Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. |
0fd88904 AC |
2 | |
3 | Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, | |
4 | 2002, 2003, 2005 Free Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
615967cb | 24 | #include "doublest.h" |
c906108c | 25 | #include "frame.h" |
d2427a71 RH |
26 | #include "frame-unwind.h" |
27 | #include "frame-base.h" | |
baa490c4 | 28 | #include "dwarf2-frame.h" |
c906108c SS |
29 | #include "inferior.h" |
30 | #include "symtab.h" | |
31 | #include "value.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "gdbcore.h" | |
34 | #include "dis-asm.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "gdb_string.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
4e052eda | 39 | #include "regcache.h" |
615967cb | 40 | #include "reggroups.h" |
dc129d82 | 41 | #include "arch-utils.h" |
4be87837 | 42 | #include "osabi.h" |
fe898f56 | 43 | #include "block.h" |
7d9b040b | 44 | #include "infcall.h" |
dc129d82 JT |
45 | |
46 | #include "elf-bfd.h" | |
47 | ||
48 | #include "alpha-tdep.h" | |
49 | ||
c906108c | 50 | \f |
515921d7 JB |
51 | /* Return the name of the REGNO register. |
52 | ||
53 | An empty name corresponds to a register number that used to | |
54 | be used for a virtual register. That virtual register has | |
55 | been removed, but the index is still reserved to maintain | |
56 | compatibility with existing remote alpha targets. */ | |
57 | ||
fa88f677 | 58 | static const char * |
636a6dfc JT |
59 | alpha_register_name (int regno) |
60 | { | |
5ab84872 | 61 | static const char * const register_names[] = |
636a6dfc JT |
62 | { |
63 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
64 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
65 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
66 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
67 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
68 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
69 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
70 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
44d88583 | 71 | "pc", "", "unique" |
636a6dfc JT |
72 | }; |
73 | ||
74 | if (regno < 0) | |
5ab84872 | 75 | return NULL; |
636a6dfc | 76 | if (regno >= (sizeof(register_names) / sizeof(*register_names))) |
5ab84872 RH |
77 | return NULL; |
78 | return register_names[regno]; | |
636a6dfc | 79 | } |
d734c450 | 80 | |
dc129d82 | 81 | static int |
d734c450 JT |
82 | alpha_cannot_fetch_register (int regno) |
83 | { | |
515921d7 JB |
84 | return (regno == ALPHA_ZERO_REGNUM |
85 | || strlen (alpha_register_name (regno)) == 0); | |
d734c450 JT |
86 | } |
87 | ||
dc129d82 | 88 | static int |
d734c450 JT |
89 | alpha_cannot_store_register (int regno) |
90 | { | |
515921d7 JB |
91 | return (regno == ALPHA_ZERO_REGNUM |
92 | || strlen (alpha_register_name (regno)) == 0); | |
d734c450 JT |
93 | } |
94 | ||
dc129d82 | 95 | static struct type * |
c483c494 | 96 | alpha_register_type (struct gdbarch *gdbarch, int regno) |
0d056799 | 97 | { |
72667056 RH |
98 | if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM) |
99 | return builtin_type_void_data_ptr; | |
100 | if (regno == ALPHA_PC_REGNUM) | |
101 | return builtin_type_void_func_ptr; | |
102 | ||
103 | /* Don't need to worry about little vs big endian until | |
104 | some jerk tries to port to alpha-unicosmk. */ | |
b38b6be2 | 105 | if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31) |
72667056 RH |
106 | return builtin_type_ieee_double_little; |
107 | ||
108 | return builtin_type_int64; | |
0d056799 | 109 | } |
f8453e34 | 110 | |
615967cb RH |
111 | /* Is REGNUM a member of REGGROUP? */ |
112 | ||
113 | static int | |
114 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
115 | struct reggroup *group) | |
116 | { | |
117 | /* Filter out any registers eliminated, but whose regnum is | |
118 | reserved for backward compatibility, e.g. the vfp. */ | |
119 | if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0') | |
120 | return 0; | |
121 | ||
df4a182b RH |
122 | if (group == all_reggroup) |
123 | return 1; | |
124 | ||
125 | /* Zero should not be saved or restored. Technically it is a general | |
126 | register (just as $f31 would be a float if we represented it), but | |
127 | there's no point displaying it during "info regs", so leave it out | |
128 | of all groups except for "all". */ | |
129 | if (regnum == ALPHA_ZERO_REGNUM) | |
130 | return 0; | |
131 | ||
132 | /* All other registers are saved and restored. */ | |
133 | if (group == save_reggroup || group == restore_reggroup) | |
615967cb RH |
134 | return 1; |
135 | ||
136 | /* All other groups are non-overlapping. */ | |
137 | ||
138 | /* Since this is really a PALcode memory slot... */ | |
139 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
140 | return group == system_reggroup; | |
141 | ||
142 | /* Force the FPCR to be considered part of the floating point state. */ | |
143 | if (regnum == ALPHA_FPCR_REGNUM) | |
144 | return group == float_reggroup; | |
145 | ||
146 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
147 | return group == float_reggroup; | |
148 | else | |
149 | return group == general_reggroup; | |
150 | } | |
151 | ||
dc129d82 | 152 | static int |
f8453e34 JT |
153 | alpha_register_byte (int regno) |
154 | { | |
155 | return (regno * 8); | |
156 | } | |
157 | ||
c483c494 RH |
158 | /* The following represents exactly the conversion performed by |
159 | the LDS instruction. This applies to both single-precision | |
160 | floating point and 32-bit integers. */ | |
161 | ||
162 | static void | |
163 | alpha_lds (void *out, const void *in) | |
164 | { | |
165 | ULONGEST mem = extract_unsigned_integer (in, 4); | |
166 | ULONGEST frac = (mem >> 0) & 0x7fffff; | |
167 | ULONGEST sign = (mem >> 31) & 1; | |
168 | ULONGEST exp_msb = (mem >> 30) & 1; | |
169 | ULONGEST exp_low = (mem >> 23) & 0x7f; | |
170 | ULONGEST exp, reg; | |
171 | ||
172 | exp = (exp_msb << 10) | exp_low; | |
173 | if (exp_msb) | |
174 | { | |
175 | if (exp_low == 0x7f) | |
176 | exp = 0x7ff; | |
177 | } | |
178 | else | |
179 | { | |
180 | if (exp_low != 0x00) | |
181 | exp |= 0x380; | |
182 | } | |
183 | ||
184 | reg = (sign << 63) | (exp << 52) | (frac << 29); | |
185 | store_unsigned_integer (out, 8, reg); | |
186 | } | |
187 | ||
188 | /* Similarly, this represents exactly the conversion performed by | |
189 | the STS instruction. */ | |
190 | ||
39efb398 | 191 | static void |
c483c494 RH |
192 | alpha_sts (void *out, const void *in) |
193 | { | |
194 | ULONGEST reg, mem; | |
195 | ||
196 | reg = extract_unsigned_integer (in, 8); | |
197 | mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff); | |
198 | store_unsigned_integer (out, 4, mem); | |
199 | } | |
200 | ||
d2427a71 RH |
201 | /* The alpha needs a conversion between register and memory format if the |
202 | register is a floating point register and memory format is float, as the | |
203 | register format must be double or memory format is an integer with 4 | |
204 | bytes or less, as the representation of integers in floating point | |
205 | registers is different. */ | |
206 | ||
c483c494 | 207 | static int |
ff2e87ac | 208 | alpha_convert_register_p (int regno, struct type *type) |
14696584 | 209 | { |
c483c494 | 210 | return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31); |
14696584 RH |
211 | } |
212 | ||
d2427a71 | 213 | static void |
ff2e87ac AC |
214 | alpha_register_to_value (struct frame_info *frame, int regnum, |
215 | struct type *valtype, void *out) | |
5868c862 | 216 | { |
ff2e87ac AC |
217 | char in[MAX_REGISTER_SIZE]; |
218 | frame_register_read (frame, regnum, in); | |
c483c494 | 219 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 220 | { |
c483c494 RH |
221 | case 4: |
222 | alpha_sts (out, in); | |
223 | break; | |
224 | case 8: | |
225 | memcpy (out, in, 8); | |
226 | break; | |
227 | default: | |
323e0a4a | 228 | error (_("Cannot retrieve value from floating point register")); |
d2427a71 | 229 | } |
d2427a71 | 230 | } |
5868c862 | 231 | |
d2427a71 | 232 | static void |
ff2e87ac AC |
233 | alpha_value_to_register (struct frame_info *frame, int regnum, |
234 | struct type *valtype, const void *in) | |
d2427a71 | 235 | { |
ff2e87ac | 236 | char out[MAX_REGISTER_SIZE]; |
c483c494 | 237 | switch (TYPE_LENGTH (valtype)) |
d2427a71 | 238 | { |
c483c494 RH |
239 | case 4: |
240 | alpha_lds (out, in); | |
241 | break; | |
242 | case 8: | |
243 | memcpy (out, in, 8); | |
244 | break; | |
245 | default: | |
323e0a4a | 246 | error (_("Cannot store value in floating point register")); |
d2427a71 | 247 | } |
ff2e87ac | 248 | put_frame_register (frame, regnum, out); |
5868c862 JT |
249 | } |
250 | ||
d2427a71 RH |
251 | \f |
252 | /* The alpha passes the first six arguments in the registers, the rest on | |
c88e30c0 RH |
253 | the stack. The register arguments are stored in ARG_REG_BUFFER, and |
254 | then moved into the register file; this simplifies the passing of a | |
255 | large struct which extends from the registers to the stack, plus avoids | |
256 | three ptrace invocations per word. | |
257 | ||
258 | We don't bother tracking which register values should go in integer | |
259 | regs or fp regs; we load the same values into both. | |
260 | ||
d2427a71 RH |
261 | If the called function is returning a structure, the address of the |
262 | structure to be returned is passed as a hidden first argument. */ | |
c906108c | 263 | |
d2427a71 | 264 | static CORE_ADDR |
7d9b040b | 265 | alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
c88e30c0 RH |
266 | struct regcache *regcache, CORE_ADDR bp_addr, |
267 | int nargs, struct value **args, CORE_ADDR sp, | |
268 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 269 | { |
d2427a71 RH |
270 | int i; |
271 | int accumulate_size = struct_return ? 8 : 0; | |
d2427a71 | 272 | struct alpha_arg |
c906108c | 273 | { |
d2427a71 RH |
274 | char *contents; |
275 | int len; | |
276 | int offset; | |
277 | }; | |
c88e30c0 RH |
278 | struct alpha_arg *alpha_args |
279 | = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg)); | |
52f0bd74 | 280 | struct alpha_arg *m_arg; |
c88e30c0 | 281 | char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; |
d2427a71 | 282 | int required_arg_regs; |
7d9b040b | 283 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 284 | |
c88e30c0 RH |
285 | /* The ABI places the address of the called function in T12. */ |
286 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
287 | ||
288 | /* Set the return address register to point to the entry point | |
289 | of the program, where a breakpoint lies in wait. */ | |
290 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
291 | ||
292 | /* Lay out the arguments in memory. */ | |
d2427a71 RH |
293 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) |
294 | { | |
295 | struct value *arg = args[i]; | |
4991999e | 296 | struct type *arg_type = check_typedef (value_type (arg)); |
c88e30c0 | 297 | |
d2427a71 RH |
298 | /* Cast argument to long if necessary as the compiler does it too. */ |
299 | switch (TYPE_CODE (arg_type)) | |
c906108c | 300 | { |
d2427a71 RH |
301 | case TYPE_CODE_INT: |
302 | case TYPE_CODE_BOOL: | |
303 | case TYPE_CODE_CHAR: | |
304 | case TYPE_CODE_RANGE: | |
305 | case TYPE_CODE_ENUM: | |
0ede8eca | 306 | if (TYPE_LENGTH (arg_type) == 4) |
d2427a71 | 307 | { |
0ede8eca RH |
308 | /* 32-bit values must be sign-extended to 64 bits |
309 | even if the base data type is unsigned. */ | |
310 | arg_type = builtin_type_int32; | |
311 | arg = value_cast (arg_type, arg); | |
312 | } | |
313 | if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE) | |
314 | { | |
315 | arg_type = builtin_type_int64; | |
d2427a71 RH |
316 | arg = value_cast (arg_type, arg); |
317 | } | |
318 | break; | |
7b5e1cb3 | 319 | |
c88e30c0 RH |
320 | case TYPE_CODE_FLT: |
321 | /* "float" arguments loaded in registers must be passed in | |
322 | register format, aka "double". */ | |
323 | if (accumulate_size < sizeof (arg_reg_buffer) | |
324 | && TYPE_LENGTH (arg_type) == 4) | |
325 | { | |
eb4edb88 | 326 | arg_type = builtin_type_ieee_double_little; |
c88e30c0 RH |
327 | arg = value_cast (arg_type, arg); |
328 | } | |
329 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
330 | invisible reference. No one else uses this data type. */ | |
331 | else if (TYPE_LENGTH (arg_type) == 16) | |
332 | { | |
333 | /* Allocate aligned storage. */ | |
334 | sp = (sp & -16) - 16; | |
335 | ||
336 | /* Write the real data into the stack. */ | |
0fd88904 | 337 | write_memory (sp, value_contents (arg), 16); |
c88e30c0 RH |
338 | |
339 | /* Construct the indirection. */ | |
340 | arg_type = lookup_pointer_type (arg_type); | |
341 | arg = value_from_pointer (arg_type, sp); | |
342 | } | |
343 | break; | |
7b5e1cb3 RH |
344 | |
345 | case TYPE_CODE_COMPLEX: | |
346 | /* ??? The ABI says that complex values are passed as two | |
347 | separate scalar values. This distinction only matters | |
348 | for complex float. However, GCC does not implement this. */ | |
349 | ||
350 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
351 | invisible reference. */ | |
352 | if (TYPE_LENGTH (arg_type) == 32) | |
353 | { | |
354 | /* Allocate aligned storage. */ | |
355 | sp = (sp & -16) - 16; | |
356 | ||
357 | /* Write the real data into the stack. */ | |
0fd88904 | 358 | write_memory (sp, value_contents (arg), 32); |
7b5e1cb3 RH |
359 | |
360 | /* Construct the indirection. */ | |
361 | arg_type = lookup_pointer_type (arg_type); | |
362 | arg = value_from_pointer (arg_type, sp); | |
363 | } | |
364 | break; | |
365 | ||
d2427a71 RH |
366 | default: |
367 | break; | |
c906108c | 368 | } |
d2427a71 RH |
369 | m_arg->len = TYPE_LENGTH (arg_type); |
370 | m_arg->offset = accumulate_size; | |
371 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
0fd88904 | 372 | m_arg->contents = value_contents_writeable (arg); |
c906108c SS |
373 | } |
374 | ||
d2427a71 RH |
375 | /* Determine required argument register loads, loading an argument register |
376 | is expensive as it uses three ptrace calls. */ | |
377 | required_arg_regs = accumulate_size / 8; | |
378 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
379 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
c906108c | 380 | |
d2427a71 | 381 | /* Make room for the arguments on the stack. */ |
c88e30c0 RH |
382 | if (accumulate_size < sizeof(arg_reg_buffer)) |
383 | accumulate_size = 0; | |
384 | else | |
385 | accumulate_size -= sizeof(arg_reg_buffer); | |
d2427a71 | 386 | sp -= accumulate_size; |
c906108c | 387 | |
c88e30c0 | 388 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ |
d2427a71 | 389 | sp &= ~15; |
c906108c | 390 | |
d2427a71 RH |
391 | /* `Push' arguments on the stack. */ |
392 | for (i = nargs; m_arg--, --i >= 0;) | |
c906108c | 393 | { |
c88e30c0 RH |
394 | char *contents = m_arg->contents; |
395 | int offset = m_arg->offset; | |
396 | int len = m_arg->len; | |
397 | ||
398 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
399 | if (offset < sizeof(arg_reg_buffer)) | |
400 | { | |
401 | if (offset + len <= sizeof(arg_reg_buffer)) | |
402 | { | |
403 | memcpy (arg_reg_buffer + offset, contents, len); | |
404 | continue; | |
405 | } | |
406 | else | |
407 | { | |
408 | int tlen = sizeof(arg_reg_buffer) - offset; | |
409 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
410 | offset += tlen; | |
411 | contents += tlen; | |
412 | len -= tlen; | |
413 | } | |
414 | } | |
415 | ||
416 | /* Everything else goes to the stack. */ | |
417 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
c906108c | 418 | } |
c88e30c0 RH |
419 | if (struct_return) |
420 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr); | |
c906108c | 421 | |
d2427a71 RH |
422 | /* Load the argument registers. */ |
423 | for (i = 0; i < required_arg_regs; i++) | |
424 | { | |
09cc52fd RH |
425 | regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i, |
426 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
427 | regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i, | |
428 | arg_reg_buffer + i*ALPHA_REGISTER_SIZE); | |
d2427a71 | 429 | } |
c906108c | 430 | |
09cc52fd RH |
431 | /* Finally, update the stack pointer. */ |
432 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
433 | ||
c88e30c0 | 434 | return sp; |
c906108c SS |
435 | } |
436 | ||
5ec2bb99 RH |
437 | /* Extract from REGCACHE the value about to be returned from a function |
438 | and copy it into VALBUF. */ | |
d2427a71 | 439 | |
dc129d82 | 440 | static void |
5ec2bb99 RH |
441 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, |
442 | void *valbuf) | |
140f9984 | 443 | { |
7b5e1cb3 | 444 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
445 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
446 | ULONGEST l; | |
447 | ||
448 | switch (TYPE_CODE (valtype)) | |
449 | { | |
450 | case TYPE_CODE_FLT: | |
7b5e1cb3 | 451 | switch (length) |
5ec2bb99 RH |
452 | { |
453 | case 4: | |
454 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer); | |
c483c494 | 455 | alpha_sts (valbuf, raw_buffer); |
5ec2bb99 RH |
456 | break; |
457 | ||
458 | case 8: | |
459 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
460 | break; | |
461 | ||
24064b5c RH |
462 | case 16: |
463 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
464 | read_memory (l, valbuf, 16); | |
465 | break; | |
466 | ||
5ec2bb99 | 467 | default: |
323e0a4a | 468 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
469 | } |
470 | break; | |
471 | ||
7b5e1cb3 RH |
472 | case TYPE_CODE_COMPLEX: |
473 | switch (length) | |
474 | { | |
475 | case 8: | |
476 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
477 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
478 | break; | |
479 | ||
480 | case 16: | |
481 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf); | |
482 | regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1, | |
483 | (char *)valbuf + 8); | |
484 | break; | |
485 | ||
486 | case 32: | |
487 | regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l); | |
488 | read_memory (l, valbuf, 32); | |
489 | break; | |
490 | ||
491 | default: | |
323e0a4a | 492 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
493 | } |
494 | break; | |
495 | ||
5ec2bb99 RH |
496 | default: |
497 | /* Assume everything else degenerates to an integer. */ | |
498 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
7b5e1cb3 | 499 | store_unsigned_integer (valbuf, length, l); |
5ec2bb99 RH |
500 | break; |
501 | } | |
140f9984 JT |
502 | } |
503 | ||
5ec2bb99 RH |
504 | /* Extract from REGCACHE the address of a structure about to be returned |
505 | from a function. */ | |
506 | ||
507 | static CORE_ADDR | |
508 | alpha_extract_struct_value_address (struct regcache *regcache) | |
509 | { | |
510 | ULONGEST addr; | |
511 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
512 | return addr; | |
513 | } | |
514 | ||
515 | /* Insert the given value into REGCACHE as if it was being | |
516 | returned by a function. */ | |
0d056799 | 517 | |
d2427a71 | 518 | static void |
5ec2bb99 RH |
519 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, |
520 | const void *valbuf) | |
c906108c | 521 | { |
d2427a71 | 522 | int length = TYPE_LENGTH (valtype); |
5ec2bb99 RH |
523 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
524 | ULONGEST l; | |
d2427a71 | 525 | |
5ec2bb99 | 526 | switch (TYPE_CODE (valtype)) |
c906108c | 527 | { |
5ec2bb99 RH |
528 | case TYPE_CODE_FLT: |
529 | switch (length) | |
530 | { | |
531 | case 4: | |
c483c494 | 532 | alpha_lds (raw_buffer, valbuf); |
f75d70cc RH |
533 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer); |
534 | break; | |
5ec2bb99 RH |
535 | |
536 | case 8: | |
537 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
538 | break; | |
539 | ||
24064b5c RH |
540 | case 16: |
541 | /* FIXME: 128-bit long doubles are returned like structures: | |
542 | by writing into indirect storage provided by the caller | |
543 | as the first argument. */ | |
323e0a4a | 544 | error (_("Cannot set a 128-bit long double return value.")); |
24064b5c | 545 | |
5ec2bb99 | 546 | default: |
323e0a4a | 547 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
5ec2bb99 RH |
548 | } |
549 | break; | |
d2427a71 | 550 | |
7b5e1cb3 RH |
551 | case TYPE_CODE_COMPLEX: |
552 | switch (length) | |
553 | { | |
554 | case 8: | |
555 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
556 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
557 | break; | |
558 | ||
559 | case 16: | |
560 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf); | |
561 | regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1, | |
562 | (const char *)valbuf + 8); | |
563 | break; | |
564 | ||
565 | case 32: | |
566 | /* FIXME: 128-bit long doubles are returned like structures: | |
567 | by writing into indirect storage provided by the caller | |
568 | as the first argument. */ | |
323e0a4a | 569 | error (_("Cannot set a 128-bit long double return value.")); |
7b5e1cb3 RH |
570 | |
571 | default: | |
323e0a4a | 572 | internal_error (__FILE__, __LINE__, _("unknown floating point width")); |
7b5e1cb3 RH |
573 | } |
574 | break; | |
575 | ||
5ec2bb99 RH |
576 | default: |
577 | /* Assume everything else degenerates to an integer. */ | |
0ede8eca RH |
578 | /* 32-bit values must be sign-extended to 64 bits |
579 | even if the base data type is unsigned. */ | |
580 | if (length == 4) | |
581 | valtype = builtin_type_int32; | |
5ec2bb99 RH |
582 | l = unpack_long (valtype, valbuf); |
583 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
584 | break; | |
585 | } | |
c906108c SS |
586 | } |
587 | ||
d2427a71 RH |
588 | \f |
589 | static const unsigned char * | |
590 | alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
c906108c | 591 | { |
d2427a71 RH |
592 | static const unsigned char alpha_breakpoint[] = |
593 | { 0x80, 0, 0, 0 }; /* call_pal bpt */ | |
c906108c | 594 | |
d2427a71 RH |
595 | *lenptr = sizeof(alpha_breakpoint); |
596 | return (alpha_breakpoint); | |
597 | } | |
c906108c | 598 | |
d2427a71 RH |
599 | \f |
600 | /* This returns the PC of the first insn after the prologue. | |
601 | If we can't find the prologue, then return 0. */ | |
c906108c | 602 | |
d2427a71 RH |
603 | CORE_ADDR |
604 | alpha_after_prologue (CORE_ADDR pc) | |
c906108c | 605 | { |
d2427a71 RH |
606 | struct symtab_and_line sal; |
607 | CORE_ADDR func_addr, func_end; | |
c906108c | 608 | |
d2427a71 | 609 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c5aa993b | 610 | return 0; |
c906108c | 611 | |
d2427a71 RH |
612 | sal = find_pc_line (func_addr, 0); |
613 | if (sal.end < func_end) | |
614 | return sal.end; | |
c5aa993b | 615 | |
d2427a71 RH |
616 | /* The line after the prologue is after the end of the function. In this |
617 | case, tell the caller to find the prologue the hard way. */ | |
618 | return 0; | |
c906108c SS |
619 | } |
620 | ||
d2427a71 RH |
621 | /* Read an instruction from memory at PC, looking through breakpoints. */ |
622 | ||
623 | unsigned int | |
624 | alpha_read_insn (CORE_ADDR pc) | |
c906108c | 625 | { |
d2427a71 RH |
626 | char buf[4]; |
627 | int status; | |
c5aa993b | 628 | |
1f602b35 | 629 | status = deprecated_read_memory_nobpt (pc, buf, 4); |
d2427a71 RH |
630 | if (status) |
631 | memory_error (status, pc); | |
632 | return extract_unsigned_integer (buf, 4); | |
633 | } | |
c5aa993b | 634 | |
d2427a71 RH |
635 | /* To skip prologues, I use this predicate. Returns either PC itself |
636 | if the code at PC does not look like a function prologue; otherwise | |
637 | returns an address that (if we're lucky) follows the prologue. If | |
638 | LENIENT, then we must skip everything which is involved in setting | |
639 | up the frame (it's OK to skip more, just so long as we don't skip | |
640 | anything which might clobber the registers which are being saved. */ | |
c906108c | 641 | |
d2427a71 RH |
642 | static CORE_ADDR |
643 | alpha_skip_prologue (CORE_ADDR pc) | |
644 | { | |
645 | unsigned long inst; | |
646 | int offset; | |
647 | CORE_ADDR post_prologue_pc; | |
648 | char buf[4]; | |
c906108c | 649 | |
d2427a71 RH |
650 | /* Silently return the unaltered pc upon memory errors. |
651 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
652 | prologue for quickstarted shared library functions when the | |
653 | shared library is not yet mapped in. | |
654 | Reading target memory is slow over serial lines, so we perform | |
655 | this check only if the target has shared libraries (which all | |
656 | Alpha targets do). */ | |
657 | if (target_read_memory (pc, buf, 4)) | |
658 | return pc; | |
c906108c | 659 | |
d2427a71 RH |
660 | /* See if we can determine the end of the prologue via the symbol table. |
661 | If so, then return either PC, or the PC after the prologue, whichever | |
662 | is greater. */ | |
c906108c | 663 | |
d2427a71 RH |
664 | post_prologue_pc = alpha_after_prologue (pc); |
665 | if (post_prologue_pc != 0) | |
666 | return max (pc, post_prologue_pc); | |
c906108c | 667 | |
d2427a71 RH |
668 | /* Can't determine prologue from the symbol table, need to examine |
669 | instructions. */ | |
dc1b0db2 | 670 | |
d2427a71 RH |
671 | /* Skip the typical prologue instructions. These are the stack adjustment |
672 | instruction and the instructions that save registers on the stack | |
673 | or in the gcc frame. */ | |
674 | for (offset = 0; offset < 100; offset += 4) | |
675 | { | |
676 | inst = alpha_read_insn (pc + offset); | |
c906108c | 677 | |
d2427a71 RH |
678 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ |
679 | continue; | |
680 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
681 | continue; | |
682 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
683 | continue; | |
684 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
685 | continue; | |
c906108c | 686 | |
d2427a71 RH |
687 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ |
688 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
689 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
690 | continue; | |
c906108c | 691 | |
d2427a71 RH |
692 | if (inst == 0x47de040f) /* bis sp,sp,fp */ |
693 | continue; | |
694 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
695 | continue; | |
c906108c | 696 | |
d2427a71 | 697 | break; |
c906108c | 698 | } |
d2427a71 RH |
699 | return pc + offset; |
700 | } | |
c906108c | 701 | |
d2427a71 RH |
702 | \f |
703 | /* Figure out where the longjmp will land. | |
704 | We expect the first arg to be a pointer to the jmp_buf structure from | |
705 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
706 | into the "pc". This routine returns true on success. */ | |
c906108c SS |
707 | |
708 | static int | |
d2427a71 | 709 | alpha_get_longjmp_target (CORE_ADDR *pc) |
c906108c | 710 | { |
d2427a71 RH |
711 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
712 | CORE_ADDR jb_addr; | |
5ab84872 | 713 | char raw_buffer[ALPHA_REGISTER_SIZE]; |
c906108c | 714 | |
d2427a71 | 715 | jb_addr = read_register (ALPHA_A0_REGNUM); |
c906108c | 716 | |
d2427a71 RH |
717 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), |
718 | raw_buffer, tdep->jb_elt_size)) | |
c906108c | 719 | return 0; |
d2427a71 | 720 | |
7c0b4a20 | 721 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size); |
d2427a71 | 722 | return 1; |
c906108c SS |
723 | } |
724 | ||
d2427a71 RH |
725 | \f |
726 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
727 | describe the location and shape of the sigcontext structure. After | |
728 | that, all registers are in memory, so it's easy. */ | |
729 | /* ??? Shouldn't we be able to do this generically, rather than with | |
730 | OSABI data specific to Alpha? */ | |
731 | ||
732 | struct alpha_sigtramp_unwind_cache | |
c906108c | 733 | { |
d2427a71 RH |
734 | CORE_ADDR sigcontext_addr; |
735 | }; | |
c906108c | 736 | |
d2427a71 RH |
737 | static struct alpha_sigtramp_unwind_cache * |
738 | alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame, | |
739 | void **this_prologue_cache) | |
740 | { | |
741 | struct alpha_sigtramp_unwind_cache *info; | |
742 | struct gdbarch_tdep *tdep; | |
c906108c | 743 | |
d2427a71 RH |
744 | if (*this_prologue_cache) |
745 | return *this_prologue_cache; | |
c906108c | 746 | |
d2427a71 RH |
747 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); |
748 | *this_prologue_cache = info; | |
c906108c | 749 | |
d2427a71 RH |
750 | tdep = gdbarch_tdep (current_gdbarch); |
751 | info->sigcontext_addr = tdep->sigcontext_addr (next_frame); | |
c906108c | 752 | |
d2427a71 | 753 | return info; |
c906108c SS |
754 | } |
755 | ||
138e7be5 MK |
756 | /* Return the address of REGNUM in a sigtramp frame. Since this is |
757 | all arithmetic, it doesn't seem worthwhile to cache it. */ | |
c5aa993b | 758 | |
d2427a71 | 759 | static CORE_ADDR |
138e7be5 | 760 | alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum) |
d2427a71 | 761 | { |
138e7be5 MK |
762 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
763 | ||
764 | if (regnum >= 0 && regnum < 32) | |
765 | return sigcontext_addr + tdep->sc_regs_offset + regnum * 8; | |
766 | else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32) | |
767 | return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8; | |
768 | else if (regnum == ALPHA_PC_REGNUM) | |
769 | return sigcontext_addr + tdep->sc_pc_offset; | |
c5aa993b | 770 | |
d2427a71 | 771 | return 0; |
c906108c SS |
772 | } |
773 | ||
d2427a71 RH |
774 | /* Given a GDB frame, determine the address of the calling function's |
775 | frame. This will be used to create a new GDB frame struct. */ | |
140f9984 | 776 | |
dc129d82 | 777 | static void |
d2427a71 RH |
778 | alpha_sigtramp_frame_this_id (struct frame_info *next_frame, |
779 | void **this_prologue_cache, | |
780 | struct frame_id *this_id) | |
c906108c | 781 | { |
d2427a71 RH |
782 | struct alpha_sigtramp_unwind_cache *info |
783 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
784 | struct gdbarch_tdep *tdep; | |
785 | CORE_ADDR stack_addr, code_addr; | |
786 | ||
787 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
788 | if (info->sigcontext_addr == 0) | |
789 | return; | |
790 | ||
791 | /* If we have dynamic signal trampolines, find their start. | |
792 | If we do not, then we must assume there is a symbol record | |
793 | that can provide the start address. */ | |
794 | tdep = gdbarch_tdep (current_gdbarch); | |
795 | if (tdep->dynamic_sigtramp_offset) | |
c906108c | 796 | { |
d2427a71 RH |
797 | int offset; |
798 | code_addr = frame_pc_unwind (next_frame); | |
799 | offset = tdep->dynamic_sigtramp_offset (code_addr); | |
800 | if (offset >= 0) | |
801 | code_addr -= offset; | |
c906108c | 802 | else |
d2427a71 | 803 | code_addr = 0; |
c906108c | 804 | } |
d2427a71 RH |
805 | else |
806 | code_addr = frame_func_unwind (next_frame); | |
c906108c | 807 | |
d2427a71 RH |
808 | /* The stack address is trivially read from the sigcontext. */ |
809 | stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr, | |
810 | ALPHA_SP_REGNUM); | |
b21fd293 RH |
811 | stack_addr = get_frame_memory_unsigned (next_frame, stack_addr, |
812 | ALPHA_REGISTER_SIZE); | |
c906108c | 813 | |
d2427a71 | 814 | *this_id = frame_id_build (stack_addr, code_addr); |
c906108c SS |
815 | } |
816 | ||
d2427a71 | 817 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
c906108c | 818 | |
d2427a71 RH |
819 | static void |
820 | alpha_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
821 | void **this_prologue_cache, | |
822 | int regnum, int *optimizedp, | |
823 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
824 | int *realnump, void *bufferp) | |
c906108c | 825 | { |
d2427a71 RH |
826 | struct alpha_sigtramp_unwind_cache *info |
827 | = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
828 | CORE_ADDR addr; | |
c906108c | 829 | |
d2427a71 | 830 | if (info->sigcontext_addr != 0) |
c906108c | 831 | { |
d2427a71 RH |
832 | /* All integer and fp registers are stored in memory. */ |
833 | addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum); | |
834 | if (addr != 0) | |
c906108c | 835 | { |
d2427a71 RH |
836 | *optimizedp = 0; |
837 | *lvalp = lval_memory; | |
838 | *addrp = addr; | |
839 | *realnump = -1; | |
840 | if (bufferp != NULL) | |
b21fd293 | 841 | get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE); |
d2427a71 | 842 | return; |
c906108c | 843 | } |
c906108c SS |
844 | } |
845 | ||
d2427a71 RH |
846 | /* This extra register may actually be in the sigcontext, but our |
847 | current description of it in alpha_sigtramp_frame_unwind_cache | |
848 | doesn't include it. Too bad. Fall back on whatever's in the | |
849 | outer frame. */ | |
850 | frame_register (next_frame, regnum, optimizedp, lvalp, addrp, | |
851 | realnump, bufferp); | |
852 | } | |
c906108c | 853 | |
d2427a71 RH |
854 | static const struct frame_unwind alpha_sigtramp_frame_unwind = { |
855 | SIGTRAMP_FRAME, | |
856 | alpha_sigtramp_frame_this_id, | |
857 | alpha_sigtramp_frame_prev_register | |
858 | }; | |
c906108c | 859 | |
d2427a71 | 860 | static const struct frame_unwind * |
336d1bba | 861 | alpha_sigtramp_frame_sniffer (struct frame_info *next_frame) |
d2427a71 | 862 | { |
336d1bba | 863 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
d2427a71 | 864 | char *name; |
c906108c | 865 | |
f2524b93 AC |
866 | /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead |
867 | look at tramp-frame.h and other simplier per-architecture | |
868 | sigtramp unwinders. */ | |
869 | ||
870 | /* We shouldn't even bother to try if the OSABI didn't register a | |
871 | sigcontext_addr handler or pc_in_sigtramp hander. */ | |
872 | if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL) | |
873 | return NULL; | |
874 | if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL) | |
d2427a71 | 875 | return NULL; |
c906108c | 876 | |
d2427a71 RH |
877 | /* Otherwise we should be in a signal frame. */ |
878 | find_pc_partial_function (pc, &name, NULL, NULL); | |
f2524b93 | 879 | if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name)) |
d2427a71 | 880 | return &alpha_sigtramp_frame_unwind; |
c906108c | 881 | |
d2427a71 | 882 | return NULL; |
c906108c | 883 | } |
d2427a71 RH |
884 | \f |
885 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows | |
886 | something about the traditional layout of alpha stack frames. */ | |
c906108c | 887 | |
d2427a71 | 888 | struct alpha_heuristic_unwind_cache |
c906108c | 889 | { |
d2427a71 RH |
890 | CORE_ADDR *saved_regs; |
891 | CORE_ADDR vfp; | |
892 | CORE_ADDR start_pc; | |
893 | int return_reg; | |
894 | }; | |
c906108c | 895 | |
d2427a71 RH |
896 | /* Heuristic_proc_start may hunt through the text section for a long |
897 | time across a 2400 baud serial line. Allows the user to limit this | |
898 | search. */ | |
899 | static unsigned int heuristic_fence_post = 0; | |
c906108c | 900 | |
d2427a71 RH |
901 | /* Attempt to locate the start of the function containing PC. We assume that |
902 | the previous function ends with an about_to_return insn. Not foolproof by | |
903 | any means, since gcc is happy to put the epilogue in the middle of a | |
904 | function. But we're guessing anyway... */ | |
c906108c | 905 | |
d2427a71 RH |
906 | static CORE_ADDR |
907 | alpha_heuristic_proc_start (CORE_ADDR pc) | |
908 | { | |
909 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
910 | CORE_ADDR last_non_nop = pc; | |
911 | CORE_ADDR fence = pc - heuristic_fence_post; | |
912 | CORE_ADDR orig_pc = pc; | |
fbe586ae | 913 | CORE_ADDR func; |
9e0b60a8 | 914 | |
d2427a71 RH |
915 | if (pc == 0) |
916 | return 0; | |
9e0b60a8 | 917 | |
fbe586ae RH |
918 | /* First see if we can find the start of the function from minimal |
919 | symbol information. This can succeed with a binary that doesn't | |
920 | have debug info, but hasn't been stripped. */ | |
921 | func = get_pc_function_start (pc); | |
922 | if (func) | |
923 | return func; | |
924 | ||
d2427a71 RH |
925 | if (heuristic_fence_post == UINT_MAX |
926 | || fence < tdep->vm_min_address) | |
927 | fence = tdep->vm_min_address; | |
c906108c | 928 | |
d2427a71 RH |
929 | /* Search back for previous return; also stop at a 0, which might be |
930 | seen for instance before the start of a code section. Don't include | |
931 | nops, since this usually indicates padding between functions. */ | |
932 | for (pc -= 4; pc >= fence; pc -= 4) | |
c906108c | 933 | { |
d2427a71 RH |
934 | unsigned int insn = alpha_read_insn (pc); |
935 | switch (insn) | |
c906108c | 936 | { |
d2427a71 RH |
937 | case 0: /* invalid insn */ |
938 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
939 | return last_non_nop; | |
940 | ||
941 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
942 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
943 | break; | |
944 | ||
945 | default: | |
946 | last_non_nop = pc; | |
947 | break; | |
c906108c | 948 | } |
d2427a71 | 949 | } |
c906108c | 950 | |
d2427a71 RH |
951 | /* It's not clear to me why we reach this point when stopping quietly, |
952 | but with this test, at least we don't print out warnings for every | |
953 | child forked (eg, on decstation). 22apr93 rich@cygnus.com. */ | |
954 | if (stop_soon == NO_STOP_QUIETLY) | |
955 | { | |
956 | static int blurb_printed = 0; | |
c906108c | 957 | |
d2427a71 | 958 | if (fence == tdep->vm_min_address) |
323e0a4a AC |
959 | warning (_("Hit beginning of text section without finding \ |
960 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 961 | else |
323e0a4a AC |
962 | warning (_("Hit heuristic-fence-post without finding \ |
963 | enclosing function for address 0x%s"), paddr_nz (orig_pc)); | |
c906108c | 964 | |
d2427a71 RH |
965 | if (!blurb_printed) |
966 | { | |
323e0a4a | 967 | printf_filtered (_("\ |
d2427a71 RH |
968 | This warning occurs if you are debugging a function without any symbols\n\ |
969 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
970 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
971 | \n\ | |
972 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
323e0a4a | 973 | (more likely) you have encountered a bug in GDB.\n")); |
d2427a71 RH |
974 | blurb_printed = 1; |
975 | } | |
976 | } | |
c906108c | 977 | |
d2427a71 RH |
978 | return 0; |
979 | } | |
c906108c | 980 | |
fbe586ae | 981 | static struct alpha_heuristic_unwind_cache * |
d2427a71 RH |
982 | alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame, |
983 | void **this_prologue_cache, | |
984 | CORE_ADDR start_pc) | |
985 | { | |
986 | struct alpha_heuristic_unwind_cache *info; | |
987 | ULONGEST val; | |
988 | CORE_ADDR limit_pc, cur_pc; | |
989 | int frame_reg, frame_size, return_reg, reg; | |
c906108c | 990 | |
d2427a71 RH |
991 | if (*this_prologue_cache) |
992 | return *this_prologue_cache; | |
c906108c | 993 | |
d2427a71 RH |
994 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); |
995 | *this_prologue_cache = info; | |
996 | info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS); | |
c906108c | 997 | |
d2427a71 RH |
998 | limit_pc = frame_pc_unwind (next_frame); |
999 | if (start_pc == 0) | |
1000 | start_pc = alpha_heuristic_proc_start (limit_pc); | |
1001 | info->start_pc = start_pc; | |
c906108c | 1002 | |
d2427a71 RH |
1003 | frame_reg = ALPHA_SP_REGNUM; |
1004 | frame_size = 0; | |
1005 | return_reg = -1; | |
c906108c | 1006 | |
d2427a71 RH |
1007 | /* If we've identified a likely place to start, do code scanning. */ |
1008 | if (start_pc != 0) | |
c5aa993b | 1009 | { |
d2427a71 RH |
1010 | /* Limit the forward search to 50 instructions. */ |
1011 | if (start_pc + 200 < limit_pc) | |
1012 | limit_pc = start_pc + 200; | |
c5aa993b | 1013 | |
d2427a71 RH |
1014 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) |
1015 | { | |
1016 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1017 | |
d2427a71 RH |
1018 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ |
1019 | { | |
1020 | if (word & 0x8000) | |
1021 | { | |
1022 | /* Consider only the first stack allocation instruction | |
1023 | to contain the static size of the frame. */ | |
1024 | if (frame_size == 0) | |
1025 | frame_size = (-word) & 0xffff; | |
1026 | } | |
1027 | else | |
1028 | { | |
1029 | /* Exit loop if a positive stack adjustment is found, which | |
1030 | usually means that the stack cleanup code in the function | |
1031 | epilogue is reached. */ | |
1032 | break; | |
1033 | } | |
1034 | } | |
1035 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1036 | { | |
1037 | reg = (word & 0x03e00000) >> 21; | |
1038 | ||
d15bfd3a AC |
1039 | /* Ignore this instruction if we have already encountered |
1040 | an instruction saving the same register earlier in the | |
1041 | function code. The current instruction does not tell | |
1042 | us where the original value upon function entry is saved. | |
1043 | All it says is that the function we are scanning reused | |
1044 | that register for some computation of its own, and is now | |
1045 | saving its result. */ | |
1046 | if (info->saved_regs[reg]) | |
1047 | continue; | |
1048 | ||
d2427a71 RH |
1049 | if (reg == 31) |
1050 | continue; | |
1051 | ||
1052 | /* Do not compute the address where the register was saved yet, | |
1053 | because we don't know yet if the offset will need to be | |
1054 | relative to $sp or $fp (we can not compute the address | |
1055 | relative to $sp if $sp is updated during the execution of | |
1056 | the current subroutine, for instance when doing some alloca). | |
1057 | So just store the offset for the moment, and compute the | |
1058 | address later when we know whether this frame has a frame | |
1059 | pointer or not. */ | |
1060 | /* Hack: temporarily add one, so that the offset is non-zero | |
1061 | and we can tell which registers have save offsets below. */ | |
1062 | info->saved_regs[reg] = (word & 0xffff) + 1; | |
1063 | ||
1064 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1065 | without local symbols, but they still contain procedure | |
1066 | descriptors without a symbol reference. GDB is currently | |
1067 | unable to find these procedure descriptors and uses | |
1068 | heuristic_proc_desc instead. | |
1069 | As some low level compiler support routines (__div*, __add*) | |
1070 | use a non-standard return address register, we have to | |
1071 | add some heuristics to determine the return address register, | |
1072 | or stepping over these routines will fail. | |
1073 | Usually the return address register is the first register | |
1074 | saved on the stack, but assembler optimization might | |
1075 | rearrange the register saves. | |
1076 | So we recognize only a few registers (t7, t9, ra) within | |
1077 | the procedure prologue as valid return address registers. | |
1078 | If we encounter a return instruction, we extract the | |
1079 | the return address register from it. | |
1080 | ||
1081 | FIXME: Rewriting GDB to access the procedure descriptors, | |
1082 | e.g. via the minimal symbol table, might obviate this hack. */ | |
1083 | if (return_reg == -1 | |
1084 | && cur_pc < (start_pc + 80) | |
1085 | && (reg == ALPHA_T7_REGNUM | |
1086 | || reg == ALPHA_T9_REGNUM | |
1087 | || reg == ALPHA_RA_REGNUM)) | |
1088 | return_reg = reg; | |
1089 | } | |
1090 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1091 | return_reg = (word >> 16) & 0x1f; | |
1092 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1093 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1094 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1095 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1096 | } | |
c5aa993b | 1097 | |
d2427a71 RH |
1098 | /* If we haven't found a valid return address register yet, keep |
1099 | searching in the procedure prologue. */ | |
1100 | if (return_reg == -1) | |
1101 | { | |
1102 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1103 | { | |
1104 | unsigned int word = alpha_read_insn (cur_pc); | |
c5aa993b | 1105 | |
d2427a71 RH |
1106 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ |
1107 | { | |
1108 | reg = (word & 0x03e00000) >> 21; | |
1109 | if (reg == ALPHA_T7_REGNUM | |
1110 | || reg == ALPHA_T9_REGNUM | |
1111 | || reg == ALPHA_RA_REGNUM) | |
1112 | { | |
1113 | return_reg = reg; | |
1114 | break; | |
1115 | } | |
1116 | } | |
1117 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1118 | { | |
1119 | return_reg = (word >> 16) & 0x1f; | |
1120 | break; | |
1121 | } | |
85b32d22 RH |
1122 | |
1123 | cur_pc += 4; | |
d2427a71 RH |
1124 | } |
1125 | } | |
c906108c | 1126 | } |
c906108c | 1127 | |
d2427a71 RH |
1128 | /* Failing that, do default to the customary RA. */ |
1129 | if (return_reg == -1) | |
1130 | return_reg = ALPHA_RA_REGNUM; | |
1131 | info->return_reg = return_reg; | |
f8453e34 | 1132 | |
d2427a71 RH |
1133 | frame_unwind_unsigned_register (next_frame, frame_reg, &val); |
1134 | info->vfp = val + frame_size; | |
c906108c | 1135 | |
d2427a71 RH |
1136 | /* Convert offsets to absolute addresses. See above about adding |
1137 | one to the offsets to make all detected offsets non-zero. */ | |
1138 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
1139 | if (info->saved_regs[reg]) | |
1140 | info->saved_regs[reg] += val - 1; | |
1141 | ||
1142 | return info; | |
c906108c | 1143 | } |
c906108c | 1144 | |
d2427a71 RH |
1145 | /* Given a GDB frame, determine the address of the calling function's |
1146 | frame. This will be used to create a new GDB frame struct. */ | |
1147 | ||
fbe586ae | 1148 | static void |
d2427a71 RH |
1149 | alpha_heuristic_frame_this_id (struct frame_info *next_frame, |
1150 | void **this_prologue_cache, | |
1151 | struct frame_id *this_id) | |
c906108c | 1152 | { |
d2427a71 RH |
1153 | struct alpha_heuristic_unwind_cache *info |
1154 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1155 | |
d2427a71 | 1156 | *this_id = frame_id_build (info->vfp, info->start_pc); |
c906108c SS |
1157 | } |
1158 | ||
d2427a71 RH |
1159 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ |
1160 | ||
fbe586ae | 1161 | static void |
d2427a71 RH |
1162 | alpha_heuristic_frame_prev_register (struct frame_info *next_frame, |
1163 | void **this_prologue_cache, | |
1164 | int regnum, int *optimizedp, | |
1165 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1166 | int *realnump, void *bufferp) | |
c906108c | 1167 | { |
d2427a71 RH |
1168 | struct alpha_heuristic_unwind_cache *info |
1169 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
1170 | ||
1171 | /* The PC of the previous frame is stored in the link register of | |
1172 | the current frame. Frob regnum so that we pull the value from | |
1173 | the correct place. */ | |
1174 | if (regnum == ALPHA_PC_REGNUM) | |
1175 | regnum = info->return_reg; | |
1176 | ||
1177 | /* For all registers known to be saved in the current frame, | |
1178 | do the obvious and pull the value out. */ | |
1179 | if (info->saved_regs[regnum]) | |
c906108c | 1180 | { |
d2427a71 RH |
1181 | *optimizedp = 0; |
1182 | *lvalp = lval_memory; | |
1183 | *addrp = info->saved_regs[regnum]; | |
1184 | *realnump = -1; | |
1185 | if (bufferp != NULL) | |
b21fd293 | 1186 | get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE); |
c906108c SS |
1187 | return; |
1188 | } | |
1189 | ||
d2427a71 RH |
1190 | /* The stack pointer of the previous frame is computed by popping |
1191 | the current stack frame. */ | |
1192 | if (regnum == ALPHA_SP_REGNUM) | |
c906108c | 1193 | { |
d2427a71 RH |
1194 | *optimizedp = 0; |
1195 | *lvalp = not_lval; | |
1196 | *addrp = 0; | |
1197 | *realnump = -1; | |
1198 | if (bufferp != NULL) | |
1199 | store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp); | |
1200 | return; | |
c906108c | 1201 | } |
95b80706 | 1202 | |
d2427a71 | 1203 | /* Otherwise assume the next frame has the same register value. */ |
1cc759c3 JB |
1204 | frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp, |
1205 | realnump, bufferp); | |
95b80706 JT |
1206 | } |
1207 | ||
d2427a71 RH |
1208 | static const struct frame_unwind alpha_heuristic_frame_unwind = { |
1209 | NORMAL_FRAME, | |
1210 | alpha_heuristic_frame_this_id, | |
1211 | alpha_heuristic_frame_prev_register | |
1212 | }; | |
c906108c | 1213 | |
d2427a71 | 1214 | static const struct frame_unwind * |
336d1bba | 1215 | alpha_heuristic_frame_sniffer (struct frame_info *next_frame) |
c906108c | 1216 | { |
d2427a71 | 1217 | return &alpha_heuristic_frame_unwind; |
c906108c SS |
1218 | } |
1219 | ||
fbe586ae | 1220 | static CORE_ADDR |
d2427a71 RH |
1221 | alpha_heuristic_frame_base_address (struct frame_info *next_frame, |
1222 | void **this_prologue_cache) | |
c906108c | 1223 | { |
d2427a71 RH |
1224 | struct alpha_heuristic_unwind_cache *info |
1225 | = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0); | |
c906108c | 1226 | |
d2427a71 | 1227 | return info->vfp; |
c906108c SS |
1228 | } |
1229 | ||
d2427a71 RH |
1230 | static const struct frame_base alpha_heuristic_frame_base = { |
1231 | &alpha_heuristic_frame_unwind, | |
1232 | alpha_heuristic_frame_base_address, | |
1233 | alpha_heuristic_frame_base_address, | |
1234 | alpha_heuristic_frame_base_address | |
1235 | }; | |
1236 | ||
c906108c | 1237 | /* Just like reinit_frame_cache, but with the right arguments to be |
d2427a71 | 1238 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ |
c906108c SS |
1239 | |
1240 | static void | |
fba45db2 | 1241 | reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c) |
c906108c SS |
1242 | { |
1243 | reinit_frame_cache (); | |
1244 | } | |
1245 | ||
d2427a71 | 1246 | \f |
d2427a71 RH |
1247 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1248 | dummy frame. The frame ID's base needs to match the TOS value | |
1249 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1250 | breakpoint. */ | |
d734c450 | 1251 | |
d2427a71 RH |
1252 | static struct frame_id |
1253 | alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
0d056799 | 1254 | { |
d2427a71 RH |
1255 | ULONGEST base; |
1256 | frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base); | |
1257 | return frame_id_build (base, frame_pc_unwind (next_frame)); | |
0d056799 JT |
1258 | } |
1259 | ||
dc129d82 | 1260 | static CORE_ADDR |
d2427a71 | 1261 | alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
accc6d1f | 1262 | { |
d2427a71 RH |
1263 | ULONGEST pc; |
1264 | frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc); | |
1265 | return pc; | |
accc6d1f JT |
1266 | } |
1267 | ||
98a8e1e5 RH |
1268 | \f |
1269 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1270 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1271 | targets don't supply this value in their core files. */ | |
1272 | ||
1273 | void | |
1274 | alpha_supply_int_regs (int regno, const void *r0_r30, | |
1275 | const void *pc, const void *unique) | |
1276 | { | |
1277 | int i; | |
1278 | ||
1279 | for (i = 0; i < 31; ++i) | |
1280 | if (regno == i || regno == -1) | |
23a6d369 | 1281 | regcache_raw_supply (current_regcache, i, (const char *)r0_r30 + i*8); |
98a8e1e5 RH |
1282 | |
1283 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
23a6d369 | 1284 | regcache_raw_supply (current_regcache, ALPHA_ZERO_REGNUM, NULL); |
98a8e1e5 RH |
1285 | |
1286 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
23a6d369 | 1287 | regcache_raw_supply (current_regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1288 | |
1289 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
23a6d369 | 1290 | regcache_raw_supply (current_regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1291 | } |
1292 | ||
1293 | void | |
1294 | alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique) | |
1295 | { | |
1296 | int i; | |
1297 | ||
1298 | for (i = 0; i < 31; ++i) | |
1299 | if (regno == i || regno == -1) | |
822c9732 | 1300 | regcache_raw_collect (current_regcache, i, (char *)r0_r30 + i*8); |
98a8e1e5 RH |
1301 | |
1302 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
822c9732 | 1303 | regcache_raw_collect (current_regcache, ALPHA_PC_REGNUM, pc); |
98a8e1e5 RH |
1304 | |
1305 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
822c9732 | 1306 | regcache_raw_collect (current_regcache, ALPHA_UNIQUE_REGNUM, unique); |
98a8e1e5 RH |
1307 | } |
1308 | ||
1309 | void | |
1310 | alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr) | |
1311 | { | |
1312 | int i; | |
1313 | ||
1314 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1315 | if (regno == i || regno == -1) | |
23a6d369 AC |
1316 | regcache_raw_supply (current_regcache, i, |
1317 | (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
98a8e1e5 RH |
1318 | |
1319 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
23a6d369 | 1320 | regcache_raw_supply (current_regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1321 | } |
1322 | ||
1323 | void | |
1324 | alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr) | |
1325 | { | |
1326 | int i; | |
1327 | ||
1328 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1329 | if (regno == i || regno == -1) | |
822c9732 AC |
1330 | regcache_raw_collect (current_regcache, i, |
1331 | (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8); | |
98a8e1e5 RH |
1332 | |
1333 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
822c9732 | 1334 | regcache_raw_collect (current_regcache, ALPHA_FPCR_REGNUM, fpcr); |
98a8e1e5 RH |
1335 | } |
1336 | ||
d2427a71 | 1337 | \f |
ec32e4be JT |
1338 | /* alpha_software_single_step() is called just before we want to resume |
1339 | the inferior, if we want to single-step it but there is no hardware | |
1340 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
1341 | the target of the coming instruction and breakpoint it. | |
1342 | ||
1343 | single_step is also called just after the inferior stops. If we had | |
1344 | set up a simulated single-step, we undo our damage. */ | |
1345 | ||
1346 | static CORE_ADDR | |
1347 | alpha_next_pc (CORE_ADDR pc) | |
1348 | { | |
1349 | unsigned int insn; | |
1350 | unsigned int op; | |
1351 | int offset; | |
1352 | LONGEST rav; | |
1353 | ||
b21fd293 | 1354 | insn = alpha_read_insn (pc); |
ec32e4be JT |
1355 | |
1356 | /* Opcode is top 6 bits. */ | |
1357 | op = (insn >> 26) & 0x3f; | |
1358 | ||
1359 | if (op == 0x1a) | |
1360 | { | |
1361 | /* Jump format: target PC is: | |
1362 | RB & ~3 */ | |
1363 | return (read_register ((insn >> 16) & 0x1f) & ~3); | |
1364 | } | |
1365 | ||
1366 | if ((op & 0x30) == 0x30) | |
1367 | { | |
1368 | /* Branch format: target PC is: | |
1369 | (new PC) + (4 * sext(displacement)) */ | |
1370 | if (op == 0x30 || /* BR */ | |
1371 | op == 0x34) /* BSR */ | |
1372 | { | |
1373 | branch_taken: | |
1374 | offset = (insn & 0x001fffff); | |
1375 | if (offset & 0x00100000) | |
1376 | offset |= 0xffe00000; | |
1377 | offset *= 4; | |
1378 | return (pc + 4 + offset); | |
1379 | } | |
1380 | ||
1381 | /* Need to determine if branch is taken; read RA. */ | |
1382 | rav = (LONGEST) read_register ((insn >> 21) & 0x1f); | |
1383 | switch (op) | |
1384 | { | |
1385 | case 0x38: /* BLBC */ | |
1386 | if ((rav & 1) == 0) | |
1387 | goto branch_taken; | |
1388 | break; | |
1389 | case 0x3c: /* BLBS */ | |
1390 | if (rav & 1) | |
1391 | goto branch_taken; | |
1392 | break; | |
1393 | case 0x39: /* BEQ */ | |
1394 | if (rav == 0) | |
1395 | goto branch_taken; | |
1396 | break; | |
1397 | case 0x3d: /* BNE */ | |
1398 | if (rav != 0) | |
1399 | goto branch_taken; | |
1400 | break; | |
1401 | case 0x3a: /* BLT */ | |
1402 | if (rav < 0) | |
1403 | goto branch_taken; | |
1404 | break; | |
1405 | case 0x3b: /* BLE */ | |
1406 | if (rav <= 0) | |
1407 | goto branch_taken; | |
1408 | break; | |
1409 | case 0x3f: /* BGT */ | |
1410 | if (rav > 0) | |
1411 | goto branch_taken; | |
1412 | break; | |
1413 | case 0x3e: /* BGE */ | |
1414 | if (rav >= 0) | |
1415 | goto branch_taken; | |
1416 | break; | |
d2427a71 RH |
1417 | |
1418 | /* ??? Missing floating-point branches. */ | |
ec32e4be JT |
1419 | } |
1420 | } | |
1421 | ||
1422 | /* Not a branch or branch not taken; target PC is: | |
1423 | pc + 4 */ | |
1424 | return (pc + 4); | |
1425 | } | |
1426 | ||
1427 | void | |
1428 | alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1429 | { | |
1430 | static CORE_ADDR next_pc; | |
1431 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1432 | static binsn_quantum break_mem; | |
1433 | CORE_ADDR pc; | |
1434 | ||
1435 | if (insert_breakpoints_p) | |
1436 | { | |
1437 | pc = read_pc (); | |
1438 | next_pc = alpha_next_pc (pc); | |
1439 | ||
1440 | target_insert_breakpoint (next_pc, break_mem); | |
1441 | } | |
1442 | else | |
1443 | { | |
1444 | target_remove_breakpoint (next_pc, break_mem); | |
1445 | write_pc (next_pc); | |
1446 | } | |
c906108c SS |
1447 | } |
1448 | ||
dc129d82 | 1449 | \f |
dc129d82 JT |
1450 | /* Initialize the current architecture based on INFO. If possible, re-use an |
1451 | architecture from ARCHES, which is a list of architectures already created | |
1452 | during this debugging session. | |
1453 | ||
1454 | Called e.g. at program startup, when reading a core file, and when reading | |
1455 | a binary file. */ | |
1456 | ||
1457 | static struct gdbarch * | |
1458 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1459 | { | |
1460 | struct gdbarch_tdep *tdep; | |
1461 | struct gdbarch *gdbarch; | |
dc129d82 JT |
1462 | |
1463 | /* Try to determine the ABI of the object we are loading. */ | |
4be87837 | 1464 | if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN) |
dc129d82 | 1465 | { |
4be87837 DJ |
1466 | /* If it's an ECOFF file, assume it's OSF/1. */ |
1467 | if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour) | |
aff87235 | 1468 | info.osabi = GDB_OSABI_OSF1; |
dc129d82 JT |
1469 | } |
1470 | ||
1471 | /* Find a candidate among extant architectures. */ | |
4be87837 DJ |
1472 | arches = gdbarch_list_lookup_by_info (arches, &info); |
1473 | if (arches != NULL) | |
1474 | return arches->gdbarch; | |
dc129d82 JT |
1475 | |
1476 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1477 | gdbarch = gdbarch_alloc (&info, tdep); | |
1478 | ||
d2427a71 RH |
1479 | /* Lowest text address. This is used by heuristic_proc_start() |
1480 | to decide when to stop looking. */ | |
594706e6 | 1481 | tdep->vm_min_address = (CORE_ADDR) 0x120000000LL; |
d9b023cc | 1482 | |
36a6271d | 1483 | tdep->dynamic_sigtramp_offset = NULL; |
5868c862 | 1484 | tdep->sigcontext_addr = NULL; |
138e7be5 MK |
1485 | tdep->sc_pc_offset = 2 * 8; |
1486 | tdep->sc_regs_offset = 4 * 8; | |
1487 | tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8; | |
36a6271d | 1488 | |
accc6d1f JT |
1489 | tdep->jb_pc = -1; /* longjmp support not enabled by default */ |
1490 | ||
dc129d82 JT |
1491 | /* Type sizes */ |
1492 | set_gdbarch_short_bit (gdbarch, 16); | |
1493 | set_gdbarch_int_bit (gdbarch, 32); | |
1494 | set_gdbarch_long_bit (gdbarch, 64); | |
1495 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1496 | set_gdbarch_float_bit (gdbarch, 32); | |
1497 | set_gdbarch_double_bit (gdbarch, 64); | |
1498 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1499 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1500 | ||
1501 | /* Register info */ | |
1502 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1503 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
dc129d82 JT |
1504 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); |
1505 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1506 | ||
1507 | set_gdbarch_register_name (gdbarch, alpha_register_name); | |
9c04cab7 | 1508 | set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte); |
c483c494 | 1509 | set_gdbarch_register_type (gdbarch, alpha_register_type); |
dc129d82 JT |
1510 | |
1511 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1512 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1513 | ||
c483c494 RH |
1514 | set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p); |
1515 | set_gdbarch_register_to_value (gdbarch, alpha_register_to_value); | |
1516 | set_gdbarch_value_to_register (gdbarch, alpha_value_to_register); | |
dc129d82 | 1517 | |
615967cb RH |
1518 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); |
1519 | ||
d2427a71 | 1520 | /* Prologue heuristics. */ |
dc129d82 JT |
1521 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); |
1522 | ||
5ef165c2 RH |
1523 | /* Disassembler. */ |
1524 | set_gdbarch_print_insn (gdbarch, print_insn_alpha); | |
1525 | ||
d2427a71 | 1526 | /* Call info. */ |
dc129d82 | 1527 | |
b5622e8d | 1528 | set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention); |
5ec2bb99 RH |
1529 | set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value); |
1530 | set_gdbarch_store_return_value (gdbarch, alpha_store_return_value); | |
74055713 | 1531 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address); |
dc129d82 JT |
1532 | |
1533 | /* Settings for calling functions in the inferior. */ | |
c88e30c0 | 1534 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); |
d2427a71 RH |
1535 | |
1536 | /* Methods for saving / extracting a dummy frame's ID. */ | |
1537 | set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id); | |
d2427a71 RH |
1538 | |
1539 | /* Return the unwound PC value. */ | |
1540 | set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc); | |
dc129d82 JT |
1541 | |
1542 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
36a6271d | 1543 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); |
dc129d82 | 1544 | |
95b80706 | 1545 | set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc); |
dc129d82 | 1546 | set_gdbarch_decr_pc_after_break (gdbarch, 4); |
95b80706 | 1547 | |
44dffaac | 1548 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 1549 | gdbarch_init_osabi (info, gdbarch); |
44dffaac | 1550 | |
accc6d1f JT |
1551 | /* Now that we have tuned the configuration, set a few final things |
1552 | based on what the OS ABI has told us. */ | |
1553 | ||
1554 | if (tdep->jb_pc >= 0) | |
1555 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1556 | ||
336d1bba AC |
1557 | frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer); |
1558 | frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer); | |
dc129d82 | 1559 | |
d2427a71 | 1560 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); |
accc6d1f | 1561 | |
d2427a71 | 1562 | return gdbarch; |
dc129d82 JT |
1563 | } |
1564 | ||
baa490c4 RH |
1565 | void |
1566 | alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1567 | { | |
336d1bba AC |
1568 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); |
1569 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); | |
baa490c4 RH |
1570 | } |
1571 | ||
a78f21af AC |
1572 | extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */ |
1573 | ||
c906108c | 1574 | void |
fba45db2 | 1575 | _initialize_alpha_tdep (void) |
c906108c SS |
1576 | { |
1577 | struct cmd_list_element *c; | |
1578 | ||
d2427a71 | 1579 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); |
c906108c SS |
1580 | |
1581 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1582 | ||
1583 | /* We really would like to have both "0" and "unlimited" work, but | |
1584 | command.c doesn't deal with that. So make it a var_zinteger | |
1585 | because the user can always use "999999" or some such for unlimited. */ | |
edefbb7c AC |
1586 | /* We need to throw away the frame cache when we set this, since it |
1587 | might change our ability to get backtraces. */ | |
1588 | add_setshow_zinteger_cmd ("heuristic-fence-post", class_support, | |
7915a72c AC |
1589 | &heuristic_fence_post, _("\ |
1590 | Set the distance searched for the start of a function."), _("\ | |
1591 | Show the distance searched for the start of a function."), _("\ | |
c906108c SS |
1592 | If you are debugging a stripped executable, GDB needs to search through the\n\ |
1593 | program for the start of a function. This command sets the distance of the\n\ | |
323e0a4a | 1594 | search. The only need to set it is when debugging a stripped executable."), |
2c5b56ce | 1595 | reinit_frame_cache_sfunc, |
7915a72c | 1596 | NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */ |
edefbb7c | 1597 | &setlist, &showlist); |
c906108c | 1598 | } |