372
10373 case BINOP_EXP:
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 if (noside == EVAL_SKIP)
10377 goto nosideret;
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10379 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10380 else
f44316fa
UW
10381 {
10382 /* For integer exponentiation operations,
10383 only promote the first argument. */
10384 if (is_integral_type (value_type (arg2)))
10385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10386 else
10387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10388
10389 return value_binop (arg1, arg2, op);
10390 }
4c4b4cd2
PH
10391
10392 case UNOP_PLUS:
10393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (noside == EVAL_SKIP)
10395 goto nosideret;
10396 else
10397 return arg1;
10398
10399 case UNOP_ABS:
10400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10402 goto nosideret;
f44316fa 10403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10405 return value_neg (arg1);
14f9c5c9 10406 else
4c4b4cd2 10407 return arg1;
14f9c5c9
AS
10408
10409 case UNOP_IND:
6b0d7253 10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10411 if (noside == EVAL_SKIP)
4c4b4cd2 10412 goto nosideret;
df407dfe 10413 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10415 {
10416 if (ada_is_array_descriptor_type (type))
10417 /* GDB allows dereferencing GNAT array descriptors. */
10418 {
10419 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10420
4c4b4cd2 10421 if (arrType == NULL)
323e0a4a 10422 error (_("Attempt to dereference null array pointer."));
00a4c844 10423 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10424 }
10425 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10426 || TYPE_CODE (type) == TYPE_CODE_REF
10427 /* In C you can dereference an array to get the 1st elt. */
10428 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10429 {
10430 type = to_static_fixed_type
10431 (ada_aligned_type
10432 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10433 check_size (type);
10434 return value_zero (type, lval_memory);
10435 }
4c4b4cd2 10436 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10437 {
10438 /* GDB allows dereferencing an int. */
10439 if (expect_type == NULL)
10440 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10441 lval_memory);
10442 else
10443 {
10444 expect_type =
10445 to_static_fixed_type (ada_aligned_type (expect_type));
10446 return value_zero (expect_type, lval_memory);
10447 }
10448 }
4c4b4cd2 10449 else
323e0a4a 10450 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10451 }
0963b4bd 10452 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10453 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10454
96967637
JB
10455 if (TYPE_CODE (type) == TYPE_CODE_INT)
10456 /* GDB allows dereferencing an int. If we were given
10457 the expect_type, then use that as the target type.
10458 Otherwise, assume that the target type is an int. */
10459 {
10460 if (expect_type != NULL)
10461 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10462 arg1));
10463 else
10464 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10465 (CORE_ADDR) value_as_address (arg1));
10466 }
6b0d7253 10467
4c4b4cd2
PH
10468 if (ada_is_array_descriptor_type (type))
10469 /* GDB allows dereferencing GNAT array descriptors. */
10470 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10471 else
4c4b4cd2 10472 return ada_value_ind (arg1);
14f9c5c9
AS
10473
10474 case STRUCTOP_STRUCT:
10475 tem = longest_to_int (exp->elts[pc + 1].longconst);
10476 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 if (noside == EVAL_SKIP)
4c4b4cd2 10479 goto nosideret;
14f9c5c9 10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10481 {
df407dfe 10482 struct type *type1 = value_type (arg1);
5b4ee69b 10483
76a01679
JB
10484 if (ada_is_tagged_type (type1, 1))
10485 {
10486 type = ada_lookup_struct_elt_type (type1,
10487 &exp->elts[pc + 2].string,
10488 1, 1, NULL);
10489 if (type == NULL)
10490 /* In this case, we assume that the field COULD exist
10491 in some extension of the type. Return an object of
10492 "type" void, which will match any formal
0963b4bd 10493 (see ada_type_match). */
30b15541
UW
10494 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10495 lval_memory);
76a01679
JB
10496 }
10497 else
10498 type =
10499 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10500 0, NULL);
10501
10502 return value_zero (ada_aligned_type (type), lval_memory);
10503 }
14f9c5c9 10504 else
284614f0
JB
10505 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10506 arg1 = unwrap_value (arg1);
10507 return ada_to_fixed_value (arg1);
10508
14f9c5c9 10509 case OP_TYPE:
4c4b4cd2
PH
10510 /* The value is not supposed to be used. This is here to make it
10511 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10512 (*pos) += 2;
10513 if (noside == EVAL_SKIP)
4c4b4cd2 10514 goto nosideret;
14f9c5c9 10515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10516 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10517 else
323e0a4a 10518 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10519
10520 case OP_AGGREGATE:
10521 case OP_CHOICES:
10522 case OP_OTHERS:
10523 case OP_DISCRETE_RANGE:
10524 case OP_POSITIONAL:
10525 case OP_NAME:
10526 if (noside == EVAL_NORMAL)
10527 switch (op)
10528 {
10529 case OP_NAME:
10530 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10531 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10532 case OP_AGGREGATE:
10533 error (_("Aggregates only allowed on the right of an assignment"));
10534 default:
0963b4bd
MS
10535 internal_error (__FILE__, __LINE__,
10536 _("aggregate apparently mangled"));
52ce6436
PH
10537 }
10538
10539 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10540 *pos += oplen - 1;
10541 for (tem = 0; tem < nargs; tem += 1)
10542 ada_evaluate_subexp (NULL, exp, pos, noside);
10543 goto nosideret;
14f9c5c9
AS
10544 }
10545
10546nosideret:
22601c15 10547 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10548}
14f9c5c9 10549\f
d2e4a39e 10550
4c4b4cd2 10551 /* Fixed point */
14f9c5c9
AS
10552
10553/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10554 type name that encodes the 'small and 'delta information.
4c4b4cd2 10555 Otherwise, return NULL. */
14f9c5c9 10556
d2e4a39e 10557static const char *
ebf56fd3 10558fixed_type_info (struct type *type)
14f9c5c9 10559{
d2e4a39e 10560 const char *name = ada_type_name (type);
14f9c5c9
AS
10561 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10562
d2e4a39e
AS
10563 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10564 {
14f9c5c9 10565 const char *tail = strstr (name, "___XF_");
5b4ee69b 10566
14f9c5c9 10567 if (tail == NULL)
4c4b4cd2 10568 return NULL;
d2e4a39e 10569 else
4c4b4cd2 10570 return tail + 5;
14f9c5c9
AS
10571 }
10572 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10573 return fixed_type_info (TYPE_TARGET_TYPE (type));
10574 else
10575 return NULL;
10576}
10577
4c4b4cd2 10578/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10579
10580int
ebf56fd3 10581ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10582{
10583 return fixed_type_info (type) != NULL;
10584}
10585
4c4b4cd2
PH
10586/* Return non-zero iff TYPE represents a System.Address type. */
10587
10588int
10589ada_is_system_address_type (struct type *type)
10590{
10591 return (TYPE_NAME (type)
10592 && strcmp (TYPE_NAME (type), "system__address") == 0);
10593}
10594
14f9c5c9
AS
10595/* Assuming that TYPE is the representation of an Ada fixed-point
10596 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10597 delta cannot be determined. */
14f9c5c9
AS
10598
10599DOUBLEST
ebf56fd3 10600ada_delta (struct type *type)
14f9c5c9
AS
10601{
10602 const char *encoding = fixed_type_info (type);
facc390f 10603 DOUBLEST num, den;
14f9c5c9 10604
facc390f
JB
10605 /* Strictly speaking, num and den are encoded as integer. However,
10606 they may not fit into a long, and they will have to be converted
10607 to DOUBLEST anyway. So scan them as DOUBLEST. */
10608 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10609 &num, &den) < 2)
14f9c5c9 10610 return -1.0;
d2e4a39e 10611 else
facc390f 10612 return num / den;
14f9c5c9
AS
10613}
10614
10615/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10616 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10617
10618static DOUBLEST
ebf56fd3 10619scaling_factor (struct type *type)
14f9c5c9
AS
10620{
10621 const char *encoding = fixed_type_info (type);
facc390f 10622 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10623 int n;
d2e4a39e 10624
facc390f
JB
10625 /* Strictly speaking, num's and den's are encoded as integer. However,
10626 they may not fit into a long, and they will have to be converted
10627 to DOUBLEST anyway. So scan them as DOUBLEST. */
10628 n = sscanf (encoding,
10629 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10630 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10631 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10632
10633 if (n < 2)
10634 return 1.0;
10635 else if (n == 4)
facc390f 10636 return num1 / den1;
d2e4a39e 10637 else
facc390f 10638 return num0 / den0;
14f9c5c9
AS
10639}
10640
10641
10642/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10643 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10644
10645DOUBLEST
ebf56fd3 10646ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10647{
d2e4a39e 10648 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10649}
10650
4c4b4cd2
PH
10651/* The representation of a fixed-point value of type TYPE
10652 corresponding to the value X. */
14f9c5c9
AS
10653
10654LONGEST
ebf56fd3 10655ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10656{
10657 return (LONGEST) (x / scaling_factor (type) + 0.5);
10658}
10659
14f9c5c9 10660\f
d2e4a39e 10661
4c4b4cd2 10662 /* Range types */
14f9c5c9
AS
10663
10664/* Scan STR beginning at position K for a discriminant name, and
10665 return the value of that discriminant field of DVAL in *PX. If
10666 PNEW_K is not null, put the position of the character beyond the
10667 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10668 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10669
10670static int
07d8f827 10671scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10672 int *pnew_k)
14f9c5c9
AS
10673{
10674 static char *bound_buffer = NULL;
10675 static size_t bound_buffer_len = 0;
10676 char *bound;
10677 char *pend;
d2e4a39e 10678 struct value *bound_val;
14f9c5c9
AS
10679
10680 if (dval == NULL || str == NULL || str[k] == '\0')
10681 return 0;
10682
d2e4a39e 10683 pend = strstr (str + k, "__");
14f9c5c9
AS
10684 if (pend == NULL)
10685 {
d2e4a39e 10686 bound = str + k;
14f9c5c9
AS
10687 k += strlen (bound);
10688 }
d2e4a39e 10689 else
14f9c5c9 10690 {
d2e4a39e 10691 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10692 bound = bound_buffer;
d2e4a39e
AS
10693 strncpy (bound_buffer, str + k, pend - (str + k));
10694 bound[pend - (str + k)] = '\0';
10695 k = pend - str;
14f9c5c9 10696 }
d2e4a39e 10697
df407dfe 10698 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10699 if (bound_val == NULL)
10700 return 0;
10701
10702 *px = value_as_long (bound_val);
10703 if (pnew_k != NULL)
10704 *pnew_k = k;
10705 return 1;
10706}
10707
10708/* Value of variable named NAME in the current environment. If
10709 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10710 otherwise causes an error with message ERR_MSG. */
10711
d2e4a39e
AS
10712static struct value *
10713get_var_value (char *name, char *err_msg)
14f9c5c9 10714{
4c4b4cd2 10715 struct ada_symbol_info *syms;
14f9c5c9
AS
10716 int nsyms;
10717
4c4b4cd2 10718 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10719 &syms);
14f9c5c9
AS
10720
10721 if (nsyms != 1)
10722 {
10723 if (err_msg == NULL)
4c4b4cd2 10724 return 0;
14f9c5c9 10725 else
8a3fe4f8 10726 error (("%s"), err_msg);
14f9c5c9
AS
10727 }
10728
4c4b4cd2 10729 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10730}
d2e4a39e 10731
14f9c5c9 10732/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10733 no such variable found, returns 0, and sets *FLAG to 0. If
10734 successful, sets *FLAG to 1. */
10735
14f9c5c9 10736LONGEST
4c4b4cd2 10737get_int_var_value (char *name, int *flag)
14f9c5c9 10738{
4c4b4cd2 10739 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10740
14f9c5c9
AS
10741 if (var_val == 0)
10742 {
10743 if (flag != NULL)
4c4b4cd2 10744 *flag = 0;
14f9c5c9
AS
10745 return 0;
10746 }
10747 else
10748 {
10749 if (flag != NULL)
4c4b4cd2 10750 *flag = 1;
14f9c5c9
AS
10751 return value_as_long (var_val);
10752 }
10753}
d2e4a39e 10754
14f9c5c9
AS
10755
10756/* Return a range type whose base type is that of the range type named
10757 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10758 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10759 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10760 corresponding range type from debug information; fall back to using it
10761 if symbol lookup fails. If a new type must be created, allocate it
10762 like ORIG_TYPE was. The bounds information, in general, is encoded
10763 in NAME, the base type given in the named range type. */
14f9c5c9 10764
d2e4a39e 10765static struct type *
28c85d6c 10766to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10767{
0d5cff50 10768 const char *name;
14f9c5c9 10769 struct type *base_type;
d2e4a39e 10770 char *subtype_info;
14f9c5c9 10771
28c85d6c
JB
10772 gdb_assert (raw_type != NULL);
10773 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10774
1ce677a4 10775 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10776 base_type = TYPE_TARGET_TYPE (raw_type);
10777 else
10778 base_type = raw_type;
10779
28c85d6c 10780 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10781 subtype_info = strstr (name, "___XD");
10782 if (subtype_info == NULL)
690cc4eb 10783 {
43bbcdc2
PH
10784 LONGEST L = ada_discrete_type_low_bound (raw_type);
10785 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10786
690cc4eb
PH
10787 if (L < INT_MIN || U > INT_MAX)
10788 return raw_type;
10789 else
28c85d6c 10790 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10791 ada_discrete_type_low_bound (raw_type),
10792 ada_discrete_type_high_bound (raw_type));
690cc4eb 10793 }
14f9c5c9
AS
10794 else
10795 {
10796 static char *name_buf = NULL;
10797 static size_t name_len = 0;
10798 int prefix_len = subtype_info - name;
10799 LONGEST L, U;
10800 struct type *type;
10801 char *bounds_str;
10802 int n;
10803
10804 GROW_VECT (name_buf, name_len, prefix_len + 5);
10805 strncpy (name_buf, name, prefix_len);
10806 name_buf[prefix_len] = '\0';
10807
10808 subtype_info += 5;
10809 bounds_str = strchr (subtype_info, '_');
10810 n = 1;
10811
d2e4a39e 10812 if (*subtype_info == 'L')
4c4b4cd2
PH
10813 {
10814 if (!ada_scan_number (bounds_str, n, &L, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10816 return raw_type;
10817 if (bounds_str[n] == '_')
10818 n += 2;
0963b4bd 10819 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10820 n += 1;
10821 subtype_info += 1;
10822 }
d2e4a39e 10823 else
4c4b4cd2
PH
10824 {
10825 int ok;
5b4ee69b 10826
4c4b4cd2
PH
10827 strcpy (name_buf + prefix_len, "___L");
10828 L = get_int_var_value (name_buf, &ok);
10829 if (!ok)
10830 {
323e0a4a 10831 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10832 L = 1;
10833 }
10834 }
14f9c5c9 10835
d2e4a39e 10836 if (*subtype_info == 'U')
4c4b4cd2
PH
10837 {
10838 if (!ada_scan_number (bounds_str, n, &U, &n)
10839 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10840 return raw_type;
10841 }
d2e4a39e 10842 else
4c4b4cd2
PH
10843 {
10844 int ok;
5b4ee69b 10845
4c4b4cd2
PH
10846 strcpy (name_buf + prefix_len, "___U");
10847 U = get_int_var_value (name_buf, &ok);
10848 if (!ok)
10849 {
323e0a4a 10850 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10851 U = L;
10852 }
10853 }
14f9c5c9 10854
28c85d6c 10855 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10856 TYPE_NAME (type) = name;
14f9c5c9
AS
10857 return type;
10858 }
10859}
10860
4c4b4cd2
PH
10861/* True iff NAME is the name of a range type. */
10862
14f9c5c9 10863int
d2e4a39e 10864ada_is_range_type_name (const char *name)
14f9c5c9
AS
10865{
10866 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10867}
14f9c5c9 10868\f
d2e4a39e 10869
4c4b4cd2
PH
10870 /* Modular types */
10871
10872/* True iff TYPE is an Ada modular type. */
14f9c5c9 10873
14f9c5c9 10874int
d2e4a39e 10875ada_is_modular_type (struct type *type)
14f9c5c9 10876{
18af8284 10877 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10878
10879 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10880 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10881 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10882}
10883
4c4b4cd2
PH
10884/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10885
61ee279c 10886ULONGEST
0056e4d5 10887ada_modulus (struct type *type)
14f9c5c9 10888{
43bbcdc2 10889 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10890}
d2e4a39e 10891\f
f7f9143b
JB
10892
10893/* Ada exception catchpoint support:
10894 ---------------------------------
10895
10896 We support 3 kinds of exception catchpoints:
10897 . catchpoints on Ada exceptions
10898 . catchpoints on unhandled Ada exceptions
10899 . catchpoints on failed assertions
10900
10901 Exceptions raised during failed assertions, or unhandled exceptions
10902 could perfectly be caught with the general catchpoint on Ada exceptions.
10903 However, we can easily differentiate these two special cases, and having
10904 the option to distinguish these two cases from the rest can be useful
10905 to zero-in on certain situations.
10906
10907 Exception catchpoints are a specialized form of breakpoint,
10908 since they rely on inserting breakpoints inside known routines
10909 of the GNAT runtime. The implementation therefore uses a standard
10910 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10911 of breakpoint_ops.
10912
0259addd
JB
10913 Support in the runtime for exception catchpoints have been changed
10914 a few times already, and these changes affect the implementation
10915 of these catchpoints. In order to be able to support several
10916 variants of the runtime, we use a sniffer that will determine
28010a5d 10917 the runtime variant used by the program being debugged. */
f7f9143b
JB
10918
10919/* The different types of catchpoints that we introduced for catching
10920 Ada exceptions. */
10921
10922enum exception_catchpoint_kind
10923{
10924 ex_catch_exception,
10925 ex_catch_exception_unhandled,
10926 ex_catch_assert
10927};
10928
3d0b0fa3
JB
10929/* Ada's standard exceptions. */
10930
10931static char *standard_exc[] = {
10932 "constraint_error",
10933 "program_error",
10934 "storage_error",
10935 "tasking_error"
10936};
10937
0259addd
JB
10938typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10939
10940/* A structure that describes how to support exception catchpoints
10941 for a given executable. */
10942
10943struct exception_support_info
10944{
10945 /* The name of the symbol to break on in order to insert
10946 a catchpoint on exceptions. */
10947 const char *catch_exception_sym;
10948
10949 /* The name of the symbol to break on in order to insert
10950 a catchpoint on unhandled exceptions. */
10951 const char *catch_exception_unhandled_sym;
10952
10953 /* The name of the symbol to break on in order to insert
10954 a catchpoint on failed assertions. */
10955 const char *catch_assert_sym;
10956
10957 /* Assuming that the inferior just triggered an unhandled exception
10958 catchpoint, this function is responsible for returning the address
10959 in inferior memory where the name of that exception is stored.
10960 Return zero if the address could not be computed. */
10961 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10962};
10963
10964static CORE_ADDR ada_unhandled_exception_name_addr (void);
10965static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10966
10967/* The following exception support info structure describes how to
10968 implement exception catchpoints with the latest version of the
10969 Ada runtime (as of 2007-03-06). */
10970
10971static const struct exception_support_info default_exception_support_info =
10972{
10973 "__gnat_debug_raise_exception", /* catch_exception_sym */
10974 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10975 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10976 ada_unhandled_exception_name_addr
10977};
10978
10979/* The following exception support info structure describes how to
10980 implement exception catchpoints with a slightly older version
10981 of the Ada runtime. */
10982
10983static const struct exception_support_info exception_support_info_fallback =
10984{
10985 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10986 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10987 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10988 ada_unhandled_exception_name_addr_from_raise
10989};
10990
f17011e0
JB
10991/* Return nonzero if we can detect the exception support routines
10992 described in EINFO.
10993
10994 This function errors out if an abnormal situation is detected
10995 (for instance, if we find the exception support routines, but
10996 that support is found to be incomplete). */
10997
10998static int
10999ada_has_this_exception_support (const struct exception_support_info *einfo)
11000{
11001 struct symbol *sym;
11002
11003 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11004 that should be compiled with debugging information. As a result, we
11005 expect to find that symbol in the symtabs. */
11006
11007 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11008 if (sym == NULL)
a6af7abe
JB
11009 {
11010 /* Perhaps we did not find our symbol because the Ada runtime was
11011 compiled without debugging info, or simply stripped of it.
11012 It happens on some GNU/Linux distributions for instance, where
11013 users have to install a separate debug package in order to get
11014 the runtime's debugging info. In that situation, let the user
11015 know why we cannot insert an Ada exception catchpoint.
11016
11017 Note: Just for the purpose of inserting our Ada exception
11018 catchpoint, we could rely purely on the associated minimal symbol.
11019 But we would be operating in degraded mode anyway, since we are
11020 still lacking the debugging info needed later on to extract
11021 the name of the exception being raised (this name is printed in
11022 the catchpoint message, and is also used when trying to catch
11023 a specific exception). We do not handle this case for now. */
11024 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11025 error (_("Your Ada runtime appears to be missing some debugging "
11026 "information.\nCannot insert Ada exception catchpoint "
11027 "in this configuration."));
11028
11029 return 0;
11030 }
f17011e0
JB
11031
11032 /* Make sure that the symbol we found corresponds to a function. */
11033
11034 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11035 error (_("Symbol \"%s\" is not a function (class = %d)"),
11036 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11037
11038 return 1;
11039}
11040
0259addd
JB
11041/* Inspect the Ada runtime and determine which exception info structure
11042 should be used to provide support for exception catchpoints.
11043
3eecfa55
JB
11044 This function will always set the per-inferior exception_info,
11045 or raise an error. */
0259addd
JB
11046
11047static void
11048ada_exception_support_info_sniffer (void)
11049{
3eecfa55 11050 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11051
11052 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11053 if (data->exception_info != NULL)
0259addd
JB
11054 return;
11055
11056 /* Check the latest (default) exception support info. */
f17011e0 11057 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11058 {
3eecfa55 11059 data->exception_info = &default_exception_support_info;
0259addd
JB
11060 return;
11061 }
11062
11063 /* Try our fallback exception suport info. */
f17011e0 11064 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11065 {
3eecfa55 11066 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11067 return;
11068 }
11069
11070 /* Sometimes, it is normal for us to not be able to find the routine
11071 we are looking for. This happens when the program is linked with
11072 the shared version of the GNAT runtime, and the program has not been
11073 started yet. Inform the user of these two possible causes if
11074 applicable. */
11075
ccefe4c4 11076 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11077 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11078
11079 /* If the symbol does not exist, then check that the program is
11080 already started, to make sure that shared libraries have been
11081 loaded. If it is not started, this may mean that the symbol is
11082 in a shared library. */
11083
11084 if (ptid_get_pid (inferior_ptid) == 0)
11085 error (_("Unable to insert catchpoint. Try to start the program first."));
11086
11087 /* At this point, we know that we are debugging an Ada program and
11088 that the inferior has been started, but we still are not able to
0963b4bd 11089 find the run-time symbols. That can mean that we are in
0259addd
JB
11090 configurable run time mode, or that a-except as been optimized
11091 out by the linker... In any case, at this point it is not worth
11092 supporting this feature. */
11093
7dda8cff 11094 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11095}
11096
f7f9143b
JB
11097/* True iff FRAME is very likely to be that of a function that is
11098 part of the runtime system. This is all very heuristic, but is
11099 intended to be used as advice as to what frames are uninteresting
11100 to most users. */
11101
11102static int
11103is_known_support_routine (struct frame_info *frame)
11104{
4ed6b5be 11105 struct symtab_and_line sal;
0d5cff50 11106 const char *func_name;
692465f1 11107 enum language func_lang;
f7f9143b 11108 int i;
f35a17b5 11109 const char *fullname;
f7f9143b 11110
4ed6b5be
JB
11111 /* If this code does not have any debugging information (no symtab),
11112 This cannot be any user code. */
f7f9143b 11113
4ed6b5be 11114 find_frame_sal (frame, &sal);
f7f9143b
JB
11115 if (sal.symtab == NULL)
11116 return 1;
11117
4ed6b5be
JB
11118 /* If there is a symtab, but the associated source file cannot be
11119 located, then assume this is not user code: Selecting a frame
11120 for which we cannot display the code would not be very helpful
11121 for the user. This should also take care of case such as VxWorks
11122 where the kernel has some debugging info provided for a few units. */
f7f9143b 11123
f35a17b5
JK
11124 fullname = symtab_to_fullname (sal.symtab);
11125 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11126 return 1;
11127
4ed6b5be
JB
11128 /* Check the unit filename againt the Ada runtime file naming.
11129 We also check the name of the objfile against the name of some
11130 known system libraries that sometimes come with debugging info
11131 too. */
11132
f7f9143b
JB
11133 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11134 {
11135 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11136 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11137 return 1;
4ed6b5be
JB
11138 if (sal.symtab->objfile != NULL
11139 && re_exec (sal.symtab->objfile->name))
11140 return 1;
f7f9143b
JB
11141 }
11142
4ed6b5be 11143 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11144
e9e07ba6 11145 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11146 if (func_name == NULL)
11147 return 1;
11148
11149 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11150 {
11151 re_comp (known_auxiliary_function_name_patterns[i]);
11152 if (re_exec (func_name))
11153 return 1;
11154 }
11155
11156 return 0;
11157}
11158
11159/* Find the first frame that contains debugging information and that is not
11160 part of the Ada run-time, starting from FI and moving upward. */
11161
0ef643c8 11162void
f7f9143b
JB
11163ada_find_printable_frame (struct frame_info *fi)
11164{
11165 for (; fi != NULL; fi = get_prev_frame (fi))
11166 {
11167 if (!is_known_support_routine (fi))
11168 {
11169 select_frame (fi);
11170 break;
11171 }
11172 }
11173
11174}
11175
11176/* Assuming that the inferior just triggered an unhandled exception
11177 catchpoint, return the address in inferior memory where the name
11178 of the exception is stored.
11179
11180 Return zero if the address could not be computed. */
11181
11182static CORE_ADDR
11183ada_unhandled_exception_name_addr (void)
0259addd
JB
11184{
11185 return parse_and_eval_address ("e.full_name");
11186}
11187
11188/* Same as ada_unhandled_exception_name_addr, except that this function
11189 should be used when the inferior uses an older version of the runtime,
11190 where the exception name needs to be extracted from a specific frame
11191 several frames up in the callstack. */
11192
11193static CORE_ADDR
11194ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11195{
11196 int frame_level;
11197 struct frame_info *fi;
3eecfa55 11198 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11199
11200 /* To determine the name of this exception, we need to select
11201 the frame corresponding to RAISE_SYM_NAME. This frame is
11202 at least 3 levels up, so we simply skip the first 3 frames
11203 without checking the name of their associated function. */
11204 fi = get_current_frame ();
11205 for (frame_level = 0; frame_level < 3; frame_level += 1)
11206 if (fi != NULL)
11207 fi = get_prev_frame (fi);
11208
11209 while (fi != NULL)
11210 {
0d5cff50 11211 const char *func_name;
692465f1
JB
11212 enum language func_lang;
11213
e9e07ba6 11214 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11215 if (func_name != NULL
3eecfa55 11216 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11217 break; /* We found the frame we were looking for... */
11218 fi = get_prev_frame (fi);
11219 }
11220
11221 if (fi == NULL)
11222 return 0;
11223
11224 select_frame (fi);
11225 return parse_and_eval_address ("id.full_name");
11226}
11227
11228/* Assuming the inferior just triggered an Ada exception catchpoint
11229 (of any type), return the address in inferior memory where the name
11230 of the exception is stored, if applicable.
11231
11232 Return zero if the address could not be computed, or if not relevant. */
11233
11234static CORE_ADDR
11235ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11236 struct breakpoint *b)
11237{
3eecfa55
JB
11238 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11239
f7f9143b
JB
11240 switch (ex)
11241 {
11242 case ex_catch_exception:
11243 return (parse_and_eval_address ("e.full_name"));
11244 break;
11245
11246 case ex_catch_exception_unhandled:
3eecfa55 11247 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11248 break;
11249
11250 case ex_catch_assert:
11251 return 0; /* Exception name is not relevant in this case. */
11252 break;
11253
11254 default:
11255 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11256 break;
11257 }
11258
11259 return 0; /* Should never be reached. */
11260}
11261
11262/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11263 any error that ada_exception_name_addr_1 might cause to be thrown.
11264 When an error is intercepted, a warning with the error message is printed,
11265 and zero is returned. */
11266
11267static CORE_ADDR
11268ada_exception_name_addr (enum exception_catchpoint_kind ex,
11269 struct breakpoint *b)
11270{
bfd189b1 11271 volatile struct gdb_exception e;
f7f9143b
JB
11272 CORE_ADDR result = 0;
11273
11274 TRY_CATCH (e, RETURN_MASK_ERROR)
11275 {
11276 result = ada_exception_name_addr_1 (ex, b);
11277 }
11278
11279 if (e.reason < 0)
11280 {
11281 warning (_("failed to get exception name: %s"), e.message);
11282 return 0;
11283 }
11284
11285 return result;
11286}
11287
28010a5d
PA
11288static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11289 char *, char **,
c0a91b2b 11290 const struct breakpoint_ops **);
28010a5d
PA
11291static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11292
11293/* Ada catchpoints.
11294
11295 In the case of catchpoints on Ada exceptions, the catchpoint will
11296 stop the target on every exception the program throws. When a user
11297 specifies the name of a specific exception, we translate this
11298 request into a condition expression (in text form), and then parse
11299 it into an expression stored in each of the catchpoint's locations.
11300 We then use this condition to check whether the exception that was
11301 raised is the one the user is interested in. If not, then the
11302 target is resumed again. We store the name of the requested
11303 exception, in order to be able to re-set the condition expression
11304 when symbols change. */
11305
11306/* An instance of this type is used to represent an Ada catchpoint
11307 breakpoint location. It includes a "struct bp_location" as a kind
11308 of base class; users downcast to "struct bp_location *" when
11309 needed. */
11310
11311struct ada_catchpoint_location
11312{
11313 /* The base class. */
11314 struct bp_location base;
11315
11316 /* The condition that checks whether the exception that was raised
11317 is the specific exception the user specified on catchpoint
11318 creation. */
11319 struct expression *excep_cond_expr;
11320};
11321
11322/* Implement the DTOR method in the bp_location_ops structure for all
11323 Ada exception catchpoint kinds. */
11324
11325static void
11326ada_catchpoint_location_dtor (struct bp_location *bl)
11327{
11328 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11329
11330 xfree (al->excep_cond_expr);
11331}
11332
11333/* The vtable to be used in Ada catchpoint locations. */
11334
11335static const struct bp_location_ops ada_catchpoint_location_ops =
11336{
11337 ada_catchpoint_location_dtor
11338};
11339
11340/* An instance of this type is used to represent an Ada catchpoint.
11341 It includes a "struct breakpoint" as a kind of base class; users
11342 downcast to "struct breakpoint *" when needed. */
11343
11344struct ada_catchpoint
11345{
11346 /* The base class. */
11347 struct breakpoint base;
11348
11349 /* The name of the specific exception the user specified. */
11350 char *excep_string;
11351};
11352
11353/* Parse the exception condition string in the context of each of the
11354 catchpoint's locations, and store them for later evaluation. */
11355
11356static void
11357create_excep_cond_exprs (struct ada_catchpoint *c)
11358{
11359 struct cleanup *old_chain;
11360 struct bp_location *bl;
11361 char *cond_string;
11362
11363 /* Nothing to do if there's no specific exception to catch. */
11364 if (c->excep_string == NULL)
11365 return;
11366
11367 /* Same if there are no locations... */
11368 if (c->base.loc == NULL)
11369 return;
11370
11371 /* Compute the condition expression in text form, from the specific
11372 expection we want to catch. */
11373 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11374 old_chain = make_cleanup (xfree, cond_string);
11375
11376 /* Iterate over all the catchpoint's locations, and parse an
11377 expression for each. */
11378 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11379 {
11380 struct ada_catchpoint_location *ada_loc
11381 = (struct ada_catchpoint_location *) bl;
11382 struct expression *exp = NULL;
11383
11384 if (!bl->shlib_disabled)
11385 {
11386 volatile struct gdb_exception e;
bbc13ae3 11387 const char *s;
28010a5d
PA
11388
11389 s = cond_string;
11390 TRY_CATCH (e, RETURN_MASK_ERROR)
11391 {
1bb9788d
TT
11392 exp = parse_exp_1 (&s, bl->address,
11393 block_for_pc (bl->address), 0);
28010a5d
PA
11394 }
11395 if (e.reason < 0)
11396 warning (_("failed to reevaluate internal exception condition "
11397 "for catchpoint %d: %s"),
11398 c->base.number, e.message);
11399 }
11400
11401 ada_loc->excep_cond_expr = exp;
11402 }
11403
11404 do_cleanups (old_chain);
11405}
11406
11407/* Implement the DTOR method in the breakpoint_ops structure for all
11408 exception catchpoint kinds. */
11409
11410static void
11411dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11412{
11413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11414
11415 xfree (c->excep_string);
348d480f 11416
2060206e 11417 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11418}
11419
11420/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11421 structure for all exception catchpoint kinds. */
11422
11423static struct bp_location *
11424allocate_location_exception (enum exception_catchpoint_kind ex,
11425 struct breakpoint *self)
11426{
11427 struct ada_catchpoint_location *loc;
11428
11429 loc = XNEW (struct ada_catchpoint_location);
11430 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11431 loc->excep_cond_expr = NULL;
11432 return &loc->base;
11433}
11434
11435/* Implement the RE_SET method in the breakpoint_ops structure for all
11436 exception catchpoint kinds. */
11437
11438static void
11439re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11440{
11441 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11442
11443 /* Call the base class's method. This updates the catchpoint's
11444 locations. */
2060206e 11445 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11446
11447 /* Reparse the exception conditional expressions. One for each
11448 location. */
11449 create_excep_cond_exprs (c);
11450}
11451
11452/* Returns true if we should stop for this breakpoint hit. If the
11453 user specified a specific exception, we only want to cause a stop
11454 if the program thrown that exception. */
11455
11456static int
11457should_stop_exception (const struct bp_location *bl)
11458{
11459 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11460 const struct ada_catchpoint_location *ada_loc
11461 = (const struct ada_catchpoint_location *) bl;
11462 volatile struct gdb_exception ex;
11463 int stop;
11464
11465 /* With no specific exception, should always stop. */
11466 if (c->excep_string == NULL)
11467 return 1;
11468
11469 if (ada_loc->excep_cond_expr == NULL)
11470 {
11471 /* We will have a NULL expression if back when we were creating
11472 the expressions, this location's had failed to parse. */
11473 return 1;
11474 }
11475
11476 stop = 1;
11477 TRY_CATCH (ex, RETURN_MASK_ALL)
11478 {
11479 struct value *mark;
11480
11481 mark = value_mark ();
11482 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11483 value_free_to_mark (mark);
11484 }
11485 if (ex.reason < 0)
11486 exception_fprintf (gdb_stderr, ex,
11487 _("Error in testing exception condition:\n"));
11488 return stop;
11489}
11490
11491/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11492 for all exception catchpoint kinds. */
11493
11494static void
11495check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11496{
11497 bs->stop = should_stop_exception (bs->bp_location_at);
11498}
11499
f7f9143b
JB
11500/* Implement the PRINT_IT method in the breakpoint_ops structure
11501 for all exception catchpoint kinds. */
11502
11503static enum print_stop_action
348d480f 11504print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11505{
79a45e25 11506 struct ui_out *uiout = current_uiout;
348d480f
PA
11507 struct breakpoint *b = bs->breakpoint_at;
11508
956a9fb9 11509 annotate_catchpoint (b->number);
f7f9143b 11510
956a9fb9 11511 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11512 {
956a9fb9
JB
11513 ui_out_field_string (uiout, "reason",
11514 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11515 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11516 }
11517
00eb2c4a
JB
11518 ui_out_text (uiout,
11519 b->disposition == disp_del ? "\nTemporary catchpoint "
11520 : "\nCatchpoint ");
956a9fb9
JB
11521 ui_out_field_int (uiout, "bkptno", b->number);
11522 ui_out_text (uiout, ", ");
f7f9143b 11523
f7f9143b
JB
11524 switch (ex)
11525 {
11526 case ex_catch_exception:
f7f9143b 11527 case ex_catch_exception_unhandled:
956a9fb9
JB
11528 {
11529 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11530 char exception_name[256];
11531
11532 if (addr != 0)
11533 {
11534 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11535 exception_name [sizeof (exception_name) - 1] = '\0';
11536 }
11537 else
11538 {
11539 /* For some reason, we were unable to read the exception
11540 name. This could happen if the Runtime was compiled
11541 without debugging info, for instance. In that case,
11542 just replace the exception name by the generic string
11543 "exception" - it will read as "an exception" in the
11544 notification we are about to print. */
967cff16 11545 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11546 }
11547 /* In the case of unhandled exception breakpoints, we print
11548 the exception name as "unhandled EXCEPTION_NAME", to make
11549 it clearer to the user which kind of catchpoint just got
11550 hit. We used ui_out_text to make sure that this extra
11551 info does not pollute the exception name in the MI case. */
11552 if (ex == ex_catch_exception_unhandled)
11553 ui_out_text (uiout, "unhandled ");
11554 ui_out_field_string (uiout, "exception-name", exception_name);
11555 }
11556 break;
f7f9143b 11557 case ex_catch_assert:
956a9fb9
JB
11558 /* In this case, the name of the exception is not really
11559 important. Just print "failed assertion" to make it clearer
11560 that his program just hit an assertion-failure catchpoint.
11561 We used ui_out_text because this info does not belong in
11562 the MI output. */
11563 ui_out_text (uiout, "failed assertion");
11564 break;
f7f9143b 11565 }
956a9fb9
JB
11566 ui_out_text (uiout, " at ");
11567 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11568
11569 return PRINT_SRC_AND_LOC;
11570}
11571
11572/* Implement the PRINT_ONE method in the breakpoint_ops structure
11573 for all exception catchpoint kinds. */
11574
11575static void
11576print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11577 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11578{
79a45e25 11579 struct ui_out *uiout = current_uiout;
28010a5d 11580 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11581 struct value_print_options opts;
11582
11583 get_user_print_options (&opts);
11584 if (opts.addressprint)
f7f9143b
JB
11585 {
11586 annotate_field (4);
5af949e3 11587 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11588 }
11589
11590 annotate_field (5);
a6d9a66e 11591 *last_loc = b->loc;
f7f9143b
JB
11592 switch (ex)
11593 {
11594 case ex_catch_exception:
28010a5d 11595 if (c->excep_string != NULL)
f7f9143b 11596 {
28010a5d
PA
11597 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11598
f7f9143b
JB
11599 ui_out_field_string (uiout, "what", msg);
11600 xfree (msg);
11601 }
11602 else
11603 ui_out_field_string (uiout, "what", "all Ada exceptions");
11604
11605 break;
11606
11607 case ex_catch_exception_unhandled:
11608 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11609 break;
11610
11611 case ex_catch_assert:
11612 ui_out_field_string (uiout, "what", "failed Ada assertions");
11613 break;
11614
11615 default:
11616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11617 break;
11618 }
11619}
11620
11621/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11622 for all exception catchpoint kinds. */
11623
11624static void
11625print_mention_exception (enum exception_catchpoint_kind ex,
11626 struct breakpoint *b)
11627{
28010a5d 11628 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11629 struct ui_out *uiout = current_uiout;
28010a5d 11630
00eb2c4a
JB
11631 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11632 : _("Catchpoint "));
11633 ui_out_field_int (uiout, "bkptno", b->number);
11634 ui_out_text (uiout, ": ");
11635
f7f9143b
JB
11636 switch (ex)
11637 {
11638 case ex_catch_exception:
28010a5d 11639 if (c->excep_string != NULL)
00eb2c4a
JB
11640 {
11641 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11642 struct cleanup *old_chain = make_cleanup (xfree, info);
11643
11644 ui_out_text (uiout, info);
11645 do_cleanups (old_chain);
11646 }
f7f9143b 11647 else
00eb2c4a 11648 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11649 break;
11650
11651 case ex_catch_exception_unhandled:
00eb2c4a 11652 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11653 break;
11654
11655 case ex_catch_assert:
00eb2c4a 11656 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11657 break;
11658
11659 default:
11660 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11661 break;
11662 }
11663}
11664
6149aea9
PA
11665/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11666 for all exception catchpoint kinds. */
11667
11668static void
11669print_recreate_exception (enum exception_catchpoint_kind ex,
11670 struct breakpoint *b, struct ui_file *fp)
11671{
28010a5d
PA
11672 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11673
6149aea9
PA
11674 switch (ex)
11675 {
11676 case ex_catch_exception:
11677 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11678 if (c->excep_string != NULL)
11679 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11680 break;
11681
11682 case ex_catch_exception_unhandled:
78076abc 11683 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11684 break;
11685
11686 case ex_catch_assert:
11687 fprintf_filtered (fp, "catch assert");
11688 break;
11689
11690 default:
11691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11692 }
d9b3f62e 11693 print_recreate_thread (b, fp);
6149aea9
PA
11694}
11695
f7f9143b
JB
11696/* Virtual table for "catch exception" breakpoints. */
11697
28010a5d
PA
11698static void
11699dtor_catch_exception (struct breakpoint *b)
11700{
11701 dtor_exception (ex_catch_exception, b);
11702}
11703
11704static struct bp_location *
11705allocate_location_catch_exception (struct breakpoint *self)
11706{
11707 return allocate_location_exception (ex_catch_exception, self);
11708}
11709
11710static void
11711re_set_catch_exception (struct breakpoint *b)
11712{
11713 re_set_exception (ex_catch_exception, b);
11714}
11715
11716static void
11717check_status_catch_exception (bpstat bs)
11718{
11719 check_status_exception (ex_catch_exception, bs);
11720}
11721
f7f9143b 11722static enum print_stop_action
348d480f 11723print_it_catch_exception (bpstat bs)
f7f9143b 11724{
348d480f 11725 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11726}
11727
11728static void
a6d9a66e 11729print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11730{
a6d9a66e 11731 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11732}
11733
11734static void
11735print_mention_catch_exception (struct breakpoint *b)
11736{
11737 print_mention_exception (ex_catch_exception, b);
11738}
11739
6149aea9
PA
11740static void
11741print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11742{
11743 print_recreate_exception (ex_catch_exception, b, fp);
11744}
11745
2060206e 11746static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11747
11748/* Virtual table for "catch exception unhandled" breakpoints. */
11749
28010a5d
PA
11750static void
11751dtor_catch_exception_unhandled (struct breakpoint *b)
11752{
11753 dtor_exception (ex_catch_exception_unhandled, b);
11754}
11755
11756static struct bp_location *
11757allocate_location_catch_exception_unhandled (struct breakpoint *self)
11758{
11759 return allocate_location_exception (ex_catch_exception_unhandled, self);
11760}
11761
11762static void
11763re_set_catch_exception_unhandled (struct breakpoint *b)
11764{
11765 re_set_exception (ex_catch_exception_unhandled, b);
11766}
11767
11768static void
11769check_status_catch_exception_unhandled (bpstat bs)
11770{
11771 check_status_exception (ex_catch_exception_unhandled, bs);
11772}
11773
f7f9143b 11774static enum print_stop_action
348d480f 11775print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11776{
348d480f 11777 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11778}
11779
11780static void
a6d9a66e
UW
11781print_one_catch_exception_unhandled (struct breakpoint *b,
11782 struct bp_location **last_loc)
f7f9143b 11783{
a6d9a66e 11784 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11785}
11786
11787static void
11788print_mention_catch_exception_unhandled (struct breakpoint *b)
11789{
11790 print_mention_exception (ex_catch_exception_unhandled, b);
11791}
11792
6149aea9
PA
11793static void
11794print_recreate_catch_exception_unhandled (struct breakpoint *b,
11795 struct ui_file *fp)
11796{
11797 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11798}
11799
2060206e 11800static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11801
11802/* Virtual table for "catch assert" breakpoints. */
11803
28010a5d
PA
11804static void
11805dtor_catch_assert (struct breakpoint *b)
11806{
11807 dtor_exception (ex_catch_assert, b);
11808}
11809
11810static struct bp_location *
11811allocate_location_catch_assert (struct breakpoint *self)
11812{
11813 return allocate_location_exception (ex_catch_assert, self);
11814}
11815
11816static void
11817re_set_catch_assert (struct breakpoint *b)
11818{
843e694d 11819 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11820}
11821
11822static void
11823check_status_catch_assert (bpstat bs)
11824{
11825 check_status_exception (ex_catch_assert, bs);
11826}
11827
f7f9143b 11828static enum print_stop_action
348d480f 11829print_it_catch_assert (bpstat bs)
f7f9143b 11830{
348d480f 11831 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11832}
11833
11834static void
a6d9a66e 11835print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11836{
a6d9a66e 11837 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11838}
11839
11840static void
11841print_mention_catch_assert (struct breakpoint *b)
11842{
11843 print_mention_exception (ex_catch_assert, b);
11844}
11845
6149aea9
PA
11846static void
11847print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11848{
11849 print_recreate_exception (ex_catch_assert, b, fp);
11850}
11851
2060206e 11852static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11853
f7f9143b
JB
11854/* Return a newly allocated copy of the first space-separated token
11855 in ARGSP, and then adjust ARGSP to point immediately after that
11856 token.
11857
11858 Return NULL if ARGPS does not contain any more tokens. */
11859
11860static char *
11861ada_get_next_arg (char **argsp)
11862{
11863 char *args = *argsp;
11864 char *end;
11865 char *result;
11866
0fcd72ba 11867 args = skip_spaces (args);
f7f9143b
JB
11868 if (args[0] == '\0')
11869 return NULL; /* No more arguments. */
11870
11871 /* Find the end of the current argument. */
11872
0fcd72ba 11873 end = skip_to_space (args);
f7f9143b
JB
11874
11875 /* Adjust ARGSP to point to the start of the next argument. */
11876
11877 *argsp = end;
11878
11879 /* Make a copy of the current argument and return it. */
11880
11881 result = xmalloc (end - args + 1);
11882 strncpy (result, args, end - args);
11883 result[end - args] = '\0';
11884
11885 return result;
11886}
11887
11888/* Split the arguments specified in a "catch exception" command.
11889 Set EX to the appropriate catchpoint type.
28010a5d 11890 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11891 specified by the user.
11892 If a condition is found at the end of the arguments, the condition
11893 expression is stored in COND_STRING (memory must be deallocated
11894 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11895
11896static void
11897catch_ada_exception_command_split (char *args,
11898 enum exception_catchpoint_kind *ex,
5845583d
JB
11899 char **excep_string,
11900 char **cond_string)
f7f9143b
JB
11901{
11902 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11903 char *exception_name;
5845583d 11904 char *cond = NULL;
f7f9143b
JB
11905
11906 exception_name = ada_get_next_arg (&args);
5845583d
JB
11907 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11908 {
11909 /* This is not an exception name; this is the start of a condition
11910 expression for a catchpoint on all exceptions. So, "un-get"
11911 this token, and set exception_name to NULL. */
11912 xfree (exception_name);
11913 exception_name = NULL;
11914 args -= 2;
11915 }
f7f9143b
JB
11916 make_cleanup (xfree, exception_name);
11917
5845583d 11918 /* Check to see if we have a condition. */
f7f9143b 11919
0fcd72ba 11920 args = skip_spaces (args);
5845583d
JB
11921 if (strncmp (args, "if", 2) == 0
11922 && (isspace (args[2]) || args[2] == '\0'))
11923 {
11924 args += 2;
11925 args = skip_spaces (args);
11926
11927 if (args[0] == '\0')
11928 error (_("Condition missing after `if' keyword"));
11929 cond = xstrdup (args);
11930 make_cleanup (xfree, cond);
11931
11932 args += strlen (args);
11933 }
11934
11935 /* Check that we do not have any more arguments. Anything else
11936 is unexpected. */
f7f9143b
JB
11937
11938 if (args[0] != '\0')
11939 error (_("Junk at end of expression"));
11940
11941 discard_cleanups (old_chain);
11942
11943 if (exception_name == NULL)
11944 {
11945 /* Catch all exceptions. */
11946 *ex = ex_catch_exception;
28010a5d 11947 *excep_string = NULL;
f7f9143b
JB
11948 }
11949 else if (strcmp (exception_name, "unhandled") == 0)
11950 {
11951 /* Catch unhandled exceptions. */
11952 *ex = ex_catch_exception_unhandled;
28010a5d 11953 *excep_string = NULL;
f7f9143b
JB
11954 }
11955 else
11956 {
11957 /* Catch a specific exception. */
11958 *ex = ex_catch_exception;
28010a5d 11959 *excep_string = exception_name;
f7f9143b 11960 }
5845583d 11961 *cond_string = cond;
f7f9143b
JB
11962}
11963
11964/* Return the name of the symbol on which we should break in order to
11965 implement a catchpoint of the EX kind. */
11966
11967static const char *
11968ada_exception_sym_name (enum exception_catchpoint_kind ex)
11969{
3eecfa55
JB
11970 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11971
11972 gdb_assert (data->exception_info != NULL);
0259addd 11973
f7f9143b
JB
11974 switch (ex)
11975 {
11976 case ex_catch_exception:
3eecfa55 11977 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11978 break;
11979 case ex_catch_exception_unhandled:
3eecfa55 11980 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11981 break;
11982 case ex_catch_assert:
3eecfa55 11983 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11984 break;
11985 default:
11986 internal_error (__FILE__, __LINE__,
11987 _("unexpected catchpoint kind (%d)"), ex);
11988 }
11989}
11990
11991/* Return the breakpoint ops "virtual table" used for catchpoints
11992 of the EX kind. */
11993
c0a91b2b 11994static const struct breakpoint_ops *
4b9eee8c 11995ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11996{
11997 switch (ex)
11998 {
11999 case ex_catch_exception:
12000 return (&catch_exception_breakpoint_ops);
12001 break;
12002 case ex_catch_exception_unhandled:
12003 return (&catch_exception_unhandled_breakpoint_ops);
12004 break;
12005 case ex_catch_assert:
12006 return (&catch_assert_breakpoint_ops);
12007 break;
12008 default:
12009 internal_error (__FILE__, __LINE__,
12010 _("unexpected catchpoint kind (%d)"), ex);
12011 }
12012}
12013
12014/* Return the condition that will be used to match the current exception
12015 being raised with the exception that the user wants to catch. This
12016 assumes that this condition is used when the inferior just triggered
12017 an exception catchpoint.
12018
12019 The string returned is a newly allocated string that needs to be
12020 deallocated later. */
12021
12022static char *
28010a5d 12023ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12024{
3d0b0fa3
JB
12025 int i;
12026
0963b4bd 12027 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12028 runtime units that have been compiled without debugging info; if
28010a5d 12029 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12030 exception (e.g. "constraint_error") then, during the evaluation
12031 of the condition expression, the symbol lookup on this name would
0963b4bd 12032 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12033 may then be set only on user-defined exceptions which have the
12034 same not-fully-qualified name (e.g. my_package.constraint_error).
12035
12036 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12037 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12038 exception constraint_error" is rewritten into "catch exception
12039 standard.constraint_error".
12040
12041 If an exception named contraint_error is defined in another package of
12042 the inferior program, then the only way to specify this exception as a
12043 breakpoint condition is to use its fully-qualified named:
12044 e.g. my_package.constraint_error. */
12045
12046 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12047 {
28010a5d 12048 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12049 {
12050 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12051 excep_string);
3d0b0fa3
JB
12052 }
12053 }
28010a5d 12054 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12055}
12056
12057/* Return the symtab_and_line that should be used to insert an exception
12058 catchpoint of the TYPE kind.
12059
28010a5d
PA
12060 EXCEP_STRING should contain the name of a specific exception that
12061 the catchpoint should catch, or NULL otherwise.
f7f9143b 12062
28010a5d
PA
12063 ADDR_STRING returns the name of the function where the real
12064 breakpoint that implements the catchpoints is set, depending on the
12065 type of catchpoint we need to create. */
f7f9143b
JB
12066
12067static struct symtab_and_line
28010a5d 12068ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12069 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12070{
12071 const char *sym_name;
12072 struct symbol *sym;
f7f9143b 12073
0259addd
JB
12074 /* First, find out which exception support info to use. */
12075 ada_exception_support_info_sniffer ();
12076
12077 /* Then lookup the function on which we will break in order to catch
f7f9143b 12078 the Ada exceptions requested by the user. */
f7f9143b
JB
12079 sym_name = ada_exception_sym_name (ex);
12080 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12081
f17011e0
JB
12082 /* We can assume that SYM is not NULL at this stage. If the symbol
12083 did not exist, ada_exception_support_info_sniffer would have
12084 raised an exception.
f7f9143b 12085
f17011e0
JB
12086 Also, ada_exception_support_info_sniffer should have already
12087 verified that SYM is a function symbol. */
12088 gdb_assert (sym != NULL);
12089 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12090
12091 /* Set ADDR_STRING. */
f7f9143b
JB
12092 *addr_string = xstrdup (sym_name);
12093
f7f9143b 12094 /* Set OPS. */
4b9eee8c 12095 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12096
f17011e0 12097 return find_function_start_sal (sym, 1);
f7f9143b
JB
12098}
12099
12100/* Parse the arguments (ARGS) of the "catch exception" command.
12101
f7f9143b
JB
12102 If the user asked the catchpoint to catch only a specific
12103 exception, then save the exception name in ADDR_STRING.
12104
5845583d
JB
12105 If the user provided a condition, then set COND_STRING to
12106 that condition expression (the memory must be deallocated
12107 after use). Otherwise, set COND_STRING to NULL.
12108
f7f9143b
JB
12109 See ada_exception_sal for a description of all the remaining
12110 function arguments of this function. */
12111
9ac4176b 12112static struct symtab_and_line
f7f9143b 12113ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12114 char **excep_string,
5845583d 12115 char **cond_string,
c0a91b2b 12116 const struct breakpoint_ops **ops)
f7f9143b
JB
12117{
12118 enum exception_catchpoint_kind ex;
12119
5845583d 12120 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12121 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12122}
12123
12124/* Create an Ada exception catchpoint. */
12125
12126static void
12127create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12128 struct symtab_and_line sal,
12129 char *addr_string,
12130 char *excep_string,
5845583d 12131 char *cond_string,
c0a91b2b 12132 const struct breakpoint_ops *ops,
28010a5d
PA
12133 int tempflag,
12134 int from_tty)
12135{
12136 struct ada_catchpoint *c;
12137
12138 c = XNEW (struct ada_catchpoint);
12139 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12140 ops, tempflag, from_tty);
12141 c->excep_string = excep_string;
12142 create_excep_cond_exprs (c);
5845583d
JB
12143 if (cond_string != NULL)
12144 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12145 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12146}
12147
9ac4176b
PA
12148/* Implement the "catch exception" command. */
12149
12150static void
12151catch_ada_exception_command (char *arg, int from_tty,
12152 struct cmd_list_element *command)
12153{
12154 struct gdbarch *gdbarch = get_current_arch ();
12155 int tempflag;
12156 struct symtab_and_line sal;
12157 char *addr_string = NULL;
28010a5d 12158 char *excep_string = NULL;
5845583d 12159 char *cond_string = NULL;
c0a91b2b 12160 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12161
12162 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12163
12164 if (!arg)
12165 arg = "";
5845583d
JB
12166 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12167 &cond_string, &ops);
28010a5d 12168 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12169 excep_string, cond_string, ops,
12170 tempflag, from_tty);
9ac4176b
PA
12171}
12172
5845583d
JB
12173/* Assuming that ARGS contains the arguments of a "catch assert"
12174 command, parse those arguments and return a symtab_and_line object
12175 for a failed assertion catchpoint.
12176
12177 Set ADDR_STRING to the name of the function where the real
12178 breakpoint that implements the catchpoint is set.
12179
12180 If ARGS contains a condition, set COND_STRING to that condition
12181 (the memory needs to be deallocated after use). Otherwise, set
12182 COND_STRING to NULL. */
12183
9ac4176b 12184static struct symtab_and_line
f7f9143b 12185ada_decode_assert_location (char *args, char **addr_string,
5845583d 12186 char **cond_string,
c0a91b2b 12187 const struct breakpoint_ops **ops)
f7f9143b 12188{
5845583d 12189 args = skip_spaces (args);
f7f9143b 12190
5845583d
JB
12191 /* Check whether a condition was provided. */
12192 if (strncmp (args, "if", 2) == 0
12193 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12194 {
5845583d 12195 args += 2;
0fcd72ba 12196 args = skip_spaces (args);
5845583d
JB
12197 if (args[0] == '\0')
12198 error (_("condition missing after `if' keyword"));
12199 *cond_string = xstrdup (args);
f7f9143b
JB
12200 }
12201
5845583d
JB
12202 /* Otherwise, there should be no other argument at the end of
12203 the command. */
12204 else if (args[0] != '\0')
12205 error (_("Junk at end of arguments."));
12206
28010a5d 12207 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12208}
12209
9ac4176b
PA
12210/* Implement the "catch assert" command. */
12211
12212static void
12213catch_assert_command (char *arg, int from_tty,
12214 struct cmd_list_element *command)
12215{
12216 struct gdbarch *gdbarch = get_current_arch ();
12217 int tempflag;
12218 struct symtab_and_line sal;
12219 char *addr_string = NULL;
5845583d 12220 char *cond_string = NULL;
c0a91b2b 12221 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12222
12223 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12224
12225 if (!arg)
12226 arg = "";
5845583d 12227 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12228 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12229 NULL, cond_string, ops, tempflag,
12230 from_tty);
9ac4176b 12231}
4c4b4cd2
PH
12232 /* Operators */
12233/* Information about operators given special treatment in functions
12234 below. */
12235/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12236
12237#define ADA_OPERATORS \
12238 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12239 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12240 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12241 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12242 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12243 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12246 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12247 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12248 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12249 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12250 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12252 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12253 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12254 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12255 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12256 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12257
12258static void
554794dc
SDJ
12259ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12260 int *argsp)
4c4b4cd2
PH
12261{
12262 switch (exp->elts[pc - 1].opcode)
12263 {
76a01679 12264 default:
4c4b4cd2
PH
12265 operator_length_standard (exp, pc, oplenp, argsp);
12266 break;
12267
12268#define OP_DEFN(op, len, args, binop) \
12269 case op: *oplenp = len; *argsp = args; break;
12270 ADA_OPERATORS;
12271#undef OP_DEFN
52ce6436
PH
12272
12273 case OP_AGGREGATE:
12274 *oplenp = 3;
12275 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12276 break;
12277
12278 case OP_CHOICES:
12279 *oplenp = 3;
12280 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12281 break;
4c4b4cd2
PH
12282 }
12283}
12284
c0201579
JK
12285/* Implementation of the exp_descriptor method operator_check. */
12286
12287static int
12288ada_operator_check (struct expression *exp, int pos,
12289 int (*objfile_func) (struct objfile *objfile, void *data),
12290 void *data)
12291{
12292 const union exp_element *const elts = exp->elts;
12293 struct type *type = NULL;
12294
12295 switch (elts[pos].opcode)
12296 {
12297 case UNOP_IN_RANGE:
12298 case UNOP_QUAL:
12299 type = elts[pos + 1].type;
12300 break;
12301
12302 default:
12303 return operator_check_standard (exp, pos, objfile_func, data);
12304 }
12305
12306 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12307
12308 if (type && TYPE_OBJFILE (type)
12309 && (*objfile_func) (TYPE_OBJFILE (type), data))
12310 return 1;
12311
12312 return 0;
12313}
12314
4c4b4cd2
PH
12315static char *
12316ada_op_name (enum exp_opcode opcode)
12317{
12318 switch (opcode)
12319 {
76a01679 12320 default:
4c4b4cd2 12321 return op_name_standard (opcode);
52ce6436 12322
4c4b4cd2
PH
12323#define OP_DEFN(op, len, args, binop) case op: return #op;
12324 ADA_OPERATORS;
12325#undef OP_DEFN
52ce6436
PH
12326
12327 case OP_AGGREGATE:
12328 return "OP_AGGREGATE";
12329 case OP_CHOICES:
12330 return "OP_CHOICES";
12331 case OP_NAME:
12332 return "OP_NAME";
4c4b4cd2
PH
12333 }
12334}
12335
12336/* As for operator_length, but assumes PC is pointing at the first
12337 element of the operator, and gives meaningful results only for the
52ce6436 12338 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12339
12340static void
76a01679
JB
12341ada_forward_operator_length (struct expression *exp, int pc,
12342 int *oplenp, int *argsp)
4c4b4cd2 12343{
76a01679 12344 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12345 {
12346 default:
12347 *oplenp = *argsp = 0;
12348 break;
52ce6436 12349
4c4b4cd2
PH
12350#define OP_DEFN(op, len, args, binop) \
12351 case op: *oplenp = len; *argsp = args; break;
12352 ADA_OPERATORS;
12353#undef OP_DEFN
52ce6436
PH
12354
12355 case OP_AGGREGATE:
12356 *oplenp = 3;
12357 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12358 break;
12359
12360 case OP_CHOICES:
12361 *oplenp = 3;
12362 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12363 break;
12364
12365 case OP_STRING:
12366 case OP_NAME:
12367 {
12368 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12369
52ce6436
PH
12370 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12371 *argsp = 0;
12372 break;
12373 }
4c4b4cd2
PH
12374 }
12375}
12376
12377static int
12378ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12379{
12380 enum exp_opcode op = exp->elts[elt].opcode;
12381 int oplen, nargs;
12382 int pc = elt;
12383 int i;
76a01679 12384
4c4b4cd2
PH
12385 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12386
76a01679 12387 switch (op)
4c4b4cd2 12388 {
76a01679 12389 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12390 case OP_ATR_FIRST:
12391 case OP_ATR_LAST:
12392 case OP_ATR_LENGTH:
12393 case OP_ATR_IMAGE:
12394 case OP_ATR_MAX:
12395 case OP_ATR_MIN:
12396 case OP_ATR_MODULUS:
12397 case OP_ATR_POS:
12398 case OP_ATR_SIZE:
12399 case OP_ATR_TAG:
12400 case OP_ATR_VAL:
12401 break;
12402
12403 case UNOP_IN_RANGE:
12404 case UNOP_QUAL:
323e0a4a
AC
12405 /* XXX: gdb_sprint_host_address, type_sprint */
12406 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12407 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12408 fprintf_filtered (stream, " (");
12409 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12410 fprintf_filtered (stream, ")");
12411 break;
12412 case BINOP_IN_BOUNDS:
52ce6436
PH
12413 fprintf_filtered (stream, " (%d)",
12414 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12415 break;
12416 case TERNOP_IN_RANGE:
12417 break;
12418
52ce6436
PH
12419 case OP_AGGREGATE:
12420 case OP_OTHERS:
12421 case OP_DISCRETE_RANGE:
12422 case OP_POSITIONAL:
12423 case OP_CHOICES:
12424 break;
12425
12426 case OP_NAME:
12427 case OP_STRING:
12428 {
12429 char *name = &exp->elts[elt + 2].string;
12430 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12431
52ce6436
PH
12432 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12433 break;
12434 }
12435
4c4b4cd2
PH
12436 default:
12437 return dump_subexp_body_standard (exp, stream, elt);
12438 }
12439
12440 elt += oplen;
12441 for (i = 0; i < nargs; i += 1)
12442 elt = dump_subexp (exp, stream, elt);
12443
12444 return elt;
12445}
12446
12447/* The Ada extension of print_subexp (q.v.). */
12448
76a01679
JB
12449static void
12450ada_print_subexp (struct expression *exp, int *pos,
12451 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12452{
52ce6436 12453 int oplen, nargs, i;
4c4b4cd2
PH
12454 int pc = *pos;
12455 enum exp_opcode op = exp->elts[pc].opcode;
12456
12457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12458
52ce6436 12459 *pos += oplen;
4c4b4cd2
PH
12460 switch (op)
12461 {
12462 default:
52ce6436 12463 *pos -= oplen;
4c4b4cd2
PH
12464 print_subexp_standard (exp, pos, stream, prec);
12465 return;
12466
12467 case OP_VAR_VALUE:
4c4b4cd2
PH
12468 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12469 return;
12470
12471 case BINOP_IN_BOUNDS:
323e0a4a 12472 /* XXX: sprint_subexp */
4c4b4cd2 12473 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12474 fputs_filtered (" in ", stream);
4c4b4cd2 12475 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12476 fputs_filtered ("'range", stream);
4c4b4cd2 12477 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12478 fprintf_filtered (stream, "(%ld)",
12479 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12480 return;
12481
12482 case TERNOP_IN_RANGE:
4c4b4cd2 12483 if (prec >= PREC_EQUAL)
76a01679 12484 fputs_filtered ("(", stream);
323e0a4a 12485 /* XXX: sprint_subexp */
4c4b4cd2 12486 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12487 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12488 print_subexp (exp, pos, stream, PREC_EQUAL);
12489 fputs_filtered (" .. ", stream);
12490 print_subexp (exp, pos, stream, PREC_EQUAL);
12491 if (prec >= PREC_EQUAL)
76a01679
JB
12492 fputs_filtered (")", stream);
12493 return;
4c4b4cd2
PH
12494
12495 case OP_ATR_FIRST:
12496 case OP_ATR_LAST:
12497 case OP_ATR_LENGTH:
12498 case OP_ATR_IMAGE:
12499 case OP_ATR_MAX:
12500 case OP_ATR_MIN:
12501 case OP_ATR_MODULUS:
12502 case OP_ATR_POS:
12503 case OP_ATR_SIZE:
12504 case OP_ATR_TAG:
12505 case OP_ATR_VAL:
4c4b4cd2 12506 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12507 {
12508 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12509 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12510 &type_print_raw_options);
76a01679
JB
12511 *pos += 3;
12512 }
4c4b4cd2 12513 else
76a01679 12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12515 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12516 if (nargs > 1)
76a01679
JB
12517 {
12518 int tem;
5b4ee69b 12519
76a01679
JB
12520 for (tem = 1; tem < nargs; tem += 1)
12521 {
12522 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12523 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12524 }
12525 fputs_filtered (")", stream);
12526 }
4c4b4cd2 12527 return;
14f9c5c9 12528
4c4b4cd2 12529 case UNOP_QUAL:
4c4b4cd2
PH
12530 type_print (exp->elts[pc + 1].type, "", stream, 0);
12531 fputs_filtered ("'(", stream);
12532 print_subexp (exp, pos, stream, PREC_PREFIX);
12533 fputs_filtered (")", stream);
12534 return;
14f9c5c9 12535
4c4b4cd2 12536 case UNOP_IN_RANGE:
323e0a4a 12537 /* XXX: sprint_subexp */
4c4b4cd2 12538 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12539 fputs_filtered (" in ", stream);
79d43c61
TT
12540 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12541 &type_print_raw_options);
4c4b4cd2 12542 return;
52ce6436
PH
12543
12544 case OP_DISCRETE_RANGE:
12545 print_subexp (exp, pos, stream, PREC_SUFFIX);
12546 fputs_filtered ("..", stream);
12547 print_subexp (exp, pos, stream, PREC_SUFFIX);
12548 return;
12549
12550 case OP_OTHERS:
12551 fputs_filtered ("others => ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 return;
12554
12555 case OP_CHOICES:
12556 for (i = 0; i < nargs-1; i += 1)
12557 {
12558 if (i > 0)
12559 fputs_filtered ("|", stream);
12560 print_subexp (exp, pos, stream, PREC_SUFFIX);
12561 }
12562 fputs_filtered (" => ", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 return;
12565
12566 case OP_POSITIONAL:
12567 print_subexp (exp, pos, stream, PREC_SUFFIX);
12568 return;
12569
12570 case OP_AGGREGATE:
12571 fputs_filtered ("(", stream);
12572 for (i = 0; i < nargs; i += 1)
12573 {
12574 if (i > 0)
12575 fputs_filtered (", ", stream);
12576 print_subexp (exp, pos, stream, PREC_SUFFIX);
12577 }
12578 fputs_filtered (")", stream);
12579 return;
4c4b4cd2
PH
12580 }
12581}
14f9c5c9
AS
12582
12583/* Table mapping opcodes into strings for printing operators
12584 and precedences of the operators. */
12585
d2e4a39e
AS
12586static const struct op_print ada_op_print_tab[] = {
12587 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12588 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12589 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12590 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12591 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12592 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12593 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12594 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12595 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12596 {">=", BINOP_GEQ, PREC_ORDER, 0},
12597 {">", BINOP_GTR, PREC_ORDER, 0},
12598 {"<", BINOP_LESS, PREC_ORDER, 0},
12599 {">>", BINOP_RSH, PREC_SHIFT, 0},
12600 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12601 {"+", BINOP_ADD, PREC_ADD, 0},
12602 {"-", BINOP_SUB, PREC_ADD, 0},
12603 {"&", BINOP_CONCAT, PREC_ADD, 0},
12604 {"*", BINOP_MUL, PREC_MUL, 0},
12605 {"/", BINOP_DIV, PREC_MUL, 0},
12606 {"rem", BINOP_REM, PREC_MUL, 0},
12607 {"mod", BINOP_MOD, PREC_MUL, 0},
12608 {"**", BINOP_EXP, PREC_REPEAT, 0},
12609 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12610 {"-", UNOP_NEG, PREC_PREFIX, 0},
12611 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12612 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12613 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12614 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12615 {".all", UNOP_IND, PREC_SUFFIX, 1},
12616 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12617 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12618 {NULL, 0, 0, 0}
14f9c5c9
AS
12619};
12620\f
72d5681a
PH
12621enum ada_primitive_types {
12622 ada_primitive_type_int,
12623 ada_primitive_type_long,
12624 ada_primitive_type_short,
12625 ada_primitive_type_char,
12626 ada_primitive_type_float,
12627 ada_primitive_type_double,
12628 ada_primitive_type_void,
12629 ada_primitive_type_long_long,
12630 ada_primitive_type_long_double,
12631 ada_primitive_type_natural,
12632 ada_primitive_type_positive,
12633 ada_primitive_type_system_address,
12634 nr_ada_primitive_types
12635};
6c038f32
PH
12636
12637static void
d4a9a881 12638ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12639 struct language_arch_info *lai)
12640{
d4a9a881 12641 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12642
72d5681a 12643 lai->primitive_type_vector
d4a9a881 12644 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12645 struct type *);
e9bb382b
UW
12646
12647 lai->primitive_type_vector [ada_primitive_type_int]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12649 0, "integer");
12650 lai->primitive_type_vector [ada_primitive_type_long]
12651 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12652 0, "long_integer");
12653 lai->primitive_type_vector [ada_primitive_type_short]
12654 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12655 0, "short_integer");
12656 lai->string_char_type
12657 = lai->primitive_type_vector [ada_primitive_type_char]
12658 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12659 lai->primitive_type_vector [ada_primitive_type_float]
12660 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12661 "float", NULL);
12662 lai->primitive_type_vector [ada_primitive_type_double]
12663 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12664 "long_float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_long_long]
12666 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12667 0, "long_long_integer");
12668 lai->primitive_type_vector [ada_primitive_type_long_double]
12669 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12670 "long_long_float", NULL);
12671 lai->primitive_type_vector [ada_primitive_type_natural]
12672 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12673 0, "natural");
12674 lai->primitive_type_vector [ada_primitive_type_positive]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 0, "positive");
12677 lai->primitive_type_vector [ada_primitive_type_void]
12678 = builtin->builtin_void;
12679
12680 lai->primitive_type_vector [ada_primitive_type_system_address]
12681 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12682 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12683 = "system__address";
fbb06eb1 12684
47e729a8 12685 lai->bool_type_symbol = NULL;
fbb06eb1 12686 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12687}
6c038f32
PH
12688\f
12689 /* Language vector */
12690
12691/* Not really used, but needed in the ada_language_defn. */
12692
12693static void
6c7a06a3 12694emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12695{
6c7a06a3 12696 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12697}
12698
12699static int
12700parse (void)
12701{
12702 warnings_issued = 0;
12703 return ada_parse ();
12704}
12705
12706static const struct exp_descriptor ada_exp_descriptor = {
12707 ada_print_subexp,
12708 ada_operator_length,
c0201579 12709 ada_operator_check,
6c038f32
PH
12710 ada_op_name,
12711 ada_dump_subexp_body,
12712 ada_evaluate_subexp
12713};
12714
1a119f36 12715/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12716 for Ada. */
12717
1a119f36
JB
12718static symbol_name_cmp_ftype
12719ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12720{
12721 if (should_use_wild_match (lookup_name))
12722 return wild_match;
12723 else
12724 return compare_names;
12725}
12726
a5ee536b
JB
12727/* Implement the "la_read_var_value" language_defn method for Ada. */
12728
12729static struct value *
12730ada_read_var_value (struct symbol *var, struct frame_info *frame)
12731{
12732 struct block *frame_block = NULL;
12733 struct symbol *renaming_sym = NULL;
12734
12735 /* The only case where default_read_var_value is not sufficient
12736 is when VAR is a renaming... */
12737 if (frame)
12738 frame_block = get_frame_block (frame, NULL);
12739 if (frame_block)
12740 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12741 if (renaming_sym != NULL)
12742 return ada_read_renaming_var_value (renaming_sym, frame_block);
12743
12744 /* This is a typical case where we expect the default_read_var_value
12745 function to work. */
12746 return default_read_var_value (var, frame);
12747}
12748
6c038f32
PH
12749const struct language_defn ada_language_defn = {
12750 "ada", /* Language name */
12751 language_ada,
6c038f32 12752 range_check_off,
6c038f32
PH
12753 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12754 that's not quite what this means. */
6c038f32 12755 array_row_major,
9a044a89 12756 macro_expansion_no,
6c038f32
PH
12757 &ada_exp_descriptor,
12758 parse,
12759 ada_error,
12760 resolve,
12761 ada_printchar, /* Print a character constant */
12762 ada_printstr, /* Function to print string constant */
12763 emit_char, /* Function to print single char (not used) */
6c038f32 12764 ada_print_type, /* Print a type using appropriate syntax */
be942545 12765 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12766 ada_val_print, /* Print a value using appropriate syntax */
12767 ada_value_print, /* Print a top-level value */
a5ee536b 12768 ada_read_var_value, /* la_read_var_value */
6c038f32 12769 NULL, /* Language specific skip_trampoline */
2b2d9e11 12770 NULL, /* name_of_this */
6c038f32
PH
12771 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12772 basic_lookup_transparent_type, /* lookup_transparent_type */
12773 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12774 NULL, /* Language specific
12775 class_name_from_physname */
6c038f32
PH
12776 ada_op_print_tab, /* expression operators for printing */
12777 0, /* c-style arrays */
12778 1, /* String lower bound */
6c038f32 12779 ada_get_gdb_completer_word_break_characters,
41d27058 12780 ada_make_symbol_completion_list,
72d5681a 12781 ada_language_arch_info,
e79af960 12782 ada_print_array_index,
41f1b697 12783 default_pass_by_reference,
ae6a3a4c 12784 c_get_string,
1a119f36 12785 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12786 ada_iterate_over_symbols,
6c038f32
PH
12787 LANG_MAGIC
12788};
12789
2c0b251b
PA
12790/* Provide a prototype to silence -Wmissing-prototypes. */
12791extern initialize_file_ftype _initialize_ada_language;
12792
5bf03f13
JB
12793/* Command-list for the "set/show ada" prefix command. */
12794static struct cmd_list_element *set_ada_list;
12795static struct cmd_list_element *show_ada_list;
12796
12797/* Implement the "set ada" prefix command. */
12798
12799static void
12800set_ada_command (char *arg, int from_tty)
12801{
12802 printf_unfiltered (_(\
12803"\"set ada\" must be followed by the name of a setting.\n"));
12804 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12805}
12806
12807/* Implement the "show ada" prefix command. */
12808
12809static void
12810show_ada_command (char *args, int from_tty)
12811{
12812 cmd_show_list (show_ada_list, from_tty, "");
12813}
12814
2060206e
PA
12815static void
12816initialize_ada_catchpoint_ops (void)
12817{
12818 struct breakpoint_ops *ops;
12819
12820 initialize_breakpoint_ops ();
12821
12822 ops = &catch_exception_breakpoint_ops;
12823 *ops = bkpt_breakpoint_ops;
12824 ops->dtor = dtor_catch_exception;
12825 ops->allocate_location = allocate_location_catch_exception;
12826 ops->re_set = re_set_catch_exception;
12827 ops->check_status = check_status_catch_exception;
12828 ops->print_it = print_it_catch_exception;
12829 ops->print_one = print_one_catch_exception;
12830 ops->print_mention = print_mention_catch_exception;
12831 ops->print_recreate = print_recreate_catch_exception;
12832
12833 ops = &catch_exception_unhandled_breakpoint_ops;
12834 *ops = bkpt_breakpoint_ops;
12835 ops->dtor = dtor_catch_exception_unhandled;
12836 ops->allocate_location = allocate_location_catch_exception_unhandled;
12837 ops->re_set = re_set_catch_exception_unhandled;
12838 ops->check_status = check_status_catch_exception_unhandled;
12839 ops->print_it = print_it_catch_exception_unhandled;
12840 ops->print_one = print_one_catch_exception_unhandled;
12841 ops->print_mention = print_mention_catch_exception_unhandled;
12842 ops->print_recreate = print_recreate_catch_exception_unhandled;
12843
12844 ops = &catch_assert_breakpoint_ops;
12845 *ops = bkpt_breakpoint_ops;
12846 ops->dtor = dtor_catch_assert;
12847 ops->allocate_location = allocate_location_catch_assert;
12848 ops->re_set = re_set_catch_assert;
12849 ops->check_status = check_status_catch_assert;
12850 ops->print_it = print_it_catch_assert;
12851 ops->print_one = print_one_catch_assert;
12852 ops->print_mention = print_mention_catch_assert;
12853 ops->print_recreate = print_recreate_catch_assert;
12854}
12855
d2e4a39e 12856void
6c038f32 12857_initialize_ada_language (void)
14f9c5c9 12858{
6c038f32
PH
12859 add_language (&ada_language_defn);
12860
2060206e
PA
12861 initialize_ada_catchpoint_ops ();
12862
5bf03f13
JB
12863 add_prefix_cmd ("ada", no_class, set_ada_command,
12864 _("Prefix command for changing Ada-specfic settings"),
12865 &set_ada_list, "set ada ", 0, &setlist);
12866
12867 add_prefix_cmd ("ada", no_class, show_ada_command,
12868 _("Generic command for showing Ada-specific settings."),
12869 &show_ada_list, "show ada ", 0, &showlist);
12870
12871 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12872 &trust_pad_over_xvs, _("\
12873Enable or disable an optimization trusting PAD types over XVS types"), _("\
12874Show whether an optimization trusting PAD types over XVS types is activated"),
12875 _("\
12876This is related to the encoding used by the GNAT compiler. The debugger\n\
12877should normally trust the contents of PAD types, but certain older versions\n\
12878of GNAT have a bug that sometimes causes the information in the PAD type\n\
12879to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12880work around this bug. It is always safe to turn this option \"off\", but\n\
12881this incurs a slight performance penalty, so it is recommended to NOT change\n\
12882this option to \"off\" unless necessary."),
12883 NULL, NULL, &set_ada_list, &show_ada_list);
12884
9ac4176b
PA
12885 add_catch_command ("exception", _("\
12886Catch Ada exceptions, when raised.\n\
12887With an argument, catch only exceptions with the given name."),
12888 catch_ada_exception_command,
12889 NULL,
12890 CATCH_PERMANENT,
12891 CATCH_TEMPORARY);
12892 add_catch_command ("assert", _("\
12893Catch failed Ada assertions, when raised.\n\
12894With an argument, catch only exceptions with the given name."),
12895 catch_assert_command,
12896 NULL,
12897 CATCH_PERMANENT,
12898 CATCH_TEMPORARY);
12899
6c038f32 12900 varsize_limit = 65536;
6c038f32
PH
12901
12902 obstack_init (&symbol_list_obstack);
12903
12904 decoded_names_store = htab_create_alloc
12905 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12906 NULL, xcalloc, xfree);
6b69afc4 12907
e802dbe0
JB
12908 /* Setup per-inferior data. */
12909 observer_attach_inferior_exit (ada_inferior_exit);
12910 ada_inferior_data
8e260fc0 12911 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12912}
This page took 1.624608 seconds and 4 git commands to generate.