Make ada_decode not use a static buffer
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
268a13a5
TT
63#include "gdbsupport/function-view.h"
64#include "gdbsupport/byte-vector.h"
4de283e4 65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
a121b7c1 149static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 150 int, int);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 191
d2e4a39e 192static int equiv_types (struct type *, struct type *);
14f9c5c9 193
d2e4a39e 194static int is_name_suffix (const char *);
14f9c5c9 195
73589123
PH
196static int advance_wild_match (const char **, const char *, int);
197
b5ec771e 198static bool wild_match (const char *name, const char *patn);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
108d56a4 211static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
0d5cff50 217static int find_struct_field (const char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2 219
d12307c1 220static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 221 struct value **, int, const char *,
2a612529 222 struct type *, int);
4c4b4cd2 223
4c4b4cd2
PH
224static int ada_is_direct_array_type (struct type *);
225
72d5681a
PH
226static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
714e53ab 228
52ce6436
PH
229static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
233 struct expression *,
234 int *, enum noside);
52ce6436
PH
235
236static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
852dff6c
JB
260
261static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
262
263static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
4c4b4cd2
PH
266\f
267
ee01b665
JB
268/* The result of a symbol lookup to be stored in our symbol cache. */
269
270struct cache_entry
271{
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
fe978cb0 275 domain_enum domain;
ee01b665
JB
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284};
285
286/* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295#define HASH_SIZE 1009
296
297struct ada_symbol_cache
298{
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304};
305
306static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 307
4c4b4cd2 308/* Maximum-sized dynamic type. */
14f9c5c9
AS
309static unsigned int varsize_limit;
310
67cb5b2d 311static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
312#ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314#else
14f9c5c9 315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 316#endif
14f9c5c9 317
4c4b4cd2 318/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 319static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 320 = "__gnat_ada_main_program_name";
14f9c5c9 321
4c4b4cd2
PH
322/* Limit on the number of warnings to raise per expression evaluation. */
323static int warning_limit = 2;
324
325/* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327static int warnings_issued = 0;
328
329static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331};
332
333static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335};
336
c6044dd1
JB
337/* Maintenance-related settings for this module. */
338
339static struct cmd_list_element *maint_set_ada_cmdlist;
340static struct cmd_list_element *maint_show_ada_cmdlist;
341
342/* Implement the "maintenance set ada" (prefix) command. */
343
344static void
981a3fb3 345maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 346{
635c7e8a
TT
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
c6044dd1
JB
349}
350
351/* Implement the "maintenance show ada" (prefix) command. */
352
353static void
981a3fb3 354maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
355{
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357}
358
359/* The "maintenance ada set/show ignore-descriptive-type" value. */
360
491144b5 361static bool ada_ignore_descriptive_types_p = false;
c6044dd1 362
e802dbe0
JB
363 /* Inferior-specific data. */
364
365/* Per-inferior data for this module. */
366
367struct ada_inferior_data
368{
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
f37b313d 373 struct type *tsd_type = nullptr;
3eecfa55
JB
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
f37b313d 378 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
379};
380
381/* Our key to this module's inferior data. */
f37b313d 382static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
383
384/* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392static struct ada_inferior_data *
393get_ada_inferior_data (struct inferior *inf)
394{
395 struct ada_inferior_data *data;
396
f37b313d 397 data = ada_inferior_data.get (inf);
e802dbe0 398 if (data == NULL)
f37b313d 399 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
400
401 return data;
402}
403
404/* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407static void
408ada_inferior_exit (struct inferior *inf)
409{
f37b313d 410 ada_inferior_data.clear (inf);
e802dbe0
JB
411}
412
ee01b665
JB
413
414 /* program-space-specific data. */
415
416/* This module's per-program-space data. */
417struct ada_pspace_data
418{
f37b313d
TT
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
ee01b665 425 /* The Ada symbol cache. */
f37b313d 426 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
427};
428
429/* Key to our per-program-space data. */
f37b313d 430static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
431
432/* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437static struct ada_pspace_data *
438get_ada_pspace_data (struct program_space *pspace)
439{
440 struct ada_pspace_data *data;
441
f37b313d 442 data = ada_pspace_data_handle.get (pspace);
ee01b665 443 if (data == NULL)
f37b313d 444 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
445
446 return data;
447}
448
4c4b4cd2
PH
449 /* Utilities */
450
720d1a40 451/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 452 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478static struct type *
479ada_typedef_target_type (struct type *type)
480{
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484}
485
41d27058
JB
486/* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490static const char *
491ada_unqualified_name (const char *decoded_name)
492{
2b0f535a
JB
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
41d27058
JB
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509}
510
39e7af3e 511/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 512
39e7af3e 513static std::string
41d27058
JB
514add_angle_brackets (const char *str)
515{
39e7af3e 516 return string_printf ("<%s>", str);
41d27058 517}
96d887e8 518
67cb5b2d 519static const char *
4c4b4cd2
PH
520ada_get_gdb_completer_word_break_characters (void)
521{
522 return ada_completer_word_break_characters;
523}
524
e79af960
JB
525/* Print an array element index using the Ada syntax. */
526
527static void
528ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 529 const struct value_print_options *options)
e79af960 530{
79a45b7d 531 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
532 fprintf_filtered (stream, " => ");
533}
534
e2b7af72
JB
535/* la_watch_location_expression for Ada. */
536
537gdb::unique_xmalloc_ptr<char>
538ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539{
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544}
545
f27cf670 546/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 548 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 549
f27cf670
AS
550void *
551grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 552{
d2e4a39e
AS
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
4c4b4cd2 557 *size = min_size;
f27cf670 558 vect = xrealloc (vect, *size * element_size);
d2e4a39e 559 }
f27cf670 560 return vect;
14f9c5c9
AS
561}
562
563/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 564 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
565
566static int
ebf56fd3 567field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
568{
569 int len = strlen (target);
5b4ee69b 570
d2e4a39e 571 return
4c4b4cd2
PH
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
61012eef 574 || (startswith (field_name + len, "___")
76a01679
JB
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
14f9c5c9
AS
577}
578
579
872c8b51
JB
580/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
587
588int
589ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591{
592 int fieldno;
872c8b51
JB
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
597 return fieldno;
598
599 if (!maybe_missing)
323e0a4a 600 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 601 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
602
603 return -1;
604}
605
606/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
607
608int
d2e4a39e 609ada_name_prefix_len (const char *name)
14f9c5c9
AS
610{
611 if (name == NULL)
612 return 0;
d2e4a39e 613 else
14f9c5c9 614 {
d2e4a39e 615 const char *p = strstr (name, "___");
5b4ee69b 616
14f9c5c9 617 if (p == NULL)
4c4b4cd2 618 return strlen (name);
14f9c5c9 619 else
4c4b4cd2 620 return p - name;
14f9c5c9
AS
621 }
622}
623
4c4b4cd2
PH
624/* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
14f9c5c9 627static int
d2e4a39e 628is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
629{
630 int len1, len2;
5b4ee69b 631
14f9c5c9
AS
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
4c4b4cd2 636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
637}
638
4c4b4cd2
PH
639/* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
14f9c5c9 641
d2e4a39e 642static struct value *
4c4b4cd2 643coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 644{
61ee279c 645 type = ada_check_typedef (type);
df407dfe 646 if (value_type (val) == type)
4c4b4cd2 647 return val;
d2e4a39e 648 else
14f9c5c9 649 {
4c4b4cd2
PH
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
c1b5a1a6 654 ada_ensure_varsize_limit (type);
4c4b4cd2 655
41e8491f
JK
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
9a0dc9e3 662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 663 }
74bcbdf3 664 set_value_component_location (result, val);
9bbda503
AC
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
14f9c5c9
AS
669 return result;
670 }
671}
672
fc1a4b47
AC
673static const gdb_byte *
674cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
675{
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680}
681
682static CORE_ADDR
ebf56fd3 683cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
684{
685 if (address == 0)
686 return 0;
d2e4a39e 687 else
14f9c5c9
AS
688 return address + offset;
689}
690
4c4b4cd2
PH
691/* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
a2249542 695
77109804
AC
696/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
a0b31db1 698static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 699
14f9c5c9 700static void
a2249542 701lim_warning (const char *format, ...)
14f9c5c9 702{
a2249542 703 va_list args;
a2249542 704
5b4ee69b 705 va_start (args, format);
4c4b4cd2
PH
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
a2249542
MK
708 vwarning (format, args);
709
710 va_end (args);
4c4b4cd2
PH
711}
712
714e53ab
PH
713/* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
c1b5a1a6
JB
717void
718ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
719{
720 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 721 error (_("object size is larger than varsize-limit"));
714e53ab
PH
722}
723
0963b4bd 724/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 725static LONGEST
c3e5cd34 726max_of_size (int size)
4c4b4cd2 727{
76a01679 728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 729
76a01679 730 return top_bit | (top_bit - 1);
4c4b4cd2
PH
731}
732
0963b4bd 733/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 734static LONGEST
c3e5cd34 735min_of_size (int size)
4c4b4cd2 736{
c3e5cd34 737 return -max_of_size (size) - 1;
4c4b4cd2
PH
738}
739
0963b4bd 740/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 741static ULONGEST
c3e5cd34 742umax_of_size (int size)
4c4b4cd2 743{
76a01679 744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 745
76a01679 746 return top_bit | (top_bit - 1);
4c4b4cd2
PH
747}
748
0963b4bd 749/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
750static LONGEST
751max_of_type (struct type *t)
4c4b4cd2 752{
c3e5cd34
PH
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757}
758
0963b4bd 759/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
760static LONGEST
761min_of_type (struct type *t)
762{
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
767}
768
769/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 772{
c3345124 773 type = resolve_dynamic_type (type, NULL, 0);
76a01679 774 switch (TYPE_CODE (type))
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_HIGH_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return max_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
787 }
788}
789
14e75d8e 790/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_LOW_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return min_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
808 }
809}
810
811/* The identity on non-range types. For range types, the underlying
76a01679 812 non-range scalar type. */
4c4b4cd2
PH
813
814static struct type *
18af8284 815get_base_type (struct type *type)
4c4b4cd2
PH
816{
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
76a01679
JB
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
4c4b4cd2
PH
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
14f9c5c9 824}
41246937
JB
825
826/* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831struct value *
832ada_get_decoded_value (struct value *value)
833{
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849}
850
851/* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856struct type *
857ada_get_decoded_type (struct type *type)
858{
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863}
864
4c4b4cd2 865\f
76a01679 866
4c4b4cd2 867 /* Language Selection */
14f9c5c9
AS
868
869/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 870 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 871
14f9c5c9 872enum language
ccefe4c4 873ada_update_initial_language (enum language lang)
14f9c5c9 874{
cafb3438 875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 876 return language_ada;
14f9c5c9
AS
877
878 return lang;
879}
96d887e8
PH
880
881/* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885char *
886ada_main_name (void)
887{
3b7344d5 888 struct bound_minimal_symbol msym;
e83e4e24 889 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 890
96d887e8
PH
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
3b7344d5 898 if (msym.minsym != NULL)
96d887e8 899 {
f9bc20b9
JB
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
77e371c0 903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 904 if (main_program_name_addr == 0)
323e0a4a 905 error (_("Invalid address for Ada main program name."));
96d887e8 906
f9bc20b9
JB
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
e83e4e24 912 return main_program_name.get ();
96d887e8
PH
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917}
14f9c5c9 918\f
4c4b4cd2 919 /* Symbols */
d2e4a39e 920
4c4b4cd2
PH
921/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
14f9c5c9 923
d2e4a39e
AS
924const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
14f9c5c9
AS
947};
948
b5ec771e
PA
949/* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
4c4b4cd2 953
b5ec771e
PA
954static char *
955ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 956{
4c4b4cd2
PH
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
d2e4a39e 959 const char *p;
14f9c5c9 960 int k;
d2e4a39e 961
4c4b4cd2 962 if (decoded == NULL)
14f9c5c9
AS
963 return NULL;
964
4c4b4cd2
PH
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
14f9c5c9
AS
967
968 k = 0;
4c4b4cd2 969 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 970 {
cdc7bb92 971 if (*p == '.')
4c4b4cd2
PH
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
14f9c5c9 976 else if (*p == '"')
4c4b4cd2
PH
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
1265e4aa 981 mapping->encoded != NULL
61012eef 982 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
983 ;
984 if (mapping->encoded == NULL)
b5ec771e
PA
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
4c4b4cd2
PH
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
d2e4a39e 995 else
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
14f9c5c9
AS
1000 }
1001
4c4b4cd2
PH
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
14f9c5c9
AS
1004}
1005
b5ec771e
PA
1006/* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009char *
1010ada_encode (const char *decoded)
1011{
1012 return ada_encode_1 (decoded, true);
1013}
1014
14f9c5c9 1015/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
d2e4a39e
AS
1019char *
1020ada_fold_name (const char *name)
14f9c5c9 1021{
d2e4a39e 1022 static char *fold_buffer = NULL;
14f9c5c9
AS
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
d2e4a39e 1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1027
1028 if (name[0] == '\'')
1029 {
d2e4a39e
AS
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1032 }
1033 else
1034 {
1035 int i;
5b4ee69b 1036
14f9c5c9 1037 for (i = 0; i <= len; i += 1)
4c4b4cd2 1038 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1039 }
1040
1041 return fold_buffer;
1042}
1043
529cad9c
PH
1044/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046static int
1047is_lower_alphanum (const char c)
1048{
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050}
1051
c90092fe
JB
1052/* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
29480c32
JB
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
c90092fe 1059
29480c32
JB
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064static void
1065ada_remove_trailing_digits (const char *encoded, int *len)
1066{
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
5b4ee69b 1070
29480c32
JB
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
61012eef 1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1078 *len = i - 2;
61012eef 1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1080 *len = i - 1;
1081 }
1082}
1083
1084/* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087static void
1088ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089{
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
0963b4bd 1095 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104}
1105
1106/* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1108 replaced by ENCODED. */
14f9c5c9 1109
f945dedf 1110std::string
4c4b4cd2 1111ada_decode (const char *encoded)
14f9c5c9
AS
1112{
1113 int i, j;
1114 int len0;
d2e4a39e 1115 const char *p;
14f9c5c9 1116 int at_start_name;
f945dedf 1117 std::string decoded;
d2e4a39e 1118
0d81f350
JG
1119 /* With function descriptors on PPC64, the value of a symbol named
1120 ".FN", if it exists, is the entry point of the function "FN". */
1121 if (encoded[0] == '.')
1122 encoded += 1;
1123
29480c32
JB
1124 /* The name of the Ada main procedure starts with "_ada_".
1125 This prefix is not part of the decoded name, so skip this part
1126 if we see this prefix. */
61012eef 1127 if (startswith (encoded, "_ada_"))
4c4b4cd2 1128 encoded += 5;
14f9c5c9 1129
29480c32
JB
1130 /* If the name starts with '_', then it is not a properly encoded
1131 name, so do not attempt to decode it. Similarly, if the name
1132 starts with '<', the name should not be decoded. */
4c4b4cd2 1133 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1134 goto Suppress;
1135
4c4b4cd2 1136 len0 = strlen (encoded);
4c4b4cd2 1137
29480c32
JB
1138 ada_remove_trailing_digits (encoded, &len0);
1139 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1140
4c4b4cd2
PH
1141 /* Remove the ___X.* suffix if present. Do not forget to verify that
1142 the suffix is located before the current "end" of ENCODED. We want
1143 to avoid re-matching parts of ENCODED that have previously been
1144 marked as discarded (by decrementing LEN0). */
1145 p = strstr (encoded, "___");
1146 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1147 {
1148 if (p[3] == 'X')
4c4b4cd2 1149 len0 = p - encoded;
14f9c5c9 1150 else
4c4b4cd2 1151 goto Suppress;
14f9c5c9 1152 }
4c4b4cd2 1153
29480c32
JB
1154 /* Remove any trailing TKB suffix. It tells us that this symbol
1155 is for the body of a task, but that information does not actually
1156 appear in the decoded name. */
1157
61012eef 1158 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1159 len0 -= 3;
76a01679 1160
a10967fa
JB
1161 /* Remove any trailing TB suffix. The TB suffix is slightly different
1162 from the TKB suffix because it is used for non-anonymous task
1163 bodies. */
1164
61012eef 1165 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1166 len0 -= 2;
1167
29480c32
JB
1168 /* Remove trailing "B" suffixes. */
1169 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1170
61012eef 1171 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1172 len0 -= 1;
1173
4c4b4cd2 1174 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1175
f945dedf 1176 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1177
29480c32
JB
1178 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1179
4c4b4cd2 1180 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1181 {
4c4b4cd2
PH
1182 i = len0 - 2;
1183 while ((i >= 0 && isdigit (encoded[i]))
1184 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1185 i -= 1;
1186 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1187 len0 = i - 1;
1188 else if (encoded[i] == '$')
1189 len0 = i;
d2e4a39e 1190 }
14f9c5c9 1191
29480c32
JB
1192 /* The first few characters that are not alphabetic are not part
1193 of any encoding we use, so we can copy them over verbatim. */
1194
4c4b4cd2
PH
1195 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1196 decoded[j] = encoded[i];
14f9c5c9
AS
1197
1198 at_start_name = 1;
1199 while (i < len0)
1200 {
29480c32 1201 /* Is this a symbol function? */
4c4b4cd2
PH
1202 if (at_start_name && encoded[i] == 'O')
1203 {
1204 int k;
5b4ee69b 1205
4c4b4cd2
PH
1206 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1207 {
1208 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1209 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1210 op_len - 1) == 0)
1211 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1212 {
f945dedf 1213 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1214 at_start_name = 0;
1215 i += op_len;
1216 j += strlen (ada_opname_table[k].decoded);
1217 break;
1218 }
1219 }
1220 if (ada_opname_table[k].encoded != NULL)
1221 continue;
1222 }
14f9c5c9
AS
1223 at_start_name = 0;
1224
529cad9c
PH
1225 /* Replace "TK__" with "__", which will eventually be translated
1226 into "." (just below). */
1227
61012eef 1228 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1229 i += 2;
529cad9c 1230
29480c32
JB
1231 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1232 be translated into "." (just below). These are internal names
1233 generated for anonymous blocks inside which our symbol is nested. */
1234
1235 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1236 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1237 && isdigit (encoded [i+4]))
1238 {
1239 int k = i + 5;
1240
1241 while (k < len0 && isdigit (encoded[k]))
1242 k++; /* Skip any extra digit. */
1243
1244 /* Double-check that the "__B_{DIGITS}+" sequence we found
1245 is indeed followed by "__". */
1246 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1247 i = k;
1248 }
1249
529cad9c
PH
1250 /* Remove _E{DIGITS}+[sb] */
1251
1252 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1253 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1254 one implements the actual entry code, and has a suffix following
1255 the convention above; the second one implements the barrier and
1256 uses the same convention as above, except that the 'E' is replaced
1257 by a 'B'.
1258
1259 Just as above, we do not decode the name of barrier functions
1260 to give the user a clue that the code he is debugging has been
1261 internally generated. */
1262
1263 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1264 && isdigit (encoded[i+2]))
1265 {
1266 int k = i + 3;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++;
1270
1271 if (k < len0
1272 && (encoded[k] == 'b' || encoded[k] == 's'))
1273 {
1274 k++;
1275 /* Just as an extra precaution, make sure that if this
1276 suffix is followed by anything else, it is a '_'.
1277 Otherwise, we matched this sequence by accident. */
1278 if (k == len0
1279 || (k < len0 && encoded[k] == '_'))
1280 i = k;
1281 }
1282 }
1283
1284 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1285 the GNAT front-end in protected object subprograms. */
1286
1287 if (i < len0 + 3
1288 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1289 {
1290 /* Backtrack a bit up until we reach either the begining of
1291 the encoded name, or "__". Make sure that we only find
1292 digits or lowercase characters. */
1293 const char *ptr = encoded + i - 1;
1294
1295 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1296 ptr--;
1297 if (ptr < encoded
1298 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1299 i++;
1300 }
1301
4c4b4cd2
PH
1302 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1303 {
29480c32
JB
1304 /* This is a X[bn]* sequence not separated from the previous
1305 part of the name with a non-alpha-numeric character (in other
1306 words, immediately following an alpha-numeric character), then
1307 verify that it is placed at the end of the encoded name. If
1308 not, then the encoding is not valid and we should abort the
1309 decoding. Otherwise, just skip it, it is used in body-nested
1310 package names. */
4c4b4cd2
PH
1311 do
1312 i += 1;
1313 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1314 if (i < len0)
1315 goto Suppress;
1316 }
cdc7bb92 1317 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1318 {
29480c32 1319 /* Replace '__' by '.'. */
4c4b4cd2
PH
1320 decoded[j] = '.';
1321 at_start_name = 1;
1322 i += 2;
1323 j += 1;
1324 }
14f9c5c9 1325 else
4c4b4cd2 1326 {
29480c32
JB
1327 /* It's a character part of the decoded name, so just copy it
1328 over. */
4c4b4cd2
PH
1329 decoded[j] = encoded[i];
1330 i += 1;
1331 j += 1;
1332 }
14f9c5c9 1333 }
f945dedf 1334 decoded.resize (j);
14f9c5c9 1335
29480c32
JB
1336 /* Decoded names should never contain any uppercase character.
1337 Double-check this, and abort the decoding if we find one. */
1338
f945dedf 1339 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1340 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1341 goto Suppress;
1342
f945dedf 1343 return decoded;
14f9c5c9
AS
1344
1345Suppress:
4c4b4cd2 1346 if (encoded[0] == '<')
f945dedf 1347 decoded = encoded;
14f9c5c9 1348 else
f945dedf 1349 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1350 return decoded;
1351
1352}
1353
1354/* Table for keeping permanent unique copies of decoded names. Once
1355 allocated, names in this table are never released. While this is a
1356 storage leak, it should not be significant unless there are massive
1357 changes in the set of decoded names in successive versions of a
1358 symbol table loaded during a single session. */
1359static struct htab *decoded_names_store;
1360
1361/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1362 in the language-specific part of GSYMBOL, if it has not been
1363 previously computed. Tries to save the decoded name in the same
1364 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1365 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1366 GSYMBOL).
4c4b4cd2
PH
1367 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1368 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1369 when a decoded name is cached in it. */
4c4b4cd2 1370
45e6c716 1371const char *
f85f34ed 1372ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1373{
f85f34ed
TT
1374 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1375 const char **resultp =
615b3f62 1376 &gsymbol->language_specific.demangled_name;
5b4ee69b 1377
f85f34ed 1378 if (!gsymbol->ada_mangled)
4c4b4cd2 1379 {
f945dedf 1380 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1381 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1382
f85f34ed 1383 gsymbol->ada_mangled = 1;
5b4ee69b 1384
f85f34ed 1385 if (obstack != NULL)
f945dedf 1386 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1387 else
76a01679 1388 {
f85f34ed
TT
1389 /* Sometimes, we can't find a corresponding objfile, in
1390 which case, we put the result on the heap. Since we only
1391 decode when needed, we hope this usually does not cause a
1392 significant memory leak (FIXME). */
1393
76a01679 1394 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1395 decoded.c_str (), INSERT);
5b4ee69b 1396
76a01679 1397 if (*slot == NULL)
f945dedf 1398 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1399 *resultp = *slot;
1400 }
4c4b4cd2 1401 }
14f9c5c9 1402
4c4b4cd2
PH
1403 return *resultp;
1404}
76a01679 1405
2c0b251b 1406static char *
76a01679 1407ada_la_decode (const char *encoded, int options)
4c4b4cd2 1408{
f945dedf 1409 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1410}
1411
8b302db8
TT
1412/* Implement la_sniff_from_mangled_name for Ada. */
1413
1414static int
1415ada_sniff_from_mangled_name (const char *mangled, char **out)
1416{
f945dedf 1417 std::string demangled = ada_decode (mangled);
8b302db8
TT
1418
1419 *out = NULL;
1420
f945dedf 1421 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1422 {
1423 /* Set the gsymbol language to Ada, but still return 0.
1424 Two reasons for that:
1425
1426 1. For Ada, we prefer computing the symbol's decoded name
1427 on the fly rather than pre-compute it, in order to save
1428 memory (Ada projects are typically very large).
1429
1430 2. There are some areas in the definition of the GNAT
1431 encoding where, with a bit of bad luck, we might be able
1432 to decode a non-Ada symbol, generating an incorrect
1433 demangled name (Eg: names ending with "TB" for instance
1434 are identified as task bodies and so stripped from
1435 the decoded name returned).
1436
1437 Returning 1, here, but not setting *DEMANGLED, helps us get a
1438 little bit of the best of both worlds. Because we're last,
1439 we should not affect any of the other languages that were
1440 able to demangle the symbol before us; we get to correctly
1441 tag Ada symbols as such; and even if we incorrectly tagged a
1442 non-Ada symbol, which should be rare, any routing through the
1443 Ada language should be transparent (Ada tries to behave much
1444 like C/C++ with non-Ada symbols). */
1445 return 1;
1446 }
1447
1448 return 0;
1449}
1450
14f9c5c9 1451\f
d2e4a39e 1452
4c4b4cd2 1453 /* Arrays */
14f9c5c9 1454
28c85d6c
JB
1455/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1456 generated by the GNAT compiler to describe the index type used
1457 for each dimension of an array, check whether it follows the latest
1458 known encoding. If not, fix it up to conform to the latest encoding.
1459 Otherwise, do nothing. This function also does nothing if
1460 INDEX_DESC_TYPE is NULL.
1461
1462 The GNAT encoding used to describle the array index type evolved a bit.
1463 Initially, the information would be provided through the name of each
1464 field of the structure type only, while the type of these fields was
1465 described as unspecified and irrelevant. The debugger was then expected
1466 to perform a global type lookup using the name of that field in order
1467 to get access to the full index type description. Because these global
1468 lookups can be very expensive, the encoding was later enhanced to make
1469 the global lookup unnecessary by defining the field type as being
1470 the full index type description.
1471
1472 The purpose of this routine is to allow us to support older versions
1473 of the compiler by detecting the use of the older encoding, and by
1474 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1475 we essentially replace each field's meaningless type by the associated
1476 index subtype). */
1477
1478void
1479ada_fixup_array_indexes_type (struct type *index_desc_type)
1480{
1481 int i;
1482
1483 if (index_desc_type == NULL)
1484 return;
1485 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1486
1487 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1488 to check one field only, no need to check them all). If not, return
1489 now.
1490
1491 If our INDEX_DESC_TYPE was generated using the older encoding,
1492 the field type should be a meaningless integer type whose name
1493 is not equal to the field name. */
1494 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1495 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1496 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1497 return;
1498
1499 /* Fixup each field of INDEX_DESC_TYPE. */
1500 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1501 {
0d5cff50 1502 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1503 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1504
1505 if (raw_type)
1506 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1507 }
1508}
1509
4c4b4cd2 1510/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1511
a121b7c1 1512static const char *bound_name[] = {
d2e4a39e 1513 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1514 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1515};
1516
1517/* Maximum number of array dimensions we are prepared to handle. */
1518
4c4b4cd2 1519#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1520
14f9c5c9 1521
4c4b4cd2
PH
1522/* The desc_* routines return primitive portions of array descriptors
1523 (fat pointers). */
14f9c5c9
AS
1524
1525/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1526 level of indirection, if needed. */
1527
d2e4a39e
AS
1528static struct type *
1529desc_base_type (struct type *type)
14f9c5c9
AS
1530{
1531 if (type == NULL)
1532 return NULL;
61ee279c 1533 type = ada_check_typedef (type);
720d1a40
JB
1534 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1535 type = ada_typedef_target_type (type);
1536
1265e4aa
JB
1537 if (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1540 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1541 else
1542 return type;
1543}
1544
4c4b4cd2
PH
1545/* True iff TYPE indicates a "thin" array pointer type. */
1546
14f9c5c9 1547static int
d2e4a39e 1548is_thin_pntr (struct type *type)
14f9c5c9 1549{
d2e4a39e 1550 return
14f9c5c9
AS
1551 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1552 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1553}
1554
4c4b4cd2
PH
1555/* The descriptor type for thin pointer type TYPE. */
1556
d2e4a39e
AS
1557static struct type *
1558thin_descriptor_type (struct type *type)
14f9c5c9 1559{
d2e4a39e 1560 struct type *base_type = desc_base_type (type);
5b4ee69b 1561
14f9c5c9
AS
1562 if (base_type == NULL)
1563 return NULL;
1564 if (is_suffix (ada_type_name (base_type), "___XVE"))
1565 return base_type;
d2e4a39e 1566 else
14f9c5c9 1567 {
d2e4a39e 1568 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1569
14f9c5c9 1570 if (alt_type == NULL)
4c4b4cd2 1571 return base_type;
14f9c5c9 1572 else
4c4b4cd2 1573 return alt_type;
14f9c5c9
AS
1574 }
1575}
1576
4c4b4cd2
PH
1577/* A pointer to the array data for thin-pointer value VAL. */
1578
d2e4a39e
AS
1579static struct value *
1580thin_data_pntr (struct value *val)
14f9c5c9 1581{
828292f2 1582 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1583 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1584
556bdfd4
UW
1585 data_type = lookup_pointer_type (data_type);
1586
14f9c5c9 1587 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1588 return value_cast (data_type, value_copy (val));
d2e4a39e 1589 else
42ae5230 1590 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1591}
1592
4c4b4cd2
PH
1593/* True iff TYPE indicates a "thick" array pointer type. */
1594
14f9c5c9 1595static int
d2e4a39e 1596is_thick_pntr (struct type *type)
14f9c5c9
AS
1597{
1598 type = desc_base_type (type);
1599 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1600 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1601}
1602
4c4b4cd2
PH
1603/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1604 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1605
d2e4a39e
AS
1606static struct type *
1607desc_bounds_type (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 struct type *r;
14f9c5c9
AS
1610
1611 type = desc_base_type (type);
1612
1613 if (type == NULL)
1614 return NULL;
1615 else if (is_thin_pntr (type))
1616 {
1617 type = thin_descriptor_type (type);
1618 if (type == NULL)
4c4b4cd2 1619 return NULL;
14f9c5c9
AS
1620 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1621 if (r != NULL)
61ee279c 1622 return ada_check_typedef (r);
14f9c5c9
AS
1623 }
1624 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1625 {
1626 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1627 if (r != NULL)
61ee279c 1628 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1629 }
1630 return NULL;
1631}
1632
1633/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1634 one, a pointer to its bounds data. Otherwise NULL. */
1635
d2e4a39e
AS
1636static struct value *
1637desc_bounds (struct value *arr)
14f9c5c9 1638{
df407dfe 1639 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1640
d2e4a39e 1641 if (is_thin_pntr (type))
14f9c5c9 1642 {
d2e4a39e 1643 struct type *bounds_type =
4c4b4cd2 1644 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1645 LONGEST addr;
1646
4cdfadb1 1647 if (bounds_type == NULL)
323e0a4a 1648 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1649
1650 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1651 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1652 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1654 addr = value_as_long (arr);
d2e4a39e 1655 else
42ae5230 1656 addr = value_address (arr);
14f9c5c9 1657
d2e4a39e 1658 return
4c4b4cd2
PH
1659 value_from_longest (lookup_pointer_type (bounds_type),
1660 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1661 }
1662
1663 else if (is_thick_pntr (type))
05e522ef
JB
1664 {
1665 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1666 _("Bad GNAT array descriptor"));
1667 struct type *p_bounds_type = value_type (p_bounds);
1668
1669 if (p_bounds_type
1670 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1671 {
1672 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1673
1674 if (TYPE_STUB (target_type))
1675 p_bounds = value_cast (lookup_pointer_type
1676 (ada_check_typedef (target_type)),
1677 p_bounds);
1678 }
1679 else
1680 error (_("Bad GNAT array descriptor"));
1681
1682 return p_bounds;
1683 }
14f9c5c9
AS
1684 else
1685 return NULL;
1686}
1687
4c4b4cd2
PH
1688/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1689 position of the field containing the address of the bounds data. */
1690
14f9c5c9 1691static int
d2e4a39e 1692fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1693{
1694 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1695}
1696
1697/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1698 size of the field containing the address of the bounds data. */
1699
14f9c5c9 1700static int
d2e4a39e 1701fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1702{
1703 type = desc_base_type (type);
1704
d2e4a39e 1705 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1706 return TYPE_FIELD_BITSIZE (type, 1);
1707 else
61ee279c 1708 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1709}
1710
4c4b4cd2 1711/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1712 pointer to one, the type of its array data (a array-with-no-bounds type);
1713 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1714 data. */
4c4b4cd2 1715
d2e4a39e 1716static struct type *
556bdfd4 1717desc_data_target_type (struct type *type)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
4c4b4cd2 1721 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1722 if (is_thin_pntr (type))
556bdfd4 1723 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1724 else if (is_thick_pntr (type))
556bdfd4
UW
1725 {
1726 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1727
1728 if (data_type
1729 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1730 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1731 }
1732
1733 return NULL;
14f9c5c9
AS
1734}
1735
1736/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1737 its array data. */
4c4b4cd2 1738
d2e4a39e
AS
1739static struct value *
1740desc_data (struct value *arr)
14f9c5c9 1741{
df407dfe 1742 struct type *type = value_type (arr);
5b4ee69b 1743
14f9c5c9
AS
1744 if (is_thin_pntr (type))
1745 return thin_data_pntr (arr);
1746 else if (is_thick_pntr (type))
d2e4a39e 1747 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1748 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1749 else
1750 return NULL;
1751}
1752
1753
1754/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1755 position of the field containing the address of the data. */
1756
14f9c5c9 1757static int
d2e4a39e 1758fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1759{
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1761}
1762
1763/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1764 size of the field containing the address of the data. */
1765
14f9c5c9 1766static int
d2e4a39e 1767fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1768{
1769 type = desc_base_type (type);
1770
1771 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1773 else
14f9c5c9
AS
1774 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1775}
1776
4c4b4cd2 1777/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1778 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
d2e4a39e
AS
1781static struct value *
1782desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1783{
d2e4a39e 1784 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1785 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1786}
1787
1788/* If BOUNDS is an array-bounds structure type, return the bit position
1789 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1790 bound, if WHICH is 1. The first bound is I=1. */
1791
14f9c5c9 1792static int
d2e4a39e 1793desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1794{
d2e4a39e 1795 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1796}
1797
1798/* If BOUNDS is an array-bounds structure type, return the bit field size
1799 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
76a01679 1802static int
d2e4a39e 1803desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1804{
1805 type = desc_base_type (type);
1806
d2e4a39e
AS
1807 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1808 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1809 else
1810 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1811}
1812
1813/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1814 Ith bound (numbering from 1). Otherwise, NULL. */
1815
d2e4a39e
AS
1816static struct type *
1817desc_index_type (struct type *type, int i)
14f9c5c9
AS
1818{
1819 type = desc_base_type (type);
1820
1821 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1822 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1823 else
14f9c5c9
AS
1824 return NULL;
1825}
1826
4c4b4cd2
PH
1827/* The number of index positions in the array-bounds type TYPE.
1828 Return 0 if TYPE is NULL. */
1829
14f9c5c9 1830static int
d2e4a39e 1831desc_arity (struct type *type)
14f9c5c9
AS
1832{
1833 type = desc_base_type (type);
1834
1835 if (type != NULL)
1836 return TYPE_NFIELDS (type) / 2;
1837 return 0;
1838}
1839
4c4b4cd2
PH
1840/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1841 an array descriptor type (representing an unconstrained array
1842 type). */
1843
76a01679
JB
1844static int
1845ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1846{
1847 if (type == NULL)
1848 return 0;
61ee279c 1849 type = ada_check_typedef (type);
4c4b4cd2 1850 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1851 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1852}
1853
52ce6436 1854/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1855 * to one. */
52ce6436 1856
2c0b251b 1857static int
52ce6436
PH
1858ada_is_array_type (struct type *type)
1859{
1860 while (type != NULL
1861 && (TYPE_CODE (type) == TYPE_CODE_PTR
1862 || TYPE_CODE (type) == TYPE_CODE_REF))
1863 type = TYPE_TARGET_TYPE (type);
1864 return ada_is_direct_array_type (type);
1865}
1866
4c4b4cd2 1867/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1868
14f9c5c9 1869int
4c4b4cd2 1870ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1871{
1872 if (type == NULL)
1873 return 0;
61ee279c 1874 type = ada_check_typedef (type);
14f9c5c9 1875 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1876 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1877 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1878 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1879}
1880
4c4b4cd2
PH
1881/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1882
14f9c5c9 1883int
4c4b4cd2 1884ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1885{
556bdfd4 1886 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1887
1888 if (type == NULL)
1889 return 0;
61ee279c 1890 type = ada_check_typedef (type);
556bdfd4
UW
1891 return (data_type != NULL
1892 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1893 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1894}
1895
1896/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1897 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1898 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1899 is still needed. */
1900
14f9c5c9 1901int
ebf56fd3 1902ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1903{
d2e4a39e 1904 return
14f9c5c9
AS
1905 type != NULL
1906 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1907 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1908 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1909 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1910}
1911
1912
4c4b4cd2 1913/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1914 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1915 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1916 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1917 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1918 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1919 a descriptor. */
d2e4a39e
AS
1920struct type *
1921ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1925
df407dfe
AC
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
d2e4a39e
AS
1928
1929 if (!bounds)
ad82864c
JB
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
14f9c5c9
AS
1940 else
1941 {
d2e4a39e 1942 struct type *elt_type;
14f9c5c9 1943 int arity;
d2e4a39e 1944 struct value *descriptor;
14f9c5c9 1945
df407dfe
AC
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
14f9c5c9 1948
d2e4a39e 1949 if (elt_type == NULL || arity == 0)
df407dfe 1950 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1951
1952 descriptor = desc_bounds (arr);
d2e4a39e 1953 if (value_as_long (descriptor) == 0)
4c4b4cd2 1954 return NULL;
d2e4a39e 1955 while (arity > 0)
4c4b4cd2 1956 {
e9bb382b
UW
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1961
5b4ee69b 1962 arity -= 1;
0c9c3474
SA
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
4c4b4cd2 1966 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
4c4b4cd2 1988 }
14f9c5c9
AS
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992}
1993
1994/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
d2e4a39e
AS
1999struct value *
2000ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2001{
df407dfe 2002 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2003 {
d2e4a39e 2004 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2005
14f9c5c9 2006 if (arrType == NULL)
4c4b4cd2 2007 return NULL;
14f9c5c9
AS
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
ad82864c
JB
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2012 else
2013 return arr;
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2018 be ARR itself if it already is in the proper form). */
2019
720d1a40 2020struct value *
d2e4a39e 2021ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2026
14f9c5c9 2027 if (arrVal == NULL)
323e0a4a 2028 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2030 return value_ind (arrVal);
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
d2e4a39e 2034 else
14f9c5c9
AS
2035 return arr;
2036}
2037
2038/* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2040 packing). For other types, is the identity. */
2041
d2e4a39e
AS
2042struct type *
2043ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2044{
ad82864c
JB
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
17280b9f
UW
2047
2048 if (ada_is_array_descriptor_type (type))
556bdfd4 2049 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2050
2051 return type;
14f9c5c9
AS
2052}
2053
4c4b4cd2
PH
2054/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
ad82864c
JB
2056static int
2057ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2058{
2059 if (type == NULL)
2060 return 0;
4c4b4cd2 2061 type = desc_base_type (type);
61ee279c 2062 type = ada_check_typedef (type);
d2e4a39e 2063 return
14f9c5c9
AS
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066}
2067
ad82864c
JB
2068/* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071int
2072ada_is_constrained_packed_array_type (struct type *type)
2073{
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076}
2077
2078/* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081static int
2082ada_is_unconstrained_packed_array_type (struct type *type)
2083{
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086}
2087
2088/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091static long
2092decode_packed_array_bitsize (struct type *type)
2093{
0d5cff50
DE
2094 const char *raw_name;
2095 const char *tail;
ad82864c
JB
2096 long bits;
2097
720d1a40
JB
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
720d1a40 2112 gdb_assert (tail != NULL);
ad82864c
JB
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122}
2123
14f9c5c9
AS
2124/* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
4c4b4cd2 2140
d2e4a39e 2141static struct type *
ad82864c 2142constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2143{
d2e4a39e
AS
2144 struct type *new_elt_type;
2145 struct type *new_type;
99b1c762
JB
2146 struct type *index_type_desc;
2147 struct type *index_type;
14f9c5c9
AS
2148 LONGEST low_bound, high_bound;
2149
61ee279c 2150 type = ada_check_typedef (type);
14f9c5c9
AS
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
99b1c762
JB
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
e9bb382b 2161 new_type = alloc_type_copy (type);
ad82864c
JB
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
99b1c762 2165 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
4a46959e
JB
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2178 TYPE_LENGTH (new_type) =
4c4b4cd2 2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2180 }
2181
876cecd0 2182 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2183 return new_type;
2184}
2185
ad82864c
JB
2186/* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2188
d2e4a39e 2189static struct type *
ad82864c 2190decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2191{
0d5cff50 2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2193 char *name;
0d5cff50 2194 const char *tail;
d2e4a39e 2195 struct type *shadow_type;
14f9c5c9 2196 long bits;
14f9c5c9 2197
727e3d2e
JB
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2206 type = desc_base_type (type);
2207
14f9c5c9
AS
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
b4ba55a1
JB
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
14f9c5c9 2214 {
323e0a4a 2215 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2216 return NULL;
2217 }
f168693b 2218 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
0963b4bd
MS
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
d2e4a39e 2226
ad82864c
JB
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2229}
2230
ad82864c
JB
2231/* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
4c4b4cd2 2235 type length is set appropriately. */
14f9c5c9 2236
d2e4a39e 2237static struct value *
ad82864c 2238decode_constrained_packed_array (struct value *arr)
14f9c5c9 2239{
4c4b4cd2 2240 struct type *type;
14f9c5c9 2241
11aa919a
PMR
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
828292f2 2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2251 arr = value_ind (arr);
4c4b4cd2 2252
ad82864c 2253 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2254 if (type == NULL)
2255 {
323e0a4a 2256 error (_("can't unpack array"));
14f9c5c9
AS
2257 return NULL;
2258 }
61ee279c 2259
50810684 2260 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2261 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
df407dfe 2270 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
df407dfe 2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
4c4b4cd2 2285 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2286}
2287
2288
2289/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2290 given in IND. ARR must be a simple array. */
14f9c5c9 2291
d2e4a39e
AS
2292static struct value *
2293value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2294{
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
d2e4a39e
AS
2298 struct type *elt_type;
2299 struct value *v;
14f9c5c9
AS
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
df407dfe 2303 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2304 for (i = 0; i < arity; i += 1)
14f9c5c9 2305 {
d2e4a39e 2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
0963b4bd
MS
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
14f9c5c9 2311 else
4c4b4cd2
PH
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
323e0a4a 2319 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2320 lowerbound = upperbound = 0;
2321 }
2322
3cb382c9 2323 idx = pos_atr (ind[i]);
4c4b4cd2 2324 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
4c4b4cd2
PH
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2330 }
14f9c5c9
AS
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2336 bits, elt_type);
14f9c5c9
AS
2337 return v;
2338}
2339
4c4b4cd2 2340/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2341
2342static int
d2e4a39e 2343has_negatives (struct type *type)
14f9c5c9 2344{
d2e4a39e
AS
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
4e962e74 2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2353 }
14f9c5c9 2354}
d2e4a39e 2355
f93fca70 2356/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2358 the unpacked buffer.
14f9c5c9 2359
5b639dea
JB
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
f93fca70
JB
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
14f9c5c9 2365
f93fca70 2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2367
f93fca70
JB
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370static void
2371ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375{
a1c95e6b
JB
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
a1c95e6b
JB
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
4c4b4cd2 2386 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2387 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2388 unsigned char sign;
a1c95e6b 2389
4c4b4cd2
PH
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
f93fca70 2392 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2393
5b639dea
JB
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
14f9c5c9 2400 srcBitsLeft = bit_size;
086ca51f 2401 src_bytes_left = src_len;
f93fca70 2402 unpacked_bytes_left = unpacked_len;
14f9c5c9 2403 sign = 0;
f93fca70
JB
2404
2405 if (is_big_endian)
14f9c5c9 2406 {
086ca51f 2407 src_idx = src_len - 1;
f93fca70
JB
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2410 sign = ~0;
d2e4a39e
AS
2411
2412 unusedLS =
4c4b4cd2
PH
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
14f9c5c9 2415
f93fca70
JB
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
4c4b4cd2
PH
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
086ca51f
JB
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2430 }
14f9c5c9 2431 }
d2e4a39e 2432 else
14f9c5c9
AS
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
086ca51f 2436 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
f93fca70 2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2441 sign = ~0;
14f9c5c9 2442 }
d2e4a39e 2443
14f9c5c9 2444 accum = 0;
086ca51f 2445 while (src_bytes_left > 0)
14f9c5c9
AS
2446 {
2447 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2448 part of the value. */
d2e4a39e 2449 unsigned int unusedMSMask =
4c4b4cd2
PH
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
14f9c5c9 2453 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2454
d2e4a39e 2455 accum |=
086ca51f 2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2457 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2458 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2459 {
db297a65 2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
4c4b4cd2 2465 }
14f9c5c9
AS
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
086ca51f
JB
2468 src_bytes_left -= 1;
2469 src_idx += delta;
14f9c5c9 2470 }
086ca51f 2471 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2472 {
2473 accum |= sign << accumSize;
db297a65 2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2475 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2476 if (accumSize < 0)
2477 accumSize = 0;
14f9c5c9 2478 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
14f9c5c9 2481 }
f93fca70
JB
2482}
2483
2484/* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493struct value *
2494ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497{
2498 struct value *v;
bfb1c796 2499 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2500 gdb_byte *unpacked;
220475ed 2501 const int is_scalar = is_scalar_type (type);
d0a9e810 2502 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2503 gdb::byte_vector staging;
f93fca70
JB
2504
2505 type = ada_check_typedef (type);
2506
d0a9e810 2507 if (obj == NULL)
bfb1c796 2508 src = valaddr + offset;
d0a9e810 2509 else
bfb1c796 2510 src = value_contents (obj) + offset;
d0a9e810
JB
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
d0a9e810
JB
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2525 staging.data (), staging.size (),
d0a9e810
JB
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
d5722aa2 2528 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
d0a9e810
JB
2540 }
2541
f93fca70
JB
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = valaddr + offset;
f93fca70
JB
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
0cafa88c 2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2550 gdb_byte *buf;
0cafa88c 2551
f93fca70 2552 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
f93fca70
JB
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
bfb1c796 2560 src = value_contents (obj) + offset;
f93fca70
JB
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
bfb1c796 2583 unpacked = value_contents_writeable (v);
f93fca70
JB
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
d5722aa2 2591 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2592 {
d0a9e810
JB
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
d5722aa2 2596 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2597 }
d0a9e810
JB
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2602
14f9c5c9
AS
2603 return v;
2604}
d2e4a39e 2605
14f9c5c9
AS
2606/* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2609 floating-point or non-scalar types. */
14f9c5c9 2610
d2e4a39e
AS
2611static struct value *
2612ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2613{
df407dfe
AC
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
14f9c5c9 2616
52ce6436
PH
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
88e3b34b 2625 if (!deprecated_value_modifiable (toval))
323e0a4a 2626 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2627
d2e4a39e 2628 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2629 && bits > 0
d2e4a39e 2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2632 {
df407dfe
AC
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2635 int from_size;
224c3ddb 2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2637 struct value *val;
42ae5230 2638 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2641 fromval = value_cast (type, fromval);
14f9c5c9 2642
52ce6436 2643 read_memory (to_addr, buffer, len);
aced2898
PH
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2647
2648 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
972daa01 2655 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2656
14f9c5c9 2657 val = value_copy (toval);
0fd88904 2658 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2659 TYPE_LENGTH (type));
04624583 2660 deprecated_set_value_type (val, type);
d2e4a39e 2661
14f9c5c9
AS
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666}
2667
2668
7c512744
JB
2669/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
52ce6436
PH
2680static void
2681value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683{
2684 LONGEST offset_in_container =
42ae5230 2685 (LONGEST) (value_address (component) - value_address (container));
7c512744 2686 int bit_offset_in_container =
52ce6436
PH
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
7c512744 2689
52ce6436
PH
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
50810684 2697 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
a99bc3d2
JB
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2a62dfa9 2709 }
52ce6436 2710 else
a99bc3d2
JB
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
7c512744
JB
2714}
2715
736ade86
XR
2716/* Determine if TYPE is an access to an unconstrained array. */
2717
d91e9ea8 2718bool
736ade86
XR
2719ada_is_access_to_unconstrained_array (struct type *type)
2720{
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723}
2724
4c4b4cd2
PH
2725/* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2727 thereto. */
2728
d2e4a39e
AS
2729struct value *
2730ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2731{
2732 int k;
d2e4a39e
AS
2733 struct value *elt;
2734 struct type *elt_type;
14f9c5c9
AS
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
df407dfe 2738 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
b9c50e9a
XR
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
14f9c5c9 2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2749
2497b498 2750 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2771 }
b9c50e9a 2772
14f9c5c9
AS
2773 return elt;
2774}
2775
deede10c
JB
2776/* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
14f9c5c9 2787
2c0b251b 2788static struct value *
deede10c 2789ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2790{
2791 int k;
919e6dbe 2792 struct value *array_ind = ada_value_ind (arr);
deede10c 2793 struct type *type
919e6dbe
PMR
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
aa715135 2803 struct value *lwb_value;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2806 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2808 value_copy (arr));
14f9c5c9 2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816}
2817
0b5d8877 2818/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
0b5d8877 2822static struct value *
f5938064
JG
2823ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
0b5d8877 2825{
b0dd7688 2826 struct type *type0 = ada_check_typedef (type);
aa715135 2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2828 struct type *index_type
aa715135 2829 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
5b4ee69b 2845
aa715135
JG
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2849 return value_at_lazy (slice_type, base);
0b5d8877
PH
2850}
2851
2852
2853static struct value *
2854ada_value_slice (struct value *array, int low, int high)
2855{
b0dd7688 2856 struct type *type = ada_check_typedef (value_type (array));
aa715135 2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2864 LONGEST low_pos, high_pos;
5b4ee69b 2865
aa715135
JG
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2876}
2877
14f9c5c9
AS
2878/* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2881 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2882
2883int
d2e4a39e 2884ada_array_arity (struct type *type)
14f9c5c9
AS
2885{
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
d2e4a39e 2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2895 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2898 {
4c4b4cd2 2899 arity += 1;
61ee279c 2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2901 }
d2e4a39e 2902
14f9c5c9
AS
2903 return arity;
2904}
2905
2906/* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2909 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2910
d2e4a39e
AS
2911struct type *
2912ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2913{
2914 type = desc_base_type (type);
2915
d2e4a39e 2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2917 {
2918 int k;
d2e4a39e 2919 struct type *p_array_type;
14f9c5c9 2920
556bdfd4 2921 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
4c4b4cd2 2925 return NULL;
d2e4a39e 2926
4c4b4cd2 2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2928 if (nindices >= 0 && k > nindices)
4c4b4cd2 2929 k = nindices;
d2e4a39e 2930 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2931 {
61ee279c 2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2933 k -= 1;
2934 }
14f9c5c9
AS
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
14f9c5c9
AS
2944 return type;
2945 }
2946
2947 return NULL;
2948}
2949
4c4b4cd2 2950/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
14f9c5c9 2955
1eea4ebd
UW
2956static struct type *
2957ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2958{
4c4b4cd2
PH
2959 struct type *result_type;
2960
14f9c5c9
AS
2961 type = desc_base_type (type);
2962
1eea4ebd
UW
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2965
4c4b4cd2 2966 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
4c4b4cd2 2971 type = TYPE_TARGET_TYPE (type);
262452ec 2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2975 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
14f9c5c9 2978 }
d2e4a39e 2979 else
1eea4ebd
UW
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
14f9c5c9
AS
2987}
2988
2989/* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
14f9c5c9 2994
abb68b3e 2995static LONGEST
fb5e3d5c 2996ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2997{
8a48ac95 2998 struct type *type, *index_type_desc, *index_type;
1ce677a4 2999 int i;
262452ec
JK
3000
3001 gdb_assert (which == 0 || which == 1);
14f9c5c9 3002
ad82864c
JB
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3005
4c4b4cd2 3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3007 return (LONGEST) - which;
14f9c5c9
AS
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
bafffb51
JB
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
262452ec 3027 if (index_type_desc != NULL)
28c85d6c
JB
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
262452ec 3030 else
8a48ac95
JB
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
262452ec 3039
43bbcdc2
PH
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3044}
3045
3046/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3049 supplied by run-time quantities other than discriminants. */
14f9c5c9 3050
1eea4ebd 3051static LONGEST
4dc81987 3052ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3053{
eb479039
JB
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
14f9c5c9 3059
ad82864c
JB
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3062 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3063 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3064 else
1eea4ebd 3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
14f9c5c9 3073
1eea4ebd 3074static LONGEST
d2e4a39e 3075ada_array_length (struct value *arr, int n)
14f9c5c9 3076{
aa715135
JG
3077 struct type *arr_type, *index_type;
3078 int low, high;
eb479039
JB
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
14f9c5c9 3083
ad82864c
JB
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3086
4c4b4cd2 3087 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
14f9c5c9 3092 else
aa715135
JG
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
f168693b 3098 arr_type = check_typedef (arr_type);
7150d33c 3099 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
4c4b4cd2
PH
3112}
3113
bff8c71f
TT
3114/* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3117
3118static struct value *
bff8c71f 3119empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3120{
b0dd7688 3121 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3122 struct type *index_type
3123 = create_static_range_type
bff8c71f
TT
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
b0dd7688 3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3127
0b5d8877 3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3129}
14f9c5c9 3130\f
d2e4a39e 3131
4c4b4cd2 3132 /* Name resolution */
14f9c5c9 3133
4c4b4cd2
PH
3134/* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
14f9c5c9 3136
d2e4a39e 3137static const char *
4c4b4cd2 3138ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3139{
3140 int i;
3141
4c4b4cd2 3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3143 {
3144 if (ada_opname_table[i].op == op)
4c4b4cd2 3145 return ada_opname_table[i].decoded;
14f9c5c9 3146 }
323e0a4a 3147 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3148}
3149
3150
4c4b4cd2
PH
3151/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3152 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3153 undefined namespace) and converts operators that are
3154 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3155 non-null, it provides a preferred result type [at the moment, only
3156 type void has any effect---causing procedures to be preferred over
3157 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3158 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3159
4c4b4cd2 3160static void
699bd4cf
TT
3161resolve (expression_up *expp, int void_context_p, int parse_completion,
3162 innermost_block_tracker *tracker)
14f9c5c9 3163{
30b15541
UW
3164 struct type *context_type = NULL;
3165 int pc = 0;
3166
3167 if (void_context_p)
3168 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3169
699bd4cf 3170 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3171}
3172
4c4b4cd2
PH
3173/* Resolve the operator of the subexpression beginning at
3174 position *POS of *EXPP. "Resolving" consists of replacing
3175 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3176 with their resolutions, replacing built-in operators with
3177 function calls to user-defined operators, where appropriate, and,
3178 when DEPROCEDURE_P is non-zero, converting function-valued variables
3179 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3180 are as in ada_resolve, above. */
14f9c5c9 3181
d2e4a39e 3182static struct value *
e9d9f57e 3183resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3184 struct type *context_type, int parse_completion,
3185 innermost_block_tracker *tracker)
14f9c5c9
AS
3186{
3187 int pc = *pos;
3188 int i;
4c4b4cd2 3189 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3190 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3191 struct value **argvec; /* Vector of operand types (alloca'ed). */
3192 int nargs; /* Number of operands. */
52ce6436 3193 int oplen;
14f9c5c9
AS
3194
3195 argvec = NULL;
3196 nargs = 0;
e9d9f57e 3197 exp = expp->get ();
14f9c5c9 3198
52ce6436
PH
3199 /* Pass one: resolve operands, saving their types and updating *pos,
3200 if needed. */
14f9c5c9
AS
3201 switch (op)
3202 {
4c4b4cd2
PH
3203 case OP_FUNCALL:
3204 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3205 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3206 *pos += 7;
4c4b4cd2
PH
3207 else
3208 {
3209 *pos += 3;
699bd4cf 3210 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3211 }
3212 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3213 break;
3214
14f9c5c9 3215 case UNOP_ADDR:
4c4b4cd2 3216 *pos += 1;
699bd4cf 3217 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3218 break;
3219
52ce6436
PH
3220 case UNOP_QUAL:
3221 *pos += 3;
2a612529 3222 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3223 parse_completion, tracker);
4c4b4cd2
PH
3224 break;
3225
52ce6436 3226 case OP_ATR_MODULUS:
4c4b4cd2
PH
3227 case OP_ATR_SIZE:
3228 case OP_ATR_TAG:
4c4b4cd2
PH
3229 case OP_ATR_FIRST:
3230 case OP_ATR_LAST:
3231 case OP_ATR_LENGTH:
3232 case OP_ATR_POS:
3233 case OP_ATR_VAL:
4c4b4cd2
PH
3234 case OP_ATR_MIN:
3235 case OP_ATR_MAX:
52ce6436
PH
3236 case TERNOP_IN_RANGE:
3237 case BINOP_IN_BOUNDS:
3238 case UNOP_IN_RANGE:
3239 case OP_AGGREGATE:
3240 case OP_OTHERS:
3241 case OP_CHOICES:
3242 case OP_POSITIONAL:
3243 case OP_DISCRETE_RANGE:
3244 case OP_NAME:
3245 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3246 *pos += oplen;
14f9c5c9
AS
3247 break;
3248
3249 case BINOP_ASSIGN:
3250 {
4c4b4cd2
PH
3251 struct value *arg1;
3252
3253 *pos += 1;
699bd4cf 3254 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3255 if (arg1 == NULL)
699bd4cf 3256 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3257 else
699bd4cf
TT
3258 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3259 tracker);
4c4b4cd2 3260 break;
14f9c5c9
AS
3261 }
3262
4c4b4cd2 3263 case UNOP_CAST:
4c4b4cd2
PH
3264 *pos += 3;
3265 nargs = 1;
3266 break;
14f9c5c9 3267
4c4b4cd2
PH
3268 case BINOP_ADD:
3269 case BINOP_SUB:
3270 case BINOP_MUL:
3271 case BINOP_DIV:
3272 case BINOP_REM:
3273 case BINOP_MOD:
3274 case BINOP_EXP:
3275 case BINOP_CONCAT:
3276 case BINOP_LOGICAL_AND:
3277 case BINOP_LOGICAL_OR:
3278 case BINOP_BITWISE_AND:
3279 case BINOP_BITWISE_IOR:
3280 case BINOP_BITWISE_XOR:
14f9c5c9 3281
4c4b4cd2
PH
3282 case BINOP_EQUAL:
3283 case BINOP_NOTEQUAL:
3284 case BINOP_LESS:
3285 case BINOP_GTR:
3286 case BINOP_LEQ:
3287 case BINOP_GEQ:
14f9c5c9 3288
4c4b4cd2
PH
3289 case BINOP_REPEAT:
3290 case BINOP_SUBSCRIPT:
3291 case BINOP_COMMA:
40c8aaa9
JB
3292 *pos += 1;
3293 nargs = 2;
3294 break;
14f9c5c9 3295
4c4b4cd2
PH
3296 case UNOP_NEG:
3297 case UNOP_PLUS:
3298 case UNOP_LOGICAL_NOT:
3299 case UNOP_ABS:
3300 case UNOP_IND:
3301 *pos += 1;
3302 nargs = 1;
3303 break;
14f9c5c9 3304
4c4b4cd2 3305 case OP_LONG:
edd079d9 3306 case OP_FLOAT:
4c4b4cd2 3307 case OP_VAR_VALUE:
74ea4be4 3308 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3309 *pos += 4;
3310 break;
14f9c5c9 3311
4c4b4cd2
PH
3312 case OP_TYPE:
3313 case OP_BOOL:
3314 case OP_LAST:
4c4b4cd2
PH
3315 case OP_INTERNALVAR:
3316 *pos += 3;
3317 break;
14f9c5c9 3318
4c4b4cd2
PH
3319 case UNOP_MEMVAL:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
67f3407f
DJ
3324 case OP_REGISTER:
3325 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3326 break;
3327
4c4b4cd2
PH
3328 case STRUCTOP_STRUCT:
3329 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3330 nargs = 1;
3331 break;
3332
4c4b4cd2 3333 case TERNOP_SLICE:
4c4b4cd2
PH
3334 *pos += 1;
3335 nargs = 3;
3336 break;
3337
52ce6436 3338 case OP_STRING:
14f9c5c9 3339 break;
4c4b4cd2
PH
3340
3341 default:
323e0a4a 3342 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3343 }
3344
8d749320 3345 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3346 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3347 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3348 tracker);
4c4b4cd2 3349 argvec[i] = NULL;
e9d9f57e 3350 exp = expp->get ();
4c4b4cd2
PH
3351
3352 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3353 switch (op)
3354 {
3355 default:
3356 break;
3357
14f9c5c9 3358 case OP_VAR_VALUE:
4c4b4cd2 3359 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3360 {
54d343a2 3361 std::vector<struct block_symbol> candidates;
76a01679
JB
3362 int n_candidates;
3363
3364 n_candidates =
3365 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3366 (exp->elts[pc + 2].symbol),
3367 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3368 &candidates);
76a01679
JB
3369
3370 if (n_candidates > 1)
3371 {
3372 /* Types tend to get re-introduced locally, so if there
3373 are any local symbols that are not types, first filter
3374 out all types. */
3375 int j;
3376 for (j = 0; j < n_candidates; j += 1)
d12307c1 3377 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3378 {
3379 case LOC_REGISTER:
3380 case LOC_ARG:
3381 case LOC_REF_ARG:
76a01679
JB
3382 case LOC_REGPARM_ADDR:
3383 case LOC_LOCAL:
76a01679 3384 case LOC_COMPUTED:
76a01679
JB
3385 goto FoundNonType;
3386 default:
3387 break;
3388 }
3389 FoundNonType:
3390 if (j < n_candidates)
3391 {
3392 j = 0;
3393 while (j < n_candidates)
3394 {
d12307c1 3395 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3396 {
3397 candidates[j] = candidates[n_candidates - 1];
3398 n_candidates -= 1;
3399 }
3400 else
3401 j += 1;
3402 }
3403 }
3404 }
3405
3406 if (n_candidates == 0)
323e0a4a 3407 error (_("No definition found for %s"),
76a01679
JB
3408 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3409 else if (n_candidates == 1)
3410 i = 0;
3411 else if (deprocedure_p
54d343a2 3412 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3413 {
06d5cf63 3414 i = ada_resolve_function
54d343a2 3415 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3416 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3417 context_type, parse_completion);
76a01679 3418 if (i < 0)
323e0a4a 3419 error (_("Could not find a match for %s"),
76a01679
JB
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 }
3422 else
3423 {
323e0a4a 3424 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3425 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3426 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3427 i = 0;
3428 }
3429
3430 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3431 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3432 tracker->update (candidates[i]);
76a01679
JB
3433 }
3434
3435 if (deprocedure_p
3436 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3437 == TYPE_CODE_FUNC))
3438 {
424da6cf 3439 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3440 exp->elts[pc + 2].symbol,
3441 exp->elts[pc + 1].block);
e9d9f57e 3442 exp = expp->get ();
76a01679 3443 }
14f9c5c9
AS
3444 break;
3445
3446 case OP_FUNCALL:
3447 {
4c4b4cd2 3448 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3449 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3450 {
54d343a2 3451 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3452 int n_candidates;
3453
3454 n_candidates =
76a01679
JB
3455 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3456 (exp->elts[pc + 5].symbol),
3457 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3458 &candidates);
ec6a20c2 3459
4c4b4cd2
PH
3460 if (n_candidates == 1)
3461 i = 0;
3462 else
3463 {
06d5cf63 3464 i = ada_resolve_function
54d343a2 3465 (candidates.data (), n_candidates,
06d5cf63
JB
3466 argvec, nargs,
3467 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3468 context_type, parse_completion);
4c4b4cd2 3469 if (i < 0)
323e0a4a 3470 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3472 }
3473
3474 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3475 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3476 tracker->update (candidates[i]);
4c4b4cd2 3477 }
14f9c5c9
AS
3478 }
3479 break;
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_CONCAT:
3487 case BINOP_BITWISE_AND:
3488 case BINOP_BITWISE_IOR:
3489 case BINOP_BITWISE_XOR:
3490 case BINOP_EQUAL:
3491 case BINOP_NOTEQUAL:
3492 case BINOP_LESS:
3493 case BINOP_GTR:
3494 case BINOP_LEQ:
3495 case BINOP_GEQ:
3496 case BINOP_EXP:
3497 case UNOP_NEG:
3498 case UNOP_PLUS:
3499 case UNOP_LOGICAL_NOT:
3500 case UNOP_ABS:
3501 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3502 {
54d343a2 3503 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3504 int n_candidates;
3505
3506 n_candidates =
b5ec771e 3507 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3508 NULL, VAR_DOMAIN,
4eeaa230 3509 &candidates);
ec6a20c2 3510
54d343a2 3511 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3512 nargs, ada_decoded_op_name (op), NULL,
3513 parse_completion);
4c4b4cd2
PH
3514 if (i < 0)
3515 break;
3516
d12307c1
PMR
3517 replace_operator_with_call (expp, pc, nargs, 1,
3518 candidates[i].symbol,
3519 candidates[i].block);
e9d9f57e 3520 exp = expp->get ();
4c4b4cd2 3521 }
14f9c5c9 3522 break;
4c4b4cd2
PH
3523
3524 case OP_TYPE:
b3dbf008 3525 case OP_REGISTER:
4c4b4cd2 3526 return NULL;
14f9c5c9
AS
3527 }
3528
3529 *pos = pc;
ced9779b
JB
3530 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3531 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3532 exp->elts[pc + 1].objfile,
3533 exp->elts[pc + 2].msymbol);
3534 else
3535 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3536}
3537
3538/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3539 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3540 a non-pointer. */
14f9c5c9 3541/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3542 liberal. */
14f9c5c9
AS
3543
3544static int
4dc81987 3545ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3546{
61ee279c
PH
3547 ftype = ada_check_typedef (ftype);
3548 atype = ada_check_typedef (atype);
14f9c5c9
AS
3549
3550 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3551 ftype = TYPE_TARGET_TYPE (ftype);
3552 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3553 atype = TYPE_TARGET_TYPE (atype);
3554
d2e4a39e 3555 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3556 {
3557 default:
5b3d5b7d 3558 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3559 case TYPE_CODE_PTR:
3560 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3561 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3562 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3563 else
1265e4aa
JB
3564 return (may_deref
3565 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3566 case TYPE_CODE_INT:
3567 case TYPE_CODE_ENUM:
3568 case TYPE_CODE_RANGE:
3569 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3570 {
3571 case TYPE_CODE_INT:
3572 case TYPE_CODE_ENUM:
3573 case TYPE_CODE_RANGE:
3574 return 1;
3575 default:
3576 return 0;
3577 }
14f9c5c9
AS
3578
3579 case TYPE_CODE_ARRAY:
d2e4a39e 3580 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3581 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3582
3583 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3584 if (ada_is_array_descriptor_type (ftype))
3585 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3586 || ada_is_array_descriptor_type (atype));
14f9c5c9 3587 else
4c4b4cd2
PH
3588 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3589 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3590
3591 case TYPE_CODE_UNION:
3592 case TYPE_CODE_FLT:
3593 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3594 }
3595}
3596
3597/* Return non-zero if the formals of FUNC "sufficiently match" the
3598 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3599 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3600 argument function. */
14f9c5c9
AS
3601
3602static int
d2e4a39e 3603ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3604{
3605 int i;
d2e4a39e 3606 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3607
1265e4aa
JB
3608 if (SYMBOL_CLASS (func) == LOC_CONST
3609 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3610 return (n_actuals == 0);
3611 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3612 return 0;
3613
3614 if (TYPE_NFIELDS (func_type) != n_actuals)
3615 return 0;
3616
3617 for (i = 0; i < n_actuals; i += 1)
3618 {
4c4b4cd2 3619 if (actuals[i] == NULL)
76a01679
JB
3620 return 0;
3621 else
3622 {
5b4ee69b
MS
3623 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3624 i));
df407dfe 3625 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3626
76a01679
JB
3627 if (!ada_type_match (ftype, atype, 1))
3628 return 0;
3629 }
14f9c5c9
AS
3630 }
3631 return 1;
3632}
3633
3634/* False iff function type FUNC_TYPE definitely does not produce a value
3635 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3636 FUNC_TYPE is not a valid function type with a non-null return type
3637 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3638
3639static int
d2e4a39e 3640return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3641{
d2e4a39e 3642 struct type *return_type;
14f9c5c9
AS
3643
3644 if (func_type == NULL)
3645 return 1;
3646
4c4b4cd2 3647 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3648 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3649 else
18af8284 3650 return_type = get_base_type (func_type);
14f9c5c9
AS
3651 if (return_type == NULL)
3652 return 1;
3653
18af8284 3654 context_type = get_base_type (context_type);
14f9c5c9
AS
3655
3656 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3657 return context_type == NULL || return_type == context_type;
3658 else if (context_type == NULL)
3659 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3660 else
3661 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3662}
3663
3664
4c4b4cd2 3665/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3666 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3667 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3668 that returns that type, then eliminate matches that don't. If
3669 CONTEXT_TYPE is void and there is at least one match that does not
3670 return void, eliminate all matches that do.
3671
14f9c5c9
AS
3672 Asks the user if there is more than one match remaining. Returns -1
3673 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3674 solely for messages. May re-arrange and modify SYMS in
3675 the process; the index returned is for the modified vector. */
14f9c5c9 3676
4c4b4cd2 3677static int
d12307c1 3678ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3679 int nsyms, struct value **args, int nargs,
2a612529
TT
3680 const char *name, struct type *context_type,
3681 int parse_completion)
14f9c5c9 3682{
30b15541 3683 int fallback;
14f9c5c9 3684 int k;
4c4b4cd2 3685 int m; /* Number of hits */
14f9c5c9 3686
d2e4a39e 3687 m = 0;
30b15541
UW
3688 /* In the first pass of the loop, we only accept functions matching
3689 context_type. If none are found, we add a second pass of the loop
3690 where every function is accepted. */
3691 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3692 {
3693 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3694 {
d12307c1 3695 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3696
d12307c1 3697 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3698 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3699 {
3700 syms[m] = syms[k];
3701 m += 1;
3702 }
3703 }
14f9c5c9
AS
3704 }
3705
dc5c8746
PMR
3706 /* If we got multiple matches, ask the user which one to use. Don't do this
3707 interactive thing during completion, though, as the purpose of the
3708 completion is providing a list of all possible matches. Prompting the
3709 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3710 if (m == 0)
3711 return -1;
dc5c8746 3712 else if (m > 1 && !parse_completion)
14f9c5c9 3713 {
323e0a4a 3714 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3715 user_select_syms (syms, m, 1);
14f9c5c9
AS
3716 return 0;
3717 }
3718 return 0;
3719}
3720
4c4b4cd2
PH
3721/* Returns true (non-zero) iff decoded name N0 should appear before N1
3722 in a listing of choices during disambiguation (see sort_choices, below).
3723 The idea is that overloadings of a subprogram name from the
3724 same package should sort in their source order. We settle for ordering
3725 such symbols by their trailing number (__N or $N). */
3726
14f9c5c9 3727static int
0d5cff50 3728encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3729{
3730 if (N1 == NULL)
3731 return 0;
3732 else if (N0 == NULL)
3733 return 1;
3734 else
3735 {
3736 int k0, k1;
5b4ee69b 3737
d2e4a39e 3738 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3739 ;
d2e4a39e 3740 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3741 ;
d2e4a39e 3742 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3743 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3744 {
3745 int n0, n1;
5b4ee69b 3746
4c4b4cd2
PH
3747 n0 = k0;
3748 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3749 n0 -= 1;
3750 n1 = k1;
3751 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3752 n1 -= 1;
3753 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3754 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3755 }
14f9c5c9
AS
3756 return (strcmp (N0, N1) < 0);
3757 }
3758}
d2e4a39e 3759
4c4b4cd2
PH
3760/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3761 encoded names. */
3762
d2e4a39e 3763static void
d12307c1 3764sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3765{
4c4b4cd2 3766 int i;
5b4ee69b 3767
d2e4a39e 3768 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3769 {
d12307c1 3770 struct block_symbol sym = syms[i];
14f9c5c9
AS
3771 int j;
3772
d2e4a39e 3773 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3774 {
d12307c1
PMR
3775 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3776 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3777 break;
3778 syms[j + 1] = syms[j];
3779 }
d2e4a39e 3780 syms[j + 1] = sym;
14f9c5c9
AS
3781 }
3782}
3783
d72413e6
PMR
3784/* Whether GDB should display formals and return types for functions in the
3785 overloads selection menu. */
491144b5 3786static bool print_signatures = true;
d72413e6
PMR
3787
3788/* Print the signature for SYM on STREAM according to the FLAGS options. For
3789 all but functions, the signature is just the name of the symbol. For
3790 functions, this is the name of the function, the list of types for formals
3791 and the return type (if any). */
3792
3793static void
3794ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3795 const struct type_print_options *flags)
3796{
3797 struct type *type = SYMBOL_TYPE (sym);
3798
3799 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3800 if (!print_signatures
3801 || type == NULL
3802 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3803 return;
3804
3805 if (TYPE_NFIELDS (type) > 0)
3806 {
3807 int i;
3808
3809 fprintf_filtered (stream, " (");
3810 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3811 {
3812 if (i > 0)
3813 fprintf_filtered (stream, "; ");
3814 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3815 flags);
3816 }
3817 fprintf_filtered (stream, ")");
3818 }
3819 if (TYPE_TARGET_TYPE (type) != NULL
3820 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3821 {
3822 fprintf_filtered (stream, " return ");
3823 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3824 }
3825}
3826
4c4b4cd2
PH
3827/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3828 by asking the user (if necessary), returning the number selected,
3829 and setting the first elements of SYMS items. Error if no symbols
3830 selected. */
14f9c5c9
AS
3831
3832/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3833 to be re-integrated one of these days. */
14f9c5c9
AS
3834
3835int
d12307c1 3836user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3837{
3838 int i;
8d749320 3839 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3840 int n_chosen;
3841 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3842 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3843
3844 if (max_results < 1)
323e0a4a 3845 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3846 if (nsyms <= 1)
3847 return nsyms;
3848
717d2f5a
JB
3849 if (select_mode == multiple_symbols_cancel)
3850 error (_("\
3851canceled because the command is ambiguous\n\
3852See set/show multiple-symbol."));
a0087920 3853
717d2f5a
JB
3854 /* If select_mode is "all", then return all possible symbols.
3855 Only do that if more than one symbol can be selected, of course.
3856 Otherwise, display the menu as usual. */
3857 if (select_mode == multiple_symbols_all && max_results > 1)
3858 return nsyms;
3859
a0087920 3860 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3861 if (max_results > 1)
a0087920 3862 printf_filtered (_("[1] all\n"));
14f9c5c9 3863
4c4b4cd2 3864 sort_choices (syms, nsyms);
14f9c5c9
AS
3865
3866 for (i = 0; i < nsyms; i += 1)
3867 {
d12307c1 3868 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3869 continue;
3870
d12307c1 3871 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3872 {
76a01679 3873 struct symtab_and_line sal =
d12307c1 3874 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3875
a0087920 3876 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3877 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3878 &type_print_raw_options);
323e0a4a 3879 if (sal.symtab == NULL)
a0087920
TT
3880 printf_filtered (_(" at <no source file available>:%d\n"),
3881 sal.line);
323e0a4a 3882 else
a0087920
TT
3883 printf_filtered (_(" at %s:%d\n"),
3884 symtab_to_filename_for_display (sal.symtab),
3885 sal.line);
4c4b4cd2
PH
3886 continue;
3887 }
d2e4a39e 3888 else
4c4b4cd2
PH
3889 {
3890 int is_enumeral =
d12307c1
PMR
3891 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3892 && SYMBOL_TYPE (syms[i].symbol) != NULL
3893 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3894 struct symtab *symtab = NULL;
3895
d12307c1
PMR
3896 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3897 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3898
d12307c1 3899 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3900 {
a0087920 3901 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3902 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3903 &type_print_raw_options);
a0087920
TT
3904 printf_filtered (_(" at %s:%d\n"),
3905 symtab_to_filename_for_display (symtab),
3906 SYMBOL_LINE (syms[i].symbol));
d72413e6 3907 }
76a01679 3908 else if (is_enumeral
d12307c1 3909 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3910 {
a0087920 3911 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3912 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3913 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3914 printf_filtered (_("'(%s) (enumeral)\n"),
3915 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3916 }
d72413e6
PMR
3917 else
3918 {
a0087920 3919 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3920 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3921 &type_print_raw_options);
3922
3923 if (symtab != NULL)
a0087920
TT
3924 printf_filtered (is_enumeral
3925 ? _(" in %s (enumeral)\n")
3926 : _(" at %s:?\n"),
3927 symtab_to_filename_for_display (symtab));
d72413e6 3928 else
a0087920
TT
3929 printf_filtered (is_enumeral
3930 ? _(" (enumeral)\n")
3931 : _(" at ?\n"));
d72413e6 3932 }
4c4b4cd2 3933 }
14f9c5c9 3934 }
d2e4a39e 3935
14f9c5c9 3936 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3937 "overload-choice");
14f9c5c9
AS
3938
3939 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3940 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3941
3942 return n_chosen;
3943}
3944
3945/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3946 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3947 order in CHOICES[0 .. N-1], and return N.
3948
3949 The user types choices as a sequence of numbers on one line
3950 separated by blanks, encoding them as follows:
3951
4c4b4cd2 3952 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3953 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3954 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3955
4c4b4cd2 3956 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3957
3958 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3959 prompts (for use with the -f switch). */
14f9c5c9
AS
3960
3961int
d2e4a39e 3962get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3963 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3964{
d2e4a39e 3965 char *args;
a121b7c1 3966 const char *prompt;
14f9c5c9
AS
3967 int n_chosen;
3968 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3969
14f9c5c9
AS
3970 prompt = getenv ("PS2");
3971 if (prompt == NULL)
0bcd0149 3972 prompt = "> ";
14f9c5c9 3973
89fbedf3 3974 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3975
14f9c5c9 3976 if (args == NULL)
323e0a4a 3977 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3978
3979 n_chosen = 0;
76a01679 3980
4c4b4cd2
PH
3981 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3982 order, as given in args. Choices are validated. */
14f9c5c9
AS
3983 while (1)
3984 {
d2e4a39e 3985 char *args2;
14f9c5c9
AS
3986 int choice, j;
3987
0fcd72ba 3988 args = skip_spaces (args);
14f9c5c9 3989 if (*args == '\0' && n_chosen == 0)
323e0a4a 3990 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3991 else if (*args == '\0')
4c4b4cd2 3992 break;
14f9c5c9
AS
3993
3994 choice = strtol (args, &args2, 10);
d2e4a39e 3995 if (args == args2 || choice < 0
4c4b4cd2 3996 || choice > n_choices + first_choice - 1)
323e0a4a 3997 error (_("Argument must be choice number"));
14f9c5c9
AS
3998 args = args2;
3999
d2e4a39e 4000 if (choice == 0)
323e0a4a 4001 error (_("cancelled"));
14f9c5c9
AS
4002
4003 if (choice < first_choice)
4c4b4cd2
PH
4004 {
4005 n_chosen = n_choices;
4006 for (j = 0; j < n_choices; j += 1)
4007 choices[j] = j;
4008 break;
4009 }
14f9c5c9
AS
4010 choice -= first_choice;
4011
d2e4a39e 4012 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4013 {
4014 }
14f9c5c9
AS
4015
4016 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4017 {
4018 int k;
5b4ee69b 4019
4c4b4cd2
PH
4020 for (k = n_chosen - 1; k > j; k -= 1)
4021 choices[k + 1] = choices[k];
4022 choices[j + 1] = choice;
4023 n_chosen += 1;
4024 }
14f9c5c9
AS
4025 }
4026
4027 if (n_chosen > max_results)
323e0a4a 4028 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4029
14f9c5c9
AS
4030 return n_chosen;
4031}
4032
4c4b4cd2
PH
4033/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4034 on the function identified by SYM and BLOCK, and taking NARGS
4035 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4036
4037static void
e9d9f57e 4038replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4039 int oplen, struct symbol *sym,
270140bd 4040 const struct block *block)
14f9c5c9
AS
4041{
4042 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4043 symbol, -oplen for operator being replaced). */
d2e4a39e 4044 struct expression *newexp = (struct expression *)
8c1a34e7 4045 xzalloc (sizeof (struct expression)
4c4b4cd2 4046 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4047 struct expression *exp = expp->get ();
14f9c5c9
AS
4048
4049 newexp->nelts = exp->nelts + 7 - oplen;
4050 newexp->language_defn = exp->language_defn;
3489610d 4051 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4052 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4053 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4054 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4055
4056 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4057 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4058
4059 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4060 newexp->elts[pc + 4].block = block;
4061 newexp->elts[pc + 5].symbol = sym;
4062
e9d9f57e 4063 expp->reset (newexp);
d2e4a39e 4064}
14f9c5c9
AS
4065
4066/* Type-class predicates */
4067
4c4b4cd2
PH
4068/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4069 or FLOAT). */
14f9c5c9
AS
4070
4071static int
d2e4a39e 4072numeric_type_p (struct type *type)
14f9c5c9
AS
4073{
4074 if (type == NULL)
4075 return 0;
d2e4a39e
AS
4076 else
4077 {
4078 switch (TYPE_CODE (type))
4c4b4cd2
PH
4079 {
4080 case TYPE_CODE_INT:
4081 case TYPE_CODE_FLT:
4082 return 1;
4083 case TYPE_CODE_RANGE:
4084 return (type == TYPE_TARGET_TYPE (type)
4085 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4086 default:
4087 return 0;
4088 }
d2e4a39e 4089 }
14f9c5c9
AS
4090}
4091
4c4b4cd2 4092/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4093
4094static int
d2e4a39e 4095integer_type_p (struct type *type)
14f9c5c9
AS
4096{
4097 if (type == NULL)
4098 return 0;
d2e4a39e
AS
4099 else
4100 {
4101 switch (TYPE_CODE (type))
4c4b4cd2
PH
4102 {
4103 case TYPE_CODE_INT:
4104 return 1;
4105 case TYPE_CODE_RANGE:
4106 return (type == TYPE_TARGET_TYPE (type)
4107 || integer_type_p (TYPE_TARGET_TYPE (type)));
4108 default:
4109 return 0;
4110 }
d2e4a39e 4111 }
14f9c5c9
AS
4112}
4113
4c4b4cd2 4114/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4115
4116static int
d2e4a39e 4117scalar_type_p (struct type *type)
14f9c5c9
AS
4118{
4119 if (type == NULL)
4120 return 0;
d2e4a39e
AS
4121 else
4122 {
4123 switch (TYPE_CODE (type))
4c4b4cd2
PH
4124 {
4125 case TYPE_CODE_INT:
4126 case TYPE_CODE_RANGE:
4127 case TYPE_CODE_ENUM:
4128 case TYPE_CODE_FLT:
4129 return 1;
4130 default:
4131 return 0;
4132 }
d2e4a39e 4133 }
14f9c5c9
AS
4134}
4135
4c4b4cd2 4136/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4137
4138static int
d2e4a39e 4139discrete_type_p (struct type *type)
14f9c5c9
AS
4140{
4141 if (type == NULL)
4142 return 0;
d2e4a39e
AS
4143 else
4144 {
4145 switch (TYPE_CODE (type))
4c4b4cd2
PH
4146 {
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_RANGE:
4149 case TYPE_CODE_ENUM:
872f0337 4150 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4151 return 1;
4152 default:
4153 return 0;
4154 }
d2e4a39e 4155 }
14f9c5c9
AS
4156}
4157
4c4b4cd2
PH
4158/* Returns non-zero if OP with operands in the vector ARGS could be
4159 a user-defined function. Errs on the side of pre-defined operators
4160 (i.e., result 0). */
14f9c5c9
AS
4161
4162static int
d2e4a39e 4163possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4164{
76a01679 4165 struct type *type0 =
df407dfe 4166 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4167 struct type *type1 =
df407dfe 4168 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4169
4c4b4cd2
PH
4170 if (type0 == NULL)
4171 return 0;
4172
14f9c5c9
AS
4173 switch (op)
4174 {
4175 default:
4176 return 0;
4177
4178 case BINOP_ADD:
4179 case BINOP_SUB:
4180 case BINOP_MUL:
4181 case BINOP_DIV:
d2e4a39e 4182 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4183
4184 case BINOP_REM:
4185 case BINOP_MOD:
4186 case BINOP_BITWISE_AND:
4187 case BINOP_BITWISE_IOR:
4188 case BINOP_BITWISE_XOR:
d2e4a39e 4189 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4190
4191 case BINOP_EQUAL:
4192 case BINOP_NOTEQUAL:
4193 case BINOP_LESS:
4194 case BINOP_GTR:
4195 case BINOP_LEQ:
4196 case BINOP_GEQ:
d2e4a39e 4197 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4198
4199 case BINOP_CONCAT:
ee90b9ab 4200 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4201
4202 case BINOP_EXP:
d2e4a39e 4203 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4204
4205 case UNOP_NEG:
4206 case UNOP_PLUS:
4207 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4208 case UNOP_ABS:
4209 return (!numeric_type_p (type0));
14f9c5c9
AS
4210
4211 }
4212}
4213\f
4c4b4cd2 4214 /* Renaming */
14f9c5c9 4215
aeb5907d
JB
4216/* NOTES:
4217
4218 1. In the following, we assume that a renaming type's name may
4219 have an ___XD suffix. It would be nice if this went away at some
4220 point.
4221 2. We handle both the (old) purely type-based representation of
4222 renamings and the (new) variable-based encoding. At some point,
4223 it is devoutly to be hoped that the former goes away
4224 (FIXME: hilfinger-2007-07-09).
4225 3. Subprogram renamings are not implemented, although the XRS
4226 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4227
4228/* If SYM encodes a renaming,
4229
4230 <renaming> renames <renamed entity>,
4231
4232 sets *LEN to the length of the renamed entity's name,
4233 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4234 the string describing the subcomponent selected from the renamed
0963b4bd 4235 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4236 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4237 are undefined). Otherwise, returns a value indicating the category
4238 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4239 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4240 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4241 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4242 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4243 may be NULL, in which case they are not assigned.
4244
4245 [Currently, however, GCC does not generate subprogram renamings.] */
4246
4247enum ada_renaming_category
4248ada_parse_renaming (struct symbol *sym,
4249 const char **renamed_entity, int *len,
4250 const char **renaming_expr)
4251{
4252 enum ada_renaming_category kind;
4253 const char *info;
4254 const char *suffix;
4255
4256 if (sym == NULL)
4257 return ADA_NOT_RENAMING;
4258 switch (SYMBOL_CLASS (sym))
14f9c5c9 4259 {
aeb5907d
JB
4260 default:
4261 return ADA_NOT_RENAMING;
aeb5907d
JB
4262 case LOC_LOCAL:
4263 case LOC_STATIC:
4264 case LOC_COMPUTED:
4265 case LOC_OPTIMIZED_OUT:
4266 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4267 if (info == NULL)
4268 return ADA_NOT_RENAMING;
4269 switch (info[5])
4270 {
4271 case '_':
4272 kind = ADA_OBJECT_RENAMING;
4273 info += 6;
4274 break;
4275 case 'E':
4276 kind = ADA_EXCEPTION_RENAMING;
4277 info += 7;
4278 break;
4279 case 'P':
4280 kind = ADA_PACKAGE_RENAMING;
4281 info += 7;
4282 break;
4283 case 'S':
4284 kind = ADA_SUBPROGRAM_RENAMING;
4285 info += 7;
4286 break;
4287 default:
4288 return ADA_NOT_RENAMING;
4289 }
14f9c5c9 4290 }
4c4b4cd2 4291
aeb5907d
JB
4292 if (renamed_entity != NULL)
4293 *renamed_entity = info;
4294 suffix = strstr (info, "___XE");
4295 if (suffix == NULL || suffix == info)
4296 return ADA_NOT_RENAMING;
4297 if (len != NULL)
4298 *len = strlen (info) - strlen (suffix);
4299 suffix += 5;
4300 if (renaming_expr != NULL)
4301 *renaming_expr = suffix;
4302 return kind;
4303}
4304
a5ee536b
JB
4305/* Compute the value of the given RENAMING_SYM, which is expected to
4306 be a symbol encoding a renaming expression. BLOCK is the block
4307 used to evaluate the renaming. */
52ce6436 4308
a5ee536b
JB
4309static struct value *
4310ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4311 const struct block *block)
a5ee536b 4312{
bbc13ae3 4313 const char *sym_name;
a5ee536b 4314
bbc13ae3 4315 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4316 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4317 return evaluate_expression (expr.get ());
a5ee536b 4318}
14f9c5c9 4319\f
d2e4a39e 4320
4c4b4cd2 4321 /* Evaluation: Function Calls */
14f9c5c9 4322
4c4b4cd2 4323/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4324 lvalues, and otherwise has the side-effect of allocating memory
4325 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4326
d2e4a39e 4327static struct value *
40bc484c 4328ensure_lval (struct value *val)
14f9c5c9 4329{
40bc484c
JB
4330 if (VALUE_LVAL (val) == not_lval
4331 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4332 {
df407dfe 4333 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4334 const CORE_ADDR addr =
4335 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4336
a84a8a0d 4337 VALUE_LVAL (val) = lval_memory;
1a088441 4338 set_value_address (val, addr);
40bc484c 4339 write_memory (addr, value_contents (val), len);
c3e5cd34 4340 }
14f9c5c9
AS
4341
4342 return val;
4343}
4344
4345/* Return the value ACTUAL, converted to be an appropriate value for a
4346 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4347 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4348 values not residing in memory, updating it as needed. */
14f9c5c9 4349
a93c0eb6 4350struct value *
40bc484c 4351ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4352{
df407dfe 4353 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4354 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4355 struct type *formal_target =
4356 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4357 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4358 struct type *actual_target =
4359 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4360 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4361
4c4b4cd2 4362 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4363 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4364 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4365 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4366 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4367 {
a84a8a0d 4368 struct value *result;
5b4ee69b 4369
14f9c5c9 4370 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4371 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4372 result = desc_data (actual);
cb923fcc 4373 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4374 {
4375 if (VALUE_LVAL (actual) != lval_memory)
4376 {
4377 struct value *val;
5b4ee69b 4378
df407dfe 4379 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4380 val = allocate_value (actual_type);
990a07ab 4381 memcpy ((char *) value_contents_raw (val),
0fd88904 4382 (char *) value_contents (actual),
4c4b4cd2 4383 TYPE_LENGTH (actual_type));
40bc484c 4384 actual = ensure_lval (val);
4c4b4cd2 4385 }
a84a8a0d 4386 result = value_addr (actual);
4c4b4cd2 4387 }
a84a8a0d
JB
4388 else
4389 return actual;
b1af9e97 4390 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4391 }
4392 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4393 return ada_value_ind (actual);
8344af1e
JB
4394 else if (ada_is_aligner_type (formal_type))
4395 {
4396 /* We need to turn this parameter into an aligner type
4397 as well. */
4398 struct value *aligner = allocate_value (formal_type);
4399 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4400
4401 value_assign_to_component (aligner, component, actual);
4402 return aligner;
4403 }
14f9c5c9
AS
4404
4405 return actual;
4406}
4407
438c98a1
JB
4408/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4409 type TYPE. This is usually an inefficient no-op except on some targets
4410 (such as AVR) where the representation of a pointer and an address
4411 differs. */
4412
4413static CORE_ADDR
4414value_pointer (struct value *value, struct type *type)
4415{
4416 struct gdbarch *gdbarch = get_type_arch (type);
4417 unsigned len = TYPE_LENGTH (type);
224c3ddb 4418 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4419 CORE_ADDR addr;
4420
4421 addr = value_address (value);
4422 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4423 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4424 return addr;
4425}
4426
14f9c5c9 4427
4c4b4cd2
PH
4428/* Push a descriptor of type TYPE for array value ARR on the stack at
4429 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4430 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4431 to-descriptor type rather than a descriptor type), a struct value *
4432 representing a pointer to this descriptor. */
14f9c5c9 4433
d2e4a39e 4434static struct value *
40bc484c 4435make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4436{
d2e4a39e
AS
4437 struct type *bounds_type = desc_bounds_type (type);
4438 struct type *desc_type = desc_base_type (type);
4439 struct value *descriptor = allocate_value (desc_type);
4440 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4441 int i;
d2e4a39e 4442
0963b4bd
MS
4443 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4444 i > 0; i -= 1)
14f9c5c9 4445 {
19f220c3
JK
4446 modify_field (value_type (bounds), value_contents_writeable (bounds),
4447 ada_array_bound (arr, i, 0),
4448 desc_bound_bitpos (bounds_type, i, 0),
4449 desc_bound_bitsize (bounds_type, i, 0));
4450 modify_field (value_type (bounds), value_contents_writeable (bounds),
4451 ada_array_bound (arr, i, 1),
4452 desc_bound_bitpos (bounds_type, i, 1),
4453 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4454 }
d2e4a39e 4455
40bc484c 4456 bounds = ensure_lval (bounds);
d2e4a39e 4457
19f220c3
JK
4458 modify_field (value_type (descriptor),
4459 value_contents_writeable (descriptor),
4460 value_pointer (ensure_lval (arr),
4461 TYPE_FIELD_TYPE (desc_type, 0)),
4462 fat_pntr_data_bitpos (desc_type),
4463 fat_pntr_data_bitsize (desc_type));
4464
4465 modify_field (value_type (descriptor),
4466 value_contents_writeable (descriptor),
4467 value_pointer (bounds,
4468 TYPE_FIELD_TYPE (desc_type, 1)),
4469 fat_pntr_bounds_bitpos (desc_type),
4470 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4471
40bc484c 4472 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4473
4474 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4475 return value_addr (descriptor);
4476 else
4477 return descriptor;
4478}
14f9c5c9 4479\f
3d9434b5
JB
4480 /* Symbol Cache Module */
4481
3d9434b5 4482/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4483 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4484 on the type of entity being printed, the cache can make it as much
4485 as an order of magnitude faster than without it.
4486
4487 The descriptive type DWARF extension has significantly reduced
4488 the need for this cache, at least when DWARF is being used. However,
4489 even in this case, some expensive name-based symbol searches are still
4490 sometimes necessary - to find an XVZ variable, mostly. */
4491
ee01b665 4492/* Initialize the contents of SYM_CACHE. */
3d9434b5 4493
ee01b665
JB
4494static void
4495ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4496{
4497 obstack_init (&sym_cache->cache_space);
4498 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4499}
3d9434b5 4500
ee01b665
JB
4501/* Free the memory used by SYM_CACHE. */
4502
4503static void
4504ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4505{
ee01b665
JB
4506 obstack_free (&sym_cache->cache_space, NULL);
4507 xfree (sym_cache);
4508}
3d9434b5 4509
ee01b665
JB
4510/* Return the symbol cache associated to the given program space PSPACE.
4511 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4512
ee01b665
JB
4513static struct ada_symbol_cache *
4514ada_get_symbol_cache (struct program_space *pspace)
4515{
4516 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4517
66c168ae 4518 if (pspace_data->sym_cache == NULL)
ee01b665 4519 {
66c168ae
JB
4520 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4521 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4522 }
4523
66c168ae 4524 return pspace_data->sym_cache;
ee01b665 4525}
3d9434b5
JB
4526
4527/* Clear all entries from the symbol cache. */
4528
4529static void
4530ada_clear_symbol_cache (void)
4531{
ee01b665
JB
4532 struct ada_symbol_cache *sym_cache
4533 = ada_get_symbol_cache (current_program_space);
4534
4535 obstack_free (&sym_cache->cache_space, NULL);
4536 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4537}
4538
fe978cb0 4539/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4540 Return it if found, or NULL otherwise. */
4541
4542static struct cache_entry **
fe978cb0 4543find_entry (const char *name, domain_enum domain)
3d9434b5 4544{
ee01b665
JB
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4547 int h = msymbol_hash (name) % HASH_SIZE;
4548 struct cache_entry **e;
4549
ee01b665 4550 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4551 {
fe978cb0 4552 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4553 return e;
4554 }
4555 return NULL;
4556}
4557
fe978cb0 4558/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4559 Return 1 if found, 0 otherwise.
4560
4561 If an entry was found and SYM is not NULL, set *SYM to the entry's
4562 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4563
96d887e8 4564static int
fe978cb0 4565lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4566 struct symbol **sym, const struct block **block)
96d887e8 4567{
fe978cb0 4568 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4569
4570 if (e == NULL)
4571 return 0;
4572 if (sym != NULL)
4573 *sym = (*e)->sym;
4574 if (block != NULL)
4575 *block = (*e)->block;
4576 return 1;
96d887e8
PH
4577}
4578
3d9434b5 4579/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4580 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4581
96d887e8 4582static void
fe978cb0 4583cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4584 const struct block *block)
96d887e8 4585{
ee01b665
JB
4586 struct ada_symbol_cache *sym_cache
4587 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4588 int h;
4589 char *copy;
4590 struct cache_entry *e;
4591
1994afbf
DE
4592 /* Symbols for builtin types don't have a block.
4593 For now don't cache such symbols. */
4594 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4595 return;
4596
3d9434b5
JB
4597 /* If the symbol is a local symbol, then do not cache it, as a search
4598 for that symbol depends on the context. To determine whether
4599 the symbol is local or not, we check the block where we found it
4600 against the global and static blocks of its associated symtab. */
4601 if (sym
08be3fe3 4602 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4603 GLOBAL_BLOCK) != block
08be3fe3 4604 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4605 STATIC_BLOCK) != block)
3d9434b5
JB
4606 return;
4607
4608 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4609 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4610 e->next = sym_cache->root[h];
4611 sym_cache->root[h] = e;
224c3ddb
SM
4612 e->name = copy
4613 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4614 strcpy (copy, name);
4615 e->sym = sym;
fe978cb0 4616 e->domain = domain;
3d9434b5 4617 e->block = block;
96d887e8 4618}
4c4b4cd2
PH
4619\f
4620 /* Symbol Lookup */
4621
b5ec771e
PA
4622/* Return the symbol name match type that should be used used when
4623 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4624
4625 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4626 for Ada lookups. */
c0431670 4627
b5ec771e
PA
4628static symbol_name_match_type
4629name_match_type_from_name (const char *lookup_name)
c0431670 4630{
b5ec771e
PA
4631 return (strstr (lookup_name, "__") == NULL
4632 ? symbol_name_match_type::WILD
4633 : symbol_name_match_type::FULL);
c0431670
JB
4634}
4635
4c4b4cd2
PH
4636/* Return the result of a standard (literal, C-like) lookup of NAME in
4637 given DOMAIN, visible from lexical block BLOCK. */
4638
4639static struct symbol *
4640standard_lookup (const char *name, const struct block *block,
4641 domain_enum domain)
4642{
acbd605d 4643 /* Initialize it just to avoid a GCC false warning. */
6640a367 4644 struct block_symbol sym = {};
4c4b4cd2 4645
d12307c1
PMR
4646 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4647 return sym.symbol;
a2cd4f14 4648 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4649 cache_symbol (name, domain, sym.symbol, sym.block);
4650 return sym.symbol;
4c4b4cd2
PH
4651}
4652
4653
4654/* Non-zero iff there is at least one non-function/non-enumeral symbol
4655 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4656 since they contend in overloading in the same way. */
4657static int
d12307c1 4658is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4659{
4660 int i;
4661
4662 for (i = 0; i < n; i += 1)
d12307c1
PMR
4663 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4664 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4665 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4666 return 1;
4667
4668 return 0;
4669}
4670
4671/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4672 struct types. Otherwise, they may not. */
14f9c5c9
AS
4673
4674static int
d2e4a39e 4675equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4676{
d2e4a39e 4677 if (type0 == type1)
14f9c5c9 4678 return 1;
d2e4a39e 4679 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4680 || TYPE_CODE (type0) != TYPE_CODE (type1))
4681 return 0;
d2e4a39e 4682 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4683 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4684 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4685 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4686 return 1;
d2e4a39e 4687
14f9c5c9
AS
4688 return 0;
4689}
4690
4691/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4692 no more defined than that of SYM1. */
14f9c5c9
AS
4693
4694static int
d2e4a39e 4695lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4696{
4697 if (sym0 == sym1)
4698 return 1;
176620f1 4699 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4700 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4701 return 0;
4702
d2e4a39e 4703 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4704 {
4705 case LOC_UNDEF:
4706 return 1;
4707 case LOC_TYPEDEF:
4708 {
4c4b4cd2
PH
4709 struct type *type0 = SYMBOL_TYPE (sym0);
4710 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4711 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4712 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4713 int len0 = strlen (name0);
5b4ee69b 4714
4c4b4cd2
PH
4715 return
4716 TYPE_CODE (type0) == TYPE_CODE (type1)
4717 && (equiv_types (type0, type1)
4718 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4719 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4720 }
4721 case LOC_CONST:
4722 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4723 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4724 default:
4725 return 0;
14f9c5c9
AS
4726 }
4727}
4728
d12307c1 4729/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4730 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4731
4732static void
76a01679
JB
4733add_defn_to_vec (struct obstack *obstackp,
4734 struct symbol *sym,
f0c5f9b2 4735 const struct block *block)
14f9c5c9
AS
4736{
4737 int i;
d12307c1 4738 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4739
529cad9c
PH
4740 /* Do not try to complete stub types, as the debugger is probably
4741 already scanning all symbols matching a certain name at the
4742 time when this function is called. Trying to replace the stub
4743 type by its associated full type will cause us to restart a scan
4744 which may lead to an infinite recursion. Instead, the client
4745 collecting the matching symbols will end up collecting several
4746 matches, with at least one of them complete. It can then filter
4747 out the stub ones if needed. */
4748
4c4b4cd2
PH
4749 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4750 {
d12307c1 4751 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4752 return;
d12307c1 4753 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4754 {
d12307c1 4755 prevDefns[i].symbol = sym;
4c4b4cd2 4756 prevDefns[i].block = block;
4c4b4cd2 4757 return;
76a01679 4758 }
4c4b4cd2
PH
4759 }
4760
4761 {
d12307c1 4762 struct block_symbol info;
4c4b4cd2 4763
d12307c1 4764 info.symbol = sym;
4c4b4cd2 4765 info.block = block;
d12307c1 4766 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4767 }
4768}
4769
d12307c1
PMR
4770/* Number of block_symbol structures currently collected in current vector in
4771 OBSTACKP. */
4c4b4cd2 4772
76a01679
JB
4773static int
4774num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4775{
d12307c1 4776 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4777}
4778
d12307c1
PMR
4779/* Vector of block_symbol structures currently collected in current vector in
4780 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4781
d12307c1 4782static struct block_symbol *
4c4b4cd2
PH
4783defns_collected (struct obstack *obstackp, int finish)
4784{
4785 if (finish)
224c3ddb 4786 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4787 else
d12307c1 4788 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4789}
4790
7c7b6655
TT
4791/* Return a bound minimal symbol matching NAME according to Ada
4792 decoding rules. Returns an invalid symbol if there is no such
4793 minimal symbol. Names prefixed with "standard__" are handled
4794 specially: "standard__" is first stripped off, and only static and
4795 global symbols are searched. */
4c4b4cd2 4796
7c7b6655 4797struct bound_minimal_symbol
96d887e8 4798ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4799{
7c7b6655 4800 struct bound_minimal_symbol result;
4c4b4cd2 4801
7c7b6655
TT
4802 memset (&result, 0, sizeof (result));
4803
b5ec771e
PA
4804 symbol_name_match_type match_type = name_match_type_from_name (name);
4805 lookup_name_info lookup_name (name, match_type);
4806
4807 symbol_name_matcher_ftype *match_name
4808 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4809
2030c079 4810 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4811 {
7932255d 4812 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4813 {
4814 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4815 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4816 {
4817 result.minsym = msymbol;
4818 result.objfile = objfile;
4819 break;
4820 }
4821 }
4822 }
4c4b4cd2 4823
7c7b6655 4824 return result;
96d887e8 4825}
4c4b4cd2 4826
2ff0a947
TT
4827/* Return all the bound minimal symbols matching NAME according to Ada
4828 decoding rules. Returns an empty vector if there is no such
4829 minimal symbol. Names prefixed with "standard__" are handled
4830 specially: "standard__" is first stripped off, and only static and
4831 global symbols are searched. */
4832
4833static std::vector<struct bound_minimal_symbol>
4834ada_lookup_simple_minsyms (const char *name)
4835{
4836 std::vector<struct bound_minimal_symbol> result;
4837
4838 symbol_name_match_type match_type = name_match_type_from_name (name);
4839 lookup_name_info lookup_name (name, match_type);
4840
4841 symbol_name_matcher_ftype *match_name
4842 = ada_get_symbol_name_matcher (lookup_name);
4843
4844 for (objfile *objfile : current_program_space->objfiles ())
4845 {
4846 for (minimal_symbol *msymbol : objfile->msymbols ())
4847 {
4848 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4849 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4850 result.push_back ({msymbol, objfile});
4851 }
4852 }
4853
4854 return result;
4855}
4856
96d887e8
PH
4857/* For all subprograms that statically enclose the subprogram of the
4858 selected frame, add symbols matching identifier NAME in DOMAIN
4859 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4860 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4861 with a wildcard prefix. */
4c4b4cd2 4862
96d887e8
PH
4863static void
4864add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4865 const lookup_name_info &lookup_name,
4866 domain_enum domain)
96d887e8 4867{
96d887e8 4868}
14f9c5c9 4869
96d887e8
PH
4870/* True if TYPE is definitely an artificial type supplied to a symbol
4871 for which no debugging information was given in the symbol file. */
14f9c5c9 4872
96d887e8
PH
4873static int
4874is_nondebugging_type (struct type *type)
4875{
0d5cff50 4876 const char *name = ada_type_name (type);
5b4ee69b 4877
96d887e8
PH
4878 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4879}
4c4b4cd2 4880
8f17729f
JB
4881/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4882 that are deemed "identical" for practical purposes.
4883
4884 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4885 types and that their number of enumerals is identical (in other
4886 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4887
4888static int
4889ada_identical_enum_types_p (struct type *type1, struct type *type2)
4890{
4891 int i;
4892
4893 /* The heuristic we use here is fairly conservative. We consider
4894 that 2 enumerate types are identical if they have the same
4895 number of enumerals and that all enumerals have the same
4896 underlying value and name. */
4897
4898 /* All enums in the type should have an identical underlying value. */
4899 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4900 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4901 return 0;
4902
4903 /* All enumerals should also have the same name (modulo any numerical
4904 suffix). */
4905 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4906 {
0d5cff50
DE
4907 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4908 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4909 int len_1 = strlen (name_1);
4910 int len_2 = strlen (name_2);
4911
4912 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4913 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4914 if (len_1 != len_2
4915 || strncmp (TYPE_FIELD_NAME (type1, i),
4916 TYPE_FIELD_NAME (type2, i),
4917 len_1) != 0)
4918 return 0;
4919 }
4920
4921 return 1;
4922}
4923
4924/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4925 that are deemed "identical" for practical purposes. Sometimes,
4926 enumerals are not strictly identical, but their types are so similar
4927 that they can be considered identical.
4928
4929 For instance, consider the following code:
4930
4931 type Color is (Black, Red, Green, Blue, White);
4932 type RGB_Color is new Color range Red .. Blue;
4933
4934 Type RGB_Color is a subrange of an implicit type which is a copy
4935 of type Color. If we call that implicit type RGB_ColorB ("B" is
4936 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4937 As a result, when an expression references any of the enumeral
4938 by name (Eg. "print green"), the expression is technically
4939 ambiguous and the user should be asked to disambiguate. But
4940 doing so would only hinder the user, since it wouldn't matter
4941 what choice he makes, the outcome would always be the same.
4942 So, for practical purposes, we consider them as the same. */
4943
4944static int
54d343a2 4945symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4946{
4947 int i;
4948
4949 /* Before performing a thorough comparison check of each type,
4950 we perform a series of inexpensive checks. We expect that these
4951 checks will quickly fail in the vast majority of cases, and thus
4952 help prevent the unnecessary use of a more expensive comparison.
4953 Said comparison also expects us to make some of these checks
4954 (see ada_identical_enum_types_p). */
4955
4956 /* Quick check: All symbols should have an enum type. */
54d343a2 4957 for (i = 0; i < syms.size (); i++)
d12307c1 4958 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4959 return 0;
4960
4961 /* Quick check: They should all have the same value. */
54d343a2 4962 for (i = 1; i < syms.size (); i++)
d12307c1 4963 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4964 return 0;
4965
4966 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4967 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4968 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4969 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4970 return 0;
4971
4972 /* All the sanity checks passed, so we might have a set of
4973 identical enumeration types. Perform a more complete
4974 comparison of the type of each symbol. */
54d343a2 4975 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4976 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4977 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4978 return 0;
4979
4980 return 1;
4981}
4982
54d343a2 4983/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4984 duplicate other symbols in the list (The only case I know of where
4985 this happens is when object files containing stabs-in-ecoff are
4986 linked with files containing ordinary ecoff debugging symbols (or no
4987 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4988 Returns the number of items in the modified list. */
4c4b4cd2 4989
96d887e8 4990static int
54d343a2 4991remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4992{
4993 int i, j;
4c4b4cd2 4994
8f17729f
JB
4995 /* We should never be called with less than 2 symbols, as there
4996 cannot be any extra symbol in that case. But it's easy to
4997 handle, since we have nothing to do in that case. */
54d343a2
TT
4998 if (syms->size () < 2)
4999 return syms->size ();
8f17729f 5000
96d887e8 5001 i = 0;
54d343a2 5002 while (i < syms->size ())
96d887e8 5003 {
a35ddb44 5004 int remove_p = 0;
339c13b6
JB
5005
5006 /* If two symbols have the same name and one of them is a stub type,
5007 the get rid of the stub. */
5008
54d343a2
TT
5009 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5010 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5011 {
54d343a2 5012 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5013 {
5014 if (j != i
54d343a2
TT
5015 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5016 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5017 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5018 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5019 remove_p = 1;
339c13b6
JB
5020 }
5021 }
5022
5023 /* Two symbols with the same name, same class and same address
5024 should be identical. */
5025
54d343a2
TT
5026 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5027 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5028 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5029 {
54d343a2 5030 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5031 {
5032 if (i != j
54d343a2
TT
5033 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5034 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5035 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5036 && SYMBOL_CLASS ((*syms)[i].symbol)
5037 == SYMBOL_CLASS ((*syms)[j].symbol)
5038 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5039 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5040 remove_p = 1;
4c4b4cd2 5041 }
4c4b4cd2 5042 }
339c13b6 5043
a35ddb44 5044 if (remove_p)
54d343a2 5045 syms->erase (syms->begin () + i);
339c13b6 5046
96d887e8 5047 i += 1;
14f9c5c9 5048 }
8f17729f
JB
5049
5050 /* If all the remaining symbols are identical enumerals, then
5051 just keep the first one and discard the rest.
5052
5053 Unlike what we did previously, we do not discard any entry
5054 unless they are ALL identical. This is because the symbol
5055 comparison is not a strict comparison, but rather a practical
5056 comparison. If all symbols are considered identical, then
5057 we can just go ahead and use the first one and discard the rest.
5058 But if we cannot reduce the list to a single element, we have
5059 to ask the user to disambiguate anyways. And if we have to
5060 present a multiple-choice menu, it's less confusing if the list
5061 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5062 if (symbols_are_identical_enums (*syms))
5063 syms->resize (1);
8f17729f 5064
54d343a2 5065 return syms->size ();
14f9c5c9
AS
5066}
5067
96d887e8
PH
5068/* Given a type that corresponds to a renaming entity, use the type name
5069 to extract the scope (package name or function name, fully qualified,
5070 and following the GNAT encoding convention) where this renaming has been
49d83361 5071 defined. */
4c4b4cd2 5072
49d83361 5073static std::string
96d887e8 5074xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5075{
96d887e8 5076 /* The renaming types adhere to the following convention:
0963b4bd 5077 <scope>__<rename>___<XR extension>.
96d887e8
PH
5078 So, to extract the scope, we search for the "___XR" extension,
5079 and then backtrack until we find the first "__". */
76a01679 5080
a737d952 5081 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5082 const char *suffix = strstr (name, "___XR");
5083 const char *last;
14f9c5c9 5084
96d887e8
PH
5085 /* Now, backtrack a bit until we find the first "__". Start looking
5086 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5087
96d887e8
PH
5088 for (last = suffix - 3; last > name; last--)
5089 if (last[0] == '_' && last[1] == '_')
5090 break;
76a01679 5091
96d887e8 5092 /* Make a copy of scope and return it. */
49d83361 5093 return std::string (name, last);
4c4b4cd2
PH
5094}
5095
96d887e8 5096/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5097
96d887e8
PH
5098static int
5099is_package_name (const char *name)
4c4b4cd2 5100{
96d887e8
PH
5101 /* Here, We take advantage of the fact that no symbols are generated
5102 for packages, while symbols are generated for each function.
5103 So the condition for NAME represent a package becomes equivalent
5104 to NAME not existing in our list of symbols. There is only one
5105 small complication with library-level functions (see below). */
4c4b4cd2 5106
96d887e8
PH
5107 /* If it is a function that has not been defined at library level,
5108 then we should be able to look it up in the symbols. */
5109 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5110 return 0;
14f9c5c9 5111
96d887e8
PH
5112 /* Library-level function names start with "_ada_". See if function
5113 "_ada_" followed by NAME can be found. */
14f9c5c9 5114
96d887e8 5115 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5116 functions names cannot contain "__" in them. */
96d887e8
PH
5117 if (strstr (name, "__") != NULL)
5118 return 0;
4c4b4cd2 5119
528e1572 5120 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5121
528e1572 5122 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5123}
14f9c5c9 5124
96d887e8 5125/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5126 not visible from FUNCTION_NAME. */
14f9c5c9 5127
96d887e8 5128static int
0d5cff50 5129old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5130{
aeb5907d
JB
5131 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5132 return 0;
5133
49d83361 5134 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5135
96d887e8 5136 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5137 if (is_package_name (scope.c_str ()))
5138 return 0;
14f9c5c9 5139
96d887e8
PH
5140 /* Check that the rename is in the current function scope by checking
5141 that its name starts with SCOPE. */
76a01679 5142
96d887e8
PH
5143 /* If the function name starts with "_ada_", it means that it is
5144 a library-level function. Strip this prefix before doing the
5145 comparison, as the encoding for the renaming does not contain
5146 this prefix. */
61012eef 5147 if (startswith (function_name, "_ada_"))
96d887e8 5148 function_name += 5;
f26caa11 5149
49d83361 5150 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5151}
5152
aeb5907d
JB
5153/* Remove entries from SYMS that corresponds to a renaming entity that
5154 is not visible from the function associated with CURRENT_BLOCK or
5155 that is superfluous due to the presence of more specific renaming
5156 information. Places surviving symbols in the initial entries of
5157 SYMS and returns the number of surviving symbols.
96d887e8
PH
5158
5159 Rationale:
aeb5907d
JB
5160 First, in cases where an object renaming is implemented as a
5161 reference variable, GNAT may produce both the actual reference
5162 variable and the renaming encoding. In this case, we discard the
5163 latter.
5164
5165 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5166 entity. Unfortunately, STABS currently does not support the definition
5167 of types that are local to a given lexical block, so all renamings types
5168 are emitted at library level. As a consequence, if an application
5169 contains two renaming entities using the same name, and a user tries to
5170 print the value of one of these entities, the result of the ada symbol
5171 lookup will also contain the wrong renaming type.
f26caa11 5172
96d887e8
PH
5173 This function partially covers for this limitation by attempting to
5174 remove from the SYMS list renaming symbols that should be visible
5175 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5176 method with the current information available. The implementation
5177 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5178
5179 - When the user tries to print a rename in a function while there
5180 is another rename entity defined in a package: Normally, the
5181 rename in the function has precedence over the rename in the
5182 package, so the latter should be removed from the list. This is
5183 currently not the case.
5184
5185 - This function will incorrectly remove valid renames if
5186 the CURRENT_BLOCK corresponds to a function which symbol name
5187 has been changed by an "Export" pragma. As a consequence,
5188 the user will be unable to print such rename entities. */
4c4b4cd2 5189
14f9c5c9 5190static int
54d343a2
TT
5191remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5192 const struct block *current_block)
4c4b4cd2
PH
5193{
5194 struct symbol *current_function;
0d5cff50 5195 const char *current_function_name;
4c4b4cd2 5196 int i;
aeb5907d
JB
5197 int is_new_style_renaming;
5198
5199 /* If there is both a renaming foo___XR... encoded as a variable and
5200 a simple variable foo in the same block, discard the latter.
0963b4bd 5201 First, zero out such symbols, then compress. */
aeb5907d 5202 is_new_style_renaming = 0;
54d343a2 5203 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5204 {
54d343a2
TT
5205 struct symbol *sym = (*syms)[i].symbol;
5206 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5207 const char *name;
5208 const char *suffix;
5209
5210 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5211 continue;
5212 name = SYMBOL_LINKAGE_NAME (sym);
5213 suffix = strstr (name, "___XR");
5214
5215 if (suffix != NULL)
5216 {
5217 int name_len = suffix - name;
5218 int j;
5b4ee69b 5219
aeb5907d 5220 is_new_style_renaming = 1;
54d343a2
TT
5221 for (j = 0; j < syms->size (); j += 1)
5222 if (i != j && (*syms)[j].symbol != NULL
5223 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5224 name_len) == 0
54d343a2
TT
5225 && block == (*syms)[j].block)
5226 (*syms)[j].symbol = NULL;
aeb5907d
JB
5227 }
5228 }
5229 if (is_new_style_renaming)
5230 {
5231 int j, k;
5232
54d343a2
TT
5233 for (j = k = 0; j < syms->size (); j += 1)
5234 if ((*syms)[j].symbol != NULL)
aeb5907d 5235 {
54d343a2 5236 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5237 k += 1;
5238 }
5239 return k;
5240 }
4c4b4cd2
PH
5241
5242 /* Extract the function name associated to CURRENT_BLOCK.
5243 Abort if unable to do so. */
76a01679 5244
4c4b4cd2 5245 if (current_block == NULL)
54d343a2 5246 return syms->size ();
76a01679 5247
7f0df278 5248 current_function = block_linkage_function (current_block);
4c4b4cd2 5249 if (current_function == NULL)
54d343a2 5250 return syms->size ();
4c4b4cd2
PH
5251
5252 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5253 if (current_function_name == NULL)
54d343a2 5254 return syms->size ();
4c4b4cd2
PH
5255
5256 /* Check each of the symbols, and remove it from the list if it is
5257 a type corresponding to a renaming that is out of the scope of
5258 the current block. */
5259
5260 i = 0;
54d343a2 5261 while (i < syms->size ())
4c4b4cd2 5262 {
54d343a2 5263 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5264 == ADA_OBJECT_RENAMING
54d343a2
TT
5265 && old_renaming_is_invisible ((*syms)[i].symbol,
5266 current_function_name))
5267 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5268 else
5269 i += 1;
5270 }
5271
54d343a2 5272 return syms->size ();
4c4b4cd2
PH
5273}
5274
339c13b6
JB
5275/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5276 whose name and domain match NAME and DOMAIN respectively.
5277 If no match was found, then extend the search to "enclosing"
5278 routines (in other words, if we're inside a nested function,
5279 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5280 If WILD_MATCH_P is nonzero, perform the naming matching in
5281 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5282
5283 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5284
5285static void
b5ec771e
PA
5286ada_add_local_symbols (struct obstack *obstackp,
5287 const lookup_name_info &lookup_name,
5288 const struct block *block, domain_enum domain)
339c13b6
JB
5289{
5290 int block_depth = 0;
5291
5292 while (block != NULL)
5293 {
5294 block_depth += 1;
b5ec771e 5295 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5296
5297 /* If we found a non-function match, assume that's the one. */
5298 if (is_nonfunction (defns_collected (obstackp, 0),
5299 num_defns_collected (obstackp)))
5300 return;
5301
5302 block = BLOCK_SUPERBLOCK (block);
5303 }
5304
5305 /* If no luck so far, try to find NAME as a local symbol in some lexically
5306 enclosing subprogram. */
5307 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5308 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5309}
5310
ccefe4c4 5311/* An object of this type is used as the user_data argument when
40658b94 5312 calling the map_matching_symbols method. */
ccefe4c4 5313
40658b94 5314struct match_data
ccefe4c4 5315{
40658b94 5316 struct objfile *objfile;
ccefe4c4 5317 struct obstack *obstackp;
40658b94
PH
5318 struct symbol *arg_sym;
5319 int found_sym;
ccefe4c4
TT
5320};
5321
199b4314
TT
5322/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5323 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5324 containing the obstack that collects the symbol list, the file that SYM
5325 must come from, a flag indicating whether a non-argument symbol has
5326 been found in the current block, and the last argument symbol
5327 passed in SYM within the current block (if any). When SYM is null,
5328 marking the end of a block, the argument symbol is added if no
5329 other has been found. */
ccefe4c4 5330
199b4314
TT
5331static bool
5332aux_add_nonlocal_symbols (struct block_symbol *bsym,
5333 struct match_data *data)
ccefe4c4 5334{
199b4314
TT
5335 const struct block *block = bsym->block;
5336 struct symbol *sym = bsym->symbol;
5337
40658b94
PH
5338 if (sym == NULL)
5339 {
5340 if (!data->found_sym && data->arg_sym != NULL)
5341 add_defn_to_vec (data->obstackp,
5342 fixup_symbol_section (data->arg_sym, data->objfile),
5343 block);
5344 data->found_sym = 0;
5345 data->arg_sym = NULL;
5346 }
5347 else
5348 {
5349 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5350 return true;
40658b94
PH
5351 else if (SYMBOL_IS_ARGUMENT (sym))
5352 data->arg_sym = sym;
5353 else
5354 {
5355 data->found_sym = 1;
5356 add_defn_to_vec (data->obstackp,
5357 fixup_symbol_section (sym, data->objfile),
5358 block);
5359 }
5360 }
199b4314 5361 return true;
40658b94
PH
5362}
5363
b5ec771e
PA
5364/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5365 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5366 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5367
5368static int
5369ada_add_block_renamings (struct obstack *obstackp,
5370 const struct block *block,
b5ec771e
PA
5371 const lookup_name_info &lookup_name,
5372 domain_enum domain)
22cee43f
PMR
5373{
5374 struct using_direct *renaming;
5375 int defns_mark = num_defns_collected (obstackp);
5376
b5ec771e
PA
5377 symbol_name_matcher_ftype *name_match
5378 = ada_get_symbol_name_matcher (lookup_name);
5379
22cee43f
PMR
5380 for (renaming = block_using (block);
5381 renaming != NULL;
5382 renaming = renaming->next)
5383 {
5384 const char *r_name;
22cee43f
PMR
5385
5386 /* Avoid infinite recursions: skip this renaming if we are actually
5387 already traversing it.
5388
5389 Currently, symbol lookup in Ada don't use the namespace machinery from
5390 C++/Fortran support: skip namespace imports that use them. */
5391 if (renaming->searched
5392 || (renaming->import_src != NULL
5393 && renaming->import_src[0] != '\0')
5394 || (renaming->import_dest != NULL
5395 && renaming->import_dest[0] != '\0'))
5396 continue;
5397 renaming->searched = 1;
5398
5399 /* TODO: here, we perform another name-based symbol lookup, which can
5400 pull its own multiple overloads. In theory, we should be able to do
5401 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5402 not a simple name. But in order to do this, we would need to enhance
5403 the DWARF reader to associate a symbol to this renaming, instead of a
5404 name. So, for now, we do something simpler: re-use the C++/Fortran
5405 namespace machinery. */
5406 r_name = (renaming->alias != NULL
5407 ? renaming->alias
5408 : renaming->declaration);
b5ec771e
PA
5409 if (name_match (r_name, lookup_name, NULL))
5410 {
5411 lookup_name_info decl_lookup_name (renaming->declaration,
5412 lookup_name.match_type ());
5413 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5414 1, NULL);
5415 }
22cee43f
PMR
5416 renaming->searched = 0;
5417 }
5418 return num_defns_collected (obstackp) != defns_mark;
5419}
5420
db230ce3
JB
5421/* Implements compare_names, but only applying the comparision using
5422 the given CASING. */
5b4ee69b 5423
40658b94 5424static int
db230ce3
JB
5425compare_names_with_case (const char *string1, const char *string2,
5426 enum case_sensitivity casing)
40658b94
PH
5427{
5428 while (*string1 != '\0' && *string2 != '\0')
5429 {
db230ce3
JB
5430 char c1, c2;
5431
40658b94
PH
5432 if (isspace (*string1) || isspace (*string2))
5433 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5434
5435 if (casing == case_sensitive_off)
5436 {
5437 c1 = tolower (*string1);
5438 c2 = tolower (*string2);
5439 }
5440 else
5441 {
5442 c1 = *string1;
5443 c2 = *string2;
5444 }
5445 if (c1 != c2)
40658b94 5446 break;
db230ce3 5447
40658b94
PH
5448 string1 += 1;
5449 string2 += 1;
5450 }
db230ce3 5451
40658b94
PH
5452 switch (*string1)
5453 {
5454 case '(':
5455 return strcmp_iw_ordered (string1, string2);
5456 case '_':
5457 if (*string2 == '\0')
5458 {
052874e8 5459 if (is_name_suffix (string1))
40658b94
PH
5460 return 0;
5461 else
1a1d5513 5462 return 1;
40658b94 5463 }
dbb8534f 5464 /* FALLTHROUGH */
40658b94
PH
5465 default:
5466 if (*string2 == '(')
5467 return strcmp_iw_ordered (string1, string2);
5468 else
db230ce3
JB
5469 {
5470 if (casing == case_sensitive_off)
5471 return tolower (*string1) - tolower (*string2);
5472 else
5473 return *string1 - *string2;
5474 }
40658b94 5475 }
ccefe4c4
TT
5476}
5477
db230ce3
JB
5478/* Compare STRING1 to STRING2, with results as for strcmp.
5479 Compatible with strcmp_iw_ordered in that...
5480
5481 strcmp_iw_ordered (STRING1, STRING2) <= 0
5482
5483 ... implies...
5484
5485 compare_names (STRING1, STRING2) <= 0
5486
5487 (they may differ as to what symbols compare equal). */
5488
5489static int
5490compare_names (const char *string1, const char *string2)
5491{
5492 int result;
5493
5494 /* Similar to what strcmp_iw_ordered does, we need to perform
5495 a case-insensitive comparison first, and only resort to
5496 a second, case-sensitive, comparison if the first one was
5497 not sufficient to differentiate the two strings. */
5498
5499 result = compare_names_with_case (string1, string2, case_sensitive_off);
5500 if (result == 0)
5501 result = compare_names_with_case (string1, string2, case_sensitive_on);
5502
5503 return result;
5504}
5505
b5ec771e
PA
5506/* Convenience function to get at the Ada encoded lookup name for
5507 LOOKUP_NAME, as a C string. */
5508
5509static const char *
5510ada_lookup_name (const lookup_name_info &lookup_name)
5511{
5512 return lookup_name.ada ().lookup_name ().c_str ();
5513}
5514
339c13b6 5515/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5516 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5517 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5518 symbols otherwise. */
339c13b6
JB
5519
5520static void
b5ec771e
PA
5521add_nonlocal_symbols (struct obstack *obstackp,
5522 const lookup_name_info &lookup_name,
5523 domain_enum domain, int global)
339c13b6 5524{
40658b94 5525 struct match_data data;
339c13b6 5526
6475f2fe 5527 memset (&data, 0, sizeof data);
ccefe4c4 5528 data.obstackp = obstackp;
339c13b6 5529
b5ec771e
PA
5530 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5531
199b4314
TT
5532 auto callback = [&] (struct block_symbol *bsym)
5533 {
5534 return aux_add_nonlocal_symbols (bsym, &data);
5535 };
5536
2030c079 5537 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5538 {
5539 data.objfile = objfile;
5540
b054970d
TT
5541 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5542 domain, global, callback,
5543 (is_wild_match
5544 ? NULL : compare_names));
22cee43f 5545
b669c953 5546 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5547 {
5548 const struct block *global_block
5549 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5550
b5ec771e
PA
5551 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5552 domain))
22cee43f
PMR
5553 data.found_sym = 1;
5554 }
40658b94
PH
5555 }
5556
5557 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5558 {
b5ec771e 5559 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5560 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5561 symbol_name_match_type::FULL);
b5ec771e 5562
2030c079 5563 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5564 {
40658b94 5565 data.objfile = objfile;
b054970d 5566 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5567 domain, global, callback,
b5ec771e 5568 compare_names);
40658b94
PH
5569 }
5570 }
339c13b6
JB
5571}
5572
b5ec771e
PA
5573/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5574 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5575 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5576
22cee43f
PMR
5577 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5578 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5579 is the one match returned (no other matches in that or
d9680e73 5580 enclosing blocks is returned). If there are any matches in or
22cee43f 5581 surrounding BLOCK, then these alone are returned.
4eeaa230 5582
b5ec771e
PA
5583 Names prefixed with "standard__" are handled specially:
5584 "standard__" is first stripped off (by the lookup_name
5585 constructor), and only static and global symbols are searched.
14f9c5c9 5586
22cee43f
PMR
5587 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5588 to lookup global symbols. */
5589
5590static void
5591ada_add_all_symbols (struct obstack *obstackp,
5592 const struct block *block,
b5ec771e 5593 const lookup_name_info &lookup_name,
22cee43f
PMR
5594 domain_enum domain,
5595 int full_search,
5596 int *made_global_lookup_p)
14f9c5c9
AS
5597{
5598 struct symbol *sym;
14f9c5c9 5599
22cee43f
PMR
5600 if (made_global_lookup_p)
5601 *made_global_lookup_p = 0;
339c13b6
JB
5602
5603 /* Special case: If the user specifies a symbol name inside package
5604 Standard, do a non-wild matching of the symbol name without
5605 the "standard__" prefix. This was primarily introduced in order
5606 to allow the user to specifically access the standard exceptions
5607 using, for instance, Standard.Constraint_Error when Constraint_Error
5608 is ambiguous (due to the user defining its own Constraint_Error
5609 entity inside its program). */
b5ec771e
PA
5610 if (lookup_name.ada ().standard_p ())
5611 block = NULL;
4c4b4cd2 5612
339c13b6 5613 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5614
4eeaa230
DE
5615 if (block != NULL)
5616 {
5617 if (full_search)
b5ec771e 5618 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5619 else
5620 {
5621 /* In the !full_search case we're are being called by
5622 ada_iterate_over_symbols, and we don't want to search
5623 superblocks. */
b5ec771e 5624 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5625 }
22cee43f
PMR
5626 if (num_defns_collected (obstackp) > 0 || !full_search)
5627 return;
4eeaa230 5628 }
d2e4a39e 5629
339c13b6
JB
5630 /* No non-global symbols found. Check our cache to see if we have
5631 already performed this search before. If we have, then return
5632 the same result. */
5633
b5ec771e
PA
5634 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5635 domain, &sym, &block))
4c4b4cd2
PH
5636 {
5637 if (sym != NULL)
b5ec771e 5638 add_defn_to_vec (obstackp, sym, block);
22cee43f 5639 return;
4c4b4cd2 5640 }
14f9c5c9 5641
22cee43f
PMR
5642 if (made_global_lookup_p)
5643 *made_global_lookup_p = 1;
b1eedac9 5644
339c13b6
JB
5645 /* Search symbols from all global blocks. */
5646
b5ec771e 5647 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5648
4c4b4cd2 5649 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5650 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5651
22cee43f 5652 if (num_defns_collected (obstackp) == 0)
b5ec771e 5653 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5654}
5655
b5ec771e
PA
5656/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5657 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5658 matches.
54d343a2
TT
5659 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5660 found and the blocks and symbol tables (if any) in which they were
5661 found.
22cee43f
PMR
5662
5663 When full_search is non-zero, any non-function/non-enumeral
5664 symbol match within the nest of blocks whose innermost member is BLOCK,
5665 is the one match returned (no other matches in that or
5666 enclosing blocks is returned). If there are any matches in or
5667 surrounding BLOCK, then these alone are returned.
5668
5669 Names prefixed with "standard__" are handled specially: "standard__"
5670 is first stripped off, and only static and global symbols are searched. */
5671
5672static int
b5ec771e
PA
5673ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5674 const struct block *block,
22cee43f 5675 domain_enum domain,
54d343a2 5676 std::vector<struct block_symbol> *results,
22cee43f
PMR
5677 int full_search)
5678{
22cee43f
PMR
5679 int syms_from_global_search;
5680 int ndefns;
ec6a20c2 5681 auto_obstack obstack;
22cee43f 5682
ec6a20c2 5683 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5684 domain, full_search, &syms_from_global_search);
14f9c5c9 5685
ec6a20c2
JB
5686 ndefns = num_defns_collected (&obstack);
5687
54d343a2
TT
5688 struct block_symbol *base = defns_collected (&obstack, 1);
5689 for (int i = 0; i < ndefns; ++i)
5690 results->push_back (base[i]);
4c4b4cd2 5691
54d343a2 5692 ndefns = remove_extra_symbols (results);
4c4b4cd2 5693
b1eedac9 5694 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5695 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5696
b1eedac9 5697 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5698 cache_symbol (ada_lookup_name (lookup_name), domain,
5699 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5700
54d343a2 5701 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5702
14f9c5c9
AS
5703 return ndefns;
5704}
5705
b5ec771e 5706/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5707 in global scopes, returning the number of matches, and filling *RESULTS
5708 with (SYM,BLOCK) tuples.
ec6a20c2 5709
4eeaa230
DE
5710 See ada_lookup_symbol_list_worker for further details. */
5711
5712int
b5ec771e 5713ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5714 domain_enum domain,
5715 std::vector<struct block_symbol> *results)
4eeaa230 5716{
b5ec771e
PA
5717 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5718 lookup_name_info lookup_name (name, name_match_type);
5719
5720 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5721}
5722
5723/* Implementation of the la_iterate_over_symbols method. */
5724
6969f124 5725static bool
14bc53a8 5726ada_iterate_over_symbols
b5ec771e
PA
5727 (const struct block *block, const lookup_name_info &name,
5728 domain_enum domain,
14bc53a8 5729 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5730{
5731 int ndefs, i;
54d343a2 5732 std::vector<struct block_symbol> results;
4eeaa230
DE
5733
5734 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5735
4eeaa230
DE
5736 for (i = 0; i < ndefs; ++i)
5737 {
7e41c8db 5738 if (!callback (&results[i]))
6969f124 5739 return false;
4eeaa230 5740 }
6969f124
TT
5741
5742 return true;
4eeaa230
DE
5743}
5744
4e5c77fe
JB
5745/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5746 to 1, but choosing the first symbol found if there are multiple
5747 choices.
5748
5e2336be
JB
5749 The result is stored in *INFO, which must be non-NULL.
5750 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5751
5752void
5753ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5754 domain_enum domain,
d12307c1 5755 struct block_symbol *info)
14f9c5c9 5756{
b5ec771e
PA
5757 /* Since we already have an encoded name, wrap it in '<>' to force a
5758 verbatim match. Otherwise, if the name happens to not look like
5759 an encoded name (because it doesn't include a "__"),
5760 ada_lookup_name_info would re-encode/fold it again, and that
5761 would e.g., incorrectly lowercase object renaming names like
5762 "R28b" -> "r28b". */
5763 std::string verbatim = std::string ("<") + name + '>';
5764
5e2336be 5765 gdb_assert (info != NULL);
65392b3e 5766 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5767}
aeb5907d
JB
5768
5769/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5770 scope and in global scopes, or NULL if none. NAME is folded and
5771 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5772 choosing the first symbol if there are multiple choices. */
4e5c77fe 5773
d12307c1 5774struct block_symbol
aeb5907d 5775ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5776 domain_enum domain)
aeb5907d 5777{
54d343a2 5778 std::vector<struct block_symbol> candidates;
f98fc17b 5779 int n_candidates;
f98fc17b
PA
5780
5781 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5782
5783 if (n_candidates == 0)
54d343a2 5784 return {};
f98fc17b
PA
5785
5786 block_symbol info = candidates[0];
5787 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5788 return info;
4c4b4cd2 5789}
14f9c5c9 5790
d12307c1 5791static struct block_symbol
f606139a
DE
5792ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5793 const char *name,
76a01679 5794 const struct block *block,
21b556f4 5795 const domain_enum domain)
4c4b4cd2 5796{
d12307c1 5797 struct block_symbol sym;
04dccad0 5798
65392b3e 5799 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5800 if (sym.symbol != NULL)
04dccad0
JB
5801 return sym;
5802
5803 /* If we haven't found a match at this point, try the primitive
5804 types. In other languages, this search is performed before
5805 searching for global symbols in order to short-circuit that
5806 global-symbol search if it happens that the name corresponds
5807 to a primitive type. But we cannot do the same in Ada, because
5808 it is perfectly legitimate for a program to declare a type which
5809 has the same name as a standard type. If looking up a type in
5810 that situation, we have traditionally ignored the primitive type
5811 in favor of user-defined types. This is why, unlike most other
5812 languages, we search the primitive types this late and only after
5813 having searched the global symbols without success. */
5814
5815 if (domain == VAR_DOMAIN)
5816 {
5817 struct gdbarch *gdbarch;
5818
5819 if (block == NULL)
5820 gdbarch = target_gdbarch ();
5821 else
5822 gdbarch = block_gdbarch (block);
d12307c1
PMR
5823 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5824 if (sym.symbol != NULL)
04dccad0
JB
5825 return sym;
5826 }
5827
6640a367 5828 return {};
14f9c5c9
AS
5829}
5830
5831
4c4b4cd2
PH
5832/* True iff STR is a possible encoded suffix of a normal Ada name
5833 that is to be ignored for matching purposes. Suffixes of parallel
5834 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5835 are given by any of the regular expressions:
4c4b4cd2 5836
babe1480
JB
5837 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5838 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5839 TKB [subprogram suffix for task bodies]
babe1480 5840 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5841 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5842
5843 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5844 match is performed. This sequence is used to differentiate homonyms,
5845 is an optional part of a valid name suffix. */
4c4b4cd2 5846
14f9c5c9 5847static int
d2e4a39e 5848is_name_suffix (const char *str)
14f9c5c9
AS
5849{
5850 int k;
4c4b4cd2
PH
5851 const char *matching;
5852 const int len = strlen (str);
5853
babe1480
JB
5854 /* Skip optional leading __[0-9]+. */
5855
4c4b4cd2
PH
5856 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5857 {
babe1480
JB
5858 str += 3;
5859 while (isdigit (str[0]))
5860 str += 1;
4c4b4cd2 5861 }
babe1480
JB
5862
5863 /* [.$][0-9]+ */
4c4b4cd2 5864
babe1480 5865 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5866 {
babe1480 5867 matching = str + 1;
4c4b4cd2
PH
5868 while (isdigit (matching[0]))
5869 matching += 1;
5870 if (matching[0] == '\0')
5871 return 1;
5872 }
5873
5874 /* ___[0-9]+ */
babe1480 5875
4c4b4cd2
PH
5876 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5877 {
5878 matching = str + 3;
5879 while (isdigit (matching[0]))
5880 matching += 1;
5881 if (matching[0] == '\0')
5882 return 1;
5883 }
5884
9ac7f98e
JB
5885 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5886
5887 if (strcmp (str, "TKB") == 0)
5888 return 1;
5889
529cad9c
PH
5890#if 0
5891 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5892 with a N at the end. Unfortunately, the compiler uses the same
5893 convention for other internal types it creates. So treating
529cad9c 5894 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5895 some regressions. For instance, consider the case of an enumerated
5896 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5897 name ends with N.
5898 Having a single character like this as a suffix carrying some
0963b4bd 5899 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5900 to be something like "_N" instead. In the meantime, do not do
5901 the following check. */
5902 /* Protected Object Subprograms */
5903 if (len == 1 && str [0] == 'N')
5904 return 1;
5905#endif
5906
5907 /* _E[0-9]+[bs]$ */
5908 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5909 {
5910 matching = str + 3;
5911 while (isdigit (matching[0]))
5912 matching += 1;
5913 if ((matching[0] == 'b' || matching[0] == 's')
5914 && matching [1] == '\0')
5915 return 1;
5916 }
5917
4c4b4cd2
PH
5918 /* ??? We should not modify STR directly, as we are doing below. This
5919 is fine in this case, but may become problematic later if we find
5920 that this alternative did not work, and want to try matching
5921 another one from the begining of STR. Since we modified it, we
5922 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5923 if (str[0] == 'X')
5924 {
5925 str += 1;
d2e4a39e 5926 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5927 {
5928 if (str[0] != 'n' && str[0] != 'b')
5929 return 0;
5930 str += 1;
5931 }
14f9c5c9 5932 }
babe1480 5933
14f9c5c9
AS
5934 if (str[0] == '\000')
5935 return 1;
babe1480 5936
d2e4a39e 5937 if (str[0] == '_')
14f9c5c9
AS
5938 {
5939 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5940 return 0;
d2e4a39e 5941 if (str[2] == '_')
4c4b4cd2 5942 {
61ee279c
PH
5943 if (strcmp (str + 3, "JM") == 0)
5944 return 1;
5945 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5946 the LJM suffix in favor of the JM one. But we will
5947 still accept LJM as a valid suffix for a reasonable
5948 amount of time, just to allow ourselves to debug programs
5949 compiled using an older version of GNAT. */
4c4b4cd2
PH
5950 if (strcmp (str + 3, "LJM") == 0)
5951 return 1;
5952 if (str[3] != 'X')
5953 return 0;
1265e4aa
JB
5954 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5955 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5956 return 1;
5957 if (str[4] == 'R' && str[5] != 'T')
5958 return 1;
5959 return 0;
5960 }
5961 if (!isdigit (str[2]))
5962 return 0;
5963 for (k = 3; str[k] != '\0'; k += 1)
5964 if (!isdigit (str[k]) && str[k] != '_')
5965 return 0;
14f9c5c9
AS
5966 return 1;
5967 }
4c4b4cd2 5968 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5969 {
4c4b4cd2
PH
5970 for (k = 2; str[k] != '\0'; k += 1)
5971 if (!isdigit (str[k]) && str[k] != '_')
5972 return 0;
14f9c5c9
AS
5973 return 1;
5974 }
5975 return 0;
5976}
d2e4a39e 5977
aeb5907d
JB
5978/* Return non-zero if the string starting at NAME and ending before
5979 NAME_END contains no capital letters. */
529cad9c
PH
5980
5981static int
5982is_valid_name_for_wild_match (const char *name0)
5983{
f945dedf 5984 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5985 int i;
5986
5823c3ef
JB
5987 /* If the decoded name starts with an angle bracket, it means that
5988 NAME0 does not follow the GNAT encoding format. It should then
5989 not be allowed as a possible wild match. */
5990 if (decoded_name[0] == '<')
5991 return 0;
5992
529cad9c
PH
5993 for (i=0; decoded_name[i] != '\0'; i++)
5994 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5995 return 0;
5996
5997 return 1;
5998}
5999
73589123
PH
6000/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6001 that could start a simple name. Assumes that *NAMEP points into
6002 the string beginning at NAME0. */
4c4b4cd2 6003
14f9c5c9 6004static int
73589123 6005advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6006{
73589123 6007 const char *name = *namep;
5b4ee69b 6008
5823c3ef 6009 while (1)
14f9c5c9 6010 {
aa27d0b3 6011 int t0, t1;
73589123
PH
6012
6013 t0 = *name;
6014 if (t0 == '_')
6015 {
6016 t1 = name[1];
6017 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6018 {
6019 name += 1;
61012eef 6020 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6021 break;
6022 else
6023 name += 1;
6024 }
aa27d0b3
JB
6025 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6026 || name[2] == target0))
73589123
PH
6027 {
6028 name += 2;
6029 break;
6030 }
6031 else
6032 return 0;
6033 }
6034 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6035 name += 1;
6036 else
5823c3ef 6037 return 0;
73589123
PH
6038 }
6039
6040 *namep = name;
6041 return 1;
6042}
6043
b5ec771e
PA
6044/* Return true iff NAME encodes a name of the form prefix.PATN.
6045 Ignores any informational suffixes of NAME (i.e., for which
6046 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6047 simple name. */
73589123 6048
b5ec771e 6049static bool
73589123
PH
6050wild_match (const char *name, const char *patn)
6051{
22e048c9 6052 const char *p;
73589123
PH
6053 const char *name0 = name;
6054
6055 while (1)
6056 {
6057 const char *match = name;
6058
6059 if (*name == *patn)
6060 {
6061 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6062 if (*p != *name)
6063 break;
6064 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6065 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6066
6067 if (name[-1] == '_')
6068 name -= 1;
6069 }
6070 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6071 return false;
96d887e8 6072 }
96d887e8
PH
6073}
6074
b5ec771e
PA
6075/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6076 any trailing suffixes that encode debugging information or leading
6077 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6078 information that is ignored). */
40658b94 6079
b5ec771e 6080static bool
c4d840bd
PH
6081full_match (const char *sym_name, const char *search_name)
6082{
b5ec771e
PA
6083 size_t search_name_len = strlen (search_name);
6084
6085 if (strncmp (sym_name, search_name, search_name_len) == 0
6086 && is_name_suffix (sym_name + search_name_len))
6087 return true;
6088
6089 if (startswith (sym_name, "_ada_")
6090 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6091 && is_name_suffix (sym_name + search_name_len + 5))
6092 return true;
c4d840bd 6093
b5ec771e
PA
6094 return false;
6095}
c4d840bd 6096
b5ec771e
PA
6097/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6098 *defn_symbols, updating the list of symbols in OBSTACKP (if
6099 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6100
6101static void
6102ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6103 const struct block *block,
6104 const lookup_name_info &lookup_name,
6105 domain_enum domain, struct objfile *objfile)
96d887e8 6106{
8157b174 6107 struct block_iterator iter;
96d887e8
PH
6108 /* A matching argument symbol, if any. */
6109 struct symbol *arg_sym;
6110 /* Set true when we find a matching non-argument symbol. */
6111 int found_sym;
6112 struct symbol *sym;
6113
6114 arg_sym = NULL;
6115 found_sym = 0;
b5ec771e
PA
6116 for (sym = block_iter_match_first (block, lookup_name, &iter);
6117 sym != NULL;
6118 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6119 {
b5ec771e
PA
6120 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6121 SYMBOL_DOMAIN (sym), domain))
6122 {
6123 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6124 {
6125 if (SYMBOL_IS_ARGUMENT (sym))
6126 arg_sym = sym;
6127 else
6128 {
6129 found_sym = 1;
6130 add_defn_to_vec (obstackp,
6131 fixup_symbol_section (sym, objfile),
6132 block);
6133 }
6134 }
6135 }
96d887e8
PH
6136 }
6137
22cee43f
PMR
6138 /* Handle renamings. */
6139
b5ec771e 6140 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6141 found_sym = 1;
6142
96d887e8
PH
6143 if (!found_sym && arg_sym != NULL)
6144 {
76a01679
JB
6145 add_defn_to_vec (obstackp,
6146 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6147 block);
96d887e8
PH
6148 }
6149
b5ec771e 6150 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6151 {
6152 arg_sym = NULL;
6153 found_sym = 0;
b5ec771e
PA
6154 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6155 const char *name = ada_lookup_name.c_str ();
6156 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6157
6158 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6159 {
4186eb54
KS
6160 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6161 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6162 {
6163 int cmp;
6164
6165 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6166 if (cmp == 0)
6167 {
61012eef 6168 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6169 if (cmp == 0)
6170 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6171 name_len);
6172 }
6173
6174 if (cmp == 0
6175 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6176 {
2a2d4dc3
AS
6177 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6178 {
6179 if (SYMBOL_IS_ARGUMENT (sym))
6180 arg_sym = sym;
6181 else
6182 {
6183 found_sym = 1;
6184 add_defn_to_vec (obstackp,
6185 fixup_symbol_section (sym, objfile),
6186 block);
6187 }
6188 }
76a01679
JB
6189 }
6190 }
76a01679 6191 }
96d887e8
PH
6192
6193 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6194 They aren't parameters, right? */
6195 if (!found_sym && arg_sym != NULL)
6196 {
6197 add_defn_to_vec (obstackp,
76a01679 6198 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6199 block);
96d887e8
PH
6200 }
6201 }
6202}
6203\f
41d27058
JB
6204
6205 /* Symbol Completion */
6206
b5ec771e 6207/* See symtab.h. */
41d27058 6208
b5ec771e
PA
6209bool
6210ada_lookup_name_info::matches
6211 (const char *sym_name,
6212 symbol_name_match_type match_type,
a207cff2 6213 completion_match_result *comp_match_res) const
41d27058 6214{
b5ec771e
PA
6215 bool match = false;
6216 const char *text = m_encoded_name.c_str ();
6217 size_t text_len = m_encoded_name.size ();
41d27058
JB
6218
6219 /* First, test against the fully qualified name of the symbol. */
6220
6221 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6222 match = true;
41d27058 6223
f945dedf 6224 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6225 if (match && !m_encoded_p)
41d27058
JB
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
41d27058 6231
f945dedf 6232 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6233 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6234 }
6235
b5ec771e 6236 if (match && !m_verbatim_p)
41d27058
JB
6237 {
6238 /* When doing non-verbatim match, another check that needs to
6239 be done is to verify that the potentially matching symbol name
6240 does not include capital letters, because the ada-mode would
6241 not be able to understand these symbol names without the
6242 angle bracket notation. */
6243 const char *tmp;
6244
6245 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6246 if (*tmp != '\0')
b5ec771e 6247 match = false;
41d27058
JB
6248 }
6249
6250 /* Second: Try wild matching... */
6251
b5ec771e 6252 if (!match && m_wild_match_p)
41d27058
JB
6253 {
6254 /* Since we are doing wild matching, this means that TEXT
6255 may represent an unqualified symbol name. We therefore must
6256 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6257 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6258
6259 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6260 match = true;
41d27058
JB
6261 }
6262
b5ec771e 6263 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6264
6265 if (!match)
b5ec771e 6266 return false;
41d27058 6267
a207cff2 6268 if (comp_match_res != NULL)
b5ec771e 6269 {
a207cff2 6270 std::string &match_str = comp_match_res->match.storage ();
41d27058 6271
b5ec771e 6272 if (!m_encoded_p)
a207cff2 6273 match_str = ada_decode (sym_name);
b5ec771e
PA
6274 else
6275 {
6276 if (m_verbatim_p)
6277 match_str = add_angle_brackets (sym_name);
6278 else
6279 match_str = sym_name;
41d27058 6280
b5ec771e 6281 }
a207cff2
PA
6282
6283 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6284 }
6285
b5ec771e 6286 return true;
41d27058
JB
6287}
6288
b5ec771e 6289/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6290 WORD is the entire command on which completion is made. */
41d27058 6291
eb3ff9a5
PA
6292static void
6293ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6294 complete_symbol_mode mode,
b5ec771e
PA
6295 symbol_name_match_type name_match_type,
6296 const char *text, const char *word,
eb3ff9a5 6297 enum type_code code)
41d27058 6298{
41d27058 6299 struct symbol *sym;
3977b71f 6300 const struct block *b, *surrounding_static_block = 0;
8157b174 6301 struct block_iterator iter;
41d27058 6302
2f68a895
TT
6303 gdb_assert (code == TYPE_CODE_UNDEF);
6304
1b026119 6305 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6306
6307 /* First, look at the partial symtab symbols. */
14bc53a8 6308 expand_symtabs_matching (NULL,
b5ec771e
PA
6309 lookup_name,
6310 NULL,
14bc53a8
PA
6311 NULL,
6312 ALL_DOMAIN);
41d27058
JB
6313
6314 /* At this point scan through the misc symbol vectors and add each
6315 symbol you find to the list. Eventually we want to ignore
6316 anything that isn't a text symbol (everything else will be
6317 handled by the psymtab code above). */
6318
2030c079 6319 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6320 {
7932255d 6321 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6322 {
6323 QUIT;
6324
6325 if (completion_skip_symbol (mode, msymbol))
6326 continue;
6327
6328 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6329
6330 /* Ada minimal symbols won't have their language set to Ada. If
6331 we let completion_list_add_name compare using the
6332 default/C-like matcher, then when completing e.g., symbols in a
6333 package named "pck", we'd match internal Ada symbols like
6334 "pckS", which are invalid in an Ada expression, unless you wrap
6335 them in '<' '>' to request a verbatim match.
6336
6337 Unfortunately, some Ada encoded names successfully demangle as
6338 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6339 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6340 with the wrong language set. Paper over that issue here. */
6341 if (symbol_language == language_auto
6342 || symbol_language == language_cplus)
6343 symbol_language = language_ada;
6344
6345 completion_list_add_name (tracker,
6346 symbol_language,
6347 MSYMBOL_LINKAGE_NAME (msymbol),
6348 lookup_name, text, word);
6349 }
6350 }
41d27058
JB
6351
6352 /* Search upwards from currently selected frame (so that we can
6353 complete on local vars. */
6354
6355 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6356 {
6357 if (!BLOCK_SUPERBLOCK (b))
6358 surrounding_static_block = b; /* For elmin of dups */
6359
6360 ALL_BLOCK_SYMBOLS (b, iter, sym)
6361 {
f9d67a22
PA
6362 if (completion_skip_symbol (mode, sym))
6363 continue;
6364
b5ec771e
PA
6365 completion_list_add_name (tracker,
6366 SYMBOL_LANGUAGE (sym),
6367 SYMBOL_LINKAGE_NAME (sym),
1b026119 6368 lookup_name, text, word);
41d27058
JB
6369 }
6370 }
6371
6372 /* Go through the symtabs and check the externs and statics for
43f3e411 6373 symbols which match. */
41d27058 6374
2030c079 6375 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6376 {
b669c953 6377 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6378 {
6379 QUIT;
6380 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
f9d67a22 6385
d8aeb77f
TT
6386 completion_list_add_name (tracker,
6387 SYMBOL_LANGUAGE (sym),
6388 SYMBOL_LINKAGE_NAME (sym),
6389 lookup_name, text, word);
6390 }
6391 }
41d27058 6392 }
41d27058 6393
2030c079 6394 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6395 {
b669c953 6396 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6397 {
6398 QUIT;
6399 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6400 /* Don't do this block twice. */
6401 if (b == surrounding_static_block)
6402 continue;
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
f9d67a22 6407
d8aeb77f
TT
6408 completion_list_add_name (tracker,
6409 SYMBOL_LANGUAGE (sym),
6410 SYMBOL_LINKAGE_NAME (sym),
6411 lookup_name, text, word);
6412 }
6413 }
41d27058 6414 }
41d27058
JB
6415}
6416
963a6417 6417 /* Field Access */
96d887e8 6418
73fb9985
JB
6419/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6420 for tagged types. */
6421
6422static int
6423ada_is_dispatch_table_ptr_type (struct type *type)
6424{
0d5cff50 6425 const char *name;
73fb9985
JB
6426
6427 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6428 return 0;
6429
6430 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6431 if (name == NULL)
6432 return 0;
6433
6434 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6435}
6436
ac4a2da4
JG
6437/* Return non-zero if TYPE is an interface tag. */
6438
6439static int
6440ada_is_interface_tag (struct type *type)
6441{
6442 const char *name = TYPE_NAME (type);
6443
6444 if (name == NULL)
6445 return 0;
6446
6447 return (strcmp (name, "ada__tags__interface_tag") == 0);
6448}
6449
963a6417
PH
6450/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6451 to be invisible to users. */
96d887e8 6452
963a6417
PH
6453int
6454ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6455{
963a6417
PH
6456 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6457 return 1;
ffde82bf 6458
73fb9985
JB
6459 /* Check the name of that field. */
6460 {
6461 const char *name = TYPE_FIELD_NAME (type, field_num);
6462
6463 /* Anonymous field names should not be printed.
6464 brobecker/2007-02-20: I don't think this can actually happen
6465 but we don't want to print the value of annonymous fields anyway. */
6466 if (name == NULL)
6467 return 1;
6468
ffde82bf
JB
6469 /* Normally, fields whose name start with an underscore ("_")
6470 are fields that have been internally generated by the compiler,
6471 and thus should not be printed. The "_parent" field is special,
6472 however: This is a field internally generated by the compiler
6473 for tagged types, and it contains the components inherited from
6474 the parent type. This field should not be printed as is, but
6475 should not be ignored either. */
61012eef 6476 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6477 return 1;
6478 }
6479
ac4a2da4
JG
6480 /* If this is the dispatch table of a tagged type or an interface tag,
6481 then ignore. */
73fb9985 6482 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6483 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6484 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6485 return 1;
6486
6487 /* Not a special field, so it should not be ignored. */
6488 return 0;
963a6417 6489}
96d887e8 6490
963a6417 6491/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6492 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6493
963a6417
PH
6494int
6495ada_is_tagged_type (struct type *type, int refok)
6496{
988f6b3d 6497 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6498}
96d887e8 6499
963a6417 6500/* True iff TYPE represents the type of X'Tag */
96d887e8 6501
963a6417
PH
6502int
6503ada_is_tag_type (struct type *type)
6504{
460efde1
JB
6505 type = ada_check_typedef (type);
6506
963a6417
PH
6507 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6508 return 0;
6509 else
96d887e8 6510 {
963a6417 6511 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6512
963a6417
PH
6513 return (name != NULL
6514 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6515 }
96d887e8
PH
6516}
6517
963a6417 6518/* The type of the tag on VAL. */
76a01679 6519
963a6417
PH
6520struct type *
6521ada_tag_type (struct value *val)
96d887e8 6522{
988f6b3d 6523 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6524}
96d887e8 6525
b50d69b5
JG
6526/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6527 retired at Ada 05). */
6528
6529static int
6530is_ada95_tag (struct value *tag)
6531{
6532 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6533}
6534
963a6417 6535/* The value of the tag on VAL. */
96d887e8 6536
963a6417
PH
6537struct value *
6538ada_value_tag (struct value *val)
6539{
03ee6b2e 6540 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6541}
6542
963a6417
PH
6543/* The value of the tag on the object of type TYPE whose contents are
6544 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6545 ADDRESS. */
96d887e8 6546
963a6417 6547static struct value *
10a2c479 6548value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6549 const gdb_byte *valaddr,
963a6417 6550 CORE_ADDR address)
96d887e8 6551{
b5385fc0 6552 int tag_byte_offset;
963a6417 6553 struct type *tag_type;
5b4ee69b 6554
963a6417 6555 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6556 NULL, NULL, NULL))
96d887e8 6557 {
fc1a4b47 6558 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6559 ? NULL
6560 : valaddr + tag_byte_offset);
963a6417 6561 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6562
963a6417 6563 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6564 }
963a6417
PH
6565 return NULL;
6566}
96d887e8 6567
963a6417
PH
6568static struct type *
6569type_from_tag (struct value *tag)
6570{
6571 const char *type_name = ada_tag_name (tag);
5b4ee69b 6572
963a6417
PH
6573 if (type_name != NULL)
6574 return ada_find_any_type (ada_encode (type_name));
6575 return NULL;
6576}
96d887e8 6577
b50d69b5
JG
6578/* Given a value OBJ of a tagged type, return a value of this
6579 type at the base address of the object. The base address, as
6580 defined in Ada.Tags, it is the address of the primary tag of
6581 the object, and therefore where the field values of its full
6582 view can be fetched. */
6583
6584struct value *
6585ada_tag_value_at_base_address (struct value *obj)
6586{
b50d69b5
JG
6587 struct value *val;
6588 LONGEST offset_to_top = 0;
6589 struct type *ptr_type, *obj_type;
6590 struct value *tag;
6591 CORE_ADDR base_address;
6592
6593 obj_type = value_type (obj);
6594
6595 /* It is the responsability of the caller to deref pointers. */
6596
6597 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6598 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6599 return obj;
6600
6601 tag = ada_value_tag (obj);
6602 if (!tag)
6603 return obj;
6604
6605 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6606
6607 if (is_ada95_tag (tag))
6608 return obj;
6609
08f49010
XR
6610 ptr_type = language_lookup_primitive_type
6611 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6612 ptr_type = lookup_pointer_type (ptr_type);
6613 val = value_cast (ptr_type, tag);
6614 if (!val)
6615 return obj;
6616
6617 /* It is perfectly possible that an exception be raised while
6618 trying to determine the base address, just like for the tag;
6619 see ada_tag_name for more details. We do not print the error
6620 message for the same reason. */
6621
a70b8144 6622 try
b50d69b5
JG
6623 {
6624 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6625 }
6626
230d2906 6627 catch (const gdb_exception_error &e)
492d29ea
PA
6628 {
6629 return obj;
6630 }
b50d69b5
JG
6631
6632 /* If offset is null, nothing to do. */
6633
6634 if (offset_to_top == 0)
6635 return obj;
6636
6637 /* -1 is a special case in Ada.Tags; however, what should be done
6638 is not quite clear from the documentation. So do nothing for
6639 now. */
6640
6641 if (offset_to_top == -1)
6642 return obj;
6643
08f49010
XR
6644 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6645 from the base address. This was however incompatible with
6646 C++ dispatch table: C++ uses a *negative* value to *add*
6647 to the base address. Ada's convention has therefore been
6648 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6649 use the same convention. Here, we support both cases by
6650 checking the sign of OFFSET_TO_TOP. */
6651
6652 if (offset_to_top > 0)
6653 offset_to_top = -offset_to_top;
6654
6655 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6656 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6657
6658 /* Make sure that we have a proper tag at the new address.
6659 Otherwise, offset_to_top is bogus (which can happen when
6660 the object is not initialized yet). */
6661
6662 if (!tag)
6663 return obj;
6664
6665 obj_type = type_from_tag (tag);
6666
6667 if (!obj_type)
6668 return obj;
6669
6670 return value_from_contents_and_address (obj_type, NULL, base_address);
6671}
6672
1b611343
JB
6673/* Return the "ada__tags__type_specific_data" type. */
6674
6675static struct type *
6676ada_get_tsd_type (struct inferior *inf)
963a6417 6677{
1b611343 6678 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6679
1b611343
JB
6680 if (data->tsd_type == 0)
6681 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6682 return data->tsd_type;
6683}
529cad9c 6684
1b611343
JB
6685/* Return the TSD (type-specific data) associated to the given TAG.
6686 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6687
1b611343 6688 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6689
1b611343
JB
6690static struct value *
6691ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6692{
4c4b4cd2 6693 struct value *val;
1b611343 6694 struct type *type;
5b4ee69b 6695
1b611343
JB
6696 /* First option: The TSD is simply stored as a field of our TAG.
6697 Only older versions of GNAT would use this format, but we have
6698 to test it first, because there are no visible markers for
6699 the current approach except the absence of that field. */
529cad9c 6700
1b611343
JB
6701 val = ada_value_struct_elt (tag, "tsd", 1);
6702 if (val)
6703 return val;
e802dbe0 6704
1b611343
JB
6705 /* Try the second representation for the dispatch table (in which
6706 there is no explicit 'tsd' field in the referent of the tag pointer,
6707 and instead the tsd pointer is stored just before the dispatch
6708 table. */
e802dbe0 6709
1b611343
JB
6710 type = ada_get_tsd_type (current_inferior());
6711 if (type == NULL)
6712 return NULL;
6713 type = lookup_pointer_type (lookup_pointer_type (type));
6714 val = value_cast (type, tag);
6715 if (val == NULL)
6716 return NULL;
6717 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6718}
6719
1b611343
JB
6720/* Given the TSD of a tag (type-specific data), return a string
6721 containing the name of the associated type.
6722
6723 The returned value is good until the next call. May return NULL
6724 if we are unable to determine the tag name. */
6725
6726static char *
6727ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6728{
529cad9c
PH
6729 static char name[1024];
6730 char *p;
1b611343 6731 struct value *val;
529cad9c 6732
1b611343 6733 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6734 if (val == NULL)
1b611343 6735 return NULL;
4c4b4cd2
PH
6736 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6737 for (p = name; *p != '\0'; p += 1)
6738 if (isalpha (*p))
6739 *p = tolower (*p);
1b611343 6740 return name;
4c4b4cd2
PH
6741}
6742
6743/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6744 a C string.
6745
6746 Return NULL if the TAG is not an Ada tag, or if we were unable to
6747 determine the name of that tag. The result is good until the next
6748 call. */
4c4b4cd2
PH
6749
6750const char *
6751ada_tag_name (struct value *tag)
6752{
1b611343 6753 char *name = NULL;
5b4ee69b 6754
df407dfe 6755 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6756 return NULL;
1b611343
JB
6757
6758 /* It is perfectly possible that an exception be raised while trying
6759 to determine the TAG's name, even under normal circumstances:
6760 The associated variable may be uninitialized or corrupted, for
6761 instance. We do not let any exception propagate past this point.
6762 instead we return NULL.
6763
6764 We also do not print the error message either (which often is very
6765 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6766 the caller print a more meaningful message if necessary. */
a70b8144 6767 try
1b611343
JB
6768 {
6769 struct value *tsd = ada_get_tsd_from_tag (tag);
6770
6771 if (tsd != NULL)
6772 name = ada_tag_name_from_tsd (tsd);
6773 }
230d2906 6774 catch (const gdb_exception_error &e)
492d29ea
PA
6775 {
6776 }
1b611343
JB
6777
6778 return name;
4c4b4cd2
PH
6779}
6780
6781/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6782
d2e4a39e 6783struct type *
ebf56fd3 6784ada_parent_type (struct type *type)
14f9c5c9
AS
6785{
6786 int i;
6787
61ee279c 6788 type = ada_check_typedef (type);
14f9c5c9
AS
6789
6790 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6791 return NULL;
6792
6793 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6794 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6795 {
6796 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6797
6798 /* If the _parent field is a pointer, then dereference it. */
6799 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6800 parent_type = TYPE_TARGET_TYPE (parent_type);
6801 /* If there is a parallel XVS type, get the actual base type. */
6802 parent_type = ada_get_base_type (parent_type);
6803
6804 return ada_check_typedef (parent_type);
6805 }
14f9c5c9
AS
6806
6807 return NULL;
6808}
6809
4c4b4cd2
PH
6810/* True iff field number FIELD_NUM of structure type TYPE contains the
6811 parent-type (inherited) fields of a derived type. Assumes TYPE is
6812 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6813
6814int
ebf56fd3 6815ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6816{
61ee279c 6817 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6818
4c4b4cd2 6819 return (name != NULL
61012eef
GB
6820 && (startswith (name, "PARENT")
6821 || startswith (name, "_parent")));
14f9c5c9
AS
6822}
6823
4c4b4cd2 6824/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6825 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6826 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6827 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6828 structures. */
14f9c5c9
AS
6829
6830int
ebf56fd3 6831ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6832{
d2e4a39e 6833 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6834
dddc0e16
JB
6835 if (name != NULL && strcmp (name, "RETVAL") == 0)
6836 {
6837 /* This happens in functions with "out" or "in out" parameters
6838 which are passed by copy. For such functions, GNAT describes
6839 the function's return type as being a struct where the return
6840 value is in a field called RETVAL, and where the other "out"
6841 or "in out" parameters are fields of that struct. This is not
6842 a wrapper. */
6843 return 0;
6844 }
6845
d2e4a39e 6846 return (name != NULL
61012eef 6847 && (startswith (name, "PARENT")
4c4b4cd2 6848 || strcmp (name, "REP") == 0
61012eef 6849 || startswith (name, "_parent")
4c4b4cd2 6850 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6851}
6852
4c4b4cd2
PH
6853/* True iff field number FIELD_NUM of structure or union type TYPE
6854 is a variant wrapper. Assumes TYPE is a structure type with at least
6855 FIELD_NUM+1 fields. */
14f9c5c9
AS
6856
6857int
ebf56fd3 6858ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6859{
8ecb59f8
TT
6860 /* Only Ada types are eligible. */
6861 if (!ADA_TYPE_P (type))
6862 return 0;
6863
d2e4a39e 6864 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6865
14f9c5c9 6866 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6867 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6868 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6869 == TYPE_CODE_UNION)));
14f9c5c9
AS
6870}
6871
6872/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6873 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6874 returns the type of the controlling discriminant for the variant.
6875 May return NULL if the type could not be found. */
14f9c5c9 6876
d2e4a39e 6877struct type *
ebf56fd3 6878ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6879{
a121b7c1 6880 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6881
988f6b3d 6882 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6883}
6884
4c4b4cd2 6885/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6886 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6887 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6888
6889int
ebf56fd3 6890ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6891{
d2e4a39e 6892 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6893
14f9c5c9
AS
6894 return (name != NULL && name[0] == 'O');
6895}
6896
6897/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6898 returns the name of the discriminant controlling the variant.
6899 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6900
a121b7c1 6901const char *
ebf56fd3 6902ada_variant_discrim_name (struct type *type0)
14f9c5c9 6903{
d2e4a39e 6904 static char *result = NULL;
14f9c5c9 6905 static size_t result_len = 0;
d2e4a39e
AS
6906 struct type *type;
6907 const char *name;
6908 const char *discrim_end;
6909 const char *discrim_start;
14f9c5c9
AS
6910
6911 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6912 type = TYPE_TARGET_TYPE (type0);
6913 else
6914 type = type0;
6915
6916 name = ada_type_name (type);
6917
6918 if (name == NULL || name[0] == '\000')
6919 return "";
6920
6921 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6922 discrim_end -= 1)
6923 {
61012eef 6924 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6925 break;
14f9c5c9
AS
6926 }
6927 if (discrim_end == name)
6928 return "";
6929
d2e4a39e 6930 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6931 discrim_start -= 1)
6932 {
d2e4a39e 6933 if (discrim_start == name + 1)
4c4b4cd2 6934 return "";
76a01679 6935 if ((discrim_start > name + 3
61012eef 6936 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6937 || discrim_start[-1] == '.')
6938 break;
14f9c5c9
AS
6939 }
6940
6941 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6942 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6943 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6944 return result;
6945}
6946
4c4b4cd2
PH
6947/* Scan STR for a subtype-encoded number, beginning at position K.
6948 Put the position of the character just past the number scanned in
6949 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6950 Return 1 if there was a valid number at the given position, and 0
6951 otherwise. A "subtype-encoded" number consists of the absolute value
6952 in decimal, followed by the letter 'm' to indicate a negative number.
6953 Assumes 0m does not occur. */
14f9c5c9
AS
6954
6955int
d2e4a39e 6956ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6957{
6958 ULONGEST RU;
6959
d2e4a39e 6960 if (!isdigit (str[k]))
14f9c5c9
AS
6961 return 0;
6962
4c4b4cd2 6963 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6964 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6965 LONGEST. */
14f9c5c9
AS
6966 RU = 0;
6967 while (isdigit (str[k]))
6968 {
d2e4a39e 6969 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6970 k += 1;
6971 }
6972
d2e4a39e 6973 if (str[k] == 'm')
14f9c5c9
AS
6974 {
6975 if (R != NULL)
4c4b4cd2 6976 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6977 k += 1;
6978 }
6979 else if (R != NULL)
6980 *R = (LONGEST) RU;
6981
4c4b4cd2 6982 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6983 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6984 number representable as a LONGEST (although either would probably work
6985 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6986 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6987
6988 if (new_k != NULL)
6989 *new_k = k;
6990 return 1;
6991}
6992
4c4b4cd2
PH
6993/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6994 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6995 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6996
d2e4a39e 6997int
ebf56fd3 6998ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6999{
d2e4a39e 7000 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7001 int p;
7002
7003 p = 0;
7004 while (1)
7005 {
d2e4a39e 7006 switch (name[p])
4c4b4cd2
PH
7007 {
7008 case '\0':
7009 return 0;
7010 case 'S':
7011 {
7012 LONGEST W;
5b4ee69b 7013
4c4b4cd2
PH
7014 if (!ada_scan_number (name, p + 1, &W, &p))
7015 return 0;
7016 if (val == W)
7017 return 1;
7018 break;
7019 }
7020 case 'R':
7021 {
7022 LONGEST L, U;
5b4ee69b 7023
4c4b4cd2
PH
7024 if (!ada_scan_number (name, p + 1, &L, &p)
7025 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7026 return 0;
7027 if (val >= L && val <= U)
7028 return 1;
7029 break;
7030 }
7031 case 'O':
7032 return 1;
7033 default:
7034 return 0;
7035 }
7036 }
7037}
7038
0963b4bd 7039/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7040
7041/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7042 ARG_TYPE, extract and return the value of one of its (non-static)
7043 fields. FIELDNO says which field. Differs from value_primitive_field
7044 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7045
4c4b4cd2 7046static struct value *
d2e4a39e 7047ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7048 struct type *arg_type)
14f9c5c9 7049{
14f9c5c9
AS
7050 struct type *type;
7051
61ee279c 7052 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7053 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7054
4504bbde
TT
7055 /* Handle packed fields. It might be that the field is not packed
7056 relative to its containing structure, but the structure itself is
7057 packed; in this case we must take the bit-field path. */
7058 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7059 {
7060 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7061 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7062
0fd88904 7063 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7064 offset + bit_pos / 8,
7065 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7066 }
7067 else
7068 return value_primitive_field (arg1, offset, fieldno, arg_type);
7069}
7070
52ce6436
PH
7071/* Find field with name NAME in object of type TYPE. If found,
7072 set the following for each argument that is non-null:
7073 - *FIELD_TYPE_P to the field's type;
7074 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7075 an object of that type;
7076 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7077 - *BIT_SIZE_P to its size in bits if the field is packed, and
7078 0 otherwise;
7079 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7080 fields up to but not including the desired field, or by the total
7081 number of fields if not found. A NULL value of NAME never
7082 matches; the function just counts visible fields in this case.
7083
828d5846
XR
7084 Notice that we need to handle when a tagged record hierarchy
7085 has some components with the same name, like in this scenario:
7086
7087 type Top_T is tagged record
7088 N : Integer := 1;
7089 U : Integer := 974;
7090 A : Integer := 48;
7091 end record;
7092
7093 type Middle_T is new Top.Top_T with record
7094 N : Character := 'a';
7095 C : Integer := 3;
7096 end record;
7097
7098 type Bottom_T is new Middle.Middle_T with record
7099 N : Float := 4.0;
7100 C : Character := '5';
7101 X : Integer := 6;
7102 A : Character := 'J';
7103 end record;
7104
7105 Let's say we now have a variable declared and initialized as follow:
7106
7107 TC : Top_A := new Bottom_T;
7108
7109 And then we use this variable to call this function
7110
7111 procedure Assign (Obj: in out Top_T; TV : Integer);
7112
7113 as follow:
7114
7115 Assign (Top_T (B), 12);
7116
7117 Now, we're in the debugger, and we're inside that procedure
7118 then and we want to print the value of obj.c:
7119
7120 Usually, the tagged record or one of the parent type owns the
7121 component to print and there's no issue but in this particular
7122 case, what does it mean to ask for Obj.C? Since the actual
7123 type for object is type Bottom_T, it could mean two things: type
7124 component C from the Middle_T view, but also component C from
7125 Bottom_T. So in that "undefined" case, when the component is
7126 not found in the non-resolved type (which includes all the
7127 components of the parent type), then resolve it and see if we
7128 get better luck once expanded.
7129
7130 In the case of homonyms in the derived tagged type, we don't
7131 guaranty anything, and pick the one that's easiest for us
7132 to program.
7133
0963b4bd 7134 Returns 1 if found, 0 otherwise. */
52ce6436 7135
4c4b4cd2 7136static int
0d5cff50 7137find_struct_field (const char *name, struct type *type, int offset,
76a01679 7138 struct type **field_type_p,
52ce6436
PH
7139 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7140 int *index_p)
4c4b4cd2
PH
7141{
7142 int i;
828d5846 7143 int parent_offset = -1;
4c4b4cd2 7144
61ee279c 7145 type = ada_check_typedef (type);
76a01679 7146
52ce6436
PH
7147 if (field_type_p != NULL)
7148 *field_type_p = NULL;
7149 if (byte_offset_p != NULL)
d5d6fca5 7150 *byte_offset_p = 0;
52ce6436
PH
7151 if (bit_offset_p != NULL)
7152 *bit_offset_p = 0;
7153 if (bit_size_p != NULL)
7154 *bit_size_p = 0;
7155
7156 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7157 {
7158 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7159 int fld_offset = offset + bit_pos / 8;
0d5cff50 7160 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7161
4c4b4cd2
PH
7162 if (t_field_name == NULL)
7163 continue;
7164
828d5846
XR
7165 else if (ada_is_parent_field (type, i))
7166 {
7167 /* This is a field pointing us to the parent type of a tagged
7168 type. As hinted in this function's documentation, we give
7169 preference to fields in the current record first, so what
7170 we do here is just record the index of this field before
7171 we skip it. If it turns out we couldn't find our field
7172 in the current record, then we'll get back to it and search
7173 inside it whether the field might exist in the parent. */
7174
7175 parent_offset = i;
7176 continue;
7177 }
7178
52ce6436 7179 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7180 {
7181 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7182
52ce6436
PH
7183 if (field_type_p != NULL)
7184 *field_type_p = TYPE_FIELD_TYPE (type, i);
7185 if (byte_offset_p != NULL)
7186 *byte_offset_p = fld_offset;
7187 if (bit_offset_p != NULL)
7188 *bit_offset_p = bit_pos % 8;
7189 if (bit_size_p != NULL)
7190 *bit_size_p = bit_size;
76a01679
JB
7191 return 1;
7192 }
4c4b4cd2
PH
7193 else if (ada_is_wrapper_field (type, i))
7194 {
52ce6436
PH
7195 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7196 field_type_p, byte_offset_p, bit_offset_p,
7197 bit_size_p, index_p))
76a01679
JB
7198 return 1;
7199 }
4c4b4cd2
PH
7200 else if (ada_is_variant_part (type, i))
7201 {
52ce6436
PH
7202 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7203 fixed type?? */
4c4b4cd2 7204 int j;
52ce6436
PH
7205 struct type *field_type
7206 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7207
52ce6436 7208 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7209 {
76a01679
JB
7210 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7211 fld_offset
7212 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7213 field_type_p, byte_offset_p,
52ce6436 7214 bit_offset_p, bit_size_p, index_p))
76a01679 7215 return 1;
4c4b4cd2
PH
7216 }
7217 }
52ce6436
PH
7218 else if (index_p != NULL)
7219 *index_p += 1;
4c4b4cd2 7220 }
828d5846
XR
7221
7222 /* Field not found so far. If this is a tagged type which
7223 has a parent, try finding that field in the parent now. */
7224
7225 if (parent_offset != -1)
7226 {
7227 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7228 int fld_offset = offset + bit_pos / 8;
7229
7230 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7231 fld_offset, field_type_p, byte_offset_p,
7232 bit_offset_p, bit_size_p, index_p))
7233 return 1;
7234 }
7235
4c4b4cd2
PH
7236 return 0;
7237}
7238
0963b4bd 7239/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7240
52ce6436
PH
7241static int
7242num_visible_fields (struct type *type)
7243{
7244 int n;
5b4ee69b 7245
52ce6436
PH
7246 n = 0;
7247 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7248 return n;
7249}
14f9c5c9 7250
4c4b4cd2 7251/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7252 and search in it assuming it has (class) type TYPE.
7253 If found, return value, else return NULL.
7254
828d5846
XR
7255 Searches recursively through wrapper fields (e.g., '_parent').
7256
7257 In the case of homonyms in the tagged types, please refer to the
7258 long explanation in find_struct_field's function documentation. */
14f9c5c9 7259
4c4b4cd2 7260static struct value *
108d56a4 7261ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7262 struct type *type)
14f9c5c9
AS
7263{
7264 int i;
828d5846 7265 int parent_offset = -1;
14f9c5c9 7266
5b4ee69b 7267 type = ada_check_typedef (type);
52ce6436 7268 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7269 {
0d5cff50 7270 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7271
7272 if (t_field_name == NULL)
4c4b4cd2 7273 continue;
14f9c5c9 7274
828d5846
XR
7275 else if (ada_is_parent_field (type, i))
7276 {
7277 /* This is a field pointing us to the parent type of a tagged
7278 type. As hinted in this function's documentation, we give
7279 preference to fields in the current record first, so what
7280 we do here is just record the index of this field before
7281 we skip it. If it turns out we couldn't find our field
7282 in the current record, then we'll get back to it and search
7283 inside it whether the field might exist in the parent. */
7284
7285 parent_offset = i;
7286 continue;
7287 }
7288
14f9c5c9 7289 else if (field_name_match (t_field_name, name))
4c4b4cd2 7290 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7291
7292 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7293 {
0963b4bd 7294 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7295 ada_search_struct_field (name, arg,
7296 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7297 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7298
4c4b4cd2
PH
7299 if (v != NULL)
7300 return v;
7301 }
14f9c5c9
AS
7302
7303 else if (ada_is_variant_part (type, i))
4c4b4cd2 7304 {
0963b4bd 7305 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7306 int j;
5b4ee69b
MS
7307 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7308 i));
4c4b4cd2
PH
7309 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7310
52ce6436 7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7312 {
0963b4bd
MS
7313 struct value *v = ada_search_struct_field /* Force line
7314 break. */
06d5cf63
JB
7315 (name, arg,
7316 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7317 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7318
4c4b4cd2
PH
7319 if (v != NULL)
7320 return v;
7321 }
7322 }
14f9c5c9 7323 }
828d5846
XR
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 struct value *v = ada_search_struct_field (
7331 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7332 TYPE_FIELD_TYPE (type, parent_offset));
7333
7334 if (v != NULL)
7335 return v;
7336 }
7337
14f9c5c9
AS
7338 return NULL;
7339}
d2e4a39e 7340
52ce6436
PH
7341static struct value *ada_index_struct_field_1 (int *, struct value *,
7342 int, struct type *);
7343
7344
7345/* Return field #INDEX in ARG, where the index is that returned by
7346 * find_struct_field through its INDEX_P argument. Adjust the address
7347 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7348 * If found, return value, else return NULL. */
52ce6436
PH
7349
7350static struct value *
7351ada_index_struct_field (int index, struct value *arg, int offset,
7352 struct type *type)
7353{
7354 return ada_index_struct_field_1 (&index, arg, offset, type);
7355}
7356
7357
7358/* Auxiliary function for ada_index_struct_field. Like
7359 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7360 * *INDEX_P. */
52ce6436
PH
7361
7362static struct value *
7363ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7364 struct type *type)
7365{
7366 int i;
7367 type = ada_check_typedef (type);
7368
7369 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7370 {
7371 if (TYPE_FIELD_NAME (type, i) == NULL)
7372 continue;
7373 else if (ada_is_wrapper_field (type, i))
7374 {
0963b4bd 7375 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7376 ada_index_struct_field_1 (index_p, arg,
7377 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7378 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7379
52ce6436
PH
7380 if (v != NULL)
7381 return v;
7382 }
7383
7384 else if (ada_is_variant_part (type, i))
7385 {
7386 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7387 find_struct_field. */
52ce6436
PH
7388 error (_("Cannot assign this kind of variant record"));
7389 }
7390 else if (*index_p == 0)
7391 return ada_value_primitive_field (arg, offset, i, type);
7392 else
7393 *index_p -= 1;
7394 }
7395 return NULL;
7396}
7397
4c4b4cd2
PH
7398/* Given ARG, a value of type (pointer or reference to a)*
7399 structure/union, extract the component named NAME from the ultimate
7400 target structure/union and return it as a value with its
f5938064 7401 appropriate type.
14f9c5c9 7402
4c4b4cd2
PH
7403 The routine searches for NAME among all members of the structure itself
7404 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7405 (e.g., '_parent').
7406
03ee6b2e
PH
7407 If NO_ERR, then simply return NULL in case of error, rather than
7408 calling error. */
14f9c5c9 7409
d2e4a39e 7410struct value *
a121b7c1 7411ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7412{
4c4b4cd2 7413 struct type *t, *t1;
d2e4a39e 7414 struct value *v;
1f5d1570 7415 int check_tag;
14f9c5c9 7416
4c4b4cd2 7417 v = NULL;
df407dfe 7418 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7419 if (TYPE_CODE (t) == TYPE_CODE_REF)
7420 {
7421 t1 = TYPE_TARGET_TYPE (t);
7422 if (t1 == NULL)
03ee6b2e 7423 goto BadValue;
61ee279c 7424 t1 = ada_check_typedef (t1);
4c4b4cd2 7425 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7426 {
994b9211 7427 arg = coerce_ref (arg);
76a01679
JB
7428 t = t1;
7429 }
4c4b4cd2 7430 }
14f9c5c9 7431
4c4b4cd2
PH
7432 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7433 {
7434 t1 = TYPE_TARGET_TYPE (t);
7435 if (t1 == NULL)
03ee6b2e 7436 goto BadValue;
61ee279c 7437 t1 = ada_check_typedef (t1);
4c4b4cd2 7438 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7439 {
7440 arg = value_ind (arg);
7441 t = t1;
7442 }
4c4b4cd2 7443 else
76a01679 7444 break;
4c4b4cd2 7445 }
14f9c5c9 7446
4c4b4cd2 7447 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7448 goto BadValue;
14f9c5c9 7449
4c4b4cd2
PH
7450 if (t1 == t)
7451 v = ada_search_struct_field (name, arg, 0, t);
7452 else
7453 {
7454 int bit_offset, bit_size, byte_offset;
7455 struct type *field_type;
7456 CORE_ADDR address;
7457
76a01679 7458 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7459 address = value_address (ada_value_ind (arg));
4c4b4cd2 7460 else
b50d69b5 7461 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7462
828d5846
XR
7463 /* Check to see if this is a tagged type. We also need to handle
7464 the case where the type is a reference to a tagged type, but
7465 we have to be careful to exclude pointers to tagged types.
7466 The latter should be shown as usual (as a pointer), whereas
7467 a reference should mostly be transparent to the user. */
7468
7469 if (ada_is_tagged_type (t1, 0)
7470 || (TYPE_CODE (t1) == TYPE_CODE_REF
7471 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7472 {
7473 /* We first try to find the searched field in the current type.
7474 If not found then let's look in the fixed type. */
7475
7476 if (!find_struct_field (name, t1, 0,
7477 &field_type, &byte_offset, &bit_offset,
7478 &bit_size, NULL))
1f5d1570
JG
7479 check_tag = 1;
7480 else
7481 check_tag = 0;
828d5846
XR
7482 }
7483 else
1f5d1570
JG
7484 check_tag = 0;
7485
7486 /* Convert to fixed type in all cases, so that we have proper
7487 offsets to each field in unconstrained record types. */
7488 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7489 address, NULL, check_tag);
828d5846 7490
76a01679
JB
7491 if (find_struct_field (name, t1, 0,
7492 &field_type, &byte_offset, &bit_offset,
52ce6436 7493 &bit_size, NULL))
76a01679
JB
7494 {
7495 if (bit_size != 0)
7496 {
714e53ab
PH
7497 if (TYPE_CODE (t) == TYPE_CODE_REF)
7498 arg = ada_coerce_ref (arg);
7499 else
7500 arg = ada_value_ind (arg);
76a01679
JB
7501 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7502 bit_offset, bit_size,
7503 field_type);
7504 }
7505 else
f5938064 7506 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7507 }
7508 }
7509
03ee6b2e
PH
7510 if (v != NULL || no_err)
7511 return v;
7512 else
323e0a4a 7513 error (_("There is no member named %s."), name);
14f9c5c9 7514
03ee6b2e
PH
7515 BadValue:
7516 if (no_err)
7517 return NULL;
7518 else
0963b4bd
MS
7519 error (_("Attempt to extract a component of "
7520 "a value that is not a record."));
14f9c5c9
AS
7521}
7522
3b4de39c 7523/* Return a string representation of type TYPE. */
99bbb428 7524
3b4de39c 7525static std::string
99bbb428
PA
7526type_as_string (struct type *type)
7527{
d7e74731 7528 string_file tmp_stream;
99bbb428 7529
d7e74731 7530 type_print (type, "", &tmp_stream, -1);
99bbb428 7531
d7e74731 7532 return std::move (tmp_stream.string ());
99bbb428
PA
7533}
7534
14f9c5c9 7535/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7536 If DISPP is non-null, add its byte displacement from the beginning of a
7537 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7538 work for packed fields).
7539
7540 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7541 followed by "___".
14f9c5c9 7542
0963b4bd 7543 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7544 be a (pointer or reference)+ to a struct or union, and the
7545 ultimate target type will be searched.
14f9c5c9
AS
7546
7547 Looks recursively into variant clauses and parent types.
7548
828d5846
XR
7549 In the case of homonyms in the tagged types, please refer to the
7550 long explanation in find_struct_field's function documentation.
7551
4c4b4cd2
PH
7552 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7553 TYPE is not a type of the right kind. */
14f9c5c9 7554
4c4b4cd2 7555static struct type *
a121b7c1 7556ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7557 int noerr)
14f9c5c9
AS
7558{
7559 int i;
828d5846 7560 int parent_offset = -1;
14f9c5c9
AS
7561
7562 if (name == NULL)
7563 goto BadName;
7564
76a01679 7565 if (refok && type != NULL)
4c4b4cd2
PH
7566 while (1)
7567 {
61ee279c 7568 type = ada_check_typedef (type);
76a01679
JB
7569 if (TYPE_CODE (type) != TYPE_CODE_PTR
7570 && TYPE_CODE (type) != TYPE_CODE_REF)
7571 break;
7572 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7573 }
14f9c5c9 7574
76a01679 7575 if (type == NULL
1265e4aa
JB
7576 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7577 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7578 {
4c4b4cd2 7579 if (noerr)
76a01679 7580 return NULL;
99bbb428 7581
3b4de39c
PA
7582 error (_("Type %s is not a structure or union type"),
7583 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7584 }
7585
7586 type = to_static_fixed_type (type);
7587
7588 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7589 {
0d5cff50 7590 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7591 struct type *t;
d2e4a39e 7592
14f9c5c9 7593 if (t_field_name == NULL)
4c4b4cd2 7594 continue;
14f9c5c9 7595
828d5846
XR
7596 else if (ada_is_parent_field (type, i))
7597 {
7598 /* This is a field pointing us to the parent type of a tagged
7599 type. As hinted in this function's documentation, we give
7600 preference to fields in the current record first, so what
7601 we do here is just record the index of this field before
7602 we skip it. If it turns out we couldn't find our field
7603 in the current record, then we'll get back to it and search
7604 inside it whether the field might exist in the parent. */
7605
7606 parent_offset = i;
7607 continue;
7608 }
7609
14f9c5c9 7610 else if (field_name_match (t_field_name, name))
988f6b3d 7611 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7612
7613 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7614 {
4c4b4cd2 7615 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7616 0, 1);
4c4b4cd2 7617 if (t != NULL)
988f6b3d 7618 return t;
4c4b4cd2 7619 }
14f9c5c9
AS
7620
7621 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7622 {
7623 int j;
5b4ee69b
MS
7624 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7625 i));
4c4b4cd2
PH
7626
7627 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7628 {
b1f33ddd
JB
7629 /* FIXME pnh 2008/01/26: We check for a field that is
7630 NOT wrapped in a struct, since the compiler sometimes
7631 generates these for unchecked variant types. Revisit
0963b4bd 7632 if the compiler changes this practice. */
0d5cff50 7633 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7634
b1f33ddd
JB
7635 if (v_field_name != NULL
7636 && field_name_match (v_field_name, name))
460efde1 7637 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7638 else
0963b4bd
MS
7639 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7640 j),
988f6b3d 7641 name, 0, 1);
b1f33ddd 7642
4c4b4cd2 7643 if (t != NULL)
988f6b3d 7644 return t;
4c4b4cd2
PH
7645 }
7646 }
14f9c5c9
AS
7647
7648 }
7649
828d5846
XR
7650 /* Field not found so far. If this is a tagged type which
7651 has a parent, try finding that field in the parent now. */
7652
7653 if (parent_offset != -1)
7654 {
7655 struct type *t;
7656
7657 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7658 name, 0, 1);
7659 if (t != NULL)
7660 return t;
7661 }
7662
14f9c5c9 7663BadName:
d2e4a39e 7664 if (!noerr)
14f9c5c9 7665 {
2b2798cc 7666 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7667
7668 error (_("Type %s has no component named %s"),
3b4de39c 7669 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7670 }
7671
7672 return NULL;
7673}
7674
b1f33ddd
JB
7675/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7676 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7677 represents an unchecked union (that is, the variant part of a
0963b4bd 7678 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7679
7680static int
7681is_unchecked_variant (struct type *var_type, struct type *outer_type)
7682{
a121b7c1 7683 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7684
988f6b3d 7685 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7686}
7687
7688
14f9c5c9
AS
7689/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7690 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7691 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7692 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7693
d2e4a39e 7694int
ebf56fd3 7695ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7696 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7697{
7698 int others_clause;
7699 int i;
a121b7c1 7700 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7701 struct value *outer;
7702 struct value *discrim;
14f9c5c9
AS
7703 LONGEST discrim_val;
7704
012370f6
TT
7705 /* Using plain value_from_contents_and_address here causes problems
7706 because we will end up trying to resolve a type that is currently
7707 being constructed. */
7708 outer = value_from_contents_and_address_unresolved (outer_type,
7709 outer_valaddr, 0);
0c281816
JB
7710 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7711 if (discrim == NULL)
14f9c5c9 7712 return -1;
0c281816 7713 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7714
7715 others_clause = -1;
7716 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7717 {
7718 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7719 others_clause = i;
14f9c5c9 7720 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7721 return i;
14f9c5c9
AS
7722 }
7723
7724 return others_clause;
7725}
d2e4a39e 7726\f
14f9c5c9
AS
7727
7728
4c4b4cd2 7729 /* Dynamic-Sized Records */
14f9c5c9
AS
7730
7731/* Strategy: The type ostensibly attached to a value with dynamic size
7732 (i.e., a size that is not statically recorded in the debugging
7733 data) does not accurately reflect the size or layout of the value.
7734 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7735 conventional types that are constructed on the fly. */
14f9c5c9
AS
7736
7737/* There is a subtle and tricky problem here. In general, we cannot
7738 determine the size of dynamic records without its data. However,
7739 the 'struct value' data structure, which GDB uses to represent
7740 quantities in the inferior process (the target), requires the size
7741 of the type at the time of its allocation in order to reserve space
7742 for GDB's internal copy of the data. That's why the
7743 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7744 rather than struct value*s.
14f9c5c9
AS
7745
7746 However, GDB's internal history variables ($1, $2, etc.) are
7747 struct value*s containing internal copies of the data that are not, in
7748 general, the same as the data at their corresponding addresses in
7749 the target. Fortunately, the types we give to these values are all
7750 conventional, fixed-size types (as per the strategy described
7751 above), so that we don't usually have to perform the
7752 'to_fixed_xxx_type' conversions to look at their values.
7753 Unfortunately, there is one exception: if one of the internal
7754 history variables is an array whose elements are unconstrained
7755 records, then we will need to create distinct fixed types for each
7756 element selected. */
7757
7758/* The upshot of all of this is that many routines take a (type, host
7759 address, target address) triple as arguments to represent a value.
7760 The host address, if non-null, is supposed to contain an internal
7761 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7762 target at the target address. */
14f9c5c9
AS
7763
7764/* Assuming that VAL0 represents a pointer value, the result of
7765 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7766 dynamic-sized types. */
14f9c5c9 7767
d2e4a39e
AS
7768struct value *
7769ada_value_ind (struct value *val0)
14f9c5c9 7770{
c48db5ca 7771 struct value *val = value_ind (val0);
5b4ee69b 7772
b50d69b5
JG
7773 if (ada_is_tagged_type (value_type (val), 0))
7774 val = ada_tag_value_at_base_address (val);
7775
4c4b4cd2 7776 return ada_to_fixed_value (val);
14f9c5c9
AS
7777}
7778
7779/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7780 qualifiers on VAL0. */
7781
d2e4a39e
AS
7782static struct value *
7783ada_coerce_ref (struct value *val0)
7784{
df407dfe 7785 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7786 {
7787 struct value *val = val0;
5b4ee69b 7788
994b9211 7789 val = coerce_ref (val);
b50d69b5
JG
7790
7791 if (ada_is_tagged_type (value_type (val), 0))
7792 val = ada_tag_value_at_base_address (val);
7793
4c4b4cd2 7794 return ada_to_fixed_value (val);
d2e4a39e
AS
7795 }
7796 else
14f9c5c9
AS
7797 return val0;
7798}
7799
7800/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7801 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7802
7803static unsigned int
ebf56fd3 7804align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7805{
7806 return (off + alignment - 1) & ~(alignment - 1);
7807}
7808
4c4b4cd2 7809/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7810
7811static unsigned int
ebf56fd3 7812field_alignment (struct type *type, int f)
14f9c5c9 7813{
d2e4a39e 7814 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7815 int len;
14f9c5c9
AS
7816 int align_offset;
7817
64a1bf19
JB
7818 /* The field name should never be null, unless the debugging information
7819 is somehow malformed. In this case, we assume the field does not
7820 require any alignment. */
7821 if (name == NULL)
7822 return 1;
7823
7824 len = strlen (name);
7825
4c4b4cd2
PH
7826 if (!isdigit (name[len - 1]))
7827 return 1;
14f9c5c9 7828
d2e4a39e 7829 if (isdigit (name[len - 2]))
14f9c5c9
AS
7830 align_offset = len - 2;
7831 else
7832 align_offset = len - 1;
7833
61012eef 7834 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7835 return TARGET_CHAR_BIT;
7836
4c4b4cd2
PH
7837 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7838}
7839
852dff6c 7840/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7841
852dff6c
JB
7842static struct symbol *
7843ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7844{
7845 struct symbol *sym;
7846
7847 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7848 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7849 return sym;
7850
4186eb54
KS
7851 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7852 return sym;
14f9c5c9
AS
7853}
7854
dddfab26
UW
7855/* Find a type named NAME. Ignores ambiguity. This routine will look
7856 solely for types defined by debug info, it will not search the GDB
7857 primitive types. */
4c4b4cd2 7858
852dff6c 7859static struct type *
ebf56fd3 7860ada_find_any_type (const char *name)
14f9c5c9 7861{
852dff6c 7862 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7863
14f9c5c9 7864 if (sym != NULL)
dddfab26 7865 return SYMBOL_TYPE (sym);
14f9c5c9 7866
dddfab26 7867 return NULL;
14f9c5c9
AS
7868}
7869
739593e0
JB
7870/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7871 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7872 symbol, in which case it is returned. Otherwise, this looks for
7873 symbols whose name is that of NAME_SYM suffixed with "___XR".
7874 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7875
c0e70c62
TT
7876static bool
7877ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7878{
739593e0 7879 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7880 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7881}
7882
14f9c5c9 7883/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7884 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7885 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7886 otherwise return 0. */
7887
14f9c5c9 7888int
d2e4a39e 7889ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7890{
7891 if (type1 == NULL)
7892 return 1;
7893 else if (type0 == NULL)
7894 return 0;
7895 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7896 return 1;
7897 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7898 return 0;
4c4b4cd2
PH
7899 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7900 return 1;
ad82864c 7901 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7902 return 1;
4c4b4cd2
PH
7903 else if (ada_is_array_descriptor_type (type0)
7904 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7905 return 1;
aeb5907d
JB
7906 else
7907 {
a737d952
TT
7908 const char *type0_name = TYPE_NAME (type0);
7909 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7910
7911 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7912 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7913 return 1;
7914 }
14f9c5c9
AS
7915 return 0;
7916}
7917
e86ca25f
TT
7918/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7919 null. */
4c4b4cd2 7920
0d5cff50 7921const char *
d2e4a39e 7922ada_type_name (struct type *type)
14f9c5c9 7923{
d2e4a39e 7924 if (type == NULL)
14f9c5c9 7925 return NULL;
e86ca25f 7926 return TYPE_NAME (type);
14f9c5c9
AS
7927}
7928
b4ba55a1
JB
7929/* Search the list of "descriptive" types associated to TYPE for a type
7930 whose name is NAME. */
7931
7932static struct type *
7933find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7934{
931e5bc3 7935 struct type *result, *tmp;
b4ba55a1 7936
c6044dd1
JB
7937 if (ada_ignore_descriptive_types_p)
7938 return NULL;
7939
b4ba55a1
JB
7940 /* If there no descriptive-type info, then there is no parallel type
7941 to be found. */
7942 if (!HAVE_GNAT_AUX_INFO (type))
7943 return NULL;
7944
7945 result = TYPE_DESCRIPTIVE_TYPE (type);
7946 while (result != NULL)
7947 {
0d5cff50 7948 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7949
7950 if (result_name == NULL)
7951 {
7952 warning (_("unexpected null name on descriptive type"));
7953 return NULL;
7954 }
7955
7956 /* If the names match, stop. */
7957 if (strcmp (result_name, name) == 0)
7958 break;
7959
7960 /* Otherwise, look at the next item on the list, if any. */
7961 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7962 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7963 else
7964 tmp = NULL;
7965
7966 /* If not found either, try after having resolved the typedef. */
7967 if (tmp != NULL)
7968 result = tmp;
b4ba55a1 7969 else
931e5bc3 7970 {
f168693b 7971 result = check_typedef (result);
931e5bc3
JG
7972 if (HAVE_GNAT_AUX_INFO (result))
7973 result = TYPE_DESCRIPTIVE_TYPE (result);
7974 else
7975 result = NULL;
7976 }
b4ba55a1
JB
7977 }
7978
7979 /* If we didn't find a match, see whether this is a packed array. With
7980 older compilers, the descriptive type information is either absent or
7981 irrelevant when it comes to packed arrays so the above lookup fails.
7982 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7983 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7984 return ada_find_any_type (name);
7985
7986 return result;
7987}
7988
7989/* Find a parallel type to TYPE with the specified NAME, using the
7990 descriptive type taken from the debugging information, if available,
7991 and otherwise using the (slower) name-based method. */
7992
7993static struct type *
7994ada_find_parallel_type_with_name (struct type *type, const char *name)
7995{
7996 struct type *result = NULL;
7997
7998 if (HAVE_GNAT_AUX_INFO (type))
7999 result = find_parallel_type_by_descriptive_type (type, name);
8000 else
8001 result = ada_find_any_type (name);
8002
8003 return result;
8004}
8005
8006/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8007 SUFFIX to the name of TYPE. */
14f9c5c9 8008
d2e4a39e 8009struct type *
ebf56fd3 8010ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8011{
0d5cff50 8012 char *name;
fe978cb0 8013 const char *type_name = ada_type_name (type);
14f9c5c9 8014 int len;
d2e4a39e 8015
fe978cb0 8016 if (type_name == NULL)
14f9c5c9
AS
8017 return NULL;
8018
fe978cb0 8019 len = strlen (type_name);
14f9c5c9 8020
b4ba55a1 8021 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8022
fe978cb0 8023 strcpy (name, type_name);
14f9c5c9
AS
8024 strcpy (name + len, suffix);
8025
b4ba55a1 8026 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8027}
8028
14f9c5c9 8029/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8030 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8031
d2e4a39e
AS
8032static struct type *
8033dynamic_template_type (struct type *type)
14f9c5c9 8034{
61ee279c 8035 type = ada_check_typedef (type);
14f9c5c9
AS
8036
8037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8038 || ada_type_name (type) == NULL)
14f9c5c9 8039 return NULL;
d2e4a39e 8040 else
14f9c5c9
AS
8041 {
8042 int len = strlen (ada_type_name (type));
5b4ee69b 8043
4c4b4cd2
PH
8044 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8045 return type;
14f9c5c9 8046 else
4c4b4cd2 8047 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8048 }
8049}
8050
8051/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8052 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8053
d2e4a39e
AS
8054static int
8055is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8056{
8057 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8058
d2e4a39e 8059 return name != NULL
14f9c5c9
AS
8060 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8061 && strstr (name, "___XVL") != NULL;
8062}
8063
4c4b4cd2
PH
8064/* The index of the variant field of TYPE, or -1 if TYPE does not
8065 represent a variant record type. */
14f9c5c9 8066
d2e4a39e 8067static int
4c4b4cd2 8068variant_field_index (struct type *type)
14f9c5c9
AS
8069{
8070 int f;
8071
4c4b4cd2
PH
8072 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8073 return -1;
8074
8075 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8076 {
8077 if (ada_is_variant_part (type, f))
8078 return f;
8079 }
8080 return -1;
14f9c5c9
AS
8081}
8082
4c4b4cd2
PH
8083/* A record type with no fields. */
8084
d2e4a39e 8085static struct type *
fe978cb0 8086empty_record (struct type *templ)
14f9c5c9 8087{
fe978cb0 8088 struct type *type = alloc_type_copy (templ);
5b4ee69b 8089
14f9c5c9
AS
8090 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8091 TYPE_NFIELDS (type) = 0;
8092 TYPE_FIELDS (type) = NULL;
8ecb59f8 8093 INIT_NONE_SPECIFIC (type);
14f9c5c9 8094 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8095 TYPE_LENGTH (type) = 0;
8096 return type;
8097}
8098
8099/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8100 the value of type TYPE at VALADDR or ADDRESS (see comments at
8101 the beginning of this section) VAL according to GNAT conventions.
8102 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8103 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8104 an outer-level type (i.e., as opposed to a branch of a variant.) A
8105 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8106 of the variant.
14f9c5c9 8107
4c4b4cd2
PH
8108 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8109 length are not statically known are discarded. As a consequence,
8110 VALADDR, ADDRESS and DVAL0 are ignored.
8111
8112 NOTE: Limitations: For now, we assume that dynamic fields and
8113 variants occupy whole numbers of bytes. However, they need not be
8114 byte-aligned. */
8115
8116struct type *
10a2c479 8117ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8118 const gdb_byte *valaddr,
4c4b4cd2
PH
8119 CORE_ADDR address, struct value *dval0,
8120 int keep_dynamic_fields)
14f9c5c9 8121{
d2e4a39e
AS
8122 struct value *mark = value_mark ();
8123 struct value *dval;
8124 struct type *rtype;
14f9c5c9 8125 int nfields, bit_len;
4c4b4cd2 8126 int variant_field;
14f9c5c9 8127 long off;
d94e4f4f 8128 int fld_bit_len;
14f9c5c9
AS
8129 int f;
8130
4c4b4cd2
PH
8131 /* Compute the number of fields in this record type that are going
8132 to be processed: unless keep_dynamic_fields, this includes only
8133 fields whose position and length are static will be processed. */
8134 if (keep_dynamic_fields)
8135 nfields = TYPE_NFIELDS (type);
8136 else
8137 {
8138 nfields = 0;
76a01679 8139 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8140 && !ada_is_variant_part (type, nfields)
8141 && !is_dynamic_field (type, nfields))
8142 nfields++;
8143 }
8144
e9bb382b 8145 rtype = alloc_type_copy (type);
14f9c5c9 8146 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8147 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8148 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8149 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8150 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8151 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8152 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8153 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8154
d2e4a39e
AS
8155 off = 0;
8156 bit_len = 0;
4c4b4cd2
PH
8157 variant_field = -1;
8158
14f9c5c9
AS
8159 for (f = 0; f < nfields; f += 1)
8160 {
6c038f32
PH
8161 off = align_value (off, field_alignment (type, f))
8162 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8163 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8164 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8165
d2e4a39e 8166 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8167 {
8168 variant_field = f;
d94e4f4f 8169 fld_bit_len = 0;
4c4b4cd2 8170 }
14f9c5c9 8171 else if (is_dynamic_field (type, f))
4c4b4cd2 8172 {
284614f0
JB
8173 const gdb_byte *field_valaddr = valaddr;
8174 CORE_ADDR field_address = address;
8175 struct type *field_type =
8176 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8177
4c4b4cd2 8178 if (dval0 == NULL)
b5304971
JG
8179 {
8180 /* rtype's length is computed based on the run-time
8181 value of discriminants. If the discriminants are not
8182 initialized, the type size may be completely bogus and
0963b4bd 8183 GDB may fail to allocate a value for it. So check the
b5304971 8184 size first before creating the value. */
c1b5a1a6 8185 ada_ensure_varsize_limit (rtype);
012370f6
TT
8186 /* Using plain value_from_contents_and_address here
8187 causes problems because we will end up trying to
8188 resolve a type that is currently being
8189 constructed. */
8190 dval = value_from_contents_and_address_unresolved (rtype,
8191 valaddr,
8192 address);
9f1f738a 8193 rtype = value_type (dval);
b5304971 8194 }
4c4b4cd2
PH
8195 else
8196 dval = dval0;
8197
284614f0
JB
8198 /* If the type referenced by this field is an aligner type, we need
8199 to unwrap that aligner type, because its size might not be set.
8200 Keeping the aligner type would cause us to compute the wrong
8201 size for this field, impacting the offset of the all the fields
8202 that follow this one. */
8203 if (ada_is_aligner_type (field_type))
8204 {
8205 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8206
8207 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8208 field_address = cond_offset_target (field_address, field_offset);
8209 field_type = ada_aligned_type (field_type);
8210 }
8211
8212 field_valaddr = cond_offset_host (field_valaddr,
8213 off / TARGET_CHAR_BIT);
8214 field_address = cond_offset_target (field_address,
8215 off / TARGET_CHAR_BIT);
8216
8217 /* Get the fixed type of the field. Note that, in this case,
8218 we do not want to get the real type out of the tag: if
8219 the current field is the parent part of a tagged record,
8220 we will get the tag of the object. Clearly wrong: the real
8221 type of the parent is not the real type of the child. We
8222 would end up in an infinite loop. */
8223 field_type = ada_get_base_type (field_type);
8224 field_type = ada_to_fixed_type (field_type, field_valaddr,
8225 field_address, dval, 0);
27f2a97b
JB
8226 /* If the field size is already larger than the maximum
8227 object size, then the record itself will necessarily
8228 be larger than the maximum object size. We need to make
8229 this check now, because the size might be so ridiculously
8230 large (due to an uninitialized variable in the inferior)
8231 that it would cause an overflow when adding it to the
8232 record size. */
c1b5a1a6 8233 ada_ensure_varsize_limit (field_type);
284614f0
JB
8234
8235 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8236 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8237 /* The multiplication can potentially overflow. But because
8238 the field length has been size-checked just above, and
8239 assuming that the maximum size is a reasonable value,
8240 an overflow should not happen in practice. So rather than
8241 adding overflow recovery code to this already complex code,
8242 we just assume that it's not going to happen. */
d94e4f4f 8243 fld_bit_len =
4c4b4cd2
PH
8244 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8245 }
14f9c5c9 8246 else
4c4b4cd2 8247 {
5ded5331
JB
8248 /* Note: If this field's type is a typedef, it is important
8249 to preserve the typedef layer.
8250
8251 Otherwise, we might be transforming a typedef to a fat
8252 pointer (encoding a pointer to an unconstrained array),
8253 into a basic fat pointer (encoding an unconstrained
8254 array). As both types are implemented using the same
8255 structure, the typedef is the only clue which allows us
8256 to distinguish between the two options. Stripping it
8257 would prevent us from printing this field appropriately. */
8258 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8259 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8260 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8261 fld_bit_len =
4c4b4cd2
PH
8262 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8263 else
5ded5331
JB
8264 {
8265 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8266
8267 /* We need to be careful of typedefs when computing
8268 the length of our field. If this is a typedef,
8269 get the length of the target type, not the length
8270 of the typedef. */
8271 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8272 field_type = ada_typedef_target_type (field_type);
8273
8274 fld_bit_len =
8275 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8276 }
4c4b4cd2 8277 }
14f9c5c9 8278 if (off + fld_bit_len > bit_len)
4c4b4cd2 8279 bit_len = off + fld_bit_len;
d94e4f4f 8280 off += fld_bit_len;
4c4b4cd2
PH
8281 TYPE_LENGTH (rtype) =
8282 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8283 }
4c4b4cd2
PH
8284
8285 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8286 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8287 the record. This can happen in the presence of representation
8288 clauses. */
8289 if (variant_field >= 0)
8290 {
8291 struct type *branch_type;
8292
8293 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8294
8295 if (dval0 == NULL)
9f1f738a 8296 {
012370f6
TT
8297 /* Using plain value_from_contents_and_address here causes
8298 problems because we will end up trying to resolve a type
8299 that is currently being constructed. */
8300 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8301 address);
9f1f738a
SA
8302 rtype = value_type (dval);
8303 }
4c4b4cd2
PH
8304 else
8305 dval = dval0;
8306
8307 branch_type =
8308 to_fixed_variant_branch_type
8309 (TYPE_FIELD_TYPE (type, variant_field),
8310 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8311 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8312 if (branch_type == NULL)
8313 {
8314 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8315 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8316 TYPE_NFIELDS (rtype) -= 1;
8317 }
8318 else
8319 {
8320 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8321 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8322 fld_bit_len =
8323 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8324 TARGET_CHAR_BIT;
8325 if (off + fld_bit_len > bit_len)
8326 bit_len = off + fld_bit_len;
8327 TYPE_LENGTH (rtype) =
8328 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8329 }
8330 }
8331
714e53ab
PH
8332 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8333 should contain the alignment of that record, which should be a strictly
8334 positive value. If null or negative, then something is wrong, most
8335 probably in the debug info. In that case, we don't round up the size
0963b4bd 8336 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8337 the current RTYPE length might be good enough for our purposes. */
8338 if (TYPE_LENGTH (type) <= 0)
8339 {
323e0a4a 8340 if (TYPE_NAME (rtype))
cc1defb1
KS
8341 warning (_("Invalid type size for `%s' detected: %s."),
8342 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8343 else
cc1defb1
KS
8344 warning (_("Invalid type size for <unnamed> detected: %s."),
8345 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8346 }
8347 else
8348 {
8349 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8350 TYPE_LENGTH (type));
8351 }
14f9c5c9
AS
8352
8353 value_free_to_mark (mark);
d2e4a39e 8354 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8355 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8356 return rtype;
8357}
8358
4c4b4cd2
PH
8359/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8360 of 1. */
14f9c5c9 8361
d2e4a39e 8362static struct type *
fc1a4b47 8363template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8364 CORE_ADDR address, struct value *dval0)
8365{
8366 return ada_template_to_fixed_record_type_1 (type, valaddr,
8367 address, dval0, 1);
8368}
8369
8370/* An ordinary record type in which ___XVL-convention fields and
8371 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8372 static approximations, containing all possible fields. Uses
8373 no runtime values. Useless for use in values, but that's OK,
8374 since the results are used only for type determinations. Works on both
8375 structs and unions. Representation note: to save space, we memorize
8376 the result of this function in the TYPE_TARGET_TYPE of the
8377 template type. */
8378
8379static struct type *
8380template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8381{
8382 struct type *type;
8383 int nfields;
8384 int f;
8385
9e195661
PMR
8386 /* No need no do anything if the input type is already fixed. */
8387 if (TYPE_FIXED_INSTANCE (type0))
8388 return type0;
8389
8390 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8391 if (TYPE_TARGET_TYPE (type0) != NULL)
8392 return TYPE_TARGET_TYPE (type0);
8393
9e195661 8394 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8395 type = type0;
9e195661
PMR
8396 nfields = TYPE_NFIELDS (type0);
8397
8398 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8399 recompute all over next time. */
8400 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8401
8402 for (f = 0; f < nfields; f += 1)
8403 {
460efde1 8404 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8405 struct type *new_type;
14f9c5c9 8406
4c4b4cd2 8407 if (is_dynamic_field (type0, f))
460efde1
JB
8408 {
8409 field_type = ada_check_typedef (field_type);
8410 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8411 }
14f9c5c9 8412 else
f192137b 8413 new_type = static_unwrap_type (field_type);
9e195661
PMR
8414
8415 if (new_type != field_type)
8416 {
8417 /* Clone TYPE0 only the first time we get a new field type. */
8418 if (type == type0)
8419 {
8420 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8421 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8422 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8423 TYPE_NFIELDS (type) = nfields;
8424 TYPE_FIELDS (type) = (struct field *)
8425 TYPE_ALLOC (type, nfields * sizeof (struct field));
8426 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8427 sizeof (struct field) * nfields);
8428 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8429 TYPE_FIXED_INSTANCE (type) = 1;
8430 TYPE_LENGTH (type) = 0;
8431 }
8432 TYPE_FIELD_TYPE (type, f) = new_type;
8433 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8434 }
14f9c5c9 8435 }
9e195661 8436
14f9c5c9
AS
8437 return type;
8438}
8439
4c4b4cd2 8440/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8441 whose address in memory is ADDRESS, returns a revision of TYPE,
8442 which should be a non-dynamic-sized record, in which the variant
8443 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8444 for discriminant values in DVAL0, which can be NULL if the record
8445 contains the necessary discriminant values. */
8446
d2e4a39e 8447static struct type *
fc1a4b47 8448to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8449 CORE_ADDR address, struct value *dval0)
14f9c5c9 8450{
d2e4a39e 8451 struct value *mark = value_mark ();
4c4b4cd2 8452 struct value *dval;
d2e4a39e 8453 struct type *rtype;
14f9c5c9
AS
8454 struct type *branch_type;
8455 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8456 int variant_field = variant_field_index (type);
14f9c5c9 8457
4c4b4cd2 8458 if (variant_field == -1)
14f9c5c9
AS
8459 return type;
8460
4c4b4cd2 8461 if (dval0 == NULL)
9f1f738a
SA
8462 {
8463 dval = value_from_contents_and_address (type, valaddr, address);
8464 type = value_type (dval);
8465 }
4c4b4cd2
PH
8466 else
8467 dval = dval0;
8468
e9bb382b 8469 rtype = alloc_type_copy (type);
14f9c5c9 8470 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8471 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8472 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8473 TYPE_FIELDS (rtype) =
8474 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8475 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8476 sizeof (struct field) * nfields);
14f9c5c9 8477 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8478 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8479 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8480
4c4b4cd2
PH
8481 branch_type = to_fixed_variant_branch_type
8482 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8483 cond_offset_host (valaddr,
4c4b4cd2
PH
8484 TYPE_FIELD_BITPOS (type, variant_field)
8485 / TARGET_CHAR_BIT),
d2e4a39e 8486 cond_offset_target (address,
4c4b4cd2
PH
8487 TYPE_FIELD_BITPOS (type, variant_field)
8488 / TARGET_CHAR_BIT), dval);
d2e4a39e 8489 if (branch_type == NULL)
14f9c5c9 8490 {
4c4b4cd2 8491 int f;
5b4ee69b 8492
4c4b4cd2
PH
8493 for (f = variant_field + 1; f < nfields; f += 1)
8494 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8495 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8496 }
8497 else
8498 {
4c4b4cd2
PH
8499 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8500 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8501 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8502 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8503 }
4c4b4cd2 8504 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8505
4c4b4cd2 8506 value_free_to_mark (mark);
14f9c5c9
AS
8507 return rtype;
8508}
8509
8510/* An ordinary record type (with fixed-length fields) that describes
8511 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8512 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8513 should be in DVAL, a record value; it may be NULL if the object
8514 at ADDR itself contains any necessary discriminant values.
8515 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8516 values from the record are needed. Except in the case that DVAL,
8517 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8518 unchecked) is replaced by a particular branch of the variant.
8519
8520 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8521 is questionable and may be removed. It can arise during the
8522 processing of an unconstrained-array-of-record type where all the
8523 variant branches have exactly the same size. This is because in
8524 such cases, the compiler does not bother to use the XVS convention
8525 when encoding the record. I am currently dubious of this
8526 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8527
d2e4a39e 8528static struct type *
fc1a4b47 8529to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8530 CORE_ADDR address, struct value *dval)
14f9c5c9 8531{
d2e4a39e 8532 struct type *templ_type;
14f9c5c9 8533
876cecd0 8534 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8535 return type0;
8536
d2e4a39e 8537 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8538
8539 if (templ_type != NULL)
8540 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8541 else if (variant_field_index (type0) >= 0)
8542 {
8543 if (dval == NULL && valaddr == NULL && address == 0)
8544 return type0;
8545 return to_record_with_fixed_variant_part (type0, valaddr, address,
8546 dval);
8547 }
14f9c5c9
AS
8548 else
8549 {
876cecd0 8550 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8551 return type0;
8552 }
8553
8554}
8555
8556/* An ordinary record type (with fixed-length fields) that describes
8557 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8558 union type. Any necessary discriminants' values should be in DVAL,
8559 a record value. That is, this routine selects the appropriate
8560 branch of the union at ADDR according to the discriminant value
b1f33ddd 8561 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8562 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8563
d2e4a39e 8564static struct type *
fc1a4b47 8565to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8566 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8567{
8568 int which;
d2e4a39e
AS
8569 struct type *templ_type;
8570 struct type *var_type;
14f9c5c9
AS
8571
8572 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8573 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8574 else
14f9c5c9
AS
8575 var_type = var_type0;
8576
8577 templ_type = ada_find_parallel_type (var_type, "___XVU");
8578
8579 if (templ_type != NULL)
8580 var_type = templ_type;
8581
b1f33ddd
JB
8582 if (is_unchecked_variant (var_type, value_type (dval)))
8583 return var_type0;
d2e4a39e
AS
8584 which =
8585 ada_which_variant_applies (var_type,
0fd88904 8586 value_type (dval), value_contents (dval));
14f9c5c9
AS
8587
8588 if (which < 0)
e9bb382b 8589 return empty_record (var_type);
14f9c5c9 8590 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8591 return to_fixed_record_type
d2e4a39e
AS
8592 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8593 valaddr, address, dval);
4c4b4cd2 8594 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8595 return
8596 to_fixed_record_type
8597 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8598 else
8599 return TYPE_FIELD_TYPE (var_type, which);
8600}
8601
8908fca5
JB
8602/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8603 ENCODING_TYPE, a type following the GNAT conventions for discrete
8604 type encodings, only carries redundant information. */
8605
8606static int
8607ada_is_redundant_range_encoding (struct type *range_type,
8608 struct type *encoding_type)
8609{
108d56a4 8610 const char *bounds_str;
8908fca5
JB
8611 int n;
8612 LONGEST lo, hi;
8613
8614 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8615
005e2509
JB
8616 if (TYPE_CODE (get_base_type (range_type))
8617 != TYPE_CODE (get_base_type (encoding_type)))
8618 {
8619 /* The compiler probably used a simple base type to describe
8620 the range type instead of the range's actual base type,
8621 expecting us to get the real base type from the encoding
8622 anyway. In this situation, the encoding cannot be ignored
8623 as redundant. */
8624 return 0;
8625 }
8626
8908fca5
JB
8627 if (is_dynamic_type (range_type))
8628 return 0;
8629
8630 if (TYPE_NAME (encoding_type) == NULL)
8631 return 0;
8632
8633 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8634 if (bounds_str == NULL)
8635 return 0;
8636
8637 n = 8; /* Skip "___XDLU_". */
8638 if (!ada_scan_number (bounds_str, n, &lo, &n))
8639 return 0;
8640 if (TYPE_LOW_BOUND (range_type) != lo)
8641 return 0;
8642
8643 n += 2; /* Skip the "__" separator between the two bounds. */
8644 if (!ada_scan_number (bounds_str, n, &hi, &n))
8645 return 0;
8646 if (TYPE_HIGH_BOUND (range_type) != hi)
8647 return 0;
8648
8649 return 1;
8650}
8651
8652/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8653 a type following the GNAT encoding for describing array type
8654 indices, only carries redundant information. */
8655
8656static int
8657ada_is_redundant_index_type_desc (struct type *array_type,
8658 struct type *desc_type)
8659{
8660 struct type *this_layer = check_typedef (array_type);
8661 int i;
8662
8663 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8664 {
8665 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8666 TYPE_FIELD_TYPE (desc_type, i)))
8667 return 0;
8668 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8669 }
8670
8671 return 1;
8672}
8673
14f9c5c9
AS
8674/* Assuming that TYPE0 is an array type describing the type of a value
8675 at ADDR, and that DVAL describes a record containing any
8676 discriminants used in TYPE0, returns a type for the value that
8677 contains no dynamic components (that is, no components whose sizes
8678 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8679 true, gives an error message if the resulting type's size is over
4c4b4cd2 8680 varsize_limit. */
14f9c5c9 8681
d2e4a39e
AS
8682static struct type *
8683to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8684 int ignore_too_big)
14f9c5c9 8685{
d2e4a39e
AS
8686 struct type *index_type_desc;
8687 struct type *result;
ad82864c 8688 int constrained_packed_array_p;
931e5bc3 8689 static const char *xa_suffix = "___XA";
14f9c5c9 8690
b0dd7688 8691 type0 = ada_check_typedef (type0);
284614f0 8692 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8693 return type0;
14f9c5c9 8694
ad82864c
JB
8695 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8696 if (constrained_packed_array_p)
8697 type0 = decode_constrained_packed_array_type (type0);
284614f0 8698
931e5bc3
JG
8699 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8700
8701 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8702 encoding suffixed with 'P' may still be generated. If so,
8703 it should be used to find the XA type. */
8704
8705 if (index_type_desc == NULL)
8706 {
1da0522e 8707 const char *type_name = ada_type_name (type0);
931e5bc3 8708
1da0522e 8709 if (type_name != NULL)
931e5bc3 8710 {
1da0522e 8711 const int len = strlen (type_name);
931e5bc3
JG
8712 char *name = (char *) alloca (len + strlen (xa_suffix));
8713
1da0522e 8714 if (type_name[len - 1] == 'P')
931e5bc3 8715 {
1da0522e 8716 strcpy (name, type_name);
931e5bc3
JG
8717 strcpy (name + len - 1, xa_suffix);
8718 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8719 }
8720 }
8721 }
8722
28c85d6c 8723 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8724 if (index_type_desc != NULL
8725 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8726 {
8727 /* Ignore this ___XA parallel type, as it does not bring any
8728 useful information. This allows us to avoid creating fixed
8729 versions of the array's index types, which would be identical
8730 to the original ones. This, in turn, can also help avoid
8731 the creation of fixed versions of the array itself. */
8732 index_type_desc = NULL;
8733 }
8734
14f9c5c9
AS
8735 if (index_type_desc == NULL)
8736 {
61ee279c 8737 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8738
14f9c5c9 8739 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8740 depend on the contents of the array in properly constructed
8741 debugging data. */
529cad9c
PH
8742 /* Create a fixed version of the array element type.
8743 We're not providing the address of an element here,
e1d5a0d2 8744 and thus the actual object value cannot be inspected to do
529cad9c
PH
8745 the conversion. This should not be a problem, since arrays of
8746 unconstrained objects are not allowed. In particular, all
8747 the elements of an array of a tagged type should all be of
8748 the same type specified in the debugging info. No need to
8749 consult the object tag. */
1ed6ede0 8750 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8751
284614f0
JB
8752 /* Make sure we always create a new array type when dealing with
8753 packed array types, since we're going to fix-up the array
8754 type length and element bitsize a little further down. */
ad82864c 8755 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8756 result = type0;
14f9c5c9 8757 else
e9bb382b 8758 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8759 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8760 }
8761 else
8762 {
8763 int i;
8764 struct type *elt_type0;
8765
8766 elt_type0 = type0;
8767 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8768 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8769
8770 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8771 depend on the contents of the array in properly constructed
8772 debugging data. */
529cad9c
PH
8773 /* Create a fixed version of the array element type.
8774 We're not providing the address of an element here,
e1d5a0d2 8775 and thus the actual object value cannot be inspected to do
529cad9c
PH
8776 the conversion. This should not be a problem, since arrays of
8777 unconstrained objects are not allowed. In particular, all
8778 the elements of an array of a tagged type should all be of
8779 the same type specified in the debugging info. No need to
8780 consult the object tag. */
1ed6ede0
JB
8781 result =
8782 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8783
8784 elt_type0 = type0;
14f9c5c9 8785 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8786 {
8787 struct type *range_type =
28c85d6c 8788 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8789
e9bb382b 8790 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8791 result, range_type);
1ce677a4 8792 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8793 }
d2e4a39e 8794 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8795 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8796 }
8797
2e6fda7d
JB
8798 /* We want to preserve the type name. This can be useful when
8799 trying to get the type name of a value that has already been
8800 printed (for instance, if the user did "print VAR; whatis $". */
8801 TYPE_NAME (result) = TYPE_NAME (type0);
8802
ad82864c 8803 if (constrained_packed_array_p)
284614f0
JB
8804 {
8805 /* So far, the resulting type has been created as if the original
8806 type was a regular (non-packed) array type. As a result, the
8807 bitsize of the array elements needs to be set again, and the array
8808 length needs to be recomputed based on that bitsize. */
8809 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8810 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8811
8812 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8813 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8814 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8815 TYPE_LENGTH (result)++;
8816 }
8817
876cecd0 8818 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8819 return result;
d2e4a39e 8820}
14f9c5c9
AS
8821
8822
8823/* A standard type (containing no dynamically sized components)
8824 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8825 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8826 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8827 ADDRESS or in VALADDR contains these discriminants.
8828
1ed6ede0
JB
8829 If CHECK_TAG is not null, in the case of tagged types, this function
8830 attempts to locate the object's tag and use it to compute the actual
8831 type. However, when ADDRESS is null, we cannot use it to determine the
8832 location of the tag, and therefore compute the tagged type's actual type.
8833 So we return the tagged type without consulting the tag. */
529cad9c 8834
f192137b
JB
8835static struct type *
8836ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8837 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8838{
61ee279c 8839 type = ada_check_typedef (type);
8ecb59f8
TT
8840
8841 /* Only un-fixed types need to be handled here. */
8842 if (!HAVE_GNAT_AUX_INFO (type))
8843 return type;
8844
d2e4a39e
AS
8845 switch (TYPE_CODE (type))
8846 {
8847 default:
14f9c5c9 8848 return type;
d2e4a39e 8849 case TYPE_CODE_STRUCT:
4c4b4cd2 8850 {
76a01679 8851 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8852 struct type *fixed_record_type =
8853 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8854
529cad9c
PH
8855 /* If STATIC_TYPE is a tagged type and we know the object's address,
8856 then we can determine its tag, and compute the object's actual
0963b4bd 8857 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8858 type (the parent part of the record may have dynamic fields
8859 and the way the location of _tag is expressed may depend on
8860 them). */
529cad9c 8861
1ed6ede0 8862 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8863 {
b50d69b5
JG
8864 struct value *tag =
8865 value_tag_from_contents_and_address
8866 (fixed_record_type,
8867 valaddr,
8868 address);
8869 struct type *real_type = type_from_tag (tag);
8870 struct value *obj =
8871 value_from_contents_and_address (fixed_record_type,
8872 valaddr,
8873 address);
9f1f738a 8874 fixed_record_type = value_type (obj);
76a01679 8875 if (real_type != NULL)
b50d69b5
JG
8876 return to_fixed_record_type
8877 (real_type, NULL,
8878 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8879 }
4af88198
JB
8880
8881 /* Check to see if there is a parallel ___XVZ variable.
8882 If there is, then it provides the actual size of our type. */
8883 else if (ada_type_name (fixed_record_type) != NULL)
8884 {
0d5cff50 8885 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8886 char *xvz_name
8887 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8888 bool xvz_found = false;
4af88198
JB
8889 LONGEST size;
8890
88c15c34 8891 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8892 try
eccab96d
JB
8893 {
8894 xvz_found = get_int_var_value (xvz_name, size);
8895 }
230d2906 8896 catch (const gdb_exception_error &except)
eccab96d
JB
8897 {
8898 /* We found the variable, but somehow failed to read
8899 its value. Rethrow the same error, but with a little
8900 bit more information, to help the user understand
8901 what went wrong (Eg: the variable might have been
8902 optimized out). */
8903 throw_error (except.error,
8904 _("unable to read value of %s (%s)"),
3d6e9d23 8905 xvz_name, except.what ());
eccab96d 8906 }
eccab96d
JB
8907
8908 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8909 {
8910 fixed_record_type = copy_type (fixed_record_type);
8911 TYPE_LENGTH (fixed_record_type) = size;
8912
8913 /* The FIXED_RECORD_TYPE may have be a stub. We have
8914 observed this when the debugging info is STABS, and
8915 apparently it is something that is hard to fix.
8916
8917 In practice, we don't need the actual type definition
8918 at all, because the presence of the XVZ variable allows us
8919 to assume that there must be a XVS type as well, which we
8920 should be able to use later, when we need the actual type
8921 definition.
8922
8923 In the meantime, pretend that the "fixed" type we are
8924 returning is NOT a stub, because this can cause trouble
8925 when using this type to create new types targeting it.
8926 Indeed, the associated creation routines often check
8927 whether the target type is a stub and will try to replace
0963b4bd 8928 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8929 might cause the new type to have the wrong size too.
8930 Consider the case of an array, for instance, where the size
8931 of the array is computed from the number of elements in
8932 our array multiplied by the size of its element. */
8933 TYPE_STUB (fixed_record_type) = 0;
8934 }
8935 }
1ed6ede0 8936 return fixed_record_type;
4c4b4cd2 8937 }
d2e4a39e 8938 case TYPE_CODE_ARRAY:
4c4b4cd2 8939 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8940 case TYPE_CODE_UNION:
8941 if (dval == NULL)
4c4b4cd2 8942 return type;
d2e4a39e 8943 else
4c4b4cd2 8944 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8945 }
14f9c5c9
AS
8946}
8947
f192137b
JB
8948/* The same as ada_to_fixed_type_1, except that it preserves the type
8949 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8950
8951 The typedef layer needs be preserved in order to differentiate between
8952 arrays and array pointers when both types are implemented using the same
8953 fat pointer. In the array pointer case, the pointer is encoded as
8954 a typedef of the pointer type. For instance, considering:
8955
8956 type String_Access is access String;
8957 S1 : String_Access := null;
8958
8959 To the debugger, S1 is defined as a typedef of type String. But
8960 to the user, it is a pointer. So if the user tries to print S1,
8961 we should not dereference the array, but print the array address
8962 instead.
8963
8964 If we didn't preserve the typedef layer, we would lose the fact that
8965 the type is to be presented as a pointer (needs de-reference before
8966 being printed). And we would also use the source-level type name. */
f192137b
JB
8967
8968struct type *
8969ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8970 CORE_ADDR address, struct value *dval, int check_tag)
8971
8972{
8973 struct type *fixed_type =
8974 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8975
96dbd2c1
JB
8976 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8977 then preserve the typedef layer.
8978
8979 Implementation note: We can only check the main-type portion of
8980 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8981 from TYPE now returns a type that has the same instance flags
8982 as TYPE. For instance, if TYPE is a "typedef const", and its
8983 target type is a "struct", then the typedef elimination will return
8984 a "const" version of the target type. See check_typedef for more
8985 details about how the typedef layer elimination is done.
8986
8987 brobecker/2010-11-19: It seems to me that the only case where it is
8988 useful to preserve the typedef layer is when dealing with fat pointers.
8989 Perhaps, we could add a check for that and preserve the typedef layer
8990 only in that situation. But this seems unecessary so far, probably
8991 because we call check_typedef/ada_check_typedef pretty much everywhere.
8992 */
f192137b 8993 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8994 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8995 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8996 return type;
8997
8998 return fixed_type;
8999}
9000
14f9c5c9 9001/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9002 TYPE0, but based on no runtime data. */
14f9c5c9 9003
d2e4a39e
AS
9004static struct type *
9005to_static_fixed_type (struct type *type0)
14f9c5c9 9006{
d2e4a39e 9007 struct type *type;
14f9c5c9
AS
9008
9009 if (type0 == NULL)
9010 return NULL;
9011
876cecd0 9012 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9013 return type0;
9014
61ee279c 9015 type0 = ada_check_typedef (type0);
d2e4a39e 9016
14f9c5c9
AS
9017 switch (TYPE_CODE (type0))
9018 {
9019 default:
9020 return type0;
9021 case TYPE_CODE_STRUCT:
9022 type = dynamic_template_type (type0);
d2e4a39e 9023 if (type != NULL)
4c4b4cd2
PH
9024 return template_to_static_fixed_type (type);
9025 else
9026 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9027 case TYPE_CODE_UNION:
9028 type = ada_find_parallel_type (type0, "___XVU");
9029 if (type != NULL)
4c4b4cd2
PH
9030 return template_to_static_fixed_type (type);
9031 else
9032 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9033 }
9034}
9035
4c4b4cd2
PH
9036/* A static approximation of TYPE with all type wrappers removed. */
9037
d2e4a39e
AS
9038static struct type *
9039static_unwrap_type (struct type *type)
14f9c5c9
AS
9040{
9041 if (ada_is_aligner_type (type))
9042 {
61ee279c 9043 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9044 if (ada_type_name (type1) == NULL)
4c4b4cd2 9045 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9046
9047 return static_unwrap_type (type1);
9048 }
d2e4a39e 9049 else
14f9c5c9 9050 {
d2e4a39e 9051 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9052
d2e4a39e 9053 if (raw_real_type == type)
4c4b4cd2 9054 return type;
14f9c5c9 9055 else
4c4b4cd2 9056 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9057 }
9058}
9059
9060/* In some cases, incomplete and private types require
4c4b4cd2 9061 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9062 type Foo;
9063 type FooP is access Foo;
9064 V: FooP;
9065 type Foo is array ...;
4c4b4cd2 9066 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9067 cross-references to such types, we instead substitute for FooP a
9068 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9069 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9070
9071/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9072 exists, otherwise TYPE. */
9073
d2e4a39e 9074struct type *
61ee279c 9075ada_check_typedef (struct type *type)
14f9c5c9 9076{
727e3d2e
JB
9077 if (type == NULL)
9078 return NULL;
9079
736ade86
XR
9080 /* If our type is an access to an unconstrained array, which is encoded
9081 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9082 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9083 what allows us to distinguish between fat pointers that represent
9084 array types, and fat pointers that represent array access types
9085 (in both cases, the compiler implements them as fat pointers). */
736ade86 9086 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9087 return type;
9088
f168693b 9089 type = check_typedef (type);
14f9c5c9 9090 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9091 || !TYPE_STUB (type)
e86ca25f 9092 || TYPE_NAME (type) == NULL)
14f9c5c9 9093 return type;
d2e4a39e 9094 else
14f9c5c9 9095 {
e86ca25f 9096 const char *name = TYPE_NAME (type);
d2e4a39e 9097 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9098
05e522ef
JB
9099 if (type1 == NULL)
9100 return type;
9101
9102 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9103 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9104 types, only for the typedef-to-array types). If that's the case,
9105 strip the typedef layer. */
9106 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9107 type1 = ada_check_typedef (type1);
9108
9109 return type1;
14f9c5c9
AS
9110 }
9111}
9112
9113/* A value representing the data at VALADDR/ADDRESS as described by
9114 type TYPE0, but with a standard (static-sized) type that correctly
9115 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9116 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9117 creation of struct values]. */
14f9c5c9 9118
4c4b4cd2
PH
9119static struct value *
9120ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9121 struct value *val0)
14f9c5c9 9122{
1ed6ede0 9123 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9124
14f9c5c9
AS
9125 if (type == type0 && val0 != NULL)
9126 return val0;
cc0e770c
JB
9127
9128 if (VALUE_LVAL (val0) != lval_memory)
9129 {
9130 /* Our value does not live in memory; it could be a convenience
9131 variable, for instance. Create a not_lval value using val0's
9132 contents. */
9133 return value_from_contents (type, value_contents (val0));
9134 }
9135
9136 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9137}
9138
9139/* A value representing VAL, but with a standard (static-sized) type
9140 that correctly describes it. Does not necessarily create a new
9141 value. */
9142
0c3acc09 9143struct value *
4c4b4cd2
PH
9144ada_to_fixed_value (struct value *val)
9145{
c48db5ca 9146 val = unwrap_value (val);
d8ce9127 9147 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9148 return val;
14f9c5c9 9149}
d2e4a39e 9150\f
14f9c5c9 9151
14f9c5c9
AS
9152/* Attributes */
9153
4c4b4cd2
PH
9154/* Table mapping attribute numbers to names.
9155 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9156
d2e4a39e 9157static const char *attribute_names[] = {
14f9c5c9
AS
9158 "<?>",
9159
d2e4a39e 9160 "first",
14f9c5c9
AS
9161 "last",
9162 "length",
9163 "image",
14f9c5c9
AS
9164 "max",
9165 "min",
4c4b4cd2
PH
9166 "modulus",
9167 "pos",
9168 "size",
9169 "tag",
14f9c5c9 9170 "val",
14f9c5c9
AS
9171 0
9172};
9173
d2e4a39e 9174const char *
4c4b4cd2 9175ada_attribute_name (enum exp_opcode n)
14f9c5c9 9176{
4c4b4cd2
PH
9177 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9178 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9179 else
9180 return attribute_names[0];
9181}
9182
4c4b4cd2 9183/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9184
4c4b4cd2
PH
9185static LONGEST
9186pos_atr (struct value *arg)
14f9c5c9 9187{
24209737
PH
9188 struct value *val = coerce_ref (arg);
9189 struct type *type = value_type (val);
aa715135 9190 LONGEST result;
14f9c5c9 9191
d2e4a39e 9192 if (!discrete_type_p (type))
323e0a4a 9193 error (_("'POS only defined on discrete types"));
14f9c5c9 9194
aa715135
JG
9195 if (!discrete_position (type, value_as_long (val), &result))
9196 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9197
aa715135 9198 return result;
4c4b4cd2
PH
9199}
9200
9201static struct value *
3cb382c9 9202value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9203{
3cb382c9 9204 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9205}
9206
4c4b4cd2 9207/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9208
d2e4a39e
AS
9209static struct value *
9210value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9211{
d2e4a39e 9212 if (!discrete_type_p (type))
323e0a4a 9213 error (_("'VAL only defined on discrete types"));
df407dfe 9214 if (!integer_type_p (value_type (arg)))
323e0a4a 9215 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9216
9217 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9218 {
9219 long pos = value_as_long (arg);
5b4ee69b 9220
14f9c5c9 9221 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9222 error (_("argument to 'VAL out of range"));
14e75d8e 9223 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9224 }
9225 else
9226 return value_from_longest (type, value_as_long (arg));
9227}
14f9c5c9 9228\f
d2e4a39e 9229
4c4b4cd2 9230 /* Evaluation */
14f9c5c9 9231
4c4b4cd2
PH
9232/* True if TYPE appears to be an Ada character type.
9233 [At the moment, this is true only for Character and Wide_Character;
9234 It is a heuristic test that could stand improvement]. */
14f9c5c9 9235
fc913e53 9236bool
d2e4a39e 9237ada_is_character_type (struct type *type)
14f9c5c9 9238{
7b9f71f2
JB
9239 const char *name;
9240
9241 /* If the type code says it's a character, then assume it really is,
9242 and don't check any further. */
9243 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9244 return true;
7b9f71f2
JB
9245
9246 /* Otherwise, assume it's a character type iff it is a discrete type
9247 with a known character type name. */
9248 name = ada_type_name (type);
9249 return (name != NULL
9250 && (TYPE_CODE (type) == TYPE_CODE_INT
9251 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9252 && (strcmp (name, "character") == 0
9253 || strcmp (name, "wide_character") == 0
5a517ebd 9254 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9255 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9256}
9257
4c4b4cd2 9258/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9259
fc913e53 9260bool
ebf56fd3 9261ada_is_string_type (struct type *type)
14f9c5c9 9262{
61ee279c 9263 type = ada_check_typedef (type);
d2e4a39e 9264 if (type != NULL
14f9c5c9 9265 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9266 && (ada_is_simple_array_type (type)
9267 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9268 && ada_array_arity (type) == 1)
9269 {
9270 struct type *elttype = ada_array_element_type (type, 1);
9271
9272 return ada_is_character_type (elttype);
9273 }
d2e4a39e 9274 else
fc913e53 9275 return false;
14f9c5c9
AS
9276}
9277
5bf03f13
JB
9278/* The compiler sometimes provides a parallel XVS type for a given
9279 PAD type. Normally, it is safe to follow the PAD type directly,
9280 but older versions of the compiler have a bug that causes the offset
9281 of its "F" field to be wrong. Following that field in that case
9282 would lead to incorrect results, but this can be worked around
9283 by ignoring the PAD type and using the associated XVS type instead.
9284
9285 Set to True if the debugger should trust the contents of PAD types.
9286 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9287static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9288
9289/* True if TYPE is a struct type introduced by the compiler to force the
9290 alignment of a value. Such types have a single field with a
4c4b4cd2 9291 distinctive name. */
14f9c5c9
AS
9292
9293int
ebf56fd3 9294ada_is_aligner_type (struct type *type)
14f9c5c9 9295{
61ee279c 9296 type = ada_check_typedef (type);
714e53ab 9297
5bf03f13 9298 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9299 return 0;
9300
14f9c5c9 9301 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9302 && TYPE_NFIELDS (type) == 1
9303 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9304}
9305
9306/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9307 the parallel type. */
14f9c5c9 9308
d2e4a39e
AS
9309struct type *
9310ada_get_base_type (struct type *raw_type)
14f9c5c9 9311{
d2e4a39e
AS
9312 struct type *real_type_namer;
9313 struct type *raw_real_type;
14f9c5c9
AS
9314
9315 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9316 return raw_type;
9317
284614f0
JB
9318 if (ada_is_aligner_type (raw_type))
9319 /* The encoding specifies that we should always use the aligner type.
9320 So, even if this aligner type has an associated XVS type, we should
9321 simply ignore it.
9322
9323 According to the compiler gurus, an XVS type parallel to an aligner
9324 type may exist because of a stabs limitation. In stabs, aligner
9325 types are empty because the field has a variable-sized type, and
9326 thus cannot actually be used as an aligner type. As a result,
9327 we need the associated parallel XVS type to decode the type.
9328 Since the policy in the compiler is to not change the internal
9329 representation based on the debugging info format, we sometimes
9330 end up having a redundant XVS type parallel to the aligner type. */
9331 return raw_type;
9332
14f9c5c9 9333 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9334 if (real_type_namer == NULL
14f9c5c9
AS
9335 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9336 || TYPE_NFIELDS (real_type_namer) != 1)
9337 return raw_type;
9338
f80d3ff2
JB
9339 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9340 {
9341 /* This is an older encoding form where the base type needs to be
9342 looked up by name. We prefer the newer enconding because it is
9343 more efficient. */
9344 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9345 if (raw_real_type == NULL)
9346 return raw_type;
9347 else
9348 return raw_real_type;
9349 }
9350
9351 /* The field in our XVS type is a reference to the base type. */
9352 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9353}
14f9c5c9 9354
4c4b4cd2 9355/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9356
d2e4a39e
AS
9357struct type *
9358ada_aligned_type (struct type *type)
14f9c5c9
AS
9359{
9360 if (ada_is_aligner_type (type))
9361 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9362 else
9363 return ada_get_base_type (type);
9364}
9365
9366
9367/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9368 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9369
fc1a4b47
AC
9370const gdb_byte *
9371ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9372{
d2e4a39e 9373 if (ada_is_aligner_type (type))
14f9c5c9 9374 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9375 valaddr +
9376 TYPE_FIELD_BITPOS (type,
9377 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9378 else
9379 return valaddr;
9380}
9381
4c4b4cd2
PH
9382
9383
14f9c5c9 9384/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9385 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9386const char *
9387ada_enum_name (const char *name)
14f9c5c9 9388{
4c4b4cd2
PH
9389 static char *result;
9390 static size_t result_len = 0;
e6a959d6 9391 const char *tmp;
14f9c5c9 9392
4c4b4cd2
PH
9393 /* First, unqualify the enumeration name:
9394 1. Search for the last '.' character. If we find one, then skip
177b42fe 9395 all the preceding characters, the unqualified name starts
76a01679 9396 right after that dot.
4c4b4cd2 9397 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9398 translates dots into "__". Search forward for double underscores,
9399 but stop searching when we hit an overloading suffix, which is
9400 of the form "__" followed by digits. */
4c4b4cd2 9401
c3e5cd34
PH
9402 tmp = strrchr (name, '.');
9403 if (tmp != NULL)
4c4b4cd2
PH
9404 name = tmp + 1;
9405 else
14f9c5c9 9406 {
4c4b4cd2
PH
9407 while ((tmp = strstr (name, "__")) != NULL)
9408 {
9409 if (isdigit (tmp[2]))
9410 break;
9411 else
9412 name = tmp + 2;
9413 }
14f9c5c9
AS
9414 }
9415
9416 if (name[0] == 'Q')
9417 {
14f9c5c9 9418 int v;
5b4ee69b 9419
14f9c5c9 9420 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9421 {
9422 if (sscanf (name + 2, "%x", &v) != 1)
9423 return name;
9424 }
272560b5
TT
9425 else if (((name[1] >= '0' && name[1] <= '9')
9426 || (name[1] >= 'a' && name[1] <= 'z'))
9427 && name[2] == '\0')
9428 {
9429 GROW_VECT (result, result_len, 4);
9430 xsnprintf (result, result_len, "'%c'", name[1]);
9431 return result;
9432 }
14f9c5c9 9433 else
4c4b4cd2 9434 return name;
14f9c5c9 9435
4c4b4cd2 9436 GROW_VECT (result, result_len, 16);
14f9c5c9 9437 if (isascii (v) && isprint (v))
88c15c34 9438 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9439 else if (name[1] == 'U')
88c15c34 9440 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9441 else
88c15c34 9442 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9443
9444 return result;
9445 }
d2e4a39e 9446 else
4c4b4cd2 9447 {
c3e5cd34
PH
9448 tmp = strstr (name, "__");
9449 if (tmp == NULL)
9450 tmp = strstr (name, "$");
9451 if (tmp != NULL)
4c4b4cd2
PH
9452 {
9453 GROW_VECT (result, result_len, tmp - name + 1);
9454 strncpy (result, name, tmp - name);
9455 result[tmp - name] = '\0';
9456 return result;
9457 }
9458
9459 return name;
9460 }
14f9c5c9
AS
9461}
9462
14f9c5c9
AS
9463/* Evaluate the subexpression of EXP starting at *POS as for
9464 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9465 expression. */
14f9c5c9 9466
d2e4a39e
AS
9467static struct value *
9468evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9469{
4b27a620 9470 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9471}
9472
9473/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9474 value it wraps. */
14f9c5c9 9475
d2e4a39e
AS
9476static struct value *
9477unwrap_value (struct value *val)
14f9c5c9 9478{
df407dfe 9479 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9480
14f9c5c9
AS
9481 if (ada_is_aligner_type (type))
9482 {
de4d072f 9483 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9484 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9485
14f9c5c9 9486 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9487 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9488
9489 return unwrap_value (v);
9490 }
d2e4a39e 9491 else
14f9c5c9 9492 {
d2e4a39e 9493 struct type *raw_real_type =
61ee279c 9494 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9495
5bf03f13
JB
9496 /* If there is no parallel XVS or XVE type, then the value is
9497 already unwrapped. Return it without further modification. */
9498 if ((type == raw_real_type)
9499 && ada_find_parallel_type (type, "___XVE") == NULL)
9500 return val;
14f9c5c9 9501
d2e4a39e 9502 return
4c4b4cd2
PH
9503 coerce_unspec_val_to_type
9504 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9505 value_address (val),
1ed6ede0 9506 NULL, 1));
14f9c5c9
AS
9507 }
9508}
d2e4a39e
AS
9509
9510static struct value *
50eff16b 9511cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9512{
50eff16b
UW
9513 struct value *scale = ada_scaling_factor (value_type (arg));
9514 arg = value_cast (value_type (scale), arg);
14f9c5c9 9515
50eff16b
UW
9516 arg = value_binop (arg, scale, BINOP_MUL);
9517 return value_cast (type, arg);
14f9c5c9
AS
9518}
9519
d2e4a39e 9520static struct value *
50eff16b 9521cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9522{
50eff16b
UW
9523 if (type == value_type (arg))
9524 return arg;
5b4ee69b 9525
50eff16b
UW
9526 struct value *scale = ada_scaling_factor (type);
9527 if (ada_is_fixed_point_type (value_type (arg)))
9528 arg = cast_from_fixed (value_type (scale), arg);
9529 else
9530 arg = value_cast (value_type (scale), arg);
9531
9532 arg = value_binop (arg, scale, BINOP_DIV);
9533 return value_cast (type, arg);
14f9c5c9
AS
9534}
9535
d99dcf51
JB
9536/* Given two array types T1 and T2, return nonzero iff both arrays
9537 contain the same number of elements. */
9538
9539static int
9540ada_same_array_size_p (struct type *t1, struct type *t2)
9541{
9542 LONGEST lo1, hi1, lo2, hi2;
9543
9544 /* Get the array bounds in order to verify that the size of
9545 the two arrays match. */
9546 if (!get_array_bounds (t1, &lo1, &hi1)
9547 || !get_array_bounds (t2, &lo2, &hi2))
9548 error (_("unable to determine array bounds"));
9549
9550 /* To make things easier for size comparison, normalize a bit
9551 the case of empty arrays by making sure that the difference
9552 between upper bound and lower bound is always -1. */
9553 if (lo1 > hi1)
9554 hi1 = lo1 - 1;
9555 if (lo2 > hi2)
9556 hi2 = lo2 - 1;
9557
9558 return (hi1 - lo1 == hi2 - lo2);
9559}
9560
9561/* Assuming that VAL is an array of integrals, and TYPE represents
9562 an array with the same number of elements, but with wider integral
9563 elements, return an array "casted" to TYPE. In practice, this
9564 means that the returned array is built by casting each element
9565 of the original array into TYPE's (wider) element type. */
9566
9567static struct value *
9568ada_promote_array_of_integrals (struct type *type, struct value *val)
9569{
9570 struct type *elt_type = TYPE_TARGET_TYPE (type);
9571 LONGEST lo, hi;
9572 struct value *res;
9573 LONGEST i;
9574
9575 /* Verify that both val and type are arrays of scalars, and
9576 that the size of val's elements is smaller than the size
9577 of type's element. */
9578 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9579 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9580 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9581 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9582 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9583 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9584
9585 if (!get_array_bounds (type, &lo, &hi))
9586 error (_("unable to determine array bounds"));
9587
9588 res = allocate_value (type);
9589
9590 /* Promote each array element. */
9591 for (i = 0; i < hi - lo + 1; i++)
9592 {
9593 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9594
9595 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9596 value_contents_all (elt), TYPE_LENGTH (elt_type));
9597 }
9598
9599 return res;
9600}
9601
4c4b4cd2
PH
9602/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9603 return the converted value. */
9604
d2e4a39e
AS
9605static struct value *
9606coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9607{
df407dfe 9608 struct type *type2 = value_type (val);
5b4ee69b 9609
14f9c5c9
AS
9610 if (type == type2)
9611 return val;
9612
61ee279c
PH
9613 type2 = ada_check_typedef (type2);
9614 type = ada_check_typedef (type);
14f9c5c9 9615
d2e4a39e
AS
9616 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9617 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9618 {
9619 val = ada_value_ind (val);
df407dfe 9620 type2 = value_type (val);
14f9c5c9
AS
9621 }
9622
d2e4a39e 9623 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9624 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9625 {
d99dcf51
JB
9626 if (!ada_same_array_size_p (type, type2))
9627 error (_("cannot assign arrays of different length"));
9628
9629 if (is_integral_type (TYPE_TARGET_TYPE (type))
9630 && is_integral_type (TYPE_TARGET_TYPE (type2))
9631 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9632 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9633 {
9634 /* Allow implicit promotion of the array elements to
9635 a wider type. */
9636 return ada_promote_array_of_integrals (type, val);
9637 }
9638
9639 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9640 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9641 error (_("Incompatible types in assignment"));
04624583 9642 deprecated_set_value_type (val, type);
14f9c5c9 9643 }
d2e4a39e 9644 return val;
14f9c5c9
AS
9645}
9646
4c4b4cd2
PH
9647static struct value *
9648ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9649{
9650 struct value *val;
9651 struct type *type1, *type2;
9652 LONGEST v, v1, v2;
9653
994b9211
AC
9654 arg1 = coerce_ref (arg1);
9655 arg2 = coerce_ref (arg2);
18af8284
JB
9656 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9657 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9658
76a01679
JB
9659 if (TYPE_CODE (type1) != TYPE_CODE_INT
9660 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9661 return value_binop (arg1, arg2, op);
9662
76a01679 9663 switch (op)
4c4b4cd2
PH
9664 {
9665 case BINOP_MOD:
9666 case BINOP_DIV:
9667 case BINOP_REM:
9668 break;
9669 default:
9670 return value_binop (arg1, arg2, op);
9671 }
9672
9673 v2 = value_as_long (arg2);
9674 if (v2 == 0)
323e0a4a 9675 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9676
9677 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9678 return value_binop (arg1, arg2, op);
9679
9680 v1 = value_as_long (arg1);
9681 switch (op)
9682 {
9683 case BINOP_DIV:
9684 v = v1 / v2;
76a01679
JB
9685 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9686 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9687 break;
9688 case BINOP_REM:
9689 v = v1 % v2;
76a01679
JB
9690 if (v * v1 < 0)
9691 v -= v2;
4c4b4cd2
PH
9692 break;
9693 default:
9694 /* Should not reach this point. */
9695 v = 0;
9696 }
9697
9698 val = allocate_value (type1);
990a07ab 9699 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9700 TYPE_LENGTH (value_type (val)),
9701 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9702 return val;
9703}
9704
9705static int
9706ada_value_equal (struct value *arg1, struct value *arg2)
9707{
df407dfe
AC
9708 if (ada_is_direct_array_type (value_type (arg1))
9709 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9710 {
79e8fcaa
JB
9711 struct type *arg1_type, *arg2_type;
9712
f58b38bf
JB
9713 /* Automatically dereference any array reference before
9714 we attempt to perform the comparison. */
9715 arg1 = ada_coerce_ref (arg1);
9716 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9717
4c4b4cd2
PH
9718 arg1 = ada_coerce_to_simple_array (arg1);
9719 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9720
9721 arg1_type = ada_check_typedef (value_type (arg1));
9722 arg2_type = ada_check_typedef (value_type (arg2));
9723
9724 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9725 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9726 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9727 /* FIXME: The following works only for types whose
76a01679
JB
9728 representations use all bits (no padding or undefined bits)
9729 and do not have user-defined equality. */
79e8fcaa
JB
9730 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9731 && memcmp (value_contents (arg1), value_contents (arg2),
9732 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9733 }
9734 return value_equal (arg1, arg2);
9735}
9736
52ce6436
PH
9737/* Total number of component associations in the aggregate starting at
9738 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9739 OP_AGGREGATE. */
52ce6436
PH
9740
9741static int
9742num_component_specs (struct expression *exp, int pc)
9743{
9744 int n, m, i;
5b4ee69b 9745
52ce6436
PH
9746 m = exp->elts[pc + 1].longconst;
9747 pc += 3;
9748 n = 0;
9749 for (i = 0; i < m; i += 1)
9750 {
9751 switch (exp->elts[pc].opcode)
9752 {
9753 default:
9754 n += 1;
9755 break;
9756 case OP_CHOICES:
9757 n += exp->elts[pc + 1].longconst;
9758 break;
9759 }
9760 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9761 }
9762 return n;
9763}
9764
9765/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9766 component of LHS (a simple array or a record), updating *POS past
9767 the expression, assuming that LHS is contained in CONTAINER. Does
9768 not modify the inferior's memory, nor does it modify LHS (unless
9769 LHS == CONTAINER). */
9770
9771static void
9772assign_component (struct value *container, struct value *lhs, LONGEST index,
9773 struct expression *exp, int *pos)
9774{
9775 struct value *mark = value_mark ();
9776 struct value *elt;
0e2da9f0 9777 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9778
0e2da9f0 9779 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9780 {
22601c15
UW
9781 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9782 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9783
52ce6436
PH
9784 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9785 }
9786 else
9787 {
9788 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9789 elt = ada_to_fixed_value (elt);
52ce6436
PH
9790 }
9791
9792 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9793 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9794 else
9795 value_assign_to_component (container, elt,
9796 ada_evaluate_subexp (NULL, exp, pos,
9797 EVAL_NORMAL));
9798
9799 value_free_to_mark (mark);
9800}
9801
9802/* Assuming that LHS represents an lvalue having a record or array
9803 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9804 of that aggregate's value to LHS, advancing *POS past the
9805 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9806 lvalue containing LHS (possibly LHS itself). Does not modify
9807 the inferior's memory, nor does it modify the contents of
0963b4bd 9808 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9809
9810static struct value *
9811assign_aggregate (struct value *container,
9812 struct value *lhs, struct expression *exp,
9813 int *pos, enum noside noside)
9814{
9815 struct type *lhs_type;
9816 int n = exp->elts[*pos+1].longconst;
9817 LONGEST low_index, high_index;
9818 int num_specs;
9819 LONGEST *indices;
9820 int max_indices, num_indices;
52ce6436 9821 int i;
52ce6436
PH
9822
9823 *pos += 3;
9824 if (noside != EVAL_NORMAL)
9825 {
52ce6436
PH
9826 for (i = 0; i < n; i += 1)
9827 ada_evaluate_subexp (NULL, exp, pos, noside);
9828 return container;
9829 }
9830
9831 container = ada_coerce_ref (container);
9832 if (ada_is_direct_array_type (value_type (container)))
9833 container = ada_coerce_to_simple_array (container);
9834 lhs = ada_coerce_ref (lhs);
9835 if (!deprecated_value_modifiable (lhs))
9836 error (_("Left operand of assignment is not a modifiable lvalue."));
9837
0e2da9f0 9838 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9839 if (ada_is_direct_array_type (lhs_type))
9840 {
9841 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9842 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9843 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9844 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9845 }
9846 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9847 {
9848 low_index = 0;
9849 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9850 }
9851 else
9852 error (_("Left-hand side must be array or record."));
9853
9854 num_specs = num_component_specs (exp, *pos - 3);
9855 max_indices = 4 * num_specs + 4;
8d749320 9856 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9857 indices[0] = indices[1] = low_index - 1;
9858 indices[2] = indices[3] = high_index + 1;
9859 num_indices = 4;
9860
9861 for (i = 0; i < n; i += 1)
9862 {
9863 switch (exp->elts[*pos].opcode)
9864 {
1fbf5ada
JB
9865 case OP_CHOICES:
9866 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9867 &num_indices, max_indices,
9868 low_index, high_index);
9869 break;
9870 case OP_POSITIONAL:
9871 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9872 &num_indices, max_indices,
9873 low_index, high_index);
1fbf5ada
JB
9874 break;
9875 case OP_OTHERS:
9876 if (i != n-1)
9877 error (_("Misplaced 'others' clause"));
9878 aggregate_assign_others (container, lhs, exp, pos, indices,
9879 num_indices, low_index, high_index);
9880 break;
9881 default:
9882 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9883 }
9884 }
9885
9886 return container;
9887}
9888
9889/* Assign into the component of LHS indexed by the OP_POSITIONAL
9890 construct at *POS, updating *POS past the construct, given that
9891 the positions are relative to lower bound LOW, where HIGH is the
9892 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9893 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9894 assign_aggregate. */
52ce6436
PH
9895static void
9896aggregate_assign_positional (struct value *container,
9897 struct value *lhs, struct expression *exp,
9898 int *pos, LONGEST *indices, int *num_indices,
9899 int max_indices, LONGEST low, LONGEST high)
9900{
9901 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9902
9903 if (ind - 1 == high)
e1d5a0d2 9904 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9905 if (ind <= high)
9906 {
9907 add_component_interval (ind, ind, indices, num_indices, max_indices);
9908 *pos += 3;
9909 assign_component (container, lhs, ind, exp, pos);
9910 }
9911 else
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913}
9914
9915/* Assign into the components of LHS indexed by the OP_CHOICES
9916 construct at *POS, updating *POS past the construct, given that
9917 the allowable indices are LOW..HIGH. Record the indices assigned
9918 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9919 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9920static void
9921aggregate_assign_from_choices (struct value *container,
9922 struct value *lhs, struct expression *exp,
9923 int *pos, LONGEST *indices, int *num_indices,
9924 int max_indices, LONGEST low, LONGEST high)
9925{
9926 int j;
9927 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9928 int choice_pos, expr_pc;
9929 int is_array = ada_is_direct_array_type (value_type (lhs));
9930
9931 choice_pos = *pos += 3;
9932
9933 for (j = 0; j < n_choices; j += 1)
9934 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9935 expr_pc = *pos;
9936 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9937
9938 for (j = 0; j < n_choices; j += 1)
9939 {
9940 LONGEST lower, upper;
9941 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9942
52ce6436
PH
9943 if (op == OP_DISCRETE_RANGE)
9944 {
9945 choice_pos += 1;
9946 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9947 EVAL_NORMAL));
9948 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9949 EVAL_NORMAL));
9950 }
9951 else if (is_array)
9952 {
9953 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9954 EVAL_NORMAL));
9955 upper = lower;
9956 }
9957 else
9958 {
9959 int ind;
0d5cff50 9960 const char *name;
5b4ee69b 9961
52ce6436
PH
9962 switch (op)
9963 {
9964 case OP_NAME:
9965 name = &exp->elts[choice_pos + 2].string;
9966 break;
9967 case OP_VAR_VALUE:
9968 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9969 break;
9970 default:
9971 error (_("Invalid record component association."));
9972 }
9973 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9974 ind = 0;
9975 if (! find_struct_field (name, value_type (lhs), 0,
9976 NULL, NULL, NULL, NULL, &ind))
9977 error (_("Unknown component name: %s."), name);
9978 lower = upper = ind;
9979 }
9980
9981 if (lower <= upper && (lower < low || upper > high))
9982 error (_("Index in component association out of bounds."));
9983
9984 add_component_interval (lower, upper, indices, num_indices,
9985 max_indices);
9986 while (lower <= upper)
9987 {
9988 int pos1;
5b4ee69b 9989
52ce6436
PH
9990 pos1 = expr_pc;
9991 assign_component (container, lhs, lower, exp, &pos1);
9992 lower += 1;
9993 }
9994 }
9995}
9996
9997/* Assign the value of the expression in the OP_OTHERS construct in
9998 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9999 have not been previously assigned. The index intervals already assigned
10000 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10001 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10002static void
10003aggregate_assign_others (struct value *container,
10004 struct value *lhs, struct expression *exp,
10005 int *pos, LONGEST *indices, int num_indices,
10006 LONGEST low, LONGEST high)
10007{
10008 int i;
5ce64950 10009 int expr_pc = *pos + 1;
52ce6436
PH
10010
10011 for (i = 0; i < num_indices - 2; i += 2)
10012 {
10013 LONGEST ind;
5b4ee69b 10014
52ce6436
PH
10015 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10016 {
5ce64950 10017 int localpos;
5b4ee69b 10018
5ce64950
MS
10019 localpos = expr_pc;
10020 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10021 }
10022 }
10023 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10024}
10025
10026/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10027 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10028 modifying *SIZE as needed. It is an error if *SIZE exceeds
10029 MAX_SIZE. The resulting intervals do not overlap. */
10030static void
10031add_component_interval (LONGEST low, LONGEST high,
10032 LONGEST* indices, int *size, int max_size)
10033{
10034 int i, j;
5b4ee69b 10035
52ce6436
PH
10036 for (i = 0; i < *size; i += 2) {
10037 if (high >= indices[i] && low <= indices[i + 1])
10038 {
10039 int kh;
5b4ee69b 10040
52ce6436
PH
10041 for (kh = i + 2; kh < *size; kh += 2)
10042 if (high < indices[kh])
10043 break;
10044 if (low < indices[i])
10045 indices[i] = low;
10046 indices[i + 1] = indices[kh - 1];
10047 if (high > indices[i + 1])
10048 indices[i + 1] = high;
10049 memcpy (indices + i + 2, indices + kh, *size - kh);
10050 *size -= kh - i - 2;
10051 return;
10052 }
10053 else if (high < indices[i])
10054 break;
10055 }
10056
10057 if (*size == max_size)
10058 error (_("Internal error: miscounted aggregate components."));
10059 *size += 2;
10060 for (j = *size-1; j >= i+2; j -= 1)
10061 indices[j] = indices[j - 2];
10062 indices[i] = low;
10063 indices[i + 1] = high;
10064}
10065
6e48bd2c
JB
10066/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10067 is different. */
10068
10069static struct value *
b7e22850 10070ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10071{
10072 if (type == ada_check_typedef (value_type (arg2)))
10073 return arg2;
10074
10075 if (ada_is_fixed_point_type (type))
95f39a5b 10076 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10077
10078 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10079 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10080
10081 return value_cast (type, arg2);
10082}
10083
284614f0
JB
10084/* Evaluating Ada expressions, and printing their result.
10085 ------------------------------------------------------
10086
21649b50
JB
10087 1. Introduction:
10088 ----------------
10089
284614f0
JB
10090 We usually evaluate an Ada expression in order to print its value.
10091 We also evaluate an expression in order to print its type, which
10092 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10093 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10094 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10095 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10096 similar.
10097
10098 Evaluating expressions is a little more complicated for Ada entities
10099 than it is for entities in languages such as C. The main reason for
10100 this is that Ada provides types whose definition might be dynamic.
10101 One example of such types is variant records. Or another example
10102 would be an array whose bounds can only be known at run time.
10103
10104 The following description is a general guide as to what should be
10105 done (and what should NOT be done) in order to evaluate an expression
10106 involving such types, and when. This does not cover how the semantic
10107 information is encoded by GNAT as this is covered separatly. For the
10108 document used as the reference for the GNAT encoding, see exp_dbug.ads
10109 in the GNAT sources.
10110
10111 Ideally, we should embed each part of this description next to its
10112 associated code. Unfortunately, the amount of code is so vast right
10113 now that it's hard to see whether the code handling a particular
10114 situation might be duplicated or not. One day, when the code is
10115 cleaned up, this guide might become redundant with the comments
10116 inserted in the code, and we might want to remove it.
10117
21649b50
JB
10118 2. ``Fixing'' an Entity, the Simple Case:
10119 -----------------------------------------
10120
284614f0
JB
10121 When evaluating Ada expressions, the tricky issue is that they may
10122 reference entities whose type contents and size are not statically
10123 known. Consider for instance a variant record:
10124
10125 type Rec (Empty : Boolean := True) is record
10126 case Empty is
10127 when True => null;
10128 when False => Value : Integer;
10129 end case;
10130 end record;
10131 Yes : Rec := (Empty => False, Value => 1);
10132 No : Rec := (empty => True);
10133
10134 The size and contents of that record depends on the value of the
10135 descriminant (Rec.Empty). At this point, neither the debugging
10136 information nor the associated type structure in GDB are able to
10137 express such dynamic types. So what the debugger does is to create
10138 "fixed" versions of the type that applies to the specific object.
10139 We also informally refer to this opperation as "fixing" an object,
10140 which means creating its associated fixed type.
10141
10142 Example: when printing the value of variable "Yes" above, its fixed
10143 type would look like this:
10144
10145 type Rec is record
10146 Empty : Boolean;
10147 Value : Integer;
10148 end record;
10149
10150 On the other hand, if we printed the value of "No", its fixed type
10151 would become:
10152
10153 type Rec is record
10154 Empty : Boolean;
10155 end record;
10156
10157 Things become a little more complicated when trying to fix an entity
10158 with a dynamic type that directly contains another dynamic type,
10159 such as an array of variant records, for instance. There are
10160 two possible cases: Arrays, and records.
10161
21649b50
JB
10162 3. ``Fixing'' Arrays:
10163 ---------------------
10164
10165 The type structure in GDB describes an array in terms of its bounds,
10166 and the type of its elements. By design, all elements in the array
10167 have the same type and we cannot represent an array of variant elements
10168 using the current type structure in GDB. When fixing an array,
10169 we cannot fix the array element, as we would potentially need one
10170 fixed type per element of the array. As a result, the best we can do
10171 when fixing an array is to produce an array whose bounds and size
10172 are correct (allowing us to read it from memory), but without having
10173 touched its element type. Fixing each element will be done later,
10174 when (if) necessary.
10175
10176 Arrays are a little simpler to handle than records, because the same
10177 amount of memory is allocated for each element of the array, even if
1b536f04 10178 the amount of space actually used by each element differs from element
21649b50 10179 to element. Consider for instance the following array of type Rec:
284614f0
JB
10180
10181 type Rec_Array is array (1 .. 2) of Rec;
10182
1b536f04
JB
10183 The actual amount of memory occupied by each element might be different
10184 from element to element, depending on the value of their discriminant.
21649b50 10185 But the amount of space reserved for each element in the array remains
1b536f04 10186 fixed regardless. So we simply need to compute that size using
21649b50
JB
10187 the debugging information available, from which we can then determine
10188 the array size (we multiply the number of elements of the array by
10189 the size of each element).
10190
10191 The simplest case is when we have an array of a constrained element
10192 type. For instance, consider the following type declarations:
10193
10194 type Bounded_String (Max_Size : Integer) is
10195 Length : Integer;
10196 Buffer : String (1 .. Max_Size);
10197 end record;
10198 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10199
10200 In this case, the compiler describes the array as an array of
10201 variable-size elements (identified by its XVS suffix) for which
10202 the size can be read in the parallel XVZ variable.
10203
10204 In the case of an array of an unconstrained element type, the compiler
10205 wraps the array element inside a private PAD type. This type should not
10206 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10207 that we also use the adjective "aligner" in our code to designate
10208 these wrapper types.
10209
1b536f04 10210 In some cases, the size allocated for each element is statically
21649b50
JB
10211 known. In that case, the PAD type already has the correct size,
10212 and the array element should remain unfixed.
10213
10214 But there are cases when this size is not statically known.
10215 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10216
10217 type Dynamic is array (1 .. Five) of Integer;
10218 type Wrapper (Has_Length : Boolean := False) is record
10219 Data : Dynamic;
10220 case Has_Length is
10221 when True => Length : Integer;
10222 when False => null;
10223 end case;
10224 end record;
10225 type Wrapper_Array is array (1 .. 2) of Wrapper;
10226
10227 Hello : Wrapper_Array := (others => (Has_Length => True,
10228 Data => (others => 17),
10229 Length => 1));
10230
10231
10232 The debugging info would describe variable Hello as being an
10233 array of a PAD type. The size of that PAD type is not statically
10234 known, but can be determined using a parallel XVZ variable.
10235 In that case, a copy of the PAD type with the correct size should
10236 be used for the fixed array.
10237
21649b50
JB
10238 3. ``Fixing'' record type objects:
10239 ----------------------------------
10240
10241 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10242 record types. In this case, in order to compute the associated
10243 fixed type, we need to determine the size and offset of each of
10244 its components. This, in turn, requires us to compute the fixed
10245 type of each of these components.
10246
10247 Consider for instance the example:
10248
10249 type Bounded_String (Max_Size : Natural) is record
10250 Str : String (1 .. Max_Size);
10251 Length : Natural;
10252 end record;
10253 My_String : Bounded_String (Max_Size => 10);
10254
10255 In that case, the position of field "Length" depends on the size
10256 of field Str, which itself depends on the value of the Max_Size
21649b50 10257 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10258 we need to fix the type of field Str. Therefore, fixing a variant
10259 record requires us to fix each of its components.
10260
10261 However, if a component does not have a dynamic size, the component
10262 should not be fixed. In particular, fields that use a PAD type
10263 should not fixed. Here is an example where this might happen
10264 (assuming type Rec above):
10265
10266 type Container (Big : Boolean) is record
10267 First : Rec;
10268 After : Integer;
10269 case Big is
10270 when True => Another : Integer;
10271 when False => null;
10272 end case;
10273 end record;
10274 My_Container : Container := (Big => False,
10275 First => (Empty => True),
10276 After => 42);
10277
10278 In that example, the compiler creates a PAD type for component First,
10279 whose size is constant, and then positions the component After just
10280 right after it. The offset of component After is therefore constant
10281 in this case.
10282
10283 The debugger computes the position of each field based on an algorithm
10284 that uses, among other things, the actual position and size of the field
21649b50
JB
10285 preceding it. Let's now imagine that the user is trying to print
10286 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10287 end up computing the offset of field After based on the size of the
10288 fixed version of field First. And since in our example First has
10289 only one actual field, the size of the fixed type is actually smaller
10290 than the amount of space allocated to that field, and thus we would
10291 compute the wrong offset of field After.
10292
21649b50
JB
10293 To make things more complicated, we need to watch out for dynamic
10294 components of variant records (identified by the ___XVL suffix in
10295 the component name). Even if the target type is a PAD type, the size
10296 of that type might not be statically known. So the PAD type needs
10297 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10298 we might end up with the wrong size for our component. This can be
10299 observed with the following type declarations:
284614f0
JB
10300
10301 type Octal is new Integer range 0 .. 7;
10302 type Octal_Array is array (Positive range <>) of Octal;
10303 pragma Pack (Octal_Array);
10304
10305 type Octal_Buffer (Size : Positive) is record
10306 Buffer : Octal_Array (1 .. Size);
10307 Length : Integer;
10308 end record;
10309
10310 In that case, Buffer is a PAD type whose size is unset and needs
10311 to be computed by fixing the unwrapped type.
10312
21649b50
JB
10313 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10314 ----------------------------------------------------------
10315
10316 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10317 thus far, be actually fixed?
10318
10319 The answer is: Only when referencing that element. For instance
10320 when selecting one component of a record, this specific component
10321 should be fixed at that point in time. Or when printing the value
10322 of a record, each component should be fixed before its value gets
10323 printed. Similarly for arrays, the element of the array should be
10324 fixed when printing each element of the array, or when extracting
10325 one element out of that array. On the other hand, fixing should
10326 not be performed on the elements when taking a slice of an array!
10327
31432a67 10328 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10329 size of each field is that we end up also miscomputing the size
10330 of the containing type. This can have adverse results when computing
10331 the value of an entity. GDB fetches the value of an entity based
10332 on the size of its type, and thus a wrong size causes GDB to fetch
10333 the wrong amount of memory. In the case where the computed size is
10334 too small, GDB fetches too little data to print the value of our
31432a67 10335 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10336 past the buffer containing the data =:-o. */
10337
ced9779b
JB
10338/* Evaluate a subexpression of EXP, at index *POS, and return a value
10339 for that subexpression cast to TO_TYPE. Advance *POS over the
10340 subexpression. */
10341
10342static value *
10343ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10344 enum noside noside, struct type *to_type)
10345{
10346 int pc = *pos;
10347
10348 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10349 || exp->elts[pc].opcode == OP_VAR_VALUE)
10350 {
10351 (*pos) += 4;
10352
10353 value *val;
10354 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10355 {
10356 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10357 return value_zero (to_type, not_lval);
10358
10359 val = evaluate_var_msym_value (noside,
10360 exp->elts[pc + 1].objfile,
10361 exp->elts[pc + 2].msymbol);
10362 }
10363 else
10364 val = evaluate_var_value (noside,
10365 exp->elts[pc + 1].block,
10366 exp->elts[pc + 2].symbol);
10367
10368 if (noside == EVAL_SKIP)
10369 return eval_skip_value (exp);
10370
10371 val = ada_value_cast (to_type, val);
10372
10373 /* Follow the Ada language semantics that do not allow taking
10374 an address of the result of a cast (view conversion in Ada). */
10375 if (VALUE_LVAL (val) == lval_memory)
10376 {
10377 if (value_lazy (val))
10378 value_fetch_lazy (val);
10379 VALUE_LVAL (val) = not_lval;
10380 }
10381 return val;
10382 }
10383
10384 value *val = evaluate_subexp (to_type, exp, pos, noside);
10385 if (noside == EVAL_SKIP)
10386 return eval_skip_value (exp);
10387 return ada_value_cast (to_type, val);
10388}
10389
284614f0
JB
10390/* Implement the evaluate_exp routine in the exp_descriptor structure
10391 for the Ada language. */
10392
52ce6436 10393static struct value *
ebf56fd3 10394ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10395 int *pos, enum noside noside)
14f9c5c9
AS
10396{
10397 enum exp_opcode op;
b5385fc0 10398 int tem;
14f9c5c9 10399 int pc;
5ec18f2b 10400 int preeval_pos;
14f9c5c9
AS
10401 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10402 struct type *type;
52ce6436 10403 int nargs, oplen;
d2e4a39e 10404 struct value **argvec;
14f9c5c9 10405
d2e4a39e
AS
10406 pc = *pos;
10407 *pos += 1;
14f9c5c9
AS
10408 op = exp->elts[pc].opcode;
10409
d2e4a39e 10410 switch (op)
14f9c5c9
AS
10411 {
10412 default:
10413 *pos -= 1;
6e48bd2c 10414 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10415
10416 if (noside == EVAL_NORMAL)
10417 arg1 = unwrap_value (arg1);
6e48bd2c 10418
edd079d9 10419 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10420 then we need to perform the conversion manually, because
10421 evaluate_subexp_standard doesn't do it. This conversion is
10422 necessary in Ada because the different kinds of float/fixed
10423 types in Ada have different representations.
10424
10425 Similarly, we need to perform the conversion from OP_LONG
10426 ourselves. */
edd079d9 10427 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10428 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10429
10430 return arg1;
4c4b4cd2
PH
10431
10432 case OP_STRING:
10433 {
76a01679 10434 struct value *result;
5b4ee69b 10435
76a01679
JB
10436 *pos -= 1;
10437 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10438 /* The result type will have code OP_STRING, bashed there from
10439 OP_ARRAY. Bash it back. */
df407dfe
AC
10440 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10441 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10442 return result;
4c4b4cd2 10443 }
14f9c5c9
AS
10444
10445 case UNOP_CAST:
10446 (*pos) += 2;
10447 type = exp->elts[pc + 1].type;
ced9779b 10448 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10449
4c4b4cd2
PH
10450 case UNOP_QUAL:
10451 (*pos) += 2;
10452 type = exp->elts[pc + 1].type;
10453 return ada_evaluate_subexp (type, exp, pos, noside);
10454
14f9c5c9
AS
10455 case BINOP_ASSIGN:
10456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10457 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10458 {
10459 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10460 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10461 return arg1;
10462 return ada_value_assign (arg1, arg1);
10463 }
003f3813
JB
10464 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10465 except if the lhs of our assignment is a convenience variable.
10466 In the case of assigning to a convenience variable, the lhs
10467 should be exactly the result of the evaluation of the rhs. */
10468 type = value_type (arg1);
10469 if (VALUE_LVAL (arg1) == lval_internalvar)
10470 type = NULL;
10471 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10473 return arg1;
f411722c
TT
10474 if (VALUE_LVAL (arg1) == lval_internalvar)
10475 {
10476 /* Nothing. */
10477 }
10478 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10479 arg2 = cast_to_fixed (value_type (arg1), arg2);
10480 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10481 error
323e0a4a 10482 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10483 else
df407dfe 10484 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10485 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10486
10487 case BINOP_ADD:
10488 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 if (noside == EVAL_SKIP)
4c4b4cd2 10491 goto nosideret;
2ac8a782
JB
10492 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10493 return (value_from_longest
10494 (value_type (arg1),
10495 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10496 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg2),
10499 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10500 if ((ada_is_fixed_point_type (value_type (arg1))
10501 || ada_is_fixed_point_type (value_type (arg2)))
10502 && value_type (arg1) != value_type (arg2))
323e0a4a 10503 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10504 /* Do the addition, and cast the result to the type of the first
10505 argument. We cannot cast the result to a reference type, so if
10506 ARG1 is a reference type, find its underlying type. */
10507 type = value_type (arg1);
10508 while (TYPE_CODE (type) == TYPE_CODE_REF)
10509 type = TYPE_TARGET_TYPE (type);
f44316fa 10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10511 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10512
10513 case BINOP_SUB:
10514 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10515 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10516 if (noside == EVAL_SKIP)
4c4b4cd2 10517 goto nosideret;
2ac8a782
JB
10518 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10519 return (value_from_longest
10520 (value_type (arg1),
10521 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10522 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10523 return (value_from_longest
10524 (value_type (arg2),
10525 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10526 if ((ada_is_fixed_point_type (value_type (arg1))
10527 || ada_is_fixed_point_type (value_type (arg2)))
10528 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10529 error (_("Operands of fixed-point subtraction "
10530 "must have the same type"));
b7789565
JB
10531 /* Do the substraction, and cast the result to the type of the first
10532 argument. We cannot cast the result to a reference type, so if
10533 ARG1 is a reference type, find its underlying type. */
10534 type = value_type (arg1);
10535 while (TYPE_CODE (type) == TYPE_CODE_REF)
10536 type = TYPE_TARGET_TYPE (type);
f44316fa 10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10538 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10539
10540 case BINOP_MUL:
10541 case BINOP_DIV:
e1578042
JB
10542 case BINOP_REM:
10543 case BINOP_MOD:
14f9c5c9
AS
10544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10545 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546 if (noside == EVAL_SKIP)
4c4b4cd2 10547 goto nosideret;
e1578042 10548 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10549 {
10550 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10551 return value_zero (value_type (arg1), not_lval);
10552 }
14f9c5c9 10553 else
4c4b4cd2 10554 {
a53b7a21 10555 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10556 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10557 arg1 = cast_from_fixed (type, arg1);
df407dfe 10558 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10559 arg2 = cast_from_fixed (type, arg2);
f44316fa 10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10561 return ada_value_binop (arg1, arg2, op);
10562 }
10563
4c4b4cd2
PH
10564 case BINOP_EQUAL:
10565 case BINOP_NOTEQUAL:
14f9c5c9 10566 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10567 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10568 if (noside == EVAL_SKIP)
76a01679 10569 goto nosideret;
4c4b4cd2 10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10571 tem = 0;
4c4b4cd2 10572 else
f44316fa
UW
10573 {
10574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10575 tem = ada_value_equal (arg1, arg2);
10576 }
4c4b4cd2 10577 if (op == BINOP_NOTEQUAL)
76a01679 10578 tem = !tem;
fbb06eb1
UW
10579 type = language_bool_type (exp->language_defn, exp->gdbarch);
10580 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10581
10582 case UNOP_NEG:
10583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10584 if (noside == EVAL_SKIP)
10585 goto nosideret;
df407dfe
AC
10586 else if (ada_is_fixed_point_type (value_type (arg1)))
10587 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10588 else
f44316fa
UW
10589 {
10590 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10591 return value_neg (arg1);
10592 }
4c4b4cd2 10593
2330c6c6
JB
10594 case BINOP_LOGICAL_AND:
10595 case BINOP_LOGICAL_OR:
10596 case UNOP_LOGICAL_NOT:
000d5124
JB
10597 {
10598 struct value *val;
10599
10600 *pos -= 1;
10601 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10602 type = language_bool_type (exp->language_defn, exp->gdbarch);
10603 return value_cast (type, val);
000d5124 10604 }
2330c6c6
JB
10605
10606 case BINOP_BITWISE_AND:
10607 case BINOP_BITWISE_IOR:
10608 case BINOP_BITWISE_XOR:
000d5124
JB
10609 {
10610 struct value *val;
10611
10612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10613 *pos = pc;
10614 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10615
10616 return value_cast (value_type (arg1), val);
10617 }
2330c6c6 10618
14f9c5c9
AS
10619 case OP_VAR_VALUE:
10620 *pos -= 1;
6799def4 10621
14f9c5c9 10622 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10623 {
10624 *pos += 4;
10625 goto nosideret;
10626 }
da5c522f
JB
10627
10628 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10629 /* Only encountered when an unresolved symbol occurs in a
10630 context other than a function call, in which case, it is
52ce6436 10631 invalid. */
323e0a4a 10632 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10633 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10634
10635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10636 {
0c1f74cf 10637 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10638 /* Check to see if this is a tagged type. We also need to handle
10639 the case where the type is a reference to a tagged type, but
10640 we have to be careful to exclude pointers to tagged types.
10641 The latter should be shown as usual (as a pointer), whereas
10642 a reference should mostly be transparent to the user. */
10643 if (ada_is_tagged_type (type, 0)
023db19c 10644 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10645 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10646 {
10647 /* Tagged types are a little special in the fact that the real
10648 type is dynamic and can only be determined by inspecting the
10649 object's tag. This means that we need to get the object's
10650 value first (EVAL_NORMAL) and then extract the actual object
10651 type from its tag.
10652
10653 Note that we cannot skip the final step where we extract
10654 the object type from its tag, because the EVAL_NORMAL phase
10655 results in dynamic components being resolved into fixed ones.
10656 This can cause problems when trying to print the type
10657 description of tagged types whose parent has a dynamic size:
10658 We use the type name of the "_parent" component in order
10659 to print the name of the ancestor type in the type description.
10660 If that component had a dynamic size, the resolution into
10661 a fixed type would result in the loss of that type name,
10662 thus preventing us from printing the name of the ancestor
10663 type in the type description. */
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10665
10666 if (TYPE_CODE (type) != TYPE_CODE_REF)
10667 {
10668 struct type *actual_type;
10669
10670 actual_type = type_from_tag (ada_value_tag (arg1));
10671 if (actual_type == NULL)
10672 /* If, for some reason, we were unable to determine
10673 the actual type from the tag, then use the static
10674 approximation that we just computed as a fallback.
10675 This can happen if the debugging information is
10676 incomplete, for instance. */
10677 actual_type = type;
10678 return value_zero (actual_type, not_lval);
10679 }
10680 else
10681 {
10682 /* In the case of a ref, ada_coerce_ref takes care
10683 of determining the actual type. But the evaluation
10684 should return a ref as it should be valid to ask
10685 for its address; so rebuild a ref after coerce. */
10686 arg1 = ada_coerce_ref (arg1);
a65cfae5 10687 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10688 }
10689 }
0c1f74cf 10690
84754697
JB
10691 /* Records and unions for which GNAT encodings have been
10692 generated need to be statically fixed as well.
10693 Otherwise, non-static fixing produces a type where
10694 all dynamic properties are removed, which prevents "ptype"
10695 from being able to completely describe the type.
10696 For instance, a case statement in a variant record would be
10697 replaced by the relevant components based on the actual
10698 value of the discriminants. */
10699 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10700 && dynamic_template_type (type) != NULL)
10701 || (TYPE_CODE (type) == TYPE_CODE_UNION
10702 && ada_find_parallel_type (type, "___XVU") != NULL))
10703 {
10704 *pos += 4;
10705 return value_zero (to_static_fixed_type (type), not_lval);
10706 }
4c4b4cd2 10707 }
da5c522f
JB
10708
10709 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10710 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10711
10712 case OP_FUNCALL:
10713 (*pos) += 2;
10714
10715 /* Allocate arg vector, including space for the function to be
10716 called in argvec[0] and a terminating NULL. */
10717 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10718 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10719
10720 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10722 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10723 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10724 else
10725 {
10726 for (tem = 0; tem <= nargs; tem += 1)
10727 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 argvec[tem] = 0;
10729
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 }
10733
ad82864c
JB
10734 if (ada_is_constrained_packed_array_type
10735 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10736 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10737 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10738 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10739 /* This is a packed array that has already been fixed, and
10740 therefore already coerced to a simple array. Nothing further
10741 to do. */
10742 ;
e6c2c623
PMR
10743 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10744 {
10745 /* Make sure we dereference references so that all the code below
10746 feels like it's really handling the referenced value. Wrapping
10747 types (for alignment) may be there, so make sure we strip them as
10748 well. */
10749 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10750 }
10751 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10752 && VALUE_LVAL (argvec[0]) == lval_memory)
10753 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10754
df407dfe 10755 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10756
10757 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10758 them. So, if this is an array typedef (encoding use for array
10759 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10760 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10761 type = ada_typedef_target_type (type);
10762
4c4b4cd2
PH
10763 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10764 {
61ee279c 10765 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10766 {
10767 case TYPE_CODE_FUNC:
61ee279c 10768 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10769 break;
10770 case TYPE_CODE_ARRAY:
10771 break;
10772 case TYPE_CODE_STRUCT:
10773 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10774 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10775 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10776 break;
10777 default:
323e0a4a 10778 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10779 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10780 break;
10781 }
10782 }
10783
10784 switch (TYPE_CODE (type))
10785 {
10786 case TYPE_CODE_FUNC:
10787 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10788 {
7022349d
PA
10789 if (TYPE_TARGET_TYPE (type) == NULL)
10790 error_call_unknown_return_type (NULL);
10791 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10792 }
e71585ff
PA
10793 return call_function_by_hand (argvec[0], NULL,
10794 gdb::make_array_view (argvec + 1,
10795 nargs));
c8ea1972
PH
10796 case TYPE_CODE_INTERNAL_FUNCTION:
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 /* We don't know anything about what the internal
10799 function might return, but we have to return
10800 something. */
10801 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10802 not_lval);
10803 else
10804 return call_internal_function (exp->gdbarch, exp->language_defn,
10805 argvec[0], nargs, argvec + 1);
10806
4c4b4cd2
PH
10807 case TYPE_CODE_STRUCT:
10808 {
10809 int arity;
10810
4c4b4cd2
PH
10811 arity = ada_array_arity (type);
10812 type = ada_array_element_type (type, nargs);
10813 if (type == NULL)
323e0a4a 10814 error (_("cannot subscript or call a record"));
4c4b4cd2 10815 if (arity != nargs)
323e0a4a 10816 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10818 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10819 return
10820 unwrap_value (ada_value_subscript
10821 (argvec[0], nargs, argvec + 1));
10822 }
10823 case TYPE_CODE_ARRAY:
10824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10825 {
10826 type = ada_array_element_type (type, nargs);
10827 if (type == NULL)
323e0a4a 10828 error (_("element type of array unknown"));
4c4b4cd2 10829 else
0a07e705 10830 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10831 }
10832 return
10833 unwrap_value (ada_value_subscript
10834 (ada_coerce_to_simple_array (argvec[0]),
10835 nargs, argvec + 1));
10836 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 {
deede10c 10839 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10840 type = ada_array_element_type (type, nargs);
10841 if (type == NULL)
323e0a4a 10842 error (_("element type of array unknown"));
4c4b4cd2 10843 else
0a07e705 10844 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10845 }
10846 return
deede10c
JB
10847 unwrap_value (ada_value_ptr_subscript (argvec[0],
10848 nargs, argvec + 1));
4c4b4cd2
PH
10849
10850 default:
e1d5a0d2
PH
10851 error (_("Attempt to index or call something other than an "
10852 "array or function"));
4c4b4cd2
PH
10853 }
10854
10855 case TERNOP_SLICE:
10856 {
10857 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10858 struct value *low_bound_val =
10859 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10860 struct value *high_bound_val =
10861 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10862 LONGEST low_bound;
10863 LONGEST high_bound;
5b4ee69b 10864
994b9211
AC
10865 low_bound_val = coerce_ref (low_bound_val);
10866 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10867 low_bound = value_as_long (low_bound_val);
10868 high_bound = value_as_long (high_bound_val);
963a6417 10869
4c4b4cd2
PH
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872
4c4b4cd2
PH
10873 /* If this is a reference to an aligner type, then remove all
10874 the aligners. */
df407dfe
AC
10875 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10876 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10877 TYPE_TARGET_TYPE (value_type (array)) =
10878 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10879
ad82864c 10880 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10881 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10882
10883 /* If this is a reference to an array or an array lvalue,
10884 convert to a pointer. */
df407dfe
AC
10885 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10886 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10887 && VALUE_LVAL (array) == lval_memory))
10888 array = value_addr (array);
10889
1265e4aa 10890 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10891 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10892 (value_type (array))))
bff8c71f
TT
10893 return empty_array (ada_type_of_array (array, 0), low_bound,
10894 high_bound);
4c4b4cd2
PH
10895
10896 array = ada_coerce_to_simple_array_ptr (array);
10897
714e53ab
PH
10898 /* If we have more than one level of pointer indirection,
10899 dereference the value until we get only one level. */
df407dfe
AC
10900 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10901 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10902 == TYPE_CODE_PTR))
10903 array = value_ind (array);
10904
10905 /* Make sure we really do have an array type before going further,
10906 to avoid a SEGV when trying to get the index type or the target
10907 type later down the road if the debug info generated by
10908 the compiler is incorrect or incomplete. */
df407dfe 10909 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10910 error (_("cannot take slice of non-array"));
714e53ab 10911
828292f2
JB
10912 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10913 == TYPE_CODE_PTR)
4c4b4cd2 10914 {
828292f2
JB
10915 struct type *type0 = ada_check_typedef (value_type (array));
10916
0b5d8877 10917 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10918 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10919 else
10920 {
10921 struct type *arr_type0 =
828292f2 10922 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10923
f5938064
JG
10924 return ada_value_slice_from_ptr (array, arr_type0,
10925 longest_to_int (low_bound),
10926 longest_to_int (high_bound));
4c4b4cd2
PH
10927 }
10928 }
10929 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10930 return array;
10931 else if (high_bound < low_bound)
bff8c71f 10932 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10933 else
529cad9c
PH
10934 return ada_value_slice (array, longest_to_int (low_bound),
10935 longest_to_int (high_bound));
4c4b4cd2 10936 }
14f9c5c9 10937
4c4b4cd2
PH
10938 case UNOP_IN_RANGE:
10939 (*pos) += 2;
10940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10941 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10942
14f9c5c9 10943 if (noside == EVAL_SKIP)
4c4b4cd2 10944 goto nosideret;
14f9c5c9 10945
4c4b4cd2
PH
10946 switch (TYPE_CODE (type))
10947 {
10948 default:
e1d5a0d2
PH
10949 lim_warning (_("Membership test incompletely implemented; "
10950 "always returns true"));
fbb06eb1
UW
10951 type = language_bool_type (exp->language_defn, exp->gdbarch);
10952 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10953
10954 case TYPE_CODE_RANGE:
030b4912
UW
10955 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10956 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10957 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10959 type = language_bool_type (exp->language_defn, exp->gdbarch);
10960 return
10961 value_from_longest (type,
4c4b4cd2
PH
10962 (value_less (arg1, arg3)
10963 || value_equal (arg1, arg3))
10964 && (value_less (arg2, arg1)
10965 || value_equal (arg2, arg1)));
10966 }
10967
10968 case BINOP_IN_BOUNDS:
14f9c5c9 10969 (*pos) += 2;
4c4b4cd2
PH
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10972
4c4b4cd2
PH
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
14f9c5c9 10975
4c4b4cd2 10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10977 {
10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
10979 return value_zero (type, not_lval);
10980 }
14f9c5c9 10981
4c4b4cd2 10982 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10983
1eea4ebd
UW
10984 type = ada_index_type (value_type (arg2), tem, "range");
10985 if (!type)
10986 type = value_type (arg1);
14f9c5c9 10987
1eea4ebd
UW
10988 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10989 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10990
f44316fa
UW
10991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10994 return
fbb06eb1 10995 value_from_longest (type,
4c4b4cd2
PH
10996 (value_less (arg1, arg3)
10997 || value_equal (arg1, arg3))
10998 && (value_less (arg2, arg1)
10999 || value_equal (arg2, arg1)));
11000
11001 case TERNOP_IN_RANGE:
11002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005
11006 if (noside == EVAL_SKIP)
11007 goto nosideret;
11008
f44316fa
UW
11009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11011 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11012 return
fbb06eb1 11013 value_from_longest (type,
4c4b4cd2
PH
11014 (value_less (arg1, arg3)
11015 || value_equal (arg1, arg3))
11016 && (value_less (arg2, arg1)
11017 || value_equal (arg2, arg1)));
11018
11019 case OP_ATR_FIRST:
11020 case OP_ATR_LAST:
11021 case OP_ATR_LENGTH:
11022 {
76a01679 11023 struct type *type_arg;
5b4ee69b 11024
76a01679
JB
11025 if (exp->elts[*pos].opcode == OP_TYPE)
11026 {
11027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11028 arg1 = NULL;
5bc23cb3 11029 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11030 }
11031 else
11032 {
11033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11034 type_arg = NULL;
11035 }
11036
11037 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11038 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11039 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11040 *pos += 4;
11041
11042 if (noside == EVAL_SKIP)
11043 goto nosideret;
680e1bee
TT
11044 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11045 {
11046 if (type_arg == NULL)
11047 type_arg = value_type (arg1);
76a01679 11048
680e1bee
TT
11049 if (ada_is_constrained_packed_array_type (type_arg))
11050 type_arg = decode_constrained_packed_array_type (type_arg);
11051
11052 if (!discrete_type_p (type_arg))
11053 {
11054 switch (op)
11055 {
11056 default: /* Should never happen. */
11057 error (_("unexpected attribute encountered"));
11058 case OP_ATR_FIRST:
11059 case OP_ATR_LAST:
11060 type_arg = ada_index_type (type_arg, tem,
11061 ada_attribute_name (op));
11062 break;
11063 case OP_ATR_LENGTH:
11064 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11065 break;
11066 }
11067 }
11068
11069 return value_zero (type_arg, not_lval);
11070 }
11071 else if (type_arg == NULL)
76a01679
JB
11072 {
11073 arg1 = ada_coerce_ref (arg1);
11074
ad82864c 11075 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11076 arg1 = ada_coerce_to_simple_array (arg1);
11077
aa4fb036 11078 if (op == OP_ATR_LENGTH)
1eea4ebd 11079 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11080 else
11081 {
11082 type = ada_index_type (value_type (arg1), tem,
11083 ada_attribute_name (op));
11084 if (type == NULL)
11085 type = builtin_type (exp->gdbarch)->builtin_int;
11086 }
76a01679 11087
76a01679
JB
11088 switch (op)
11089 {
11090 default: /* Should never happen. */
323e0a4a 11091 error (_("unexpected attribute encountered"));
76a01679 11092 case OP_ATR_FIRST:
1eea4ebd
UW
11093 return value_from_longest
11094 (type, ada_array_bound (arg1, tem, 0));
76a01679 11095 case OP_ATR_LAST:
1eea4ebd
UW
11096 return value_from_longest
11097 (type, ada_array_bound (arg1, tem, 1));
76a01679 11098 case OP_ATR_LENGTH:
1eea4ebd
UW
11099 return value_from_longest
11100 (type, ada_array_length (arg1, tem));
76a01679
JB
11101 }
11102 }
11103 else if (discrete_type_p (type_arg))
11104 {
11105 struct type *range_type;
0d5cff50 11106 const char *name = ada_type_name (type_arg);
5b4ee69b 11107
76a01679
JB
11108 range_type = NULL;
11109 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11110 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11111 if (range_type == NULL)
11112 range_type = type_arg;
11113 switch (op)
11114 {
11115 default:
323e0a4a 11116 error (_("unexpected attribute encountered"));
76a01679 11117 case OP_ATR_FIRST:
690cc4eb 11118 return value_from_longest
43bbcdc2 11119 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11120 case OP_ATR_LAST:
690cc4eb 11121 return value_from_longest
43bbcdc2 11122 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11123 case OP_ATR_LENGTH:
323e0a4a 11124 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11125 }
11126 }
11127 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11128 error (_("unimplemented type attribute"));
76a01679
JB
11129 else
11130 {
11131 LONGEST low, high;
11132
ad82864c
JB
11133 if (ada_is_constrained_packed_array_type (type_arg))
11134 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11135
aa4fb036 11136 if (op == OP_ATR_LENGTH)
1eea4ebd 11137 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11138 else
11139 {
11140 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11141 if (type == NULL)
11142 type = builtin_type (exp->gdbarch)->builtin_int;
11143 }
1eea4ebd 11144
76a01679
JB
11145 switch (op)
11146 {
11147 default:
323e0a4a 11148 error (_("unexpected attribute encountered"));
76a01679 11149 case OP_ATR_FIRST:
1eea4ebd 11150 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11151 return value_from_longest (type, low);
11152 case OP_ATR_LAST:
1eea4ebd 11153 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11154 return value_from_longest (type, high);
11155 case OP_ATR_LENGTH:
1eea4ebd
UW
11156 low = ada_array_bound_from_type (type_arg, tem, 0);
11157 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11158 return value_from_longest (type, high - low + 1);
11159 }
11160 }
14f9c5c9
AS
11161 }
11162
4c4b4cd2
PH
11163 case OP_ATR_TAG:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
76a01679 11166 goto nosideret;
4c4b4cd2
PH
11167
11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11169 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11170
11171 return ada_value_tag (arg1);
11172
11173 case OP_ATR_MIN:
11174 case OP_ATR_MAX:
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
76a01679 11179 goto nosideret;
d2e4a39e 11180 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11181 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11182 else
f44316fa
UW
11183 {
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185 return value_binop (arg1, arg2,
11186 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11187 }
14f9c5c9 11188
4c4b4cd2
PH
11189 case OP_ATR_MODULUS:
11190 {
31dedfee 11191 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11192
5b4ee69b 11193 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11194 if (noside == EVAL_SKIP)
11195 goto nosideret;
4c4b4cd2 11196
76a01679 11197 if (!ada_is_modular_type (type_arg))
323e0a4a 11198 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11199
76a01679
JB
11200 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11201 ada_modulus (type_arg));
4c4b4cd2
PH
11202 }
11203
11204
11205 case OP_ATR_POS:
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11208 if (noside == EVAL_SKIP)
76a01679 11209 goto nosideret;
3cb382c9
UW
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212 return value_zero (type, not_lval);
14f9c5c9 11213 else
3cb382c9 11214 return value_pos_atr (type, arg1);
14f9c5c9 11215
4c4b4cd2
PH
11216 case OP_ATR_SIZE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11218 type = value_type (arg1);
11219
11220 /* If the argument is a reference, then dereference its type, since
11221 the user is really asking for the size of the actual object,
11222 not the size of the pointer. */
11223 if (TYPE_CODE (type) == TYPE_CODE_REF)
11224 type = TYPE_TARGET_TYPE (type);
11225
4c4b4cd2 11226 if (noside == EVAL_SKIP)
76a01679 11227 goto nosideret;
4c4b4cd2 11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11229 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11230 else
22601c15 11231 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11232 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11233
11234 case OP_ATR_VAL:
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11237 type = exp->elts[pc + 2].type;
14f9c5c9 11238 if (noside == EVAL_SKIP)
76a01679 11239 goto nosideret;
4c4b4cd2 11240 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11241 return value_zero (type, not_lval);
4c4b4cd2 11242 else
76a01679 11243 return value_val_atr (type, arg1);
4c4b4cd2
PH
11244
11245 case BINOP_EXP:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11251 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11252 else
f44316fa
UW
11253 {
11254 /* For integer exponentiation operations,
11255 only promote the first argument. */
11256 if (is_integral_type (value_type (arg2)))
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 else
11259 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11260
11261 return value_binop (arg1, arg2, op);
11262 }
4c4b4cd2
PH
11263
11264 case UNOP_PLUS:
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 else
11269 return arg1;
11270
11271 case UNOP_ABS:
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
11274 goto nosideret;
f44316fa 11275 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11276 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11277 return value_neg (arg1);
14f9c5c9 11278 else
4c4b4cd2 11279 return arg1;
14f9c5c9
AS
11280
11281 case UNOP_IND:
5ec18f2b 11282 preeval_pos = *pos;
6b0d7253 11283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11284 if (noside == EVAL_SKIP)
4c4b4cd2 11285 goto nosideret;
df407dfe 11286 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11288 {
11289 if (ada_is_array_descriptor_type (type))
11290 /* GDB allows dereferencing GNAT array descriptors. */
11291 {
11292 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11293
4c4b4cd2 11294 if (arrType == NULL)
323e0a4a 11295 error (_("Attempt to dereference null array pointer."));
00a4c844 11296 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11297 }
11298 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11299 || TYPE_CODE (type) == TYPE_CODE_REF
11300 /* In C you can dereference an array to get the 1st elt. */
11301 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11302 {
5ec18f2b
JG
11303 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11304 only be determined by inspecting the object's tag.
11305 This means that we need to evaluate completely the
11306 expression in order to get its type. */
11307
023db19c
JB
11308 if ((TYPE_CODE (type) == TYPE_CODE_REF
11309 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11310 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11311 {
11312 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11313 EVAL_NORMAL);
11314 type = value_type (ada_value_ind (arg1));
11315 }
11316 else
11317 {
11318 type = to_static_fixed_type
11319 (ada_aligned_type
11320 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11321 }
c1b5a1a6 11322 ada_ensure_varsize_limit (type);
714e53ab
PH
11323 return value_zero (type, lval_memory);
11324 }
4c4b4cd2 11325 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11326 {
11327 /* GDB allows dereferencing an int. */
11328 if (expect_type == NULL)
11329 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11330 lval_memory);
11331 else
11332 {
11333 expect_type =
11334 to_static_fixed_type (ada_aligned_type (expect_type));
11335 return value_zero (expect_type, lval_memory);
11336 }
11337 }
4c4b4cd2 11338 else
323e0a4a 11339 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11340 }
0963b4bd 11341 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11342 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11343
96967637
JB
11344 if (TYPE_CODE (type) == TYPE_CODE_INT)
11345 /* GDB allows dereferencing an int. If we were given
11346 the expect_type, then use that as the target type.
11347 Otherwise, assume that the target type is an int. */
11348 {
11349 if (expect_type != NULL)
11350 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11351 arg1));
11352 else
11353 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11354 (CORE_ADDR) value_as_address (arg1));
11355 }
6b0d7253 11356
4c4b4cd2
PH
11357 if (ada_is_array_descriptor_type (type))
11358 /* GDB allows dereferencing GNAT array descriptors. */
11359 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11360 else
4c4b4cd2 11361 return ada_value_ind (arg1);
14f9c5c9
AS
11362
11363 case STRUCTOP_STRUCT:
11364 tem = longest_to_int (exp->elts[pc + 1].longconst);
11365 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11366 preeval_pos = *pos;
14f9c5c9
AS
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 if (noside == EVAL_SKIP)
4c4b4cd2 11369 goto nosideret;
14f9c5c9 11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11371 {
df407dfe 11372 struct type *type1 = value_type (arg1);
5b4ee69b 11373
76a01679
JB
11374 if (ada_is_tagged_type (type1, 1))
11375 {
11376 type = ada_lookup_struct_elt_type (type1,
11377 &exp->elts[pc + 2].string,
988f6b3d 11378 1, 1);
5ec18f2b
JG
11379
11380 /* If the field is not found, check if it exists in the
11381 extension of this object's type. This means that we
11382 need to evaluate completely the expression. */
11383
76a01679 11384 if (type == NULL)
5ec18f2b
JG
11385 {
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11387 EVAL_NORMAL);
11388 arg1 = ada_value_struct_elt (arg1,
11389 &exp->elts[pc + 2].string,
11390 0);
11391 arg1 = unwrap_value (arg1);
11392 type = value_type (ada_to_fixed_value (arg1));
11393 }
76a01679
JB
11394 }
11395 else
11396 type =
11397 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11398 0);
76a01679
JB
11399
11400 return value_zero (ada_aligned_type (type), lval_memory);
11401 }
14f9c5c9 11402 else
a579cd9a
MW
11403 {
11404 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11405 arg1 = unwrap_value (arg1);
11406 return ada_to_fixed_value (arg1);
11407 }
284614f0 11408
14f9c5c9 11409 case OP_TYPE:
4c4b4cd2
PH
11410 /* The value is not supposed to be used. This is here to make it
11411 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11412 (*pos) += 2;
11413 if (noside == EVAL_SKIP)
4c4b4cd2 11414 goto nosideret;
14f9c5c9 11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11416 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11417 else
323e0a4a 11418 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11419
11420 case OP_AGGREGATE:
11421 case OP_CHOICES:
11422 case OP_OTHERS:
11423 case OP_DISCRETE_RANGE:
11424 case OP_POSITIONAL:
11425 case OP_NAME:
11426 if (noside == EVAL_NORMAL)
11427 switch (op)
11428 {
11429 case OP_NAME:
11430 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11431 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11432 case OP_AGGREGATE:
11433 error (_("Aggregates only allowed on the right of an assignment"));
11434 default:
0963b4bd
MS
11435 internal_error (__FILE__, __LINE__,
11436 _("aggregate apparently mangled"));
52ce6436
PH
11437 }
11438
11439 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11440 *pos += oplen - 1;
11441 for (tem = 0; tem < nargs; tem += 1)
11442 ada_evaluate_subexp (NULL, exp, pos, noside);
11443 goto nosideret;
14f9c5c9
AS
11444 }
11445
11446nosideret:
ced9779b 11447 return eval_skip_value (exp);
14f9c5c9 11448}
14f9c5c9 11449\f
d2e4a39e 11450
4c4b4cd2 11451 /* Fixed point */
14f9c5c9
AS
11452
11453/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11454 type name that encodes the 'small and 'delta information.
4c4b4cd2 11455 Otherwise, return NULL. */
14f9c5c9 11456
d2e4a39e 11457static const char *
ebf56fd3 11458fixed_type_info (struct type *type)
14f9c5c9 11459{
d2e4a39e 11460 const char *name = ada_type_name (type);
14f9c5c9
AS
11461 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11462
d2e4a39e
AS
11463 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11464 {
14f9c5c9 11465 const char *tail = strstr (name, "___XF_");
5b4ee69b 11466
14f9c5c9 11467 if (tail == NULL)
4c4b4cd2 11468 return NULL;
d2e4a39e 11469 else
4c4b4cd2 11470 return tail + 5;
14f9c5c9
AS
11471 }
11472 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11473 return fixed_type_info (TYPE_TARGET_TYPE (type));
11474 else
11475 return NULL;
11476}
11477
4c4b4cd2 11478/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11479
11480int
ebf56fd3 11481ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11482{
11483 return fixed_type_info (type) != NULL;
11484}
11485
4c4b4cd2
PH
11486/* Return non-zero iff TYPE represents a System.Address type. */
11487
11488int
11489ada_is_system_address_type (struct type *type)
11490{
11491 return (TYPE_NAME (type)
11492 && strcmp (TYPE_NAME (type), "system__address") == 0);
11493}
11494
14f9c5c9 11495/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11496 type, return the target floating-point type to be used to represent
11497 of this type during internal computation. */
11498
11499static struct type *
11500ada_scaling_type (struct type *type)
11501{
11502 return builtin_type (get_type_arch (type))->builtin_long_double;
11503}
11504
11505/* Assuming that TYPE is the representation of an Ada fixed-point
11506 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11507 delta cannot be determined. */
14f9c5c9 11508
50eff16b 11509struct value *
ebf56fd3 11510ada_delta (struct type *type)
14f9c5c9
AS
11511{
11512 const char *encoding = fixed_type_info (type);
50eff16b
UW
11513 struct type *scale_type = ada_scaling_type (type);
11514
11515 long long num, den;
11516
11517 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11518 return nullptr;
d2e4a39e 11519 else
50eff16b
UW
11520 return value_binop (value_from_longest (scale_type, num),
11521 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11522}
11523
11524/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11525 factor ('SMALL value) associated with the type. */
14f9c5c9 11526
50eff16b
UW
11527struct value *
11528ada_scaling_factor (struct type *type)
14f9c5c9
AS
11529{
11530 const char *encoding = fixed_type_info (type);
50eff16b
UW
11531 struct type *scale_type = ada_scaling_type (type);
11532
11533 long long num0, den0, num1, den1;
14f9c5c9 11534 int n;
d2e4a39e 11535
50eff16b 11536 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11537 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11538
11539 if (n < 2)
50eff16b 11540 return value_from_longest (scale_type, 1);
14f9c5c9 11541 else if (n == 4)
50eff16b
UW
11542 return value_binop (value_from_longest (scale_type, num1),
11543 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11544 else
50eff16b
UW
11545 return value_binop (value_from_longest (scale_type, num0),
11546 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11547}
11548
14f9c5c9 11549\f
d2e4a39e 11550
4c4b4cd2 11551 /* Range types */
14f9c5c9
AS
11552
11553/* Scan STR beginning at position K for a discriminant name, and
11554 return the value of that discriminant field of DVAL in *PX. If
11555 PNEW_K is not null, put the position of the character beyond the
11556 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11557 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11558
11559static int
108d56a4 11560scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11561 int *pnew_k)
14f9c5c9
AS
11562{
11563 static char *bound_buffer = NULL;
11564 static size_t bound_buffer_len = 0;
5da1a4d3 11565 const char *pstart, *pend, *bound;
d2e4a39e 11566 struct value *bound_val;
14f9c5c9
AS
11567
11568 if (dval == NULL || str == NULL || str[k] == '\0')
11569 return 0;
11570
5da1a4d3
SM
11571 pstart = str + k;
11572 pend = strstr (pstart, "__");
14f9c5c9
AS
11573 if (pend == NULL)
11574 {
5da1a4d3 11575 bound = pstart;
14f9c5c9
AS
11576 k += strlen (bound);
11577 }
d2e4a39e 11578 else
14f9c5c9 11579 {
5da1a4d3
SM
11580 int len = pend - pstart;
11581
11582 /* Strip __ and beyond. */
11583 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11584 strncpy (bound_buffer, pstart, len);
11585 bound_buffer[len] = '\0';
11586
14f9c5c9 11587 bound = bound_buffer;
d2e4a39e 11588 k = pend - str;
14f9c5c9 11589 }
d2e4a39e 11590
df407dfe 11591 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11592 if (bound_val == NULL)
11593 return 0;
11594
11595 *px = value_as_long (bound_val);
11596 if (pnew_k != NULL)
11597 *pnew_k = k;
11598 return 1;
11599}
11600
11601/* Value of variable named NAME in the current environment. If
11602 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11603 otherwise causes an error with message ERR_MSG. */
11604
d2e4a39e 11605static struct value *
edb0c9cb 11606get_var_value (const char *name, const char *err_msg)
14f9c5c9 11607{
b5ec771e 11608 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11609
54d343a2 11610 std::vector<struct block_symbol> syms;
b5ec771e
PA
11611 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11612 get_selected_block (0),
11613 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11614
11615 if (nsyms != 1)
11616 {
11617 if (err_msg == NULL)
4c4b4cd2 11618 return 0;
14f9c5c9 11619 else
8a3fe4f8 11620 error (("%s"), err_msg);
14f9c5c9
AS
11621 }
11622
54d343a2 11623 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11624}
d2e4a39e 11625
edb0c9cb
PA
11626/* Value of integer variable named NAME in the current environment.
11627 If no such variable is found, returns false. Otherwise, sets VALUE
11628 to the variable's value and returns true. */
4c4b4cd2 11629
edb0c9cb
PA
11630bool
11631get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11632{
4c4b4cd2 11633 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11634
14f9c5c9 11635 if (var_val == 0)
edb0c9cb
PA
11636 return false;
11637
11638 value = value_as_long (var_val);
11639 return true;
14f9c5c9 11640}
d2e4a39e 11641
14f9c5c9
AS
11642
11643/* Return a range type whose base type is that of the range type named
11644 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11645 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11646 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11647 corresponding range type from debug information; fall back to using it
11648 if symbol lookup fails. If a new type must be created, allocate it
11649 like ORIG_TYPE was. The bounds information, in general, is encoded
11650 in NAME, the base type given in the named range type. */
14f9c5c9 11651
d2e4a39e 11652static struct type *
28c85d6c 11653to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11654{
0d5cff50 11655 const char *name;
14f9c5c9 11656 struct type *base_type;
108d56a4 11657 const char *subtype_info;
14f9c5c9 11658
28c85d6c
JB
11659 gdb_assert (raw_type != NULL);
11660 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11661
1ce677a4 11662 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11663 base_type = TYPE_TARGET_TYPE (raw_type);
11664 else
11665 base_type = raw_type;
11666
28c85d6c 11667 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11668 subtype_info = strstr (name, "___XD");
11669 if (subtype_info == NULL)
690cc4eb 11670 {
43bbcdc2
PH
11671 LONGEST L = ada_discrete_type_low_bound (raw_type);
11672 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11673
690cc4eb
PH
11674 if (L < INT_MIN || U > INT_MAX)
11675 return raw_type;
11676 else
0c9c3474
SA
11677 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11678 L, U);
690cc4eb 11679 }
14f9c5c9
AS
11680 else
11681 {
11682 static char *name_buf = NULL;
11683 static size_t name_len = 0;
11684 int prefix_len = subtype_info - name;
11685 LONGEST L, U;
11686 struct type *type;
108d56a4 11687 const char *bounds_str;
14f9c5c9
AS
11688 int n;
11689
11690 GROW_VECT (name_buf, name_len, prefix_len + 5);
11691 strncpy (name_buf, name, prefix_len);
11692 name_buf[prefix_len] = '\0';
11693
11694 subtype_info += 5;
11695 bounds_str = strchr (subtype_info, '_');
11696 n = 1;
11697
d2e4a39e 11698 if (*subtype_info == 'L')
4c4b4cd2
PH
11699 {
11700 if (!ada_scan_number (bounds_str, n, &L, &n)
11701 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11702 return raw_type;
11703 if (bounds_str[n] == '_')
11704 n += 2;
0963b4bd 11705 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11706 n += 1;
11707 subtype_info += 1;
11708 }
d2e4a39e 11709 else
4c4b4cd2 11710 {
4c4b4cd2 11711 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11712 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11713 {
323e0a4a 11714 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11715 L = 1;
11716 }
11717 }
14f9c5c9 11718
d2e4a39e 11719 if (*subtype_info == 'U')
4c4b4cd2
PH
11720 {
11721 if (!ada_scan_number (bounds_str, n, &U, &n)
11722 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11723 return raw_type;
11724 }
d2e4a39e 11725 else
4c4b4cd2 11726 {
4c4b4cd2 11727 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11728 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11729 {
323e0a4a 11730 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11731 U = L;
11732 }
11733 }
14f9c5c9 11734
0c9c3474
SA
11735 type = create_static_range_type (alloc_type_copy (raw_type),
11736 base_type, L, U);
f5a91472
JB
11737 /* create_static_range_type alters the resulting type's length
11738 to match the size of the base_type, which is not what we want.
11739 Set it back to the original range type's length. */
11740 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11741 TYPE_NAME (type) = name;
14f9c5c9
AS
11742 return type;
11743 }
11744}
11745
4c4b4cd2
PH
11746/* True iff NAME is the name of a range type. */
11747
14f9c5c9 11748int
d2e4a39e 11749ada_is_range_type_name (const char *name)
14f9c5c9
AS
11750{
11751 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11752}
14f9c5c9 11753\f
d2e4a39e 11754
4c4b4cd2
PH
11755 /* Modular types */
11756
11757/* True iff TYPE is an Ada modular type. */
14f9c5c9 11758
14f9c5c9 11759int
d2e4a39e 11760ada_is_modular_type (struct type *type)
14f9c5c9 11761{
18af8284 11762 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11763
11764 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11765 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11766 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11767}
11768
4c4b4cd2
PH
11769/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11770
61ee279c 11771ULONGEST
0056e4d5 11772ada_modulus (struct type *type)
14f9c5c9 11773{
43bbcdc2 11774 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11775}
d2e4a39e 11776\f
f7f9143b
JB
11777
11778/* Ada exception catchpoint support:
11779 ---------------------------------
11780
11781 We support 3 kinds of exception catchpoints:
11782 . catchpoints on Ada exceptions
11783 . catchpoints on unhandled Ada exceptions
11784 . catchpoints on failed assertions
11785
11786 Exceptions raised during failed assertions, or unhandled exceptions
11787 could perfectly be caught with the general catchpoint on Ada exceptions.
11788 However, we can easily differentiate these two special cases, and having
11789 the option to distinguish these two cases from the rest can be useful
11790 to zero-in on certain situations.
11791
11792 Exception catchpoints are a specialized form of breakpoint,
11793 since they rely on inserting breakpoints inside known routines
11794 of the GNAT runtime. The implementation therefore uses a standard
11795 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11796 of breakpoint_ops.
11797
0259addd
JB
11798 Support in the runtime for exception catchpoints have been changed
11799 a few times already, and these changes affect the implementation
11800 of these catchpoints. In order to be able to support several
11801 variants of the runtime, we use a sniffer that will determine
28010a5d 11802 the runtime variant used by the program being debugged. */
f7f9143b 11803
82eacd52
JB
11804/* Ada's standard exceptions.
11805
11806 The Ada 83 standard also defined Numeric_Error. But there so many
11807 situations where it was unclear from the Ada 83 Reference Manual
11808 (RM) whether Constraint_Error or Numeric_Error should be raised,
11809 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11810 Interpretation saying that anytime the RM says that Numeric_Error
11811 should be raised, the implementation may raise Constraint_Error.
11812 Ada 95 went one step further and pretty much removed Numeric_Error
11813 from the list of standard exceptions (it made it a renaming of
11814 Constraint_Error, to help preserve compatibility when compiling
11815 an Ada83 compiler). As such, we do not include Numeric_Error from
11816 this list of standard exceptions. */
3d0b0fa3 11817
a121b7c1 11818static const char *standard_exc[] = {
3d0b0fa3
JB
11819 "constraint_error",
11820 "program_error",
11821 "storage_error",
11822 "tasking_error"
11823};
11824
0259addd
JB
11825typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11826
11827/* A structure that describes how to support exception catchpoints
11828 for a given executable. */
11829
11830struct exception_support_info
11831{
11832 /* The name of the symbol to break on in order to insert
11833 a catchpoint on exceptions. */
11834 const char *catch_exception_sym;
11835
11836 /* The name of the symbol to break on in order to insert
11837 a catchpoint on unhandled exceptions. */
11838 const char *catch_exception_unhandled_sym;
11839
11840 /* The name of the symbol to break on in order to insert
11841 a catchpoint on failed assertions. */
11842 const char *catch_assert_sym;
11843
9f757bf7
XR
11844 /* The name of the symbol to break on in order to insert
11845 a catchpoint on exception handling. */
11846 const char *catch_handlers_sym;
11847
0259addd
JB
11848 /* Assuming that the inferior just triggered an unhandled exception
11849 catchpoint, this function is responsible for returning the address
11850 in inferior memory where the name of that exception is stored.
11851 Return zero if the address could not be computed. */
11852 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11853};
11854
11855static CORE_ADDR ada_unhandled_exception_name_addr (void);
11856static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11857
11858/* The following exception support info structure describes how to
11859 implement exception catchpoints with the latest version of the
ca683e3a 11860 Ada runtime (as of 2019-08-??). */
0259addd
JB
11861
11862static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11863{
11864 "__gnat_debug_raise_exception", /* catch_exception_sym */
11865 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11866 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11867 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11868 ada_unhandled_exception_name_addr
11869};
11870
11871/* The following exception support info structure describes how to
11872 implement exception catchpoints with an earlier version of the
11873 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11874
11875static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11876{
11877 "__gnat_debug_raise_exception", /* catch_exception_sym */
11878 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11879 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11880 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11881 ada_unhandled_exception_name_addr
11882};
11883
11884/* The following exception support info structure describes how to
11885 implement exception catchpoints with a slightly older version
11886 of the Ada runtime. */
11887
11888static const struct exception_support_info exception_support_info_fallback =
11889{
11890 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11891 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11892 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11893 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11894 ada_unhandled_exception_name_addr_from_raise
11895};
11896
f17011e0
JB
11897/* Return nonzero if we can detect the exception support routines
11898 described in EINFO.
11899
11900 This function errors out if an abnormal situation is detected
11901 (for instance, if we find the exception support routines, but
11902 that support is found to be incomplete). */
11903
11904static int
11905ada_has_this_exception_support (const struct exception_support_info *einfo)
11906{
11907 struct symbol *sym;
11908
11909 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11910 that should be compiled with debugging information. As a result, we
11911 expect to find that symbol in the symtabs. */
11912
11913 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11914 if (sym == NULL)
a6af7abe
JB
11915 {
11916 /* Perhaps we did not find our symbol because the Ada runtime was
11917 compiled without debugging info, or simply stripped of it.
11918 It happens on some GNU/Linux distributions for instance, where
11919 users have to install a separate debug package in order to get
11920 the runtime's debugging info. In that situation, let the user
11921 know why we cannot insert an Ada exception catchpoint.
11922
11923 Note: Just for the purpose of inserting our Ada exception
11924 catchpoint, we could rely purely on the associated minimal symbol.
11925 But we would be operating in degraded mode anyway, since we are
11926 still lacking the debugging info needed later on to extract
11927 the name of the exception being raised (this name is printed in
11928 the catchpoint message, and is also used when trying to catch
11929 a specific exception). We do not handle this case for now. */
3b7344d5 11930 struct bound_minimal_symbol msym
1c8e84b0
JB
11931 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11932
3b7344d5 11933 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11937
11938 return 0;
11939 }
f17011e0
JB
11940
11941 /* Make sure that the symbol we found corresponds to a function. */
11942
11943 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11944 {
11945 error (_("Symbol \"%s\" is not a function (class = %d)"),
11946 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11947 return 0;
11948 }
11949
11950 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11951 if (sym == NULL)
11952 {
11953 struct bound_minimal_symbol msym
11954 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11955
11956 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11957 error (_("Your Ada runtime appears to be missing some debugging "
11958 "information.\nCannot insert Ada exception catchpoint "
11959 "in this configuration."));
11960
11961 return 0;
11962 }
11963
11964 /* Make sure that the symbol we found corresponds to a function. */
11965
11966 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11967 {
11968 error (_("Symbol \"%s\" is not a function (class = %d)"),
11969 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11970 return 0;
11971 }
f17011e0
JB
11972
11973 return 1;
11974}
11975
0259addd
JB
11976/* Inspect the Ada runtime and determine which exception info structure
11977 should be used to provide support for exception catchpoints.
11978
3eecfa55
JB
11979 This function will always set the per-inferior exception_info,
11980 or raise an error. */
0259addd
JB
11981
11982static void
11983ada_exception_support_info_sniffer (void)
11984{
3eecfa55 11985 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11986
11987 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11988 if (data->exception_info != NULL)
0259addd
JB
11989 return;
11990
11991 /* Check the latest (default) exception support info. */
f17011e0 11992 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11993 {
3eecfa55 11994 data->exception_info = &default_exception_support_info;
0259addd
JB
11995 return;
11996 }
11997
ca683e3a
AO
11998 /* Try the v0 exception suport info. */
11999 if (ada_has_this_exception_support (&exception_support_info_v0))
12000 {
12001 data->exception_info = &exception_support_info_v0;
12002 return;
12003 }
12004
0259addd 12005 /* Try our fallback exception suport info. */
f17011e0 12006 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12007 {
3eecfa55 12008 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12009 return;
12010 }
12011
12012 /* Sometimes, it is normal for us to not be able to find the routine
12013 we are looking for. This happens when the program is linked with
12014 the shared version of the GNAT runtime, and the program has not been
12015 started yet. Inform the user of these two possible causes if
12016 applicable. */
12017
ccefe4c4 12018 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12019 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12020
12021 /* If the symbol does not exist, then check that the program is
12022 already started, to make sure that shared libraries have been
12023 loaded. If it is not started, this may mean that the symbol is
12024 in a shared library. */
12025
e99b03dc 12026 if (inferior_ptid.pid () == 0)
0259addd
JB
12027 error (_("Unable to insert catchpoint. Try to start the program first."));
12028
12029 /* At this point, we know that we are debugging an Ada program and
12030 that the inferior has been started, but we still are not able to
0963b4bd 12031 find the run-time symbols. That can mean that we are in
0259addd
JB
12032 configurable run time mode, or that a-except as been optimized
12033 out by the linker... In any case, at this point it is not worth
12034 supporting this feature. */
12035
7dda8cff 12036 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12037}
12038
f7f9143b
JB
12039/* True iff FRAME is very likely to be that of a function that is
12040 part of the runtime system. This is all very heuristic, but is
12041 intended to be used as advice as to what frames are uninteresting
12042 to most users. */
12043
12044static int
12045is_known_support_routine (struct frame_info *frame)
12046{
692465f1 12047 enum language func_lang;
f7f9143b 12048 int i;
f35a17b5 12049 const char *fullname;
f7f9143b 12050
4ed6b5be
JB
12051 /* If this code does not have any debugging information (no symtab),
12052 This cannot be any user code. */
f7f9143b 12053
51abb421 12054 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12055 if (sal.symtab == NULL)
12056 return 1;
12057
4ed6b5be
JB
12058 /* If there is a symtab, but the associated source file cannot be
12059 located, then assume this is not user code: Selecting a frame
12060 for which we cannot display the code would not be very helpful
12061 for the user. This should also take care of case such as VxWorks
12062 where the kernel has some debugging info provided for a few units. */
f7f9143b 12063
f35a17b5
JK
12064 fullname = symtab_to_fullname (sal.symtab);
12065 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12066 return 1;
12067
4ed6b5be
JB
12068 /* Check the unit filename againt the Ada runtime file naming.
12069 We also check the name of the objfile against the name of some
12070 known system libraries that sometimes come with debugging info
12071 too. */
12072
f7f9143b
JB
12073 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12074 {
12075 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12076 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12077 return 1;
eb822aa6
DE
12078 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12079 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12080 return 1;
f7f9143b
JB
12081 }
12082
4ed6b5be 12083 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12084
c6dc63a1
TT
12085 gdb::unique_xmalloc_ptr<char> func_name
12086 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12087 if (func_name == NULL)
12088 return 1;
12089
12090 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12091 {
12092 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12093 if (re_exec (func_name.get ()))
12094 return 1;
f7f9143b
JB
12095 }
12096
12097 return 0;
12098}
12099
12100/* Find the first frame that contains debugging information and that is not
12101 part of the Ada run-time, starting from FI and moving upward. */
12102
0ef643c8 12103void
f7f9143b
JB
12104ada_find_printable_frame (struct frame_info *fi)
12105{
12106 for (; fi != NULL; fi = get_prev_frame (fi))
12107 {
12108 if (!is_known_support_routine (fi))
12109 {
12110 select_frame (fi);
12111 break;
12112 }
12113 }
12114
12115}
12116
12117/* Assuming that the inferior just triggered an unhandled exception
12118 catchpoint, return the address in inferior memory where the name
12119 of the exception is stored.
12120
12121 Return zero if the address could not be computed. */
12122
12123static CORE_ADDR
12124ada_unhandled_exception_name_addr (void)
0259addd
JB
12125{
12126 return parse_and_eval_address ("e.full_name");
12127}
12128
12129/* Same as ada_unhandled_exception_name_addr, except that this function
12130 should be used when the inferior uses an older version of the runtime,
12131 where the exception name needs to be extracted from a specific frame
12132 several frames up in the callstack. */
12133
12134static CORE_ADDR
12135ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12136{
12137 int frame_level;
12138 struct frame_info *fi;
3eecfa55 12139 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12140
12141 /* To determine the name of this exception, we need to select
12142 the frame corresponding to RAISE_SYM_NAME. This frame is
12143 at least 3 levels up, so we simply skip the first 3 frames
12144 without checking the name of their associated function. */
12145 fi = get_current_frame ();
12146 for (frame_level = 0; frame_level < 3; frame_level += 1)
12147 if (fi != NULL)
12148 fi = get_prev_frame (fi);
12149
12150 while (fi != NULL)
12151 {
692465f1
JB
12152 enum language func_lang;
12153
c6dc63a1
TT
12154 gdb::unique_xmalloc_ptr<char> func_name
12155 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12156 if (func_name != NULL)
12157 {
c6dc63a1 12158 if (strcmp (func_name.get (),
55b87a52
KS
12159 data->exception_info->catch_exception_sym) == 0)
12160 break; /* We found the frame we were looking for... */
55b87a52 12161 }
fb44b1a7 12162 fi = get_prev_frame (fi);
f7f9143b
JB
12163 }
12164
12165 if (fi == NULL)
12166 return 0;
12167
12168 select_frame (fi);
12169 return parse_and_eval_address ("id.full_name");
12170}
12171
12172/* Assuming the inferior just triggered an Ada exception catchpoint
12173 (of any type), return the address in inferior memory where the name
12174 of the exception is stored, if applicable.
12175
45db7c09
PA
12176 Assumes the selected frame is the current frame.
12177
f7f9143b
JB
12178 Return zero if the address could not be computed, or if not relevant. */
12179
12180static CORE_ADDR
761269c8 12181ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12182 struct breakpoint *b)
12183{
3eecfa55
JB
12184 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12185
f7f9143b
JB
12186 switch (ex)
12187 {
761269c8 12188 case ada_catch_exception:
f7f9143b
JB
12189 return (parse_and_eval_address ("e.full_name"));
12190 break;
12191
761269c8 12192 case ada_catch_exception_unhandled:
3eecfa55 12193 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12194 break;
9f757bf7
XR
12195
12196 case ada_catch_handlers:
12197 return 0; /* The runtimes does not provide access to the exception
12198 name. */
12199 break;
12200
761269c8 12201 case ada_catch_assert:
f7f9143b
JB
12202 return 0; /* Exception name is not relevant in this case. */
12203 break;
12204
12205 default:
12206 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12207 break;
12208 }
12209
12210 return 0; /* Should never be reached. */
12211}
12212
e547c119
JB
12213/* Assuming the inferior is stopped at an exception catchpoint,
12214 return the message which was associated to the exception, if
12215 available. Return NULL if the message could not be retrieved.
12216
e547c119
JB
12217 Note: The exception message can be associated to an exception
12218 either through the use of the Raise_Exception function, or
12219 more simply (Ada 2005 and later), via:
12220
12221 raise Exception_Name with "exception message";
12222
12223 */
12224
6f46ac85 12225static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12226ada_exception_message_1 (void)
12227{
12228 struct value *e_msg_val;
e547c119 12229 int e_msg_len;
e547c119
JB
12230
12231 /* For runtimes that support this feature, the exception message
12232 is passed as an unbounded string argument called "message". */
12233 e_msg_val = parse_and_eval ("message");
12234 if (e_msg_val == NULL)
12235 return NULL; /* Exception message not supported. */
12236
12237 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12238 gdb_assert (e_msg_val != NULL);
12239 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12240
12241 /* If the message string is empty, then treat it as if there was
12242 no exception message. */
12243 if (e_msg_len <= 0)
12244 return NULL;
12245
6f46ac85
TT
12246 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12247 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12248 e_msg.get ()[e_msg_len] = '\0';
e547c119 12249
e547c119
JB
12250 return e_msg;
12251}
12252
12253/* Same as ada_exception_message_1, except that all exceptions are
12254 contained here (returning NULL instead). */
12255
6f46ac85 12256static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12257ada_exception_message (void)
12258{
6f46ac85 12259 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12260
a70b8144 12261 try
e547c119
JB
12262 {
12263 e_msg = ada_exception_message_1 ();
12264 }
230d2906 12265 catch (const gdb_exception_error &e)
e547c119 12266 {
6f46ac85 12267 e_msg.reset (nullptr);
e547c119 12268 }
e547c119
JB
12269
12270 return e_msg;
12271}
12272
f7f9143b
JB
12273/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12274 any error that ada_exception_name_addr_1 might cause to be thrown.
12275 When an error is intercepted, a warning with the error message is printed,
12276 and zero is returned. */
12277
12278static CORE_ADDR
761269c8 12279ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12280 struct breakpoint *b)
12281{
f7f9143b
JB
12282 CORE_ADDR result = 0;
12283
a70b8144 12284 try
f7f9143b
JB
12285 {
12286 result = ada_exception_name_addr_1 (ex, b);
12287 }
12288
230d2906 12289 catch (const gdb_exception_error &e)
f7f9143b 12290 {
3d6e9d23 12291 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12292 return 0;
12293 }
12294
12295 return result;
12296}
12297
cb7de75e 12298static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12299 (const char *excep_string,
12300 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12301
12302/* Ada catchpoints.
12303
12304 In the case of catchpoints on Ada exceptions, the catchpoint will
12305 stop the target on every exception the program throws. When a user
12306 specifies the name of a specific exception, we translate this
12307 request into a condition expression (in text form), and then parse
12308 it into an expression stored in each of the catchpoint's locations.
12309 We then use this condition to check whether the exception that was
12310 raised is the one the user is interested in. If not, then the
12311 target is resumed again. We store the name of the requested
12312 exception, in order to be able to re-set the condition expression
12313 when symbols change. */
12314
12315/* An instance of this type is used to represent an Ada catchpoint
5625a286 12316 breakpoint location. */
28010a5d 12317
5625a286 12318class ada_catchpoint_location : public bp_location
28010a5d 12319{
5625a286 12320public:
5f486660 12321 ada_catchpoint_location (breakpoint *owner)
f06f1252 12322 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12323 {}
28010a5d
PA
12324
12325 /* The condition that checks whether the exception that was raised
12326 is the specific exception the user specified on catchpoint
12327 creation. */
4d01a485 12328 expression_up excep_cond_expr;
28010a5d
PA
12329};
12330
c1fc2657 12331/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12332
c1fc2657 12333struct ada_catchpoint : public breakpoint
28010a5d 12334{
28010a5d 12335 /* The name of the specific exception the user specified. */
bc18fbb5 12336 std::string excep_string;
28010a5d
PA
12337};
12338
12339/* Parse the exception condition string in the context of each of the
12340 catchpoint's locations, and store them for later evaluation. */
12341
12342static void
9f757bf7
XR
12343create_excep_cond_exprs (struct ada_catchpoint *c,
12344 enum ada_exception_catchpoint_kind ex)
28010a5d 12345{
28010a5d 12346 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12347 if (c->excep_string.empty ())
28010a5d
PA
12348 return;
12349
12350 /* Same if there are no locations... */
c1fc2657 12351 if (c->loc == NULL)
28010a5d
PA
12352 return;
12353
2ff0a947
TT
12354 /* We have to compute the expression once for each program space,
12355 because the expression may hold the addresses of multiple symbols
12356 in some cases. */
12357 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12358 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12359 loc_map.emplace (bl->pspace, bl);
28010a5d 12360
2ff0a947
TT
12361 scoped_restore_current_program_space save_pspace;
12362
12363 std::string cond_string;
12364 program_space *last_ps = nullptr;
12365 for (auto iter : loc_map)
28010a5d
PA
12366 {
12367 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12368 = (struct ada_catchpoint_location *) iter.second;
12369
12370 if (ada_loc->pspace != last_ps)
12371 {
12372 last_ps = ada_loc->pspace;
12373 set_current_program_space (last_ps);
12374
12375 /* Compute the condition expression in text form, from the
12376 specific expection we want to catch. */
12377 cond_string
12378 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12379 ex);
12380 }
12381
4d01a485 12382 expression_up exp;
28010a5d 12383
2ff0a947 12384 if (!ada_loc->shlib_disabled)
28010a5d 12385 {
bbc13ae3 12386 const char *s;
28010a5d 12387
cb7de75e 12388 s = cond_string.c_str ();
a70b8144 12389 try
28010a5d 12390 {
2ff0a947
TT
12391 exp = parse_exp_1 (&s, ada_loc->address,
12392 block_for_pc (ada_loc->address),
036e657b 12393 0);
28010a5d 12394 }
230d2906 12395 catch (const gdb_exception_error &e)
849f2b52
JB
12396 {
12397 warning (_("failed to reevaluate internal exception condition "
12398 "for catchpoint %d: %s"),
3d6e9d23 12399 c->number, e.what ());
849f2b52 12400 }
28010a5d
PA
12401 }
12402
b22e99fd 12403 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12404 }
28010a5d
PA
12405}
12406
28010a5d
PA
12407/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12408 structure for all exception catchpoint kinds. */
12409
12410static struct bp_location *
761269c8 12411allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12412 struct breakpoint *self)
12413{
5f486660 12414 return new ada_catchpoint_location (self);
28010a5d
PA
12415}
12416
12417/* Implement the RE_SET method in the breakpoint_ops structure for all
12418 exception catchpoint kinds. */
12419
12420static void
761269c8 12421re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12422{
12423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12424
12425 /* Call the base class's method. This updates the catchpoint's
12426 locations. */
2060206e 12427 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12428
12429 /* Reparse the exception conditional expressions. One for each
12430 location. */
9f757bf7 12431 create_excep_cond_exprs (c, ex);
28010a5d
PA
12432}
12433
12434/* Returns true if we should stop for this breakpoint hit. If the
12435 user specified a specific exception, we only want to cause a stop
12436 if the program thrown that exception. */
12437
12438static int
12439should_stop_exception (const struct bp_location *bl)
12440{
12441 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12442 const struct ada_catchpoint_location *ada_loc
12443 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12444 int stop;
12445
12446 /* With no specific exception, should always stop. */
bc18fbb5 12447 if (c->excep_string.empty ())
28010a5d
PA
12448 return 1;
12449
12450 if (ada_loc->excep_cond_expr == NULL)
12451 {
12452 /* We will have a NULL expression if back when we were creating
12453 the expressions, this location's had failed to parse. */
12454 return 1;
12455 }
12456
12457 stop = 1;
a70b8144 12458 try
28010a5d
PA
12459 {
12460 struct value *mark;
12461
12462 mark = value_mark ();
4d01a485 12463 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12464 value_free_to_mark (mark);
12465 }
230d2906 12466 catch (const gdb_exception &ex)
492d29ea
PA
12467 {
12468 exception_fprintf (gdb_stderr, ex,
12469 _("Error in testing exception condition:\n"));
12470 }
492d29ea 12471
28010a5d
PA
12472 return stop;
12473}
12474
12475/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12476 for all exception catchpoint kinds. */
12477
12478static void
761269c8 12479check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12480{
12481 bs->stop = should_stop_exception (bs->bp_location_at);
12482}
12483
f7f9143b
JB
12484/* Implement the PRINT_IT method in the breakpoint_ops structure
12485 for all exception catchpoint kinds. */
12486
12487static enum print_stop_action
761269c8 12488print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12489{
79a45e25 12490 struct ui_out *uiout = current_uiout;
348d480f
PA
12491 struct breakpoint *b = bs->breakpoint_at;
12492
956a9fb9 12493 annotate_catchpoint (b->number);
f7f9143b 12494
112e8700 12495 if (uiout->is_mi_like_p ())
f7f9143b 12496 {
112e8700 12497 uiout->field_string ("reason",
956a9fb9 12498 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12499 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12500 }
12501
112e8700
SM
12502 uiout->text (b->disposition == disp_del
12503 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12504 uiout->field_signed ("bkptno", b->number);
112e8700 12505 uiout->text (", ");
f7f9143b 12506
45db7c09
PA
12507 /* ada_exception_name_addr relies on the selected frame being the
12508 current frame. Need to do this here because this function may be
12509 called more than once when printing a stop, and below, we'll
12510 select the first frame past the Ada run-time (see
12511 ada_find_printable_frame). */
12512 select_frame (get_current_frame ());
12513
f7f9143b
JB
12514 switch (ex)
12515 {
761269c8
JB
12516 case ada_catch_exception:
12517 case ada_catch_exception_unhandled:
9f757bf7 12518 case ada_catch_handlers:
956a9fb9
JB
12519 {
12520 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12521 char exception_name[256];
12522
12523 if (addr != 0)
12524 {
c714b426
PA
12525 read_memory (addr, (gdb_byte *) exception_name,
12526 sizeof (exception_name) - 1);
956a9fb9
JB
12527 exception_name [sizeof (exception_name) - 1] = '\0';
12528 }
12529 else
12530 {
12531 /* For some reason, we were unable to read the exception
12532 name. This could happen if the Runtime was compiled
12533 without debugging info, for instance. In that case,
12534 just replace the exception name by the generic string
12535 "exception" - it will read as "an exception" in the
12536 notification we are about to print. */
967cff16 12537 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12538 }
12539 /* In the case of unhandled exception breakpoints, we print
12540 the exception name as "unhandled EXCEPTION_NAME", to make
12541 it clearer to the user which kind of catchpoint just got
12542 hit. We used ui_out_text to make sure that this extra
12543 info does not pollute the exception name in the MI case. */
761269c8 12544 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12545 uiout->text ("unhandled ");
12546 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12547 }
12548 break;
761269c8 12549 case ada_catch_assert:
956a9fb9
JB
12550 /* In this case, the name of the exception is not really
12551 important. Just print "failed assertion" to make it clearer
12552 that his program just hit an assertion-failure catchpoint.
12553 We used ui_out_text because this info does not belong in
12554 the MI output. */
112e8700 12555 uiout->text ("failed assertion");
956a9fb9 12556 break;
f7f9143b 12557 }
e547c119 12558
6f46ac85 12559 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12560 if (exception_message != NULL)
12561 {
e547c119 12562 uiout->text (" (");
6f46ac85 12563 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12564 uiout->text (")");
e547c119
JB
12565 }
12566
112e8700 12567 uiout->text (" at ");
956a9fb9 12568 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12569
12570 return PRINT_SRC_AND_LOC;
12571}
12572
12573/* Implement the PRINT_ONE method in the breakpoint_ops structure
12574 for all exception catchpoint kinds. */
12575
12576static void
761269c8 12577print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12578 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12579{
79a45e25 12580 struct ui_out *uiout = current_uiout;
28010a5d 12581 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12582 struct value_print_options opts;
12583
12584 get_user_print_options (&opts);
f06f1252 12585
79a45b7d 12586 if (opts.addressprint)
f06f1252 12587 uiout->field_skip ("addr");
f7f9143b
JB
12588
12589 annotate_field (5);
f7f9143b
JB
12590 switch (ex)
12591 {
761269c8 12592 case ada_catch_exception:
bc18fbb5 12593 if (!c->excep_string.empty ())
f7f9143b 12594 {
bc18fbb5
TT
12595 std::string msg = string_printf (_("`%s' Ada exception"),
12596 c->excep_string.c_str ());
28010a5d 12597
112e8700 12598 uiout->field_string ("what", msg);
f7f9143b
JB
12599 }
12600 else
112e8700 12601 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12602
12603 break;
12604
761269c8 12605 case ada_catch_exception_unhandled:
112e8700 12606 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12607 break;
12608
9f757bf7 12609 case ada_catch_handlers:
bc18fbb5 12610 if (!c->excep_string.empty ())
9f757bf7
XR
12611 {
12612 uiout->field_fmt ("what",
12613 _("`%s' Ada exception handlers"),
bc18fbb5 12614 c->excep_string.c_str ());
9f757bf7
XR
12615 }
12616 else
12617 uiout->field_string ("what", "all Ada exceptions handlers");
12618 break;
12619
761269c8 12620 case ada_catch_assert:
112e8700 12621 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12622 break;
12623
12624 default:
12625 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12626 break;
12627 }
12628}
12629
12630/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12631 for all exception catchpoint kinds. */
12632
12633static void
761269c8 12634print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12635 struct breakpoint *b)
12636{
28010a5d 12637 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12638 struct ui_out *uiout = current_uiout;
28010a5d 12639
112e8700 12640 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12641 : _("Catchpoint "));
381befee 12642 uiout->field_signed ("bkptno", b->number);
112e8700 12643 uiout->text (": ");
00eb2c4a 12644
f7f9143b
JB
12645 switch (ex)
12646 {
761269c8 12647 case ada_catch_exception:
bc18fbb5 12648 if (!c->excep_string.empty ())
00eb2c4a 12649 {
862d101a 12650 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12651 c->excep_string.c_str ());
862d101a 12652 uiout->text (info.c_str ());
00eb2c4a 12653 }
f7f9143b 12654 else
112e8700 12655 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12656 break;
12657
761269c8 12658 case ada_catch_exception_unhandled:
112e8700 12659 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12660 break;
9f757bf7
XR
12661
12662 case ada_catch_handlers:
bc18fbb5 12663 if (!c->excep_string.empty ())
9f757bf7
XR
12664 {
12665 std::string info
12666 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12667 c->excep_string.c_str ());
9f757bf7
XR
12668 uiout->text (info.c_str ());
12669 }
12670 else
12671 uiout->text (_("all Ada exceptions handlers"));
12672 break;
12673
761269c8 12674 case ada_catch_assert:
112e8700 12675 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12676 break;
12677
12678 default:
12679 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12680 break;
12681 }
12682}
12683
6149aea9
PA
12684/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12685 for all exception catchpoint kinds. */
12686
12687static void
761269c8 12688print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12689 struct breakpoint *b, struct ui_file *fp)
12690{
28010a5d
PA
12691 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12692
6149aea9
PA
12693 switch (ex)
12694 {
761269c8 12695 case ada_catch_exception:
6149aea9 12696 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12697 if (!c->excep_string.empty ())
12698 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12699 break;
12700
761269c8 12701 case ada_catch_exception_unhandled:
78076abc 12702 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12703 break;
12704
9f757bf7
XR
12705 case ada_catch_handlers:
12706 fprintf_filtered (fp, "catch handlers");
12707 break;
12708
761269c8 12709 case ada_catch_assert:
6149aea9
PA
12710 fprintf_filtered (fp, "catch assert");
12711 break;
12712
12713 default:
12714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12715 }
d9b3f62e 12716 print_recreate_thread (b, fp);
6149aea9
PA
12717}
12718
f7f9143b
JB
12719/* Virtual table for "catch exception" breakpoints. */
12720
28010a5d
PA
12721static struct bp_location *
12722allocate_location_catch_exception (struct breakpoint *self)
12723{
761269c8 12724 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12725}
12726
12727static void
12728re_set_catch_exception (struct breakpoint *b)
12729{
761269c8 12730 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12731}
12732
12733static void
12734check_status_catch_exception (bpstat bs)
12735{
761269c8 12736 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12737}
12738
f7f9143b 12739static enum print_stop_action
348d480f 12740print_it_catch_exception (bpstat bs)
f7f9143b 12741{
761269c8 12742 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12743}
12744
12745static void
a6d9a66e 12746print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12747{
761269c8 12748 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12749}
12750
12751static void
12752print_mention_catch_exception (struct breakpoint *b)
12753{
761269c8 12754 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12755}
12756
6149aea9
PA
12757static void
12758print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12759{
761269c8 12760 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12761}
12762
2060206e 12763static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12764
12765/* Virtual table for "catch exception unhandled" breakpoints. */
12766
28010a5d
PA
12767static struct bp_location *
12768allocate_location_catch_exception_unhandled (struct breakpoint *self)
12769{
761269c8 12770 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12771}
12772
12773static void
12774re_set_catch_exception_unhandled (struct breakpoint *b)
12775{
761269c8 12776 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12777}
12778
12779static void
12780check_status_catch_exception_unhandled (bpstat bs)
12781{
761269c8 12782 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12783}
12784
f7f9143b 12785static enum print_stop_action
348d480f 12786print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12787{
761269c8 12788 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12789}
12790
12791static void
a6d9a66e
UW
12792print_one_catch_exception_unhandled (struct breakpoint *b,
12793 struct bp_location **last_loc)
f7f9143b 12794{
761269c8 12795 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12796}
12797
12798static void
12799print_mention_catch_exception_unhandled (struct breakpoint *b)
12800{
761269c8 12801 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12802}
12803
6149aea9
PA
12804static void
12805print_recreate_catch_exception_unhandled (struct breakpoint *b,
12806 struct ui_file *fp)
12807{
761269c8 12808 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12809}
12810
2060206e 12811static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12812
12813/* Virtual table for "catch assert" breakpoints. */
12814
28010a5d
PA
12815static struct bp_location *
12816allocate_location_catch_assert (struct breakpoint *self)
12817{
761269c8 12818 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12819}
12820
12821static void
12822re_set_catch_assert (struct breakpoint *b)
12823{
761269c8 12824 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12825}
12826
12827static void
12828check_status_catch_assert (bpstat bs)
12829{
761269c8 12830 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12831}
12832
f7f9143b 12833static enum print_stop_action
348d480f 12834print_it_catch_assert (bpstat bs)
f7f9143b 12835{
761269c8 12836 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12837}
12838
12839static void
a6d9a66e 12840print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12841{
761269c8 12842 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12843}
12844
12845static void
12846print_mention_catch_assert (struct breakpoint *b)
12847{
761269c8 12848 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12849}
12850
6149aea9
PA
12851static void
12852print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12853{
761269c8 12854 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12855}
12856
2060206e 12857static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12858
9f757bf7
XR
12859/* Virtual table for "catch handlers" breakpoints. */
12860
12861static struct bp_location *
12862allocate_location_catch_handlers (struct breakpoint *self)
12863{
12864 return allocate_location_exception (ada_catch_handlers, self);
12865}
12866
12867static void
12868re_set_catch_handlers (struct breakpoint *b)
12869{
12870 re_set_exception (ada_catch_handlers, b);
12871}
12872
12873static void
12874check_status_catch_handlers (bpstat bs)
12875{
12876 check_status_exception (ada_catch_handlers, bs);
12877}
12878
12879static enum print_stop_action
12880print_it_catch_handlers (bpstat bs)
12881{
12882 return print_it_exception (ada_catch_handlers, bs);
12883}
12884
12885static void
12886print_one_catch_handlers (struct breakpoint *b,
12887 struct bp_location **last_loc)
12888{
12889 print_one_exception (ada_catch_handlers, b, last_loc);
12890}
12891
12892static void
12893print_mention_catch_handlers (struct breakpoint *b)
12894{
12895 print_mention_exception (ada_catch_handlers, b);
12896}
12897
12898static void
12899print_recreate_catch_handlers (struct breakpoint *b,
12900 struct ui_file *fp)
12901{
12902 print_recreate_exception (ada_catch_handlers, b, fp);
12903}
12904
12905static struct breakpoint_ops catch_handlers_breakpoint_ops;
12906
f06f1252
TT
12907/* See ada-lang.h. */
12908
12909bool
12910is_ada_exception_catchpoint (breakpoint *bp)
12911{
12912 return (bp->ops == &catch_exception_breakpoint_ops
12913 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12914 || bp->ops == &catch_assert_breakpoint_ops
12915 || bp->ops == &catch_handlers_breakpoint_ops);
12916}
12917
f7f9143b
JB
12918/* Split the arguments specified in a "catch exception" command.
12919 Set EX to the appropriate catchpoint type.
28010a5d 12920 Set EXCEP_STRING to the name of the specific exception if
5845583d 12921 specified by the user.
9f757bf7
XR
12922 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12923 "catch handlers" command. False otherwise.
5845583d
JB
12924 If a condition is found at the end of the arguments, the condition
12925 expression is stored in COND_STRING (memory must be deallocated
12926 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12927
12928static void
a121b7c1 12929catch_ada_exception_command_split (const char *args,
9f757bf7 12930 bool is_catch_handlers_cmd,
761269c8 12931 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12932 std::string *excep_string,
12933 std::string *cond_string)
f7f9143b 12934{
bc18fbb5 12935 std::string exception_name;
f7f9143b 12936
bc18fbb5
TT
12937 exception_name = extract_arg (&args);
12938 if (exception_name == "if")
5845583d
JB
12939 {
12940 /* This is not an exception name; this is the start of a condition
12941 expression for a catchpoint on all exceptions. So, "un-get"
12942 this token, and set exception_name to NULL. */
bc18fbb5 12943 exception_name.clear ();
5845583d
JB
12944 args -= 2;
12945 }
f7f9143b 12946
5845583d 12947 /* Check to see if we have a condition. */
f7f9143b 12948
f1735a53 12949 args = skip_spaces (args);
61012eef 12950 if (startswith (args, "if")
5845583d
JB
12951 && (isspace (args[2]) || args[2] == '\0'))
12952 {
12953 args += 2;
f1735a53 12954 args = skip_spaces (args);
5845583d
JB
12955
12956 if (args[0] == '\0')
12957 error (_("Condition missing after `if' keyword"));
bc18fbb5 12958 *cond_string = args;
5845583d
JB
12959
12960 args += strlen (args);
12961 }
12962
12963 /* Check that we do not have any more arguments. Anything else
12964 is unexpected. */
f7f9143b
JB
12965
12966 if (args[0] != '\0')
12967 error (_("Junk at end of expression"));
12968
9f757bf7
XR
12969 if (is_catch_handlers_cmd)
12970 {
12971 /* Catch handling of exceptions. */
12972 *ex = ada_catch_handlers;
12973 *excep_string = exception_name;
12974 }
bc18fbb5 12975 else if (exception_name.empty ())
f7f9143b
JB
12976 {
12977 /* Catch all exceptions. */
761269c8 12978 *ex = ada_catch_exception;
bc18fbb5 12979 excep_string->clear ();
f7f9143b 12980 }
bc18fbb5 12981 else if (exception_name == "unhandled")
f7f9143b
JB
12982 {
12983 /* Catch unhandled exceptions. */
761269c8 12984 *ex = ada_catch_exception_unhandled;
bc18fbb5 12985 excep_string->clear ();
f7f9143b
JB
12986 }
12987 else
12988 {
12989 /* Catch a specific exception. */
761269c8 12990 *ex = ada_catch_exception;
28010a5d 12991 *excep_string = exception_name;
f7f9143b
JB
12992 }
12993}
12994
12995/* Return the name of the symbol on which we should break in order to
12996 implement a catchpoint of the EX kind. */
12997
12998static const char *
761269c8 12999ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13000{
3eecfa55
JB
13001 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13002
13003 gdb_assert (data->exception_info != NULL);
0259addd 13004
f7f9143b
JB
13005 switch (ex)
13006 {
761269c8 13007 case ada_catch_exception:
3eecfa55 13008 return (data->exception_info->catch_exception_sym);
f7f9143b 13009 break;
761269c8 13010 case ada_catch_exception_unhandled:
3eecfa55 13011 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13012 break;
761269c8 13013 case ada_catch_assert:
3eecfa55 13014 return (data->exception_info->catch_assert_sym);
f7f9143b 13015 break;
9f757bf7
XR
13016 case ada_catch_handlers:
13017 return (data->exception_info->catch_handlers_sym);
13018 break;
f7f9143b
JB
13019 default:
13020 internal_error (__FILE__, __LINE__,
13021 _("unexpected catchpoint kind (%d)"), ex);
13022 }
13023}
13024
13025/* Return the breakpoint ops "virtual table" used for catchpoints
13026 of the EX kind. */
13027
c0a91b2b 13028static const struct breakpoint_ops *
761269c8 13029ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13030{
13031 switch (ex)
13032 {
761269c8 13033 case ada_catch_exception:
f7f9143b
JB
13034 return (&catch_exception_breakpoint_ops);
13035 break;
761269c8 13036 case ada_catch_exception_unhandled:
f7f9143b
JB
13037 return (&catch_exception_unhandled_breakpoint_ops);
13038 break;
761269c8 13039 case ada_catch_assert:
f7f9143b
JB
13040 return (&catch_assert_breakpoint_ops);
13041 break;
9f757bf7
XR
13042 case ada_catch_handlers:
13043 return (&catch_handlers_breakpoint_ops);
13044 break;
f7f9143b
JB
13045 default:
13046 internal_error (__FILE__, __LINE__,
13047 _("unexpected catchpoint kind (%d)"), ex);
13048 }
13049}
13050
13051/* Return the condition that will be used to match the current exception
13052 being raised with the exception that the user wants to catch. This
13053 assumes that this condition is used when the inferior just triggered
13054 an exception catchpoint.
cb7de75e 13055 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13056
cb7de75e 13057static std::string
9f757bf7
XR
13058ada_exception_catchpoint_cond_string (const char *excep_string,
13059 enum ada_exception_catchpoint_kind ex)
f7f9143b 13060{
3d0b0fa3 13061 int i;
cb7de75e 13062 std::string result;
2ff0a947 13063 const char *name;
9f757bf7
XR
13064
13065 if (ex == ada_catch_handlers)
13066 {
13067 /* For exception handlers catchpoints, the condition string does
13068 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13069 name = ("long_integer (GNAT_GCC_exception_Access"
13070 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13071 }
13072 else
2ff0a947 13073 name = "long_integer (e)";
3d0b0fa3 13074
0963b4bd 13075 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13076 runtime units that have been compiled without debugging info; if
28010a5d 13077 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13078 exception (e.g. "constraint_error") then, during the evaluation
13079 of the condition expression, the symbol lookup on this name would
0963b4bd 13080 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13081 may then be set only on user-defined exceptions which have the
13082 same not-fully-qualified name (e.g. my_package.constraint_error).
13083
13084 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13085 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13086 exception constraint_error" is rewritten into "catch exception
13087 standard.constraint_error".
13088
13089 If an exception named contraint_error is defined in another package of
13090 the inferior program, then the only way to specify this exception as a
13091 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13092 e.g. my_package.constraint_error.
13093
13094 Furthermore, in some situations a standard exception's symbol may
13095 be present in more than one objfile, because the compiler may
13096 choose to emit copy relocations for them. So, we have to compare
13097 against all the possible addresses. */
3d0b0fa3 13098
2ff0a947
TT
13099 /* Storage for a rewritten symbol name. */
13100 std::string std_name;
3d0b0fa3
JB
13101 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13102 {
28010a5d 13103 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13104 {
2ff0a947
TT
13105 std_name = std::string ("standard.") + excep_string;
13106 excep_string = std_name.c_str ();
9f757bf7 13107 break;
3d0b0fa3
JB
13108 }
13109 }
9f757bf7 13110
2ff0a947
TT
13111 excep_string = ada_encode (excep_string);
13112 std::vector<struct bound_minimal_symbol> symbols
13113 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13114 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13115 {
13116 if (!result.empty ())
13117 result += " or ";
13118 string_appendf (result, "%s = %s", name,
13119 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13120 }
9f757bf7 13121
9f757bf7 13122 return result;
f7f9143b
JB
13123}
13124
13125/* Return the symtab_and_line that should be used to insert an exception
13126 catchpoint of the TYPE kind.
13127
28010a5d
PA
13128 ADDR_STRING returns the name of the function where the real
13129 breakpoint that implements the catchpoints is set, depending on the
13130 type of catchpoint we need to create. */
f7f9143b
JB
13131
13132static struct symtab_and_line
bc18fbb5 13133ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13134 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13135{
13136 const char *sym_name;
13137 struct symbol *sym;
f7f9143b 13138
0259addd
JB
13139 /* First, find out which exception support info to use. */
13140 ada_exception_support_info_sniffer ();
13141
13142 /* Then lookup the function on which we will break in order to catch
f7f9143b 13143 the Ada exceptions requested by the user. */
f7f9143b
JB
13144 sym_name = ada_exception_sym_name (ex);
13145 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13146
57aff202
JB
13147 if (sym == NULL)
13148 error (_("Catchpoint symbol not found: %s"), sym_name);
13149
13150 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13151 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13152
13153 /* Set ADDR_STRING. */
cc12f4a8 13154 *addr_string = sym_name;
f7f9143b 13155
f7f9143b 13156 /* Set OPS. */
4b9eee8c 13157 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13158
f17011e0 13159 return find_function_start_sal (sym, 1);
f7f9143b
JB
13160}
13161
b4a5b78b 13162/* Create an Ada exception catchpoint.
f7f9143b 13163
b4a5b78b 13164 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13165
bc18fbb5 13166 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13167 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13168 of the exception to which this catchpoint applies.
2df4d1d5 13169
bc18fbb5 13170 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13171
b4a5b78b
JB
13172 TEMPFLAG, if nonzero, means that the underlying breakpoint
13173 should be temporary.
28010a5d 13174
b4a5b78b 13175 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13176
349774ef 13177void
28010a5d 13178create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13179 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13180 const std::string &excep_string,
56ecd069 13181 const std::string &cond_string,
28010a5d 13182 int tempflag,
349774ef 13183 int disabled,
28010a5d
PA
13184 int from_tty)
13185{
cc12f4a8 13186 std::string addr_string;
b4a5b78b 13187 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13188 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13189
b270e6f9 13190 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13191 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13192 ops, tempflag, disabled, from_tty);
28010a5d 13193 c->excep_string = excep_string;
9f757bf7 13194 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13195 if (!cond_string.empty ())
13196 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13197 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13198}
13199
9ac4176b
PA
13200/* Implement the "catch exception" command. */
13201
13202static void
eb4c3f4a 13203catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13204 struct cmd_list_element *command)
13205{
a121b7c1 13206 const char *arg = arg_entry;
9ac4176b
PA
13207 struct gdbarch *gdbarch = get_current_arch ();
13208 int tempflag;
761269c8 13209 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13210 std::string excep_string;
56ecd069 13211 std::string cond_string;
9ac4176b
PA
13212
13213 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13214
13215 if (!arg)
13216 arg = "";
9f757bf7 13217 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13218 &cond_string);
9f757bf7
XR
13219 create_ada_exception_catchpoint (gdbarch, ex_kind,
13220 excep_string, cond_string,
13221 tempflag, 1 /* enabled */,
13222 from_tty);
13223}
13224
13225/* Implement the "catch handlers" command. */
13226
13227static void
13228catch_ada_handlers_command (const char *arg_entry, int from_tty,
13229 struct cmd_list_element *command)
13230{
13231 const char *arg = arg_entry;
13232 struct gdbarch *gdbarch = get_current_arch ();
13233 int tempflag;
13234 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13235 std::string excep_string;
56ecd069 13236 std::string cond_string;
9f757bf7
XR
13237
13238 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13239
13240 if (!arg)
13241 arg = "";
13242 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13243 &cond_string);
b4a5b78b
JB
13244 create_ada_exception_catchpoint (gdbarch, ex_kind,
13245 excep_string, cond_string,
349774ef
JB
13246 tempflag, 1 /* enabled */,
13247 from_tty);
9ac4176b
PA
13248}
13249
71bed2db
TT
13250/* Completion function for the Ada "catch" commands. */
13251
13252static void
13253catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13254 const char *text, const char *word)
13255{
13256 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13257
13258 for (const ada_exc_info &info : exceptions)
13259 {
13260 if (startswith (info.name, word))
b02f78f9 13261 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13262 }
13263}
13264
b4a5b78b 13265/* Split the arguments specified in a "catch assert" command.
5845583d 13266
b4a5b78b
JB
13267 ARGS contains the command's arguments (or the empty string if
13268 no arguments were passed).
5845583d
JB
13269
13270 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13271 (the memory needs to be deallocated after use). */
5845583d 13272
b4a5b78b 13273static void
56ecd069 13274catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13275{
f1735a53 13276 args = skip_spaces (args);
f7f9143b 13277
5845583d 13278 /* Check whether a condition was provided. */
61012eef 13279 if (startswith (args, "if")
5845583d 13280 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13281 {
5845583d 13282 args += 2;
f1735a53 13283 args = skip_spaces (args);
5845583d
JB
13284 if (args[0] == '\0')
13285 error (_("condition missing after `if' keyword"));
56ecd069 13286 cond_string.assign (args);
f7f9143b
JB
13287 }
13288
5845583d
JB
13289 /* Otherwise, there should be no other argument at the end of
13290 the command. */
13291 else if (args[0] != '\0')
13292 error (_("Junk at end of arguments."));
f7f9143b
JB
13293}
13294
9ac4176b
PA
13295/* Implement the "catch assert" command. */
13296
13297static void
eb4c3f4a 13298catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13299 struct cmd_list_element *command)
13300{
a121b7c1 13301 const char *arg = arg_entry;
9ac4176b
PA
13302 struct gdbarch *gdbarch = get_current_arch ();
13303 int tempflag;
56ecd069 13304 std::string cond_string;
9ac4176b
PA
13305
13306 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13307
13308 if (!arg)
13309 arg = "";
56ecd069 13310 catch_ada_assert_command_split (arg, cond_string);
761269c8 13311 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13312 "", cond_string,
349774ef
JB
13313 tempflag, 1 /* enabled */,
13314 from_tty);
9ac4176b 13315}
778865d3
JB
13316
13317/* Return non-zero if the symbol SYM is an Ada exception object. */
13318
13319static int
13320ada_is_exception_sym (struct symbol *sym)
13321{
a737d952 13322 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13323
13324 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13325 && SYMBOL_CLASS (sym) != LOC_BLOCK
13326 && SYMBOL_CLASS (sym) != LOC_CONST
13327 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13328 && type_name != NULL && strcmp (type_name, "exception") == 0);
13329}
13330
13331/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13332 Ada exception object. This matches all exceptions except the ones
13333 defined by the Ada language. */
13334
13335static int
13336ada_is_non_standard_exception_sym (struct symbol *sym)
13337{
13338 int i;
13339
13340 if (!ada_is_exception_sym (sym))
13341 return 0;
13342
13343 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13344 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13345 return 0; /* A standard exception. */
13346
13347 /* Numeric_Error is also a standard exception, so exclude it.
13348 See the STANDARD_EXC description for more details as to why
13349 this exception is not listed in that array. */
13350 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13351 return 0;
13352
13353 return 1;
13354}
13355
ab816a27 13356/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13357 objects.
13358
13359 The comparison is determined first by exception name, and then
13360 by exception address. */
13361
ab816a27 13362bool
cc536b21 13363ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13364{
778865d3
JB
13365 int result;
13366
ab816a27
TT
13367 result = strcmp (name, other.name);
13368 if (result < 0)
13369 return true;
13370 if (result == 0 && addr < other.addr)
13371 return true;
13372 return false;
13373}
778865d3 13374
ab816a27 13375bool
cc536b21 13376ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13377{
13378 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13379}
13380
13381/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13382 routine, but keeping the first SKIP elements untouched.
13383
13384 All duplicates are also removed. */
13385
13386static void
ab816a27 13387sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13388 int skip)
13389{
ab816a27
TT
13390 std::sort (exceptions->begin () + skip, exceptions->end ());
13391 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13392 exceptions->end ());
778865d3
JB
13393}
13394
778865d3
JB
13395/* Add all exceptions defined by the Ada standard whose name match
13396 a regular expression.
13397
13398 If PREG is not NULL, then this regexp_t object is used to
13399 perform the symbol name matching. Otherwise, no name-based
13400 filtering is performed.
13401
13402 EXCEPTIONS is a vector of exceptions to which matching exceptions
13403 gets pushed. */
13404
13405static void
2d7cc5c7 13406ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13407 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13408{
13409 int i;
13410
13411 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13412 {
13413 if (preg == NULL
2d7cc5c7 13414 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13415 {
13416 struct bound_minimal_symbol msymbol
13417 = ada_lookup_simple_minsym (standard_exc[i]);
13418
13419 if (msymbol.minsym != NULL)
13420 {
13421 struct ada_exc_info info
77e371c0 13422 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13423
ab816a27 13424 exceptions->push_back (info);
778865d3
JB
13425 }
13426 }
13427 }
13428}
13429
13430/* Add all Ada exceptions defined locally and accessible from the given
13431 FRAME.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440static void
2d7cc5c7
PA
13441ada_add_exceptions_from_frame (compiled_regex *preg,
13442 struct frame_info *frame,
ab816a27 13443 std::vector<ada_exc_info> *exceptions)
778865d3 13444{
3977b71f 13445 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13446
13447 while (block != 0)
13448 {
13449 struct block_iterator iter;
13450 struct symbol *sym;
13451
13452 ALL_BLOCK_SYMBOLS (block, iter, sym)
13453 {
13454 switch (SYMBOL_CLASS (sym))
13455 {
13456 case LOC_TYPEDEF:
13457 case LOC_BLOCK:
13458 case LOC_CONST:
13459 break;
13460 default:
13461 if (ada_is_exception_sym (sym))
13462 {
13463 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13464 SYMBOL_VALUE_ADDRESS (sym)};
13465
ab816a27 13466 exceptions->push_back (info);
778865d3
JB
13467 }
13468 }
13469 }
13470 if (BLOCK_FUNCTION (block) != NULL)
13471 break;
13472 block = BLOCK_SUPERBLOCK (block);
13473 }
13474}
13475
14bc53a8
PA
13476/* Return true if NAME matches PREG or if PREG is NULL. */
13477
13478static bool
2d7cc5c7 13479name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13480{
13481 return (preg == NULL
f945dedf 13482 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13483}
13484
778865d3
JB
13485/* Add all exceptions defined globally whose name name match
13486 a regular expression, excluding standard exceptions.
13487
13488 The reason we exclude standard exceptions is that they need
13489 to be handled separately: Standard exceptions are defined inside
13490 a runtime unit which is normally not compiled with debugging info,
13491 and thus usually do not show up in our symbol search. However,
13492 if the unit was in fact built with debugging info, we need to
13493 exclude them because they would duplicate the entry we found
13494 during the special loop that specifically searches for those
13495 standard exceptions.
13496
13497 If PREG is not NULL, then this regexp_t object is used to
13498 perform the symbol name matching. Otherwise, no name-based
13499 filtering is performed.
13500
13501 EXCEPTIONS is a vector of exceptions to which matching exceptions
13502 gets pushed. */
13503
13504static void
2d7cc5c7 13505ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13506 std::vector<ada_exc_info> *exceptions)
778865d3 13507{
14bc53a8
PA
13508 /* In Ada, the symbol "search name" is a linkage name, whereas the
13509 regular expression used to do the matching refers to the natural
13510 name. So match against the decoded name. */
13511 expand_symtabs_matching (NULL,
b5ec771e 13512 lookup_name_info::match_any (),
14bc53a8
PA
13513 [&] (const char *search_name)
13514 {
f945dedf
CB
13515 std::string decoded = ada_decode (search_name);
13516 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13517 },
13518 NULL,
13519 VARIABLES_DOMAIN);
778865d3 13520
2030c079 13521 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13522 {
b669c953 13523 for (compunit_symtab *s : objfile->compunits ())
778865d3 13524 {
d8aeb77f
TT
13525 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13526 int i;
778865d3 13527
d8aeb77f
TT
13528 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13529 {
582942f4 13530 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13531 struct block_iterator iter;
13532 struct symbol *sym;
778865d3 13533
d8aeb77f
TT
13534 ALL_BLOCK_SYMBOLS (b, iter, sym)
13535 if (ada_is_non_standard_exception_sym (sym)
13536 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13537 {
13538 struct ada_exc_info info
13539 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13540
13541 exceptions->push_back (info);
13542 }
13543 }
778865d3
JB
13544 }
13545 }
13546}
13547
13548/* Implements ada_exceptions_list with the regular expression passed
13549 as a regex_t, rather than a string.
13550
13551 If not NULL, PREG is used to filter out exceptions whose names
13552 do not match. Otherwise, all exceptions are listed. */
13553
ab816a27 13554static std::vector<ada_exc_info>
2d7cc5c7 13555ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13556{
ab816a27 13557 std::vector<ada_exc_info> result;
778865d3
JB
13558 int prev_len;
13559
13560 /* First, list the known standard exceptions. These exceptions
13561 need to be handled separately, as they are usually defined in
13562 runtime units that have been compiled without debugging info. */
13563
13564 ada_add_standard_exceptions (preg, &result);
13565
13566 /* Next, find all exceptions whose scope is local and accessible
13567 from the currently selected frame. */
13568
13569 if (has_stack_frames ())
13570 {
ab816a27 13571 prev_len = result.size ();
778865d3
JB
13572 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13573 &result);
ab816a27 13574 if (result.size () > prev_len)
778865d3
JB
13575 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13576 }
13577
13578 /* Add all exceptions whose scope is global. */
13579
ab816a27 13580 prev_len = result.size ();
778865d3 13581 ada_add_global_exceptions (preg, &result);
ab816a27 13582 if (result.size () > prev_len)
778865d3
JB
13583 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13584
778865d3
JB
13585 return result;
13586}
13587
13588/* Return a vector of ada_exc_info.
13589
13590 If REGEXP is NULL, all exceptions are included in the result.
13591 Otherwise, it should contain a valid regular expression,
13592 and only the exceptions whose names match that regular expression
13593 are included in the result.
13594
13595 The exceptions are sorted in the following order:
13596 - Standard exceptions (defined by the Ada language), in
13597 alphabetical order;
13598 - Exceptions only visible from the current frame, in
13599 alphabetical order;
13600 - Exceptions whose scope is global, in alphabetical order. */
13601
ab816a27 13602std::vector<ada_exc_info>
778865d3
JB
13603ada_exceptions_list (const char *regexp)
13604{
2d7cc5c7
PA
13605 if (regexp == NULL)
13606 return ada_exceptions_list_1 (NULL);
778865d3 13607
2d7cc5c7
PA
13608 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13609 return ada_exceptions_list_1 (&reg);
778865d3
JB
13610}
13611
13612/* Implement the "info exceptions" command. */
13613
13614static void
1d12d88f 13615info_exceptions_command (const char *regexp, int from_tty)
778865d3 13616{
778865d3 13617 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13618
ab816a27 13619 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13620
13621 if (regexp != NULL)
13622 printf_filtered
13623 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13624 else
13625 printf_filtered (_("All defined Ada exceptions:\n"));
13626
ab816a27
TT
13627 for (const ada_exc_info &info : exceptions)
13628 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13629}
13630
4c4b4cd2
PH
13631 /* Operators */
13632/* Information about operators given special treatment in functions
13633 below. */
13634/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13635
13636#define ADA_OPERATORS \
13637 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13638 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13639 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13640 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13641 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13642 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13643 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13644 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13645 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13646 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13647 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13648 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13649 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13650 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13651 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13652 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13653 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13654 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13655 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13656
13657static void
554794dc
SDJ
13658ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13659 int *argsp)
4c4b4cd2
PH
13660{
13661 switch (exp->elts[pc - 1].opcode)
13662 {
76a01679 13663 default:
4c4b4cd2
PH
13664 operator_length_standard (exp, pc, oplenp, argsp);
13665 break;
13666
13667#define OP_DEFN(op, len, args, binop) \
13668 case op: *oplenp = len; *argsp = args; break;
13669 ADA_OPERATORS;
13670#undef OP_DEFN
52ce6436
PH
13671
13672 case OP_AGGREGATE:
13673 *oplenp = 3;
13674 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13675 break;
13676
13677 case OP_CHOICES:
13678 *oplenp = 3;
13679 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13680 break;
4c4b4cd2
PH
13681 }
13682}
13683
c0201579
JK
13684/* Implementation of the exp_descriptor method operator_check. */
13685
13686static int
13687ada_operator_check (struct expression *exp, int pos,
13688 int (*objfile_func) (struct objfile *objfile, void *data),
13689 void *data)
13690{
13691 const union exp_element *const elts = exp->elts;
13692 struct type *type = NULL;
13693
13694 switch (elts[pos].opcode)
13695 {
13696 case UNOP_IN_RANGE:
13697 case UNOP_QUAL:
13698 type = elts[pos + 1].type;
13699 break;
13700
13701 default:
13702 return operator_check_standard (exp, pos, objfile_func, data);
13703 }
13704
13705 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13706
13707 if (type && TYPE_OBJFILE (type)
13708 && (*objfile_func) (TYPE_OBJFILE (type), data))
13709 return 1;
13710
13711 return 0;
13712}
13713
a121b7c1 13714static const char *
4c4b4cd2
PH
13715ada_op_name (enum exp_opcode opcode)
13716{
13717 switch (opcode)
13718 {
76a01679 13719 default:
4c4b4cd2 13720 return op_name_standard (opcode);
52ce6436 13721
4c4b4cd2
PH
13722#define OP_DEFN(op, len, args, binop) case op: return #op;
13723 ADA_OPERATORS;
13724#undef OP_DEFN
52ce6436
PH
13725
13726 case OP_AGGREGATE:
13727 return "OP_AGGREGATE";
13728 case OP_CHOICES:
13729 return "OP_CHOICES";
13730 case OP_NAME:
13731 return "OP_NAME";
4c4b4cd2
PH
13732 }
13733}
13734
13735/* As for operator_length, but assumes PC is pointing at the first
13736 element of the operator, and gives meaningful results only for the
52ce6436 13737 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13738
13739static void
76a01679
JB
13740ada_forward_operator_length (struct expression *exp, int pc,
13741 int *oplenp, int *argsp)
4c4b4cd2 13742{
76a01679 13743 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13744 {
13745 default:
13746 *oplenp = *argsp = 0;
13747 break;
52ce6436 13748
4c4b4cd2
PH
13749#define OP_DEFN(op, len, args, binop) \
13750 case op: *oplenp = len; *argsp = args; break;
13751 ADA_OPERATORS;
13752#undef OP_DEFN
52ce6436
PH
13753
13754 case OP_AGGREGATE:
13755 *oplenp = 3;
13756 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13757 break;
13758
13759 case OP_CHOICES:
13760 *oplenp = 3;
13761 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13762 break;
13763
13764 case OP_STRING:
13765 case OP_NAME:
13766 {
13767 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13768
52ce6436
PH
13769 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13770 *argsp = 0;
13771 break;
13772 }
4c4b4cd2
PH
13773 }
13774}
13775
13776static int
13777ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13778{
13779 enum exp_opcode op = exp->elts[elt].opcode;
13780 int oplen, nargs;
13781 int pc = elt;
13782 int i;
76a01679 13783
4c4b4cd2
PH
13784 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13785
76a01679 13786 switch (op)
4c4b4cd2 13787 {
76a01679 13788 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13789 case OP_ATR_FIRST:
13790 case OP_ATR_LAST:
13791 case OP_ATR_LENGTH:
13792 case OP_ATR_IMAGE:
13793 case OP_ATR_MAX:
13794 case OP_ATR_MIN:
13795 case OP_ATR_MODULUS:
13796 case OP_ATR_POS:
13797 case OP_ATR_SIZE:
13798 case OP_ATR_TAG:
13799 case OP_ATR_VAL:
13800 break;
13801
13802 case UNOP_IN_RANGE:
13803 case UNOP_QUAL:
323e0a4a
AC
13804 /* XXX: gdb_sprint_host_address, type_sprint */
13805 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13806 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13807 fprintf_filtered (stream, " (");
13808 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13809 fprintf_filtered (stream, ")");
13810 break;
13811 case BINOP_IN_BOUNDS:
52ce6436
PH
13812 fprintf_filtered (stream, " (%d)",
13813 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13814 break;
13815 case TERNOP_IN_RANGE:
13816 break;
13817
52ce6436
PH
13818 case OP_AGGREGATE:
13819 case OP_OTHERS:
13820 case OP_DISCRETE_RANGE:
13821 case OP_POSITIONAL:
13822 case OP_CHOICES:
13823 break;
13824
13825 case OP_NAME:
13826 case OP_STRING:
13827 {
13828 char *name = &exp->elts[elt + 2].string;
13829 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13830
52ce6436
PH
13831 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13832 break;
13833 }
13834
4c4b4cd2
PH
13835 default:
13836 return dump_subexp_body_standard (exp, stream, elt);
13837 }
13838
13839 elt += oplen;
13840 for (i = 0; i < nargs; i += 1)
13841 elt = dump_subexp (exp, stream, elt);
13842
13843 return elt;
13844}
13845
13846/* The Ada extension of print_subexp (q.v.). */
13847
76a01679
JB
13848static void
13849ada_print_subexp (struct expression *exp, int *pos,
13850 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13851{
52ce6436 13852 int oplen, nargs, i;
4c4b4cd2
PH
13853 int pc = *pos;
13854 enum exp_opcode op = exp->elts[pc].opcode;
13855
13856 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13857
52ce6436 13858 *pos += oplen;
4c4b4cd2
PH
13859 switch (op)
13860 {
13861 default:
52ce6436 13862 *pos -= oplen;
4c4b4cd2
PH
13863 print_subexp_standard (exp, pos, stream, prec);
13864 return;
13865
13866 case OP_VAR_VALUE:
4c4b4cd2
PH
13867 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13868 return;
13869
13870 case BINOP_IN_BOUNDS:
323e0a4a 13871 /* XXX: sprint_subexp */
4c4b4cd2 13872 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13873 fputs_filtered (" in ", stream);
4c4b4cd2 13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13875 fputs_filtered ("'range", stream);
4c4b4cd2 13876 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13877 fprintf_filtered (stream, "(%ld)",
13878 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13879 return;
13880
13881 case TERNOP_IN_RANGE:
4c4b4cd2 13882 if (prec >= PREC_EQUAL)
76a01679 13883 fputs_filtered ("(", stream);
323e0a4a 13884 /* XXX: sprint_subexp */
4c4b4cd2 13885 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13886 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13887 print_subexp (exp, pos, stream, PREC_EQUAL);
13888 fputs_filtered (" .. ", stream);
13889 print_subexp (exp, pos, stream, PREC_EQUAL);
13890 if (prec >= PREC_EQUAL)
76a01679
JB
13891 fputs_filtered (")", stream);
13892 return;
4c4b4cd2
PH
13893
13894 case OP_ATR_FIRST:
13895 case OP_ATR_LAST:
13896 case OP_ATR_LENGTH:
13897 case OP_ATR_IMAGE:
13898 case OP_ATR_MAX:
13899 case OP_ATR_MIN:
13900 case OP_ATR_MODULUS:
13901 case OP_ATR_POS:
13902 case OP_ATR_SIZE:
13903 case OP_ATR_TAG:
13904 case OP_ATR_VAL:
4c4b4cd2 13905 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13906 {
13907 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13908 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13909 &type_print_raw_options);
76a01679
JB
13910 *pos += 3;
13911 }
4c4b4cd2 13912 else
76a01679 13913 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13914 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13915 if (nargs > 1)
76a01679
JB
13916 {
13917 int tem;
5b4ee69b 13918
76a01679
JB
13919 for (tem = 1; tem < nargs; tem += 1)
13920 {
13921 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13922 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13923 }
13924 fputs_filtered (")", stream);
13925 }
4c4b4cd2 13926 return;
14f9c5c9 13927
4c4b4cd2 13928 case UNOP_QUAL:
4c4b4cd2
PH
13929 type_print (exp->elts[pc + 1].type, "", stream, 0);
13930 fputs_filtered ("'(", stream);
13931 print_subexp (exp, pos, stream, PREC_PREFIX);
13932 fputs_filtered (")", stream);
13933 return;
14f9c5c9 13934
4c4b4cd2 13935 case UNOP_IN_RANGE:
323e0a4a 13936 /* XXX: sprint_subexp */
4c4b4cd2 13937 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13938 fputs_filtered (" in ", stream);
79d43c61
TT
13939 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13940 &type_print_raw_options);
4c4b4cd2 13941 return;
52ce6436
PH
13942
13943 case OP_DISCRETE_RANGE:
13944 print_subexp (exp, pos, stream, PREC_SUFFIX);
13945 fputs_filtered ("..", stream);
13946 print_subexp (exp, pos, stream, PREC_SUFFIX);
13947 return;
13948
13949 case OP_OTHERS:
13950 fputs_filtered ("others => ", stream);
13951 print_subexp (exp, pos, stream, PREC_SUFFIX);
13952 return;
13953
13954 case OP_CHOICES:
13955 for (i = 0; i < nargs-1; i += 1)
13956 {
13957 if (i > 0)
13958 fputs_filtered ("|", stream);
13959 print_subexp (exp, pos, stream, PREC_SUFFIX);
13960 }
13961 fputs_filtered (" => ", stream);
13962 print_subexp (exp, pos, stream, PREC_SUFFIX);
13963 return;
13964
13965 case OP_POSITIONAL:
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 return;
13968
13969 case OP_AGGREGATE:
13970 fputs_filtered ("(", stream);
13971 for (i = 0; i < nargs; i += 1)
13972 {
13973 if (i > 0)
13974 fputs_filtered (", ", stream);
13975 print_subexp (exp, pos, stream, PREC_SUFFIX);
13976 }
13977 fputs_filtered (")", stream);
13978 return;
4c4b4cd2
PH
13979 }
13980}
14f9c5c9
AS
13981
13982/* Table mapping opcodes into strings for printing operators
13983 and precedences of the operators. */
13984
d2e4a39e
AS
13985static const struct op_print ada_op_print_tab[] = {
13986 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13987 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13988 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13989 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13990 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13991 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13992 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13993 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13994 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13995 {">=", BINOP_GEQ, PREC_ORDER, 0},
13996 {">", BINOP_GTR, PREC_ORDER, 0},
13997 {"<", BINOP_LESS, PREC_ORDER, 0},
13998 {">>", BINOP_RSH, PREC_SHIFT, 0},
13999 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14000 {"+", BINOP_ADD, PREC_ADD, 0},
14001 {"-", BINOP_SUB, PREC_ADD, 0},
14002 {"&", BINOP_CONCAT, PREC_ADD, 0},
14003 {"*", BINOP_MUL, PREC_MUL, 0},
14004 {"/", BINOP_DIV, PREC_MUL, 0},
14005 {"rem", BINOP_REM, PREC_MUL, 0},
14006 {"mod", BINOP_MOD, PREC_MUL, 0},
14007 {"**", BINOP_EXP, PREC_REPEAT, 0},
14008 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14009 {"-", UNOP_NEG, PREC_PREFIX, 0},
14010 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14011 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14012 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14013 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14014 {".all", UNOP_IND, PREC_SUFFIX, 1},
14015 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14016 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14017 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14018};
14019\f
72d5681a
PH
14020enum ada_primitive_types {
14021 ada_primitive_type_int,
14022 ada_primitive_type_long,
14023 ada_primitive_type_short,
14024 ada_primitive_type_char,
14025 ada_primitive_type_float,
14026 ada_primitive_type_double,
14027 ada_primitive_type_void,
14028 ada_primitive_type_long_long,
14029 ada_primitive_type_long_double,
14030 ada_primitive_type_natural,
14031 ada_primitive_type_positive,
14032 ada_primitive_type_system_address,
08f49010 14033 ada_primitive_type_storage_offset,
72d5681a
PH
14034 nr_ada_primitive_types
14035};
6c038f32
PH
14036
14037static void
d4a9a881 14038ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14039 struct language_arch_info *lai)
14040{
d4a9a881 14041 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14042
72d5681a 14043 lai->primitive_type_vector
d4a9a881 14044 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14045 struct type *);
e9bb382b
UW
14046
14047 lai->primitive_type_vector [ada_primitive_type_int]
14048 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14049 0, "integer");
14050 lai->primitive_type_vector [ada_primitive_type_long]
14051 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14052 0, "long_integer");
14053 lai->primitive_type_vector [ada_primitive_type_short]
14054 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14055 0, "short_integer");
14056 lai->string_char_type
14057 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14058 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14059 lai->primitive_type_vector [ada_primitive_type_float]
14060 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14061 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14062 lai->primitive_type_vector [ada_primitive_type_double]
14063 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14064 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14065 lai->primitive_type_vector [ada_primitive_type_long_long]
14066 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14067 0, "long_long_integer");
14068 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14069 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14070 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14071 lai->primitive_type_vector [ada_primitive_type_natural]
14072 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14073 0, "natural");
14074 lai->primitive_type_vector [ada_primitive_type_positive]
14075 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14076 0, "positive");
14077 lai->primitive_type_vector [ada_primitive_type_void]
14078 = builtin->builtin_void;
14079
14080 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14081 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14082 "void"));
72d5681a
PH
14083 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14084 = "system__address";
fbb06eb1 14085
08f49010
XR
14086 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14087 type. This is a signed integral type whose size is the same as
14088 the size of addresses. */
14089 {
14090 unsigned int addr_length = TYPE_LENGTH
14091 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14092
14093 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14094 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14095 "storage_offset");
14096 }
14097
47e729a8 14098 lai->bool_type_symbol = NULL;
fbb06eb1 14099 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14100}
6c038f32
PH
14101\f
14102 /* Language vector */
14103
14104/* Not really used, but needed in the ada_language_defn. */
14105
14106static void
6c7a06a3 14107emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14108{
6c7a06a3 14109 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14110}
14111
14112static int
410a0ff2 14113parse (struct parser_state *ps)
6c038f32
PH
14114{
14115 warnings_issued = 0;
410a0ff2 14116 return ada_parse (ps);
6c038f32
PH
14117}
14118
14119static const struct exp_descriptor ada_exp_descriptor = {
14120 ada_print_subexp,
14121 ada_operator_length,
c0201579 14122 ada_operator_check,
6c038f32
PH
14123 ada_op_name,
14124 ada_dump_subexp_body,
14125 ada_evaluate_subexp
14126};
14127
b5ec771e
PA
14128/* symbol_name_matcher_ftype adapter for wild_match. */
14129
14130static bool
14131do_wild_match (const char *symbol_search_name,
14132 const lookup_name_info &lookup_name,
a207cff2 14133 completion_match_result *comp_match_res)
b5ec771e
PA
14134{
14135 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14136}
14137
14138/* symbol_name_matcher_ftype adapter for full_match. */
14139
14140static bool
14141do_full_match (const char *symbol_search_name,
14142 const lookup_name_info &lookup_name,
a207cff2 14143 completion_match_result *comp_match_res)
b5ec771e
PA
14144{
14145 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14146}
14147
a2cd4f14
JB
14148/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14149
14150static bool
14151do_exact_match (const char *symbol_search_name,
14152 const lookup_name_info &lookup_name,
14153 completion_match_result *comp_match_res)
14154{
14155 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14156}
14157
b5ec771e
PA
14158/* Build the Ada lookup name for LOOKUP_NAME. */
14159
14160ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14161{
14162 const std::string &user_name = lookup_name.name ();
14163
14164 if (user_name[0] == '<')
14165 {
14166 if (user_name.back () == '>')
14167 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14168 else
14169 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14170 m_encoded_p = true;
14171 m_verbatim_p = true;
14172 m_wild_match_p = false;
14173 m_standard_p = false;
14174 }
14175 else
14176 {
14177 m_verbatim_p = false;
14178
14179 m_encoded_p = user_name.find ("__") != std::string::npos;
14180
14181 if (!m_encoded_p)
14182 {
14183 const char *folded = ada_fold_name (user_name.c_str ());
14184 const char *encoded = ada_encode_1 (folded, false);
14185 if (encoded != NULL)
14186 m_encoded_name = encoded;
14187 else
14188 m_encoded_name = user_name;
14189 }
14190 else
14191 m_encoded_name = user_name;
14192
14193 /* Handle the 'package Standard' special case. See description
14194 of m_standard_p. */
14195 if (startswith (m_encoded_name.c_str (), "standard__"))
14196 {
14197 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14198 m_standard_p = true;
14199 }
14200 else
14201 m_standard_p = false;
74ccd7f5 14202
b5ec771e
PA
14203 /* If the name contains a ".", then the user is entering a fully
14204 qualified entity name, and the match must not be done in wild
14205 mode. Similarly, if the user wants to complete what looks
14206 like an encoded name, the match must not be done in wild
14207 mode. Also, in the standard__ special case always do
14208 non-wild matching. */
14209 m_wild_match_p
14210 = (lookup_name.match_type () != symbol_name_match_type::FULL
14211 && !m_encoded_p
14212 && !m_standard_p
14213 && user_name.find ('.') == std::string::npos);
14214 }
14215}
14216
14217/* symbol_name_matcher_ftype method for Ada. This only handles
14218 completion mode. */
14219
14220static bool
14221ada_symbol_name_matches (const char *symbol_search_name,
14222 const lookup_name_info &lookup_name,
a207cff2 14223 completion_match_result *comp_match_res)
74ccd7f5 14224{
b5ec771e
PA
14225 return lookup_name.ada ().matches (symbol_search_name,
14226 lookup_name.match_type (),
a207cff2 14227 comp_match_res);
b5ec771e
PA
14228}
14229
de63c46b
PA
14230/* A name matcher that matches the symbol name exactly, with
14231 strcmp. */
14232
14233static bool
14234literal_symbol_name_matcher (const char *symbol_search_name,
14235 const lookup_name_info &lookup_name,
14236 completion_match_result *comp_match_res)
14237{
14238 const std::string &name = lookup_name.name ();
14239
14240 int cmp = (lookup_name.completion_mode ()
14241 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14242 : strcmp (symbol_search_name, name.c_str ()));
14243 if (cmp == 0)
14244 {
14245 if (comp_match_res != NULL)
14246 comp_match_res->set_match (symbol_search_name);
14247 return true;
14248 }
14249 else
14250 return false;
14251}
14252
b5ec771e
PA
14253/* Implement the "la_get_symbol_name_matcher" language_defn method for
14254 Ada. */
14255
14256static symbol_name_matcher_ftype *
14257ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14258{
de63c46b
PA
14259 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14260 return literal_symbol_name_matcher;
14261
b5ec771e
PA
14262 if (lookup_name.completion_mode ())
14263 return ada_symbol_name_matches;
74ccd7f5 14264 else
b5ec771e
PA
14265 {
14266 if (lookup_name.ada ().wild_match_p ())
14267 return do_wild_match;
a2cd4f14
JB
14268 else if (lookup_name.ada ().verbatim_p ())
14269 return do_exact_match;
b5ec771e
PA
14270 else
14271 return do_full_match;
14272 }
74ccd7f5
JB
14273}
14274
a5ee536b
JB
14275/* Implement the "la_read_var_value" language_defn method for Ada. */
14276
14277static struct value *
63e43d3a
PMR
14278ada_read_var_value (struct symbol *var, const struct block *var_block,
14279 struct frame_info *frame)
a5ee536b 14280{
a5ee536b
JB
14281 /* The only case where default_read_var_value is not sufficient
14282 is when VAR is a renaming... */
c0e70c62
TT
14283 if (frame != nullptr)
14284 {
14285 const struct block *frame_block = get_frame_block (frame, NULL);
14286 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14287 return ada_read_renaming_var_value (var, frame_block);
14288 }
a5ee536b
JB
14289
14290 /* This is a typical case where we expect the default_read_var_value
14291 function to work. */
63e43d3a 14292 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14293}
14294
56618e20
TT
14295static const char *ada_extensions[] =
14296{
14297 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14298};
14299
47e77640 14300extern const struct language_defn ada_language_defn = {
6c038f32 14301 "ada", /* Language name */
6abde28f 14302 "Ada",
6c038f32 14303 language_ada,
6c038f32 14304 range_check_off,
6c038f32
PH
14305 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14306 that's not quite what this means. */
6c038f32 14307 array_row_major,
9a044a89 14308 macro_expansion_no,
56618e20 14309 ada_extensions,
6c038f32
PH
14310 &ada_exp_descriptor,
14311 parse,
6c038f32
PH
14312 resolve,
14313 ada_printchar, /* Print a character constant */
14314 ada_printstr, /* Function to print string constant */
14315 emit_char, /* Function to print single char (not used) */
6c038f32 14316 ada_print_type, /* Print a type using appropriate syntax */
be942545 14317 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14318 ada_val_print, /* Print a value using appropriate syntax */
14319 ada_value_print, /* Print a top-level value */
a5ee536b 14320 ada_read_var_value, /* la_read_var_value */
6c038f32 14321 NULL, /* Language specific skip_trampoline */
2b2d9e11 14322 NULL, /* name_of_this */
59cc4834 14323 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14324 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14325 basic_lookup_transparent_type, /* lookup_transparent_type */
14326 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14327 ada_sniff_from_mangled_name,
0963b4bd
MS
14328 NULL, /* Language specific
14329 class_name_from_physname */
6c038f32
PH
14330 ada_op_print_tab, /* expression operators for printing */
14331 0, /* c-style arrays */
14332 1, /* String lower bound */
6c038f32 14333 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14334 ada_collect_symbol_completion_matches,
72d5681a 14335 ada_language_arch_info,
e79af960 14336 ada_print_array_index,
41f1b697 14337 default_pass_by_reference,
ae6a3a4c 14338 c_get_string,
e2b7af72 14339 ada_watch_location_expression,
b5ec771e 14340 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14341 ada_iterate_over_symbols,
5ffa0793 14342 default_search_name_hash,
a53b64ea 14343 &ada_varobj_ops,
bb2ec1b3 14344 NULL,
721b08c6 14345 NULL,
4be290b2 14346 ada_is_string_type,
721b08c6 14347 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14348};
14349
5bf03f13
JB
14350/* Command-list for the "set/show ada" prefix command. */
14351static struct cmd_list_element *set_ada_list;
14352static struct cmd_list_element *show_ada_list;
14353
14354/* Implement the "set ada" prefix command. */
14355
14356static void
981a3fb3 14357set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14358{
14359 printf_unfiltered (_(\
14360"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14361 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14362}
14363
14364/* Implement the "show ada" prefix command. */
14365
14366static void
981a3fb3 14367show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14368{
14369 cmd_show_list (show_ada_list, from_tty, "");
14370}
14371
2060206e
PA
14372static void
14373initialize_ada_catchpoint_ops (void)
14374{
14375 struct breakpoint_ops *ops;
14376
14377 initialize_breakpoint_ops ();
14378
14379 ops = &catch_exception_breakpoint_ops;
14380 *ops = bkpt_breakpoint_ops;
2060206e
PA
14381 ops->allocate_location = allocate_location_catch_exception;
14382 ops->re_set = re_set_catch_exception;
14383 ops->check_status = check_status_catch_exception;
14384 ops->print_it = print_it_catch_exception;
14385 ops->print_one = print_one_catch_exception;
14386 ops->print_mention = print_mention_catch_exception;
14387 ops->print_recreate = print_recreate_catch_exception;
14388
14389 ops = &catch_exception_unhandled_breakpoint_ops;
14390 *ops = bkpt_breakpoint_ops;
2060206e
PA
14391 ops->allocate_location = allocate_location_catch_exception_unhandled;
14392 ops->re_set = re_set_catch_exception_unhandled;
14393 ops->check_status = check_status_catch_exception_unhandled;
14394 ops->print_it = print_it_catch_exception_unhandled;
14395 ops->print_one = print_one_catch_exception_unhandled;
14396 ops->print_mention = print_mention_catch_exception_unhandled;
14397 ops->print_recreate = print_recreate_catch_exception_unhandled;
14398
14399 ops = &catch_assert_breakpoint_ops;
14400 *ops = bkpt_breakpoint_ops;
2060206e
PA
14401 ops->allocate_location = allocate_location_catch_assert;
14402 ops->re_set = re_set_catch_assert;
14403 ops->check_status = check_status_catch_assert;
14404 ops->print_it = print_it_catch_assert;
14405 ops->print_one = print_one_catch_assert;
14406 ops->print_mention = print_mention_catch_assert;
14407 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14408
14409 ops = &catch_handlers_breakpoint_ops;
14410 *ops = bkpt_breakpoint_ops;
14411 ops->allocate_location = allocate_location_catch_handlers;
14412 ops->re_set = re_set_catch_handlers;
14413 ops->check_status = check_status_catch_handlers;
14414 ops->print_it = print_it_catch_handlers;
14415 ops->print_one = print_one_catch_handlers;
14416 ops->print_mention = print_mention_catch_handlers;
14417 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14418}
14419
3d9434b5
JB
14420/* This module's 'new_objfile' observer. */
14421
14422static void
14423ada_new_objfile_observer (struct objfile *objfile)
14424{
14425 ada_clear_symbol_cache ();
14426}
14427
14428/* This module's 'free_objfile' observer. */
14429
14430static void
14431ada_free_objfile_observer (struct objfile *objfile)
14432{
14433 ada_clear_symbol_cache ();
14434}
14435
d2e4a39e 14436void
6c038f32 14437_initialize_ada_language (void)
14f9c5c9 14438{
2060206e
PA
14439 initialize_ada_catchpoint_ops ();
14440
5bf03f13 14441 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14442 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14443 &set_ada_list, "set ada ", 0, &setlist);
14444
14445 add_prefix_cmd ("ada", no_class, show_ada_command,
14446 _("Generic command for showing Ada-specific settings."),
14447 &show_ada_list, "show ada ", 0, &showlist);
14448
14449 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14450 &trust_pad_over_xvs, _("\
590042fc
PW
14451Enable or disable an optimization trusting PAD types over XVS types."), _("\
14452Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14453 _("\
14454This is related to the encoding used by the GNAT compiler. The debugger\n\
14455should normally trust the contents of PAD types, but certain older versions\n\
14456of GNAT have a bug that sometimes causes the information in the PAD type\n\
14457to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14458work around this bug. It is always safe to turn this option \"off\", but\n\
14459this incurs a slight performance penalty, so it is recommended to NOT change\n\
14460this option to \"off\" unless necessary."),
14461 NULL, NULL, &set_ada_list, &show_ada_list);
14462
d72413e6
PMR
14463 add_setshow_boolean_cmd ("print-signatures", class_vars,
14464 &print_signatures, _("\
14465Enable or disable the output of formal and return types for functions in the \
590042fc 14466overloads selection menu."), _("\
d72413e6 14467Show whether the output of formal and return types for functions in the \
590042fc 14468overloads selection menu is activated."),
d72413e6
PMR
14469 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14470
9ac4176b
PA
14471 add_catch_command ("exception", _("\
14472Catch Ada exceptions, when raised.\n\
9bf7038b 14473Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14474Without any argument, stop when any Ada exception is raised.\n\
14475If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14476being raised does not have a handler (and will therefore lead to the task's\n\
14477termination).\n\
14478Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14479raised is the same as ARG.\n\
14480CONDITION is a boolean expression that is evaluated to see whether the\n\
14481exception should cause a stop."),
9ac4176b 14482 catch_ada_exception_command,
71bed2db 14483 catch_ada_completer,
9ac4176b
PA
14484 CATCH_PERMANENT,
14485 CATCH_TEMPORARY);
9f757bf7
XR
14486
14487 add_catch_command ("handlers", _("\
14488Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14489Usage: catch handlers [ARG] [if CONDITION]\n\
14490Without any argument, stop when any Ada exception is handled.\n\
14491With an argument, catch only exceptions with the given name.\n\
14492CONDITION is a boolean expression that is evaluated to see whether the\n\
14493exception should cause a stop."),
9f757bf7 14494 catch_ada_handlers_command,
71bed2db 14495 catch_ada_completer,
9f757bf7
XR
14496 CATCH_PERMANENT,
14497 CATCH_TEMPORARY);
9ac4176b
PA
14498 add_catch_command ("assert", _("\
14499Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14500Usage: catch assert [if CONDITION]\n\
14501CONDITION is a boolean expression that is evaluated to see whether the\n\
14502exception should cause a stop."),
9ac4176b
PA
14503 catch_assert_command,
14504 NULL,
14505 CATCH_PERMANENT,
14506 CATCH_TEMPORARY);
14507
6c038f32 14508 varsize_limit = 65536;
3fcded8f
JB
14509 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14510 &varsize_limit, _("\
14511Set the maximum number of bytes allowed in a variable-size object."), _("\
14512Show the maximum number of bytes allowed in a variable-size object."), _("\
14513Attempts to access an object whose size is not a compile-time constant\n\
14514and exceeds this limit will cause an error."),
14515 NULL, NULL, &setlist, &showlist);
6c038f32 14516
778865d3
JB
14517 add_info ("exceptions", info_exceptions_command,
14518 _("\
14519List all Ada exception names.\n\
9bf7038b 14520Usage: info exceptions [REGEXP]\n\
778865d3
JB
14521If a regular expression is passed as an argument, only those matching\n\
14522the regular expression are listed."));
14523
c6044dd1
JB
14524 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14525 _("Set Ada maintenance-related variables."),
14526 &maint_set_ada_cmdlist, "maintenance set ada ",
14527 0/*allow-unknown*/, &maintenance_set_cmdlist);
14528
14529 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14530 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14531 &maint_show_ada_cmdlist, "maintenance show ada ",
14532 0/*allow-unknown*/, &maintenance_show_cmdlist);
14533
14534 add_setshow_boolean_cmd
14535 ("ignore-descriptive-types", class_maintenance,
14536 &ada_ignore_descriptive_types_p,
14537 _("Set whether descriptive types generated by GNAT should be ignored."),
14538 _("Show whether descriptive types generated by GNAT should be ignored."),
14539 _("\
14540When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14541DWARF attribute."),
14542 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14543
459a2e4c
TT
14544 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14545 NULL, xcalloc, xfree);
6b69afc4 14546
3d9434b5 14547 /* The ada-lang observers. */
76727919
TT
14548 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14549 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14550 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14551}
This page took 3.121007 seconds and 4 git commands to generate.