* exec.c (exec_close, exec_file_attach): Update.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
14f9c5c9
AS
584 return result;
585 }
586}
587
fc1a4b47
AC
588static const gdb_byte *
589cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
590{
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595}
596
597static CORE_ADDR
ebf56fd3 598cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
599{
600 if (address == 0)
601 return 0;
d2e4a39e 602 else
14f9c5c9
AS
603 return address + offset;
604}
605
4c4b4cd2
PH
606/* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
a2249542 610
77109804
AC
611/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
a0b31db1 613static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 614
14f9c5c9 615static void
a2249542 616lim_warning (const char *format, ...)
14f9c5c9 617{
a2249542 618 va_list args;
a2249542 619
5b4ee69b 620 va_start (args, format);
4c4b4cd2
PH
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
a2249542
MK
623 vwarning (format, args);
624
625 va_end (args);
4c4b4cd2
PH
626}
627
714e53ab
PH
628/* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632static void
633check_size (const struct type *type)
634{
635 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 636 error (_("object size is larger than varsize-limit"));
714e53ab
PH
637}
638
0963b4bd 639/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641max_of_size (int size)
4c4b4cd2 642{
76a01679 643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 644
76a01679 645 return top_bit | (top_bit - 1);
4c4b4cd2
PH
646}
647
0963b4bd 648/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 649static LONGEST
c3e5cd34 650min_of_size (int size)
4c4b4cd2 651{
c3e5cd34 652 return -max_of_size (size) - 1;
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 656static ULONGEST
c3e5cd34 657umax_of_size (int size)
4c4b4cd2 658{
76a01679 659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 660
76a01679 661 return top_bit | (top_bit - 1);
4c4b4cd2
PH
662}
663
0963b4bd 664/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
665static LONGEST
666max_of_type (struct type *t)
4c4b4cd2 667{
c3e5cd34
PH
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672}
673
0963b4bd 674/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
675static LONGEST
676min_of_type (struct type *t)
677{
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
682}
683
684/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 687{
76a01679 688 switch (TYPE_CODE (type))
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
690cc4eb 691 return TYPE_HIGH_BOUND (type);
4c4b4cd2 692 case TYPE_CODE_ENUM:
14e75d8e 693 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
76a01679 697 case TYPE_CODE_INT:
690cc4eb 698 return max_of_type (type);
4c4b4cd2 699 default:
43bbcdc2 700 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
701 }
702}
703
14e75d8e 704/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
705LONGEST
706ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 707{
76a01679 708 switch (TYPE_CODE (type))
4c4b4cd2
PH
709 {
710 case TYPE_CODE_RANGE:
690cc4eb 711 return TYPE_LOW_BOUND (type);
4c4b4cd2 712 case TYPE_CODE_ENUM:
14e75d8e 713 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
76a01679 717 case TYPE_CODE_INT:
690cc4eb 718 return min_of_type (type);
4c4b4cd2 719 default:
43bbcdc2 720 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
721 }
722}
723
724/* The identity on non-range types. For range types, the underlying
76a01679 725 non-range scalar type. */
4c4b4cd2
PH
726
727static struct type *
18af8284 728get_base_type (struct type *type)
4c4b4cd2
PH
729{
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
76a01679
JB
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
4c4b4cd2
PH
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
14f9c5c9 737}
41246937
JB
738
739/* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744struct value *
745ada_get_decoded_value (struct value *value)
746{
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762}
763
764/* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769struct type *
770ada_get_decoded_type (struct type *type)
771{
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776}
777
4c4b4cd2 778\f
76a01679 779
4c4b4cd2 780 /* Language Selection */
14f9c5c9
AS
781
782/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 783 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 784
14f9c5c9 785enum language
ccefe4c4 786ada_update_initial_language (enum language lang)
14f9c5c9 787{
d2e4a39e 788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
14f9c5c9
AS
791
792 return lang;
793}
96d887e8
PH
794
795/* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799char *
800ada_main_name (void)
801{
802 struct minimal_symbol *msym;
f9bc20b9 803 static char *main_program_name = NULL;
6c038f32 804
96d887e8
PH
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
f9bc20b9
JB
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
96d887e8
PH
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
323e0a4a 819 error (_("Invalid address for Ada main program name."));
96d887e8 820
f9bc20b9
JB
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
96d887e8
PH
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832}
14f9c5c9 833\f
4c4b4cd2 834 /* Symbols */
d2e4a39e 835
4c4b4cd2
PH
836/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
14f9c5c9 838
d2e4a39e
AS
839const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
14f9c5c9
AS
862};
863
4c4b4cd2
PH
864/* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
14f9c5c9 867char *
4c4b4cd2 868ada_encode (const char *decoded)
14f9c5c9 869{
4c4b4cd2
PH
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
d2e4a39e 872 const char *p;
14f9c5c9 873 int k;
d2e4a39e 874
4c4b4cd2 875 if (decoded == NULL)
14f9c5c9
AS
876 return NULL;
877
4c4b4cd2
PH
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
14f9c5c9
AS
880
881 k = 0;
4c4b4cd2 882 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 883 {
cdc7bb92 884 if (*p == '.')
4c4b4cd2
PH
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
14f9c5c9 889 else if (*p == '"')
4c4b4cd2
PH
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
1265e4aa
JB
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
897 ;
898 if (mapping->encoded == NULL)
323e0a4a 899 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
d2e4a39e 904 else
4c4b4cd2
PH
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
14f9c5c9
AS
909 }
910
4c4b4cd2
PH
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
14f9c5c9
AS
913}
914
915/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
d2e4a39e
AS
919char *
920ada_fold_name (const char *name)
14f9c5c9 921{
d2e4a39e 922 static char *fold_buffer = NULL;
14f9c5c9
AS
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
d2e4a39e 926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
927
928 if (name[0] == '\'')
929 {
d2e4a39e
AS
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
932 }
933 else
934 {
935 int i;
5b4ee69b 936
14f9c5c9 937 for (i = 0; i <= len; i += 1)
4c4b4cd2 938 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
939 }
940
941 return fold_buffer;
942}
943
529cad9c
PH
944/* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946static int
947is_lower_alphanum (const char c)
948{
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950}
951
c90092fe
JB
952/* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
29480c32
JB
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
c90092fe 959
29480c32
JB
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964static void
965ada_remove_trailing_digits (const char *encoded, int *len)
966{
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
5b4ee69b 970
29480c32
JB
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982}
983
984/* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987static void
988ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989{
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
0963b4bd 995 the 'P' suffix. The second calls the first one after handling
29480c32
JB
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004}
1005
69fadcdf
JB
1006/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008static void
1009ada_remove_Xbn_suffix (const char *encoded, int *len)
1010{
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024}
1025
29480c32
JB
1026/* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
14f9c5c9 1029
4c4b4cd2 1030 The resulting string is valid until the next call of ada_decode.
29480c32 1031 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1032 is returned. */
1033
1034const char *
1035ada_decode (const char *encoded)
14f9c5c9
AS
1036{
1037 int i, j;
1038 int len0;
d2e4a39e 1039 const char *p;
4c4b4cd2 1040 char *decoded;
14f9c5c9 1041 int at_start_name;
4c4b4cd2
PH
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
d2e4a39e 1044
29480c32
JB
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
4c4b4cd2
PH
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
14f9c5c9 1050
29480c32
JB
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
4c4b4cd2 1054 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1055 goto Suppress;
1056
4c4b4cd2 1057 len0 = strlen (encoded);
4c4b4cd2 1058
29480c32
JB
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1061
4c4b4cd2
PH
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1068 {
1069 if (p[3] == 'X')
4c4b4cd2 1070 len0 = p - encoded;
14f9c5c9 1071 else
4c4b4cd2 1072 goto Suppress;
14f9c5c9 1073 }
4c4b4cd2 1074
29480c32
JB
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
4c4b4cd2 1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1080 len0 -= 3;
76a01679 1081
a10967fa
JB
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
29480c32
JB
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
4c4b4cd2 1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1093 len0 -= 1;
1094
4c4b4cd2 1095 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1096
4c4b4cd2
PH
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
14f9c5c9 1099
29480c32
JB
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
4c4b4cd2 1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1103 {
4c4b4cd2
PH
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
d2e4a39e 1112 }
14f9c5c9 1113
29480c32
JB
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
4c4b4cd2
PH
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
14f9c5c9
AS
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
29480c32 1123 /* Is this a symbol function? */
4c4b4cd2
PH
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
5b4ee69b 1127
4c4b4cd2
PH
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
14f9c5c9
AS
1145 at_start_name = 0;
1146
529cad9c
PH
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
4c4b4cd2
PH
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
529cad9c 1152
29480c32
JB
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
529cad9c
PH
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1175 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
4c4b4cd2
PH
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
29480c32
JB
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
4c4b4cd2
PH
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
cdc7bb92 1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1240 {
29480c32 1241 /* Replace '__' by '.'. */
4c4b4cd2
PH
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
14f9c5c9 1247 else
4c4b4cd2 1248 {
29480c32
JB
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
4c4b4cd2
PH
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
14f9c5c9 1255 }
4c4b4cd2 1256 decoded[j] = '\000';
14f9c5c9 1257
29480c32
JB
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
4c4b4cd2
PH
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1263 goto Suppress;
1264
4c4b4cd2
PH
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
14f9c5c9
AS
1269
1270Suppress:
4c4b4cd2
PH
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
14f9c5c9 1275 else
88c15c34 1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1277 return decoded;
1278
1279}
1280
1281/* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286static struct htab *decoded_names_store;
1287
1288/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1293 GSYMBOL).
4c4b4cd2
PH
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1296 when a decoded name is cached in it. */
4c4b4cd2 1297
76a01679
JB
1298char *
1299ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1300{
76a01679 1301 char **resultp =
afa16725 1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1303
4c4b4cd2
PH
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1307
714835d5 1308 if (gsymbol->obj_section != NULL)
76a01679 1309 {
714835d5 1310 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1311
714835d5
UW
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
76a01679 1314 }
4c4b4cd2 1315 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
4c4b4cd2 1319 if (*resultp == NULL)
76a01679
JB
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
5b4ee69b 1323
76a01679
JB
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
4c4b4cd2 1328 }
14f9c5c9 1329
4c4b4cd2
PH
1330 return *resultp;
1331}
76a01679 1332
2c0b251b 1333static char *
76a01679 1334ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1335{
1336 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1337}
1338
1339/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
14f9c5c9 1345
2c0b251b 1346static int
40658b94 1347match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1348{
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
73589123 1352 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1353 else
1354 {
1355 int len_name = strlen (name);
5b4ee69b 1356
4c4b4cd2
PH
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1362 }
14f9c5c9 1363}
14f9c5c9 1364\f
d2e4a39e 1365
4c4b4cd2 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421}
1422
4c4b4cd2 1423/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1424
d2e4a39e
AS
1425static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428};
1429
1430/* Maximum number of array dimensions we are prepared to handle. */
1431
4c4b4cd2 1432#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1433
14f9c5c9 1434
4c4b4cd2
PH
1435/* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
14f9c5c9
AS
1437
1438/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1439 level of indirection, if needed. */
1440
d2e4a39e
AS
1441static struct type *
1442desc_base_type (struct type *type)
14f9c5c9
AS
1443{
1444 if (type == NULL)
1445 return NULL;
61ee279c 1446 type = ada_check_typedef (type);
720d1a40
JB
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1265e4aa
JB
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1454 else
1455 return type;
1456}
1457
4c4b4cd2
PH
1458/* True iff TYPE indicates a "thin" array pointer type. */
1459
14f9c5c9 1460static int
d2e4a39e 1461is_thin_pntr (struct type *type)
14f9c5c9 1462{
d2e4a39e 1463 return
14f9c5c9
AS
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466}
1467
4c4b4cd2
PH
1468/* The descriptor type for thin pointer type TYPE. */
1469
d2e4a39e
AS
1470static struct type *
1471thin_descriptor_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *base_type = desc_base_type (type);
5b4ee69b 1474
14f9c5c9
AS
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
d2e4a39e 1479 else
14f9c5c9 1480 {
d2e4a39e 1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1482
14f9c5c9 1483 if (alt_type == NULL)
4c4b4cd2 1484 return base_type;
14f9c5c9 1485 else
4c4b4cd2 1486 return alt_type;
14f9c5c9
AS
1487 }
1488}
1489
4c4b4cd2
PH
1490/* A pointer to the array data for thin-pointer value VAL. */
1491
d2e4a39e
AS
1492static struct value *
1493thin_data_pntr (struct value *val)
14f9c5c9 1494{
828292f2 1495 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1497
556bdfd4
UW
1498 data_type = lookup_pointer_type (data_type);
1499
14f9c5c9 1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1501 return value_cast (data_type, value_copy (val));
d2e4a39e 1502 else
42ae5230 1503 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1504}
1505
4c4b4cd2
PH
1506/* True iff TYPE indicates a "thick" array pointer type. */
1507
14f9c5c9 1508static int
d2e4a39e 1509is_thick_pntr (struct type *type)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1514}
1515
4c4b4cd2
PH
1516/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1518
d2e4a39e
AS
1519static struct type *
1520desc_bounds_type (struct type *type)
14f9c5c9 1521{
d2e4a39e 1522 struct type *r;
14f9c5c9
AS
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
4c4b4cd2 1532 return NULL;
14f9c5c9
AS
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
61ee279c 1535 return ada_check_typedef (r);
14f9c5c9
AS
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1542 }
1543 return NULL;
1544}
1545
1546/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
d2e4a39e
AS
1549static struct value *
1550desc_bounds (struct value *arr)
14f9c5c9 1551{
df407dfe 1552 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1553
d2e4a39e 1554 if (is_thin_pntr (type))
14f9c5c9 1555 {
d2e4a39e 1556 struct type *bounds_type =
4c4b4cd2 1557 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1558 LONGEST addr;
1559
4cdfadb1 1560 if (bounds_type == NULL)
323e0a4a 1561 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1562
1563 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1564 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1565 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1567 addr = value_as_long (arr);
d2e4a39e 1568 else
42ae5230 1569 addr = value_address (arr);
14f9c5c9 1570
d2e4a39e 1571 return
4c4b4cd2
PH
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1574 }
1575
1576 else if (is_thick_pntr (type))
05e522ef
JB
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
14f9c5c9
AS
1597 else
1598 return NULL;
1599}
1600
4c4b4cd2
PH
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1606{
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608}
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 size of the field containing the address of the bounds data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617
d2e4a39e 1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
61ee279c 1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1622}
1623
4c4b4cd2 1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
4c4b4cd2 1628
d2e4a39e 1629static struct type *
556bdfd4 1630desc_data_target_type (struct type *type)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
4c4b4cd2 1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1635 if (is_thin_pntr (type))
556bdfd4 1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1637 else if (is_thick_pntr (type))
556bdfd4
UW
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1644 }
1645
1646 return NULL;
14f9c5c9
AS
1647}
1648
1649/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
4c4b4cd2 1651
d2e4a39e
AS
1652static struct value *
1653desc_data (struct value *arr)
14f9c5c9 1654{
df407dfe 1655 struct type *type = value_type (arr);
5b4ee69b 1656
14f9c5c9
AS
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
d2e4a39e 1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1661 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1662 else
1663 return NULL;
1664}
1665
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 position of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1686 else
14f9c5c9
AS
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688}
1689
4c4b4cd2 1690/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
d2e4a39e
AS
1694static struct value *
1695desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1698 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1699}
1700
1701/* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
14f9c5c9 1705static int
d2e4a39e 1706desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1707{
d2e4a39e 1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1709}
1710
1711/* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
76a01679 1715static int
d2e4a39e 1716desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
d2e4a39e
AS
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1724}
1725
1726/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
d2e4a39e
AS
1729static struct type *
1730desc_index_type (struct type *type, int i)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
14f9c5c9
AS
1737 return NULL;
1738}
1739
4c4b4cd2
PH
1740/* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
14f9c5c9 1743static int
d2e4a39e 1744desc_arity (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751}
1752
4c4b4cd2
PH
1753/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
76a01679
JB
1757static int
1758ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1759{
1760 if (type == NULL)
1761 return 0;
61ee279c 1762 type = ada_check_typedef (type);
4c4b4cd2 1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1764 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1765}
1766
52ce6436 1767/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1768 * to one. */
52ce6436 1769
2c0b251b 1770static int
52ce6436
PH
1771ada_is_array_type (struct type *type)
1772{
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778}
1779
4c4b4cd2 1780/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1781
14f9c5c9 1782int
4c4b4cd2 1783ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1784{
1785 if (type == NULL)
1786 return 0;
61ee279c 1787 type = ada_check_typedef (type);
14f9c5c9 1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1792}
1793
4c4b4cd2
PH
1794/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
14f9c5c9 1796int
4c4b4cd2 1797ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1798{
556bdfd4 1799 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1800
1801 if (type == NULL)
1802 return 0;
61ee279c 1803 type = ada_check_typedef (type);
556bdfd4
UW
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1807}
1808
1809/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1810 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1811 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1812 is still needed. */
1813
14f9c5c9 1814int
ebf56fd3 1815ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1816{
d2e4a39e 1817 return
14f9c5c9
AS
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1823}
1824
1825
4c4b4cd2 1826/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1827 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1829 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1832 a descriptor. */
d2e4a39e
AS
1833struct type *
1834ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1835{
ad82864c
JB
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1838
df407dfe
AC
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
d2e4a39e
AS
1841
1842 if (!bounds)
ad82864c
JB
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
14f9c5c9
AS
1853 else
1854 {
d2e4a39e 1855 struct type *elt_type;
14f9c5c9 1856 int arity;
d2e4a39e 1857 struct value *descriptor;
14f9c5c9 1858
df407dfe
AC
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
14f9c5c9 1861
d2e4a39e 1862 if (elt_type == NULL || arity == 0)
df407dfe 1863 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1864
1865 descriptor = desc_bounds (arr);
d2e4a39e 1866 if (value_as_long (descriptor) == 0)
4c4b4cd2 1867 return NULL;
d2e4a39e 1868 while (arity > 0)
4c4b4cd2 1869 {
e9bb382b
UW
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1874
5b4ee69b 1875 arity -= 1;
df407dfe 1876 create_range_type (range_type, value_type (low),
529cad9c
PH
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
4c4b4cd2 1879 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
4c4b4cd2 1901 }
14f9c5c9
AS
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905}
1906
1907/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
d2e4a39e
AS
1912struct value *
1913ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1914{
df407dfe 1915 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1916 {
d2e4a39e 1917 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1918
14f9c5c9 1919 if (arrType == NULL)
4c4b4cd2 1920 return NULL;
14f9c5c9
AS
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
ad82864c
JB
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1925 else
1926 return arr;
1927}
1928
1929/* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1931 be ARR itself if it already is in the proper form). */
1932
720d1a40 1933struct value *
d2e4a39e 1934ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1935{
df407dfe 1936 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1937 {
d2e4a39e 1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1939
14f9c5c9 1940 if (arrVal == NULL)
323e0a4a 1941 error (_("Bounds unavailable for null array pointer."));
529cad9c 1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1943 return value_ind (arrVal);
1944 }
ad82864c
JB
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
d2e4a39e 1947 else
14f9c5c9
AS
1948 return arr;
1949}
1950
1951/* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1953 packing). For other types, is the identity. */
1954
d2e4a39e
AS
1955struct type *
1956ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1957{
ad82864c
JB
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
17280b9f
UW
1960
1961 if (ada_is_array_descriptor_type (type))
556bdfd4 1962 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1963
1964 return type;
14f9c5c9
AS
1965}
1966
4c4b4cd2
PH
1967/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
ad82864c
JB
1969static int
1970ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1971{
1972 if (type == NULL)
1973 return 0;
4c4b4cd2 1974 type = desc_base_type (type);
61ee279c 1975 type = ada_check_typedef (type);
d2e4a39e 1976 return
14f9c5c9
AS
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979}
1980
ad82864c
JB
1981/* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984int
1985ada_is_constrained_packed_array_type (struct type *type)
1986{
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989}
1990
1991/* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994static int
1995ada_is_unconstrained_packed_array_type (struct type *type)
1996{
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999}
2000
2001/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004static long
2005decode_packed_array_bitsize (struct type *type)
2006{
0d5cff50
DE
2007 const char *raw_name;
2008 const char *tail;
ad82864c
JB
2009 long bits;
2010
720d1a40
JB
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
720d1a40 2025 gdb_assert (tail != NULL);
ad82864c
JB
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035}
2036
14f9c5c9
AS
2037/* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
d2e4a39e 2046static struct type *
ad82864c 2047constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2048{
d2e4a39e
AS
2049 struct type *new_elt_type;
2050 struct type *new_type;
99b1c762
JB
2051 struct type *index_type_desc;
2052 struct type *index_type;
14f9c5c9
AS
2053 LONGEST low_bound, high_bound;
2054
61ee279c 2055 type = ada_check_typedef (type);
14f9c5c9
AS
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
99b1c762
JB
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
e9bb382b 2066 new_type = alloc_type_copy (type);
ad82864c
JB
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
99b1c762 2070 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
99b1c762 2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2078 else
14f9c5c9
AS
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2081 TYPE_LENGTH (new_type) =
4c4b4cd2 2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2083 }
2084
876cecd0 2085 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2086 return new_type;
2087}
2088
ad82864c
JB
2089/* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2091
d2e4a39e 2092static struct type *
ad82864c 2093decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2094{
0d5cff50 2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2096 char *name;
0d5cff50 2097 const char *tail;
d2e4a39e 2098 struct type *shadow_type;
14f9c5c9 2099 long bits;
14f9c5c9 2100
727e3d2e
JB
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2109 type = desc_base_type (type);
2110
14f9c5c9
AS
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
b4ba55a1
JB
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
14f9c5c9 2117 {
323e0a4a 2118 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2119 return NULL;
2120 }
cb249c71 2121 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
0963b4bd
MS
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
14f9c5c9
AS
2127 return NULL;
2128 }
d2e4a39e 2129
ad82864c
JB
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2132}
2133
ad82864c
JB
2134/* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
4c4b4cd2 2138 type length is set appropriately. */
14f9c5c9 2139
d2e4a39e 2140static struct value *
ad82864c 2141decode_constrained_packed_array (struct value *arr)
14f9c5c9 2142{
4c4b4cd2 2143 struct type *type;
14f9c5c9 2144
4c4b4cd2 2145 arr = ada_coerce_ref (arr);
284614f0
JB
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
828292f2 2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2154 arr = value_ind (arr);
4c4b4cd2 2155
ad82864c 2156 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2157 if (type == NULL)
2158 {
323e0a4a 2159 error (_("can't unpack array"));
14f9c5c9
AS
2160 return NULL;
2161 }
61ee279c 2162
50810684 2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2164 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
df407dfe 2173 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
df407dfe 2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
4c4b4cd2 2188 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2189}
2190
2191
2192/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2193 given in IND. ARR must be a simple array. */
14f9c5c9 2194
d2e4a39e
AS
2195static struct value *
2196value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2197{
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
d2e4a39e
AS
2201 struct type *elt_type;
2202 struct value *v;
14f9c5c9
AS
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
df407dfe 2206 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2207 for (i = 0; i < arity; i += 1)
14f9c5c9 2208 {
d2e4a39e 2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
0963b4bd
MS
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
14f9c5c9 2214 else
4c4b4cd2
PH
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
323e0a4a 2222 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2223 lowerbound = upperbound = 0;
2224 }
2225
3cb382c9 2226 idx = pos_atr (ind[i]);
4c4b4cd2 2227 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
4c4b4cd2
PH
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2233 }
14f9c5c9
AS
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2239 bits, elt_type);
14f9c5c9
AS
2240 return v;
2241}
2242
4c4b4cd2 2243/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2244
2245static int
d2e4a39e 2246has_negatives (struct type *type)
14f9c5c9 2247{
d2e4a39e
AS
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
14f9c5c9 2257}
d2e4a39e 2258
14f9c5c9
AS
2259
2260/* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2263 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2268
d2e4a39e 2269struct value *
fc1a4b47 2270ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2271 long offset, int bit_offset, int bit_size,
4c4b4cd2 2272 struct type *type)
14f9c5c9 2273{
d2e4a39e 2274 struct value *v;
4c4b4cd2
PH
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2283 unsigned char *unpacked;
4c4b4cd2 2284 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
50810684 2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2290
61ee279c 2291 type = ada_check_typedef (type);
14f9c5c9
AS
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
d2e4a39e 2296 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2297 }
9214ee5f 2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2299 {
53ba8333 2300 v = value_at (type, value_address (obj));
d2e4a39e 2301 bytes = (unsigned char *) alloca (len);
53ba8333 2302 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2303 }
d2e4a39e 2304 else
14f9c5c9
AS
2305 {
2306 v = allocate_value (type);
0fd88904 2307 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2308 }
d2e4a39e
AS
2309
2310 if (obj != NULL)
14f9c5c9 2311 {
53ba8333 2312 long new_offset = offset;
5b4ee69b 2313
74bcbdf3 2314 set_value_component_location (v, obj);
9bbda503
AC
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
df407dfe 2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2318 {
53ba8333 2319 ++new_offset;
9bbda503 2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2321 }
53ba8333
JB
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
14f9c5c9
AS
2328 }
2329 else
9bbda503 2330 set_value_bitsize (v, bit_size);
0fd88904 2331 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
50810684 2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2343 {
d2e4a39e 2344 src = len - 1;
1265e4aa
JB
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2347 sign = ~0;
d2e4a39e
AS
2348
2349 unusedLS =
4c4b4cd2
PH
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
14f9c5c9
AS
2352
2353 switch (TYPE_CODE (type))
4c4b4cd2
PH
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
529cad9c 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2364 ntarg = targ + 1;
4c4b4cd2
PH
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
14f9c5c9 2371 }
d2e4a39e 2372 else
14f9c5c9
AS
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
d2e4a39e 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2381 sign = ~0;
14f9c5c9 2382 }
d2e4a39e 2383
14f9c5c9
AS
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2388 part of the value. */
d2e4a39e 2389 unsigned int unusedMSMask =
4c4b4cd2
PH
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
14f9c5c9 2393 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2394
d2e4a39e 2395 accum |=
4c4b4cd2 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2397 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2398 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
14f9c5c9
AS
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422}
d2e4a39e 2423
14f9c5c9
AS
2424/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2426 not overlap. */
14f9c5c9 2427static void
fc1a4b47 2428move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2429 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2430{
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
50810684 2438 if (bits_big_endian_p)
14f9c5c9
AS
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
d2e4a39e 2444 while (n > 0)
4c4b4cd2
PH
2445 {
2446 int unused_right;
5b4ee69b 2447
4c4b4cd2
PH
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
14f9c5c9
AS
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
d2e4a39e 2471 while (n > 0)
4c4b4cd2
PH
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488}
2489
14f9c5c9
AS
2490/* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2493 floating-point or non-scalar types. */
14f9c5c9 2494
d2e4a39e
AS
2495static struct value *
2496ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2497{
df407dfe
AC
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
14f9c5c9 2500
52ce6436
PH
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
88e3b34b 2509 if (!deprecated_value_modifiable (toval))
323e0a4a 2510 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2511
d2e4a39e 2512 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2513 && bits > 0
d2e4a39e 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2516 {
df407dfe
AC
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2519 int from_size;
d2e4a39e
AS
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
42ae5230 2522 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2525 fromval = value_cast (type, fromval);
14f9c5c9 2526
52ce6436 2527 read_memory (to_addr, buffer, len);
aced2898
PH
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2532 move_bits (buffer, value_bitpos (toval),
50810684 2533 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2534 else
50810684
UW
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
972daa01 2537 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2538
14f9c5c9 2539 val = value_copy (toval);
0fd88904 2540 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2541 TYPE_LENGTH (type));
04624583 2542 deprecated_set_value_type (val, type);
d2e4a39e 2543
14f9c5c9
AS
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548}
2549
2550
52ce6436
PH
2551/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556static void
2557value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559{
2560 LONGEST offset_in_container =
42ae5230 2561 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
50810684 2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2578 bits, 1);
52ce6436
PH
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
50810684 2582 value_contents (val), 0, bits, 0);
52ce6436
PH
2583}
2584
4c4b4cd2
PH
2585/* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2587 thereto. */
2588
d2e4a39e
AS
2589struct value *
2590ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2591{
2592 int k;
d2e4a39e
AS
2593 struct value *elt;
2594 struct type *elt_type;
14f9c5c9
AS
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
df407dfe 2598 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2606 error (_("too many subscripts (%d expected)"), k);
2497b498 2607 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2608 }
2609 return elt;
2610}
2611
2612/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2614 IND. Does not read the entire array into memory. */
14f9c5c9 2615
2c0b251b 2616static struct value *
d2e4a39e 2617ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2618 struct value **ind)
14f9c5c9
AS
2619{
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
14f9c5c9
AS
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2627 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2629 value_copy (arr));
14f9c5c9 2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636}
2637
0b5d8877 2638/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2641 per Ada rules. */
0b5d8877 2642static struct value *
f5938064
JG
2643ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
0b5d8877 2645{
b0dd7688 2646 struct type *type0 = ada_check_typedef (type);
6c038f32 2647 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2650 struct type *index_type =
b0dd7688 2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2652 low, high);
6c038f32 2653 struct type *slice_type =
b0dd7688 2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2655
f5938064 2656 return value_at_lazy (slice_type, base);
0b5d8877
PH
2657}
2658
2659
2660static struct value *
2661ada_value_slice (struct value *array, int low, int high)
2662{
b0dd7688 2663 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2664 struct type *index_type =
0b5d8877 2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2666 struct type *slice_type =
0b5d8877 2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2668
6c038f32 2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2670}
2671
14f9c5c9
AS
2672/* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2675 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2676
2677int
d2e4a39e 2678ada_array_arity (struct type *type)
14f9c5c9
AS
2679{
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
d2e4a39e 2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2689 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2692 {
4c4b4cd2 2693 arity += 1;
61ee279c 2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2695 }
d2e4a39e 2696
14f9c5c9
AS
2697 return arity;
2698}
2699
2700/* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2703 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2704
d2e4a39e
AS
2705struct type *
2706ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2707{
2708 type = desc_base_type (type);
2709
d2e4a39e 2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2711 {
2712 int k;
d2e4a39e 2713 struct type *p_array_type;
14f9c5c9 2714
556bdfd4 2715 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
4c4b4cd2 2719 return NULL;
d2e4a39e 2720
4c4b4cd2 2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2722 if (nindices >= 0 && k > nindices)
4c4b4cd2 2723 k = nindices;
d2e4a39e 2724 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2725 {
61ee279c 2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2727 k -= 1;
2728 }
14f9c5c9
AS
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
14f9c5c9
AS
2738 return type;
2739 }
2740
2741 return NULL;
2742}
2743
4c4b4cd2 2744/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
14f9c5c9 2749
1eea4ebd
UW
2750static struct type *
2751ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2752{
4c4b4cd2
PH
2753 struct type *result_type;
2754
14f9c5c9
AS
2755 type = desc_base_type (type);
2756
1eea4ebd
UW
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2759
4c4b4cd2 2760 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
4c4b4cd2 2765 type = TYPE_TARGET_TYPE (type);
262452ec 2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2769 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
14f9c5c9 2772 }
d2e4a39e 2773 else
1eea4ebd
UW
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
14f9c5c9
AS
2781}
2782
2783/* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
14f9c5c9 2788
abb68b3e 2789static LONGEST
1eea4ebd 2790ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2791{
1ce677a4 2792 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2793 int i;
262452ec
JK
2794
2795 gdb_assert (which == 0 || which == 1);
14f9c5c9 2796
ad82864c
JB
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2799
4c4b4cd2 2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2801 return (LONGEST) - which;
14f9c5c9
AS
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
1ce677a4
UW
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
14f9c5c9 2812 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2813 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2814 if (index_type_desc != NULL)
28c85d6c
JB
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
262452ec 2817 else
1ce677a4 2818 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2819
43bbcdc2
PH
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2824}
2825
2826/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2829 supplied by run-time quantities other than discriminants. */
14f9c5c9 2830
1eea4ebd 2831static LONGEST
4dc81987 2832ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2833{
df407dfe 2834 struct type *arr_type = value_type (arr);
14f9c5c9 2835
ad82864c
JB
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2838 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2839 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2840 else
1eea4ebd 2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2842}
2843
2844/* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
14f9c5c9 2849
1eea4ebd 2850static LONGEST
d2e4a39e 2851ada_array_length (struct value *arr, int n)
14f9c5c9 2852{
df407dfe 2853 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2854
ad82864c
JB
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2857
4c4b4cd2 2858 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2861 else
1eea4ebd
UW
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2864}
2865
2866/* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869static struct value *
2870empty_array (struct type *arr_type, int low)
2871{
b0dd7688 2872 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2873 struct type *index_type =
b0dd7688 2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2875 low, low - 1);
b0dd7688 2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2877
0b5d8877 2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2879}
14f9c5c9 2880\f
d2e4a39e 2881
4c4b4cd2 2882 /* Name resolution */
14f9c5c9 2883
4c4b4cd2
PH
2884/* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
14f9c5c9 2886
d2e4a39e 2887static const char *
4c4b4cd2 2888ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2889{
2890 int i;
2891
4c4b4cd2 2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2893 {
2894 if (ada_opname_table[i].op == op)
4c4b4cd2 2895 return ada_opname_table[i].decoded;
14f9c5c9 2896 }
323e0a4a 2897 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2898}
2899
2900
4c4b4cd2
PH
2901/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2908 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2909
4c4b4cd2
PH
2910static void
2911resolve (struct expression **expp, int void_context_p)
14f9c5c9 2912{
30b15541
UW
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2920}
2921
4c4b4cd2
PH
2922/* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
14f9c5c9 2930
d2e4a39e 2931static struct value *
4c4b4cd2 2932resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2933 struct type *context_type)
14f9c5c9
AS
2934{
2935 int pc = *pos;
2936 int i;
4c4b4cd2 2937 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
52ce6436 2941 int oplen;
14f9c5c9
AS
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
52ce6436
PH
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
14f9c5c9
AS
2949 switch (op)
2950 {
4c4b4cd2
PH
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
4c4b4cd2
PH
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2961 break;
2962
14f9c5c9 2963 case UNOP_ADDR:
4c4b4cd2
PH
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
52ce6436
PH
2968 case UNOP_QUAL:
2969 *pos += 3;
17466c1a 2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2971 break;
2972
52ce6436 2973 case OP_ATR_MODULUS:
4c4b4cd2
PH
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
4c4b4cd2
PH
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
4c4b4cd2
PH
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
52ce6436
PH
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
14f9c5c9
AS
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
4c4b4cd2
PH
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
df407dfe 3005 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3006 break;
14f9c5c9
AS
3007 }
3008
4c4b4cd2 3009 case UNOP_CAST:
4c4b4cd2
PH
3010 *pos += 3;
3011 nargs = 1;
3012 break;
14f9c5c9 3013
4c4b4cd2
PH
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
14f9c5c9 3027
4c4b4cd2
PH
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
14f9c5c9 3034
4c4b4cd2
PH
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
40c8aaa9
JB
3038 *pos += 1;
3039 nargs = 2;
3040 break;
14f9c5c9 3041
4c4b4cd2
PH
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
14f9c5c9 3050
4c4b4cd2
PH
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
14f9c5c9 3056
4c4b4cd2
PH
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
4c4b4cd2
PH
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
14f9c5c9 3063
4c4b4cd2
PH
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
67f3407f
DJ
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
4c4b4cd2
PH
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
4c4b4cd2 3078 case TERNOP_SLICE:
4c4b4cd2
PH
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
52ce6436 3083 case OP_STRING:
14f9c5c9 3084 break;
4c4b4cd2
PH
3085
3086 default:
323e0a4a 3087 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3088 }
3089
76a01679 3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
14f9c5c9 3102 case OP_VAR_VALUE:
4c4b4cd2 3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3112 &candidates, 1);
76a01679
JB
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
76a01679
JB
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
76a01679 3128 case LOC_COMPUTED:
76a01679
JB
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
323e0a4a 3151 error (_("No definition found for %s"),
76a01679
JB
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
06d5cf63
JB
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
76a01679 3162 if (i < 0)
323e0a4a 3163 error (_("Could not find a match for %s"),
76a01679
JB
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
323e0a4a 3168 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
14f9c5c9
AS
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
4c4b4cd2 3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
76a01679
JB
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3204 &candidates, 1);
4c4b4cd2
PH
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
06d5cf63
JB
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
4c4b4cd2 3214 if (i < 0)
323e0a4a 3215 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3223 innermost_block = candidates[i].block;
3224 }
14f9c5c9
AS
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3256 &candidates, 1);
4c4b4cd2 3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3258 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3259 if (i < 0)
3260 break;
3261
76a01679
JB
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3264 exp = *expp;
3265 }
14f9c5c9 3266 break;
4c4b4cd2
PH
3267
3268 case OP_TYPE:
b3dbf008 3269 case OP_REGISTER:
4c4b4cd2 3270 return NULL;
14f9c5c9
AS
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275}
3276
3277/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3279 a non-pointer. */
14f9c5c9 3280/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3281 liberal. */
14f9c5c9
AS
3282
3283static int
4dc81987 3284ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3285{
61ee279c
PH
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
14f9c5c9
AS
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
d2e4a39e 3294 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3295 {
3296 default:
5b3d5b7d 3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3302 else
1265e4aa
JB
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
14f9c5c9
AS
3317
3318 case TYPE_CODE_ARRAY:
d2e4a39e 3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3320 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3321
3322 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
14f9c5c9 3326 else
4c4b4cd2
PH
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334}
3335
3336/* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3339 argument function. */
14f9c5c9
AS
3340
3341static int
d2e4a39e 3342ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3343{
3344 int i;
d2e4a39e 3345 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3346
1265e4aa
JB
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
4c4b4cd2 3358 if (actuals[i] == NULL)
76a01679
JB
3359 return 0;
3360 else
3361 {
5b4ee69b
MS
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
df407dfe 3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3365
76a01679
JB
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
14f9c5c9
AS
3369 }
3370 return 1;
3371}
3372
3373/* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378static int
d2e4a39e 3379return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3380{
d2e4a39e 3381 struct type *return_type;
14f9c5c9
AS
3382
3383 if (func_type == NULL)
3384 return 1;
3385
4c4b4cd2 3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3388 else
18af8284 3389 return_type = get_base_type (func_type);
14f9c5c9
AS
3390 if (return_type == NULL)
3391 return 1;
3392
18af8284 3393 context_type = get_base_type (context_type);
14f9c5c9
AS
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401}
3402
3403
4c4b4cd2 3404/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3405 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
14f9c5c9
AS
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
14f9c5c9 3415
4c4b4cd2
PH
3416static int
3417ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
14f9c5c9 3420{
30b15541 3421 int fallback;
14f9c5c9 3422 int k;
4c4b4cd2 3423 int m; /* Number of hits */
14f9c5c9 3424
d2e4a39e 3425 m = 0;
30b15541
UW
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3430 {
3431 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3432 {
61ee279c 3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3436 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
14f9c5c9
AS
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
323e0a4a 3448 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3449 user_select_syms (syms, m, 1);
14f9c5c9
AS
3450 return 0;
3451 }
3452 return 0;
3453}
3454
4c4b4cd2
PH
3455/* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
14f9c5c9 3461static int
0d5cff50 3462encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3463{
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
5b4ee69b 3471
d2e4a39e 3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3473 ;
d2e4a39e 3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
5b4ee69b 3480
4c4b4cd2
PH
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
14f9c5c9
AS
3490 return (strcmp (N0, N1) < 0);
3491 }
3492}
d2e4a39e 3493
4c4b4cd2
PH
3494/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
d2e4a39e 3497static void
4c4b4cd2 3498sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3499{
4c4b4cd2 3500 int i;
5b4ee69b 3501
d2e4a39e 3502 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3503 {
4c4b4cd2 3504 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3505 int j;
3506
d2e4a39e 3507 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
d2e4a39e 3514 syms[j + 1] = sym;
14f9c5c9
AS
3515 }
3516}
3517
4c4b4cd2
PH
3518/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
14f9c5c9
AS
3522
3523/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3524 to be re-integrated one of these days. */
14f9c5c9
AS
3525
3526int
4c4b4cd2 3527user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3528{
3529 int i;
d2e4a39e 3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3533 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3534
3535 if (max_results < 1)
323e0a4a 3536 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3537 if (nsyms <= 1)
3538 return nsyms;
3539
717d2f5a
JB
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542canceled because the command is ambiguous\n\
3543See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
323e0a4a 3551 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3552 if (max_results > 1)
323e0a4a 3553 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3554
4c4b4cd2 3555 sort_choices (syms, nsyms);
14f9c5c9
AS
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
4c4b4cd2
PH
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
76a01679
JB
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3566
323e0a4a
AC
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3576 continue;
3577 }
d2e4a39e 3578 else
4c4b4cd2
PH
3579 {
3580 int is_enumeral =
3581 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3582 && SYMBOL_TYPE (syms[i].sym) != NULL
3583 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3584 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3585
3586 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3587 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3588 i + first_choice,
3589 SYMBOL_PRINT_NAME (syms[i].sym),
3590 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3591 else if (is_enumeral
3592 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3593 {
a3f17187 3594 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3595 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3596 gdb_stdout, -1, 0);
323e0a4a 3597 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3598 SYMBOL_PRINT_NAME (syms[i].sym));
3599 }
3600 else if (symtab != NULL)
3601 printf_unfiltered (is_enumeral
323e0a4a
AC
3602 ? _("[%d] %s in %s (enumeral)\n")
3603 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3604 i + first_choice,
3605 SYMBOL_PRINT_NAME (syms[i].sym),
3606 symtab->filename);
3607 else
3608 printf_unfiltered (is_enumeral
323e0a4a
AC
3609 ? _("[%d] %s (enumeral)\n")
3610 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3611 i + first_choice,
3612 SYMBOL_PRINT_NAME (syms[i].sym));
3613 }
14f9c5c9 3614 }
d2e4a39e 3615
14f9c5c9 3616 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3617 "overload-choice");
14f9c5c9
AS
3618
3619 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3620 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3621
3622 return n_chosen;
3623}
3624
3625/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3626 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3627 order in CHOICES[0 .. N-1], and return N.
3628
3629 The user types choices as a sequence of numbers on one line
3630 separated by blanks, encoding them as follows:
3631
4c4b4cd2 3632 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3633 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3634 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3635
4c4b4cd2 3636 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3637
3638 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3639 prompts (for use with the -f switch). */
14f9c5c9
AS
3640
3641int
d2e4a39e 3642get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3643 int is_all_choice, char *annotation_suffix)
14f9c5c9 3644{
d2e4a39e 3645 char *args;
0bcd0149 3646 char *prompt;
14f9c5c9
AS
3647 int n_chosen;
3648 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3649
14f9c5c9
AS
3650 prompt = getenv ("PS2");
3651 if (prompt == NULL)
0bcd0149 3652 prompt = "> ";
14f9c5c9 3653
0bcd0149 3654 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3655
14f9c5c9 3656 if (args == NULL)
323e0a4a 3657 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3658
3659 n_chosen = 0;
76a01679 3660
4c4b4cd2
PH
3661 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3662 order, as given in args. Choices are validated. */
14f9c5c9
AS
3663 while (1)
3664 {
d2e4a39e 3665 char *args2;
14f9c5c9
AS
3666 int choice, j;
3667
0fcd72ba 3668 args = skip_spaces (args);
14f9c5c9 3669 if (*args == '\0' && n_chosen == 0)
323e0a4a 3670 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3671 else if (*args == '\0')
4c4b4cd2 3672 break;
14f9c5c9
AS
3673
3674 choice = strtol (args, &args2, 10);
d2e4a39e 3675 if (args == args2 || choice < 0
4c4b4cd2 3676 || choice > n_choices + first_choice - 1)
323e0a4a 3677 error (_("Argument must be choice number"));
14f9c5c9
AS
3678 args = args2;
3679
d2e4a39e 3680 if (choice == 0)
323e0a4a 3681 error (_("cancelled"));
14f9c5c9
AS
3682
3683 if (choice < first_choice)
4c4b4cd2
PH
3684 {
3685 n_chosen = n_choices;
3686 for (j = 0; j < n_choices; j += 1)
3687 choices[j] = j;
3688 break;
3689 }
14f9c5c9
AS
3690 choice -= first_choice;
3691
d2e4a39e 3692 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3693 {
3694 }
14f9c5c9
AS
3695
3696 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3697 {
3698 int k;
5b4ee69b 3699
4c4b4cd2
PH
3700 for (k = n_chosen - 1; k > j; k -= 1)
3701 choices[k + 1] = choices[k];
3702 choices[j + 1] = choice;
3703 n_chosen += 1;
3704 }
14f9c5c9
AS
3705 }
3706
3707 if (n_chosen > max_results)
323e0a4a 3708 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3709
14f9c5c9
AS
3710 return n_chosen;
3711}
3712
4c4b4cd2
PH
3713/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3714 on the function identified by SYM and BLOCK, and taking NARGS
3715 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3716
3717static void
d2e4a39e 3718replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3719 int oplen, struct symbol *sym,
3720 struct block *block)
14f9c5c9
AS
3721{
3722 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3723 symbol, -oplen for operator being replaced). */
d2e4a39e 3724 struct expression *newexp = (struct expression *)
8c1a34e7 3725 xzalloc (sizeof (struct expression)
4c4b4cd2 3726 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3727 struct expression *exp = *expp;
14f9c5c9
AS
3728
3729 newexp->nelts = exp->nelts + 7 - oplen;
3730 newexp->language_defn = exp->language_defn;
3489610d 3731 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3732 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3733 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3734 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3735
3736 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3737 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3738
3739 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3740 newexp->elts[pc + 4].block = block;
3741 newexp->elts[pc + 5].symbol = sym;
3742
3743 *expp = newexp;
aacb1f0a 3744 xfree (exp);
d2e4a39e 3745}
14f9c5c9
AS
3746
3747/* Type-class predicates */
3748
4c4b4cd2
PH
3749/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3750 or FLOAT). */
14f9c5c9
AS
3751
3752static int
d2e4a39e 3753numeric_type_p (struct type *type)
14f9c5c9
AS
3754{
3755 if (type == NULL)
3756 return 0;
d2e4a39e
AS
3757 else
3758 {
3759 switch (TYPE_CODE (type))
4c4b4cd2
PH
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_FLT:
3763 return 1;
3764 case TYPE_CODE_RANGE:
3765 return (type == TYPE_TARGET_TYPE (type)
3766 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3767 default:
3768 return 0;
3769 }
d2e4a39e 3770 }
14f9c5c9
AS
3771}
3772
4c4b4cd2 3773/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3774
3775static int
d2e4a39e 3776integer_type_p (struct type *type)
14f9c5c9
AS
3777{
3778 if (type == NULL)
3779 return 0;
d2e4a39e
AS
3780 else
3781 {
3782 switch (TYPE_CODE (type))
4c4b4cd2
PH
3783 {
3784 case TYPE_CODE_INT:
3785 return 1;
3786 case TYPE_CODE_RANGE:
3787 return (type == TYPE_TARGET_TYPE (type)
3788 || integer_type_p (TYPE_TARGET_TYPE (type)));
3789 default:
3790 return 0;
3791 }
d2e4a39e 3792 }
14f9c5c9
AS
3793}
3794
4c4b4cd2 3795/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3796
3797static int
d2e4a39e 3798scalar_type_p (struct type *type)
14f9c5c9
AS
3799{
3800 if (type == NULL)
3801 return 0;
d2e4a39e
AS
3802 else
3803 {
3804 switch (TYPE_CODE (type))
4c4b4cd2
PH
3805 {
3806 case TYPE_CODE_INT:
3807 case TYPE_CODE_RANGE:
3808 case TYPE_CODE_ENUM:
3809 case TYPE_CODE_FLT:
3810 return 1;
3811 default:
3812 return 0;
3813 }
d2e4a39e 3814 }
14f9c5c9
AS
3815}
3816
4c4b4cd2 3817/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3818
3819static int
d2e4a39e 3820discrete_type_p (struct type *type)
14f9c5c9
AS
3821{
3822 if (type == NULL)
3823 return 0;
d2e4a39e
AS
3824 else
3825 {
3826 switch (TYPE_CODE (type))
4c4b4cd2
PH
3827 {
3828 case TYPE_CODE_INT:
3829 case TYPE_CODE_RANGE:
3830 case TYPE_CODE_ENUM:
872f0337 3831 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3832 return 1;
3833 default:
3834 return 0;
3835 }
d2e4a39e 3836 }
14f9c5c9
AS
3837}
3838
4c4b4cd2
PH
3839/* Returns non-zero if OP with operands in the vector ARGS could be
3840 a user-defined function. Errs on the side of pre-defined operators
3841 (i.e., result 0). */
14f9c5c9
AS
3842
3843static int
d2e4a39e 3844possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3845{
76a01679 3846 struct type *type0 =
df407dfe 3847 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3848 struct type *type1 =
df407dfe 3849 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3850
4c4b4cd2
PH
3851 if (type0 == NULL)
3852 return 0;
3853
14f9c5c9
AS
3854 switch (op)
3855 {
3856 default:
3857 return 0;
3858
3859 case BINOP_ADD:
3860 case BINOP_SUB:
3861 case BINOP_MUL:
3862 case BINOP_DIV:
d2e4a39e 3863 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3864
3865 case BINOP_REM:
3866 case BINOP_MOD:
3867 case BINOP_BITWISE_AND:
3868 case BINOP_BITWISE_IOR:
3869 case BINOP_BITWISE_XOR:
d2e4a39e 3870 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3871
3872 case BINOP_EQUAL:
3873 case BINOP_NOTEQUAL:
3874 case BINOP_LESS:
3875 case BINOP_GTR:
3876 case BINOP_LEQ:
3877 case BINOP_GEQ:
d2e4a39e 3878 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3879
3880 case BINOP_CONCAT:
ee90b9ab 3881 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3882
3883 case BINOP_EXP:
d2e4a39e 3884 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3885
3886 case UNOP_NEG:
3887 case UNOP_PLUS:
3888 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3889 case UNOP_ABS:
3890 return (!numeric_type_p (type0));
14f9c5c9
AS
3891
3892 }
3893}
3894\f
4c4b4cd2 3895 /* Renaming */
14f9c5c9 3896
aeb5907d
JB
3897/* NOTES:
3898
3899 1. In the following, we assume that a renaming type's name may
3900 have an ___XD suffix. It would be nice if this went away at some
3901 point.
3902 2. We handle both the (old) purely type-based representation of
3903 renamings and the (new) variable-based encoding. At some point,
3904 it is devoutly to be hoped that the former goes away
3905 (FIXME: hilfinger-2007-07-09).
3906 3. Subprogram renamings are not implemented, although the XRS
3907 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3908
3909/* If SYM encodes a renaming,
3910
3911 <renaming> renames <renamed entity>,
3912
3913 sets *LEN to the length of the renamed entity's name,
3914 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3915 the string describing the subcomponent selected from the renamed
0963b4bd 3916 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3917 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3918 are undefined). Otherwise, returns a value indicating the category
3919 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3920 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3921 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3922 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3923 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3924 may be NULL, in which case they are not assigned.
3925
3926 [Currently, however, GCC does not generate subprogram renamings.] */
3927
3928enum ada_renaming_category
3929ada_parse_renaming (struct symbol *sym,
3930 const char **renamed_entity, int *len,
3931 const char **renaming_expr)
3932{
3933 enum ada_renaming_category kind;
3934 const char *info;
3935 const char *suffix;
3936
3937 if (sym == NULL)
3938 return ADA_NOT_RENAMING;
3939 switch (SYMBOL_CLASS (sym))
14f9c5c9 3940 {
aeb5907d
JB
3941 default:
3942 return ADA_NOT_RENAMING;
3943 case LOC_TYPEDEF:
3944 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3945 renamed_entity, len, renaming_expr);
3946 case LOC_LOCAL:
3947 case LOC_STATIC:
3948 case LOC_COMPUTED:
3949 case LOC_OPTIMIZED_OUT:
3950 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3951 if (info == NULL)
3952 return ADA_NOT_RENAMING;
3953 switch (info[5])
3954 {
3955 case '_':
3956 kind = ADA_OBJECT_RENAMING;
3957 info += 6;
3958 break;
3959 case 'E':
3960 kind = ADA_EXCEPTION_RENAMING;
3961 info += 7;
3962 break;
3963 case 'P':
3964 kind = ADA_PACKAGE_RENAMING;
3965 info += 7;
3966 break;
3967 case 'S':
3968 kind = ADA_SUBPROGRAM_RENAMING;
3969 info += 7;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
14f9c5c9 3974 }
4c4b4cd2 3975
aeb5907d
JB
3976 if (renamed_entity != NULL)
3977 *renamed_entity = info;
3978 suffix = strstr (info, "___XE");
3979 if (suffix == NULL || suffix == info)
3980 return ADA_NOT_RENAMING;
3981 if (len != NULL)
3982 *len = strlen (info) - strlen (suffix);
3983 suffix += 5;
3984 if (renaming_expr != NULL)
3985 *renaming_expr = suffix;
3986 return kind;
3987}
3988
3989/* Assuming TYPE encodes a renaming according to the old encoding in
3990 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3991 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3992 ADA_NOT_RENAMING otherwise. */
3993static enum ada_renaming_category
3994parse_old_style_renaming (struct type *type,
3995 const char **renamed_entity, int *len,
3996 const char **renaming_expr)
3997{
3998 enum ada_renaming_category kind;
3999 const char *name;
4000 const char *info;
4001 const char *suffix;
14f9c5c9 4002
aeb5907d
JB
4003 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4004 || TYPE_NFIELDS (type) != 1)
4005 return ADA_NOT_RENAMING;
14f9c5c9 4006
aeb5907d
JB
4007 name = type_name_no_tag (type);
4008 if (name == NULL)
4009 return ADA_NOT_RENAMING;
4010
4011 name = strstr (name, "___XR");
4012 if (name == NULL)
4013 return ADA_NOT_RENAMING;
4014 switch (name[5])
4015 {
4016 case '\0':
4017 case '_':
4018 kind = ADA_OBJECT_RENAMING;
4019 break;
4020 case 'E':
4021 kind = ADA_EXCEPTION_RENAMING;
4022 break;
4023 case 'P':
4024 kind = ADA_PACKAGE_RENAMING;
4025 break;
4026 case 'S':
4027 kind = ADA_SUBPROGRAM_RENAMING;
4028 break;
4029 default:
4030 return ADA_NOT_RENAMING;
4031 }
14f9c5c9 4032
aeb5907d
JB
4033 info = TYPE_FIELD_NAME (type, 0);
4034 if (info == NULL)
4035 return ADA_NOT_RENAMING;
4036 if (renamed_entity != NULL)
4037 *renamed_entity = info;
4038 suffix = strstr (info, "___XE");
4039 if (renaming_expr != NULL)
4040 *renaming_expr = suffix + 5;
4041 if (suffix == NULL || suffix == info)
4042 return ADA_NOT_RENAMING;
4043 if (len != NULL)
4044 *len = suffix - info;
4045 return kind;
a5ee536b
JB
4046}
4047
4048/* Compute the value of the given RENAMING_SYM, which is expected to
4049 be a symbol encoding a renaming expression. BLOCK is the block
4050 used to evaluate the renaming. */
52ce6436 4051
a5ee536b
JB
4052static struct value *
4053ada_read_renaming_var_value (struct symbol *renaming_sym,
4054 struct block *block)
4055{
4056 char *sym_name;
4057 struct expression *expr;
4058 struct value *value;
4059 struct cleanup *old_chain = NULL;
4060
4061 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4062 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4063 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4064 make_cleanup (free_current_contents, &expr);
4065 value = evaluate_expression (expr);
4066
4067 do_cleanups (old_chain);
4068 return value;
4069}
14f9c5c9 4070\f
d2e4a39e 4071
4c4b4cd2 4072 /* Evaluation: Function Calls */
14f9c5c9 4073
4c4b4cd2 4074/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4075 lvalues, and otherwise has the side-effect of allocating memory
4076 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4077
d2e4a39e 4078static struct value *
40bc484c 4079ensure_lval (struct value *val)
14f9c5c9 4080{
40bc484c
JB
4081 if (VALUE_LVAL (val) == not_lval
4082 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4083 {
df407dfe 4084 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4085 const CORE_ADDR addr =
4086 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4087
40bc484c 4088 set_value_address (val, addr);
a84a8a0d 4089 VALUE_LVAL (val) = lval_memory;
40bc484c 4090 write_memory (addr, value_contents (val), len);
c3e5cd34 4091 }
14f9c5c9
AS
4092
4093 return val;
4094}
4095
4096/* Return the value ACTUAL, converted to be an appropriate value for a
4097 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4098 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4099 values not residing in memory, updating it as needed. */
14f9c5c9 4100
a93c0eb6 4101struct value *
40bc484c 4102ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4103{
df407dfe 4104 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4105 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4106 struct type *formal_target =
4107 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4108 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4109 struct type *actual_target =
4110 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4111 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4112
4c4b4cd2 4113 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4114 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4115 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4116 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4117 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4118 {
a84a8a0d 4119 struct value *result;
5b4ee69b 4120
14f9c5c9 4121 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4122 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4123 result = desc_data (actual);
14f9c5c9 4124 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4125 {
4126 if (VALUE_LVAL (actual) != lval_memory)
4127 {
4128 struct value *val;
5b4ee69b 4129
df407dfe 4130 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4131 val = allocate_value (actual_type);
990a07ab 4132 memcpy ((char *) value_contents_raw (val),
0fd88904 4133 (char *) value_contents (actual),
4c4b4cd2 4134 TYPE_LENGTH (actual_type));
40bc484c 4135 actual = ensure_lval (val);
4c4b4cd2 4136 }
a84a8a0d 4137 result = value_addr (actual);
4c4b4cd2 4138 }
a84a8a0d
JB
4139 else
4140 return actual;
b1af9e97 4141 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4142 }
4143 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4144 return ada_value_ind (actual);
4145
4146 return actual;
4147}
4148
438c98a1
JB
4149/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4150 type TYPE. This is usually an inefficient no-op except on some targets
4151 (such as AVR) where the representation of a pointer and an address
4152 differs. */
4153
4154static CORE_ADDR
4155value_pointer (struct value *value, struct type *type)
4156{
4157 struct gdbarch *gdbarch = get_type_arch (type);
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = alloca (len);
4160 CORE_ADDR addr;
4161
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4165 return addr;
4166}
4167
14f9c5c9 4168
4c4b4cd2
PH
4169/* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
14f9c5c9 4174
d2e4a39e 4175static struct value *
40bc484c 4176make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4177{
d2e4a39e
AS
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4182 int i;
d2e4a39e 4183
0963b4bd
MS
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
14f9c5c9 4186 {
19f220c3
JK
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4195 }
d2e4a39e 4196
40bc484c 4197 bounds = ensure_lval (bounds);
d2e4a39e 4198
19f220c3
JK
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 TYPE_FIELD_TYPE (desc_type, 0)),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4205
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 TYPE_FIELD_TYPE (desc_type, 1)),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4212
40bc484c 4213 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4214
4215 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4219}
14f9c5c9 4220\f
963a6417 4221/* Dummy definitions for an experimental caching module that is not
0963b4bd 4222 * used in the public sources. */
96d887e8 4223
96d887e8
PH
4224static int
4225lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4226 struct symbol **sym, struct block **block)
96d887e8
PH
4227{
4228 return 0;
4229}
4230
4231static void
4232cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4233 struct block *block)
96d887e8
PH
4234{
4235}
4c4b4cd2
PH
4236\f
4237 /* Symbol Lookup */
4238
c0431670
JB
4239/* Return nonzero if wild matching should be used when searching for
4240 all symbols matching LOOKUP_NAME.
4241
4242 LOOKUP_NAME is expected to be a symbol name after transformation
4243 for Ada lookups (see ada_name_for_lookup). */
4244
4245static int
4246should_use_wild_match (const char *lookup_name)
4247{
4248 return (strstr (lookup_name, "__") == NULL);
4249}
4250
4c4b4cd2
PH
4251/* Return the result of a standard (literal, C-like) lookup of NAME in
4252 given DOMAIN, visible from lexical block BLOCK. */
4253
4254static struct symbol *
4255standard_lookup (const char *name, const struct block *block,
4256 domain_enum domain)
4257{
acbd605d
MGD
4258 /* Initialize it just to avoid a GCC false warning. */
4259 struct symbol *sym = NULL;
4c4b4cd2 4260
2570f2b7 4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4262 return sym;
2570f2b7
UW
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4265 return sym;
4266}
4267
4268
4269/* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272static int
4273is_nonfunction (struct ada_symbol_info syms[], int n)
4274{
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4281 return 1;
4282
4283 return 0;
4284}
4285
4286/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4287 struct types. Otherwise, they may not. */
14f9c5c9
AS
4288
4289static int
d2e4a39e 4290equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4291{
d2e4a39e 4292 if (type0 == type1)
14f9c5c9 4293 return 1;
d2e4a39e 4294 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
d2e4a39e 4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4301 return 1;
d2e4a39e 4302
14f9c5c9
AS
4303 return 0;
4304}
4305
4306/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4307 no more defined than that of SYM1. */
14f9c5c9
AS
4308
4309static int
d2e4a39e 4310lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4311{
4312 if (sym0 == sym1)
4313 return 1;
176620f1 4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
d2e4a39e 4318 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4c4b4cd2
PH
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4328 int len0 = strlen (name0);
5b4ee69b 4329
4c4b4cd2
PH
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4339 default:
4340 return 0;
14f9c5c9
AS
4341 }
4342}
4343
4c4b4cd2
PH
4344/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4346
4347static void
76a01679
JB
4348add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
2570f2b7 4350 struct block *block)
14f9c5c9
AS
4351{
4352 int i;
4c4b4cd2 4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4354
529cad9c
PH
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4c4b4cd2
PH
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4c4b4cd2 4372 return;
76a01679 4373 }
4c4b4cd2
PH
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4c4b4cd2
PH
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383}
4384
4385/* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
76a01679
JB
4388static int
4389num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4390{
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392}
4393
4394/* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
76a01679 4398static struct ada_symbol_info *
4c4b4cd2
PH
4399defns_collected (struct obstack *obstackp, int finish)
4400{
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405}
4406
96d887e8 4407/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4410 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4411
96d887e8
PH
4412struct minimal_symbol *
4413ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4414{
4c4b4cd2 4415 struct objfile *objfile;
96d887e8 4416 struct minimal_symbol *msymbol;
dc4024cd 4417 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4418
c0431670
JB
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
96d887e8 4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4427 name += sizeof ("standard__") - 1;
4c4b4cd2 4428
96d887e8
PH
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
dc4024cd 4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4c4b4cd2 4435
96d887e8
PH
4436 return NULL;
4437}
4c4b4cd2 4438
96d887e8
PH
4439/* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4c4b4cd2 4444
96d887e8
PH
4445static void
4446add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4447 const char *name, domain_enum namespace,
48b78332 4448 int wild_match_p)
96d887e8 4449{
96d887e8 4450}
14f9c5c9 4451
96d887e8
PH
4452/* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
14f9c5c9 4454
96d887e8
PH
4455static int
4456is_nondebugging_type (struct type *type)
4457{
0d5cff50 4458 const char *name = ada_type_name (type);
5b4ee69b 4459
96d887e8
PH
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461}
4c4b4cd2 4462
8f17729f
JB
4463/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470static int
4471ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472{
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4482 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
0d5cff50
DE
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504}
4505
4506/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526static int
4527symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528{
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563}
4564
96d887e8
PH
4565/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4c4b4cd2 4571
96d887e8
PH
4572static int
4573remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574{
4575 int i, j;
4c4b4cd2 4576
8f17729f
JB
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
96d887e8
PH
4583 i = 0;
4584 while (i < nsyms)
4585 {
a35ddb44 4586 int remove_p = 0;
339c13b6
JB
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4601 remove_p = 1;
339c13b6
JB
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4621 remove_p = 1;
4c4b4cd2 4622 }
4c4b4cd2 4623 }
339c13b6 4624
a35ddb44 4625 if (remove_p)
339c13b6
JB
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
96d887e8 4632 i += 1;
14f9c5c9 4633 }
8f17729f
JB
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
96d887e8 4650 return nsyms;
14f9c5c9
AS
4651}
4652
96d887e8
PH
4653/* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4657
96d887e8
PH
4658static char *
4659xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4660{
96d887e8 4661 /* The renaming types adhere to the following convention:
0963b4bd 4662 <scope>__<rename>___<XR extension>.
96d887e8
PH
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
76a01679 4665
96d887e8
PH
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
14f9c5c9 4671
96d887e8
PH
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4674
96d887e8
PH
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
76a01679 4678
96d887e8 4679 /* Make a copy of scope and return it. */
14f9c5c9 4680
96d887e8
PH
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4683
96d887e8
PH
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4c4b4cd2 4686
96d887e8 4687 return scope;
4c4b4cd2
PH
4688}
4689
96d887e8 4690/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4691
96d887e8
PH
4692static int
4693is_package_name (const char *name)
4c4b4cd2 4694{
96d887e8
PH
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4c4b4cd2 4700
96d887e8 4701 char *fun_name;
76a01679 4702
96d887e8
PH
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
14f9c5c9 4707
96d887e8
PH
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
14f9c5c9 4710
96d887e8 4711 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4712 functions names cannot contain "__" in them. */
96d887e8
PH
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4c4b4cd2 4715
b435e160 4716 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4717
96d887e8
PH
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719}
14f9c5c9 4720
96d887e8 4721/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4722 not visible from FUNCTION_NAME. */
14f9c5c9 4723
96d887e8 4724static int
0d5cff50 4725old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4726{
aeb5907d
JB
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4733
96d887e8 4734 make_cleanup (xfree, scope);
14f9c5c9 4735
96d887e8
PH
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
aeb5907d 4738 return 0;
14f9c5c9 4739
96d887e8
PH
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
76a01679 4742
96d887e8
PH
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
f26caa11 4749
aeb5907d 4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4751}
4752
aeb5907d
JB
4753/* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
96d887e8
PH
4758
4759 Rationale:
aeb5907d
JB
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
f26caa11 4772
96d887e8
PH
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4c4b4cd2 4789
14f9c5c9 4790static int
aeb5907d
JB
4791remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4793{
4794 struct symbol *current_function;
0d5cff50 4795 const char *current_function_name;
4c4b4cd2 4796 int i;
aeb5907d
JB
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
0963b4bd 4801 First, zero out such symbols, then compress. */
aeb5907d
JB
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
5b4ee69b 4819
aeb5907d
JB
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4c4b4cd2
PH
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
76a01679 4844
4c4b4cd2
PH
4845 if (current_block == NULL)
4846 return nsyms;
76a01679 4847
7f0df278 4848 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
aeb5907d
JB
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4866 {
4867 int j;
5b4ee69b 4868
aeb5907d 4869 for (j = i + 1; j < nsyms; j += 1)
76a01679 4870 syms[j - 1] = syms[j];
4c4b4cd2
PH
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878}
4879
339c13b6
JB
4880/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890static void
4891ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
d0a8ab18 4893 int wild_match_p)
339c13b6
JB
4894{
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
d0a8ab18
JB
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
339c13b6
JB
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4915}
4916
ccefe4c4 4917/* An object of this type is used as the user_data argument when
40658b94 4918 calling the map_matching_symbols method. */
ccefe4c4 4919
40658b94 4920struct match_data
ccefe4c4 4921{
40658b94 4922 struct objfile *objfile;
ccefe4c4 4923 struct obstack *obstackp;
40658b94
PH
4924 struct symbol *arg_sym;
4925 int found_sym;
ccefe4c4
TT
4926};
4927
40658b94
PH
4928/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
ccefe4c4 4936
40658b94
PH
4937static int
4938aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4939{
40658b94
PH
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966}
4967
4968/* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
5b4ee69b 4972
40658b94
PH
4973static int
4974compare_names (const char *string1, const char *string2)
4975{
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
052874e8 4992 if (is_name_suffix (string1))
40658b94
PH
4993 return 0;
4994 else
1a1d5513 4995 return 1;
40658b94 4996 }
dbb8534f 4997 /* FALLTHROUGH */
40658b94
PH
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
ccefe4c4
TT
5004}
5005
339c13b6
JB
5006/* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010static void
40658b94
PH
5011add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
339c13b6
JB
5014{
5015 struct objfile *objfile;
40658b94 5016 struct match_data data;
339c13b6 5017
6475f2fe 5018 memset (&data, 0, sizeof data);
ccefe4c4 5019 data.obstackp = obstackp;
339c13b6 5020
ccefe4c4 5021 ALL_OBJFILES (objfile)
40658b94
PH
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
0963b4bd
MS
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
40658b94
PH
5047 full_match, compare_names);
5048 }
5049 }
339c13b6
JB
5050}
5051
4c4b4cd2 5052/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5055 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
d9680e73
TT
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
9f88c959 5064 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5065 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5066
5067int
4c4b4cd2 5068ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
14f9c5c9
AS
5072{
5073 struct symbol *sym;
14f9c5c9 5074 struct block *block;
4c4b4cd2 5075 const char *name;
82ccd55e 5076 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5077 int cacheIfUnique;
4c4b4cd2 5078 int ndefns;
14f9c5c9 5079
4c4b4cd2
PH
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
14f9c5c9 5082
14f9c5c9
AS
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
4c4b4cd2 5087 name = name0;
76a01679
JB
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
339c13b6
JB
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
4c4b4cd2
PH
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
4c4b4cd2
PH
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
339c13b6 5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5106
339c13b6 5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5108 wild_match_p);
d9680e73 5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5110 goto done;
d2e4a39e 5111
339c13b6
JB
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
14f9c5c9 5116 cacheIfUnique = 1;
2570f2b7 5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5118 {
5119 if (sym != NULL)
2570f2b7 5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5121 goto done;
5122 }
14f9c5c9 5123
339c13b6
JB
5124 /* Search symbols from all global blocks. */
5125
40658b94 5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5127 wild_match_p);
d2e4a39e 5128
4c4b4cd2 5129 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5130 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5131
4c4b4cd2 5132 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5134 wild_match_p);
14f9c5c9 5135
4c4b4cd2
PH
5136done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
2ad01556 5142 if (ndefns == 0 && full_search)
2570f2b7 5143 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5144
2ad01556 5145 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5147
aeb5907d 5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5149
14f9c5c9
AS
5150 return ndefns;
5151}
5152
f8eba3c6
TT
5153/* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161char *
5162ada_name_for_lookup (const char *name)
5163{
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176}
5177
5178/* Implementation of the la_iterate_over_symbols method. */
5179
5180static void
5181ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
8e704927 5183 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5184 void *data)
5185{
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
d9680e73 5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195}
5196
4e5c77fe
JB
5197/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5e2336be
JB
5201 The result is stored in *INFO, which must be non-NULL.
5202 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5203
5204void
5205ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5e2336be 5207 struct ada_symbol_info *info)
14f9c5c9 5208{
4c4b4cd2 5209 struct ada_symbol_info *candidates;
14f9c5c9
AS
5210 int n_candidates;
5211
5e2336be
JB
5212 gdb_assert (info != NULL);
5213 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5216 1);
14f9c5c9
AS
5217
5218 if (n_candidates == 0)
4e5c77fe 5219 return;
4c4b4cd2 5220
5e2336be
JB
5221 *info = candidates[0];
5222 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5223}
aeb5907d
JB
5224
5225/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5228 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
aeb5907d
JB
5231struct symbol *
5232ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5233 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5234{
5e2336be 5235 struct ada_symbol_info info;
4e5c77fe 5236
aeb5907d
JB
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
4e5c77fe 5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5241 block0, namespace, &info);
5242 return info.sym;
4c4b4cd2 5243}
14f9c5c9 5244
4c4b4cd2
PH
5245static struct symbol *
5246ada_lookup_symbol_nonlocal (const char *name,
76a01679 5247 const struct block *block,
21b556f4 5248 const domain_enum domain)
4c4b4cd2 5249{
94af9270 5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5251}
5252
5253
4c4b4cd2
PH
5254/* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5257 are given by any of the regular expressions:
4c4b4cd2 5258
babe1480
JB
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5261 TKB [subprogram suffix for task bodies]
babe1480 5262 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
4c4b4cd2 5268
14f9c5c9 5269static int
d2e4a39e 5270is_name_suffix (const char *str)
14f9c5c9
AS
5271{
5272 int k;
4c4b4cd2
PH
5273 const char *matching;
5274 const int len = strlen (str);
5275
babe1480
JB
5276 /* Skip optional leading __[0-9]+. */
5277
4c4b4cd2
PH
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
babe1480
JB
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
4c4b4cd2 5283 }
babe1480
JB
5284
5285 /* [.$][0-9]+ */
4c4b4cd2 5286
babe1480 5287 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5288 {
babe1480 5289 matching = str + 1;
4c4b4cd2
PH
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
babe1480 5297
4c4b4cd2
PH
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
9ac7f98e
JB
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
529cad9c
PH
5312#if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
529cad9c 5316 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
0963b4bd 5321 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327#endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
4c4b4cd2
PH
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
d2e4a39e 5348 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
14f9c5c9 5354 }
babe1480 5355
14f9c5c9
AS
5356 if (str[0] == '\000')
5357 return 1;
babe1480 5358
d2e4a39e 5359 if (str[0] == '_')
14f9c5c9
AS
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5362 return 0;
d2e4a39e 5363 if (str[2] == '_')
4c4b4cd2 5364 {
61ee279c
PH
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
4c4b4cd2
PH
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
1265e4aa
JB
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
14f9c5c9
AS
5388 return 1;
5389 }
4c4b4cd2 5390 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5391 {
4c4b4cd2
PH
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
14f9c5c9
AS
5395 return 1;
5396 }
5397 return 0;
5398}
d2e4a39e 5399
aeb5907d
JB
5400/* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
529cad9c
PH
5402
5403static int
5404is_valid_name_for_wild_match (const char *name0)
5405{
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5823c3ef
JB
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
529cad9c
PH
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420}
5421
73589123
PH
5422/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
4c4b4cd2 5425
14f9c5c9 5426static int
73589123 5427advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5428{
73589123 5429 const char *name = *namep;
5b4ee69b 5430
5823c3ef 5431 while (1)
14f9c5c9 5432 {
aa27d0b3 5433 int t0, t1;
73589123
PH
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
aa27d0b3
JB
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
73589123
PH
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5823c3ef 5459 return 0;
73589123
PH
5460 }
5461
5462 *namep = name;
5463 return 1;
5464}
5465
5466/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470static int
5471wild_match (const char *name, const char *patn)
5472{
22e048c9 5473 const char *p;
73589123
PH
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
96d887e8 5493 }
96d887e8
PH
5494}
5495
40658b94
PH
5496/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
c4d840bd
PH
5499static int
5500full_match (const char *sym_name, const char *search_name)
5501{
40658b94 5502 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5503}
5504
5505
96d887e8
PH
5506/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512static void
5513ada_add_block_symbols (struct obstack *obstackp,
76a01679 5514 struct block *block, const char *name,
96d887e8 5515 domain_enum domain, struct objfile *objfile,
2570f2b7 5516 int wild)
96d887e8 5517{
8157b174 5518 struct block_iterator iter;
96d887e8
PH
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
8157b174
TT
5530 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5531 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5532 {
5eeb2539
AR
5533 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5534 SYMBOL_DOMAIN (sym), domain)
73589123 5535 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5536 {
2a2d4dc3
AS
5537 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5538 continue;
5539 else if (SYMBOL_IS_ARGUMENT (sym))
5540 arg_sym = sym;
5541 else
5542 {
76a01679
JB
5543 found_sym = 1;
5544 add_defn_to_vec (obstackp,
5545 fixup_symbol_section (sym, objfile),
2570f2b7 5546 block);
76a01679
JB
5547 }
5548 }
5549 }
96d887e8
PH
5550 }
5551 else
5552 {
8157b174
TT
5553 for (sym = block_iter_match_first (block, name, full_match, &iter);
5554 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5555 {
5eeb2539
AR
5556 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5557 SYMBOL_DOMAIN (sym), domain))
76a01679 5558 {
c4d840bd
PH
5559 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5560 {
5561 if (SYMBOL_IS_ARGUMENT (sym))
5562 arg_sym = sym;
5563 else
2a2d4dc3 5564 {
c4d840bd
PH
5565 found_sym = 1;
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (sym, objfile),
5568 block);
2a2d4dc3 5569 }
c4d840bd 5570 }
76a01679
JB
5571 }
5572 }
96d887e8
PH
5573 }
5574
5575 if (!found_sym && arg_sym != NULL)
5576 {
76a01679
JB
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5579 block);
96d887e8
PH
5580 }
5581
5582 if (!wild)
5583 {
5584 arg_sym = NULL;
5585 found_sym = 0;
5586
5587 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5588 {
5eeb2539
AR
5589 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5590 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5591 {
5592 int cmp;
5593
5594 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5595 if (cmp == 0)
5596 {
5597 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5598 if (cmp == 0)
5599 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5600 name_len);
5601 }
5602
5603 if (cmp == 0
5604 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5605 {
2a2d4dc3
AS
5606 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5607 {
5608 if (SYMBOL_IS_ARGUMENT (sym))
5609 arg_sym = sym;
5610 else
5611 {
5612 found_sym = 1;
5613 add_defn_to_vec (obstackp,
5614 fixup_symbol_section (sym, objfile),
5615 block);
5616 }
5617 }
76a01679
JB
5618 }
5619 }
76a01679 5620 }
96d887e8
PH
5621
5622 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5623 They aren't parameters, right? */
5624 if (!found_sym && arg_sym != NULL)
5625 {
5626 add_defn_to_vec (obstackp,
76a01679 5627 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5628 block);
96d887e8
PH
5629 }
5630 }
5631}
5632\f
41d27058
JB
5633
5634 /* Symbol Completion */
5635
5636/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5637 name in a form that's appropriate for the completion. The result
5638 does not need to be deallocated, but is only good until the next call.
5639
5640 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5641 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5642 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5643 in its encoded form. */
5644
5645static const char *
5646symbol_completion_match (const char *sym_name,
5647 const char *text, int text_len,
6ea35997 5648 int wild_match_p, int encoded_p)
41d27058 5649{
41d27058
JB
5650 const int verbatim_match = (text[0] == '<');
5651 int match = 0;
5652
5653 if (verbatim_match)
5654 {
5655 /* Strip the leading angle bracket. */
5656 text = text + 1;
5657 text_len--;
5658 }
5659
5660 /* First, test against the fully qualified name of the symbol. */
5661
5662 if (strncmp (sym_name, text, text_len) == 0)
5663 match = 1;
5664
6ea35997 5665 if (match && !encoded_p)
41d27058
JB
5666 {
5667 /* One needed check before declaring a positive match is to verify
5668 that iff we are doing a verbatim match, the decoded version
5669 of the symbol name starts with '<'. Otherwise, this symbol name
5670 is not a suitable completion. */
5671 const char *sym_name_copy = sym_name;
5672 int has_angle_bracket;
5673
5674 sym_name = ada_decode (sym_name);
5675 has_angle_bracket = (sym_name[0] == '<');
5676 match = (has_angle_bracket == verbatim_match);
5677 sym_name = sym_name_copy;
5678 }
5679
5680 if (match && !verbatim_match)
5681 {
5682 /* When doing non-verbatim match, another check that needs to
5683 be done is to verify that the potentially matching symbol name
5684 does not include capital letters, because the ada-mode would
5685 not be able to understand these symbol names without the
5686 angle bracket notation. */
5687 const char *tmp;
5688
5689 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5690 if (*tmp != '\0')
5691 match = 0;
5692 }
5693
5694 /* Second: Try wild matching... */
5695
e701b3c0 5696 if (!match && wild_match_p)
41d27058
JB
5697 {
5698 /* Since we are doing wild matching, this means that TEXT
5699 may represent an unqualified symbol name. We therefore must
5700 also compare TEXT against the unqualified name of the symbol. */
5701 sym_name = ada_unqualified_name (ada_decode (sym_name));
5702
5703 if (strncmp (sym_name, text, text_len) == 0)
5704 match = 1;
5705 }
5706
5707 /* Finally: If we found a mach, prepare the result to return. */
5708
5709 if (!match)
5710 return NULL;
5711
5712 if (verbatim_match)
5713 sym_name = add_angle_brackets (sym_name);
5714
6ea35997 5715 if (!encoded_p)
41d27058
JB
5716 sym_name = ada_decode (sym_name);
5717
5718 return sym_name;
5719}
5720
5721/* A companion function to ada_make_symbol_completion_list().
5722 Check if SYM_NAME represents a symbol which name would be suitable
5723 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5724 it is appended at the end of the given string vector SV.
5725
5726 ORIG_TEXT is the string original string from the user command
5727 that needs to be completed. WORD is the entire command on which
5728 completion should be performed. These two parameters are used to
5729 determine which part of the symbol name should be added to the
5730 completion vector.
c0af1706 5731 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5732 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5733 encoded formed (in which case the completion should also be
5734 encoded). */
5735
5736static void
d6565258 5737symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5738 const char *sym_name,
5739 const char *text, int text_len,
5740 const char *orig_text, const char *word,
cb8e9b97 5741 int wild_match_p, int encoded_p)
41d27058
JB
5742{
5743 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5744 wild_match_p, encoded_p);
41d27058
JB
5745 char *completion;
5746
5747 if (match == NULL)
5748 return;
5749
5750 /* We found a match, so add the appropriate completion to the given
5751 string vector. */
5752
5753 if (word == orig_text)
5754 {
5755 completion = xmalloc (strlen (match) + 5);
5756 strcpy (completion, match);
5757 }
5758 else if (word > orig_text)
5759 {
5760 /* Return some portion of sym_name. */
5761 completion = xmalloc (strlen (match) + 5);
5762 strcpy (completion, match + (word - orig_text));
5763 }
5764 else
5765 {
5766 /* Return some of ORIG_TEXT plus sym_name. */
5767 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5768 strncpy (completion, word, orig_text - word);
5769 completion[orig_text - word] = '\0';
5770 strcat (completion, match);
5771 }
5772
d6565258 5773 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5774}
5775
ccefe4c4 5776/* An object of this type is passed as the user_data argument to the
7b08b9eb 5777 expand_partial_symbol_names method. */
ccefe4c4
TT
5778struct add_partial_datum
5779{
5780 VEC(char_ptr) **completions;
5781 char *text;
5782 int text_len;
5783 char *text0;
5784 char *word;
5785 int wild_match;
5786 int encoded;
5787};
5788
7b08b9eb
JK
5789/* A callback for expand_partial_symbol_names. */
5790static int
e078317b 5791ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5792{
5793 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5794
5795 return symbol_completion_match (name, data->text, data->text_len,
5796 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5797}
5798
49c4e619
TT
5799/* Return a list of possible symbol names completing TEXT0. WORD is
5800 the entire command on which completion is made. */
41d27058 5801
49c4e619 5802static VEC (char_ptr) *
41d27058
JB
5803ada_make_symbol_completion_list (char *text0, char *word)
5804{
5805 char *text;
5806 int text_len;
b1ed564a
JB
5807 int wild_match_p;
5808 int encoded_p;
2ba95b9b 5809 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5810 struct symbol *sym;
5811 struct symtab *s;
41d27058
JB
5812 struct minimal_symbol *msymbol;
5813 struct objfile *objfile;
5814 struct block *b, *surrounding_static_block = 0;
5815 int i;
8157b174 5816 struct block_iterator iter;
41d27058
JB
5817
5818 if (text0[0] == '<')
5819 {
5820 text = xstrdup (text0);
5821 make_cleanup (xfree, text);
5822 text_len = strlen (text);
b1ed564a
JB
5823 wild_match_p = 0;
5824 encoded_p = 1;
41d27058
JB
5825 }
5826 else
5827 {
5828 text = xstrdup (ada_encode (text0));
5829 make_cleanup (xfree, text);
5830 text_len = strlen (text);
5831 for (i = 0; i < text_len; i++)
5832 text[i] = tolower (text[i]);
5833
b1ed564a 5834 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5835 /* If the name contains a ".", then the user is entering a fully
5836 qualified entity name, and the match must not be done in wild
5837 mode. Similarly, if the user wants to complete what looks like
5838 an encoded name, the match must not be done in wild mode. */
b1ed564a 5839 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5840 }
5841
5842 /* First, look at the partial symtab symbols. */
41d27058 5843 {
ccefe4c4
TT
5844 struct add_partial_datum data;
5845
5846 data.completions = &completions;
5847 data.text = text;
5848 data.text_len = text_len;
5849 data.text0 = text0;
5850 data.word = word;
b1ed564a
JB
5851 data.wild_match = wild_match_p;
5852 data.encoded = encoded_p;
7b08b9eb 5853 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5854 }
5855
5856 /* At this point scan through the misc symbol vectors and add each
5857 symbol you find to the list. Eventually we want to ignore
5858 anything that isn't a text symbol (everything else will be
5859 handled by the psymtab code above). */
5860
5861 ALL_MSYMBOLS (objfile, msymbol)
5862 {
5863 QUIT;
d6565258 5864 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5865 text, text_len, text0, word, wild_match_p,
5866 encoded_p);
41d27058
JB
5867 }
5868
5869 /* Search upwards from currently selected frame (so that we can
5870 complete on local vars. */
5871
5872 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5873 {
5874 if (!BLOCK_SUPERBLOCK (b))
5875 surrounding_static_block = b; /* For elmin of dups */
5876
5877 ALL_BLOCK_SYMBOLS (b, iter, sym)
5878 {
d6565258 5879 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5880 text, text_len, text0, word,
b1ed564a 5881 wild_match_p, encoded_p);
41d27058
JB
5882 }
5883 }
5884
5885 /* Go through the symtabs and check the externs and statics for
5886 symbols which match. */
5887
5888 ALL_SYMTABS (objfile, s)
5889 {
5890 QUIT;
5891 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5892 ALL_BLOCK_SYMBOLS (b, iter, sym)
5893 {
d6565258 5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5895 text, text_len, text0, word,
b1ed564a 5896 wild_match_p, encoded_p);
41d27058
JB
5897 }
5898 }
5899
5900 ALL_SYMTABS (objfile, s)
5901 {
5902 QUIT;
5903 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5904 /* Don't do this block twice. */
5905 if (b == surrounding_static_block)
5906 continue;
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
d6565258 5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5910 text, text_len, text0, word,
b1ed564a 5911 wild_match_p, encoded_p);
41d27058
JB
5912 }
5913 }
5914
49c4e619 5915 return completions;
41d27058
JB
5916}
5917
963a6417 5918 /* Field Access */
96d887e8 5919
73fb9985
JB
5920/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5921 for tagged types. */
5922
5923static int
5924ada_is_dispatch_table_ptr_type (struct type *type)
5925{
0d5cff50 5926 const char *name;
73fb9985
JB
5927
5928 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5929 return 0;
5930
5931 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5932 if (name == NULL)
5933 return 0;
5934
5935 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5936}
5937
963a6417
PH
5938/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5939 to be invisible to users. */
96d887e8 5940
963a6417
PH
5941int
5942ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5943{
963a6417
PH
5944 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5945 return 1;
ffde82bf 5946
73fb9985
JB
5947 /* Check the name of that field. */
5948 {
5949 const char *name = TYPE_FIELD_NAME (type, field_num);
5950
5951 /* Anonymous field names should not be printed.
5952 brobecker/2007-02-20: I don't think this can actually happen
5953 but we don't want to print the value of annonymous fields anyway. */
5954 if (name == NULL)
5955 return 1;
5956
ffde82bf
JB
5957 /* Normally, fields whose name start with an underscore ("_")
5958 are fields that have been internally generated by the compiler,
5959 and thus should not be printed. The "_parent" field is special,
5960 however: This is a field internally generated by the compiler
5961 for tagged types, and it contains the components inherited from
5962 the parent type. This field should not be printed as is, but
5963 should not be ignored either. */
73fb9985
JB
5964 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5965 return 1;
5966 }
5967
5968 /* If this is the dispatch table of a tagged type, then ignore. */
5969 if (ada_is_tagged_type (type, 1)
5970 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5971 return 1;
5972
5973 /* Not a special field, so it should not be ignored. */
5974 return 0;
963a6417 5975}
96d887e8 5976
963a6417 5977/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5978 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5979
963a6417
PH
5980int
5981ada_is_tagged_type (struct type *type, int refok)
5982{
5983 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5984}
96d887e8 5985
963a6417 5986/* True iff TYPE represents the type of X'Tag */
96d887e8 5987
963a6417
PH
5988int
5989ada_is_tag_type (struct type *type)
5990{
5991 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5992 return 0;
5993 else
96d887e8 5994 {
963a6417 5995 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5996
963a6417
PH
5997 return (name != NULL
5998 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5999 }
96d887e8
PH
6000}
6001
963a6417 6002/* The type of the tag on VAL. */
76a01679 6003
963a6417
PH
6004struct type *
6005ada_tag_type (struct value *val)
96d887e8 6006{
df407dfe 6007 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6008}
96d887e8 6009
963a6417 6010/* The value of the tag on VAL. */
96d887e8 6011
963a6417
PH
6012struct value *
6013ada_value_tag (struct value *val)
6014{
03ee6b2e 6015 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6016}
6017
963a6417
PH
6018/* The value of the tag on the object of type TYPE whose contents are
6019 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6020 ADDRESS. */
96d887e8 6021
963a6417 6022static struct value *
10a2c479 6023value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6024 const gdb_byte *valaddr,
963a6417 6025 CORE_ADDR address)
96d887e8 6026{
b5385fc0 6027 int tag_byte_offset;
963a6417 6028 struct type *tag_type;
5b4ee69b 6029
963a6417 6030 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6031 NULL, NULL, NULL))
96d887e8 6032 {
fc1a4b47 6033 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6034 ? NULL
6035 : valaddr + tag_byte_offset);
963a6417 6036 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6037
963a6417 6038 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6039 }
963a6417
PH
6040 return NULL;
6041}
96d887e8 6042
963a6417
PH
6043static struct type *
6044type_from_tag (struct value *tag)
6045{
6046 const char *type_name = ada_tag_name (tag);
5b4ee69b 6047
963a6417
PH
6048 if (type_name != NULL)
6049 return ada_find_any_type (ada_encode (type_name));
6050 return NULL;
6051}
96d887e8 6052
1b611343
JB
6053/* Return the "ada__tags__type_specific_data" type. */
6054
6055static struct type *
6056ada_get_tsd_type (struct inferior *inf)
963a6417 6057{
1b611343 6058 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6059
1b611343
JB
6060 if (data->tsd_type == 0)
6061 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6062 return data->tsd_type;
6063}
529cad9c 6064
1b611343
JB
6065/* Return the TSD (type-specific data) associated to the given TAG.
6066 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6067
1b611343 6068 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6069
1b611343
JB
6070static struct value *
6071ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6072{
4c4b4cd2 6073 struct value *val;
1b611343 6074 struct type *type;
5b4ee69b 6075
1b611343
JB
6076 /* First option: The TSD is simply stored as a field of our TAG.
6077 Only older versions of GNAT would use this format, but we have
6078 to test it first, because there are no visible markers for
6079 the current approach except the absence of that field. */
529cad9c 6080
1b611343
JB
6081 val = ada_value_struct_elt (tag, "tsd", 1);
6082 if (val)
6083 return val;
e802dbe0 6084
1b611343
JB
6085 /* Try the second representation for the dispatch table (in which
6086 there is no explicit 'tsd' field in the referent of the tag pointer,
6087 and instead the tsd pointer is stored just before the dispatch
6088 table. */
e802dbe0 6089
1b611343
JB
6090 type = ada_get_tsd_type (current_inferior());
6091 if (type == NULL)
6092 return NULL;
6093 type = lookup_pointer_type (lookup_pointer_type (type));
6094 val = value_cast (type, tag);
6095 if (val == NULL)
6096 return NULL;
6097 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6098}
6099
1b611343
JB
6100/* Given the TSD of a tag (type-specific data), return a string
6101 containing the name of the associated type.
6102
6103 The returned value is good until the next call. May return NULL
6104 if we are unable to determine the tag name. */
6105
6106static char *
6107ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6108{
529cad9c
PH
6109 static char name[1024];
6110 char *p;
1b611343 6111 struct value *val;
529cad9c 6112
1b611343 6113 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6114 if (val == NULL)
1b611343 6115 return NULL;
4c4b4cd2
PH
6116 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6117 for (p = name; *p != '\0'; p += 1)
6118 if (isalpha (*p))
6119 *p = tolower (*p);
1b611343 6120 return name;
4c4b4cd2
PH
6121}
6122
6123/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6124 a C string.
6125
6126 Return NULL if the TAG is not an Ada tag, or if we were unable to
6127 determine the name of that tag. The result is good until the next
6128 call. */
4c4b4cd2
PH
6129
6130const char *
6131ada_tag_name (struct value *tag)
6132{
1b611343
JB
6133 volatile struct gdb_exception e;
6134 char *name = NULL;
5b4ee69b 6135
df407dfe 6136 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6137 return NULL;
1b611343
JB
6138
6139 /* It is perfectly possible that an exception be raised while trying
6140 to determine the TAG's name, even under normal circumstances:
6141 The associated variable may be uninitialized or corrupted, for
6142 instance. We do not let any exception propagate past this point.
6143 instead we return NULL.
6144
6145 We also do not print the error message either (which often is very
6146 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6147 the caller print a more meaningful message if necessary. */
6148 TRY_CATCH (e, RETURN_MASK_ERROR)
6149 {
6150 struct value *tsd = ada_get_tsd_from_tag (tag);
6151
6152 if (tsd != NULL)
6153 name = ada_tag_name_from_tsd (tsd);
6154 }
6155
6156 return name;
4c4b4cd2
PH
6157}
6158
6159/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6160
d2e4a39e 6161struct type *
ebf56fd3 6162ada_parent_type (struct type *type)
14f9c5c9
AS
6163{
6164 int i;
6165
61ee279c 6166 type = ada_check_typedef (type);
14f9c5c9
AS
6167
6168 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6169 return NULL;
6170
6171 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6172 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6173 {
6174 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6175
6176 /* If the _parent field is a pointer, then dereference it. */
6177 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6178 parent_type = TYPE_TARGET_TYPE (parent_type);
6179 /* If there is a parallel XVS type, get the actual base type. */
6180 parent_type = ada_get_base_type (parent_type);
6181
6182 return ada_check_typedef (parent_type);
6183 }
14f9c5c9
AS
6184
6185 return NULL;
6186}
6187
4c4b4cd2
PH
6188/* True iff field number FIELD_NUM of structure type TYPE contains the
6189 parent-type (inherited) fields of a derived type. Assumes TYPE is
6190 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6191
6192int
ebf56fd3 6193ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6194{
61ee279c 6195 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6196
4c4b4cd2
PH
6197 return (name != NULL
6198 && (strncmp (name, "PARENT", 6) == 0
6199 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6200}
6201
4c4b4cd2 6202/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6203 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6204 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6205 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6206 structures. */
14f9c5c9
AS
6207
6208int
ebf56fd3 6209ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6210{
d2e4a39e 6211 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6212
d2e4a39e 6213 return (name != NULL
4c4b4cd2
PH
6214 && (strncmp (name, "PARENT", 6) == 0
6215 || strcmp (name, "REP") == 0
6216 || strncmp (name, "_parent", 7) == 0
6217 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6218}
6219
4c4b4cd2
PH
6220/* True iff field number FIELD_NUM of structure or union type TYPE
6221 is a variant wrapper. Assumes TYPE is a structure type with at least
6222 FIELD_NUM+1 fields. */
14f9c5c9
AS
6223
6224int
ebf56fd3 6225ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6226{
d2e4a39e 6227 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6228
14f9c5c9 6229 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6230 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6231 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6232 == TYPE_CODE_UNION)));
14f9c5c9
AS
6233}
6234
6235/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6236 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6237 returns the type of the controlling discriminant for the variant.
6238 May return NULL if the type could not be found. */
14f9c5c9 6239
d2e4a39e 6240struct type *
ebf56fd3 6241ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6242{
d2e4a39e 6243 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6244
7c964f07 6245 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6246}
6247
4c4b4cd2 6248/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6249 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6250 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6251
6252int
ebf56fd3 6253ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6254{
d2e4a39e 6255 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6256
14f9c5c9
AS
6257 return (name != NULL && name[0] == 'O');
6258}
6259
6260/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6261 returns the name of the discriminant controlling the variant.
6262 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6263
d2e4a39e 6264char *
ebf56fd3 6265ada_variant_discrim_name (struct type *type0)
14f9c5c9 6266{
d2e4a39e 6267 static char *result = NULL;
14f9c5c9 6268 static size_t result_len = 0;
d2e4a39e
AS
6269 struct type *type;
6270 const char *name;
6271 const char *discrim_end;
6272 const char *discrim_start;
14f9c5c9
AS
6273
6274 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6275 type = TYPE_TARGET_TYPE (type0);
6276 else
6277 type = type0;
6278
6279 name = ada_type_name (type);
6280
6281 if (name == NULL || name[0] == '\000')
6282 return "";
6283
6284 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6285 discrim_end -= 1)
6286 {
4c4b4cd2
PH
6287 if (strncmp (discrim_end, "___XVN", 6) == 0)
6288 break;
14f9c5c9
AS
6289 }
6290 if (discrim_end == name)
6291 return "";
6292
d2e4a39e 6293 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6294 discrim_start -= 1)
6295 {
d2e4a39e 6296 if (discrim_start == name + 1)
4c4b4cd2 6297 return "";
76a01679 6298 if ((discrim_start > name + 3
4c4b4cd2
PH
6299 && strncmp (discrim_start - 3, "___", 3) == 0)
6300 || discrim_start[-1] == '.')
6301 break;
14f9c5c9
AS
6302 }
6303
6304 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6305 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6306 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6307 return result;
6308}
6309
4c4b4cd2
PH
6310/* Scan STR for a subtype-encoded number, beginning at position K.
6311 Put the position of the character just past the number scanned in
6312 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6313 Return 1 if there was a valid number at the given position, and 0
6314 otherwise. A "subtype-encoded" number consists of the absolute value
6315 in decimal, followed by the letter 'm' to indicate a negative number.
6316 Assumes 0m does not occur. */
14f9c5c9
AS
6317
6318int
d2e4a39e 6319ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6320{
6321 ULONGEST RU;
6322
d2e4a39e 6323 if (!isdigit (str[k]))
14f9c5c9
AS
6324 return 0;
6325
4c4b4cd2 6326 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6327 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6328 LONGEST. */
14f9c5c9
AS
6329 RU = 0;
6330 while (isdigit (str[k]))
6331 {
d2e4a39e 6332 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6333 k += 1;
6334 }
6335
d2e4a39e 6336 if (str[k] == 'm')
14f9c5c9
AS
6337 {
6338 if (R != NULL)
4c4b4cd2 6339 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6340 k += 1;
6341 }
6342 else if (R != NULL)
6343 *R = (LONGEST) RU;
6344
4c4b4cd2 6345 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6346 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6347 number representable as a LONGEST (although either would probably work
6348 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6349 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6350
6351 if (new_k != NULL)
6352 *new_k = k;
6353 return 1;
6354}
6355
4c4b4cd2
PH
6356/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6357 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6358 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6359
d2e4a39e 6360int
ebf56fd3 6361ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6362{
d2e4a39e 6363 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6364 int p;
6365
6366 p = 0;
6367 while (1)
6368 {
d2e4a39e 6369 switch (name[p])
4c4b4cd2
PH
6370 {
6371 case '\0':
6372 return 0;
6373 case 'S':
6374 {
6375 LONGEST W;
5b4ee69b 6376
4c4b4cd2
PH
6377 if (!ada_scan_number (name, p + 1, &W, &p))
6378 return 0;
6379 if (val == W)
6380 return 1;
6381 break;
6382 }
6383 case 'R':
6384 {
6385 LONGEST L, U;
5b4ee69b 6386
4c4b4cd2
PH
6387 if (!ada_scan_number (name, p + 1, &L, &p)
6388 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6389 return 0;
6390 if (val >= L && val <= U)
6391 return 1;
6392 break;
6393 }
6394 case 'O':
6395 return 1;
6396 default:
6397 return 0;
6398 }
6399 }
6400}
6401
0963b4bd 6402/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6403
6404/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6405 ARG_TYPE, extract and return the value of one of its (non-static)
6406 fields. FIELDNO says which field. Differs from value_primitive_field
6407 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6408
4c4b4cd2 6409static struct value *
d2e4a39e 6410ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6411 struct type *arg_type)
14f9c5c9 6412{
14f9c5c9
AS
6413 struct type *type;
6414
61ee279c 6415 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6416 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6417
4c4b4cd2 6418 /* Handle packed fields. */
14f9c5c9
AS
6419
6420 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6421 {
6422 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6423 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6424
0fd88904 6425 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6426 offset + bit_pos / 8,
6427 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6428 }
6429 else
6430 return value_primitive_field (arg1, offset, fieldno, arg_type);
6431}
6432
52ce6436
PH
6433/* Find field with name NAME in object of type TYPE. If found,
6434 set the following for each argument that is non-null:
6435 - *FIELD_TYPE_P to the field's type;
6436 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6437 an object of that type;
6438 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6439 - *BIT_SIZE_P to its size in bits if the field is packed, and
6440 0 otherwise;
6441 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6442 fields up to but not including the desired field, or by the total
6443 number of fields if not found. A NULL value of NAME never
6444 matches; the function just counts visible fields in this case.
6445
0963b4bd 6446 Returns 1 if found, 0 otherwise. */
52ce6436 6447
4c4b4cd2 6448static int
0d5cff50 6449find_struct_field (const char *name, struct type *type, int offset,
76a01679 6450 struct type **field_type_p,
52ce6436
PH
6451 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6452 int *index_p)
4c4b4cd2
PH
6453{
6454 int i;
6455
61ee279c 6456 type = ada_check_typedef (type);
76a01679 6457
52ce6436
PH
6458 if (field_type_p != NULL)
6459 *field_type_p = NULL;
6460 if (byte_offset_p != NULL)
d5d6fca5 6461 *byte_offset_p = 0;
52ce6436
PH
6462 if (bit_offset_p != NULL)
6463 *bit_offset_p = 0;
6464 if (bit_size_p != NULL)
6465 *bit_size_p = 0;
6466
6467 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6468 {
6469 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6470 int fld_offset = offset + bit_pos / 8;
0d5cff50 6471 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6472
4c4b4cd2
PH
6473 if (t_field_name == NULL)
6474 continue;
6475
52ce6436 6476 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6477 {
6478 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6479
52ce6436
PH
6480 if (field_type_p != NULL)
6481 *field_type_p = TYPE_FIELD_TYPE (type, i);
6482 if (byte_offset_p != NULL)
6483 *byte_offset_p = fld_offset;
6484 if (bit_offset_p != NULL)
6485 *bit_offset_p = bit_pos % 8;
6486 if (bit_size_p != NULL)
6487 *bit_size_p = bit_size;
76a01679
JB
6488 return 1;
6489 }
4c4b4cd2
PH
6490 else if (ada_is_wrapper_field (type, i))
6491 {
52ce6436
PH
6492 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6493 field_type_p, byte_offset_p, bit_offset_p,
6494 bit_size_p, index_p))
76a01679
JB
6495 return 1;
6496 }
4c4b4cd2
PH
6497 else if (ada_is_variant_part (type, i))
6498 {
52ce6436
PH
6499 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6500 fixed type?? */
4c4b4cd2 6501 int j;
52ce6436
PH
6502 struct type *field_type
6503 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6504
52ce6436 6505 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6506 {
76a01679
JB
6507 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6508 fld_offset
6509 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6510 field_type_p, byte_offset_p,
52ce6436 6511 bit_offset_p, bit_size_p, index_p))
76a01679 6512 return 1;
4c4b4cd2
PH
6513 }
6514 }
52ce6436
PH
6515 else if (index_p != NULL)
6516 *index_p += 1;
4c4b4cd2
PH
6517 }
6518 return 0;
6519}
6520
0963b4bd 6521/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6522
52ce6436
PH
6523static int
6524num_visible_fields (struct type *type)
6525{
6526 int n;
5b4ee69b 6527
52ce6436
PH
6528 n = 0;
6529 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6530 return n;
6531}
14f9c5c9 6532
4c4b4cd2 6533/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6534 and search in it assuming it has (class) type TYPE.
6535 If found, return value, else return NULL.
6536
4c4b4cd2 6537 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6538
4c4b4cd2 6539static struct value *
d2e4a39e 6540ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6541 struct type *type)
14f9c5c9
AS
6542{
6543 int i;
14f9c5c9 6544
5b4ee69b 6545 type = ada_check_typedef (type);
52ce6436 6546 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6547 {
0d5cff50 6548 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6549
6550 if (t_field_name == NULL)
4c4b4cd2 6551 continue;
14f9c5c9
AS
6552
6553 else if (field_name_match (t_field_name, name))
4c4b4cd2 6554 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6555
6556 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6557 {
0963b4bd 6558 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6559 ada_search_struct_field (name, arg,
6560 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6561 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6562
4c4b4cd2
PH
6563 if (v != NULL)
6564 return v;
6565 }
14f9c5c9
AS
6566
6567 else if (ada_is_variant_part (type, i))
4c4b4cd2 6568 {
0963b4bd 6569 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6570 int j;
5b4ee69b
MS
6571 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6572 i));
4c4b4cd2
PH
6573 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6574
52ce6436 6575 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6576 {
0963b4bd
MS
6577 struct value *v = ada_search_struct_field /* Force line
6578 break. */
06d5cf63
JB
6579 (name, arg,
6580 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6581 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6582
4c4b4cd2
PH
6583 if (v != NULL)
6584 return v;
6585 }
6586 }
14f9c5c9
AS
6587 }
6588 return NULL;
6589}
d2e4a39e 6590
52ce6436
PH
6591static struct value *ada_index_struct_field_1 (int *, struct value *,
6592 int, struct type *);
6593
6594
6595/* Return field #INDEX in ARG, where the index is that returned by
6596 * find_struct_field through its INDEX_P argument. Adjust the address
6597 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6598 * If found, return value, else return NULL. */
52ce6436
PH
6599
6600static struct value *
6601ada_index_struct_field (int index, struct value *arg, int offset,
6602 struct type *type)
6603{
6604 return ada_index_struct_field_1 (&index, arg, offset, type);
6605}
6606
6607
6608/* Auxiliary function for ada_index_struct_field. Like
6609 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6610 * *INDEX_P. */
52ce6436
PH
6611
6612static struct value *
6613ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6614 struct type *type)
6615{
6616 int i;
6617 type = ada_check_typedef (type);
6618
6619 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6620 {
6621 if (TYPE_FIELD_NAME (type, i) == NULL)
6622 continue;
6623 else if (ada_is_wrapper_field (type, i))
6624 {
0963b4bd 6625 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6626 ada_index_struct_field_1 (index_p, arg,
6627 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6628 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6629
52ce6436
PH
6630 if (v != NULL)
6631 return v;
6632 }
6633
6634 else if (ada_is_variant_part (type, i))
6635 {
6636 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6637 find_struct_field. */
52ce6436
PH
6638 error (_("Cannot assign this kind of variant record"));
6639 }
6640 else if (*index_p == 0)
6641 return ada_value_primitive_field (arg, offset, i, type);
6642 else
6643 *index_p -= 1;
6644 }
6645 return NULL;
6646}
6647
4c4b4cd2
PH
6648/* Given ARG, a value of type (pointer or reference to a)*
6649 structure/union, extract the component named NAME from the ultimate
6650 target structure/union and return it as a value with its
f5938064 6651 appropriate type.
14f9c5c9 6652
4c4b4cd2
PH
6653 The routine searches for NAME among all members of the structure itself
6654 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6655 (e.g., '_parent').
6656
03ee6b2e
PH
6657 If NO_ERR, then simply return NULL in case of error, rather than
6658 calling error. */
14f9c5c9 6659
d2e4a39e 6660struct value *
03ee6b2e 6661ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6662{
4c4b4cd2 6663 struct type *t, *t1;
d2e4a39e 6664 struct value *v;
14f9c5c9 6665
4c4b4cd2 6666 v = NULL;
df407dfe 6667 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6668 if (TYPE_CODE (t) == TYPE_CODE_REF)
6669 {
6670 t1 = TYPE_TARGET_TYPE (t);
6671 if (t1 == NULL)
03ee6b2e 6672 goto BadValue;
61ee279c 6673 t1 = ada_check_typedef (t1);
4c4b4cd2 6674 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6675 {
994b9211 6676 arg = coerce_ref (arg);
76a01679
JB
6677 t = t1;
6678 }
4c4b4cd2 6679 }
14f9c5c9 6680
4c4b4cd2
PH
6681 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6682 {
6683 t1 = TYPE_TARGET_TYPE (t);
6684 if (t1 == NULL)
03ee6b2e 6685 goto BadValue;
61ee279c 6686 t1 = ada_check_typedef (t1);
4c4b4cd2 6687 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6688 {
6689 arg = value_ind (arg);
6690 t = t1;
6691 }
4c4b4cd2 6692 else
76a01679 6693 break;
4c4b4cd2 6694 }
14f9c5c9 6695
4c4b4cd2 6696 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6697 goto BadValue;
14f9c5c9 6698
4c4b4cd2
PH
6699 if (t1 == t)
6700 v = ada_search_struct_field (name, arg, 0, t);
6701 else
6702 {
6703 int bit_offset, bit_size, byte_offset;
6704 struct type *field_type;
6705 CORE_ADDR address;
6706
76a01679
JB
6707 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6708 address = value_as_address (arg);
4c4b4cd2 6709 else
0fd88904 6710 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6711
1ed6ede0 6712 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6713 if (find_struct_field (name, t1, 0,
6714 &field_type, &byte_offset, &bit_offset,
52ce6436 6715 &bit_size, NULL))
76a01679
JB
6716 {
6717 if (bit_size != 0)
6718 {
714e53ab
PH
6719 if (TYPE_CODE (t) == TYPE_CODE_REF)
6720 arg = ada_coerce_ref (arg);
6721 else
6722 arg = ada_value_ind (arg);
76a01679
JB
6723 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6724 bit_offset, bit_size,
6725 field_type);
6726 }
6727 else
f5938064 6728 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6729 }
6730 }
6731
03ee6b2e
PH
6732 if (v != NULL || no_err)
6733 return v;
6734 else
323e0a4a 6735 error (_("There is no member named %s."), name);
14f9c5c9 6736
03ee6b2e
PH
6737 BadValue:
6738 if (no_err)
6739 return NULL;
6740 else
0963b4bd
MS
6741 error (_("Attempt to extract a component of "
6742 "a value that is not a record."));
14f9c5c9
AS
6743}
6744
6745/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6746 If DISPP is non-null, add its byte displacement from the beginning of a
6747 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6748 work for packed fields).
6749
6750 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6751 followed by "___".
14f9c5c9 6752
0963b4bd 6753 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6754 be a (pointer or reference)+ to a struct or union, and the
6755 ultimate target type will be searched.
14f9c5c9
AS
6756
6757 Looks recursively into variant clauses and parent types.
6758
4c4b4cd2
PH
6759 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6760 TYPE is not a type of the right kind. */
14f9c5c9 6761
4c4b4cd2 6762static struct type *
76a01679
JB
6763ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6764 int noerr, int *dispp)
14f9c5c9
AS
6765{
6766 int i;
6767
6768 if (name == NULL)
6769 goto BadName;
6770
76a01679 6771 if (refok && type != NULL)
4c4b4cd2
PH
6772 while (1)
6773 {
61ee279c 6774 type = ada_check_typedef (type);
76a01679
JB
6775 if (TYPE_CODE (type) != TYPE_CODE_PTR
6776 && TYPE_CODE (type) != TYPE_CODE_REF)
6777 break;
6778 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6779 }
14f9c5c9 6780
76a01679 6781 if (type == NULL
1265e4aa
JB
6782 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6783 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6784 {
4c4b4cd2 6785 if (noerr)
76a01679 6786 return NULL;
4c4b4cd2 6787 else
76a01679
JB
6788 {
6789 target_terminal_ours ();
6790 gdb_flush (gdb_stdout);
323e0a4a
AC
6791 if (type == NULL)
6792 error (_("Type (null) is not a structure or union type"));
6793 else
6794 {
6795 /* XXX: type_sprint */
6796 fprintf_unfiltered (gdb_stderr, _("Type "));
6797 type_print (type, "", gdb_stderr, -1);
6798 error (_(" is not a structure or union type"));
6799 }
76a01679 6800 }
14f9c5c9
AS
6801 }
6802
6803 type = to_static_fixed_type (type);
6804
6805 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6806 {
0d5cff50 6807 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6808 struct type *t;
6809 int disp;
d2e4a39e 6810
14f9c5c9 6811 if (t_field_name == NULL)
4c4b4cd2 6812 continue;
14f9c5c9
AS
6813
6814 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6815 {
6816 if (dispp != NULL)
6817 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6818 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6819 }
14f9c5c9
AS
6820
6821 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6822 {
6823 disp = 0;
6824 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6825 0, 1, &disp);
6826 if (t != NULL)
6827 {
6828 if (dispp != NULL)
6829 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6830 return t;
6831 }
6832 }
14f9c5c9
AS
6833
6834 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6835 {
6836 int j;
5b4ee69b
MS
6837 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6838 i));
4c4b4cd2
PH
6839
6840 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6841 {
b1f33ddd
JB
6842 /* FIXME pnh 2008/01/26: We check for a field that is
6843 NOT wrapped in a struct, since the compiler sometimes
6844 generates these for unchecked variant types. Revisit
0963b4bd 6845 if the compiler changes this practice. */
0d5cff50 6846 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6847 disp = 0;
b1f33ddd
JB
6848 if (v_field_name != NULL
6849 && field_name_match (v_field_name, name))
6850 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6851 else
0963b4bd
MS
6852 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6853 j),
b1f33ddd
JB
6854 name, 0, 1, &disp);
6855
4c4b4cd2
PH
6856 if (t != NULL)
6857 {
6858 if (dispp != NULL)
6859 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6860 return t;
6861 }
6862 }
6863 }
14f9c5c9
AS
6864
6865 }
6866
6867BadName:
d2e4a39e 6868 if (!noerr)
14f9c5c9
AS
6869 {
6870 target_terminal_ours ();
6871 gdb_flush (gdb_stdout);
323e0a4a
AC
6872 if (name == NULL)
6873 {
6874 /* XXX: type_sprint */
6875 fprintf_unfiltered (gdb_stderr, _("Type "));
6876 type_print (type, "", gdb_stderr, -1);
6877 error (_(" has no component named <null>"));
6878 }
6879 else
6880 {
6881 /* XXX: type_sprint */
6882 fprintf_unfiltered (gdb_stderr, _("Type "));
6883 type_print (type, "", gdb_stderr, -1);
6884 error (_(" has no component named %s"), name);
6885 }
14f9c5c9
AS
6886 }
6887
6888 return NULL;
6889}
6890
b1f33ddd
JB
6891/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6892 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6893 represents an unchecked union (that is, the variant part of a
0963b4bd 6894 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6895
6896static int
6897is_unchecked_variant (struct type *var_type, struct type *outer_type)
6898{
6899 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6900
b1f33ddd
JB
6901 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6902 == NULL);
6903}
6904
6905
14f9c5c9
AS
6906/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6907 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6908 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6909 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6910
d2e4a39e 6911int
ebf56fd3 6912ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6913 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6914{
6915 int others_clause;
6916 int i;
d2e4a39e 6917 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6918 struct value *outer;
6919 struct value *discrim;
14f9c5c9
AS
6920 LONGEST discrim_val;
6921
0c281816
JB
6922 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6923 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6924 if (discrim == NULL)
14f9c5c9 6925 return -1;
0c281816 6926 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6927
6928 others_clause = -1;
6929 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6930 {
6931 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6932 others_clause = i;
14f9c5c9 6933 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6934 return i;
14f9c5c9
AS
6935 }
6936
6937 return others_clause;
6938}
d2e4a39e 6939\f
14f9c5c9
AS
6940
6941
4c4b4cd2 6942 /* Dynamic-Sized Records */
14f9c5c9
AS
6943
6944/* Strategy: The type ostensibly attached to a value with dynamic size
6945 (i.e., a size that is not statically recorded in the debugging
6946 data) does not accurately reflect the size or layout of the value.
6947 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6948 conventional types that are constructed on the fly. */
14f9c5c9
AS
6949
6950/* There is a subtle and tricky problem here. In general, we cannot
6951 determine the size of dynamic records without its data. However,
6952 the 'struct value' data structure, which GDB uses to represent
6953 quantities in the inferior process (the target), requires the size
6954 of the type at the time of its allocation in order to reserve space
6955 for GDB's internal copy of the data. That's why the
6956 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6957 rather than struct value*s.
14f9c5c9
AS
6958
6959 However, GDB's internal history variables ($1, $2, etc.) are
6960 struct value*s containing internal copies of the data that are not, in
6961 general, the same as the data at their corresponding addresses in
6962 the target. Fortunately, the types we give to these values are all
6963 conventional, fixed-size types (as per the strategy described
6964 above), so that we don't usually have to perform the
6965 'to_fixed_xxx_type' conversions to look at their values.
6966 Unfortunately, there is one exception: if one of the internal
6967 history variables is an array whose elements are unconstrained
6968 records, then we will need to create distinct fixed types for each
6969 element selected. */
6970
6971/* The upshot of all of this is that many routines take a (type, host
6972 address, target address) triple as arguments to represent a value.
6973 The host address, if non-null, is supposed to contain an internal
6974 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6975 target at the target address. */
14f9c5c9
AS
6976
6977/* Assuming that VAL0 represents a pointer value, the result of
6978 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6979 dynamic-sized types. */
14f9c5c9 6980
d2e4a39e
AS
6981struct value *
6982ada_value_ind (struct value *val0)
14f9c5c9 6983{
c48db5ca 6984 struct value *val = value_ind (val0);
5b4ee69b 6985
4c4b4cd2 6986 return ada_to_fixed_value (val);
14f9c5c9
AS
6987}
6988
6989/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6990 qualifiers on VAL0. */
6991
d2e4a39e
AS
6992static struct value *
6993ada_coerce_ref (struct value *val0)
6994{
df407dfe 6995 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6996 {
6997 struct value *val = val0;
5b4ee69b 6998
994b9211 6999 val = coerce_ref (val);
4c4b4cd2 7000 return ada_to_fixed_value (val);
d2e4a39e
AS
7001 }
7002 else
14f9c5c9
AS
7003 return val0;
7004}
7005
7006/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7007 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7008
7009static unsigned int
ebf56fd3 7010align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7011{
7012 return (off + alignment - 1) & ~(alignment - 1);
7013}
7014
4c4b4cd2 7015/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7016
7017static unsigned int
ebf56fd3 7018field_alignment (struct type *type, int f)
14f9c5c9 7019{
d2e4a39e 7020 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7021 int len;
14f9c5c9
AS
7022 int align_offset;
7023
64a1bf19
JB
7024 /* The field name should never be null, unless the debugging information
7025 is somehow malformed. In this case, we assume the field does not
7026 require any alignment. */
7027 if (name == NULL)
7028 return 1;
7029
7030 len = strlen (name);
7031
4c4b4cd2
PH
7032 if (!isdigit (name[len - 1]))
7033 return 1;
14f9c5c9 7034
d2e4a39e 7035 if (isdigit (name[len - 2]))
14f9c5c9
AS
7036 align_offset = len - 2;
7037 else
7038 align_offset = len - 1;
7039
4c4b4cd2 7040 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7041 return TARGET_CHAR_BIT;
7042
4c4b4cd2
PH
7043 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7044}
7045
852dff6c 7046/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7047
852dff6c
JB
7048static struct symbol *
7049ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7050{
7051 struct symbol *sym;
7052
7053 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7054 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7055 return sym;
7056
7057 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7058 return sym;
14f9c5c9
AS
7059}
7060
dddfab26
UW
7061/* Find a type named NAME. Ignores ambiguity. This routine will look
7062 solely for types defined by debug info, it will not search the GDB
7063 primitive types. */
4c4b4cd2 7064
852dff6c 7065static struct type *
ebf56fd3 7066ada_find_any_type (const char *name)
14f9c5c9 7067{
852dff6c 7068 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7069
14f9c5c9 7070 if (sym != NULL)
dddfab26 7071 return SYMBOL_TYPE (sym);
14f9c5c9 7072
dddfab26 7073 return NULL;
14f9c5c9
AS
7074}
7075
739593e0
JB
7076/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7077 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7078 symbol, in which case it is returned. Otherwise, this looks for
7079 symbols whose name is that of NAME_SYM suffixed with "___XR".
7080 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7081
7082struct symbol *
739593e0 7083ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7084{
739593e0 7085 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7086 struct symbol *sym;
7087
739593e0
JB
7088 if (strstr (name, "___XR") != NULL)
7089 return name_sym;
7090
aeb5907d
JB
7091 sym = find_old_style_renaming_symbol (name, block);
7092
7093 if (sym != NULL)
7094 return sym;
7095
0963b4bd 7096 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7097 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7098 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7099 return sym;
7100 else
7101 return NULL;
7102}
7103
7104static struct symbol *
7105find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7106{
7f0df278 7107 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7108 char *rename;
7109
7110 if (function_sym != NULL)
7111 {
7112 /* If the symbol is defined inside a function, NAME is not fully
7113 qualified. This means we need to prepend the function name
7114 as well as adding the ``___XR'' suffix to build the name of
7115 the associated renaming symbol. */
0d5cff50 7116 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7117 /* Function names sometimes contain suffixes used
7118 for instance to qualify nested subprograms. When building
7119 the XR type name, we need to make sure that this suffix is
7120 not included. So do not include any suffix in the function
7121 name length below. */
69fadcdf 7122 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7123 const int rename_len = function_name_len + 2 /* "__" */
7124 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7125
529cad9c 7126 /* Strip the suffix if necessary. */
69fadcdf
JB
7127 ada_remove_trailing_digits (function_name, &function_name_len);
7128 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7129 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7130
4c4b4cd2
PH
7131 /* Library-level functions are a special case, as GNAT adds
7132 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7133 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7134 have this prefix, so we need to skip this prefix if present. */
7135 if (function_name_len > 5 /* "_ada_" */
7136 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7137 {
7138 function_name += 5;
7139 function_name_len -= 5;
7140 }
4c4b4cd2
PH
7141
7142 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7143 strncpy (rename, function_name, function_name_len);
7144 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7145 "__%s___XR", name);
4c4b4cd2
PH
7146 }
7147 else
7148 {
7149 const int rename_len = strlen (name) + 6;
5b4ee69b 7150
4c4b4cd2 7151 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7152 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7153 }
7154
852dff6c 7155 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7156}
7157
14f9c5c9 7158/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7159 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7160 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7161 otherwise return 0. */
7162
14f9c5c9 7163int
d2e4a39e 7164ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7165{
7166 if (type1 == NULL)
7167 return 1;
7168 else if (type0 == NULL)
7169 return 0;
7170 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7171 return 1;
7172 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7173 return 0;
4c4b4cd2
PH
7174 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7175 return 1;
ad82864c 7176 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7177 return 1;
4c4b4cd2
PH
7178 else if (ada_is_array_descriptor_type (type0)
7179 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7180 return 1;
aeb5907d
JB
7181 else
7182 {
7183 const char *type0_name = type_name_no_tag (type0);
7184 const char *type1_name = type_name_no_tag (type1);
7185
7186 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7187 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7188 return 1;
7189 }
14f9c5c9
AS
7190 return 0;
7191}
7192
7193/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7194 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7195
0d5cff50 7196const char *
d2e4a39e 7197ada_type_name (struct type *type)
14f9c5c9 7198{
d2e4a39e 7199 if (type == NULL)
14f9c5c9
AS
7200 return NULL;
7201 else if (TYPE_NAME (type) != NULL)
7202 return TYPE_NAME (type);
7203 else
7204 return TYPE_TAG_NAME (type);
7205}
7206
b4ba55a1
JB
7207/* Search the list of "descriptive" types associated to TYPE for a type
7208 whose name is NAME. */
7209
7210static struct type *
7211find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7212{
7213 struct type *result;
7214
7215 /* If there no descriptive-type info, then there is no parallel type
7216 to be found. */
7217 if (!HAVE_GNAT_AUX_INFO (type))
7218 return NULL;
7219
7220 result = TYPE_DESCRIPTIVE_TYPE (type);
7221 while (result != NULL)
7222 {
0d5cff50 7223 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7224
7225 if (result_name == NULL)
7226 {
7227 warning (_("unexpected null name on descriptive type"));
7228 return NULL;
7229 }
7230
7231 /* If the names match, stop. */
7232 if (strcmp (result_name, name) == 0)
7233 break;
7234
7235 /* Otherwise, look at the next item on the list, if any. */
7236 if (HAVE_GNAT_AUX_INFO (result))
7237 result = TYPE_DESCRIPTIVE_TYPE (result);
7238 else
7239 result = NULL;
7240 }
7241
7242 /* If we didn't find a match, see whether this is a packed array. With
7243 older compilers, the descriptive type information is either absent or
7244 irrelevant when it comes to packed arrays so the above lookup fails.
7245 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7246 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7247 return ada_find_any_type (name);
7248
7249 return result;
7250}
7251
7252/* Find a parallel type to TYPE with the specified NAME, using the
7253 descriptive type taken from the debugging information, if available,
7254 and otherwise using the (slower) name-based method. */
7255
7256static struct type *
7257ada_find_parallel_type_with_name (struct type *type, const char *name)
7258{
7259 struct type *result = NULL;
7260
7261 if (HAVE_GNAT_AUX_INFO (type))
7262 result = find_parallel_type_by_descriptive_type (type, name);
7263 else
7264 result = ada_find_any_type (name);
7265
7266 return result;
7267}
7268
7269/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7270 SUFFIX to the name of TYPE. */
14f9c5c9 7271
d2e4a39e 7272struct type *
ebf56fd3 7273ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7274{
0d5cff50
DE
7275 char *name;
7276 const char *typename = ada_type_name (type);
14f9c5c9 7277 int len;
d2e4a39e 7278
14f9c5c9
AS
7279 if (typename == NULL)
7280 return NULL;
7281
7282 len = strlen (typename);
7283
b4ba55a1 7284 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7285
7286 strcpy (name, typename);
7287 strcpy (name + len, suffix);
7288
b4ba55a1 7289 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7290}
7291
14f9c5c9 7292/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7293 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7294
d2e4a39e
AS
7295static struct type *
7296dynamic_template_type (struct type *type)
14f9c5c9 7297{
61ee279c 7298 type = ada_check_typedef (type);
14f9c5c9
AS
7299
7300 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7301 || ada_type_name (type) == NULL)
14f9c5c9 7302 return NULL;
d2e4a39e 7303 else
14f9c5c9
AS
7304 {
7305 int len = strlen (ada_type_name (type));
5b4ee69b 7306
4c4b4cd2
PH
7307 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7308 return type;
14f9c5c9 7309 else
4c4b4cd2 7310 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7311 }
7312}
7313
7314/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7315 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7316
d2e4a39e
AS
7317static int
7318is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7319{
7320 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7321
d2e4a39e 7322 return name != NULL
14f9c5c9
AS
7323 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7324 && strstr (name, "___XVL") != NULL;
7325}
7326
4c4b4cd2
PH
7327/* The index of the variant field of TYPE, or -1 if TYPE does not
7328 represent a variant record type. */
14f9c5c9 7329
d2e4a39e 7330static int
4c4b4cd2 7331variant_field_index (struct type *type)
14f9c5c9
AS
7332{
7333 int f;
7334
4c4b4cd2
PH
7335 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7336 return -1;
7337
7338 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7339 {
7340 if (ada_is_variant_part (type, f))
7341 return f;
7342 }
7343 return -1;
14f9c5c9
AS
7344}
7345
4c4b4cd2
PH
7346/* A record type with no fields. */
7347
d2e4a39e 7348static struct type *
e9bb382b 7349empty_record (struct type *template)
14f9c5c9 7350{
e9bb382b 7351 struct type *type = alloc_type_copy (template);
5b4ee69b 7352
14f9c5c9
AS
7353 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7354 TYPE_NFIELDS (type) = 0;
7355 TYPE_FIELDS (type) = NULL;
b1f33ddd 7356 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7357 TYPE_NAME (type) = "<empty>";
7358 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7359 TYPE_LENGTH (type) = 0;
7360 return type;
7361}
7362
7363/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7364 the value of type TYPE at VALADDR or ADDRESS (see comments at
7365 the beginning of this section) VAL according to GNAT conventions.
7366 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7367 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7368 an outer-level type (i.e., as opposed to a branch of a variant.) A
7369 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7370 of the variant.
14f9c5c9 7371
4c4b4cd2
PH
7372 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7373 length are not statically known are discarded. As a consequence,
7374 VALADDR, ADDRESS and DVAL0 are ignored.
7375
7376 NOTE: Limitations: For now, we assume that dynamic fields and
7377 variants occupy whole numbers of bytes. However, they need not be
7378 byte-aligned. */
7379
7380struct type *
10a2c479 7381ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7382 const gdb_byte *valaddr,
4c4b4cd2
PH
7383 CORE_ADDR address, struct value *dval0,
7384 int keep_dynamic_fields)
14f9c5c9 7385{
d2e4a39e
AS
7386 struct value *mark = value_mark ();
7387 struct value *dval;
7388 struct type *rtype;
14f9c5c9 7389 int nfields, bit_len;
4c4b4cd2 7390 int variant_field;
14f9c5c9 7391 long off;
d94e4f4f 7392 int fld_bit_len;
14f9c5c9
AS
7393 int f;
7394
4c4b4cd2
PH
7395 /* Compute the number of fields in this record type that are going
7396 to be processed: unless keep_dynamic_fields, this includes only
7397 fields whose position and length are static will be processed. */
7398 if (keep_dynamic_fields)
7399 nfields = TYPE_NFIELDS (type);
7400 else
7401 {
7402 nfields = 0;
76a01679 7403 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7404 && !ada_is_variant_part (type, nfields)
7405 && !is_dynamic_field (type, nfields))
7406 nfields++;
7407 }
7408
e9bb382b 7409 rtype = alloc_type_copy (type);
14f9c5c9
AS
7410 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7411 INIT_CPLUS_SPECIFIC (rtype);
7412 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7413 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7414 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7415 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7416 TYPE_NAME (rtype) = ada_type_name (type);
7417 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7418 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7419
d2e4a39e
AS
7420 off = 0;
7421 bit_len = 0;
4c4b4cd2
PH
7422 variant_field = -1;
7423
14f9c5c9
AS
7424 for (f = 0; f < nfields; f += 1)
7425 {
6c038f32
PH
7426 off = align_value (off, field_alignment (type, f))
7427 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7428 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7429 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7430
d2e4a39e 7431 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7432 {
7433 variant_field = f;
d94e4f4f 7434 fld_bit_len = 0;
4c4b4cd2 7435 }
14f9c5c9 7436 else if (is_dynamic_field (type, f))
4c4b4cd2 7437 {
284614f0
JB
7438 const gdb_byte *field_valaddr = valaddr;
7439 CORE_ADDR field_address = address;
7440 struct type *field_type =
7441 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7442
4c4b4cd2 7443 if (dval0 == NULL)
b5304971
JG
7444 {
7445 /* rtype's length is computed based on the run-time
7446 value of discriminants. If the discriminants are not
7447 initialized, the type size may be completely bogus and
0963b4bd 7448 GDB may fail to allocate a value for it. So check the
b5304971
JG
7449 size first before creating the value. */
7450 check_size (rtype);
7451 dval = value_from_contents_and_address (rtype, valaddr, address);
7452 }
4c4b4cd2
PH
7453 else
7454 dval = dval0;
7455
284614f0
JB
7456 /* If the type referenced by this field is an aligner type, we need
7457 to unwrap that aligner type, because its size might not be set.
7458 Keeping the aligner type would cause us to compute the wrong
7459 size for this field, impacting the offset of the all the fields
7460 that follow this one. */
7461 if (ada_is_aligner_type (field_type))
7462 {
7463 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7464
7465 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7466 field_address = cond_offset_target (field_address, field_offset);
7467 field_type = ada_aligned_type (field_type);
7468 }
7469
7470 field_valaddr = cond_offset_host (field_valaddr,
7471 off / TARGET_CHAR_BIT);
7472 field_address = cond_offset_target (field_address,
7473 off / TARGET_CHAR_BIT);
7474
7475 /* Get the fixed type of the field. Note that, in this case,
7476 we do not want to get the real type out of the tag: if
7477 the current field is the parent part of a tagged record,
7478 we will get the tag of the object. Clearly wrong: the real
7479 type of the parent is not the real type of the child. We
7480 would end up in an infinite loop. */
7481 field_type = ada_get_base_type (field_type);
7482 field_type = ada_to_fixed_type (field_type, field_valaddr,
7483 field_address, dval, 0);
27f2a97b
JB
7484 /* If the field size is already larger than the maximum
7485 object size, then the record itself will necessarily
7486 be larger than the maximum object size. We need to make
7487 this check now, because the size might be so ridiculously
7488 large (due to an uninitialized variable in the inferior)
7489 that it would cause an overflow when adding it to the
7490 record size. */
7491 check_size (field_type);
284614f0
JB
7492
7493 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7494 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7495 /* The multiplication can potentially overflow. But because
7496 the field length has been size-checked just above, and
7497 assuming that the maximum size is a reasonable value,
7498 an overflow should not happen in practice. So rather than
7499 adding overflow recovery code to this already complex code,
7500 we just assume that it's not going to happen. */
d94e4f4f 7501 fld_bit_len =
4c4b4cd2
PH
7502 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7503 }
14f9c5c9 7504 else
4c4b4cd2 7505 {
9f0dec2d
JB
7506 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7507
720d1a40
JB
7508 /* If our field is a typedef type (most likely a typedef of
7509 a fat pointer, encoding an array access), then we need to
7510 look at its target type to determine its characteristics.
7511 In particular, we would miscompute the field size if we took
7512 the size of the typedef (zero), instead of the size of
7513 the target type. */
7514 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7515 field_type = ada_typedef_target_type (field_type);
7516
9f0dec2d 7517 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7518 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7519 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7520 fld_bit_len =
4c4b4cd2
PH
7521 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7522 else
d94e4f4f 7523 fld_bit_len =
9f0dec2d 7524 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7525 }
14f9c5c9 7526 if (off + fld_bit_len > bit_len)
4c4b4cd2 7527 bit_len = off + fld_bit_len;
d94e4f4f 7528 off += fld_bit_len;
4c4b4cd2
PH
7529 TYPE_LENGTH (rtype) =
7530 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7531 }
4c4b4cd2
PH
7532
7533 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7534 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7535 the record. This can happen in the presence of representation
7536 clauses. */
7537 if (variant_field >= 0)
7538 {
7539 struct type *branch_type;
7540
7541 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7542
7543 if (dval0 == NULL)
7544 dval = value_from_contents_and_address (rtype, valaddr, address);
7545 else
7546 dval = dval0;
7547
7548 branch_type =
7549 to_fixed_variant_branch_type
7550 (TYPE_FIELD_TYPE (type, variant_field),
7551 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7552 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7553 if (branch_type == NULL)
7554 {
7555 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7556 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7557 TYPE_NFIELDS (rtype) -= 1;
7558 }
7559 else
7560 {
7561 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7562 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7563 fld_bit_len =
7564 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7565 TARGET_CHAR_BIT;
7566 if (off + fld_bit_len > bit_len)
7567 bit_len = off + fld_bit_len;
7568 TYPE_LENGTH (rtype) =
7569 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7570 }
7571 }
7572
714e53ab
PH
7573 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7574 should contain the alignment of that record, which should be a strictly
7575 positive value. If null or negative, then something is wrong, most
7576 probably in the debug info. In that case, we don't round up the size
0963b4bd 7577 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7578 the current RTYPE length might be good enough for our purposes. */
7579 if (TYPE_LENGTH (type) <= 0)
7580 {
323e0a4a
AC
7581 if (TYPE_NAME (rtype))
7582 warning (_("Invalid type size for `%s' detected: %d."),
7583 TYPE_NAME (rtype), TYPE_LENGTH (type));
7584 else
7585 warning (_("Invalid type size for <unnamed> detected: %d."),
7586 TYPE_LENGTH (type));
714e53ab
PH
7587 }
7588 else
7589 {
7590 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7591 TYPE_LENGTH (type));
7592 }
14f9c5c9
AS
7593
7594 value_free_to_mark (mark);
d2e4a39e 7595 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7596 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7597 return rtype;
7598}
7599
4c4b4cd2
PH
7600/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7601 of 1. */
14f9c5c9 7602
d2e4a39e 7603static struct type *
fc1a4b47 7604template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7605 CORE_ADDR address, struct value *dval0)
7606{
7607 return ada_template_to_fixed_record_type_1 (type, valaddr,
7608 address, dval0, 1);
7609}
7610
7611/* An ordinary record type in which ___XVL-convention fields and
7612 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7613 static approximations, containing all possible fields. Uses
7614 no runtime values. Useless for use in values, but that's OK,
7615 since the results are used only for type determinations. Works on both
7616 structs and unions. Representation note: to save space, we memorize
7617 the result of this function in the TYPE_TARGET_TYPE of the
7618 template type. */
7619
7620static struct type *
7621template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7622{
7623 struct type *type;
7624 int nfields;
7625 int f;
7626
4c4b4cd2
PH
7627 if (TYPE_TARGET_TYPE (type0) != NULL)
7628 return TYPE_TARGET_TYPE (type0);
7629
7630 nfields = TYPE_NFIELDS (type0);
7631 type = type0;
14f9c5c9
AS
7632
7633 for (f = 0; f < nfields; f += 1)
7634 {
61ee279c 7635 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7636 struct type *new_type;
14f9c5c9 7637
4c4b4cd2
PH
7638 if (is_dynamic_field (type0, f))
7639 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7640 else
f192137b 7641 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7642 if (type == type0 && new_type != field_type)
7643 {
e9bb382b 7644 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7645 TYPE_CODE (type) = TYPE_CODE (type0);
7646 INIT_CPLUS_SPECIFIC (type);
7647 TYPE_NFIELDS (type) = nfields;
7648 TYPE_FIELDS (type) = (struct field *)
7649 TYPE_ALLOC (type, nfields * sizeof (struct field));
7650 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7651 sizeof (struct field) * nfields);
7652 TYPE_NAME (type) = ada_type_name (type0);
7653 TYPE_TAG_NAME (type) = NULL;
876cecd0 7654 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7655 TYPE_LENGTH (type) = 0;
7656 }
7657 TYPE_FIELD_TYPE (type, f) = new_type;
7658 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7659 }
14f9c5c9
AS
7660 return type;
7661}
7662
4c4b4cd2 7663/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7664 whose address in memory is ADDRESS, returns a revision of TYPE,
7665 which should be a non-dynamic-sized record, in which the variant
7666 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7667 for discriminant values in DVAL0, which can be NULL if the record
7668 contains the necessary discriminant values. */
7669
d2e4a39e 7670static struct type *
fc1a4b47 7671to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7672 CORE_ADDR address, struct value *dval0)
14f9c5c9 7673{
d2e4a39e 7674 struct value *mark = value_mark ();
4c4b4cd2 7675 struct value *dval;
d2e4a39e 7676 struct type *rtype;
14f9c5c9
AS
7677 struct type *branch_type;
7678 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7679 int variant_field = variant_field_index (type);
14f9c5c9 7680
4c4b4cd2 7681 if (variant_field == -1)
14f9c5c9
AS
7682 return type;
7683
4c4b4cd2
PH
7684 if (dval0 == NULL)
7685 dval = value_from_contents_and_address (type, valaddr, address);
7686 else
7687 dval = dval0;
7688
e9bb382b 7689 rtype = alloc_type_copy (type);
14f9c5c9 7690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7691 INIT_CPLUS_SPECIFIC (rtype);
7692 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7693 TYPE_FIELDS (rtype) =
7694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7696 sizeof (struct field) * nfields);
14f9c5c9
AS
7697 TYPE_NAME (rtype) = ada_type_name (type);
7698 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7699 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7701
4c4b4cd2
PH
7702 branch_type = to_fixed_variant_branch_type
7703 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7704 cond_offset_host (valaddr,
4c4b4cd2
PH
7705 TYPE_FIELD_BITPOS (type, variant_field)
7706 / TARGET_CHAR_BIT),
d2e4a39e 7707 cond_offset_target (address,
4c4b4cd2
PH
7708 TYPE_FIELD_BITPOS (type, variant_field)
7709 / TARGET_CHAR_BIT), dval);
d2e4a39e 7710 if (branch_type == NULL)
14f9c5c9 7711 {
4c4b4cd2 7712 int f;
5b4ee69b 7713
4c4b4cd2
PH
7714 for (f = variant_field + 1; f < nfields; f += 1)
7715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7716 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7717 }
7718 else
7719 {
4c4b4cd2
PH
7720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7724 }
4c4b4cd2 7725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7726
4c4b4cd2 7727 value_free_to_mark (mark);
14f9c5c9
AS
7728 return rtype;
7729}
7730
7731/* An ordinary record type (with fixed-length fields) that describes
7732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7733 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7734 should be in DVAL, a record value; it may be NULL if the object
7735 at ADDR itself contains any necessary discriminant values.
7736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7737 values from the record are needed. Except in the case that DVAL,
7738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7739 unchecked) is replaced by a particular branch of the variant.
7740
7741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7742 is questionable and may be removed. It can arise during the
7743 processing of an unconstrained-array-of-record type where all the
7744 variant branches have exactly the same size. This is because in
7745 such cases, the compiler does not bother to use the XVS convention
7746 when encoding the record. I am currently dubious of this
7747 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7748
d2e4a39e 7749static struct type *
fc1a4b47 7750to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7751 CORE_ADDR address, struct value *dval)
14f9c5c9 7752{
d2e4a39e 7753 struct type *templ_type;
14f9c5c9 7754
876cecd0 7755 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7756 return type0;
7757
d2e4a39e 7758 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7759
7760 if (templ_type != NULL)
7761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7762 else if (variant_field_index (type0) >= 0)
7763 {
7764 if (dval == NULL && valaddr == NULL && address == 0)
7765 return type0;
7766 return to_record_with_fixed_variant_part (type0, valaddr, address,
7767 dval);
7768 }
14f9c5c9
AS
7769 else
7770 {
876cecd0 7771 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7772 return type0;
7773 }
7774
7775}
7776
7777/* An ordinary record type (with fixed-length fields) that describes
7778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7779 union type. Any necessary discriminants' values should be in DVAL,
7780 a record value. That is, this routine selects the appropriate
7781 branch of the union at ADDR according to the discriminant value
b1f33ddd 7782 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7783 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7784
d2e4a39e 7785static struct type *
fc1a4b47 7786to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7787 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7788{
7789 int which;
d2e4a39e
AS
7790 struct type *templ_type;
7791 struct type *var_type;
14f9c5c9
AS
7792
7793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7794 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7795 else
14f9c5c9
AS
7796 var_type = var_type0;
7797
7798 templ_type = ada_find_parallel_type (var_type, "___XVU");
7799
7800 if (templ_type != NULL)
7801 var_type = templ_type;
7802
b1f33ddd
JB
7803 if (is_unchecked_variant (var_type, value_type (dval)))
7804 return var_type0;
d2e4a39e
AS
7805 which =
7806 ada_which_variant_applies (var_type,
0fd88904 7807 value_type (dval), value_contents (dval));
14f9c5c9
AS
7808
7809 if (which < 0)
e9bb382b 7810 return empty_record (var_type);
14f9c5c9 7811 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7812 return to_fixed_record_type
d2e4a39e
AS
7813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7814 valaddr, address, dval);
4c4b4cd2 7815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7816 return
7817 to_fixed_record_type
7818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7819 else
7820 return TYPE_FIELD_TYPE (var_type, which);
7821}
7822
7823/* Assuming that TYPE0 is an array type describing the type of a value
7824 at ADDR, and that DVAL describes a record containing any
7825 discriminants used in TYPE0, returns a type for the value that
7826 contains no dynamic components (that is, no components whose sizes
7827 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7828 true, gives an error message if the resulting type's size is over
4c4b4cd2 7829 varsize_limit. */
14f9c5c9 7830
d2e4a39e
AS
7831static struct type *
7832to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7833 int ignore_too_big)
14f9c5c9 7834{
d2e4a39e
AS
7835 struct type *index_type_desc;
7836 struct type *result;
ad82864c 7837 int constrained_packed_array_p;
14f9c5c9 7838
b0dd7688 7839 type0 = ada_check_typedef (type0);
284614f0 7840 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7841 return type0;
14f9c5c9 7842
ad82864c
JB
7843 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7844 if (constrained_packed_array_p)
7845 type0 = decode_constrained_packed_array_type (type0);
284614f0 7846
14f9c5c9 7847 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7848 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7849 if (index_type_desc == NULL)
7850 {
61ee279c 7851 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7852
14f9c5c9 7853 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7854 depend on the contents of the array in properly constructed
7855 debugging data. */
529cad9c
PH
7856 /* Create a fixed version of the array element type.
7857 We're not providing the address of an element here,
e1d5a0d2 7858 and thus the actual object value cannot be inspected to do
529cad9c
PH
7859 the conversion. This should not be a problem, since arrays of
7860 unconstrained objects are not allowed. In particular, all
7861 the elements of an array of a tagged type should all be of
7862 the same type specified in the debugging info. No need to
7863 consult the object tag. */
1ed6ede0 7864 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7865
284614f0
JB
7866 /* Make sure we always create a new array type when dealing with
7867 packed array types, since we're going to fix-up the array
7868 type length and element bitsize a little further down. */
ad82864c 7869 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7870 result = type0;
14f9c5c9 7871 else
e9bb382b 7872 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7873 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7874 }
7875 else
7876 {
7877 int i;
7878 struct type *elt_type0;
7879
7880 elt_type0 = type0;
7881 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7882 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7883
7884 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7885 depend on the contents of the array in properly constructed
7886 debugging data. */
529cad9c
PH
7887 /* Create a fixed version of the array element type.
7888 We're not providing the address of an element here,
e1d5a0d2 7889 and thus the actual object value cannot be inspected to do
529cad9c
PH
7890 the conversion. This should not be a problem, since arrays of
7891 unconstrained objects are not allowed. In particular, all
7892 the elements of an array of a tagged type should all be of
7893 the same type specified in the debugging info. No need to
7894 consult the object tag. */
1ed6ede0
JB
7895 result =
7896 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7897
7898 elt_type0 = type0;
14f9c5c9 7899 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7900 {
7901 struct type *range_type =
28c85d6c 7902 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7903
e9bb382b 7904 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7905 result, range_type);
1ce677a4 7906 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7907 }
d2e4a39e 7908 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7909 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7910 }
7911
2e6fda7d
JB
7912 /* We want to preserve the type name. This can be useful when
7913 trying to get the type name of a value that has already been
7914 printed (for instance, if the user did "print VAR; whatis $". */
7915 TYPE_NAME (result) = TYPE_NAME (type0);
7916
ad82864c 7917 if (constrained_packed_array_p)
284614f0
JB
7918 {
7919 /* So far, the resulting type has been created as if the original
7920 type was a regular (non-packed) array type. As a result, the
7921 bitsize of the array elements needs to be set again, and the array
7922 length needs to be recomputed based on that bitsize. */
7923 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7924 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7925
7926 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7927 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7928 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7929 TYPE_LENGTH (result)++;
7930 }
7931
876cecd0 7932 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7933 return result;
d2e4a39e 7934}
14f9c5c9
AS
7935
7936
7937/* A standard type (containing no dynamically sized components)
7938 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7939 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7940 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7941 ADDRESS or in VALADDR contains these discriminants.
7942
1ed6ede0
JB
7943 If CHECK_TAG is not null, in the case of tagged types, this function
7944 attempts to locate the object's tag and use it to compute the actual
7945 type. However, when ADDRESS is null, we cannot use it to determine the
7946 location of the tag, and therefore compute the tagged type's actual type.
7947 So we return the tagged type without consulting the tag. */
529cad9c 7948
f192137b
JB
7949static struct type *
7950ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7951 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7952{
61ee279c 7953 type = ada_check_typedef (type);
d2e4a39e
AS
7954 switch (TYPE_CODE (type))
7955 {
7956 default:
14f9c5c9 7957 return type;
d2e4a39e 7958 case TYPE_CODE_STRUCT:
4c4b4cd2 7959 {
76a01679 7960 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7961 struct type *fixed_record_type =
7962 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7963
529cad9c
PH
7964 /* If STATIC_TYPE is a tagged type and we know the object's address,
7965 then we can determine its tag, and compute the object's actual
0963b4bd 7966 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7967 type (the parent part of the record may have dynamic fields
7968 and the way the location of _tag is expressed may depend on
7969 them). */
529cad9c 7970
1ed6ede0 7971 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7972 {
7973 struct type *real_type =
1ed6ede0
JB
7974 type_from_tag (value_tag_from_contents_and_address
7975 (fixed_record_type,
7976 valaddr,
7977 address));
5b4ee69b 7978
76a01679 7979 if (real_type != NULL)
1ed6ede0 7980 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7981 }
4af88198
JB
7982
7983 /* Check to see if there is a parallel ___XVZ variable.
7984 If there is, then it provides the actual size of our type. */
7985 else if (ada_type_name (fixed_record_type) != NULL)
7986 {
0d5cff50 7987 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
7988 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7989 int xvz_found = 0;
7990 LONGEST size;
7991
88c15c34 7992 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7993 size = get_int_var_value (xvz_name, &xvz_found);
7994 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7995 {
7996 fixed_record_type = copy_type (fixed_record_type);
7997 TYPE_LENGTH (fixed_record_type) = size;
7998
7999 /* The FIXED_RECORD_TYPE may have be a stub. We have
8000 observed this when the debugging info is STABS, and
8001 apparently it is something that is hard to fix.
8002
8003 In practice, we don't need the actual type definition
8004 at all, because the presence of the XVZ variable allows us
8005 to assume that there must be a XVS type as well, which we
8006 should be able to use later, when we need the actual type
8007 definition.
8008
8009 In the meantime, pretend that the "fixed" type we are
8010 returning is NOT a stub, because this can cause trouble
8011 when using this type to create new types targeting it.
8012 Indeed, the associated creation routines often check
8013 whether the target type is a stub and will try to replace
0963b4bd 8014 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8015 might cause the new type to have the wrong size too.
8016 Consider the case of an array, for instance, where the size
8017 of the array is computed from the number of elements in
8018 our array multiplied by the size of its element. */
8019 TYPE_STUB (fixed_record_type) = 0;
8020 }
8021 }
1ed6ede0 8022 return fixed_record_type;
4c4b4cd2 8023 }
d2e4a39e 8024 case TYPE_CODE_ARRAY:
4c4b4cd2 8025 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8026 case TYPE_CODE_UNION:
8027 if (dval == NULL)
4c4b4cd2 8028 return type;
d2e4a39e 8029 else
4c4b4cd2 8030 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8031 }
14f9c5c9
AS
8032}
8033
f192137b
JB
8034/* The same as ada_to_fixed_type_1, except that it preserves the type
8035 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8036
8037 The typedef layer needs be preserved in order to differentiate between
8038 arrays and array pointers when both types are implemented using the same
8039 fat pointer. In the array pointer case, the pointer is encoded as
8040 a typedef of the pointer type. For instance, considering:
8041
8042 type String_Access is access String;
8043 S1 : String_Access := null;
8044
8045 To the debugger, S1 is defined as a typedef of type String. But
8046 to the user, it is a pointer. So if the user tries to print S1,
8047 we should not dereference the array, but print the array address
8048 instead.
8049
8050 If we didn't preserve the typedef layer, we would lose the fact that
8051 the type is to be presented as a pointer (needs de-reference before
8052 being printed). And we would also use the source-level type name. */
f192137b
JB
8053
8054struct type *
8055ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8056 CORE_ADDR address, struct value *dval, int check_tag)
8057
8058{
8059 struct type *fixed_type =
8060 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8061
96dbd2c1
JB
8062 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8063 then preserve the typedef layer.
8064
8065 Implementation note: We can only check the main-type portion of
8066 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8067 from TYPE now returns a type that has the same instance flags
8068 as TYPE. For instance, if TYPE is a "typedef const", and its
8069 target type is a "struct", then the typedef elimination will return
8070 a "const" version of the target type. See check_typedef for more
8071 details about how the typedef layer elimination is done.
8072
8073 brobecker/2010-11-19: It seems to me that the only case where it is
8074 useful to preserve the typedef layer is when dealing with fat pointers.
8075 Perhaps, we could add a check for that and preserve the typedef layer
8076 only in that situation. But this seems unecessary so far, probably
8077 because we call check_typedef/ada_check_typedef pretty much everywhere.
8078 */
f192137b 8079 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8080 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8081 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8082 return type;
8083
8084 return fixed_type;
8085}
8086
14f9c5c9 8087/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8088 TYPE0, but based on no runtime data. */
14f9c5c9 8089
d2e4a39e
AS
8090static struct type *
8091to_static_fixed_type (struct type *type0)
14f9c5c9 8092{
d2e4a39e 8093 struct type *type;
14f9c5c9
AS
8094
8095 if (type0 == NULL)
8096 return NULL;
8097
876cecd0 8098 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8099 return type0;
8100
61ee279c 8101 type0 = ada_check_typedef (type0);
d2e4a39e 8102
14f9c5c9
AS
8103 switch (TYPE_CODE (type0))
8104 {
8105 default:
8106 return type0;
8107 case TYPE_CODE_STRUCT:
8108 type = dynamic_template_type (type0);
d2e4a39e 8109 if (type != NULL)
4c4b4cd2
PH
8110 return template_to_static_fixed_type (type);
8111 else
8112 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8113 case TYPE_CODE_UNION:
8114 type = ada_find_parallel_type (type0, "___XVU");
8115 if (type != NULL)
4c4b4cd2
PH
8116 return template_to_static_fixed_type (type);
8117 else
8118 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8119 }
8120}
8121
4c4b4cd2
PH
8122/* A static approximation of TYPE with all type wrappers removed. */
8123
d2e4a39e
AS
8124static struct type *
8125static_unwrap_type (struct type *type)
14f9c5c9
AS
8126{
8127 if (ada_is_aligner_type (type))
8128 {
61ee279c 8129 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8130 if (ada_type_name (type1) == NULL)
4c4b4cd2 8131 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8132
8133 return static_unwrap_type (type1);
8134 }
d2e4a39e 8135 else
14f9c5c9 8136 {
d2e4a39e 8137 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8138
d2e4a39e 8139 if (raw_real_type == type)
4c4b4cd2 8140 return type;
14f9c5c9 8141 else
4c4b4cd2 8142 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8143 }
8144}
8145
8146/* In some cases, incomplete and private types require
4c4b4cd2 8147 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8148 type Foo;
8149 type FooP is access Foo;
8150 V: FooP;
8151 type Foo is array ...;
4c4b4cd2 8152 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8153 cross-references to such types, we instead substitute for FooP a
8154 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8155 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8156
8157/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8158 exists, otherwise TYPE. */
8159
d2e4a39e 8160struct type *
61ee279c 8161ada_check_typedef (struct type *type)
14f9c5c9 8162{
727e3d2e
JB
8163 if (type == NULL)
8164 return NULL;
8165
720d1a40
JB
8166 /* If our type is a typedef type of a fat pointer, then we're done.
8167 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8168 what allows us to distinguish between fat pointers that represent
8169 array types, and fat pointers that represent array access types
8170 (in both cases, the compiler implements them as fat pointers). */
8171 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8172 && is_thick_pntr (ada_typedef_target_type (type)))
8173 return type;
8174
14f9c5c9
AS
8175 CHECK_TYPEDEF (type);
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8177 || !TYPE_STUB (type)
14f9c5c9
AS
8178 || TYPE_TAG_NAME (type) == NULL)
8179 return type;
d2e4a39e 8180 else
14f9c5c9 8181 {
0d5cff50 8182 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8183 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8184
05e522ef
JB
8185 if (type1 == NULL)
8186 return type;
8187
8188 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8189 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8190 types, only for the typedef-to-array types). If that's the case,
8191 strip the typedef layer. */
8192 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8193 type1 = ada_check_typedef (type1);
8194
8195 return type1;
14f9c5c9
AS
8196 }
8197}
8198
8199/* A value representing the data at VALADDR/ADDRESS as described by
8200 type TYPE0, but with a standard (static-sized) type that correctly
8201 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8202 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8203 creation of struct values]. */
14f9c5c9 8204
4c4b4cd2
PH
8205static struct value *
8206ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8207 struct value *val0)
14f9c5c9 8208{
1ed6ede0 8209 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8210
14f9c5c9
AS
8211 if (type == type0 && val0 != NULL)
8212 return val0;
d2e4a39e 8213 else
4c4b4cd2
PH
8214 return value_from_contents_and_address (type, 0, address);
8215}
8216
8217/* A value representing VAL, but with a standard (static-sized) type
8218 that correctly describes it. Does not necessarily create a new
8219 value. */
8220
0c3acc09 8221struct value *
4c4b4cd2
PH
8222ada_to_fixed_value (struct value *val)
8223{
c48db5ca
JB
8224 val = unwrap_value (val);
8225 val = ada_to_fixed_value_create (value_type (val),
8226 value_address (val),
8227 val);
8228 return val;
14f9c5c9 8229}
d2e4a39e 8230\f
14f9c5c9 8231
14f9c5c9
AS
8232/* Attributes */
8233
4c4b4cd2
PH
8234/* Table mapping attribute numbers to names.
8235 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8236
d2e4a39e 8237static const char *attribute_names[] = {
14f9c5c9
AS
8238 "<?>",
8239
d2e4a39e 8240 "first",
14f9c5c9
AS
8241 "last",
8242 "length",
8243 "image",
14f9c5c9
AS
8244 "max",
8245 "min",
4c4b4cd2
PH
8246 "modulus",
8247 "pos",
8248 "size",
8249 "tag",
14f9c5c9 8250 "val",
14f9c5c9
AS
8251 0
8252};
8253
d2e4a39e 8254const char *
4c4b4cd2 8255ada_attribute_name (enum exp_opcode n)
14f9c5c9 8256{
4c4b4cd2
PH
8257 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8258 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8259 else
8260 return attribute_names[0];
8261}
8262
4c4b4cd2 8263/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8264
4c4b4cd2
PH
8265static LONGEST
8266pos_atr (struct value *arg)
14f9c5c9 8267{
24209737
PH
8268 struct value *val = coerce_ref (arg);
8269 struct type *type = value_type (val);
14f9c5c9 8270
d2e4a39e 8271 if (!discrete_type_p (type))
323e0a4a 8272 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8273
8274 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8275 {
8276 int i;
24209737 8277 LONGEST v = value_as_long (val);
14f9c5c9 8278
d2e4a39e 8279 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8280 {
14e75d8e 8281 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8282 return i;
8283 }
323e0a4a 8284 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8285 }
8286 else
24209737 8287 return value_as_long (val);
4c4b4cd2
PH
8288}
8289
8290static struct value *
3cb382c9 8291value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8292{
3cb382c9 8293 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8294}
8295
4c4b4cd2 8296/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8297
d2e4a39e
AS
8298static struct value *
8299value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8300{
d2e4a39e 8301 if (!discrete_type_p (type))
323e0a4a 8302 error (_("'VAL only defined on discrete types"));
df407dfe 8303 if (!integer_type_p (value_type (arg)))
323e0a4a 8304 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8305
8306 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8307 {
8308 long pos = value_as_long (arg);
5b4ee69b 8309
14f9c5c9 8310 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8311 error (_("argument to 'VAL out of range"));
14e75d8e 8312 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8313 }
8314 else
8315 return value_from_longest (type, value_as_long (arg));
8316}
14f9c5c9 8317\f
d2e4a39e 8318
4c4b4cd2 8319 /* Evaluation */
14f9c5c9 8320
4c4b4cd2
PH
8321/* True if TYPE appears to be an Ada character type.
8322 [At the moment, this is true only for Character and Wide_Character;
8323 It is a heuristic test that could stand improvement]. */
14f9c5c9 8324
d2e4a39e
AS
8325int
8326ada_is_character_type (struct type *type)
14f9c5c9 8327{
7b9f71f2
JB
8328 const char *name;
8329
8330 /* If the type code says it's a character, then assume it really is,
8331 and don't check any further. */
8332 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8333 return 1;
8334
8335 /* Otherwise, assume it's a character type iff it is a discrete type
8336 with a known character type name. */
8337 name = ada_type_name (type);
8338 return (name != NULL
8339 && (TYPE_CODE (type) == TYPE_CODE_INT
8340 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8341 && (strcmp (name, "character") == 0
8342 || strcmp (name, "wide_character") == 0
5a517ebd 8343 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8344 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8345}
8346
4c4b4cd2 8347/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8348
8349int
ebf56fd3 8350ada_is_string_type (struct type *type)
14f9c5c9 8351{
61ee279c 8352 type = ada_check_typedef (type);
d2e4a39e 8353 if (type != NULL
14f9c5c9 8354 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8355 && (ada_is_simple_array_type (type)
8356 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8357 && ada_array_arity (type) == 1)
8358 {
8359 struct type *elttype = ada_array_element_type (type, 1);
8360
8361 return ada_is_character_type (elttype);
8362 }
d2e4a39e 8363 else
14f9c5c9
AS
8364 return 0;
8365}
8366
5bf03f13
JB
8367/* The compiler sometimes provides a parallel XVS type for a given
8368 PAD type. Normally, it is safe to follow the PAD type directly,
8369 but older versions of the compiler have a bug that causes the offset
8370 of its "F" field to be wrong. Following that field in that case
8371 would lead to incorrect results, but this can be worked around
8372 by ignoring the PAD type and using the associated XVS type instead.
8373
8374 Set to True if the debugger should trust the contents of PAD types.
8375 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8376static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8377
8378/* True if TYPE is a struct type introduced by the compiler to force the
8379 alignment of a value. Such types have a single field with a
4c4b4cd2 8380 distinctive name. */
14f9c5c9
AS
8381
8382int
ebf56fd3 8383ada_is_aligner_type (struct type *type)
14f9c5c9 8384{
61ee279c 8385 type = ada_check_typedef (type);
714e53ab 8386
5bf03f13 8387 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8388 return 0;
8389
14f9c5c9 8390 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8391 && TYPE_NFIELDS (type) == 1
8392 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8393}
8394
8395/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8396 the parallel type. */
14f9c5c9 8397
d2e4a39e
AS
8398struct type *
8399ada_get_base_type (struct type *raw_type)
14f9c5c9 8400{
d2e4a39e
AS
8401 struct type *real_type_namer;
8402 struct type *raw_real_type;
14f9c5c9
AS
8403
8404 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8405 return raw_type;
8406
284614f0
JB
8407 if (ada_is_aligner_type (raw_type))
8408 /* The encoding specifies that we should always use the aligner type.
8409 So, even if this aligner type has an associated XVS type, we should
8410 simply ignore it.
8411
8412 According to the compiler gurus, an XVS type parallel to an aligner
8413 type may exist because of a stabs limitation. In stabs, aligner
8414 types are empty because the field has a variable-sized type, and
8415 thus cannot actually be used as an aligner type. As a result,
8416 we need the associated parallel XVS type to decode the type.
8417 Since the policy in the compiler is to not change the internal
8418 representation based on the debugging info format, we sometimes
8419 end up having a redundant XVS type parallel to the aligner type. */
8420 return raw_type;
8421
14f9c5c9 8422 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8423 if (real_type_namer == NULL
14f9c5c9
AS
8424 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8425 || TYPE_NFIELDS (real_type_namer) != 1)
8426 return raw_type;
8427
f80d3ff2
JB
8428 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8429 {
8430 /* This is an older encoding form where the base type needs to be
8431 looked up by name. We prefer the newer enconding because it is
8432 more efficient. */
8433 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8434 if (raw_real_type == NULL)
8435 return raw_type;
8436 else
8437 return raw_real_type;
8438 }
8439
8440 /* The field in our XVS type is a reference to the base type. */
8441 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8442}
14f9c5c9 8443
4c4b4cd2 8444/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8445
d2e4a39e
AS
8446struct type *
8447ada_aligned_type (struct type *type)
14f9c5c9
AS
8448{
8449 if (ada_is_aligner_type (type))
8450 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8451 else
8452 return ada_get_base_type (type);
8453}
8454
8455
8456/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8457 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8458
fc1a4b47
AC
8459const gdb_byte *
8460ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8461{
d2e4a39e 8462 if (ada_is_aligner_type (type))
14f9c5c9 8463 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8464 valaddr +
8465 TYPE_FIELD_BITPOS (type,
8466 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8467 else
8468 return valaddr;
8469}
8470
4c4b4cd2
PH
8471
8472
14f9c5c9 8473/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8474 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8475const char *
8476ada_enum_name (const char *name)
14f9c5c9 8477{
4c4b4cd2
PH
8478 static char *result;
8479 static size_t result_len = 0;
d2e4a39e 8480 char *tmp;
14f9c5c9 8481
4c4b4cd2
PH
8482 /* First, unqualify the enumeration name:
8483 1. Search for the last '.' character. If we find one, then skip
177b42fe 8484 all the preceding characters, the unqualified name starts
76a01679 8485 right after that dot.
4c4b4cd2 8486 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8487 translates dots into "__". Search forward for double underscores,
8488 but stop searching when we hit an overloading suffix, which is
8489 of the form "__" followed by digits. */
4c4b4cd2 8490
c3e5cd34
PH
8491 tmp = strrchr (name, '.');
8492 if (tmp != NULL)
4c4b4cd2
PH
8493 name = tmp + 1;
8494 else
14f9c5c9 8495 {
4c4b4cd2
PH
8496 while ((tmp = strstr (name, "__")) != NULL)
8497 {
8498 if (isdigit (tmp[2]))
8499 break;
8500 else
8501 name = tmp + 2;
8502 }
14f9c5c9
AS
8503 }
8504
8505 if (name[0] == 'Q')
8506 {
14f9c5c9 8507 int v;
5b4ee69b 8508
14f9c5c9 8509 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8510 {
8511 if (sscanf (name + 2, "%x", &v) != 1)
8512 return name;
8513 }
14f9c5c9 8514 else
4c4b4cd2 8515 return name;
14f9c5c9 8516
4c4b4cd2 8517 GROW_VECT (result, result_len, 16);
14f9c5c9 8518 if (isascii (v) && isprint (v))
88c15c34 8519 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8520 else if (name[1] == 'U')
88c15c34 8521 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8522 else
88c15c34 8523 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8524
8525 return result;
8526 }
d2e4a39e 8527 else
4c4b4cd2 8528 {
c3e5cd34
PH
8529 tmp = strstr (name, "__");
8530 if (tmp == NULL)
8531 tmp = strstr (name, "$");
8532 if (tmp != NULL)
4c4b4cd2
PH
8533 {
8534 GROW_VECT (result, result_len, tmp - name + 1);
8535 strncpy (result, name, tmp - name);
8536 result[tmp - name] = '\0';
8537 return result;
8538 }
8539
8540 return name;
8541 }
14f9c5c9
AS
8542}
8543
14f9c5c9
AS
8544/* Evaluate the subexpression of EXP starting at *POS as for
8545 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8546 expression. */
14f9c5c9 8547
d2e4a39e
AS
8548static struct value *
8549evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8550{
4b27a620 8551 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8552}
8553
8554/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8555 value it wraps. */
14f9c5c9 8556
d2e4a39e
AS
8557static struct value *
8558unwrap_value (struct value *val)
14f9c5c9 8559{
df407dfe 8560 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8561
14f9c5c9
AS
8562 if (ada_is_aligner_type (type))
8563 {
de4d072f 8564 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8565 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8566
14f9c5c9 8567 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8568 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8569
8570 return unwrap_value (v);
8571 }
d2e4a39e 8572 else
14f9c5c9 8573 {
d2e4a39e 8574 struct type *raw_real_type =
61ee279c 8575 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8576
5bf03f13
JB
8577 /* If there is no parallel XVS or XVE type, then the value is
8578 already unwrapped. Return it without further modification. */
8579 if ((type == raw_real_type)
8580 && ada_find_parallel_type (type, "___XVE") == NULL)
8581 return val;
14f9c5c9 8582
d2e4a39e 8583 return
4c4b4cd2
PH
8584 coerce_unspec_val_to_type
8585 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8586 value_address (val),
1ed6ede0 8587 NULL, 1));
14f9c5c9
AS
8588 }
8589}
d2e4a39e
AS
8590
8591static struct value *
8592cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8593{
8594 LONGEST val;
8595
df407dfe 8596 if (type == value_type (arg))
14f9c5c9 8597 return arg;
df407dfe 8598 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8599 val = ada_float_to_fixed (type,
df407dfe 8600 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8601 value_as_long (arg)));
d2e4a39e 8602 else
14f9c5c9 8603 {
a53b7a21 8604 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8605
14f9c5c9
AS
8606 val = ada_float_to_fixed (type, argd);
8607 }
8608
8609 return value_from_longest (type, val);
8610}
8611
d2e4a39e 8612static struct value *
a53b7a21 8613cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8614{
df407dfe 8615 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8616 value_as_long (arg));
5b4ee69b 8617
a53b7a21 8618 return value_from_double (type, val);
14f9c5c9
AS
8619}
8620
4c4b4cd2
PH
8621/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8622 return the converted value. */
8623
d2e4a39e
AS
8624static struct value *
8625coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8626{
df407dfe 8627 struct type *type2 = value_type (val);
5b4ee69b 8628
14f9c5c9
AS
8629 if (type == type2)
8630 return val;
8631
61ee279c
PH
8632 type2 = ada_check_typedef (type2);
8633 type = ada_check_typedef (type);
14f9c5c9 8634
d2e4a39e
AS
8635 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8636 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8637 {
8638 val = ada_value_ind (val);
df407dfe 8639 type2 = value_type (val);
14f9c5c9
AS
8640 }
8641
d2e4a39e 8642 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8643 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8644 {
8645 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8646 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8647 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8648 error (_("Incompatible types in assignment"));
04624583 8649 deprecated_set_value_type (val, type);
14f9c5c9 8650 }
d2e4a39e 8651 return val;
14f9c5c9
AS
8652}
8653
4c4b4cd2
PH
8654static struct value *
8655ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8656{
8657 struct value *val;
8658 struct type *type1, *type2;
8659 LONGEST v, v1, v2;
8660
994b9211
AC
8661 arg1 = coerce_ref (arg1);
8662 arg2 = coerce_ref (arg2);
18af8284
JB
8663 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8664 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8665
76a01679
JB
8666 if (TYPE_CODE (type1) != TYPE_CODE_INT
8667 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8668 return value_binop (arg1, arg2, op);
8669
76a01679 8670 switch (op)
4c4b4cd2
PH
8671 {
8672 case BINOP_MOD:
8673 case BINOP_DIV:
8674 case BINOP_REM:
8675 break;
8676 default:
8677 return value_binop (arg1, arg2, op);
8678 }
8679
8680 v2 = value_as_long (arg2);
8681 if (v2 == 0)
323e0a4a 8682 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8683
8684 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8685 return value_binop (arg1, arg2, op);
8686
8687 v1 = value_as_long (arg1);
8688 switch (op)
8689 {
8690 case BINOP_DIV:
8691 v = v1 / v2;
76a01679
JB
8692 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8693 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8694 break;
8695 case BINOP_REM:
8696 v = v1 % v2;
76a01679
JB
8697 if (v * v1 < 0)
8698 v -= v2;
4c4b4cd2
PH
8699 break;
8700 default:
8701 /* Should not reach this point. */
8702 v = 0;
8703 }
8704
8705 val = allocate_value (type1);
990a07ab 8706 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8707 TYPE_LENGTH (value_type (val)),
8708 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8709 return val;
8710}
8711
8712static int
8713ada_value_equal (struct value *arg1, struct value *arg2)
8714{
df407dfe
AC
8715 if (ada_is_direct_array_type (value_type (arg1))
8716 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8717 {
f58b38bf
JB
8718 /* Automatically dereference any array reference before
8719 we attempt to perform the comparison. */
8720 arg1 = ada_coerce_ref (arg1);
8721 arg2 = ada_coerce_ref (arg2);
8722
4c4b4cd2
PH
8723 arg1 = ada_coerce_to_simple_array (arg1);
8724 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8725 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8726 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8727 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8728 /* FIXME: The following works only for types whose
76a01679
JB
8729 representations use all bits (no padding or undefined bits)
8730 and do not have user-defined equality. */
8731 return
df407dfe 8732 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8733 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8734 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8735 }
8736 return value_equal (arg1, arg2);
8737}
8738
52ce6436
PH
8739/* Total number of component associations in the aggregate starting at
8740 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8741 OP_AGGREGATE. */
52ce6436
PH
8742
8743static int
8744num_component_specs (struct expression *exp, int pc)
8745{
8746 int n, m, i;
5b4ee69b 8747
52ce6436
PH
8748 m = exp->elts[pc + 1].longconst;
8749 pc += 3;
8750 n = 0;
8751 for (i = 0; i < m; i += 1)
8752 {
8753 switch (exp->elts[pc].opcode)
8754 {
8755 default:
8756 n += 1;
8757 break;
8758 case OP_CHOICES:
8759 n += exp->elts[pc + 1].longconst;
8760 break;
8761 }
8762 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8763 }
8764 return n;
8765}
8766
8767/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8768 component of LHS (a simple array or a record), updating *POS past
8769 the expression, assuming that LHS is contained in CONTAINER. Does
8770 not modify the inferior's memory, nor does it modify LHS (unless
8771 LHS == CONTAINER). */
8772
8773static void
8774assign_component (struct value *container, struct value *lhs, LONGEST index,
8775 struct expression *exp, int *pos)
8776{
8777 struct value *mark = value_mark ();
8778 struct value *elt;
5b4ee69b 8779
52ce6436
PH
8780 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8781 {
22601c15
UW
8782 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8783 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8784
52ce6436
PH
8785 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8786 }
8787 else
8788 {
8789 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8790 elt = ada_to_fixed_value (elt);
52ce6436
PH
8791 }
8792
8793 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8794 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8795 else
8796 value_assign_to_component (container, elt,
8797 ada_evaluate_subexp (NULL, exp, pos,
8798 EVAL_NORMAL));
8799
8800 value_free_to_mark (mark);
8801}
8802
8803/* Assuming that LHS represents an lvalue having a record or array
8804 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8805 of that aggregate's value to LHS, advancing *POS past the
8806 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8807 lvalue containing LHS (possibly LHS itself). Does not modify
8808 the inferior's memory, nor does it modify the contents of
0963b4bd 8809 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8810
8811static struct value *
8812assign_aggregate (struct value *container,
8813 struct value *lhs, struct expression *exp,
8814 int *pos, enum noside noside)
8815{
8816 struct type *lhs_type;
8817 int n = exp->elts[*pos+1].longconst;
8818 LONGEST low_index, high_index;
8819 int num_specs;
8820 LONGEST *indices;
8821 int max_indices, num_indices;
8822 int is_array_aggregate;
8823 int i;
52ce6436
PH
8824
8825 *pos += 3;
8826 if (noside != EVAL_NORMAL)
8827 {
52ce6436
PH
8828 for (i = 0; i < n; i += 1)
8829 ada_evaluate_subexp (NULL, exp, pos, noside);
8830 return container;
8831 }
8832
8833 container = ada_coerce_ref (container);
8834 if (ada_is_direct_array_type (value_type (container)))
8835 container = ada_coerce_to_simple_array (container);
8836 lhs = ada_coerce_ref (lhs);
8837 if (!deprecated_value_modifiable (lhs))
8838 error (_("Left operand of assignment is not a modifiable lvalue."));
8839
8840 lhs_type = value_type (lhs);
8841 if (ada_is_direct_array_type (lhs_type))
8842 {
8843 lhs = ada_coerce_to_simple_array (lhs);
8844 lhs_type = value_type (lhs);
8845 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8846 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8847 is_array_aggregate = 1;
8848 }
8849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8850 {
8851 low_index = 0;
8852 high_index = num_visible_fields (lhs_type) - 1;
8853 is_array_aggregate = 0;
8854 }
8855 else
8856 error (_("Left-hand side must be array or record."));
8857
8858 num_specs = num_component_specs (exp, *pos - 3);
8859 max_indices = 4 * num_specs + 4;
8860 indices = alloca (max_indices * sizeof (indices[0]));
8861 indices[0] = indices[1] = low_index - 1;
8862 indices[2] = indices[3] = high_index + 1;
8863 num_indices = 4;
8864
8865 for (i = 0; i < n; i += 1)
8866 {
8867 switch (exp->elts[*pos].opcode)
8868 {
1fbf5ada
JB
8869 case OP_CHOICES:
8870 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8871 &num_indices, max_indices,
8872 low_index, high_index);
8873 break;
8874 case OP_POSITIONAL:
8875 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8876 &num_indices, max_indices,
8877 low_index, high_index);
1fbf5ada
JB
8878 break;
8879 case OP_OTHERS:
8880 if (i != n-1)
8881 error (_("Misplaced 'others' clause"));
8882 aggregate_assign_others (container, lhs, exp, pos, indices,
8883 num_indices, low_index, high_index);
8884 break;
8885 default:
8886 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8887 }
8888 }
8889
8890 return container;
8891}
8892
8893/* Assign into the component of LHS indexed by the OP_POSITIONAL
8894 construct at *POS, updating *POS past the construct, given that
8895 the positions are relative to lower bound LOW, where HIGH is the
8896 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8897 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8898 assign_aggregate. */
52ce6436
PH
8899static void
8900aggregate_assign_positional (struct value *container,
8901 struct value *lhs, struct expression *exp,
8902 int *pos, LONGEST *indices, int *num_indices,
8903 int max_indices, LONGEST low, LONGEST high)
8904{
8905 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8906
8907 if (ind - 1 == high)
e1d5a0d2 8908 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8909 if (ind <= high)
8910 {
8911 add_component_interval (ind, ind, indices, num_indices, max_indices);
8912 *pos += 3;
8913 assign_component (container, lhs, ind, exp, pos);
8914 }
8915 else
8916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8917}
8918
8919/* Assign into the components of LHS indexed by the OP_CHOICES
8920 construct at *POS, updating *POS past the construct, given that
8921 the allowable indices are LOW..HIGH. Record the indices assigned
8922 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8923 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8924static void
8925aggregate_assign_from_choices (struct value *container,
8926 struct value *lhs, struct expression *exp,
8927 int *pos, LONGEST *indices, int *num_indices,
8928 int max_indices, LONGEST low, LONGEST high)
8929{
8930 int j;
8931 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8932 int choice_pos, expr_pc;
8933 int is_array = ada_is_direct_array_type (value_type (lhs));
8934
8935 choice_pos = *pos += 3;
8936
8937 for (j = 0; j < n_choices; j += 1)
8938 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8939 expr_pc = *pos;
8940 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8941
8942 for (j = 0; j < n_choices; j += 1)
8943 {
8944 LONGEST lower, upper;
8945 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8946
52ce6436
PH
8947 if (op == OP_DISCRETE_RANGE)
8948 {
8949 choice_pos += 1;
8950 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8951 EVAL_NORMAL));
8952 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8953 EVAL_NORMAL));
8954 }
8955 else if (is_array)
8956 {
8957 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8958 EVAL_NORMAL));
8959 upper = lower;
8960 }
8961 else
8962 {
8963 int ind;
0d5cff50 8964 const char *name;
5b4ee69b 8965
52ce6436
PH
8966 switch (op)
8967 {
8968 case OP_NAME:
8969 name = &exp->elts[choice_pos + 2].string;
8970 break;
8971 case OP_VAR_VALUE:
8972 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8973 break;
8974 default:
8975 error (_("Invalid record component association."));
8976 }
8977 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8978 ind = 0;
8979 if (! find_struct_field (name, value_type (lhs), 0,
8980 NULL, NULL, NULL, NULL, &ind))
8981 error (_("Unknown component name: %s."), name);
8982 lower = upper = ind;
8983 }
8984
8985 if (lower <= upper && (lower < low || upper > high))
8986 error (_("Index in component association out of bounds."));
8987
8988 add_component_interval (lower, upper, indices, num_indices,
8989 max_indices);
8990 while (lower <= upper)
8991 {
8992 int pos1;
5b4ee69b 8993
52ce6436
PH
8994 pos1 = expr_pc;
8995 assign_component (container, lhs, lower, exp, &pos1);
8996 lower += 1;
8997 }
8998 }
8999}
9000
9001/* Assign the value of the expression in the OP_OTHERS construct in
9002 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9003 have not been previously assigned. The index intervals already assigned
9004 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9005 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9006static void
9007aggregate_assign_others (struct value *container,
9008 struct value *lhs, struct expression *exp,
9009 int *pos, LONGEST *indices, int num_indices,
9010 LONGEST low, LONGEST high)
9011{
9012 int i;
5ce64950 9013 int expr_pc = *pos + 1;
52ce6436
PH
9014
9015 for (i = 0; i < num_indices - 2; i += 2)
9016 {
9017 LONGEST ind;
5b4ee69b 9018
52ce6436
PH
9019 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9020 {
5ce64950 9021 int localpos;
5b4ee69b 9022
5ce64950
MS
9023 localpos = expr_pc;
9024 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9025 }
9026 }
9027 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9028}
9029
9030/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9031 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9032 modifying *SIZE as needed. It is an error if *SIZE exceeds
9033 MAX_SIZE. The resulting intervals do not overlap. */
9034static void
9035add_component_interval (LONGEST low, LONGEST high,
9036 LONGEST* indices, int *size, int max_size)
9037{
9038 int i, j;
5b4ee69b 9039
52ce6436
PH
9040 for (i = 0; i < *size; i += 2) {
9041 if (high >= indices[i] && low <= indices[i + 1])
9042 {
9043 int kh;
5b4ee69b 9044
52ce6436
PH
9045 for (kh = i + 2; kh < *size; kh += 2)
9046 if (high < indices[kh])
9047 break;
9048 if (low < indices[i])
9049 indices[i] = low;
9050 indices[i + 1] = indices[kh - 1];
9051 if (high > indices[i + 1])
9052 indices[i + 1] = high;
9053 memcpy (indices + i + 2, indices + kh, *size - kh);
9054 *size -= kh - i - 2;
9055 return;
9056 }
9057 else if (high < indices[i])
9058 break;
9059 }
9060
9061 if (*size == max_size)
9062 error (_("Internal error: miscounted aggregate components."));
9063 *size += 2;
9064 for (j = *size-1; j >= i+2; j -= 1)
9065 indices[j] = indices[j - 2];
9066 indices[i] = low;
9067 indices[i + 1] = high;
9068}
9069
6e48bd2c
JB
9070/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9071 is different. */
9072
9073static struct value *
9074ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9075{
9076 if (type == ada_check_typedef (value_type (arg2)))
9077 return arg2;
9078
9079 if (ada_is_fixed_point_type (type))
9080 return (cast_to_fixed (type, arg2));
9081
9082 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9083 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9084
9085 return value_cast (type, arg2);
9086}
9087
284614f0
JB
9088/* Evaluating Ada expressions, and printing their result.
9089 ------------------------------------------------------
9090
21649b50
JB
9091 1. Introduction:
9092 ----------------
9093
284614f0
JB
9094 We usually evaluate an Ada expression in order to print its value.
9095 We also evaluate an expression in order to print its type, which
9096 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9097 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9098 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9099 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9100 similar.
9101
9102 Evaluating expressions is a little more complicated for Ada entities
9103 than it is for entities in languages such as C. The main reason for
9104 this is that Ada provides types whose definition might be dynamic.
9105 One example of such types is variant records. Or another example
9106 would be an array whose bounds can only be known at run time.
9107
9108 The following description is a general guide as to what should be
9109 done (and what should NOT be done) in order to evaluate an expression
9110 involving such types, and when. This does not cover how the semantic
9111 information is encoded by GNAT as this is covered separatly. For the
9112 document used as the reference for the GNAT encoding, see exp_dbug.ads
9113 in the GNAT sources.
9114
9115 Ideally, we should embed each part of this description next to its
9116 associated code. Unfortunately, the amount of code is so vast right
9117 now that it's hard to see whether the code handling a particular
9118 situation might be duplicated or not. One day, when the code is
9119 cleaned up, this guide might become redundant with the comments
9120 inserted in the code, and we might want to remove it.
9121
21649b50
JB
9122 2. ``Fixing'' an Entity, the Simple Case:
9123 -----------------------------------------
9124
284614f0
JB
9125 When evaluating Ada expressions, the tricky issue is that they may
9126 reference entities whose type contents and size are not statically
9127 known. Consider for instance a variant record:
9128
9129 type Rec (Empty : Boolean := True) is record
9130 case Empty is
9131 when True => null;
9132 when False => Value : Integer;
9133 end case;
9134 end record;
9135 Yes : Rec := (Empty => False, Value => 1);
9136 No : Rec := (empty => True);
9137
9138 The size and contents of that record depends on the value of the
9139 descriminant (Rec.Empty). At this point, neither the debugging
9140 information nor the associated type structure in GDB are able to
9141 express such dynamic types. So what the debugger does is to create
9142 "fixed" versions of the type that applies to the specific object.
9143 We also informally refer to this opperation as "fixing" an object,
9144 which means creating its associated fixed type.
9145
9146 Example: when printing the value of variable "Yes" above, its fixed
9147 type would look like this:
9148
9149 type Rec is record
9150 Empty : Boolean;
9151 Value : Integer;
9152 end record;
9153
9154 On the other hand, if we printed the value of "No", its fixed type
9155 would become:
9156
9157 type Rec is record
9158 Empty : Boolean;
9159 end record;
9160
9161 Things become a little more complicated when trying to fix an entity
9162 with a dynamic type that directly contains another dynamic type,
9163 such as an array of variant records, for instance. There are
9164 two possible cases: Arrays, and records.
9165
21649b50
JB
9166 3. ``Fixing'' Arrays:
9167 ---------------------
9168
9169 The type structure in GDB describes an array in terms of its bounds,
9170 and the type of its elements. By design, all elements in the array
9171 have the same type and we cannot represent an array of variant elements
9172 using the current type structure in GDB. When fixing an array,
9173 we cannot fix the array element, as we would potentially need one
9174 fixed type per element of the array. As a result, the best we can do
9175 when fixing an array is to produce an array whose bounds and size
9176 are correct (allowing us to read it from memory), but without having
9177 touched its element type. Fixing each element will be done later,
9178 when (if) necessary.
9179
9180 Arrays are a little simpler to handle than records, because the same
9181 amount of memory is allocated for each element of the array, even if
1b536f04 9182 the amount of space actually used by each element differs from element
21649b50 9183 to element. Consider for instance the following array of type Rec:
284614f0
JB
9184
9185 type Rec_Array is array (1 .. 2) of Rec;
9186
1b536f04
JB
9187 The actual amount of memory occupied by each element might be different
9188 from element to element, depending on the value of their discriminant.
21649b50 9189 But the amount of space reserved for each element in the array remains
1b536f04 9190 fixed regardless. So we simply need to compute that size using
21649b50
JB
9191 the debugging information available, from which we can then determine
9192 the array size (we multiply the number of elements of the array by
9193 the size of each element).
9194
9195 The simplest case is when we have an array of a constrained element
9196 type. For instance, consider the following type declarations:
9197
9198 type Bounded_String (Max_Size : Integer) is
9199 Length : Integer;
9200 Buffer : String (1 .. Max_Size);
9201 end record;
9202 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9203
9204 In this case, the compiler describes the array as an array of
9205 variable-size elements (identified by its XVS suffix) for which
9206 the size can be read in the parallel XVZ variable.
9207
9208 In the case of an array of an unconstrained element type, the compiler
9209 wraps the array element inside a private PAD type. This type should not
9210 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9211 that we also use the adjective "aligner" in our code to designate
9212 these wrapper types.
9213
1b536f04 9214 In some cases, the size allocated for each element is statically
21649b50
JB
9215 known. In that case, the PAD type already has the correct size,
9216 and the array element should remain unfixed.
9217
9218 But there are cases when this size is not statically known.
9219 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9220
9221 type Dynamic is array (1 .. Five) of Integer;
9222 type Wrapper (Has_Length : Boolean := False) is record
9223 Data : Dynamic;
9224 case Has_Length is
9225 when True => Length : Integer;
9226 when False => null;
9227 end case;
9228 end record;
9229 type Wrapper_Array is array (1 .. 2) of Wrapper;
9230
9231 Hello : Wrapper_Array := (others => (Has_Length => True,
9232 Data => (others => 17),
9233 Length => 1));
9234
9235
9236 The debugging info would describe variable Hello as being an
9237 array of a PAD type. The size of that PAD type is not statically
9238 known, but can be determined using a parallel XVZ variable.
9239 In that case, a copy of the PAD type with the correct size should
9240 be used for the fixed array.
9241
21649b50
JB
9242 3. ``Fixing'' record type objects:
9243 ----------------------------------
9244
9245 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9246 record types. In this case, in order to compute the associated
9247 fixed type, we need to determine the size and offset of each of
9248 its components. This, in turn, requires us to compute the fixed
9249 type of each of these components.
9250
9251 Consider for instance the example:
9252
9253 type Bounded_String (Max_Size : Natural) is record
9254 Str : String (1 .. Max_Size);
9255 Length : Natural;
9256 end record;
9257 My_String : Bounded_String (Max_Size => 10);
9258
9259 In that case, the position of field "Length" depends on the size
9260 of field Str, which itself depends on the value of the Max_Size
21649b50 9261 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9262 we need to fix the type of field Str. Therefore, fixing a variant
9263 record requires us to fix each of its components.
9264
9265 However, if a component does not have a dynamic size, the component
9266 should not be fixed. In particular, fields that use a PAD type
9267 should not fixed. Here is an example where this might happen
9268 (assuming type Rec above):
9269
9270 type Container (Big : Boolean) is record
9271 First : Rec;
9272 After : Integer;
9273 case Big is
9274 when True => Another : Integer;
9275 when False => null;
9276 end case;
9277 end record;
9278 My_Container : Container := (Big => False,
9279 First => (Empty => True),
9280 After => 42);
9281
9282 In that example, the compiler creates a PAD type for component First,
9283 whose size is constant, and then positions the component After just
9284 right after it. The offset of component After is therefore constant
9285 in this case.
9286
9287 The debugger computes the position of each field based on an algorithm
9288 that uses, among other things, the actual position and size of the field
21649b50
JB
9289 preceding it. Let's now imagine that the user is trying to print
9290 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9291 end up computing the offset of field After based on the size of the
9292 fixed version of field First. And since in our example First has
9293 only one actual field, the size of the fixed type is actually smaller
9294 than the amount of space allocated to that field, and thus we would
9295 compute the wrong offset of field After.
9296
21649b50
JB
9297 To make things more complicated, we need to watch out for dynamic
9298 components of variant records (identified by the ___XVL suffix in
9299 the component name). Even if the target type is a PAD type, the size
9300 of that type might not be statically known. So the PAD type needs
9301 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9302 we might end up with the wrong size for our component. This can be
9303 observed with the following type declarations:
284614f0
JB
9304
9305 type Octal is new Integer range 0 .. 7;
9306 type Octal_Array is array (Positive range <>) of Octal;
9307 pragma Pack (Octal_Array);
9308
9309 type Octal_Buffer (Size : Positive) is record
9310 Buffer : Octal_Array (1 .. Size);
9311 Length : Integer;
9312 end record;
9313
9314 In that case, Buffer is a PAD type whose size is unset and needs
9315 to be computed by fixing the unwrapped type.
9316
21649b50
JB
9317 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9318 ----------------------------------------------------------
9319
9320 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9321 thus far, be actually fixed?
9322
9323 The answer is: Only when referencing that element. For instance
9324 when selecting one component of a record, this specific component
9325 should be fixed at that point in time. Or when printing the value
9326 of a record, each component should be fixed before its value gets
9327 printed. Similarly for arrays, the element of the array should be
9328 fixed when printing each element of the array, or when extracting
9329 one element out of that array. On the other hand, fixing should
9330 not be performed on the elements when taking a slice of an array!
9331
9332 Note that one of the side-effects of miscomputing the offset and
9333 size of each field is that we end up also miscomputing the size
9334 of the containing type. This can have adverse results when computing
9335 the value of an entity. GDB fetches the value of an entity based
9336 on the size of its type, and thus a wrong size causes GDB to fetch
9337 the wrong amount of memory. In the case where the computed size is
9338 too small, GDB fetches too little data to print the value of our
9339 entiry. Results in this case as unpredicatble, as we usually read
9340 past the buffer containing the data =:-o. */
9341
9342/* Implement the evaluate_exp routine in the exp_descriptor structure
9343 for the Ada language. */
9344
52ce6436 9345static struct value *
ebf56fd3 9346ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9347 int *pos, enum noside noside)
14f9c5c9
AS
9348{
9349 enum exp_opcode op;
b5385fc0 9350 int tem;
14f9c5c9
AS
9351 int pc;
9352 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9353 struct type *type;
52ce6436 9354 int nargs, oplen;
d2e4a39e 9355 struct value **argvec;
14f9c5c9 9356
d2e4a39e
AS
9357 pc = *pos;
9358 *pos += 1;
14f9c5c9
AS
9359 op = exp->elts[pc].opcode;
9360
d2e4a39e 9361 switch (op)
14f9c5c9
AS
9362 {
9363 default:
9364 *pos -= 1;
6e48bd2c
JB
9365 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9366 arg1 = unwrap_value (arg1);
9367
9368 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9369 then we need to perform the conversion manually, because
9370 evaluate_subexp_standard doesn't do it. This conversion is
9371 necessary in Ada because the different kinds of float/fixed
9372 types in Ada have different representations.
9373
9374 Similarly, we need to perform the conversion from OP_LONG
9375 ourselves. */
9376 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9377 arg1 = ada_value_cast (expect_type, arg1, noside);
9378
9379 return arg1;
4c4b4cd2
PH
9380
9381 case OP_STRING:
9382 {
76a01679 9383 struct value *result;
5b4ee69b 9384
76a01679
JB
9385 *pos -= 1;
9386 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9387 /* The result type will have code OP_STRING, bashed there from
9388 OP_ARRAY. Bash it back. */
df407dfe
AC
9389 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9390 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9391 return result;
4c4b4cd2 9392 }
14f9c5c9
AS
9393
9394 case UNOP_CAST:
9395 (*pos) += 2;
9396 type = exp->elts[pc + 1].type;
9397 arg1 = evaluate_subexp (type, exp, pos, noside);
9398 if (noside == EVAL_SKIP)
4c4b4cd2 9399 goto nosideret;
6e48bd2c 9400 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9401 return arg1;
9402
4c4b4cd2
PH
9403 case UNOP_QUAL:
9404 (*pos) += 2;
9405 type = exp->elts[pc + 1].type;
9406 return ada_evaluate_subexp (type, exp, pos, noside);
9407
14f9c5c9
AS
9408 case BINOP_ASSIGN:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9410 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9411 {
9412 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9413 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9414 return arg1;
9415 return ada_value_assign (arg1, arg1);
9416 }
003f3813
JB
9417 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9418 except if the lhs of our assignment is a convenience variable.
9419 In the case of assigning to a convenience variable, the lhs
9420 should be exactly the result of the evaluation of the rhs. */
9421 type = value_type (arg1);
9422 if (VALUE_LVAL (arg1) == lval_internalvar)
9423 type = NULL;
9424 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9425 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9426 return arg1;
df407dfe
AC
9427 if (ada_is_fixed_point_type (value_type (arg1)))
9428 arg2 = cast_to_fixed (value_type (arg1), arg2);
9429 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9430 error
323e0a4a 9431 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9432 else
df407dfe 9433 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9434 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9435
9436 case BINOP_ADD:
9437 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9438 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9439 if (noside == EVAL_SKIP)
4c4b4cd2 9440 goto nosideret;
2ac8a782
JB
9441 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9442 return (value_from_longest
9443 (value_type (arg1),
9444 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9445 if ((ada_is_fixed_point_type (value_type (arg1))
9446 || ada_is_fixed_point_type (value_type (arg2)))
9447 && value_type (arg1) != value_type (arg2))
323e0a4a 9448 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9449 /* Do the addition, and cast the result to the type of the first
9450 argument. We cannot cast the result to a reference type, so if
9451 ARG1 is a reference type, find its underlying type. */
9452 type = value_type (arg1);
9453 while (TYPE_CODE (type) == TYPE_CODE_REF)
9454 type = TYPE_TARGET_TYPE (type);
f44316fa 9455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9456 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9457
9458 case BINOP_SUB:
9459 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9460 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9461 if (noside == EVAL_SKIP)
4c4b4cd2 9462 goto nosideret;
2ac8a782
JB
9463 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9464 return (value_from_longest
9465 (value_type (arg1),
9466 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9467 if ((ada_is_fixed_point_type (value_type (arg1))
9468 || ada_is_fixed_point_type (value_type (arg2)))
9469 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9470 error (_("Operands of fixed-point subtraction "
9471 "must have the same type"));
b7789565
JB
9472 /* Do the substraction, and cast the result to the type of the first
9473 argument. We cannot cast the result to a reference type, so if
9474 ARG1 is a reference type, find its underlying type. */
9475 type = value_type (arg1);
9476 while (TYPE_CODE (type) == TYPE_CODE_REF)
9477 type = TYPE_TARGET_TYPE (type);
f44316fa 9478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9479 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9480
9481 case BINOP_MUL:
9482 case BINOP_DIV:
e1578042
JB
9483 case BINOP_REM:
9484 case BINOP_MOD:
14f9c5c9
AS
9485 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9486 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9487 if (noside == EVAL_SKIP)
4c4b4cd2 9488 goto nosideret;
e1578042 9489 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9490 {
9491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9492 return value_zero (value_type (arg1), not_lval);
9493 }
14f9c5c9 9494 else
4c4b4cd2 9495 {
a53b7a21 9496 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9497 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9498 arg1 = cast_from_fixed (type, arg1);
df407dfe 9499 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9500 arg2 = cast_from_fixed (type, arg2);
f44316fa 9501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9502 return ada_value_binop (arg1, arg2, op);
9503 }
9504
4c4b4cd2
PH
9505 case BINOP_EQUAL:
9506 case BINOP_NOTEQUAL:
14f9c5c9 9507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9508 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9509 if (noside == EVAL_SKIP)
76a01679 9510 goto nosideret;
4c4b4cd2 9511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9512 tem = 0;
4c4b4cd2 9513 else
f44316fa
UW
9514 {
9515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9516 tem = ada_value_equal (arg1, arg2);
9517 }
4c4b4cd2 9518 if (op == BINOP_NOTEQUAL)
76a01679 9519 tem = !tem;
fbb06eb1
UW
9520 type = language_bool_type (exp->language_defn, exp->gdbarch);
9521 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9522
9523 case UNOP_NEG:
9524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9525 if (noside == EVAL_SKIP)
9526 goto nosideret;
df407dfe
AC
9527 else if (ada_is_fixed_point_type (value_type (arg1)))
9528 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9529 else
f44316fa
UW
9530 {
9531 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9532 return value_neg (arg1);
9533 }
4c4b4cd2 9534
2330c6c6
JB
9535 case BINOP_LOGICAL_AND:
9536 case BINOP_LOGICAL_OR:
9537 case UNOP_LOGICAL_NOT:
000d5124
JB
9538 {
9539 struct value *val;
9540
9541 *pos -= 1;
9542 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9543 type = language_bool_type (exp->language_defn, exp->gdbarch);
9544 return value_cast (type, val);
000d5124 9545 }
2330c6c6
JB
9546
9547 case BINOP_BITWISE_AND:
9548 case BINOP_BITWISE_IOR:
9549 case BINOP_BITWISE_XOR:
000d5124
JB
9550 {
9551 struct value *val;
9552
9553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9554 *pos = pc;
9555 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9556
9557 return value_cast (value_type (arg1), val);
9558 }
2330c6c6 9559
14f9c5c9
AS
9560 case OP_VAR_VALUE:
9561 *pos -= 1;
6799def4 9562
14f9c5c9 9563 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9564 {
9565 *pos += 4;
9566 goto nosideret;
9567 }
9568 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9569 /* Only encountered when an unresolved symbol occurs in a
9570 context other than a function call, in which case, it is
52ce6436 9571 invalid. */
323e0a4a 9572 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9573 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9574 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9575 {
0c1f74cf 9576 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9577 /* Check to see if this is a tagged type. We also need to handle
9578 the case where the type is a reference to a tagged type, but
9579 we have to be careful to exclude pointers to tagged types.
9580 The latter should be shown as usual (as a pointer), whereas
9581 a reference should mostly be transparent to the user. */
9582 if (ada_is_tagged_type (type, 0)
9583 || (TYPE_CODE(type) == TYPE_CODE_REF
9584 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9585 {
9586 /* Tagged types are a little special in the fact that the real
9587 type is dynamic and can only be determined by inspecting the
9588 object's tag. This means that we need to get the object's
9589 value first (EVAL_NORMAL) and then extract the actual object
9590 type from its tag.
9591
9592 Note that we cannot skip the final step where we extract
9593 the object type from its tag, because the EVAL_NORMAL phase
9594 results in dynamic components being resolved into fixed ones.
9595 This can cause problems when trying to print the type
9596 description of tagged types whose parent has a dynamic size:
9597 We use the type name of the "_parent" component in order
9598 to print the name of the ancestor type in the type description.
9599 If that component had a dynamic size, the resolution into
9600 a fixed type would result in the loss of that type name,
9601 thus preventing us from printing the name of the ancestor
9602 type in the type description. */
b79819ba
JB
9603 struct type *actual_type;
9604
0c1f74cf 9605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9606 actual_type = type_from_tag (ada_value_tag (arg1));
9607 if (actual_type == NULL)
9608 /* If, for some reason, we were unable to determine
9609 the actual type from the tag, then use the static
9610 approximation that we just computed as a fallback.
9611 This can happen if the debugging information is
9612 incomplete, for instance. */
9613 actual_type = type;
9614
9615 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9616 }
9617
4c4b4cd2
PH
9618 *pos += 4;
9619 return value_zero
9620 (to_static_fixed_type
9621 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9622 not_lval);
9623 }
d2e4a39e 9624 else
4c4b4cd2 9625 {
284614f0 9626 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9627 return ada_to_fixed_value (arg1);
9628 }
9629
9630 case OP_FUNCALL:
9631 (*pos) += 2;
9632
9633 /* Allocate arg vector, including space for the function to be
9634 called in argvec[0] and a terminating NULL. */
9635 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9636 argvec =
9637 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9638
9639 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9640 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9641 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9642 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9643 else
9644 {
9645 for (tem = 0; tem <= nargs; tem += 1)
9646 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 argvec[tem] = 0;
9648
9649 if (noside == EVAL_SKIP)
9650 goto nosideret;
9651 }
9652
ad82864c
JB
9653 if (ada_is_constrained_packed_array_type
9654 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9655 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9656 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9657 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9658 /* This is a packed array that has already been fixed, and
9659 therefore already coerced to a simple array. Nothing further
9660 to do. */
9661 ;
df407dfe
AC
9662 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9663 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9664 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9665 argvec[0] = value_addr (argvec[0]);
9666
df407dfe 9667 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9668
9669 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9670 them. So, if this is an array typedef (encoding use for array
9671 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9672 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9673 type = ada_typedef_target_type (type);
9674
4c4b4cd2
PH
9675 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9676 {
61ee279c 9677 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9678 {
9679 case TYPE_CODE_FUNC:
61ee279c 9680 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9681 break;
9682 case TYPE_CODE_ARRAY:
9683 break;
9684 case TYPE_CODE_STRUCT:
9685 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9686 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9687 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9688 break;
9689 default:
323e0a4a 9690 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9691 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9692 break;
9693 }
9694 }
9695
9696 switch (TYPE_CODE (type))
9697 {
9698 case TYPE_CODE_FUNC:
9699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9700 {
9701 struct type *rtype = TYPE_TARGET_TYPE (type);
9702
9703 if (TYPE_GNU_IFUNC (type))
9704 return allocate_value (TYPE_TARGET_TYPE (rtype));
9705 return allocate_value (rtype);
9706 }
4c4b4cd2 9707 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9708 case TYPE_CODE_INTERNAL_FUNCTION:
9709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9710 /* We don't know anything about what the internal
9711 function might return, but we have to return
9712 something. */
9713 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9714 not_lval);
9715 else
9716 return call_internal_function (exp->gdbarch, exp->language_defn,
9717 argvec[0], nargs, argvec + 1);
9718
4c4b4cd2
PH
9719 case TYPE_CODE_STRUCT:
9720 {
9721 int arity;
9722
4c4b4cd2
PH
9723 arity = ada_array_arity (type);
9724 type = ada_array_element_type (type, nargs);
9725 if (type == NULL)
323e0a4a 9726 error (_("cannot subscript or call a record"));
4c4b4cd2 9727 if (arity != nargs)
323e0a4a 9728 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9730 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9731 return
9732 unwrap_value (ada_value_subscript
9733 (argvec[0], nargs, argvec + 1));
9734 }
9735 case TYPE_CODE_ARRAY:
9736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9737 {
9738 type = ada_array_element_type (type, nargs);
9739 if (type == NULL)
323e0a4a 9740 error (_("element type of array unknown"));
4c4b4cd2 9741 else
0a07e705 9742 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9743 }
9744 return
9745 unwrap_value (ada_value_subscript
9746 (ada_coerce_to_simple_array (argvec[0]),
9747 nargs, argvec + 1));
9748 case TYPE_CODE_PTR: /* Pointer to array */
9749 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9751 {
9752 type = ada_array_element_type (type, nargs);
9753 if (type == NULL)
323e0a4a 9754 error (_("element type of array unknown"));
4c4b4cd2 9755 else
0a07e705 9756 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9757 }
9758 return
9759 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9760 nargs, argvec + 1));
9761
9762 default:
e1d5a0d2
PH
9763 error (_("Attempt to index or call something other than an "
9764 "array or function"));
4c4b4cd2
PH
9765 }
9766
9767 case TERNOP_SLICE:
9768 {
9769 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9770 struct value *low_bound_val =
9771 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9772 struct value *high_bound_val =
9773 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9774 LONGEST low_bound;
9775 LONGEST high_bound;
5b4ee69b 9776
994b9211
AC
9777 low_bound_val = coerce_ref (low_bound_val);
9778 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9779 low_bound = pos_atr (low_bound_val);
9780 high_bound = pos_atr (high_bound_val);
963a6417 9781
4c4b4cd2
PH
9782 if (noside == EVAL_SKIP)
9783 goto nosideret;
9784
4c4b4cd2
PH
9785 /* If this is a reference to an aligner type, then remove all
9786 the aligners. */
df407dfe
AC
9787 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9788 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9789 TYPE_TARGET_TYPE (value_type (array)) =
9790 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9791
ad82864c 9792 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9793 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9794
9795 /* If this is a reference to an array or an array lvalue,
9796 convert to a pointer. */
df407dfe
AC
9797 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9798 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9799 && VALUE_LVAL (array) == lval_memory))
9800 array = value_addr (array);
9801
1265e4aa 9802 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9803 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9804 (value_type (array))))
0b5d8877 9805 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9806
9807 array = ada_coerce_to_simple_array_ptr (array);
9808
714e53ab
PH
9809 /* If we have more than one level of pointer indirection,
9810 dereference the value until we get only one level. */
df407dfe
AC
9811 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9812 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9813 == TYPE_CODE_PTR))
9814 array = value_ind (array);
9815
9816 /* Make sure we really do have an array type before going further,
9817 to avoid a SEGV when trying to get the index type or the target
9818 type later down the road if the debug info generated by
9819 the compiler is incorrect or incomplete. */
df407dfe 9820 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9821 error (_("cannot take slice of non-array"));
714e53ab 9822
828292f2
JB
9823 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9824 == TYPE_CODE_PTR)
4c4b4cd2 9825 {
828292f2
JB
9826 struct type *type0 = ada_check_typedef (value_type (array));
9827
0b5d8877 9828 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9829 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9830 else
9831 {
9832 struct type *arr_type0 =
828292f2 9833 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9834
f5938064
JG
9835 return ada_value_slice_from_ptr (array, arr_type0,
9836 longest_to_int (low_bound),
9837 longest_to_int (high_bound));
4c4b4cd2
PH
9838 }
9839 }
9840 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9841 return array;
9842 else if (high_bound < low_bound)
df407dfe 9843 return empty_array (value_type (array), low_bound);
4c4b4cd2 9844 else
529cad9c
PH
9845 return ada_value_slice (array, longest_to_int (low_bound),
9846 longest_to_int (high_bound));
4c4b4cd2 9847 }
14f9c5c9 9848
4c4b4cd2
PH
9849 case UNOP_IN_RANGE:
9850 (*pos) += 2;
9851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9852 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9853
14f9c5c9 9854 if (noside == EVAL_SKIP)
4c4b4cd2 9855 goto nosideret;
14f9c5c9 9856
4c4b4cd2
PH
9857 switch (TYPE_CODE (type))
9858 {
9859 default:
e1d5a0d2
PH
9860 lim_warning (_("Membership test incompletely implemented; "
9861 "always returns true"));
fbb06eb1
UW
9862 type = language_bool_type (exp->language_defn, exp->gdbarch);
9863 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9864
9865 case TYPE_CODE_RANGE:
030b4912
UW
9866 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9867 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9870 type = language_bool_type (exp->language_defn, exp->gdbarch);
9871 return
9872 value_from_longest (type,
4c4b4cd2
PH
9873 (value_less (arg1, arg3)
9874 || value_equal (arg1, arg3))
9875 && (value_less (arg2, arg1)
9876 || value_equal (arg2, arg1)));
9877 }
9878
9879 case BINOP_IN_BOUNDS:
14f9c5c9 9880 (*pos) += 2;
4c4b4cd2
PH
9881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9883
4c4b4cd2
PH
9884 if (noside == EVAL_SKIP)
9885 goto nosideret;
14f9c5c9 9886
4c4b4cd2 9887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9888 {
9889 type = language_bool_type (exp->language_defn, exp->gdbarch);
9890 return value_zero (type, not_lval);
9891 }
14f9c5c9 9892
4c4b4cd2 9893 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9894
1eea4ebd
UW
9895 type = ada_index_type (value_type (arg2), tem, "range");
9896 if (!type)
9897 type = value_type (arg1);
14f9c5c9 9898
1eea4ebd
UW
9899 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9900 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9901
f44316fa
UW
9902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9904 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9905 return
fbb06eb1 9906 value_from_longest (type,
4c4b4cd2
PH
9907 (value_less (arg1, arg3)
9908 || value_equal (arg1, arg3))
9909 && (value_less (arg2, arg1)
9910 || value_equal (arg2, arg1)));
9911
9912 case TERNOP_IN_RANGE:
9913 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9914 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9916
9917 if (noside == EVAL_SKIP)
9918 goto nosideret;
9919
f44316fa
UW
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9923 return
fbb06eb1 9924 value_from_longest (type,
4c4b4cd2
PH
9925 (value_less (arg1, arg3)
9926 || value_equal (arg1, arg3))
9927 && (value_less (arg2, arg1)
9928 || value_equal (arg2, arg1)));
9929
9930 case OP_ATR_FIRST:
9931 case OP_ATR_LAST:
9932 case OP_ATR_LENGTH:
9933 {
76a01679 9934 struct type *type_arg;
5b4ee69b 9935
76a01679
JB
9936 if (exp->elts[*pos].opcode == OP_TYPE)
9937 {
9938 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9939 arg1 = NULL;
5bc23cb3 9940 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9941 }
9942 else
9943 {
9944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9945 type_arg = NULL;
9946 }
9947
9948 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9949 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9950 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9951 *pos += 4;
9952
9953 if (noside == EVAL_SKIP)
9954 goto nosideret;
9955
9956 if (type_arg == NULL)
9957 {
9958 arg1 = ada_coerce_ref (arg1);
9959
ad82864c 9960 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9961 arg1 = ada_coerce_to_simple_array (arg1);
9962
1eea4ebd
UW
9963 type = ada_index_type (value_type (arg1), tem,
9964 ada_attribute_name (op));
9965 if (type == NULL)
9966 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9967
9968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9969 return allocate_value (type);
76a01679
JB
9970
9971 switch (op)
9972 {
9973 default: /* Should never happen. */
323e0a4a 9974 error (_("unexpected attribute encountered"));
76a01679 9975 case OP_ATR_FIRST:
1eea4ebd
UW
9976 return value_from_longest
9977 (type, ada_array_bound (arg1, tem, 0));
76a01679 9978 case OP_ATR_LAST:
1eea4ebd
UW
9979 return value_from_longest
9980 (type, ada_array_bound (arg1, tem, 1));
76a01679 9981 case OP_ATR_LENGTH:
1eea4ebd
UW
9982 return value_from_longest
9983 (type, ada_array_length (arg1, tem));
76a01679
JB
9984 }
9985 }
9986 else if (discrete_type_p (type_arg))
9987 {
9988 struct type *range_type;
0d5cff50 9989 const char *name = ada_type_name (type_arg);
5b4ee69b 9990
76a01679
JB
9991 range_type = NULL;
9992 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9993 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9994 if (range_type == NULL)
9995 range_type = type_arg;
9996 switch (op)
9997 {
9998 default:
323e0a4a 9999 error (_("unexpected attribute encountered"));
76a01679 10000 case OP_ATR_FIRST:
690cc4eb 10001 return value_from_longest
43bbcdc2 10002 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10003 case OP_ATR_LAST:
690cc4eb 10004 return value_from_longest
43bbcdc2 10005 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10006 case OP_ATR_LENGTH:
323e0a4a 10007 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10008 }
10009 }
10010 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10011 error (_("unimplemented type attribute"));
76a01679
JB
10012 else
10013 {
10014 LONGEST low, high;
10015
ad82864c
JB
10016 if (ada_is_constrained_packed_array_type (type_arg))
10017 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10018
1eea4ebd 10019 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10020 if (type == NULL)
1eea4ebd
UW
10021 type = builtin_type (exp->gdbarch)->builtin_int;
10022
76a01679
JB
10023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10024 return allocate_value (type);
10025
10026 switch (op)
10027 {
10028 default:
323e0a4a 10029 error (_("unexpected attribute encountered"));
76a01679 10030 case OP_ATR_FIRST:
1eea4ebd 10031 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10032 return value_from_longest (type, low);
10033 case OP_ATR_LAST:
1eea4ebd 10034 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10035 return value_from_longest (type, high);
10036 case OP_ATR_LENGTH:
1eea4ebd
UW
10037 low = ada_array_bound_from_type (type_arg, tem, 0);
10038 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10039 return value_from_longest (type, high - low + 1);
10040 }
10041 }
14f9c5c9
AS
10042 }
10043
4c4b4cd2
PH
10044 case OP_ATR_TAG:
10045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10046 if (noside == EVAL_SKIP)
76a01679 10047 goto nosideret;
4c4b4cd2
PH
10048
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10050 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10051
10052 return ada_value_tag (arg1);
10053
10054 case OP_ATR_MIN:
10055 case OP_ATR_MAX:
10056 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10059 if (noside == EVAL_SKIP)
76a01679 10060 goto nosideret;
d2e4a39e 10061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10062 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10063 else
f44316fa
UW
10064 {
10065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10066 return value_binop (arg1, arg2,
10067 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10068 }
14f9c5c9 10069
4c4b4cd2
PH
10070 case OP_ATR_MODULUS:
10071 {
31dedfee 10072 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10073
5b4ee69b 10074 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10075 if (noside == EVAL_SKIP)
10076 goto nosideret;
4c4b4cd2 10077
76a01679 10078 if (!ada_is_modular_type (type_arg))
323e0a4a 10079 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10080
76a01679
JB
10081 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10082 ada_modulus (type_arg));
4c4b4cd2
PH
10083 }
10084
10085
10086 case OP_ATR_POS:
10087 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10089 if (noside == EVAL_SKIP)
76a01679 10090 goto nosideret;
3cb382c9
UW
10091 type = builtin_type (exp->gdbarch)->builtin_int;
10092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10093 return value_zero (type, not_lval);
14f9c5c9 10094 else
3cb382c9 10095 return value_pos_atr (type, arg1);
14f9c5c9 10096
4c4b4cd2
PH
10097 case OP_ATR_SIZE:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10099 type = value_type (arg1);
10100
10101 /* If the argument is a reference, then dereference its type, since
10102 the user is really asking for the size of the actual object,
10103 not the size of the pointer. */
10104 if (TYPE_CODE (type) == TYPE_CODE_REF)
10105 type = TYPE_TARGET_TYPE (type);
10106
4c4b4cd2 10107 if (noside == EVAL_SKIP)
76a01679 10108 goto nosideret;
4c4b4cd2 10109 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10110 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10111 else
22601c15 10112 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10113 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10114
10115 case OP_ATR_VAL:
10116 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10118 type = exp->elts[pc + 2].type;
14f9c5c9 10119 if (noside == EVAL_SKIP)
76a01679 10120 goto nosideret;
4c4b4cd2 10121 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10122 return value_zero (type, not_lval);
4c4b4cd2 10123 else
76a01679 10124 return value_val_atr (type, arg1);
4c4b4cd2
PH
10125
10126 case BINOP_EXP:
10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10128 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 if (noside == EVAL_SKIP)
10130 goto nosideret;
10131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10132 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10133 else
f44316fa
UW
10134 {
10135 /* For integer exponentiation operations,
10136 only promote the first argument. */
10137 if (is_integral_type (value_type (arg2)))
10138 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10139 else
10140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10141
10142 return value_binop (arg1, arg2, op);
10143 }
4c4b4cd2
PH
10144
10145 case UNOP_PLUS:
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 if (noside == EVAL_SKIP)
10148 goto nosideret;
10149 else
10150 return arg1;
10151
10152 case UNOP_ABS:
10153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10154 if (noside == EVAL_SKIP)
10155 goto nosideret;
f44316fa 10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10157 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10158 return value_neg (arg1);
14f9c5c9 10159 else
4c4b4cd2 10160 return arg1;
14f9c5c9
AS
10161
10162 case UNOP_IND:
6b0d7253 10163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10164 if (noside == EVAL_SKIP)
4c4b4cd2 10165 goto nosideret;
df407dfe 10166 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10168 {
10169 if (ada_is_array_descriptor_type (type))
10170 /* GDB allows dereferencing GNAT array descriptors. */
10171 {
10172 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10173
4c4b4cd2 10174 if (arrType == NULL)
323e0a4a 10175 error (_("Attempt to dereference null array pointer."));
00a4c844 10176 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10177 }
10178 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10179 || TYPE_CODE (type) == TYPE_CODE_REF
10180 /* In C you can dereference an array to get the 1st elt. */
10181 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10182 {
10183 type = to_static_fixed_type
10184 (ada_aligned_type
10185 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10186 check_size (type);
10187 return value_zero (type, lval_memory);
10188 }
4c4b4cd2 10189 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10190 {
10191 /* GDB allows dereferencing an int. */
10192 if (expect_type == NULL)
10193 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10194 lval_memory);
10195 else
10196 {
10197 expect_type =
10198 to_static_fixed_type (ada_aligned_type (expect_type));
10199 return value_zero (expect_type, lval_memory);
10200 }
10201 }
4c4b4cd2 10202 else
323e0a4a 10203 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10204 }
0963b4bd 10205 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10206 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10207
96967637
JB
10208 if (TYPE_CODE (type) == TYPE_CODE_INT)
10209 /* GDB allows dereferencing an int. If we were given
10210 the expect_type, then use that as the target type.
10211 Otherwise, assume that the target type is an int. */
10212 {
10213 if (expect_type != NULL)
10214 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10215 arg1));
10216 else
10217 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10218 (CORE_ADDR) value_as_address (arg1));
10219 }
6b0d7253 10220
4c4b4cd2
PH
10221 if (ada_is_array_descriptor_type (type))
10222 /* GDB allows dereferencing GNAT array descriptors. */
10223 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10224 else
4c4b4cd2 10225 return ada_value_ind (arg1);
14f9c5c9
AS
10226
10227 case STRUCTOP_STRUCT:
10228 tem = longest_to_int (exp->elts[pc + 1].longconst);
10229 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10231 if (noside == EVAL_SKIP)
4c4b4cd2 10232 goto nosideret;
14f9c5c9 10233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10234 {
df407dfe 10235 struct type *type1 = value_type (arg1);
5b4ee69b 10236
76a01679
JB
10237 if (ada_is_tagged_type (type1, 1))
10238 {
10239 type = ada_lookup_struct_elt_type (type1,
10240 &exp->elts[pc + 2].string,
10241 1, 1, NULL);
10242 if (type == NULL)
10243 /* In this case, we assume that the field COULD exist
10244 in some extension of the type. Return an object of
10245 "type" void, which will match any formal
0963b4bd 10246 (see ada_type_match). */
30b15541
UW
10247 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10248 lval_memory);
76a01679
JB
10249 }
10250 else
10251 type =
10252 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10253 0, NULL);
10254
10255 return value_zero (ada_aligned_type (type), lval_memory);
10256 }
14f9c5c9 10257 else
284614f0
JB
10258 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10259 arg1 = unwrap_value (arg1);
10260 return ada_to_fixed_value (arg1);
10261
14f9c5c9 10262 case OP_TYPE:
4c4b4cd2
PH
10263 /* The value is not supposed to be used. This is here to make it
10264 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10265 (*pos) += 2;
10266 if (noside == EVAL_SKIP)
4c4b4cd2 10267 goto nosideret;
14f9c5c9 10268 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10269 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10270 else
323e0a4a 10271 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10272
10273 case OP_AGGREGATE:
10274 case OP_CHOICES:
10275 case OP_OTHERS:
10276 case OP_DISCRETE_RANGE:
10277 case OP_POSITIONAL:
10278 case OP_NAME:
10279 if (noside == EVAL_NORMAL)
10280 switch (op)
10281 {
10282 case OP_NAME:
10283 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10284 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10285 case OP_AGGREGATE:
10286 error (_("Aggregates only allowed on the right of an assignment"));
10287 default:
0963b4bd
MS
10288 internal_error (__FILE__, __LINE__,
10289 _("aggregate apparently mangled"));
52ce6436
PH
10290 }
10291
10292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10293 *pos += oplen - 1;
10294 for (tem = 0; tem < nargs; tem += 1)
10295 ada_evaluate_subexp (NULL, exp, pos, noside);
10296 goto nosideret;
14f9c5c9
AS
10297 }
10298
10299nosideret:
22601c15 10300 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10301}
14f9c5c9 10302\f
d2e4a39e 10303
4c4b4cd2 10304 /* Fixed point */
14f9c5c9
AS
10305
10306/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10307 type name that encodes the 'small and 'delta information.
4c4b4cd2 10308 Otherwise, return NULL. */
14f9c5c9 10309
d2e4a39e 10310static const char *
ebf56fd3 10311fixed_type_info (struct type *type)
14f9c5c9 10312{
d2e4a39e 10313 const char *name = ada_type_name (type);
14f9c5c9
AS
10314 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10315
d2e4a39e
AS
10316 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10317 {
14f9c5c9 10318 const char *tail = strstr (name, "___XF_");
5b4ee69b 10319
14f9c5c9 10320 if (tail == NULL)
4c4b4cd2 10321 return NULL;
d2e4a39e 10322 else
4c4b4cd2 10323 return tail + 5;
14f9c5c9
AS
10324 }
10325 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10326 return fixed_type_info (TYPE_TARGET_TYPE (type));
10327 else
10328 return NULL;
10329}
10330
4c4b4cd2 10331/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10332
10333int
ebf56fd3 10334ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10335{
10336 return fixed_type_info (type) != NULL;
10337}
10338
4c4b4cd2
PH
10339/* Return non-zero iff TYPE represents a System.Address type. */
10340
10341int
10342ada_is_system_address_type (struct type *type)
10343{
10344 return (TYPE_NAME (type)
10345 && strcmp (TYPE_NAME (type), "system__address") == 0);
10346}
10347
14f9c5c9
AS
10348/* Assuming that TYPE is the representation of an Ada fixed-point
10349 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10350 delta cannot be determined. */
14f9c5c9
AS
10351
10352DOUBLEST
ebf56fd3 10353ada_delta (struct type *type)
14f9c5c9
AS
10354{
10355 const char *encoding = fixed_type_info (type);
facc390f 10356 DOUBLEST num, den;
14f9c5c9 10357
facc390f
JB
10358 /* Strictly speaking, num and den are encoded as integer. However,
10359 they may not fit into a long, and they will have to be converted
10360 to DOUBLEST anyway. So scan them as DOUBLEST. */
10361 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10362 &num, &den) < 2)
14f9c5c9 10363 return -1.0;
d2e4a39e 10364 else
facc390f 10365 return num / den;
14f9c5c9
AS
10366}
10367
10368/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10369 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10370
10371static DOUBLEST
ebf56fd3 10372scaling_factor (struct type *type)
14f9c5c9
AS
10373{
10374 const char *encoding = fixed_type_info (type);
facc390f 10375 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10376 int n;
d2e4a39e 10377
facc390f
JB
10378 /* Strictly speaking, num's and den's are encoded as integer. However,
10379 they may not fit into a long, and they will have to be converted
10380 to DOUBLEST anyway. So scan them as DOUBLEST. */
10381 n = sscanf (encoding,
10382 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10383 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10384 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10385
10386 if (n < 2)
10387 return 1.0;
10388 else if (n == 4)
facc390f 10389 return num1 / den1;
d2e4a39e 10390 else
facc390f 10391 return num0 / den0;
14f9c5c9
AS
10392}
10393
10394
10395/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10396 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10397
10398DOUBLEST
ebf56fd3 10399ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10400{
d2e4a39e 10401 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10402}
10403
4c4b4cd2
PH
10404/* The representation of a fixed-point value of type TYPE
10405 corresponding to the value X. */
14f9c5c9
AS
10406
10407LONGEST
ebf56fd3 10408ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10409{
10410 return (LONGEST) (x / scaling_factor (type) + 0.5);
10411}
10412
14f9c5c9 10413\f
d2e4a39e 10414
4c4b4cd2 10415 /* Range types */
14f9c5c9
AS
10416
10417/* Scan STR beginning at position K for a discriminant name, and
10418 return the value of that discriminant field of DVAL in *PX. If
10419 PNEW_K is not null, put the position of the character beyond the
10420 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10421 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10422
10423static int
07d8f827 10424scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10425 int *pnew_k)
14f9c5c9
AS
10426{
10427 static char *bound_buffer = NULL;
10428 static size_t bound_buffer_len = 0;
10429 char *bound;
10430 char *pend;
d2e4a39e 10431 struct value *bound_val;
14f9c5c9
AS
10432
10433 if (dval == NULL || str == NULL || str[k] == '\0')
10434 return 0;
10435
d2e4a39e 10436 pend = strstr (str + k, "__");
14f9c5c9
AS
10437 if (pend == NULL)
10438 {
d2e4a39e 10439 bound = str + k;
14f9c5c9
AS
10440 k += strlen (bound);
10441 }
d2e4a39e 10442 else
14f9c5c9 10443 {
d2e4a39e 10444 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10445 bound = bound_buffer;
d2e4a39e
AS
10446 strncpy (bound_buffer, str + k, pend - (str + k));
10447 bound[pend - (str + k)] = '\0';
10448 k = pend - str;
14f9c5c9 10449 }
d2e4a39e 10450
df407dfe 10451 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10452 if (bound_val == NULL)
10453 return 0;
10454
10455 *px = value_as_long (bound_val);
10456 if (pnew_k != NULL)
10457 *pnew_k = k;
10458 return 1;
10459}
10460
10461/* Value of variable named NAME in the current environment. If
10462 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10463 otherwise causes an error with message ERR_MSG. */
10464
d2e4a39e
AS
10465static struct value *
10466get_var_value (char *name, char *err_msg)
14f9c5c9 10467{
4c4b4cd2 10468 struct ada_symbol_info *syms;
14f9c5c9
AS
10469 int nsyms;
10470
4c4b4cd2 10471 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10472 &syms, 1);
14f9c5c9
AS
10473
10474 if (nsyms != 1)
10475 {
10476 if (err_msg == NULL)
4c4b4cd2 10477 return 0;
14f9c5c9 10478 else
8a3fe4f8 10479 error (("%s"), err_msg);
14f9c5c9
AS
10480 }
10481
4c4b4cd2 10482 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10483}
d2e4a39e 10484
14f9c5c9 10485/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10486 no such variable found, returns 0, and sets *FLAG to 0. If
10487 successful, sets *FLAG to 1. */
10488
14f9c5c9 10489LONGEST
4c4b4cd2 10490get_int_var_value (char *name, int *flag)
14f9c5c9 10491{
4c4b4cd2 10492 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10493
14f9c5c9
AS
10494 if (var_val == 0)
10495 {
10496 if (flag != NULL)
4c4b4cd2 10497 *flag = 0;
14f9c5c9
AS
10498 return 0;
10499 }
10500 else
10501 {
10502 if (flag != NULL)
4c4b4cd2 10503 *flag = 1;
14f9c5c9
AS
10504 return value_as_long (var_val);
10505 }
10506}
d2e4a39e 10507
14f9c5c9
AS
10508
10509/* Return a range type whose base type is that of the range type named
10510 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10511 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10512 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10513 corresponding range type from debug information; fall back to using it
10514 if symbol lookup fails. If a new type must be created, allocate it
10515 like ORIG_TYPE was. The bounds information, in general, is encoded
10516 in NAME, the base type given in the named range type. */
14f9c5c9 10517
d2e4a39e 10518static struct type *
28c85d6c 10519to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10520{
0d5cff50 10521 const char *name;
14f9c5c9 10522 struct type *base_type;
d2e4a39e 10523 char *subtype_info;
14f9c5c9 10524
28c85d6c
JB
10525 gdb_assert (raw_type != NULL);
10526 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10527
1ce677a4 10528 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10529 base_type = TYPE_TARGET_TYPE (raw_type);
10530 else
10531 base_type = raw_type;
10532
28c85d6c 10533 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10534 subtype_info = strstr (name, "___XD");
10535 if (subtype_info == NULL)
690cc4eb 10536 {
43bbcdc2
PH
10537 LONGEST L = ada_discrete_type_low_bound (raw_type);
10538 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10539
690cc4eb
PH
10540 if (L < INT_MIN || U > INT_MAX)
10541 return raw_type;
10542 else
28c85d6c 10543 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10544 ada_discrete_type_low_bound (raw_type),
10545 ada_discrete_type_high_bound (raw_type));
690cc4eb 10546 }
14f9c5c9
AS
10547 else
10548 {
10549 static char *name_buf = NULL;
10550 static size_t name_len = 0;
10551 int prefix_len = subtype_info - name;
10552 LONGEST L, U;
10553 struct type *type;
10554 char *bounds_str;
10555 int n;
10556
10557 GROW_VECT (name_buf, name_len, prefix_len + 5);
10558 strncpy (name_buf, name, prefix_len);
10559 name_buf[prefix_len] = '\0';
10560
10561 subtype_info += 5;
10562 bounds_str = strchr (subtype_info, '_');
10563 n = 1;
10564
d2e4a39e 10565 if (*subtype_info == 'L')
4c4b4cd2
PH
10566 {
10567 if (!ada_scan_number (bounds_str, n, &L, &n)
10568 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10569 return raw_type;
10570 if (bounds_str[n] == '_')
10571 n += 2;
0963b4bd 10572 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10573 n += 1;
10574 subtype_info += 1;
10575 }
d2e4a39e 10576 else
4c4b4cd2
PH
10577 {
10578 int ok;
5b4ee69b 10579
4c4b4cd2
PH
10580 strcpy (name_buf + prefix_len, "___L");
10581 L = get_int_var_value (name_buf, &ok);
10582 if (!ok)
10583 {
323e0a4a 10584 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10585 L = 1;
10586 }
10587 }
14f9c5c9 10588
d2e4a39e 10589 if (*subtype_info == 'U')
4c4b4cd2
PH
10590 {
10591 if (!ada_scan_number (bounds_str, n, &U, &n)
10592 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10593 return raw_type;
10594 }
d2e4a39e 10595 else
4c4b4cd2
PH
10596 {
10597 int ok;
5b4ee69b 10598
4c4b4cd2
PH
10599 strcpy (name_buf + prefix_len, "___U");
10600 U = get_int_var_value (name_buf, &ok);
10601 if (!ok)
10602 {
323e0a4a 10603 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10604 U = L;
10605 }
10606 }
14f9c5c9 10607
28c85d6c 10608 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10609 TYPE_NAME (type) = name;
14f9c5c9
AS
10610 return type;
10611 }
10612}
10613
4c4b4cd2
PH
10614/* True iff NAME is the name of a range type. */
10615
14f9c5c9 10616int
d2e4a39e 10617ada_is_range_type_name (const char *name)
14f9c5c9
AS
10618{
10619 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10620}
14f9c5c9 10621\f
d2e4a39e 10622
4c4b4cd2
PH
10623 /* Modular types */
10624
10625/* True iff TYPE is an Ada modular type. */
14f9c5c9 10626
14f9c5c9 10627int
d2e4a39e 10628ada_is_modular_type (struct type *type)
14f9c5c9 10629{
18af8284 10630 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10631
10632 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10633 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10634 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10635}
10636
4c4b4cd2
PH
10637/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10638
61ee279c 10639ULONGEST
0056e4d5 10640ada_modulus (struct type *type)
14f9c5c9 10641{
43bbcdc2 10642 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10643}
d2e4a39e 10644\f
f7f9143b
JB
10645
10646/* Ada exception catchpoint support:
10647 ---------------------------------
10648
10649 We support 3 kinds of exception catchpoints:
10650 . catchpoints on Ada exceptions
10651 . catchpoints on unhandled Ada exceptions
10652 . catchpoints on failed assertions
10653
10654 Exceptions raised during failed assertions, or unhandled exceptions
10655 could perfectly be caught with the general catchpoint on Ada exceptions.
10656 However, we can easily differentiate these two special cases, and having
10657 the option to distinguish these two cases from the rest can be useful
10658 to zero-in on certain situations.
10659
10660 Exception catchpoints are a specialized form of breakpoint,
10661 since they rely on inserting breakpoints inside known routines
10662 of the GNAT runtime. The implementation therefore uses a standard
10663 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10664 of breakpoint_ops.
10665
0259addd
JB
10666 Support in the runtime for exception catchpoints have been changed
10667 a few times already, and these changes affect the implementation
10668 of these catchpoints. In order to be able to support several
10669 variants of the runtime, we use a sniffer that will determine
28010a5d 10670 the runtime variant used by the program being debugged. */
f7f9143b
JB
10671
10672/* The different types of catchpoints that we introduced for catching
10673 Ada exceptions. */
10674
10675enum exception_catchpoint_kind
10676{
10677 ex_catch_exception,
10678 ex_catch_exception_unhandled,
10679 ex_catch_assert
10680};
10681
3d0b0fa3
JB
10682/* Ada's standard exceptions. */
10683
10684static char *standard_exc[] = {
10685 "constraint_error",
10686 "program_error",
10687 "storage_error",
10688 "tasking_error"
10689};
10690
0259addd
JB
10691typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10692
10693/* A structure that describes how to support exception catchpoints
10694 for a given executable. */
10695
10696struct exception_support_info
10697{
10698 /* The name of the symbol to break on in order to insert
10699 a catchpoint on exceptions. */
10700 const char *catch_exception_sym;
10701
10702 /* The name of the symbol to break on in order to insert
10703 a catchpoint on unhandled exceptions. */
10704 const char *catch_exception_unhandled_sym;
10705
10706 /* The name of the symbol to break on in order to insert
10707 a catchpoint on failed assertions. */
10708 const char *catch_assert_sym;
10709
10710 /* Assuming that the inferior just triggered an unhandled exception
10711 catchpoint, this function is responsible for returning the address
10712 in inferior memory where the name of that exception is stored.
10713 Return zero if the address could not be computed. */
10714 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10715};
10716
10717static CORE_ADDR ada_unhandled_exception_name_addr (void);
10718static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10719
10720/* The following exception support info structure describes how to
10721 implement exception catchpoints with the latest version of the
10722 Ada runtime (as of 2007-03-06). */
10723
10724static const struct exception_support_info default_exception_support_info =
10725{
10726 "__gnat_debug_raise_exception", /* catch_exception_sym */
10727 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10728 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10729 ada_unhandled_exception_name_addr
10730};
10731
10732/* The following exception support info structure describes how to
10733 implement exception catchpoints with a slightly older version
10734 of the Ada runtime. */
10735
10736static const struct exception_support_info exception_support_info_fallback =
10737{
10738 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10739 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10740 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10741 ada_unhandled_exception_name_addr_from_raise
10742};
10743
f17011e0
JB
10744/* Return nonzero if we can detect the exception support routines
10745 described in EINFO.
10746
10747 This function errors out if an abnormal situation is detected
10748 (for instance, if we find the exception support routines, but
10749 that support is found to be incomplete). */
10750
10751static int
10752ada_has_this_exception_support (const struct exception_support_info *einfo)
10753{
10754 struct symbol *sym;
10755
10756 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10757 that should be compiled with debugging information. As a result, we
10758 expect to find that symbol in the symtabs. */
10759
10760 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10761 if (sym == NULL)
a6af7abe
JB
10762 {
10763 /* Perhaps we did not find our symbol because the Ada runtime was
10764 compiled without debugging info, or simply stripped of it.
10765 It happens on some GNU/Linux distributions for instance, where
10766 users have to install a separate debug package in order to get
10767 the runtime's debugging info. In that situation, let the user
10768 know why we cannot insert an Ada exception catchpoint.
10769
10770 Note: Just for the purpose of inserting our Ada exception
10771 catchpoint, we could rely purely on the associated minimal symbol.
10772 But we would be operating in degraded mode anyway, since we are
10773 still lacking the debugging info needed later on to extract
10774 the name of the exception being raised (this name is printed in
10775 the catchpoint message, and is also used when trying to catch
10776 a specific exception). We do not handle this case for now. */
10777 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10778 error (_("Your Ada runtime appears to be missing some debugging "
10779 "information.\nCannot insert Ada exception catchpoint "
10780 "in this configuration."));
10781
10782 return 0;
10783 }
f17011e0
JB
10784
10785 /* Make sure that the symbol we found corresponds to a function. */
10786
10787 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10788 error (_("Symbol \"%s\" is not a function (class = %d)"),
10789 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10790
10791 return 1;
10792}
10793
0259addd
JB
10794/* Inspect the Ada runtime and determine which exception info structure
10795 should be used to provide support for exception catchpoints.
10796
3eecfa55
JB
10797 This function will always set the per-inferior exception_info,
10798 or raise an error. */
0259addd
JB
10799
10800static void
10801ada_exception_support_info_sniffer (void)
10802{
3eecfa55 10803 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10804
10805 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10806 if (data->exception_info != NULL)
0259addd
JB
10807 return;
10808
10809 /* Check the latest (default) exception support info. */
f17011e0 10810 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10811 {
3eecfa55 10812 data->exception_info = &default_exception_support_info;
0259addd
JB
10813 return;
10814 }
10815
10816 /* Try our fallback exception suport info. */
f17011e0 10817 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10818 {
3eecfa55 10819 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10820 return;
10821 }
10822
10823 /* Sometimes, it is normal for us to not be able to find the routine
10824 we are looking for. This happens when the program is linked with
10825 the shared version of the GNAT runtime, and the program has not been
10826 started yet. Inform the user of these two possible causes if
10827 applicable. */
10828
ccefe4c4 10829 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10830 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10831
10832 /* If the symbol does not exist, then check that the program is
10833 already started, to make sure that shared libraries have been
10834 loaded. If it is not started, this may mean that the symbol is
10835 in a shared library. */
10836
10837 if (ptid_get_pid (inferior_ptid) == 0)
10838 error (_("Unable to insert catchpoint. Try to start the program first."));
10839
10840 /* At this point, we know that we are debugging an Ada program and
10841 that the inferior has been started, but we still are not able to
0963b4bd 10842 find the run-time symbols. That can mean that we are in
0259addd
JB
10843 configurable run time mode, or that a-except as been optimized
10844 out by the linker... In any case, at this point it is not worth
10845 supporting this feature. */
10846
7dda8cff 10847 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10848}
10849
f7f9143b
JB
10850/* True iff FRAME is very likely to be that of a function that is
10851 part of the runtime system. This is all very heuristic, but is
10852 intended to be used as advice as to what frames are uninteresting
10853 to most users. */
10854
10855static int
10856is_known_support_routine (struct frame_info *frame)
10857{
4ed6b5be 10858 struct symtab_and_line sal;
0d5cff50 10859 const char *func_name;
692465f1 10860 enum language func_lang;
f7f9143b 10861 int i;
f7f9143b 10862
4ed6b5be
JB
10863 /* If this code does not have any debugging information (no symtab),
10864 This cannot be any user code. */
f7f9143b 10865
4ed6b5be 10866 find_frame_sal (frame, &sal);
f7f9143b
JB
10867 if (sal.symtab == NULL)
10868 return 1;
10869
4ed6b5be
JB
10870 /* If there is a symtab, but the associated source file cannot be
10871 located, then assume this is not user code: Selecting a frame
10872 for which we cannot display the code would not be very helpful
10873 for the user. This should also take care of case such as VxWorks
10874 where the kernel has some debugging info provided for a few units. */
f7f9143b 10875
9bbc9174 10876 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10877 return 1;
10878
4ed6b5be
JB
10879 /* Check the unit filename againt the Ada runtime file naming.
10880 We also check the name of the objfile against the name of some
10881 known system libraries that sometimes come with debugging info
10882 too. */
10883
f7f9143b
JB
10884 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10885 {
10886 re_comp (known_runtime_file_name_patterns[i]);
10887 if (re_exec (sal.symtab->filename))
10888 return 1;
4ed6b5be
JB
10889 if (sal.symtab->objfile != NULL
10890 && re_exec (sal.symtab->objfile->name))
10891 return 1;
f7f9143b
JB
10892 }
10893
4ed6b5be 10894 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10895
e9e07ba6 10896 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10897 if (func_name == NULL)
10898 return 1;
10899
10900 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10901 {
10902 re_comp (known_auxiliary_function_name_patterns[i]);
10903 if (re_exec (func_name))
10904 return 1;
10905 }
10906
10907 return 0;
10908}
10909
10910/* Find the first frame that contains debugging information and that is not
10911 part of the Ada run-time, starting from FI and moving upward. */
10912
0ef643c8 10913void
f7f9143b
JB
10914ada_find_printable_frame (struct frame_info *fi)
10915{
10916 for (; fi != NULL; fi = get_prev_frame (fi))
10917 {
10918 if (!is_known_support_routine (fi))
10919 {
10920 select_frame (fi);
10921 break;
10922 }
10923 }
10924
10925}
10926
10927/* Assuming that the inferior just triggered an unhandled exception
10928 catchpoint, return the address in inferior memory where the name
10929 of the exception is stored.
10930
10931 Return zero if the address could not be computed. */
10932
10933static CORE_ADDR
10934ada_unhandled_exception_name_addr (void)
0259addd
JB
10935{
10936 return parse_and_eval_address ("e.full_name");
10937}
10938
10939/* Same as ada_unhandled_exception_name_addr, except that this function
10940 should be used when the inferior uses an older version of the runtime,
10941 where the exception name needs to be extracted from a specific frame
10942 several frames up in the callstack. */
10943
10944static CORE_ADDR
10945ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10946{
10947 int frame_level;
10948 struct frame_info *fi;
3eecfa55 10949 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10950
10951 /* To determine the name of this exception, we need to select
10952 the frame corresponding to RAISE_SYM_NAME. This frame is
10953 at least 3 levels up, so we simply skip the first 3 frames
10954 without checking the name of their associated function. */
10955 fi = get_current_frame ();
10956 for (frame_level = 0; frame_level < 3; frame_level += 1)
10957 if (fi != NULL)
10958 fi = get_prev_frame (fi);
10959
10960 while (fi != NULL)
10961 {
0d5cff50 10962 const char *func_name;
692465f1
JB
10963 enum language func_lang;
10964
e9e07ba6 10965 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10966 if (func_name != NULL
3eecfa55 10967 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10968 break; /* We found the frame we were looking for... */
10969 fi = get_prev_frame (fi);
10970 }
10971
10972 if (fi == NULL)
10973 return 0;
10974
10975 select_frame (fi);
10976 return parse_and_eval_address ("id.full_name");
10977}
10978
10979/* Assuming the inferior just triggered an Ada exception catchpoint
10980 (of any type), return the address in inferior memory where the name
10981 of the exception is stored, if applicable.
10982
10983 Return zero if the address could not be computed, or if not relevant. */
10984
10985static CORE_ADDR
10986ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10987 struct breakpoint *b)
10988{
3eecfa55
JB
10989 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10990
f7f9143b
JB
10991 switch (ex)
10992 {
10993 case ex_catch_exception:
10994 return (parse_and_eval_address ("e.full_name"));
10995 break;
10996
10997 case ex_catch_exception_unhandled:
3eecfa55 10998 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10999 break;
11000
11001 case ex_catch_assert:
11002 return 0; /* Exception name is not relevant in this case. */
11003 break;
11004
11005 default:
11006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11007 break;
11008 }
11009
11010 return 0; /* Should never be reached. */
11011}
11012
11013/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11014 any error that ada_exception_name_addr_1 might cause to be thrown.
11015 When an error is intercepted, a warning with the error message is printed,
11016 and zero is returned. */
11017
11018static CORE_ADDR
11019ada_exception_name_addr (enum exception_catchpoint_kind ex,
11020 struct breakpoint *b)
11021{
bfd189b1 11022 volatile struct gdb_exception e;
f7f9143b
JB
11023 CORE_ADDR result = 0;
11024
11025 TRY_CATCH (e, RETURN_MASK_ERROR)
11026 {
11027 result = ada_exception_name_addr_1 (ex, b);
11028 }
11029
11030 if (e.reason < 0)
11031 {
11032 warning (_("failed to get exception name: %s"), e.message);
11033 return 0;
11034 }
11035
11036 return result;
11037}
11038
28010a5d
PA
11039static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11040 char *, char **,
c0a91b2b 11041 const struct breakpoint_ops **);
28010a5d
PA
11042static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11043
11044/* Ada catchpoints.
11045
11046 In the case of catchpoints on Ada exceptions, the catchpoint will
11047 stop the target on every exception the program throws. When a user
11048 specifies the name of a specific exception, we translate this
11049 request into a condition expression (in text form), and then parse
11050 it into an expression stored in each of the catchpoint's locations.
11051 We then use this condition to check whether the exception that was
11052 raised is the one the user is interested in. If not, then the
11053 target is resumed again. We store the name of the requested
11054 exception, in order to be able to re-set the condition expression
11055 when symbols change. */
11056
11057/* An instance of this type is used to represent an Ada catchpoint
11058 breakpoint location. It includes a "struct bp_location" as a kind
11059 of base class; users downcast to "struct bp_location *" when
11060 needed. */
11061
11062struct ada_catchpoint_location
11063{
11064 /* The base class. */
11065 struct bp_location base;
11066
11067 /* The condition that checks whether the exception that was raised
11068 is the specific exception the user specified on catchpoint
11069 creation. */
11070 struct expression *excep_cond_expr;
11071};
11072
11073/* Implement the DTOR method in the bp_location_ops structure for all
11074 Ada exception catchpoint kinds. */
11075
11076static void
11077ada_catchpoint_location_dtor (struct bp_location *bl)
11078{
11079 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11080
11081 xfree (al->excep_cond_expr);
11082}
11083
11084/* The vtable to be used in Ada catchpoint locations. */
11085
11086static const struct bp_location_ops ada_catchpoint_location_ops =
11087{
11088 ada_catchpoint_location_dtor
11089};
11090
11091/* An instance of this type is used to represent an Ada catchpoint.
11092 It includes a "struct breakpoint" as a kind of base class; users
11093 downcast to "struct breakpoint *" when needed. */
11094
11095struct ada_catchpoint
11096{
11097 /* The base class. */
11098 struct breakpoint base;
11099
11100 /* The name of the specific exception the user specified. */
11101 char *excep_string;
11102};
11103
11104/* Parse the exception condition string in the context of each of the
11105 catchpoint's locations, and store them for later evaluation. */
11106
11107static void
11108create_excep_cond_exprs (struct ada_catchpoint *c)
11109{
11110 struct cleanup *old_chain;
11111 struct bp_location *bl;
11112 char *cond_string;
11113
11114 /* Nothing to do if there's no specific exception to catch. */
11115 if (c->excep_string == NULL)
11116 return;
11117
11118 /* Same if there are no locations... */
11119 if (c->base.loc == NULL)
11120 return;
11121
11122 /* Compute the condition expression in text form, from the specific
11123 expection we want to catch. */
11124 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11125 old_chain = make_cleanup (xfree, cond_string);
11126
11127 /* Iterate over all the catchpoint's locations, and parse an
11128 expression for each. */
11129 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11130 {
11131 struct ada_catchpoint_location *ada_loc
11132 = (struct ada_catchpoint_location *) bl;
11133 struct expression *exp = NULL;
11134
11135 if (!bl->shlib_disabled)
11136 {
11137 volatile struct gdb_exception e;
11138 char *s;
11139
11140 s = cond_string;
11141 TRY_CATCH (e, RETURN_MASK_ERROR)
11142 {
1bb9788d
TT
11143 exp = parse_exp_1 (&s, bl->address,
11144 block_for_pc (bl->address), 0);
28010a5d
PA
11145 }
11146 if (e.reason < 0)
11147 warning (_("failed to reevaluate internal exception condition "
11148 "for catchpoint %d: %s"),
11149 c->base.number, e.message);
11150 }
11151
11152 ada_loc->excep_cond_expr = exp;
11153 }
11154
11155 do_cleanups (old_chain);
11156}
11157
11158/* Implement the DTOR method in the breakpoint_ops structure for all
11159 exception catchpoint kinds. */
11160
11161static void
11162dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11163{
11164 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11165
11166 xfree (c->excep_string);
348d480f 11167
2060206e 11168 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11169}
11170
11171/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11172 structure for all exception catchpoint kinds. */
11173
11174static struct bp_location *
11175allocate_location_exception (enum exception_catchpoint_kind ex,
11176 struct breakpoint *self)
11177{
11178 struct ada_catchpoint_location *loc;
11179
11180 loc = XNEW (struct ada_catchpoint_location);
11181 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11182 loc->excep_cond_expr = NULL;
11183 return &loc->base;
11184}
11185
11186/* Implement the RE_SET method in the breakpoint_ops structure for all
11187 exception catchpoint kinds. */
11188
11189static void
11190re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11191{
11192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11193
11194 /* Call the base class's method. This updates the catchpoint's
11195 locations. */
2060206e 11196 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11197
11198 /* Reparse the exception conditional expressions. One for each
11199 location. */
11200 create_excep_cond_exprs (c);
11201}
11202
11203/* Returns true if we should stop for this breakpoint hit. If the
11204 user specified a specific exception, we only want to cause a stop
11205 if the program thrown that exception. */
11206
11207static int
11208should_stop_exception (const struct bp_location *bl)
11209{
11210 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11211 const struct ada_catchpoint_location *ada_loc
11212 = (const struct ada_catchpoint_location *) bl;
11213 volatile struct gdb_exception ex;
11214 int stop;
11215
11216 /* With no specific exception, should always stop. */
11217 if (c->excep_string == NULL)
11218 return 1;
11219
11220 if (ada_loc->excep_cond_expr == NULL)
11221 {
11222 /* We will have a NULL expression if back when we were creating
11223 the expressions, this location's had failed to parse. */
11224 return 1;
11225 }
11226
11227 stop = 1;
11228 TRY_CATCH (ex, RETURN_MASK_ALL)
11229 {
11230 struct value *mark;
11231
11232 mark = value_mark ();
11233 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11234 value_free_to_mark (mark);
11235 }
11236 if (ex.reason < 0)
11237 exception_fprintf (gdb_stderr, ex,
11238 _("Error in testing exception condition:\n"));
11239 return stop;
11240}
11241
11242/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11243 for all exception catchpoint kinds. */
11244
11245static void
11246check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11247{
11248 bs->stop = should_stop_exception (bs->bp_location_at);
11249}
11250
f7f9143b
JB
11251/* Implement the PRINT_IT method in the breakpoint_ops structure
11252 for all exception catchpoint kinds. */
11253
11254static enum print_stop_action
348d480f 11255print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11256{
79a45e25 11257 struct ui_out *uiout = current_uiout;
348d480f
PA
11258 struct breakpoint *b = bs->breakpoint_at;
11259
956a9fb9 11260 annotate_catchpoint (b->number);
f7f9143b 11261
956a9fb9 11262 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11263 {
956a9fb9
JB
11264 ui_out_field_string (uiout, "reason",
11265 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11266 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11267 }
11268
00eb2c4a
JB
11269 ui_out_text (uiout,
11270 b->disposition == disp_del ? "\nTemporary catchpoint "
11271 : "\nCatchpoint ");
956a9fb9
JB
11272 ui_out_field_int (uiout, "bkptno", b->number);
11273 ui_out_text (uiout, ", ");
f7f9143b 11274
f7f9143b
JB
11275 switch (ex)
11276 {
11277 case ex_catch_exception:
f7f9143b 11278 case ex_catch_exception_unhandled:
956a9fb9
JB
11279 {
11280 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11281 char exception_name[256];
11282
11283 if (addr != 0)
11284 {
11285 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11286 exception_name [sizeof (exception_name) - 1] = '\0';
11287 }
11288 else
11289 {
11290 /* For some reason, we were unable to read the exception
11291 name. This could happen if the Runtime was compiled
11292 without debugging info, for instance. In that case,
11293 just replace the exception name by the generic string
11294 "exception" - it will read as "an exception" in the
11295 notification we are about to print. */
967cff16 11296 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11297 }
11298 /* In the case of unhandled exception breakpoints, we print
11299 the exception name as "unhandled EXCEPTION_NAME", to make
11300 it clearer to the user which kind of catchpoint just got
11301 hit. We used ui_out_text to make sure that this extra
11302 info does not pollute the exception name in the MI case. */
11303 if (ex == ex_catch_exception_unhandled)
11304 ui_out_text (uiout, "unhandled ");
11305 ui_out_field_string (uiout, "exception-name", exception_name);
11306 }
11307 break;
f7f9143b 11308 case ex_catch_assert:
956a9fb9
JB
11309 /* In this case, the name of the exception is not really
11310 important. Just print "failed assertion" to make it clearer
11311 that his program just hit an assertion-failure catchpoint.
11312 We used ui_out_text because this info does not belong in
11313 the MI output. */
11314 ui_out_text (uiout, "failed assertion");
11315 break;
f7f9143b 11316 }
956a9fb9
JB
11317 ui_out_text (uiout, " at ");
11318 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11319
11320 return PRINT_SRC_AND_LOC;
11321}
11322
11323/* Implement the PRINT_ONE method in the breakpoint_ops structure
11324 for all exception catchpoint kinds. */
11325
11326static void
11327print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11328 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11329{
79a45e25 11330 struct ui_out *uiout = current_uiout;
28010a5d 11331 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11332 struct value_print_options opts;
11333
11334 get_user_print_options (&opts);
11335 if (opts.addressprint)
f7f9143b
JB
11336 {
11337 annotate_field (4);
5af949e3 11338 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11339 }
11340
11341 annotate_field (5);
a6d9a66e 11342 *last_loc = b->loc;
f7f9143b
JB
11343 switch (ex)
11344 {
11345 case ex_catch_exception:
28010a5d 11346 if (c->excep_string != NULL)
f7f9143b 11347 {
28010a5d
PA
11348 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11349
f7f9143b
JB
11350 ui_out_field_string (uiout, "what", msg);
11351 xfree (msg);
11352 }
11353 else
11354 ui_out_field_string (uiout, "what", "all Ada exceptions");
11355
11356 break;
11357
11358 case ex_catch_exception_unhandled:
11359 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11360 break;
11361
11362 case ex_catch_assert:
11363 ui_out_field_string (uiout, "what", "failed Ada assertions");
11364 break;
11365
11366 default:
11367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11368 break;
11369 }
11370}
11371
11372/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11373 for all exception catchpoint kinds. */
11374
11375static void
11376print_mention_exception (enum exception_catchpoint_kind ex,
11377 struct breakpoint *b)
11378{
28010a5d 11379 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11380 struct ui_out *uiout = current_uiout;
28010a5d 11381
00eb2c4a
JB
11382 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11383 : _("Catchpoint "));
11384 ui_out_field_int (uiout, "bkptno", b->number);
11385 ui_out_text (uiout, ": ");
11386
f7f9143b
JB
11387 switch (ex)
11388 {
11389 case ex_catch_exception:
28010a5d 11390 if (c->excep_string != NULL)
00eb2c4a
JB
11391 {
11392 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11393 struct cleanup *old_chain = make_cleanup (xfree, info);
11394
11395 ui_out_text (uiout, info);
11396 do_cleanups (old_chain);
11397 }
f7f9143b 11398 else
00eb2c4a 11399 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11400 break;
11401
11402 case ex_catch_exception_unhandled:
00eb2c4a 11403 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11404 break;
11405
11406 case ex_catch_assert:
00eb2c4a 11407 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11408 break;
11409
11410 default:
11411 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11412 break;
11413 }
11414}
11415
6149aea9
PA
11416/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11417 for all exception catchpoint kinds. */
11418
11419static void
11420print_recreate_exception (enum exception_catchpoint_kind ex,
11421 struct breakpoint *b, struct ui_file *fp)
11422{
28010a5d
PA
11423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11424
6149aea9
PA
11425 switch (ex)
11426 {
11427 case ex_catch_exception:
11428 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11429 if (c->excep_string != NULL)
11430 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11431 break;
11432
11433 case ex_catch_exception_unhandled:
78076abc 11434 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11435 break;
11436
11437 case ex_catch_assert:
11438 fprintf_filtered (fp, "catch assert");
11439 break;
11440
11441 default:
11442 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11443 }
d9b3f62e 11444 print_recreate_thread (b, fp);
6149aea9
PA
11445}
11446
f7f9143b
JB
11447/* Virtual table for "catch exception" breakpoints. */
11448
28010a5d
PA
11449static void
11450dtor_catch_exception (struct breakpoint *b)
11451{
11452 dtor_exception (ex_catch_exception, b);
11453}
11454
11455static struct bp_location *
11456allocate_location_catch_exception (struct breakpoint *self)
11457{
11458 return allocate_location_exception (ex_catch_exception, self);
11459}
11460
11461static void
11462re_set_catch_exception (struct breakpoint *b)
11463{
11464 re_set_exception (ex_catch_exception, b);
11465}
11466
11467static void
11468check_status_catch_exception (bpstat bs)
11469{
11470 check_status_exception (ex_catch_exception, bs);
11471}
11472
f7f9143b 11473static enum print_stop_action
348d480f 11474print_it_catch_exception (bpstat bs)
f7f9143b 11475{
348d480f 11476 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11477}
11478
11479static void
a6d9a66e 11480print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11481{
a6d9a66e 11482 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11483}
11484
11485static void
11486print_mention_catch_exception (struct breakpoint *b)
11487{
11488 print_mention_exception (ex_catch_exception, b);
11489}
11490
6149aea9
PA
11491static void
11492print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11493{
11494 print_recreate_exception (ex_catch_exception, b, fp);
11495}
11496
2060206e 11497static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11498
11499/* Virtual table for "catch exception unhandled" breakpoints. */
11500
28010a5d
PA
11501static void
11502dtor_catch_exception_unhandled (struct breakpoint *b)
11503{
11504 dtor_exception (ex_catch_exception_unhandled, b);
11505}
11506
11507static struct bp_location *
11508allocate_location_catch_exception_unhandled (struct breakpoint *self)
11509{
11510 return allocate_location_exception (ex_catch_exception_unhandled, self);
11511}
11512
11513static void
11514re_set_catch_exception_unhandled (struct breakpoint *b)
11515{
11516 re_set_exception (ex_catch_exception_unhandled, b);
11517}
11518
11519static void
11520check_status_catch_exception_unhandled (bpstat bs)
11521{
11522 check_status_exception (ex_catch_exception_unhandled, bs);
11523}
11524
f7f9143b 11525static enum print_stop_action
348d480f 11526print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11527{
348d480f 11528 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11529}
11530
11531static void
a6d9a66e
UW
11532print_one_catch_exception_unhandled (struct breakpoint *b,
11533 struct bp_location **last_loc)
f7f9143b 11534{
a6d9a66e 11535 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11536}
11537
11538static void
11539print_mention_catch_exception_unhandled (struct breakpoint *b)
11540{
11541 print_mention_exception (ex_catch_exception_unhandled, b);
11542}
11543
6149aea9
PA
11544static void
11545print_recreate_catch_exception_unhandled (struct breakpoint *b,
11546 struct ui_file *fp)
11547{
11548 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11549}
11550
2060206e 11551static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11552
11553/* Virtual table for "catch assert" breakpoints. */
11554
28010a5d
PA
11555static void
11556dtor_catch_assert (struct breakpoint *b)
11557{
11558 dtor_exception (ex_catch_assert, b);
11559}
11560
11561static struct bp_location *
11562allocate_location_catch_assert (struct breakpoint *self)
11563{
11564 return allocate_location_exception (ex_catch_assert, self);
11565}
11566
11567static void
11568re_set_catch_assert (struct breakpoint *b)
11569{
11570 return re_set_exception (ex_catch_assert, b);
11571}
11572
11573static void
11574check_status_catch_assert (bpstat bs)
11575{
11576 check_status_exception (ex_catch_assert, bs);
11577}
11578
f7f9143b 11579static enum print_stop_action
348d480f 11580print_it_catch_assert (bpstat bs)
f7f9143b 11581{
348d480f 11582 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11583}
11584
11585static void
a6d9a66e 11586print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11587{
a6d9a66e 11588 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11589}
11590
11591static void
11592print_mention_catch_assert (struct breakpoint *b)
11593{
11594 print_mention_exception (ex_catch_assert, b);
11595}
11596
6149aea9
PA
11597static void
11598print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11599{
11600 print_recreate_exception (ex_catch_assert, b, fp);
11601}
11602
2060206e 11603static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11604
f7f9143b
JB
11605/* Return a newly allocated copy of the first space-separated token
11606 in ARGSP, and then adjust ARGSP to point immediately after that
11607 token.
11608
11609 Return NULL if ARGPS does not contain any more tokens. */
11610
11611static char *
11612ada_get_next_arg (char **argsp)
11613{
11614 char *args = *argsp;
11615 char *end;
11616 char *result;
11617
0fcd72ba 11618 args = skip_spaces (args);
f7f9143b
JB
11619 if (args[0] == '\0')
11620 return NULL; /* No more arguments. */
11621
11622 /* Find the end of the current argument. */
11623
0fcd72ba 11624 end = skip_to_space (args);
f7f9143b
JB
11625
11626 /* Adjust ARGSP to point to the start of the next argument. */
11627
11628 *argsp = end;
11629
11630 /* Make a copy of the current argument and return it. */
11631
11632 result = xmalloc (end - args + 1);
11633 strncpy (result, args, end - args);
11634 result[end - args] = '\0';
11635
11636 return result;
11637}
11638
11639/* Split the arguments specified in a "catch exception" command.
11640 Set EX to the appropriate catchpoint type.
28010a5d 11641 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11642 specified by the user.
11643 If a condition is found at the end of the arguments, the condition
11644 expression is stored in COND_STRING (memory must be deallocated
11645 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11646
11647static void
11648catch_ada_exception_command_split (char *args,
11649 enum exception_catchpoint_kind *ex,
5845583d
JB
11650 char **excep_string,
11651 char **cond_string)
f7f9143b
JB
11652{
11653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11654 char *exception_name;
5845583d 11655 char *cond = NULL;
f7f9143b
JB
11656
11657 exception_name = ada_get_next_arg (&args);
5845583d
JB
11658 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11659 {
11660 /* This is not an exception name; this is the start of a condition
11661 expression for a catchpoint on all exceptions. So, "un-get"
11662 this token, and set exception_name to NULL. */
11663 xfree (exception_name);
11664 exception_name = NULL;
11665 args -= 2;
11666 }
f7f9143b
JB
11667 make_cleanup (xfree, exception_name);
11668
5845583d 11669 /* Check to see if we have a condition. */
f7f9143b 11670
0fcd72ba 11671 args = skip_spaces (args);
5845583d
JB
11672 if (strncmp (args, "if", 2) == 0
11673 && (isspace (args[2]) || args[2] == '\0'))
11674 {
11675 args += 2;
11676 args = skip_spaces (args);
11677
11678 if (args[0] == '\0')
11679 error (_("Condition missing after `if' keyword"));
11680 cond = xstrdup (args);
11681 make_cleanup (xfree, cond);
11682
11683 args += strlen (args);
11684 }
11685
11686 /* Check that we do not have any more arguments. Anything else
11687 is unexpected. */
f7f9143b
JB
11688
11689 if (args[0] != '\0')
11690 error (_("Junk at end of expression"));
11691
11692 discard_cleanups (old_chain);
11693
11694 if (exception_name == NULL)
11695 {
11696 /* Catch all exceptions. */
11697 *ex = ex_catch_exception;
28010a5d 11698 *excep_string = NULL;
f7f9143b
JB
11699 }
11700 else if (strcmp (exception_name, "unhandled") == 0)
11701 {
11702 /* Catch unhandled exceptions. */
11703 *ex = ex_catch_exception_unhandled;
28010a5d 11704 *excep_string = NULL;
f7f9143b
JB
11705 }
11706 else
11707 {
11708 /* Catch a specific exception. */
11709 *ex = ex_catch_exception;
28010a5d 11710 *excep_string = exception_name;
f7f9143b 11711 }
5845583d 11712 *cond_string = cond;
f7f9143b
JB
11713}
11714
11715/* Return the name of the symbol on which we should break in order to
11716 implement a catchpoint of the EX kind. */
11717
11718static const char *
11719ada_exception_sym_name (enum exception_catchpoint_kind ex)
11720{
3eecfa55
JB
11721 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11722
11723 gdb_assert (data->exception_info != NULL);
0259addd 11724
f7f9143b
JB
11725 switch (ex)
11726 {
11727 case ex_catch_exception:
3eecfa55 11728 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11729 break;
11730 case ex_catch_exception_unhandled:
3eecfa55 11731 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11732 break;
11733 case ex_catch_assert:
3eecfa55 11734 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11735 break;
11736 default:
11737 internal_error (__FILE__, __LINE__,
11738 _("unexpected catchpoint kind (%d)"), ex);
11739 }
11740}
11741
11742/* Return the breakpoint ops "virtual table" used for catchpoints
11743 of the EX kind. */
11744
c0a91b2b 11745static const struct breakpoint_ops *
4b9eee8c 11746ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11747{
11748 switch (ex)
11749 {
11750 case ex_catch_exception:
11751 return (&catch_exception_breakpoint_ops);
11752 break;
11753 case ex_catch_exception_unhandled:
11754 return (&catch_exception_unhandled_breakpoint_ops);
11755 break;
11756 case ex_catch_assert:
11757 return (&catch_assert_breakpoint_ops);
11758 break;
11759 default:
11760 internal_error (__FILE__, __LINE__,
11761 _("unexpected catchpoint kind (%d)"), ex);
11762 }
11763}
11764
11765/* Return the condition that will be used to match the current exception
11766 being raised with the exception that the user wants to catch. This
11767 assumes that this condition is used when the inferior just triggered
11768 an exception catchpoint.
11769
11770 The string returned is a newly allocated string that needs to be
11771 deallocated later. */
11772
11773static char *
28010a5d 11774ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11775{
3d0b0fa3
JB
11776 int i;
11777
0963b4bd 11778 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11779 runtime units that have been compiled without debugging info; if
28010a5d 11780 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11781 exception (e.g. "constraint_error") then, during the evaluation
11782 of the condition expression, the symbol lookup on this name would
0963b4bd 11783 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11784 may then be set only on user-defined exceptions which have the
11785 same not-fully-qualified name (e.g. my_package.constraint_error).
11786
11787 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11788 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11789 exception constraint_error" is rewritten into "catch exception
11790 standard.constraint_error".
11791
11792 If an exception named contraint_error is defined in another package of
11793 the inferior program, then the only way to specify this exception as a
11794 breakpoint condition is to use its fully-qualified named:
11795 e.g. my_package.constraint_error. */
11796
11797 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11798 {
28010a5d 11799 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11800 {
11801 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11802 excep_string);
3d0b0fa3
JB
11803 }
11804 }
28010a5d 11805 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11806}
11807
11808/* Return the symtab_and_line that should be used to insert an exception
11809 catchpoint of the TYPE kind.
11810
28010a5d
PA
11811 EXCEP_STRING should contain the name of a specific exception that
11812 the catchpoint should catch, or NULL otherwise.
f7f9143b 11813
28010a5d
PA
11814 ADDR_STRING returns the name of the function where the real
11815 breakpoint that implements the catchpoints is set, depending on the
11816 type of catchpoint we need to create. */
f7f9143b
JB
11817
11818static struct symtab_and_line
28010a5d 11819ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11820 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11821{
11822 const char *sym_name;
11823 struct symbol *sym;
f7f9143b 11824
0259addd
JB
11825 /* First, find out which exception support info to use. */
11826 ada_exception_support_info_sniffer ();
11827
11828 /* Then lookup the function on which we will break in order to catch
f7f9143b 11829 the Ada exceptions requested by the user. */
f7f9143b
JB
11830 sym_name = ada_exception_sym_name (ex);
11831 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11832
f17011e0
JB
11833 /* We can assume that SYM is not NULL at this stage. If the symbol
11834 did not exist, ada_exception_support_info_sniffer would have
11835 raised an exception.
f7f9143b 11836
f17011e0
JB
11837 Also, ada_exception_support_info_sniffer should have already
11838 verified that SYM is a function symbol. */
11839 gdb_assert (sym != NULL);
11840 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11841
11842 /* Set ADDR_STRING. */
f7f9143b
JB
11843 *addr_string = xstrdup (sym_name);
11844
f7f9143b 11845 /* Set OPS. */
4b9eee8c 11846 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11847
f17011e0 11848 return find_function_start_sal (sym, 1);
f7f9143b
JB
11849}
11850
11851/* Parse the arguments (ARGS) of the "catch exception" command.
11852
f7f9143b
JB
11853 If the user asked the catchpoint to catch only a specific
11854 exception, then save the exception name in ADDR_STRING.
11855
5845583d
JB
11856 If the user provided a condition, then set COND_STRING to
11857 that condition expression (the memory must be deallocated
11858 after use). Otherwise, set COND_STRING to NULL.
11859
f7f9143b
JB
11860 See ada_exception_sal for a description of all the remaining
11861 function arguments of this function. */
11862
9ac4176b 11863static struct symtab_and_line
f7f9143b 11864ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11865 char **excep_string,
5845583d 11866 char **cond_string,
c0a91b2b 11867 const struct breakpoint_ops **ops)
f7f9143b
JB
11868{
11869 enum exception_catchpoint_kind ex;
11870
5845583d 11871 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11872 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11873}
11874
11875/* Create an Ada exception catchpoint. */
11876
11877static void
11878create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11879 struct symtab_and_line sal,
11880 char *addr_string,
11881 char *excep_string,
5845583d 11882 char *cond_string,
c0a91b2b 11883 const struct breakpoint_ops *ops,
28010a5d
PA
11884 int tempflag,
11885 int from_tty)
11886{
11887 struct ada_catchpoint *c;
11888
11889 c = XNEW (struct ada_catchpoint);
11890 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11891 ops, tempflag, from_tty);
11892 c->excep_string = excep_string;
11893 create_excep_cond_exprs (c);
5845583d
JB
11894 if (cond_string != NULL)
11895 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11896 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11897}
11898
9ac4176b
PA
11899/* Implement the "catch exception" command. */
11900
11901static void
11902catch_ada_exception_command (char *arg, int from_tty,
11903 struct cmd_list_element *command)
11904{
11905 struct gdbarch *gdbarch = get_current_arch ();
11906 int tempflag;
11907 struct symtab_and_line sal;
11908 char *addr_string = NULL;
28010a5d 11909 char *excep_string = NULL;
5845583d 11910 char *cond_string = NULL;
c0a91b2b 11911 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11912
11913 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11914
11915 if (!arg)
11916 arg = "";
5845583d
JB
11917 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11918 &cond_string, &ops);
28010a5d 11919 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11920 excep_string, cond_string, ops,
11921 tempflag, from_tty);
9ac4176b
PA
11922}
11923
5845583d
JB
11924/* Assuming that ARGS contains the arguments of a "catch assert"
11925 command, parse those arguments and return a symtab_and_line object
11926 for a failed assertion catchpoint.
11927
11928 Set ADDR_STRING to the name of the function where the real
11929 breakpoint that implements the catchpoint is set.
11930
11931 If ARGS contains a condition, set COND_STRING to that condition
11932 (the memory needs to be deallocated after use). Otherwise, set
11933 COND_STRING to NULL. */
11934
9ac4176b 11935static struct symtab_and_line
f7f9143b 11936ada_decode_assert_location (char *args, char **addr_string,
5845583d 11937 char **cond_string,
c0a91b2b 11938 const struct breakpoint_ops **ops)
f7f9143b 11939{
5845583d 11940 args = skip_spaces (args);
f7f9143b 11941
5845583d
JB
11942 /* Check whether a condition was provided. */
11943 if (strncmp (args, "if", 2) == 0
11944 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11945 {
5845583d 11946 args += 2;
0fcd72ba 11947 args = skip_spaces (args);
5845583d
JB
11948 if (args[0] == '\0')
11949 error (_("condition missing after `if' keyword"));
11950 *cond_string = xstrdup (args);
f7f9143b
JB
11951 }
11952
5845583d
JB
11953 /* Otherwise, there should be no other argument at the end of
11954 the command. */
11955 else if (args[0] != '\0')
11956 error (_("Junk at end of arguments."));
11957
28010a5d 11958 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11959}
11960
9ac4176b
PA
11961/* Implement the "catch assert" command. */
11962
11963static void
11964catch_assert_command (char *arg, int from_tty,
11965 struct cmd_list_element *command)
11966{
11967 struct gdbarch *gdbarch = get_current_arch ();
11968 int tempflag;
11969 struct symtab_and_line sal;
11970 char *addr_string = NULL;
5845583d 11971 char *cond_string = NULL;
c0a91b2b 11972 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11973
11974 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11975
11976 if (!arg)
11977 arg = "";
5845583d 11978 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11979 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11980 NULL, cond_string, ops, tempflag,
11981 from_tty);
9ac4176b 11982}
4c4b4cd2
PH
11983 /* Operators */
11984/* Information about operators given special treatment in functions
11985 below. */
11986/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11987
11988#define ADA_OPERATORS \
11989 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11990 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11991 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11992 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11993 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11994 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11995 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11996 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11997 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11998 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11999 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12000 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12001 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12002 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12003 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12004 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12005 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12006 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12007 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12008
12009static void
554794dc
SDJ
12010ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12011 int *argsp)
4c4b4cd2
PH
12012{
12013 switch (exp->elts[pc - 1].opcode)
12014 {
76a01679 12015 default:
4c4b4cd2
PH
12016 operator_length_standard (exp, pc, oplenp, argsp);
12017 break;
12018
12019#define OP_DEFN(op, len, args, binop) \
12020 case op: *oplenp = len; *argsp = args; break;
12021 ADA_OPERATORS;
12022#undef OP_DEFN
52ce6436
PH
12023
12024 case OP_AGGREGATE:
12025 *oplenp = 3;
12026 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12027 break;
12028
12029 case OP_CHOICES:
12030 *oplenp = 3;
12031 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12032 break;
4c4b4cd2
PH
12033 }
12034}
12035
c0201579
JK
12036/* Implementation of the exp_descriptor method operator_check. */
12037
12038static int
12039ada_operator_check (struct expression *exp, int pos,
12040 int (*objfile_func) (struct objfile *objfile, void *data),
12041 void *data)
12042{
12043 const union exp_element *const elts = exp->elts;
12044 struct type *type = NULL;
12045
12046 switch (elts[pos].opcode)
12047 {
12048 case UNOP_IN_RANGE:
12049 case UNOP_QUAL:
12050 type = elts[pos + 1].type;
12051 break;
12052
12053 default:
12054 return operator_check_standard (exp, pos, objfile_func, data);
12055 }
12056
12057 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12058
12059 if (type && TYPE_OBJFILE (type)
12060 && (*objfile_func) (TYPE_OBJFILE (type), data))
12061 return 1;
12062
12063 return 0;
12064}
12065
4c4b4cd2
PH
12066static char *
12067ada_op_name (enum exp_opcode opcode)
12068{
12069 switch (opcode)
12070 {
76a01679 12071 default:
4c4b4cd2 12072 return op_name_standard (opcode);
52ce6436 12073
4c4b4cd2
PH
12074#define OP_DEFN(op, len, args, binop) case op: return #op;
12075 ADA_OPERATORS;
12076#undef OP_DEFN
52ce6436
PH
12077
12078 case OP_AGGREGATE:
12079 return "OP_AGGREGATE";
12080 case OP_CHOICES:
12081 return "OP_CHOICES";
12082 case OP_NAME:
12083 return "OP_NAME";
4c4b4cd2
PH
12084 }
12085}
12086
12087/* As for operator_length, but assumes PC is pointing at the first
12088 element of the operator, and gives meaningful results only for the
52ce6436 12089 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12090
12091static void
76a01679
JB
12092ada_forward_operator_length (struct expression *exp, int pc,
12093 int *oplenp, int *argsp)
4c4b4cd2 12094{
76a01679 12095 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12096 {
12097 default:
12098 *oplenp = *argsp = 0;
12099 break;
52ce6436 12100
4c4b4cd2
PH
12101#define OP_DEFN(op, len, args, binop) \
12102 case op: *oplenp = len; *argsp = args; break;
12103 ADA_OPERATORS;
12104#undef OP_DEFN
52ce6436
PH
12105
12106 case OP_AGGREGATE:
12107 *oplenp = 3;
12108 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12109 break;
12110
12111 case OP_CHOICES:
12112 *oplenp = 3;
12113 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12114 break;
12115
12116 case OP_STRING:
12117 case OP_NAME:
12118 {
12119 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12120
52ce6436
PH
12121 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12122 *argsp = 0;
12123 break;
12124 }
4c4b4cd2
PH
12125 }
12126}
12127
12128static int
12129ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12130{
12131 enum exp_opcode op = exp->elts[elt].opcode;
12132 int oplen, nargs;
12133 int pc = elt;
12134 int i;
76a01679 12135
4c4b4cd2
PH
12136 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12137
76a01679 12138 switch (op)
4c4b4cd2 12139 {
76a01679 12140 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12141 case OP_ATR_FIRST:
12142 case OP_ATR_LAST:
12143 case OP_ATR_LENGTH:
12144 case OP_ATR_IMAGE:
12145 case OP_ATR_MAX:
12146 case OP_ATR_MIN:
12147 case OP_ATR_MODULUS:
12148 case OP_ATR_POS:
12149 case OP_ATR_SIZE:
12150 case OP_ATR_TAG:
12151 case OP_ATR_VAL:
12152 break;
12153
12154 case UNOP_IN_RANGE:
12155 case UNOP_QUAL:
323e0a4a
AC
12156 /* XXX: gdb_sprint_host_address, type_sprint */
12157 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12158 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12159 fprintf_filtered (stream, " (");
12160 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12161 fprintf_filtered (stream, ")");
12162 break;
12163 case BINOP_IN_BOUNDS:
52ce6436
PH
12164 fprintf_filtered (stream, " (%d)",
12165 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12166 break;
12167 case TERNOP_IN_RANGE:
12168 break;
12169
52ce6436
PH
12170 case OP_AGGREGATE:
12171 case OP_OTHERS:
12172 case OP_DISCRETE_RANGE:
12173 case OP_POSITIONAL:
12174 case OP_CHOICES:
12175 break;
12176
12177 case OP_NAME:
12178 case OP_STRING:
12179 {
12180 char *name = &exp->elts[elt + 2].string;
12181 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12182
52ce6436
PH
12183 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12184 break;
12185 }
12186
4c4b4cd2
PH
12187 default:
12188 return dump_subexp_body_standard (exp, stream, elt);
12189 }
12190
12191 elt += oplen;
12192 for (i = 0; i < nargs; i += 1)
12193 elt = dump_subexp (exp, stream, elt);
12194
12195 return elt;
12196}
12197
12198/* The Ada extension of print_subexp (q.v.). */
12199
76a01679
JB
12200static void
12201ada_print_subexp (struct expression *exp, int *pos,
12202 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12203{
52ce6436 12204 int oplen, nargs, i;
4c4b4cd2
PH
12205 int pc = *pos;
12206 enum exp_opcode op = exp->elts[pc].opcode;
12207
12208 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12209
52ce6436 12210 *pos += oplen;
4c4b4cd2
PH
12211 switch (op)
12212 {
12213 default:
52ce6436 12214 *pos -= oplen;
4c4b4cd2
PH
12215 print_subexp_standard (exp, pos, stream, prec);
12216 return;
12217
12218 case OP_VAR_VALUE:
4c4b4cd2
PH
12219 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12220 return;
12221
12222 case BINOP_IN_BOUNDS:
323e0a4a 12223 /* XXX: sprint_subexp */
4c4b4cd2 12224 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12225 fputs_filtered (" in ", stream);
4c4b4cd2 12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12227 fputs_filtered ("'range", stream);
4c4b4cd2 12228 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12229 fprintf_filtered (stream, "(%ld)",
12230 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12231 return;
12232
12233 case TERNOP_IN_RANGE:
4c4b4cd2 12234 if (prec >= PREC_EQUAL)
76a01679 12235 fputs_filtered ("(", stream);
323e0a4a 12236 /* XXX: sprint_subexp */
4c4b4cd2 12237 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12238 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12239 print_subexp (exp, pos, stream, PREC_EQUAL);
12240 fputs_filtered (" .. ", stream);
12241 print_subexp (exp, pos, stream, PREC_EQUAL);
12242 if (prec >= PREC_EQUAL)
76a01679
JB
12243 fputs_filtered (")", stream);
12244 return;
4c4b4cd2
PH
12245
12246 case OP_ATR_FIRST:
12247 case OP_ATR_LAST:
12248 case OP_ATR_LENGTH:
12249 case OP_ATR_IMAGE:
12250 case OP_ATR_MAX:
12251 case OP_ATR_MIN:
12252 case OP_ATR_MODULUS:
12253 case OP_ATR_POS:
12254 case OP_ATR_SIZE:
12255 case OP_ATR_TAG:
12256 case OP_ATR_VAL:
4c4b4cd2 12257 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12258 {
12259 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12260 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12261 *pos += 3;
12262 }
4c4b4cd2 12263 else
76a01679 12264 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12265 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12266 if (nargs > 1)
76a01679
JB
12267 {
12268 int tem;
5b4ee69b 12269
76a01679
JB
12270 for (tem = 1; tem < nargs; tem += 1)
12271 {
12272 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12273 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12274 }
12275 fputs_filtered (")", stream);
12276 }
4c4b4cd2 12277 return;
14f9c5c9 12278
4c4b4cd2 12279 case UNOP_QUAL:
4c4b4cd2
PH
12280 type_print (exp->elts[pc + 1].type, "", stream, 0);
12281 fputs_filtered ("'(", stream);
12282 print_subexp (exp, pos, stream, PREC_PREFIX);
12283 fputs_filtered (")", stream);
12284 return;
14f9c5c9 12285
4c4b4cd2 12286 case UNOP_IN_RANGE:
323e0a4a 12287 /* XXX: sprint_subexp */
4c4b4cd2 12288 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12289 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12290 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12291 return;
52ce6436
PH
12292
12293 case OP_DISCRETE_RANGE:
12294 print_subexp (exp, pos, stream, PREC_SUFFIX);
12295 fputs_filtered ("..", stream);
12296 print_subexp (exp, pos, stream, PREC_SUFFIX);
12297 return;
12298
12299 case OP_OTHERS:
12300 fputs_filtered ("others => ", stream);
12301 print_subexp (exp, pos, stream, PREC_SUFFIX);
12302 return;
12303
12304 case OP_CHOICES:
12305 for (i = 0; i < nargs-1; i += 1)
12306 {
12307 if (i > 0)
12308 fputs_filtered ("|", stream);
12309 print_subexp (exp, pos, stream, PREC_SUFFIX);
12310 }
12311 fputs_filtered (" => ", stream);
12312 print_subexp (exp, pos, stream, PREC_SUFFIX);
12313 return;
12314
12315 case OP_POSITIONAL:
12316 print_subexp (exp, pos, stream, PREC_SUFFIX);
12317 return;
12318
12319 case OP_AGGREGATE:
12320 fputs_filtered ("(", stream);
12321 for (i = 0; i < nargs; i += 1)
12322 {
12323 if (i > 0)
12324 fputs_filtered (", ", stream);
12325 print_subexp (exp, pos, stream, PREC_SUFFIX);
12326 }
12327 fputs_filtered (")", stream);
12328 return;
4c4b4cd2
PH
12329 }
12330}
14f9c5c9
AS
12331
12332/* Table mapping opcodes into strings for printing operators
12333 and precedences of the operators. */
12334
d2e4a39e
AS
12335static const struct op_print ada_op_print_tab[] = {
12336 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12337 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12338 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12339 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12340 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12341 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12342 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12343 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12344 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12345 {">=", BINOP_GEQ, PREC_ORDER, 0},
12346 {">", BINOP_GTR, PREC_ORDER, 0},
12347 {"<", BINOP_LESS, PREC_ORDER, 0},
12348 {">>", BINOP_RSH, PREC_SHIFT, 0},
12349 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12350 {"+", BINOP_ADD, PREC_ADD, 0},
12351 {"-", BINOP_SUB, PREC_ADD, 0},
12352 {"&", BINOP_CONCAT, PREC_ADD, 0},
12353 {"*", BINOP_MUL, PREC_MUL, 0},
12354 {"/", BINOP_DIV, PREC_MUL, 0},
12355 {"rem", BINOP_REM, PREC_MUL, 0},
12356 {"mod", BINOP_MOD, PREC_MUL, 0},
12357 {"**", BINOP_EXP, PREC_REPEAT, 0},
12358 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12359 {"-", UNOP_NEG, PREC_PREFIX, 0},
12360 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12361 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12362 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12363 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12364 {".all", UNOP_IND, PREC_SUFFIX, 1},
12365 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12366 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12367 {NULL, 0, 0, 0}
14f9c5c9
AS
12368};
12369\f
72d5681a
PH
12370enum ada_primitive_types {
12371 ada_primitive_type_int,
12372 ada_primitive_type_long,
12373 ada_primitive_type_short,
12374 ada_primitive_type_char,
12375 ada_primitive_type_float,
12376 ada_primitive_type_double,
12377 ada_primitive_type_void,
12378 ada_primitive_type_long_long,
12379 ada_primitive_type_long_double,
12380 ada_primitive_type_natural,
12381 ada_primitive_type_positive,
12382 ada_primitive_type_system_address,
12383 nr_ada_primitive_types
12384};
6c038f32
PH
12385
12386static void
d4a9a881 12387ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12388 struct language_arch_info *lai)
12389{
d4a9a881 12390 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12391
72d5681a 12392 lai->primitive_type_vector
d4a9a881 12393 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12394 struct type *);
e9bb382b
UW
12395
12396 lai->primitive_type_vector [ada_primitive_type_int]
12397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12398 0, "integer");
12399 lai->primitive_type_vector [ada_primitive_type_long]
12400 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12401 0, "long_integer");
12402 lai->primitive_type_vector [ada_primitive_type_short]
12403 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12404 0, "short_integer");
12405 lai->string_char_type
12406 = lai->primitive_type_vector [ada_primitive_type_char]
12407 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12408 lai->primitive_type_vector [ada_primitive_type_float]
12409 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12410 "float", NULL);
12411 lai->primitive_type_vector [ada_primitive_type_double]
12412 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12413 "long_float", NULL);
12414 lai->primitive_type_vector [ada_primitive_type_long_long]
12415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12416 0, "long_long_integer");
12417 lai->primitive_type_vector [ada_primitive_type_long_double]
12418 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12419 "long_long_float", NULL);
12420 lai->primitive_type_vector [ada_primitive_type_natural]
12421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12422 0, "natural");
12423 lai->primitive_type_vector [ada_primitive_type_positive]
12424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12425 0, "positive");
12426 lai->primitive_type_vector [ada_primitive_type_void]
12427 = builtin->builtin_void;
12428
12429 lai->primitive_type_vector [ada_primitive_type_system_address]
12430 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12431 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12432 = "system__address";
fbb06eb1 12433
47e729a8 12434 lai->bool_type_symbol = NULL;
fbb06eb1 12435 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12436}
6c038f32
PH
12437\f
12438 /* Language vector */
12439
12440/* Not really used, but needed in the ada_language_defn. */
12441
12442static void
6c7a06a3 12443emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12444{
6c7a06a3 12445 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12446}
12447
12448static int
12449parse (void)
12450{
12451 warnings_issued = 0;
12452 return ada_parse ();
12453}
12454
12455static const struct exp_descriptor ada_exp_descriptor = {
12456 ada_print_subexp,
12457 ada_operator_length,
c0201579 12458 ada_operator_check,
6c038f32
PH
12459 ada_op_name,
12460 ada_dump_subexp_body,
12461 ada_evaluate_subexp
12462};
12463
1a119f36 12464/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12465 for Ada. */
12466
1a119f36
JB
12467static symbol_name_cmp_ftype
12468ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12469{
12470 if (should_use_wild_match (lookup_name))
12471 return wild_match;
12472 else
12473 return compare_names;
12474}
12475
a5ee536b
JB
12476/* Implement the "la_read_var_value" language_defn method for Ada. */
12477
12478static struct value *
12479ada_read_var_value (struct symbol *var, struct frame_info *frame)
12480{
12481 struct block *frame_block = NULL;
12482 struct symbol *renaming_sym = NULL;
12483
12484 /* The only case where default_read_var_value is not sufficient
12485 is when VAR is a renaming... */
12486 if (frame)
12487 frame_block = get_frame_block (frame, NULL);
12488 if (frame_block)
12489 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12490 if (renaming_sym != NULL)
12491 return ada_read_renaming_var_value (renaming_sym, frame_block);
12492
12493 /* This is a typical case where we expect the default_read_var_value
12494 function to work. */
12495 return default_read_var_value (var, frame);
12496}
12497
6c038f32
PH
12498const struct language_defn ada_language_defn = {
12499 "ada", /* Language name */
12500 language_ada,
6c038f32 12501 range_check_off,
6c038f32
PH
12502 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12503 that's not quite what this means. */
6c038f32 12504 array_row_major,
9a044a89 12505 macro_expansion_no,
6c038f32
PH
12506 &ada_exp_descriptor,
12507 parse,
12508 ada_error,
12509 resolve,
12510 ada_printchar, /* Print a character constant */
12511 ada_printstr, /* Function to print string constant */
12512 emit_char, /* Function to print single char (not used) */
6c038f32 12513 ada_print_type, /* Print a type using appropriate syntax */
be942545 12514 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12515 ada_val_print, /* Print a value using appropriate syntax */
12516 ada_value_print, /* Print a top-level value */
a5ee536b 12517 ada_read_var_value, /* la_read_var_value */
6c038f32 12518 NULL, /* Language specific skip_trampoline */
2b2d9e11 12519 NULL, /* name_of_this */
6c038f32
PH
12520 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12521 basic_lookup_transparent_type, /* lookup_transparent_type */
12522 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12523 NULL, /* Language specific
12524 class_name_from_physname */
6c038f32
PH
12525 ada_op_print_tab, /* expression operators for printing */
12526 0, /* c-style arrays */
12527 1, /* String lower bound */
6c038f32 12528 ada_get_gdb_completer_word_break_characters,
41d27058 12529 ada_make_symbol_completion_list,
72d5681a 12530 ada_language_arch_info,
e79af960 12531 ada_print_array_index,
41f1b697 12532 default_pass_by_reference,
ae6a3a4c 12533 c_get_string,
1a119f36 12534 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12535 ada_iterate_over_symbols,
6c038f32
PH
12536 LANG_MAGIC
12537};
12538
2c0b251b
PA
12539/* Provide a prototype to silence -Wmissing-prototypes. */
12540extern initialize_file_ftype _initialize_ada_language;
12541
5bf03f13
JB
12542/* Command-list for the "set/show ada" prefix command. */
12543static struct cmd_list_element *set_ada_list;
12544static struct cmd_list_element *show_ada_list;
12545
12546/* Implement the "set ada" prefix command. */
12547
12548static void
12549set_ada_command (char *arg, int from_tty)
12550{
12551 printf_unfiltered (_(\
12552"\"set ada\" must be followed by the name of a setting.\n"));
12553 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12554}
12555
12556/* Implement the "show ada" prefix command. */
12557
12558static void
12559show_ada_command (char *args, int from_tty)
12560{
12561 cmd_show_list (show_ada_list, from_tty, "");
12562}
12563
2060206e
PA
12564static void
12565initialize_ada_catchpoint_ops (void)
12566{
12567 struct breakpoint_ops *ops;
12568
12569 initialize_breakpoint_ops ();
12570
12571 ops = &catch_exception_breakpoint_ops;
12572 *ops = bkpt_breakpoint_ops;
12573 ops->dtor = dtor_catch_exception;
12574 ops->allocate_location = allocate_location_catch_exception;
12575 ops->re_set = re_set_catch_exception;
12576 ops->check_status = check_status_catch_exception;
12577 ops->print_it = print_it_catch_exception;
12578 ops->print_one = print_one_catch_exception;
12579 ops->print_mention = print_mention_catch_exception;
12580 ops->print_recreate = print_recreate_catch_exception;
12581
12582 ops = &catch_exception_unhandled_breakpoint_ops;
12583 *ops = bkpt_breakpoint_ops;
12584 ops->dtor = dtor_catch_exception_unhandled;
12585 ops->allocate_location = allocate_location_catch_exception_unhandled;
12586 ops->re_set = re_set_catch_exception_unhandled;
12587 ops->check_status = check_status_catch_exception_unhandled;
12588 ops->print_it = print_it_catch_exception_unhandled;
12589 ops->print_one = print_one_catch_exception_unhandled;
12590 ops->print_mention = print_mention_catch_exception_unhandled;
12591 ops->print_recreate = print_recreate_catch_exception_unhandled;
12592
12593 ops = &catch_assert_breakpoint_ops;
12594 *ops = bkpt_breakpoint_ops;
12595 ops->dtor = dtor_catch_assert;
12596 ops->allocate_location = allocate_location_catch_assert;
12597 ops->re_set = re_set_catch_assert;
12598 ops->check_status = check_status_catch_assert;
12599 ops->print_it = print_it_catch_assert;
12600 ops->print_one = print_one_catch_assert;
12601 ops->print_mention = print_mention_catch_assert;
12602 ops->print_recreate = print_recreate_catch_assert;
12603}
12604
d2e4a39e 12605void
6c038f32 12606_initialize_ada_language (void)
14f9c5c9 12607{
6c038f32
PH
12608 add_language (&ada_language_defn);
12609
2060206e
PA
12610 initialize_ada_catchpoint_ops ();
12611
5bf03f13
JB
12612 add_prefix_cmd ("ada", no_class, set_ada_command,
12613 _("Prefix command for changing Ada-specfic settings"),
12614 &set_ada_list, "set ada ", 0, &setlist);
12615
12616 add_prefix_cmd ("ada", no_class, show_ada_command,
12617 _("Generic command for showing Ada-specific settings."),
12618 &show_ada_list, "show ada ", 0, &showlist);
12619
12620 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12621 &trust_pad_over_xvs, _("\
12622Enable or disable an optimization trusting PAD types over XVS types"), _("\
12623Show whether an optimization trusting PAD types over XVS types is activated"),
12624 _("\
12625This is related to the encoding used by the GNAT compiler. The debugger\n\
12626should normally trust the contents of PAD types, but certain older versions\n\
12627of GNAT have a bug that sometimes causes the information in the PAD type\n\
12628to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12629work around this bug. It is always safe to turn this option \"off\", but\n\
12630this incurs a slight performance penalty, so it is recommended to NOT change\n\
12631this option to \"off\" unless necessary."),
12632 NULL, NULL, &set_ada_list, &show_ada_list);
12633
9ac4176b
PA
12634 add_catch_command ("exception", _("\
12635Catch Ada exceptions, when raised.\n\
12636With an argument, catch only exceptions with the given name."),
12637 catch_ada_exception_command,
12638 NULL,
12639 CATCH_PERMANENT,
12640 CATCH_TEMPORARY);
12641 add_catch_command ("assert", _("\
12642Catch failed Ada assertions, when raised.\n\
12643With an argument, catch only exceptions with the given name."),
12644 catch_assert_command,
12645 NULL,
12646 CATCH_PERMANENT,
12647 CATCH_TEMPORARY);
12648
6c038f32 12649 varsize_limit = 65536;
6c038f32
PH
12650
12651 obstack_init (&symbol_list_obstack);
12652
12653 decoded_names_store = htab_create_alloc
12654 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12655 NULL, xcalloc, xfree);
6b69afc4 12656
e802dbe0
JB
12657 /* Setup per-inferior data. */
12658 observer_attach_inferior_exit (ada_inferior_exit);
12659 ada_inferior_data
12660 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12661}
This page took 2.446998 seconds and 4 git commands to generate.