Disambiguate info_print_options
[deliverable/binutils-gdb.git] / gdb / ada-varobj.c
CommitLineData
181875a4
JB
1/* varobj support for Ada.
2
b811d2c2 3 Copyright (C) 2012-2020 Free Software Foundation, Inc.
181875a4
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
181875a4 21#include "ada-lang.h"
4de283e4 22#include "varobj.h"
181875a4
JB
23#include "language.h"
24#include "valprint.h"
25
26/* Implementation principle used in this unit:
27
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
34
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
40
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
50
c4124bf1
YQ
51static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
53
181875a4
JB
54/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
58 *VALUE_PTR unchanged.
59
60 The results are written in place. */
61
62static void
63ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
64{
65 if (*value_ptr)
66 {
67 *value_ptr = ada_get_decoded_value (*value_ptr);
68 *type_ptr = ada_check_typedef (value_type (*value_ptr));
69 }
70 else
71 *type_ptr = ada_get_decoded_type (*type_ptr);
72}
73
74/* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
2f408ecb 77 so for enumerated types. */
181875a4 78
2f408ecb 79static std::string
181875a4
JB
80ada_varobj_scalar_image (struct type *type, LONGEST val)
81{
d7e74731 82 string_file buf;
181875a4 83
d7e74731
PA
84 ada_print_scalar (type, val, &buf);
85 return std::move (buf.string ());
181875a4
JB
86}
87
88/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
90 corresponding to the field number FIELDNO. */
91
92static void
93ada_varobj_struct_elt (struct value *parent_value,
94 struct type *parent_type,
95 int fieldno,
96 struct value **child_value,
97 struct type **child_type)
98{
99 struct value *value = NULL;
100 struct type *type = NULL;
101
102 if (parent_value)
103 {
104 value = value_field (parent_value, fieldno);
105 type = value_type (value);
106 }
107 else
108 type = TYPE_FIELD_TYPE (parent_type, fieldno);
109
110 if (child_value)
111 *child_value = value;
112 if (child_type)
113 *child_type = type;
114}
115
116/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
118 to the dereferenced value. */
119
120static void
121ada_varobj_ind (struct value *parent_value,
122 struct type *parent_type,
123 struct value **child_value,
124 struct type **child_type)
125{
126 struct value *value = NULL;
127 struct type *type = NULL;
128
129 if (ada_is_array_descriptor_type (parent_type))
130 {
131 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
132 ada_get_decoded_value would have transformed our parent_type
133 into a simple array pointer type. */
134 gdb_assert (parent_value == NULL);
135 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
136
137 /* Decode parent_type by the equivalent pointer to (decoded)
138 array. */
139 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
140 parent_type = TYPE_TARGET_TYPE (parent_type);
141 parent_type = ada_coerce_to_simple_array_type (parent_type);
142 parent_type = lookup_pointer_type (parent_type);
143 }
144
145 /* If parent_value is a null pointer, then only perform static
146 dereferencing. We cannot dereference null pointers. */
147 if (parent_value && value_as_address (parent_value) == 0)
148 parent_value = NULL;
149
150 if (parent_value)
151 {
152 value = ada_value_ind (parent_value);
153 type = value_type (value);
154 }
155 else
156 type = TYPE_TARGET_TYPE (parent_type);
157
158 if (child_value)
159 *child_value = value;
160 if (child_type)
161 *child_type = type;
162}
163
164/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
166 pair corresponding to the element at ELT_INDEX. */
167
168static void
169ada_varobj_simple_array_elt (struct value *parent_value,
170 struct type *parent_type,
171 int elt_index,
172 struct value **child_value,
173 struct type **child_type)
174{
175 struct value *value = NULL;
176 struct type *type = NULL;
177
178 if (parent_value)
179 {
180 struct value *index_value =
181 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
182
183 value = ada_value_subscript (parent_value, 1, &index_value);
184 type = value_type (value);
185 }
186 else
187 type = TYPE_TARGET_TYPE (parent_type);
188
189 if (child_value)
190 *child_value = value;
191 if (child_type)
192 *child_type = type;
193}
194
195/* Given the decoded value and decoded type of a variable object,
196 adjust the value and type to those necessary for getting children
197 of the variable object.
198
199 The replacement is performed in place. */
200
201static void
202ada_varobj_adjust_for_child_access (struct value **value,
203 struct type **type)
204{
205 /* Pointers to struct/union types are special: Instead of having
206 one child (the struct), their children are the components of
207 the struct/union type. We handle this situation by dereferencing
208 the (value, type) couple. */
209 if (TYPE_CODE (*type) == TYPE_CODE_PTR
210 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
211 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
212 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
213 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
214 ada_varobj_ind (*value, *type, value, type);
f30b8b38
JB
215
216 /* If this is a tagged type, we need to transform it a bit in order
217 to be able to fetch its full view. As always with tagged types,
218 we can only do that if we have a value. */
219 if (*value != NULL && ada_is_tagged_type (*type, 1))
220 {
221 *value = ada_tag_value_at_base_address (*value);
222 *type = value_type (*value);
223 }
181875a4
JB
224}
225
226/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
227 (any type of array, "simple" or not), return the number of children
228 that this array contains. */
229
230static int
231ada_varobj_get_array_number_of_children (struct value *parent_value,
232 struct type *parent_type)
233{
234 LONGEST lo, hi;
181875a4 235
4a0ca9ec
JB
236 if (parent_value == NULL
237 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
238 {
239 /* This happens when listing the children of an object
240 which does not exist in memory (Eg: when requesting
241 the children of a null pointer, which is allowed by
242 varobj). The array index type being dynamic, we cannot
243 determine how many elements this array has. Just assume
244 it has none. */
245 return 0;
246 }
247
181875a4
JB
248 if (!get_array_bounds (parent_type, &lo, &hi))
249 {
250 /* Could not get the array bounds. Pretend this is an empty array. */
251 warning (_("unable to get bounds of array, assuming null array"));
252 return 0;
253 }
254
255 /* Ada allows the upper bound to be less than the lower bound,
256 in order to specify empty arrays... */
257 if (hi < lo)
258 return 0;
259
260 return hi - lo + 1;
261}
262
263/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
264 union, return the number of children this struct contains. */
265
266static int
267ada_varobj_get_struct_number_of_children (struct value *parent_value,
268 struct type *parent_type)
269{
270 int n_children = 0;
271 int i;
272
273 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
274 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
275
276 for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
277 {
278 if (ada_is_ignored_field (parent_type, i))
279 continue;
280
281 if (ada_is_wrapper_field (parent_type, i))
282 {
283 struct value *elt_value;
284 struct type *elt_type;
285
286 ada_varobj_struct_elt (parent_value, parent_type, i,
287 &elt_value, &elt_type);
288 if (ada_is_tagged_type (elt_type, 0))
289 {
290 /* We must not use ada_varobj_get_number_of_children
291 to determine is element's number of children, because
292 this function first calls ada_varobj_decode_var,
293 which "fixes" the element. For tagged types, this
294 includes reading the object's tag to determine its
295 real type, which happens to be the parent_type, and
296 leads to an infinite loop (because the element gets
297 fixed back into the parent). */
298 n_children += ada_varobj_get_struct_number_of_children
299 (elt_value, elt_type);
300 }
301 else
302 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
303 }
304 else if (ada_is_variant_part (parent_type, i))
305 {
306 /* In normal situations, the variant part of the record should
307 have been "fixed". Or, in other words, it should have been
308 replaced by the branch of the variant part that is relevant
309 for our value. But there are still situations where this
310 can happen, however (Eg. when our parent is a NULL pointer).
311 We do not support showing this part of the record for now,
312 so just pretend this field does not exist. */
313 }
314 else
315 n_children++;
316 }
317
318 return n_children;
319}
320
321/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
322 a pointer, return the number of children this pointer has. */
323
324static int
325ada_varobj_get_ptr_number_of_children (struct value *parent_value,
326 struct type *parent_type)
327{
328 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
329
330 /* Pointer to functions and to void do not have a child, since
331 you cannot print what they point to. */
332 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
333 || TYPE_CODE (child_type) == TYPE_CODE_VOID)
334 return 0;
335
336 /* All other types have 1 child. */
337 return 1;
338}
339
340/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
341 pair. */
342
c4124bf1 343static int
181875a4
JB
344ada_varobj_get_number_of_children (struct value *parent_value,
345 struct type *parent_type)
346{
347 ada_varobj_decode_var (&parent_value, &parent_type);
348 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
349
350 /* A typedef to an array descriptor in fact represents a pointer
351 to an unconstrained array. These types always have one child
352 (the unconstrained array). */
d91e9ea8 353 if (ada_is_access_to_unconstrained_array (parent_type))
181875a4
JB
354 return 1;
355
356 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
357 return ada_varobj_get_array_number_of_children (parent_value,
358 parent_type);
359
360 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
361 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
362 return ada_varobj_get_struct_number_of_children (parent_value,
363 parent_type);
364
365 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
366 return ada_varobj_get_ptr_number_of_children (parent_value,
367 parent_type);
368
369 /* All other types have no child. */
370 return 0;
371}
372
373/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
374 whose index is CHILD_INDEX:
375
376 - If CHILD_NAME is not NULL, then a copy of the child's name
377 is saved in *CHILD_NAME. This copy must be deallocated
378 with xfree after use.
379
380 - If CHILD_VALUE is not NULL, then save the child's value
381 in *CHILD_VALUE. Same thing for the child's type with
382 CHILD_TYPE if not NULL.
383
384 - If CHILD_PATH_EXPR is not NULL, then compute the child's
385 path expression. The resulting string must be deallocated
386 after use with xfree.
387
388 Computing the child's path expression requires the PARENT_PATH_EXPR
389 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
390 CHILD_PATH_EXPR is NULL.
391
392 PARENT_NAME is the name of the parent, and should never be NULL. */
393
394static void ada_varobj_describe_child (struct value *parent_value,
395 struct type *parent_type,
396 const char *parent_name,
397 const char *parent_path_expr,
398 int child_index,
2f408ecb 399 std::string *child_name,
181875a4
JB
400 struct value **child_value,
401 struct type **child_type,
2f408ecb 402 std::string *child_path_expr);
181875a4
JB
403
404/* Same as ada_varobj_describe_child, but limited to struct/union
405 objects. */
406
407static void
408ada_varobj_describe_struct_child (struct value *parent_value,
409 struct type *parent_type,
410 const char *parent_name,
411 const char *parent_path_expr,
412 int child_index,
2f408ecb 413 std::string *child_name,
181875a4
JB
414 struct value **child_value,
415 struct type **child_type,
2f408ecb 416 std::string *child_path_expr)
181875a4
JB
417{
418 int fieldno;
419 int childno = 0;
420
2963898f
XR
421 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
422 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
181875a4
JB
423
424 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
425 {
426 if (ada_is_ignored_field (parent_type, fieldno))
427 continue;
428
429 if (ada_is_wrapper_field (parent_type, fieldno))
430 {
431 struct value *elt_value;
432 struct type *elt_type;
433 int elt_n_children;
434
435 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
436 &elt_value, &elt_type);
437 if (ada_is_tagged_type (elt_type, 0))
438 {
439 /* Same as in ada_varobj_get_struct_number_of_children:
440 For tagged types, we must be careful to not call
441 ada_varobj_get_number_of_children, to prevent our
442 element from being fixed back into the parent. */
443 elt_n_children = ada_varobj_get_struct_number_of_children
444 (elt_value, elt_type);
445 }
446 else
447 elt_n_children =
448 ada_varobj_get_number_of_children (elt_value, elt_type);
449
450 /* Is the child we're looking for one of the children
451 of this wrapper field? */
452 if (child_index - childno < elt_n_children)
453 {
454 if (ada_is_tagged_type (elt_type, 0))
455 {
456 /* Same as in ada_varobj_get_struct_number_of_children:
457 For tagged types, we must be careful to not call
458 ada_varobj_describe_child, to prevent our element
459 from being fixed back into the parent. */
460 ada_varobj_describe_struct_child
461 (elt_value, elt_type, parent_name, parent_path_expr,
462 child_index - childno, child_name, child_value,
463 child_type, child_path_expr);
464 }
465 else
466 ada_varobj_describe_child (elt_value, elt_type,
467 parent_name, parent_path_expr,
468 child_index - childno,
469 child_name, child_value,
470 child_type, child_path_expr);
471 return;
472 }
473
474 /* The child we're looking for is beyond this wrapper
475 field, so skip all its children. */
476 childno += elt_n_children;
477 continue;
478 }
479 else if (ada_is_variant_part (parent_type, fieldno))
480 {
481 /* In normal situations, the variant part of the record should
482 have been "fixed". Or, in other words, it should have been
483 replaced by the branch of the variant part that is relevant
484 for our value. But there are still situations where this
485 can happen, however (Eg. when our parent is a NULL pointer).
486 We do not support showing this part of the record for now,
487 so just pretend this field does not exist. */
488 continue;
489 }
490
491 if (childno == child_index)
492 {
493 if (child_name)
494 {
495 /* The name of the child is none other than the field's
496 name, except that we need to strip suffixes from it.
497 For instance, fields with alignment constraints will
498 have an __XVA suffix added to them. */
499 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
500 int child_name_len = ada_name_prefix_len (field_name);
501
2f408ecb 502 *child_name = string_printf ("%.*s", child_name_len, field_name);
181875a4
JB
503 }
504
505 if (child_value && parent_value)
506 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
507 child_value, NULL);
508
509 if (child_type)
510 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
511 NULL, child_type);
512
513 if (child_path_expr)
514 {
515 /* The name of the child is none other than the field's
516 name, except that we need to strip suffixes from it.
517 For instance, fields with alignment constraints will
518 have an __XVA suffix added to them. */
519 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
520 int child_name_len = ada_name_prefix_len (field_name);
521
522 *child_path_expr =
2f408ecb
PA
523 string_printf ("(%s).%.*s", parent_path_expr,
524 child_name_len, field_name);
181875a4
JB
525 }
526
527 return;
528 }
529
530 childno++;
531 }
532
533 /* Something went wrong. Either we miscounted the number of
534 children, or CHILD_INDEX was too high. But we should never
535 reach here. We don't have enough information to recover
536 nicely, so just raise an assertion failure. */
537 gdb_assert_not_reached ("unexpected code path");
538}
539
540/* Same as ada_varobj_describe_child, but limited to pointer objects.
541
542 Note that CHILD_INDEX is unused in this situation, but still provided
543 for consistency of interface with other routines describing an object's
544 child. */
545
546static void
547ada_varobj_describe_ptr_child (struct value *parent_value,
548 struct type *parent_type,
549 const char *parent_name,
550 const char *parent_path_expr,
551 int child_index,
2f408ecb 552 std::string *child_name,
181875a4
JB
553 struct value **child_value,
554 struct type **child_type,
2f408ecb 555 std::string *child_path_expr)
181875a4
JB
556{
557 if (child_name)
2f408ecb 558 *child_name = string_printf ("%s.all", parent_name);
181875a4
JB
559
560 if (child_value && parent_value)
561 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
562
563 if (child_type)
564 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
565
566 if (child_path_expr)
2f408ecb 567 *child_path_expr = string_printf ("(%s).all", parent_path_expr);
181875a4
JB
568}
569
570/* Same as ada_varobj_describe_child, limited to simple array objects
571 (TYPE_CODE_ARRAY only).
572
573 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
574 This is done by ada_varobj_describe_child before calling us. */
575
576static void
577ada_varobj_describe_simple_array_child (struct value *parent_value,
578 struct type *parent_type,
579 const char *parent_name,
580 const char *parent_path_expr,
581 int child_index,
2f408ecb 582 std::string *child_name,
181875a4
JB
583 struct value **child_value,
584 struct type **child_type,
2f408ecb 585 std::string *child_path_expr)
181875a4 586{
181875a4
JB
587 struct type *index_type;
588 int real_index;
589
590 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
591
4d072ce4 592 index_type = TYPE_INDEX_TYPE (parent_type);
181875a4
JB
593 real_index = child_index + ada_discrete_type_low_bound (index_type);
594
595 if (child_name)
596 *child_name = ada_varobj_scalar_image (index_type, real_index);
597
598 if (child_value && parent_value)
599 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
600 child_value, NULL);
601
602 if (child_type)
603 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
604 NULL, child_type);
605
606 if (child_path_expr)
607 {
2f408ecb 608 std::string index_img = ada_varobj_scalar_image (index_type, real_index);
181875a4
JB
609
610 /* Enumeration litterals by themselves are potentially ambiguous.
611 For instance, consider the following package spec:
612
613 package Pck is
614 type Color is (Red, Green, Blue, White);
615 type Blood_Cells is (White, Red);
616 end Pck;
617
618 In this case, the litteral "red" for instance, or even
619 the fully-qualified litteral "pck.red" cannot be resolved
620 by itself. Type qualification is needed to determine which
621 enumeration litterals should be used.
622
623 The following variable will be used to contain the name
624 of the array index type when such type qualification is
625 needed. */
626 const char *index_type_name = NULL;
f945dedf 627 std::string decoded;
181875a4
JB
628
629 /* If the index type is a range type, find the base type. */
630 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
631 index_type = TYPE_TARGET_TYPE (index_type);
632
633 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
634 || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
635 {
636 index_type_name = ada_type_name (index_type);
637 if (index_type_name)
f945dedf
CB
638 {
639 decoded = ada_decode (index_type_name);
640 index_type_name = decoded.c_str ();
641 }
181875a4
JB
642 }
643
644 if (index_type_name != NULL)
645 *child_path_expr =
2f408ecb
PA
646 string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
647 ada_name_prefix_len (index_type_name),
648 index_type_name, index_img.c_str ());
181875a4
JB
649 else
650 *child_path_expr =
2f408ecb 651 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
181875a4
JB
652 }
653}
654
655/* See description at declaration above. */
656
657static void
658ada_varobj_describe_child (struct value *parent_value,
659 struct type *parent_type,
660 const char *parent_name,
661 const char *parent_path_expr,
662 int child_index,
2f408ecb 663 std::string *child_name,
181875a4
JB
664 struct value **child_value,
665 struct type **child_type,
2f408ecb 666 std::string *child_path_expr)
181875a4
JB
667{
668 /* We cannot compute the child's path expression without
669 the parent's path expression. This is a pre-condition
670 for calling this function. */
671 if (child_path_expr)
672 gdb_assert (parent_path_expr != NULL);
673
674 ada_varobj_decode_var (&parent_value, &parent_type);
675 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
676
677 if (child_name)
2f408ecb 678 *child_name = std::string ();
181875a4
JB
679 if (child_value)
680 *child_value = NULL;
681 if (child_type)
682 *child_type = NULL;
683 if (child_path_expr)
2f408ecb 684 *child_path_expr = std::string ();
181875a4 685
d91e9ea8 686 if (ada_is_access_to_unconstrained_array (parent_type))
181875a4
JB
687 {
688 ada_varobj_describe_ptr_child (parent_value, parent_type,
689 parent_name, parent_path_expr,
690 child_index, child_name,
691 child_value, child_type,
692 child_path_expr);
693 return;
694 }
695
696 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
697 {
698 ada_varobj_describe_simple_array_child
699 (parent_value, parent_type, parent_name, parent_path_expr,
700 child_index, child_name, child_value, child_type,
701 child_path_expr);
702 return;
703 }
704
2963898f
XR
705 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
706 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
181875a4
JB
707 {
708 ada_varobj_describe_struct_child (parent_value, parent_type,
709 parent_name, parent_path_expr,
710 child_index, child_name,
711 child_value, child_type,
712 child_path_expr);
713 return;
714 }
715
716 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
717 {
718 ada_varobj_describe_ptr_child (parent_value, parent_type,
719 parent_name, parent_path_expr,
720 child_index, child_name,
721 child_value, child_type,
722 child_path_expr);
723 return;
724 }
725
726 /* It should never happen. But rather than crash, report dummy names
727 and return a NULL child_value. */
728 if (child_name)
2f408ecb 729 *child_name = "???";
181875a4
JB
730}
731
732/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
2f408ecb 733 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
181875a4 734
2f408ecb 735static std::string
181875a4
JB
736ada_varobj_get_name_of_child (struct value *parent_value,
737 struct type *parent_type,
738 const char *parent_name, int child_index)
739{
2f408ecb 740 std::string child_name;
181875a4
JB
741
742 ada_varobj_describe_child (parent_value, parent_type, parent_name,
743 NULL, child_index, &child_name, NULL,
744 NULL, NULL);
745 return child_name;
746}
747
748/* Return the path expression of the child number CHILD_INDEX of
749 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
750 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
2f408ecb 751 Both must be non-NULL. */
181875a4 752
2f408ecb 753static std::string
181875a4
JB
754ada_varobj_get_path_expr_of_child (struct value *parent_value,
755 struct type *parent_type,
756 const char *parent_name,
757 const char *parent_path_expr,
758 int child_index)
759{
2f408ecb 760 std::string child_path_expr;
181875a4
JB
761
762 ada_varobj_describe_child (parent_value, parent_type, parent_name,
763 parent_path_expr, child_index, NULL,
764 NULL, NULL, &child_path_expr);
765
766 return child_path_expr;
767}
768
769/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
770 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
771
c4124bf1 772static struct value *
181875a4
JB
773ada_varobj_get_value_of_child (struct value *parent_value,
774 struct type *parent_type,
775 const char *parent_name, int child_index)
776{
777 struct value *child_value;
778
779 ada_varobj_describe_child (parent_value, parent_type, parent_name,
780 NULL, child_index, NULL, &child_value,
781 NULL, NULL);
782
783 return child_value;
784}
785
786/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
787 PARENT_TYPE) pair. */
788
c4124bf1 789static struct type *
181875a4
JB
790ada_varobj_get_type_of_child (struct value *parent_value,
791 struct type *parent_type,
792 int child_index)
793{
794 struct type *child_type;
795
796 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
797 child_index, NULL, NULL, &child_type, NULL);
798
799 return child_type;
800}
801
802/* Return a string that contains the image of the given VALUE, using
803 the print options OPTS as the options for formatting the result.
804
805 The resulting string must be deallocated after use with xfree. */
806
2f408ecb 807static std::string
181875a4
JB
808ada_varobj_get_value_image (struct value *value,
809 struct value_print_options *opts)
810{
d7e74731 811 string_file buffer;
181875a4 812
d7e74731
PA
813 common_val_print (value, &buffer, 0, opts, current_language);
814 return std::move (buffer.string ());
181875a4
JB
815}
816
817/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
818 return a string that is suitable for use in the "value" field of
819 the varobj output. Most of the time, this is the number of elements
820 in the array inside square brackets, but there are situations where
821 it's useful to add more info.
822
823 OPTS are the print options used when formatting the result.
824
825 The result should be deallocated after use using xfree. */
826
2f408ecb 827static std::string
181875a4
JB
828ada_varobj_get_value_of_array_variable (struct value *value,
829 struct type *type,
830 struct value_print_options *opts)
831{
181875a4
JB
832 const int numchild = ada_varobj_get_array_number_of_children (value, type);
833
834 /* If we have a string, provide its contents in the "value" field.
835 Otherwise, the only other way to inspect the contents of the string
836 is by looking at the value of each element, as in any other array,
837 which is not very convenient... */
838 if (value
839 && ada_is_string_type (type)
840 && (opts->format == 0 || opts->format == 's'))
841 {
2f408ecb
PA
842 std::string str = ada_varobj_get_value_image (value, opts);
843 return string_printf ("[%d] %s", numchild, str.c_str ());
181875a4
JB
844 }
845 else
2f408ecb 846 return string_printf ("[%d]", numchild);
181875a4
JB
847}
848
849/* Return a string representation of the (VALUE, TYPE) pair, using
850 the given print options OPTS as our formatting options. */
851
2f408ecb 852static std::string
181875a4
JB
853ada_varobj_get_value_of_variable (struct value *value,
854 struct type *type,
855 struct value_print_options *opts)
856{
181875a4
JB
857 ada_varobj_decode_var (&value, &type);
858
859 switch (TYPE_CODE (type))
860 {
861 case TYPE_CODE_STRUCT:
862 case TYPE_CODE_UNION:
2f408ecb 863 return "{...}";
181875a4 864 case TYPE_CODE_ARRAY:
2f408ecb 865 return ada_varobj_get_value_of_array_variable (value, type, opts);
181875a4
JB
866 default:
867 if (!value)
2f408ecb 868 return "";
181875a4 869 else
2f408ecb 870 return ada_varobj_get_value_image (value, opts);
181875a4 871 }
181875a4
JB
872}
873
99ad9427 874/* Ada specific callbacks for VAROBJs. */
181875a4 875
99ad9427 876static int
b09e2c59 877ada_number_of_children (const struct varobj *var)
99ad9427 878{
b4d61099 879 return ada_varobj_get_number_of_children (var->value.get (), var->type);
99ad9427
YQ
880}
881
2f408ecb 882static std::string
b09e2c59 883ada_name_of_variable (const struct varobj *parent)
99ad9427
YQ
884{
885 return c_varobj_ops.name_of_variable (parent);
886}
887
2f408ecb 888static std::string
c1cc6152 889ada_name_of_child (const struct varobj *parent, int index)
99ad9427 890{
b4d61099 891 return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
2f408ecb 892 parent->name.c_str (), index);
99ad9427
YQ
893}
894
2f408ecb 895static std::string
b09e2c59 896ada_path_expr_of_child (const struct varobj *child)
99ad9427 897{
c1cc6152 898 const struct varobj *parent = child->parent;
99ad9427
YQ
899 const char *parent_path_expr = varobj_get_path_expr (parent);
900
b4d61099 901 return ada_varobj_get_path_expr_of_child (parent->value.get (),
99ad9427 902 parent->type,
2f408ecb 903 parent->name.c_str (),
99ad9427
YQ
904 parent_path_expr,
905 child->index);
906}
907
908static struct value *
c1cc6152 909ada_value_of_child (const struct varobj *parent, int index)
99ad9427 910{
b4d61099 911 return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
2f408ecb 912 parent->name.c_str (), index);
99ad9427
YQ
913}
914
915static struct type *
c1cc6152 916ada_type_of_child (const struct varobj *parent, int index)
99ad9427 917{
b4d61099 918 return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
99ad9427
YQ
919 index);
920}
921
2f408ecb 922static std::string
b09e2c59
SM
923ada_value_of_variable (const struct varobj *var,
924 enum varobj_display_formats format)
99ad9427
YQ
925{
926 struct value_print_options opts;
927
928 varobj_formatted_print_options (&opts, format);
929
b4d61099
TT
930 return ada_varobj_get_value_of_variable (var->value.get (), var->type,
931 &opts);
99ad9427
YQ
932}
933
934/* Implement the "value_is_changeable_p" routine for Ada. */
935
4c37490d 936static bool
b09e2c59 937ada_value_is_changeable_p (const struct varobj *var)
99ad9427 938{
b4d61099
TT
939 struct type *type = (var->value != nullptr
940 ? value_type (var->value.get ()) : var->type);
99ad9427 941
aff29d1c
JB
942 if (TYPE_CODE (type) == TYPE_CODE_REF)
943 type = TYPE_TARGET_TYPE (type);
944
d91e9ea8 945 if (ada_is_access_to_unconstrained_array (type))
99ad9427
YQ
946 {
947 /* This is in reality a pointer to an unconstrained array.
948 its value is changeable. */
4c37490d 949 return true;
99ad9427
YQ
950 }
951
952 if (ada_is_string_type (type))
953 {
954 /* We display the contents of the string in the array's
955 "value" field. The contents can change, so consider
956 that the array is changeable. */
4c37490d 957 return true;
99ad9427
YQ
958 }
959
960 return varobj_default_value_is_changeable_p (var);
961}
962
963/* Implement the "value_has_mutated" routine for Ada. */
964
4c37490d 965static bool
b09e2c59 966ada_value_has_mutated (const struct varobj *var, struct value *new_val,
99ad9427
YQ
967 struct type *new_type)
968{
99ad9427
YQ
969 int from = -1;
970 int to = -1;
971
972 /* If the number of fields have changed, then for sure the type
973 has mutated. */
974 if (ada_varobj_get_number_of_children (new_val, new_type)
975 != var->num_children)
4c37490d 976 return true;
99ad9427
YQ
977
978 /* If the number of fields have remained the same, then we need
979 to check the name of each field. If they remain the same,
980 then chances are the type hasn't mutated. This is technically
981 an incomplete test, as the child's type might have changed
982 despite the fact that the name remains the same. But we'll
983 handle this situation by saying that the child has mutated,
984 not this value.
985
986 If only part (or none!) of the children have been fetched,
987 then only check the ones we fetched. It does not matter
988 to the frontend whether a child that it has not fetched yet
989 has mutated or not. So just assume it hasn't. */
990
991 varobj_restrict_range (var->children, &from, &to);
ddf0ea08 992 for (int i = from; i < to; i++)
2f408ecb
PA
993 if (ada_varobj_get_name_of_child (new_val, new_type,
994 var->name.c_str (), i)
ddf0ea08 995 != var->children[i]->name)
4c37490d 996 return true;
99ad9427 997
4c37490d 998 return false;
99ad9427
YQ
999}
1000
1001/* varobj operations for ada. */
1002
1003const struct lang_varobj_ops ada_varobj_ops =
1004{
1005 ada_number_of_children,
1006 ada_name_of_variable,
1007 ada_name_of_child,
1008 ada_path_expr_of_child,
1009 ada_value_of_child,
1010 ada_type_of_child,
1011 ada_value_of_variable,
1012 ada_value_is_changeable_p,
9a9a7608
AB
1013 ada_value_has_mutated,
1014 varobj_default_is_path_expr_parent
99ad9427 1015};
This page took 0.501236 seconds and 4 git commands to generate.