gdb: Add riscv to list of architectures with a save_reggroup
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
e2882c85 3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
d2427a71
RH
22#include "frame-unwind.h"
23#include "frame-base.h"
baa490c4 24#include "dwarf2-frame.h"
c906108c
SS
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "dis-asm.h"
31#include "symfile.h"
32#include "objfiles.h"
c5f0f3d0 33#include "linespec.h"
4e052eda 34#include "regcache.h"
615967cb 35#include "reggroups.h"
dc129d82 36#include "arch-utils.h"
4be87837 37#include "osabi.h"
fe898f56 38#include "block.h"
7d9b040b 39#include "infcall.h"
07ea644b 40#include "trad-frame.h"
dc129d82
JT
41
42#include "elf-bfd.h"
43
44#include "alpha-tdep.h"
325fac50 45#include <algorithm>
dc129d82 46
3a48e6ff
JG
47/* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53/* Memory instruction format */
54#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56#define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59static const int lda_opcode = 0x08;
60static const int stq_opcode = 0x2d;
61
62/* Branch instruction format */
63#define BR_RA(insn) MEM_RA(insn)
64
46ad3598 65static const int br_opcode = 0x30;
3a48e6ff
JG
66static const int bne_opcode = 0x3d;
67
68/* Operate instruction format */
69#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71#define OPR_RA(insn) MEM_RA(insn)
72#define OPR_RC(insn) ((insn & 0x1f))
73#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75static const int subq_opcode = 0x10;
76static const int subq_function = 0x29;
77
c906108c 78\f
515921d7
JB
79/* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
0963b4bd 82 be used for a virtual register. That virtual register has
515921d7
JB
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
fa88f677 86static const char *
d93859e2 87alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 88{
5ab84872 89 static const char * const register_names[] =
636a6dfc
JT
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 99 "pc", "", "unique"
636a6dfc
JT
100 };
101
102 if (regno < 0)
5ab84872 103 return NULL;
e8d2d628 104 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
105 return NULL;
106 return register_names[regno];
636a6dfc 107}
d734c450 108
dc129d82 109static int
64a3914f 110alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 111{
4a1be8d2 112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
113}
114
dc129d82 115static int
64a3914f 116alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 117{
515921d7 118 return (regno == ALPHA_ZERO_REGNUM
64a3914f 119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
120}
121
dc129d82 122static struct type *
c483c494 123alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 124{
72667056 125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 126 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 127 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
b38b6be2 132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 133 return builtin_type (gdbarch)->builtin_double;
72667056 134
df4df182 135 return builtin_type (gdbarch)->builtin_int64;
0d056799 136}
f8453e34 137
615967cb
RH
138/* Is REGNUM a member of REGGROUP? */
139
140static int
141alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143{
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
148 return 0;
149
df4a182b
RH
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178}
179
c483c494
RH
180/* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184static void
e17a4113 185alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 186{
e17a4113 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
9a3c8263 221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
68fce50f 229 bytes, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca 236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
68fce50f 237 && TYPE_LENGTH (type) == 4);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 246 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 247
fbe654c8
AH
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
255 value_free (value);
256 return 0;
257 }
258
259 /* Convert to VALTYPE. */
8dccd430 260
68fce50f 261 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
262 alpha_sts (gdbarch, out, value_contents_all (value));
263
264 release_value (value);
265 value_free (value);
68fce50f 266 return 1;
d2427a71 267}
5868c862 268
d2427a71 269static void
ff2e87ac 270alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 271 struct type *valtype, const gdb_byte *in)
d2427a71 272{
fbe654c8 273 gdb_byte out[ALPHA_REGISTER_SIZE];
2a1ce6ec 274
68fce50f 275 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
276 gdb_assert (register_size (get_frame_arch (frame), regnum)
277 <= ALPHA_REGISTER_SIZE);
68fce50f
YQ
278 alpha_lds (get_frame_arch (frame), out, in);
279
ff2e87ac 280 put_frame_register (frame, regnum, out);
5868c862
JT
281}
282
d2427a71
RH
283\f
284/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
d2427a71
RH
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
c906108c 295
d2427a71 296static CORE_ADDR
7d9b040b 297alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
c906108c 301{
e17a4113 302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
d2427a71 305 struct alpha_arg
c906108c 306 {
f42a0a33 307 const gdb_byte *contents;
d2427a71
RH
308 int len;
309 int offset;
310 };
8d749320 311 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 312 struct alpha_arg *m_arg;
2a1ce6ec 313 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 314 int required_arg_regs;
7d9b040b 315 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 316
c88e30c0
RH
317 /* The ABI places the address of the called function in T12. */
318 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
319
320 /* Set the return address register to point to the entry point
321 of the program, where a breakpoint lies in wait. */
322 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
323
324 /* Lay out the arguments in memory. */
d2427a71
RH
325 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
326 {
327 struct value *arg = args[i];
4991999e 328 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 329
d2427a71
RH
330 /* Cast argument to long if necessary as the compiler does it too. */
331 switch (TYPE_CODE (arg_type))
c906108c 332 {
d2427a71
RH
333 case TYPE_CODE_INT:
334 case TYPE_CODE_BOOL:
335 case TYPE_CODE_CHAR:
336 case TYPE_CODE_RANGE:
337 case TYPE_CODE_ENUM:
0ede8eca 338 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 339 {
0ede8eca
RH
340 /* 32-bit values must be sign-extended to 64 bits
341 even if the base data type is unsigned. */
df4df182 342 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
343 arg = value_cast (arg_type, arg);
344 }
345 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
346 {
df4df182 347 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
348 arg = value_cast (arg_type, arg);
349 }
350 break;
7b5e1cb3 351
c88e30c0
RH
352 case TYPE_CODE_FLT:
353 /* "float" arguments loaded in registers must be passed in
354 register format, aka "double". */
355 if (accumulate_size < sizeof (arg_reg_buffer)
356 && TYPE_LENGTH (arg_type) == 4)
357 {
27067745 358 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
359 arg = value_cast (arg_type, arg);
360 }
361 /* Tru64 5.1 has a 128-bit long double, and passes this by
362 invisible reference. No one else uses this data type. */
363 else if (TYPE_LENGTH (arg_type) == 16)
364 {
365 /* Allocate aligned storage. */
366 sp = (sp & -16) - 16;
367
368 /* Write the real data into the stack. */
0fd88904 369 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
370
371 /* Construct the indirection. */
372 arg_type = lookup_pointer_type (arg_type);
373 arg = value_from_pointer (arg_type, sp);
374 }
375 break;
7b5e1cb3
RH
376
377 case TYPE_CODE_COMPLEX:
378 /* ??? The ABI says that complex values are passed as two
379 separate scalar values. This distinction only matters
380 for complex float. However, GCC does not implement this. */
381
382 /* Tru64 5.1 has a 128-bit long double, and passes this by
383 invisible reference. */
384 if (TYPE_LENGTH (arg_type) == 32)
385 {
386 /* Allocate aligned storage. */
387 sp = (sp & -16) - 16;
388
389 /* Write the real data into the stack. */
0fd88904 390 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
391
392 /* Construct the indirection. */
393 arg_type = lookup_pointer_type (arg_type);
394 arg = value_from_pointer (arg_type, sp);
395 }
396 break;
397
d2427a71
RH
398 default:
399 break;
c906108c 400 }
d2427a71
RH
401 m_arg->len = TYPE_LENGTH (arg_type);
402 m_arg->offset = accumulate_size;
403 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 404 m_arg->contents = value_contents (arg);
c906108c
SS
405 }
406
d2427a71
RH
407 /* Determine required argument register loads, loading an argument register
408 is expensive as it uses three ptrace calls. */
409 required_arg_regs = accumulate_size / 8;
410 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
411 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 412
d2427a71 413 /* Make room for the arguments on the stack. */
c88e30c0
RH
414 if (accumulate_size < sizeof(arg_reg_buffer))
415 accumulate_size = 0;
416 else
417 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 418 sp -= accumulate_size;
c906108c 419
c88e30c0 420 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 421 sp &= ~15;
c906108c 422
d2427a71
RH
423 /* `Push' arguments on the stack. */
424 for (i = nargs; m_arg--, --i >= 0;)
c906108c 425 {
f42a0a33 426 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
427 int offset = m_arg->offset;
428 int len = m_arg->len;
429
430 /* Copy the bytes destined for registers into arg_reg_buffer. */
431 if (offset < sizeof(arg_reg_buffer))
432 {
433 if (offset + len <= sizeof(arg_reg_buffer))
434 {
435 memcpy (arg_reg_buffer + offset, contents, len);
436 continue;
437 }
438 else
439 {
440 int tlen = sizeof(arg_reg_buffer) - offset;
441 memcpy (arg_reg_buffer + offset, contents, tlen);
442 offset += tlen;
443 contents += tlen;
444 len -= tlen;
445 }
446 }
447
448 /* Everything else goes to the stack. */
449 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 450 }
c88e30c0 451 if (struct_return)
e17a4113
UW
452 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
453 byte_order, struct_addr);
c906108c 454
d2427a71
RH
455 /* Load the argument registers. */
456 for (i = 0; i < required_arg_regs; i++)
457 {
09cc52fd
RH
458 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
459 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
460 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
461 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 462 }
c906108c 463
09cc52fd
RH
464 /* Finally, update the stack pointer. */
465 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
466
c88e30c0 467 return sp;
c906108c
SS
468}
469
5ec2bb99
RH
470/* Extract from REGCACHE the value about to be returned from a function
471 and copy it into VALBUF. */
d2427a71 472
dc129d82 473static void
5ec2bb99 474alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 475 gdb_byte *valbuf)
140f9984 476{
ac7936df 477 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 479 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
480 ULONGEST l;
481
482 switch (TYPE_CODE (valtype))
483 {
484 case TYPE_CODE_FLT:
744a8059 485 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
486 {
487 case 4:
488 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 489 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
490 break;
491
492 case 8:
493 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
494 break;
495
24064b5c
RH
496 case 16:
497 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
498 read_memory (l, valbuf, 16);
499 break;
500
5ec2bb99 501 default:
0963b4bd
MS
502 internal_error (__FILE__, __LINE__,
503 _("unknown floating point width"));
5ec2bb99
RH
504 }
505 break;
506
7b5e1cb3 507 case TYPE_CODE_COMPLEX:
744a8059 508 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
509 {
510 case 8:
511 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
512 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
513 break;
514
515 case 16:
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 517 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
518 break;
519
520 case 32:
a9933661 521 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
522 read_memory (l, valbuf, 32);
523 break;
524
525 default:
0963b4bd
MS
526 internal_error (__FILE__, __LINE__,
527 _("unknown floating point width"));
7b5e1cb3
RH
528 }
529 break;
530
5ec2bb99
RH
531 default:
532 /* Assume everything else degenerates to an integer. */
533 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 534 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
535 break;
536 }
140f9984
JT
537}
538
5ec2bb99
RH
539/* Insert the given value into REGCACHE as if it was being
540 returned by a function. */
0d056799 541
d2427a71 542static void
5ec2bb99 543alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 544 const gdb_byte *valbuf)
c906108c 545{
ac7936df 546 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 547 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 548 ULONGEST l;
d2427a71 549
5ec2bb99 550 switch (TYPE_CODE (valtype))
c906108c 551 {
5ec2bb99 552 case TYPE_CODE_FLT:
744a8059 553 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
554 {
555 case 4:
e17a4113 556 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
557 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
558 break;
5ec2bb99
RH
559
560 case 8:
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
562 break;
563
24064b5c
RH
564 case 16:
565 /* FIXME: 128-bit long doubles are returned like structures:
566 by writing into indirect storage provided by the caller
567 as the first argument. */
323e0a4a 568 error (_("Cannot set a 128-bit long double return value."));
24064b5c 569
5ec2bb99 570 default:
0963b4bd
MS
571 internal_error (__FILE__, __LINE__,
572 _("unknown floating point width"));
5ec2bb99
RH
573 }
574 break;
d2427a71 575
7b5e1cb3 576 case TYPE_CODE_COMPLEX:
744a8059 577 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
578 {
579 case 8:
580 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
581 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
582 break;
583
584 case 16:
585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 586 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
587 break;
588
589 case 32:
590 /* FIXME: 128-bit long doubles are returned like structures:
591 by writing into indirect storage provided by the caller
592 as the first argument. */
323e0a4a 593 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
594
595 default:
0963b4bd
MS
596 internal_error (__FILE__, __LINE__,
597 _("unknown floating point width"));
7b5e1cb3
RH
598 }
599 break;
600
5ec2bb99
RH
601 default:
602 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
603 /* 32-bit values must be sign-extended to 64 bits
604 even if the base data type is unsigned. */
744a8059 605 if (TYPE_LENGTH (valtype) == 4)
df4df182 606 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
607 l = unpack_long (valtype, valbuf);
608 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
609 break;
610 }
c906108c
SS
611}
612
9823e921 613static enum return_value_convention
6a3a010b 614alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
615 struct type *type, struct regcache *regcache,
616 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
617{
618 enum type_code code = TYPE_CODE (type);
619
620 if ((code == TYPE_CODE_STRUCT
621 || code == TYPE_CODE_UNION
622 || code == TYPE_CODE_ARRAY)
623 && gdbarch_tdep (gdbarch)->return_in_memory (type))
624 {
625 if (readbuf)
626 {
627 ULONGEST addr;
628 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
629 read_memory (addr, readbuf, TYPE_LENGTH (type));
630 }
631
632 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
633 }
634
635 if (readbuf)
636 alpha_extract_return_value (type, regcache, readbuf);
637 if (writebuf)
638 alpha_store_return_value (type, regcache, writebuf);
639
640 return RETURN_VALUE_REGISTER_CONVENTION;
641}
642
643static int
644alpha_return_in_memory_always (struct type *type)
645{
646 return 1;
647}
d2427a71 648\f
c906108c 649
04180708 650constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 651
04180708 652typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 653
d2427a71
RH
654\f
655/* This returns the PC of the first insn after the prologue.
656 If we can't find the prologue, then return 0. */
c906108c 657
d2427a71
RH
658CORE_ADDR
659alpha_after_prologue (CORE_ADDR pc)
c906108c 660{
d2427a71
RH
661 struct symtab_and_line sal;
662 CORE_ADDR func_addr, func_end;
c906108c 663
d2427a71 664 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 665 return 0;
c906108c 666
d2427a71
RH
667 sal = find_pc_line (func_addr, 0);
668 if (sal.end < func_end)
669 return sal.end;
c5aa993b 670
d2427a71
RH
671 /* The line after the prologue is after the end of the function. In this
672 case, tell the caller to find the prologue the hard way. */
673 return 0;
c906108c
SS
674}
675
d2427a71
RH
676/* Read an instruction from memory at PC, looking through breakpoints. */
677
678unsigned int
e17a4113 679alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 680{
e17a4113 681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 682 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 683 int res;
c5aa993b 684
d09f2c3f
PA
685 res = target_read_memory (pc, buf, sizeof (buf));
686 if (res != 0)
687 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 688 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 689}
c5aa993b 690
d2427a71
RH
691/* To skip prologues, I use this predicate. Returns either PC itself
692 if the code at PC does not look like a function prologue; otherwise
693 returns an address that (if we're lucky) follows the prologue. If
694 LENIENT, then we must skip everything which is involved in setting
695 up the frame (it's OK to skip more, just so long as we don't skip
696 anything which might clobber the registers which are being saved. */
c906108c 697
d2427a71 698static CORE_ADDR
6093d2eb 699alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
700{
701 unsigned long inst;
702 int offset;
703 CORE_ADDR post_prologue_pc;
e8d2d628 704 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 705
d2427a71
RH
706 /* Silently return the unaltered pc upon memory errors.
707 This could happen on OSF/1 if decode_line_1 tries to skip the
708 prologue for quickstarted shared library functions when the
709 shared library is not yet mapped in.
710 Reading target memory is slow over serial lines, so we perform
711 this check only if the target has shared libraries (which all
712 Alpha targets do). */
e8d2d628 713 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 714 return pc;
c906108c 715
d2427a71
RH
716 /* See if we can determine the end of the prologue via the symbol table.
717 If so, then return either PC, or the PC after the prologue, whichever
718 is greater. */
c906108c 719
d2427a71
RH
720 post_prologue_pc = alpha_after_prologue (pc);
721 if (post_prologue_pc != 0)
325fac50 722 return std::max (pc, post_prologue_pc);
c906108c 723
d2427a71
RH
724 /* Can't determine prologue from the symbol table, need to examine
725 instructions. */
dc1b0db2 726
0963b4bd 727 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
728 instruction and the instructions that save registers on the stack
729 or in the gcc frame. */
e8d2d628 730 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 731 {
e17a4113 732 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 733
d2427a71
RH
734 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
735 continue;
736 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
739 continue;
740 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
741 continue;
c906108c 742
d2427a71
RH
743 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
744 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
745 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
746 continue;
c906108c 747
d2427a71
RH
748 if (inst == 0x47de040f) /* bis sp,sp,fp */
749 continue;
750 if (inst == 0x47fe040f) /* bis zero,sp,fp */
751 continue;
c906108c 752
d2427a71 753 break;
c906108c 754 }
d2427a71
RH
755 return pc + offset;
756}
c906108c 757
46ad3598
UW
758\f
759static const int ldl_l_opcode = 0x2a;
760static const int ldq_l_opcode = 0x2b;
761static const int stl_c_opcode = 0x2e;
762static const int stq_c_opcode = 0x2f;
763
764/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
765 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
766 is found, attempt to step through it. A breakpoint is placed at the end of
767 the sequence. */
768
a0ff9e1a 769static std::vector<CORE_ADDR>
68f81d60 770alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
46ad3598 771{
46ad3598
UW
772 CORE_ADDR breaks[2] = {-1, -1};
773 CORE_ADDR loc = pc;
774 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
775 unsigned int insn = alpha_read_insn (gdbarch, loc);
776 int insn_count;
777 int index;
778 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
779 const int atomic_sequence_length = 16; /* Instruction sequence length. */
780 int bc_insn_count = 0; /* Conditional branch instruction count. */
781
782 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
783 if (INSN_OPCODE (insn) != ldl_l_opcode
784 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 785 return {};
46ad3598
UW
786
787 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
788 instructions. */
789 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
790 {
791 loc += ALPHA_INSN_SIZE;
792 insn = alpha_read_insn (gdbarch, loc);
793
794 /* Assume that there is at most one branch in the atomic
795 sequence. If a branch is found, put a breakpoint in
796 its destination address. */
797 if (INSN_OPCODE (insn) >= br_opcode)
798 {
799 int immediate = (insn & 0x001fffff) << 2;
800
801 immediate = (immediate ^ 0x400000) - 0x400000;
802
803 if (bc_insn_count >= 1)
a0ff9e1a
SM
804 return {}; /* More than one branch found, fallback
805 to the standard single-step code. */
46ad3598
UW
806
807 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
808
809 bc_insn_count++;
810 last_breakpoint++;
811 }
812
813 if (INSN_OPCODE (insn) == stl_c_opcode
814 || INSN_OPCODE (insn) == stq_c_opcode)
815 break;
816 }
817
818 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
819 if (INSN_OPCODE (insn) != stl_c_opcode
820 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 821 return {};
46ad3598
UW
822
823 closing_insn = loc;
824 loc += ALPHA_INSN_SIZE;
825
826 /* Insert a breakpoint right after the end of the atomic sequence. */
827 breaks[0] = loc;
828
829 /* Check for duplicated breakpoints. Check also for a breakpoint
830 placed (branch instruction's destination) anywhere in sequence. */
831 if (last_breakpoint
832 && (breaks[1] == breaks[0]
833 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
834 last_breakpoint = 0;
835
a0ff9e1a
SM
836 std::vector<CORE_ADDR> next_pcs;
837
46ad3598 838 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 839 next_pcs.push_back (breaks[index]);
46ad3598 840
93f9a11f 841 return next_pcs;
46ad3598
UW
842}
843
d2427a71
RH
844\f
845/* Figure out where the longjmp will land.
846 We expect the first arg to be a pointer to the jmp_buf structure from
847 which we extract the PC (JB_PC) that we will land at. The PC is copied
848 into the "pc". This routine returns true on success. */
c906108c
SS
849
850static int
60ade65d 851alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 852{
e17a4113
UW
853 struct gdbarch *gdbarch = get_frame_arch (frame);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 856 CORE_ADDR jb_addr;
2a1ce6ec 857 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 858
60ade65d 859 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 860
d2427a71
RH
861 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
862 raw_buffer, tdep->jb_elt_size))
c906108c 863 return 0;
d2427a71 864
e17a4113 865 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 866 return 1;
c906108c
SS
867}
868
d2427a71
RH
869\f
870/* Frame unwinder for signal trampolines. We use alpha tdep bits that
871 describe the location and shape of the sigcontext structure. After
872 that, all registers are in memory, so it's easy. */
873/* ??? Shouldn't we be able to do this generically, rather than with
874 OSABI data specific to Alpha? */
875
876struct alpha_sigtramp_unwind_cache
c906108c 877{
d2427a71
RH
878 CORE_ADDR sigcontext_addr;
879};
c906108c 880
d2427a71 881static struct alpha_sigtramp_unwind_cache *
6834c9bb 882alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
883 void **this_prologue_cache)
884{
885 struct alpha_sigtramp_unwind_cache *info;
886 struct gdbarch_tdep *tdep;
c906108c 887
d2427a71 888 if (*this_prologue_cache)
9a3c8263 889 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 890
d2427a71
RH
891 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
892 *this_prologue_cache = info;
c906108c 893
6834c9bb
JB
894 tdep = gdbarch_tdep (get_frame_arch (this_frame));
895 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 896
d2427a71 897 return info;
c906108c
SS
898}
899
138e7be5
MK
900/* Return the address of REGNUM in a sigtramp frame. Since this is
901 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 902
d2427a71 903static CORE_ADDR
be8626e0
MD
904alpha_sigtramp_register_address (struct gdbarch *gdbarch,
905 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 906{
be8626e0 907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
908
909 if (regnum >= 0 && regnum < 32)
910 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
911 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
912 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
913 else if (regnum == ALPHA_PC_REGNUM)
914 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 915
d2427a71 916 return 0;
c906108c
SS
917}
918
d2427a71
RH
919/* Given a GDB frame, determine the address of the calling function's
920 frame. This will be used to create a new GDB frame struct. */
140f9984 921
dc129d82 922static void
6834c9bb 923alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
924 void **this_prologue_cache,
925 struct frame_id *this_id)
c906108c 926{
6834c9bb 927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 929 struct alpha_sigtramp_unwind_cache *info
6834c9bb 930 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
931 CORE_ADDR stack_addr, code_addr;
932
933 /* If the OSABI couldn't locate the sigcontext, give up. */
934 if (info->sigcontext_addr == 0)
935 return;
936
937 /* If we have dynamic signal trampolines, find their start.
938 If we do not, then we must assume there is a symbol record
939 that can provide the start address. */
d2427a71 940 if (tdep->dynamic_sigtramp_offset)
c906108c 941 {
d2427a71 942 int offset;
6834c9bb 943 code_addr = get_frame_pc (this_frame);
e17a4113 944 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
945 if (offset >= 0)
946 code_addr -= offset;
c906108c 947 else
d2427a71 948 code_addr = 0;
c906108c 949 }
d2427a71 950 else
6834c9bb 951 code_addr = get_frame_func (this_frame);
c906108c 952
d2427a71 953 /* The stack address is trivially read from the sigcontext. */
be8626e0 954 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 955 ALPHA_SP_REGNUM);
6834c9bb 956 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 957 ALPHA_REGISTER_SIZE);
c906108c 958
d2427a71 959 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
960}
961
d2427a71 962/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 963
6834c9bb
JB
964static struct value *
965alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
966 void **this_prologue_cache, int regnum)
c906108c 967{
d2427a71 968 struct alpha_sigtramp_unwind_cache *info
6834c9bb 969 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 970 CORE_ADDR addr;
c906108c 971
d2427a71 972 if (info->sigcontext_addr != 0)
c906108c 973 {
d2427a71 974 /* All integer and fp registers are stored in memory. */
6834c9bb 975 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 976 info->sigcontext_addr, regnum);
d2427a71 977 if (addr != 0)
6834c9bb 978 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
979 }
980
d2427a71
RH
981 /* This extra register may actually be in the sigcontext, but our
982 current description of it in alpha_sigtramp_frame_unwind_cache
983 doesn't include it. Too bad. Fall back on whatever's in the
984 outer frame. */
6834c9bb 985 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 986}
c906108c 987
6834c9bb
JB
988static int
989alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
990 struct frame_info *this_frame,
991 void **this_prologue_cache)
d2427a71 992{
6834c9bb
JB
993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
994 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 995 const char *name;
c906108c 996
f2524b93
AC
997 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
998 look at tramp-frame.h and other simplier per-architecture
999 sigtramp unwinders. */
1000
1001 /* We shouldn't even bother to try if the OSABI didn't register a
1002 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1003 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1004 return 0;
ec7cc0e8 1005 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1006 return 0;
c906108c 1007
d2427a71
RH
1008 /* Otherwise we should be in a signal frame. */
1009 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1010 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1011 return 1;
c906108c 1012
6834c9bb 1013 return 0;
c906108c 1014}
6834c9bb
JB
1015
1016static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1017 SIGTRAMP_FRAME,
8fbca658 1018 default_frame_unwind_stop_reason,
6834c9bb
JB
1019 alpha_sigtramp_frame_this_id,
1020 alpha_sigtramp_frame_prev_register,
1021 NULL,
1022 alpha_sigtramp_frame_sniffer
1023};
1024
d2427a71 1025\f
c906108c 1026
d2427a71
RH
1027/* Heuristic_proc_start may hunt through the text section for a long
1028 time across a 2400 baud serial line. Allows the user to limit this
1029 search. */
44096aee 1030static int heuristic_fence_post = 0;
c906108c 1031
d2427a71
RH
1032/* Attempt to locate the start of the function containing PC. We assume that
1033 the previous function ends with an about_to_return insn. Not foolproof by
1034 any means, since gcc is happy to put the epilogue in the middle of a
1035 function. But we're guessing anyway... */
c906108c 1036
d2427a71 1037static CORE_ADDR
be8626e0 1038alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1039{
be8626e0 1040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1041 CORE_ADDR last_non_nop = pc;
1042 CORE_ADDR fence = pc - heuristic_fence_post;
1043 CORE_ADDR orig_pc = pc;
fbe586ae 1044 CORE_ADDR func;
d6b48e9c 1045 struct inferior *inf;
9e0b60a8 1046
d2427a71
RH
1047 if (pc == 0)
1048 return 0;
9e0b60a8 1049
fbe586ae
RH
1050 /* First see if we can find the start of the function from minimal
1051 symbol information. This can succeed with a binary that doesn't
1052 have debug info, but hasn't been stripped. */
1053 func = get_pc_function_start (pc);
1054 if (func)
1055 return func;
1056
44096aee 1057 if (heuristic_fence_post == -1
d2427a71
RH
1058 || fence < tdep->vm_min_address)
1059 fence = tdep->vm_min_address;
c906108c 1060
d2427a71
RH
1061 /* Search back for previous return; also stop at a 0, which might be
1062 seen for instance before the start of a code section. Don't include
1063 nops, since this usually indicates padding between functions. */
e8d2d628 1064 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1065 {
e17a4113 1066 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1067 switch (insn)
c906108c 1068 {
d2427a71
RH
1069 case 0: /* invalid insn */
1070 case 0x6bfa8001: /* ret $31,($26),1 */
1071 return last_non_nop;
1072
1073 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1074 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1075 break;
1076
1077 default:
1078 last_non_nop = pc;
1079 break;
c906108c 1080 }
d2427a71 1081 }
c906108c 1082
d6b48e9c
PA
1083 inf = current_inferior ();
1084
d2427a71
RH
1085 /* It's not clear to me why we reach this point when stopping quietly,
1086 but with this test, at least we don't print out warnings for every
1087 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1088 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1089 {
1090 static int blurb_printed = 0;
c906108c 1091
d2427a71 1092 if (fence == tdep->vm_min_address)
323e0a4a 1093 warning (_("Hit beginning of text section without finding \
5af949e3 1094enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1095 else
323e0a4a 1096 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1097enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1098
d2427a71
RH
1099 if (!blurb_printed)
1100 {
323e0a4a 1101 printf_filtered (_("\
d2427a71
RH
1102This warning occurs if you are debugging a function without any symbols\n\
1103(for example, in a stripped executable). In that case, you may wish to\n\
1104increase the size of the search with the `set heuristic-fence-post' command.\n\
1105\n\
1106Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1107(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1108 blurb_printed = 1;
1109 }
1110 }
c906108c 1111
d2427a71
RH
1112 return 0;
1113}
c906108c 1114
07ea644b
MD
1115/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1116 something about the traditional layout of alpha stack frames. */
1117
1118struct alpha_heuristic_unwind_cache
1119{
1120 CORE_ADDR vfp;
1121 CORE_ADDR start_pc;
1122 struct trad_frame_saved_reg *saved_regs;
1123 int return_reg;
1124};
1125
3a48e6ff
JG
1126/* If a probing loop sequence starts at PC, simulate it and compute
1127 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1128 FRAME_SIZE unchanged. */
1129
1130static void
1131alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1132 int *frame_size)
1133{
1134 CORE_ADDR cur_pc = *pc;
1135 int cur_frame_size = *frame_size;
1136 int nb_of_iterations, reg_index, reg_probe;
1137 unsigned int insn;
1138
1139 /* The following pattern is recognized as a probing loop:
1140
1141 lda REG_INDEX,NB_OF_ITERATIONS
1142 lda REG_PROBE,<immediate>(sp)
1143
1144 LOOP_START:
1145 stq zero,<immediate>(REG_PROBE)
1146 subq REG_INDEX,0x1,REG_INDEX
1147 lda REG_PROBE,<immediate>(REG_PROBE)
1148 bne REG_INDEX, LOOP_START
1149
1150 lda sp,<immediate>(REG_PROBE)
1151
1152 If anything different is found, the function returns without
1153 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1154 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1155
1156 /* lda REG_INDEX,NB_OF_ITERATIONS */
1157
1158 insn = alpha_read_insn (gdbarch, cur_pc);
1159 if (INSN_OPCODE (insn) != lda_opcode)
1160 return;
1161 reg_index = MEM_RA (insn);
1162 nb_of_iterations = MEM_DISP (insn);
1163
1164 /* lda REG_PROBE,<immediate>(sp) */
1165
1166 cur_pc += ALPHA_INSN_SIZE;
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode
1169 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1170 return;
1171 reg_probe = MEM_RA (insn);
1172 cur_frame_size -= MEM_DISP (insn);
1173
1174 /* stq zero,<immediate>(REG_PROBE) */
1175
1176 cur_pc += ALPHA_INSN_SIZE;
1177 insn = alpha_read_insn (gdbarch, cur_pc);
1178 if (INSN_OPCODE (insn) != stq_opcode
1179 || MEM_RA (insn) != 0x1f
1180 || MEM_RB (insn) != reg_probe)
1181 return;
1182
1183 /* subq REG_INDEX,0x1,REG_INDEX */
1184
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != subq_opcode
1188 || !OPR_HAS_IMMEDIATE (insn)
1189 || OPR_FUNCTION (insn) != subq_function
1190 || OPR_LIT(insn) != 1
1191 || OPR_RA (insn) != reg_index
1192 || OPR_RC (insn) != reg_index)
1193 return;
1194
1195 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1196
1197 cur_pc += ALPHA_INSN_SIZE;
1198 insn = alpha_read_insn (gdbarch, cur_pc);
1199 if (INSN_OPCODE (insn) != lda_opcode
1200 || MEM_RA (insn) != reg_probe
1201 || MEM_RB (insn) != reg_probe)
1202 return;
1203 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1204
1205 /* bne REG_INDEX, LOOP_START */
1206
1207 cur_pc += ALPHA_INSN_SIZE;
1208 insn = alpha_read_insn (gdbarch, cur_pc);
1209 if (INSN_OPCODE (insn) != bne_opcode
1210 || MEM_RA (insn) != reg_index)
1211 return;
1212
1213 /* lda sp,<immediate>(REG_PROBE) */
1214
1215 cur_pc += ALPHA_INSN_SIZE;
1216 insn = alpha_read_insn (gdbarch, cur_pc);
1217 if (INSN_OPCODE (insn) != lda_opcode
1218 || MEM_RA (insn) != ALPHA_SP_REGNUM
1219 || MEM_RB (insn) != reg_probe)
1220 return;
1221 cur_frame_size -= MEM_DISP (insn);
1222
1223 *pc = cur_pc;
1224 *frame_size = cur_frame_size;
1225}
1226
fbe586ae 1227static struct alpha_heuristic_unwind_cache *
6834c9bb 1228alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1229 void **this_prologue_cache,
1230 CORE_ADDR start_pc)
1231{
6834c9bb 1232 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1233 struct alpha_heuristic_unwind_cache *info;
1234 ULONGEST val;
1235 CORE_ADDR limit_pc, cur_pc;
1236 int frame_reg, frame_size, return_reg, reg;
c906108c 1237
d2427a71 1238 if (*this_prologue_cache)
9a3c8263 1239 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1240
d2427a71
RH
1241 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1242 *this_prologue_cache = info;
6834c9bb 1243 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1244
6834c9bb 1245 limit_pc = get_frame_pc (this_frame);
d2427a71 1246 if (start_pc == 0)
be8626e0 1247 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1248 info->start_pc = start_pc;
c906108c 1249
d2427a71
RH
1250 frame_reg = ALPHA_SP_REGNUM;
1251 frame_size = 0;
1252 return_reg = -1;
c906108c 1253
d2427a71
RH
1254 /* If we've identified a likely place to start, do code scanning. */
1255 if (start_pc != 0)
c5aa993b 1256 {
d2427a71
RH
1257 /* Limit the forward search to 50 instructions. */
1258 if (start_pc + 200 < limit_pc)
1259 limit_pc = start_pc + 200;
c5aa993b 1260
e8d2d628 1261 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1262 {
e17a4113 1263 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1264
d2427a71
RH
1265 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1266 {
1267 if (word & 0x8000)
1268 {
1269 /* Consider only the first stack allocation instruction
0963b4bd 1270 to contain the static size of the frame. */
d2427a71
RH
1271 if (frame_size == 0)
1272 frame_size = (-word) & 0xffff;
1273 }
1274 else
1275 {
1276 /* Exit loop if a positive stack adjustment is found, which
1277 usually means that the stack cleanup code in the function
1278 epilogue is reached. */
1279 break;
1280 }
1281 }
1282 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1283 {
1284 reg = (word & 0x03e00000) >> 21;
1285
d15bfd3a
AC
1286 /* Ignore this instruction if we have already encountered
1287 an instruction saving the same register earlier in the
1288 function code. The current instruction does not tell
1289 us where the original value upon function entry is saved.
1290 All it says is that the function we are scanning reused
1291 that register for some computation of its own, and is now
1292 saving its result. */
07ea644b 1293 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1294 continue;
1295
d2427a71
RH
1296 if (reg == 31)
1297 continue;
1298
1299 /* Do not compute the address where the register was saved yet,
1300 because we don't know yet if the offset will need to be
1301 relative to $sp or $fp (we can not compute the address
1302 relative to $sp if $sp is updated during the execution of
1303 the current subroutine, for instance when doing some alloca).
1304 So just store the offset for the moment, and compute the
1305 address later when we know whether this frame has a frame
1306 pointer or not. */
1307 /* Hack: temporarily add one, so that the offset is non-zero
1308 and we can tell which registers have save offsets below. */
07ea644b 1309 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1310
1311 /* Starting with OSF/1-3.2C, the system libraries are shipped
1312 without local symbols, but they still contain procedure
1313 descriptors without a symbol reference. GDB is currently
1314 unable to find these procedure descriptors and uses
1315 heuristic_proc_desc instead.
1316 As some low level compiler support routines (__div*, __add*)
1317 use a non-standard return address register, we have to
1318 add some heuristics to determine the return address register,
1319 or stepping over these routines will fail.
1320 Usually the return address register is the first register
1321 saved on the stack, but assembler optimization might
1322 rearrange the register saves.
1323 So we recognize only a few registers (t7, t9, ra) within
1324 the procedure prologue as valid return address registers.
1325 If we encounter a return instruction, we extract the
7a9dd1b2 1326 return address register from it.
d2427a71
RH
1327
1328 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1329 e.g. via the minimal symbol table, might obviate this
1330 hack. */
d2427a71
RH
1331 if (return_reg == -1
1332 && cur_pc < (start_pc + 80)
1333 && (reg == ALPHA_T7_REGNUM
1334 || reg == ALPHA_T9_REGNUM
1335 || reg == ALPHA_RA_REGNUM))
1336 return_reg = reg;
1337 }
1338 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1339 return_reg = (word >> 16) & 0x1f;
1340 else if (word == 0x47de040f) /* bis sp,sp,fp */
1341 frame_reg = ALPHA_GCC_FP_REGNUM;
1342 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1343 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1344
1345 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1346 }
c5aa993b 1347
d2427a71
RH
1348 /* If we haven't found a valid return address register yet, keep
1349 searching in the procedure prologue. */
1350 if (return_reg == -1)
1351 {
1352 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1353 {
e17a4113 1354 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1355
d2427a71
RH
1356 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1357 {
1358 reg = (word & 0x03e00000) >> 21;
1359 if (reg == ALPHA_T7_REGNUM
1360 || reg == ALPHA_T9_REGNUM
1361 || reg == ALPHA_RA_REGNUM)
1362 {
1363 return_reg = reg;
1364 break;
1365 }
1366 }
1367 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1368 {
1369 return_reg = (word >> 16) & 0x1f;
1370 break;
1371 }
85b32d22 1372
e8d2d628 1373 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1374 }
1375 }
c906108c 1376 }
c906108c 1377
d2427a71
RH
1378 /* Failing that, do default to the customary RA. */
1379 if (return_reg == -1)
1380 return_reg = ALPHA_RA_REGNUM;
1381 info->return_reg = return_reg;
f8453e34 1382
6834c9bb 1383 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1384 info->vfp = val + frame_size;
c906108c 1385
d2427a71
RH
1386 /* Convert offsets to absolute addresses. See above about adding
1387 one to the offsets to make all detected offsets non-zero. */
1388 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1389 if (trad_frame_addr_p(info->saved_regs, reg))
1390 info->saved_regs[reg].addr += val - 1;
d2427a71 1391
bfd66dd9
JB
1392 /* The stack pointer of the previous frame is computed by popping
1393 the current stack frame. */
1394 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1395 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1396
d2427a71 1397 return info;
c906108c 1398}
c906108c 1399
d2427a71
RH
1400/* Given a GDB frame, determine the address of the calling function's
1401 frame. This will be used to create a new GDB frame struct. */
1402
fbe586ae 1403static void
6834c9bb
JB
1404alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1405 void **this_prologue_cache,
1406 struct frame_id *this_id)
c906108c 1407{
d2427a71 1408 struct alpha_heuristic_unwind_cache *info
6834c9bb 1409 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1410
d2427a71 1411 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1412}
1413
d2427a71
RH
1414/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1415
6834c9bb
JB
1416static struct value *
1417alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1418 void **this_prologue_cache, int regnum)
c906108c 1419{
d2427a71 1420 struct alpha_heuristic_unwind_cache *info
6834c9bb 1421 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1422
1423 /* The PC of the previous frame is stored in the link register of
1424 the current frame. Frob regnum so that we pull the value from
1425 the correct place. */
1426 if (regnum == ALPHA_PC_REGNUM)
1427 regnum = info->return_reg;
1428
6834c9bb 1429 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1430}
1431
d2427a71
RH
1432static const struct frame_unwind alpha_heuristic_frame_unwind = {
1433 NORMAL_FRAME,
8fbca658 1434 default_frame_unwind_stop_reason,
d2427a71 1435 alpha_heuristic_frame_this_id,
6834c9bb
JB
1436 alpha_heuristic_frame_prev_register,
1437 NULL,
1438 default_frame_sniffer
d2427a71 1439};
c906108c 1440
fbe586ae 1441static CORE_ADDR
6834c9bb 1442alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1443 void **this_prologue_cache)
c906108c 1444{
d2427a71 1445 struct alpha_heuristic_unwind_cache *info
6834c9bb 1446 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1447
d2427a71 1448 return info->vfp;
c906108c
SS
1449}
1450
d2427a71
RH
1451static const struct frame_base alpha_heuristic_frame_base = {
1452 &alpha_heuristic_frame_unwind,
1453 alpha_heuristic_frame_base_address,
1454 alpha_heuristic_frame_base_address,
1455 alpha_heuristic_frame_base_address
1456};
1457
c906108c 1458/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1459 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1460
1461static void
eb4c3f4a
TT
1462reinit_frame_cache_sfunc (const char *args,
1463 int from_tty, struct cmd_list_element *c)
c906108c
SS
1464{
1465 reinit_frame_cache ();
1466}
1467
d2427a71 1468\f
d2427a71
RH
1469/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1470 dummy frame. The frame ID's base needs to match the TOS value
1471 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1472 breakpoint. */
d734c450 1473
d2427a71 1474static struct frame_id
6834c9bb 1475alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1476{
d2427a71 1477 ULONGEST base;
6834c9bb
JB
1478 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1479 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1480}
1481
dc129d82 1482static CORE_ADDR
d2427a71 1483alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1484{
d2427a71 1485 ULONGEST pc;
11411de3 1486 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1487 return pc;
accc6d1f
JT
1488}
1489
98a8e1e5
RH
1490\f
1491/* Helper routines for alpha*-nat.c files to move register sets to and
1492 from core files. The UNIQUE pointer is allowed to be NULL, as most
1493 targets don't supply this value in their core files. */
1494
1495void
390c1522
UW
1496alpha_supply_int_regs (struct regcache *regcache, int regno,
1497 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1498{
9a3c8263 1499 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1500 int i;
1501
1502 for (i = 0; i < 31; ++i)
1503 if (regno == i || regno == -1)
390c1522 1504 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1505
1506 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1507 {
1508 const gdb_byte zero[8] = { 0 };
1509
1510 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1511 }
98a8e1e5
RH
1512
1513 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1514 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1515
1516 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1517 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1518}
1519
1520void
390c1522
UW
1521alpha_fill_int_regs (const struct regcache *regcache,
1522 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1523{
9a3c8263 1524 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1525 int i;
1526
1527 for (i = 0; i < 31; ++i)
1528 if (regno == i || regno == -1)
390c1522 1529 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1530
1531 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1532 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1533
1534 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1535 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1536}
1537
1538void
390c1522
UW
1539alpha_supply_fp_regs (struct regcache *regcache, int regno,
1540 const void *f0_f30, const void *fpcr)
98a8e1e5 1541{
9a3c8263 1542 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1543 int i;
1544
1545 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1546 if (regno == i || regno == -1)
390c1522 1547 regcache_raw_supply (regcache, i,
2a1ce6ec 1548 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1549
1550 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1551 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1552}
1553
1554void
390c1522
UW
1555alpha_fill_fp_regs (const struct regcache *regcache,
1556 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1557{
9a3c8263 1558 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1559 int i;
1560
1561 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1562 if (regno == i || regno == -1)
390c1522 1563 regcache_raw_collect (regcache, i,
2a1ce6ec 1564 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1565
1566 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1567 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1568}
1569
d2427a71 1570\f
0de94d4b
JB
1571
1572/* Return nonzero if the G_floating register value in REG is equal to
1573 zero for FP control instructions. */
1574
1575static int
1576fp_register_zero_p (LONGEST reg)
1577{
1578 /* Check that all bits except the sign bit are zero. */
1579 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1580
1581 return ((reg & zero_mask) == 0);
1582}
1583
1584/* Return the value of the sign bit for the G_floating register
1585 value held in REG. */
1586
1587static int
1588fp_register_sign_bit (LONGEST reg)
1589{
1590 const LONGEST sign_mask = (LONGEST) 1 << 63;
1591
1592 return ((reg & sign_mask) != 0);
1593}
1594
ec32e4be
JT
1595/* alpha_software_single_step() is called just before we want to resume
1596 the inferior, if we want to single-step it but there is no hardware
1597 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1598 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1599
1600static CORE_ADDR
7ab2d087 1601alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1602{
ac7936df 1603 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1604 unsigned int insn;
1605 unsigned int op;
551e4f2e 1606 int regno;
ec32e4be
JT
1607 int offset;
1608 LONGEST rav;
1609
e17a4113 1610 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1611
0963b4bd 1612 /* Opcode is top 6 bits. */
ec32e4be
JT
1613 op = (insn >> 26) & 0x3f;
1614
1615 if (op == 0x1a)
1616 {
1617 /* Jump format: target PC is:
1618 RB & ~3 */
7ab2d087 1619 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1620 }
1621
1622 if ((op & 0x30) == 0x30)
1623 {
1624 /* Branch format: target PC is:
1625 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1626 if (op == 0x30 /* BR */
1627 || op == 0x34) /* BSR */
ec32e4be
JT
1628 {
1629 branch_taken:
1630 offset = (insn & 0x001fffff);
1631 if (offset & 0x00100000)
1632 offset |= 0xffe00000;
e8d2d628
MK
1633 offset *= ALPHA_INSN_SIZE;
1634 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1635 }
1636
1637 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1638 regno = (insn >> 21) & 0x1f;
1639 switch (op)
1640 {
1641 case 0x31: /* FBEQ */
1642 case 0x36: /* FBGE */
1643 case 0x37: /* FBGT */
1644 case 0x33: /* FBLE */
1645 case 0x32: /* FBLT */
1646 case 0x35: /* FBNE */
e17a4113 1647 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1648 }
1649
7ab2d087 1650 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1651
ec32e4be
JT
1652 switch (op)
1653 {
1654 case 0x38: /* BLBC */
1655 if ((rav & 1) == 0)
1656 goto branch_taken;
1657 break;
1658 case 0x3c: /* BLBS */
1659 if (rav & 1)
1660 goto branch_taken;
1661 break;
1662 case 0x39: /* BEQ */
1663 if (rav == 0)
1664 goto branch_taken;
1665 break;
1666 case 0x3d: /* BNE */
1667 if (rav != 0)
1668 goto branch_taken;
1669 break;
1670 case 0x3a: /* BLT */
1671 if (rav < 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3b: /* BLE */
1675 if (rav <= 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3f: /* BGT */
1679 if (rav > 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3e: /* BGE */
1683 if (rav >= 0)
1684 goto branch_taken;
1685 break;
d2427a71 1686
0de94d4b
JB
1687 /* Floating point branches. */
1688
1689 case 0x31: /* FBEQ */
1690 if (fp_register_zero_p (rav))
1691 goto branch_taken;
1692 break;
1693 case 0x36: /* FBGE */
1694 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1695 goto branch_taken;
1696 break;
1697 case 0x37: /* FBGT */
1698 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x33: /* FBLE */
1702 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x32: /* FBLT */
1706 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x35: /* FBNE */
1710 if (! fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
ec32e4be
JT
1713 }
1714 }
1715
1716 /* Not a branch or branch not taken; target PC is:
1717 pc + 4 */
e8d2d628 1718 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1719}
1720
a0ff9e1a 1721std::vector<CORE_ADDR>
f5ea389a 1722alpha_software_single_step (struct regcache *regcache)
ec32e4be 1723{
68f81d60
RH
1724 struct gdbarch *gdbarch = regcache->arch ();
1725
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727
1728 std::vector<CORE_ADDR> next_pcs
1729 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1730 if (!next_pcs.empty ())
1731 return next_pcs;
ec32e4be 1732
68f81d60
RH
1733 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1734 return {next_pc};
c906108c
SS
1735}
1736
dc129d82 1737\f
dc129d82
JT
1738/* Initialize the current architecture based on INFO. If possible, re-use an
1739 architecture from ARCHES, which is a list of architectures already created
1740 during this debugging session.
1741
1742 Called e.g. at program startup, when reading a core file, and when reading
1743 a binary file. */
1744
1745static struct gdbarch *
1746alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1747{
1748 struct gdbarch_tdep *tdep;
1749 struct gdbarch *gdbarch;
dc129d82 1750
dc129d82 1751 /* Find a candidate among extant architectures. */
4be87837
DJ
1752 arches = gdbarch_list_lookup_by_info (arches, &info);
1753 if (arches != NULL)
1754 return arches->gdbarch;
dc129d82 1755
cdd238da 1756 tdep = XCNEW (struct gdbarch_tdep);
dc129d82
JT
1757 gdbarch = gdbarch_alloc (&info, tdep);
1758
d2427a71
RH
1759 /* Lowest text address. This is used by heuristic_proc_start()
1760 to decide when to stop looking. */
594706e6 1761 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1762
36a6271d 1763 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1764 tdep->sigcontext_addr = NULL;
138e7be5
MK
1765 tdep->sc_pc_offset = 2 * 8;
1766 tdep->sc_regs_offset = 4 * 8;
1767 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1768
0963b4bd 1769 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1770
9823e921
RH
1771 tdep->return_in_memory = alpha_return_in_memory_always;
1772
dc129d82
JT
1773 /* Type sizes */
1774 set_gdbarch_short_bit (gdbarch, 16);
1775 set_gdbarch_int_bit (gdbarch, 32);
1776 set_gdbarch_long_bit (gdbarch, 64);
1777 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1778 set_gdbarch_wchar_bit (gdbarch, 64);
1779 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1780 set_gdbarch_float_bit (gdbarch, 32);
1781 set_gdbarch_double_bit (gdbarch, 64);
1782 set_gdbarch_long_double_bit (gdbarch, 64);
1783 set_gdbarch_ptr_bit (gdbarch, 64);
1784
1785 /* Register info */
1786 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1787 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1788 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1789 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1790
1791 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1792 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1793
1794 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1795 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1796
c483c494
RH
1797 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1798 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1799 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1800
615967cb
RH
1801 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1802
d2427a71 1803 /* Prologue heuristics. */
dc129d82
JT
1804 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1805
d2427a71 1806 /* Call info. */
dc129d82 1807
9823e921 1808 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1809
1810 /* Settings for calling functions in the inferior. */
c88e30c0 1811 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1812
1813 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1814 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1815
1816 /* Return the unwound PC value. */
1817 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1818
1819 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1820 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1821
04180708
YQ
1822 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1823 alpha_breakpoint::kind_from_pc);
1824 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1825 alpha_breakpoint::bp_from_kind);
e8d2d628 1826 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1827 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1828
46ad3598 1829 /* Handles single stepping of atomic sequences. */
68f81d60 1830 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
46ad3598 1831
44dffaac 1832 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1833 gdbarch_init_osabi (info, gdbarch);
44dffaac 1834
accc6d1f
JT
1835 /* Now that we have tuned the configuration, set a few final things
1836 based on what the OS ABI has told us. */
1837
1838 if (tdep->jb_pc >= 0)
1839 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1840
6834c9bb
JB
1841 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1842 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1843
d2427a71 1844 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1845
d2427a71 1846 return gdbarch;
dc129d82
JT
1847}
1848
baa490c4
RH
1849void
1850alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1851{
6834c9bb 1852 dwarf2_append_unwinders (gdbarch);
336d1bba 1853 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1854}
1855
c906108c 1856void
fba45db2 1857_initialize_alpha_tdep (void)
c906108c 1858{
c906108c 1859
d2427a71 1860 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1861
1862 /* Let the user set the fence post for heuristic_proc_start. */
1863
1864 /* We really would like to have both "0" and "unlimited" work, but
1865 command.c doesn't deal with that. So make it a var_zinteger
1866 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1867 /* We need to throw away the frame cache when we set this, since it
1868 might change our ability to get backtraces. */
1869 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1870 &heuristic_fence_post, _("\
1871Set the distance searched for the start of a function."), _("\
1872Show the distance searched for the start of a function."), _("\
c906108c
SS
1873If you are debugging a stripped executable, GDB needs to search through the\n\
1874program for the start of a function. This command sets the distance of the\n\
323e0a4a 1875search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1876 reinit_frame_cache_sfunc,
0963b4bd
MS
1877 NULL, /* FIXME: i18n: The distance searched for
1878 the start of a function is \"%d\". */
edefbb7c 1879 &setlist, &showlist);
c906108c 1880}
This page took 1.135969 seconds and 4 git commands to generate.