gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
28e7fd62 3 Copyright (C) 1993-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
615967cb 21#include "doublest.h"
c906108c 22#include "frame.h"
d2427a71
RH
23#include "frame-unwind.h"
24#include "frame-base.h"
baa490c4 25#include "dwarf2-frame.h"
c906108c
SS
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdb_string.h"
c5f0f3d0 35#include "linespec.h"
4e052eda 36#include "regcache.h"
615967cb 37#include "reggroups.h"
dc129d82 38#include "arch-utils.h"
4be87837 39#include "osabi.h"
fe898f56 40#include "block.h"
7d9b040b 41#include "infcall.h"
07ea644b 42#include "trad-frame.h"
dc129d82
JT
43
44#include "elf-bfd.h"
45
46#include "alpha-tdep.h"
47
3a48e6ff
JG
48/* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54/* Memory instruction format */
55#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57#define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60static const int lda_opcode = 0x08;
61static const int stq_opcode = 0x2d;
62
63/* Branch instruction format */
64#define BR_RA(insn) MEM_RA(insn)
65
46ad3598 66static const int br_opcode = 0x30;
3a48e6ff
JG
67static const int bne_opcode = 0x3d;
68
69/* Operate instruction format */
70#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72#define OPR_RA(insn) MEM_RA(insn)
73#define OPR_RC(insn) ((insn & 0x1f))
74#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76static const int subq_opcode = 0x10;
77static const int subq_function = 0x29;
78
c906108c 79\f
515921d7
JB
80/* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
0963b4bd 83 be used for a virtual register. That virtual register has
515921d7
JB
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
fa88f677 87static const char *
d93859e2 88alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 89{
5ab84872 90 static const char * const register_names[] =
636a6dfc
JT
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 100 "pc", "", "unique"
636a6dfc
JT
101 };
102
103 if (regno < 0)
5ab84872 104 return NULL;
e8d2d628 105 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
106 return NULL;
107 return register_names[regno];
636a6dfc 108}
d734c450 109
dc129d82 110static int
64a3914f 111alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 112{
4a1be8d2 113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
114}
115
dc129d82 116static int
64a3914f 117alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 118{
515921d7 119 return (regno == ALPHA_ZERO_REGNUM
64a3914f 120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
121}
122
dc129d82 123static struct type *
c483c494 124alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 125{
72667056 126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 127 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 128 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
b38b6be2 133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 134 return builtin_type (gdbarch)->builtin_double;
72667056 135
df4df182 136 return builtin_type (gdbarch)->builtin_int64;
0d056799 137}
f8453e34 138
615967cb
RH
139/* Is REGNUM a member of REGGROUP? */
140
141static int
142alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144{
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
149 return 0;
150
df4a182b
RH
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179}
180
c483c494
RH
181/* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185static void
e17a4113 186alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 187{
e17a4113
UW
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
e17a4113 209 store_unsigned_integer (out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
e17a4113 221 reg = extract_unsigned_integer (in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
e17a4113 223 store_unsigned_integer (out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes or less, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca
DJ
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) != 8);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
246 gdb_byte in[MAX_REGISTER_SIZE];
247
8dccd430
PA
248 /* Convert to TYPE. */
249 if (!get_frame_register_bytes (frame, regnum, 0,
250 register_size (gdbarch, regnum),
251 in, optimizedp, unavailablep))
252 return 0;
253
254 if (TYPE_LENGTH (valtype) == 4)
d2427a71 255 {
8dccd430
PA
256 alpha_sts (gdbarch, out, in);
257 *optimizedp = *unavailablep = 0;
258 return 1;
d2427a71 259 }
8dccd430
PA
260
261 error (_("Cannot retrieve value from floating point register"));
d2427a71 262}
5868c862 263
d2427a71 264static void
ff2e87ac 265alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 266 struct type *valtype, const gdb_byte *in)
d2427a71 267{
2a1ce6ec
MK
268 gdb_byte out[MAX_REGISTER_SIZE];
269
c483c494 270 switch (TYPE_LENGTH (valtype))
d2427a71 271 {
c483c494 272 case 4:
e17a4113 273 alpha_lds (get_frame_arch (frame), out, in);
c483c494 274 break;
c483c494 275 default:
323e0a4a 276 error (_("Cannot store value in floating point register"));
d2427a71 277 }
ff2e87ac 278 put_frame_register (frame, regnum, out);
5868c862
JT
279}
280
d2427a71
RH
281\f
282/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
d2427a71
RH
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
c906108c 293
d2427a71 294static CORE_ADDR
7d9b040b 295alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 int struct_return, CORE_ADDR struct_addr)
c906108c 299{
e17a4113 300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
301 int i;
302 int accumulate_size = struct_return ? 8 : 0;
d2427a71 303 struct alpha_arg
c906108c 304 {
f42a0a33 305 const gdb_byte *contents;
d2427a71
RH
306 int len;
307 int offset;
308 };
c88e30c0
RH
309 struct alpha_arg *alpha_args
310 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71
RH
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
0fd88904 368 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
0fd88904 389 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 403 m_arg->contents = value_contents (arg);
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
c88e30c0 450 if (struct_return)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
09cc52fd
RH
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
e17a4113
UW
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
479 ULONGEST l;
480
481 switch (TYPE_CODE (valtype))
482 {
483 case TYPE_CODE_FLT:
744a8059 484 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
485 {
486 case 4:
487 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 488 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
489 break;
490
491 case 8:
492 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 break;
494
24064b5c
RH
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
5ec2bb99 500 default:
0963b4bd
MS
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
5ec2bb99
RH
503 }
504 break;
505
7b5e1cb3 506 case TYPE_CODE_COMPLEX:
744a8059 507 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
517 break;
518
519 case 32:
520 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
0963b4bd
MS
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
7b5e1cb3
RH
527 }
528 break;
529
5ec2bb99
RH
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
534 break;
535 }
140f9984
JT
536}
537
5ec2bb99
RH
538/* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
0d056799 540
d2427a71 541static void
5ec2bb99 542alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 543 const gdb_byte *valbuf)
c906108c 544{
df4df182 545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2a1ce6ec 546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 547 ULONGEST l;
d2427a71 548
5ec2bb99 549 switch (TYPE_CODE (valtype))
c906108c 550 {
5ec2bb99 551 case TYPE_CODE_FLT:
744a8059 552 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
553 {
554 case 4:
e17a4113 555 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 break;
5ec2bb99
RH
558
559 case 8:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 break;
562
24064b5c
RH
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
323e0a4a 567 error (_("Cannot set a 128-bit long double return value."));
24064b5c 568
5ec2bb99 569 default:
0963b4bd
MS
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
5ec2bb99
RH
572 }
573 break;
d2427a71 574
7b5e1cb3 575 case TYPE_CODE_COMPLEX:
744a8059 576 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
323e0a4a 592 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
593
594 default:
0963b4bd
MS
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
7b5e1cb3
RH
597 }
598 break;
599
5ec2bb99
RH
600 default:
601 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
744a8059 604 if (TYPE_LENGTH (valtype) == 4)
df4df182 605 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
c906108c
SS
610}
611
9823e921 612static enum return_value_convention
6a3a010b 613alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
616{
617 enum type_code code = TYPE_CODE (type);
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640}
641
642static int
643alpha_return_in_memory_always (struct type *type)
644{
645 return 1;
646}
d2427a71 647\f
2a1ce6ec 648static const gdb_byte *
67d57894 649alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 650{
2a1ce6ec 651 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 652
2a1ce6ec
MK
653 *len = sizeof(break_insn);
654 return break_insn;
d2427a71 655}
c906108c 656
d2427a71
RH
657\f
658/* This returns the PC of the first insn after the prologue.
659 If we can't find the prologue, then return 0. */
c906108c 660
d2427a71
RH
661CORE_ADDR
662alpha_after_prologue (CORE_ADDR pc)
c906108c 663{
d2427a71
RH
664 struct symtab_and_line sal;
665 CORE_ADDR func_addr, func_end;
c906108c 666
d2427a71 667 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 668 return 0;
c906108c 669
d2427a71
RH
670 sal = find_pc_line (func_addr, 0);
671 if (sal.end < func_end)
672 return sal.end;
c5aa993b 673
d2427a71
RH
674 /* The line after the prologue is after the end of the function. In this
675 case, tell the caller to find the prologue the hard way. */
676 return 0;
c906108c
SS
677}
678
d2427a71
RH
679/* Read an instruction from memory at PC, looking through breakpoints. */
680
681unsigned int
e17a4113 682alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 683{
e17a4113 684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 685 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 686 int status;
c5aa993b 687
8defab1a 688 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
689 if (status)
690 memory_error (status, pc);
e17a4113 691 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 692}
c5aa993b 693
d2427a71
RH
694/* To skip prologues, I use this predicate. Returns either PC itself
695 if the code at PC does not look like a function prologue; otherwise
696 returns an address that (if we're lucky) follows the prologue. If
697 LENIENT, then we must skip everything which is involved in setting
698 up the frame (it's OK to skip more, just so long as we don't skip
699 anything which might clobber the registers which are being saved. */
c906108c 700
d2427a71 701static CORE_ADDR
6093d2eb 702alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
703{
704 unsigned long inst;
705 int offset;
706 CORE_ADDR post_prologue_pc;
e8d2d628 707 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 708
d2427a71
RH
709 /* Silently return the unaltered pc upon memory errors.
710 This could happen on OSF/1 if decode_line_1 tries to skip the
711 prologue for quickstarted shared library functions when the
712 shared library is not yet mapped in.
713 Reading target memory is slow over serial lines, so we perform
714 this check only if the target has shared libraries (which all
715 Alpha targets do). */
e8d2d628 716 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 717 return pc;
c906108c 718
d2427a71
RH
719 /* See if we can determine the end of the prologue via the symbol table.
720 If so, then return either PC, or the PC after the prologue, whichever
721 is greater. */
c906108c 722
d2427a71
RH
723 post_prologue_pc = alpha_after_prologue (pc);
724 if (post_prologue_pc != 0)
725 return max (pc, post_prologue_pc);
c906108c 726
d2427a71
RH
727 /* Can't determine prologue from the symbol table, need to examine
728 instructions. */
dc1b0db2 729
0963b4bd 730 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
731 instruction and the instructions that save registers on the stack
732 or in the gcc frame. */
e8d2d628 733 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 734 {
e17a4113 735 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 736
d2427a71
RH
737 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
738 continue;
739 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
740 continue;
741 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
742 continue;
743 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
744 continue;
c906108c 745
d2427a71
RH
746 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
747 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
748 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
749 continue;
c906108c 750
d2427a71
RH
751 if (inst == 0x47de040f) /* bis sp,sp,fp */
752 continue;
753 if (inst == 0x47fe040f) /* bis zero,sp,fp */
754 continue;
c906108c 755
d2427a71 756 break;
c906108c 757 }
d2427a71
RH
758 return pc + offset;
759}
c906108c 760
46ad3598
UW
761\f
762static const int ldl_l_opcode = 0x2a;
763static const int ldq_l_opcode = 0x2b;
764static const int stl_c_opcode = 0x2e;
765static const int stq_c_opcode = 0x2f;
766
767/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
768 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
769 is found, attempt to step through it. A breakpoint is placed at the end of
770 the sequence. */
771
693be288 772static int
46ad3598
UW
773alpha_deal_with_atomic_sequence (struct frame_info *frame)
774{
775 struct gdbarch *gdbarch = get_frame_arch (frame);
776 struct address_space *aspace = get_frame_address_space (frame);
777 CORE_ADDR pc = get_frame_pc (frame);
778 CORE_ADDR breaks[2] = {-1, -1};
779 CORE_ADDR loc = pc;
780 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
781 unsigned int insn = alpha_read_insn (gdbarch, loc);
782 int insn_count;
783 int index;
784 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
785 const int atomic_sequence_length = 16; /* Instruction sequence length. */
786 int bc_insn_count = 0; /* Conditional branch instruction count. */
787
788 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
789 if (INSN_OPCODE (insn) != ldl_l_opcode
790 && INSN_OPCODE (insn) != ldq_l_opcode)
791 return 0;
792
793 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
794 instructions. */
795 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
796 {
797 loc += ALPHA_INSN_SIZE;
798 insn = alpha_read_insn (gdbarch, loc);
799
800 /* Assume that there is at most one branch in the atomic
801 sequence. If a branch is found, put a breakpoint in
802 its destination address. */
803 if (INSN_OPCODE (insn) >= br_opcode)
804 {
805 int immediate = (insn & 0x001fffff) << 2;
806
807 immediate = (immediate ^ 0x400000) - 0x400000;
808
809 if (bc_insn_count >= 1)
810 return 0; /* More than one branch found, fallback
811 to the standard single-step code. */
812
813 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
814
815 bc_insn_count++;
816 last_breakpoint++;
817 }
818
819 if (INSN_OPCODE (insn) == stl_c_opcode
820 || INSN_OPCODE (insn) == stq_c_opcode)
821 break;
822 }
823
824 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
825 if (INSN_OPCODE (insn) != stl_c_opcode
826 && INSN_OPCODE (insn) != stq_c_opcode)
827 return 0;
828
829 closing_insn = loc;
830 loc += ALPHA_INSN_SIZE;
831
832 /* Insert a breakpoint right after the end of the atomic sequence. */
833 breaks[0] = loc;
834
835 /* Check for duplicated breakpoints. Check also for a breakpoint
836 placed (branch instruction's destination) anywhere in sequence. */
837 if (last_breakpoint
838 && (breaks[1] == breaks[0]
839 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
840 last_breakpoint = 0;
841
842 /* Effectively inserts the breakpoints. */
843 for (index = 0; index <= last_breakpoint; index++)
844 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
845
846 return 1;
847}
848
d2427a71
RH
849\f
850/* Figure out where the longjmp will land.
851 We expect the first arg to be a pointer to the jmp_buf structure from
852 which we extract the PC (JB_PC) that we will land at. The PC is copied
853 into the "pc". This routine returns true on success. */
c906108c
SS
854
855static int
60ade65d 856alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 857{
e17a4113
UW
858 struct gdbarch *gdbarch = get_frame_arch (frame);
859 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
860 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 861 CORE_ADDR jb_addr;
2a1ce6ec 862 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 863
60ade65d 864 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 865
d2427a71
RH
866 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
867 raw_buffer, tdep->jb_elt_size))
c906108c 868 return 0;
d2427a71 869
e17a4113 870 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 871 return 1;
c906108c
SS
872}
873
d2427a71
RH
874\f
875/* Frame unwinder for signal trampolines. We use alpha tdep bits that
876 describe the location and shape of the sigcontext structure. After
877 that, all registers are in memory, so it's easy. */
878/* ??? Shouldn't we be able to do this generically, rather than with
879 OSABI data specific to Alpha? */
880
881struct alpha_sigtramp_unwind_cache
c906108c 882{
d2427a71
RH
883 CORE_ADDR sigcontext_addr;
884};
c906108c 885
d2427a71 886static struct alpha_sigtramp_unwind_cache *
6834c9bb 887alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
888 void **this_prologue_cache)
889{
890 struct alpha_sigtramp_unwind_cache *info;
891 struct gdbarch_tdep *tdep;
c906108c 892
d2427a71
RH
893 if (*this_prologue_cache)
894 return *this_prologue_cache;
c906108c 895
d2427a71
RH
896 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
897 *this_prologue_cache = info;
c906108c 898
6834c9bb
JB
899 tdep = gdbarch_tdep (get_frame_arch (this_frame));
900 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 901
d2427a71 902 return info;
c906108c
SS
903}
904
138e7be5
MK
905/* Return the address of REGNUM in a sigtramp frame. Since this is
906 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 907
d2427a71 908static CORE_ADDR
be8626e0
MD
909alpha_sigtramp_register_address (struct gdbarch *gdbarch,
910 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 911{
be8626e0 912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
913
914 if (regnum >= 0 && regnum < 32)
915 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
916 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
917 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
918 else if (regnum == ALPHA_PC_REGNUM)
919 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 920
d2427a71 921 return 0;
c906108c
SS
922}
923
d2427a71
RH
924/* Given a GDB frame, determine the address of the calling function's
925 frame. This will be used to create a new GDB frame struct. */
140f9984 926
dc129d82 927static void
6834c9bb 928alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
929 void **this_prologue_cache,
930 struct frame_id *this_id)
c906108c 931{
6834c9bb 932 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 934 struct alpha_sigtramp_unwind_cache *info
6834c9bb 935 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
936 CORE_ADDR stack_addr, code_addr;
937
938 /* If the OSABI couldn't locate the sigcontext, give up. */
939 if (info->sigcontext_addr == 0)
940 return;
941
942 /* If we have dynamic signal trampolines, find their start.
943 If we do not, then we must assume there is a symbol record
944 that can provide the start address. */
d2427a71 945 if (tdep->dynamic_sigtramp_offset)
c906108c 946 {
d2427a71 947 int offset;
6834c9bb 948 code_addr = get_frame_pc (this_frame);
e17a4113 949 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
950 if (offset >= 0)
951 code_addr -= offset;
c906108c 952 else
d2427a71 953 code_addr = 0;
c906108c 954 }
d2427a71 955 else
6834c9bb 956 code_addr = get_frame_func (this_frame);
c906108c 957
d2427a71 958 /* The stack address is trivially read from the sigcontext. */
be8626e0 959 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 960 ALPHA_SP_REGNUM);
6834c9bb 961 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 962 ALPHA_REGISTER_SIZE);
c906108c 963
d2427a71 964 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
965}
966
d2427a71 967/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 968
6834c9bb
JB
969static struct value *
970alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
971 void **this_prologue_cache, int regnum)
c906108c 972{
d2427a71 973 struct alpha_sigtramp_unwind_cache *info
6834c9bb 974 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 975 CORE_ADDR addr;
c906108c 976
d2427a71 977 if (info->sigcontext_addr != 0)
c906108c 978 {
d2427a71 979 /* All integer and fp registers are stored in memory. */
6834c9bb 980 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 981 info->sigcontext_addr, regnum);
d2427a71 982 if (addr != 0)
6834c9bb 983 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
984 }
985
d2427a71
RH
986 /* This extra register may actually be in the sigcontext, but our
987 current description of it in alpha_sigtramp_frame_unwind_cache
988 doesn't include it. Too bad. Fall back on whatever's in the
989 outer frame. */
6834c9bb 990 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 991}
c906108c 992
6834c9bb
JB
993static int
994alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
995 struct frame_info *this_frame,
996 void **this_prologue_cache)
d2427a71 997{
6834c9bb
JB
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 1000 const char *name;
c906108c 1001
f2524b93
AC
1002 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1003 look at tramp-frame.h and other simplier per-architecture
1004 sigtramp unwinders. */
1005
1006 /* We shouldn't even bother to try if the OSABI didn't register a
1007 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1008 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1009 return 0;
ec7cc0e8 1010 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1011 return 0;
c906108c 1012
d2427a71
RH
1013 /* Otherwise we should be in a signal frame. */
1014 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1015 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1016 return 1;
c906108c 1017
6834c9bb 1018 return 0;
c906108c 1019}
6834c9bb
JB
1020
1021static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1022 SIGTRAMP_FRAME,
8fbca658 1023 default_frame_unwind_stop_reason,
6834c9bb
JB
1024 alpha_sigtramp_frame_this_id,
1025 alpha_sigtramp_frame_prev_register,
1026 NULL,
1027 alpha_sigtramp_frame_sniffer
1028};
1029
d2427a71 1030\f
c906108c 1031
d2427a71
RH
1032/* Heuristic_proc_start may hunt through the text section for a long
1033 time across a 2400 baud serial line. Allows the user to limit this
1034 search. */
1035static unsigned int heuristic_fence_post = 0;
c906108c 1036
d2427a71
RH
1037/* Attempt to locate the start of the function containing PC. We assume that
1038 the previous function ends with an about_to_return insn. Not foolproof by
1039 any means, since gcc is happy to put the epilogue in the middle of a
1040 function. But we're guessing anyway... */
c906108c 1041
d2427a71 1042static CORE_ADDR
be8626e0 1043alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1044{
be8626e0 1045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1046 CORE_ADDR last_non_nop = pc;
1047 CORE_ADDR fence = pc - heuristic_fence_post;
1048 CORE_ADDR orig_pc = pc;
fbe586ae 1049 CORE_ADDR func;
d6b48e9c 1050 struct inferior *inf;
9e0b60a8 1051
d2427a71
RH
1052 if (pc == 0)
1053 return 0;
9e0b60a8 1054
fbe586ae
RH
1055 /* First see if we can find the start of the function from minimal
1056 symbol information. This can succeed with a binary that doesn't
1057 have debug info, but hasn't been stripped. */
1058 func = get_pc_function_start (pc);
1059 if (func)
1060 return func;
1061
d2427a71
RH
1062 if (heuristic_fence_post == UINT_MAX
1063 || fence < tdep->vm_min_address)
1064 fence = tdep->vm_min_address;
c906108c 1065
d2427a71
RH
1066 /* Search back for previous return; also stop at a 0, which might be
1067 seen for instance before the start of a code section. Don't include
1068 nops, since this usually indicates padding between functions. */
e8d2d628 1069 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1070 {
e17a4113 1071 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1072 switch (insn)
c906108c 1073 {
d2427a71
RH
1074 case 0: /* invalid insn */
1075 case 0x6bfa8001: /* ret $31,($26),1 */
1076 return last_non_nop;
1077
1078 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1079 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1080 break;
1081
1082 default:
1083 last_non_nop = pc;
1084 break;
c906108c 1085 }
d2427a71 1086 }
c906108c 1087
d6b48e9c
PA
1088 inf = current_inferior ();
1089
d2427a71
RH
1090 /* It's not clear to me why we reach this point when stopping quietly,
1091 but with this test, at least we don't print out warnings for every
1092 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1093 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1094 {
1095 static int blurb_printed = 0;
c906108c 1096
d2427a71 1097 if (fence == tdep->vm_min_address)
323e0a4a 1098 warning (_("Hit beginning of text section without finding \
5af949e3 1099enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1100 else
323e0a4a 1101 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1102enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1103
d2427a71
RH
1104 if (!blurb_printed)
1105 {
323e0a4a 1106 printf_filtered (_("\
d2427a71
RH
1107This warning occurs if you are debugging a function without any symbols\n\
1108(for example, in a stripped executable). In that case, you may wish to\n\
1109increase the size of the search with the `set heuristic-fence-post' command.\n\
1110\n\
1111Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1112(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1113 blurb_printed = 1;
1114 }
1115 }
c906108c 1116
d2427a71
RH
1117 return 0;
1118}
c906108c 1119
07ea644b
MD
1120/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1121 something about the traditional layout of alpha stack frames. */
1122
1123struct alpha_heuristic_unwind_cache
1124{
1125 CORE_ADDR vfp;
1126 CORE_ADDR start_pc;
1127 struct trad_frame_saved_reg *saved_regs;
1128 int return_reg;
1129};
1130
3a48e6ff
JG
1131/* If a probing loop sequence starts at PC, simulate it and compute
1132 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1133 FRAME_SIZE unchanged. */
1134
1135static void
1136alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1137 int *frame_size)
1138{
1139 CORE_ADDR cur_pc = *pc;
1140 int cur_frame_size = *frame_size;
1141 int nb_of_iterations, reg_index, reg_probe;
1142 unsigned int insn;
1143
1144 /* The following pattern is recognized as a probing loop:
1145
1146 lda REG_INDEX,NB_OF_ITERATIONS
1147 lda REG_PROBE,<immediate>(sp)
1148
1149 LOOP_START:
1150 stq zero,<immediate>(REG_PROBE)
1151 subq REG_INDEX,0x1,REG_INDEX
1152 lda REG_PROBE,<immediate>(REG_PROBE)
1153 bne REG_INDEX, LOOP_START
1154
1155 lda sp,<immediate>(REG_PROBE)
1156
1157 If anything different is found, the function returns without
1158 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1159 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1160
1161 /* lda REG_INDEX,NB_OF_ITERATIONS */
1162
1163 insn = alpha_read_insn (gdbarch, cur_pc);
1164 if (INSN_OPCODE (insn) != lda_opcode)
1165 return;
1166 reg_index = MEM_RA (insn);
1167 nb_of_iterations = MEM_DISP (insn);
1168
1169 /* lda REG_PROBE,<immediate>(sp) */
1170
1171 cur_pc += ALPHA_INSN_SIZE;
1172 insn = alpha_read_insn (gdbarch, cur_pc);
1173 if (INSN_OPCODE (insn) != lda_opcode
1174 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1175 return;
1176 reg_probe = MEM_RA (insn);
1177 cur_frame_size -= MEM_DISP (insn);
1178
1179 /* stq zero,<immediate>(REG_PROBE) */
1180
1181 cur_pc += ALPHA_INSN_SIZE;
1182 insn = alpha_read_insn (gdbarch, cur_pc);
1183 if (INSN_OPCODE (insn) != stq_opcode
1184 || MEM_RA (insn) != 0x1f
1185 || MEM_RB (insn) != reg_probe)
1186 return;
1187
1188 /* subq REG_INDEX,0x1,REG_INDEX */
1189
1190 cur_pc += ALPHA_INSN_SIZE;
1191 insn = alpha_read_insn (gdbarch, cur_pc);
1192 if (INSN_OPCODE (insn) != subq_opcode
1193 || !OPR_HAS_IMMEDIATE (insn)
1194 || OPR_FUNCTION (insn) != subq_function
1195 || OPR_LIT(insn) != 1
1196 || OPR_RA (insn) != reg_index
1197 || OPR_RC (insn) != reg_index)
1198 return;
1199
1200 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1201
1202 cur_pc += ALPHA_INSN_SIZE;
1203 insn = alpha_read_insn (gdbarch, cur_pc);
1204 if (INSN_OPCODE (insn) != lda_opcode
1205 || MEM_RA (insn) != reg_probe
1206 || MEM_RB (insn) != reg_probe)
1207 return;
1208 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1209
1210 /* bne REG_INDEX, LOOP_START */
1211
1212 cur_pc += ALPHA_INSN_SIZE;
1213 insn = alpha_read_insn (gdbarch, cur_pc);
1214 if (INSN_OPCODE (insn) != bne_opcode
1215 || MEM_RA (insn) != reg_index)
1216 return;
1217
1218 /* lda sp,<immediate>(REG_PROBE) */
1219
1220 cur_pc += ALPHA_INSN_SIZE;
1221 insn = alpha_read_insn (gdbarch, cur_pc);
1222 if (INSN_OPCODE (insn) != lda_opcode
1223 || MEM_RA (insn) != ALPHA_SP_REGNUM
1224 || MEM_RB (insn) != reg_probe)
1225 return;
1226 cur_frame_size -= MEM_DISP (insn);
1227
1228 *pc = cur_pc;
1229 *frame_size = cur_frame_size;
1230}
1231
fbe586ae 1232static struct alpha_heuristic_unwind_cache *
6834c9bb 1233alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1234 void **this_prologue_cache,
1235 CORE_ADDR start_pc)
1236{
6834c9bb 1237 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1238 struct alpha_heuristic_unwind_cache *info;
1239 ULONGEST val;
1240 CORE_ADDR limit_pc, cur_pc;
1241 int frame_reg, frame_size, return_reg, reg;
c906108c 1242
d2427a71
RH
1243 if (*this_prologue_cache)
1244 return *this_prologue_cache;
c906108c 1245
d2427a71
RH
1246 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1247 *this_prologue_cache = info;
6834c9bb 1248 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1249
6834c9bb 1250 limit_pc = get_frame_pc (this_frame);
d2427a71 1251 if (start_pc == 0)
be8626e0 1252 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1253 info->start_pc = start_pc;
c906108c 1254
d2427a71
RH
1255 frame_reg = ALPHA_SP_REGNUM;
1256 frame_size = 0;
1257 return_reg = -1;
c906108c 1258
d2427a71
RH
1259 /* If we've identified a likely place to start, do code scanning. */
1260 if (start_pc != 0)
c5aa993b 1261 {
d2427a71
RH
1262 /* Limit the forward search to 50 instructions. */
1263 if (start_pc + 200 < limit_pc)
1264 limit_pc = start_pc + 200;
c5aa993b 1265
e8d2d628 1266 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1267 {
e17a4113 1268 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1269
d2427a71
RH
1270 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1271 {
1272 if (word & 0x8000)
1273 {
1274 /* Consider only the first stack allocation instruction
0963b4bd 1275 to contain the static size of the frame. */
d2427a71
RH
1276 if (frame_size == 0)
1277 frame_size = (-word) & 0xffff;
1278 }
1279 else
1280 {
1281 /* Exit loop if a positive stack adjustment is found, which
1282 usually means that the stack cleanup code in the function
1283 epilogue is reached. */
1284 break;
1285 }
1286 }
1287 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1288 {
1289 reg = (word & 0x03e00000) >> 21;
1290
d15bfd3a
AC
1291 /* Ignore this instruction if we have already encountered
1292 an instruction saving the same register earlier in the
1293 function code. The current instruction does not tell
1294 us where the original value upon function entry is saved.
1295 All it says is that the function we are scanning reused
1296 that register for some computation of its own, and is now
1297 saving its result. */
07ea644b 1298 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1299 continue;
1300
d2427a71
RH
1301 if (reg == 31)
1302 continue;
1303
1304 /* Do not compute the address where the register was saved yet,
1305 because we don't know yet if the offset will need to be
1306 relative to $sp or $fp (we can not compute the address
1307 relative to $sp if $sp is updated during the execution of
1308 the current subroutine, for instance when doing some alloca).
1309 So just store the offset for the moment, and compute the
1310 address later when we know whether this frame has a frame
1311 pointer or not. */
1312 /* Hack: temporarily add one, so that the offset is non-zero
1313 and we can tell which registers have save offsets below. */
07ea644b 1314 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1315
1316 /* Starting with OSF/1-3.2C, the system libraries are shipped
1317 without local symbols, but they still contain procedure
1318 descriptors without a symbol reference. GDB is currently
1319 unable to find these procedure descriptors and uses
1320 heuristic_proc_desc instead.
1321 As some low level compiler support routines (__div*, __add*)
1322 use a non-standard return address register, we have to
1323 add some heuristics to determine the return address register,
1324 or stepping over these routines will fail.
1325 Usually the return address register is the first register
1326 saved on the stack, but assembler optimization might
1327 rearrange the register saves.
1328 So we recognize only a few registers (t7, t9, ra) within
1329 the procedure prologue as valid return address registers.
1330 If we encounter a return instruction, we extract the
7a9dd1b2 1331 return address register from it.
d2427a71
RH
1332
1333 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1334 e.g. via the minimal symbol table, might obviate this
1335 hack. */
d2427a71
RH
1336 if (return_reg == -1
1337 && cur_pc < (start_pc + 80)
1338 && (reg == ALPHA_T7_REGNUM
1339 || reg == ALPHA_T9_REGNUM
1340 || reg == ALPHA_RA_REGNUM))
1341 return_reg = reg;
1342 }
1343 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1344 return_reg = (word >> 16) & 0x1f;
1345 else if (word == 0x47de040f) /* bis sp,sp,fp */
1346 frame_reg = ALPHA_GCC_FP_REGNUM;
1347 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1348 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1349
1350 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1351 }
c5aa993b 1352
d2427a71
RH
1353 /* If we haven't found a valid return address register yet, keep
1354 searching in the procedure prologue. */
1355 if (return_reg == -1)
1356 {
1357 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1358 {
e17a4113 1359 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1360
d2427a71
RH
1361 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1362 {
1363 reg = (word & 0x03e00000) >> 21;
1364 if (reg == ALPHA_T7_REGNUM
1365 || reg == ALPHA_T9_REGNUM
1366 || reg == ALPHA_RA_REGNUM)
1367 {
1368 return_reg = reg;
1369 break;
1370 }
1371 }
1372 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1373 {
1374 return_reg = (word >> 16) & 0x1f;
1375 break;
1376 }
85b32d22 1377
e8d2d628 1378 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1379 }
1380 }
c906108c 1381 }
c906108c 1382
d2427a71
RH
1383 /* Failing that, do default to the customary RA. */
1384 if (return_reg == -1)
1385 return_reg = ALPHA_RA_REGNUM;
1386 info->return_reg = return_reg;
f8453e34 1387
6834c9bb 1388 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1389 info->vfp = val + frame_size;
c906108c 1390
d2427a71
RH
1391 /* Convert offsets to absolute addresses. See above about adding
1392 one to the offsets to make all detected offsets non-zero. */
1393 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1394 if (trad_frame_addr_p(info->saved_regs, reg))
1395 info->saved_regs[reg].addr += val - 1;
d2427a71 1396
bfd66dd9
JB
1397 /* The stack pointer of the previous frame is computed by popping
1398 the current stack frame. */
1399 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1400 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1401
d2427a71 1402 return info;
c906108c 1403}
c906108c 1404
d2427a71
RH
1405/* Given a GDB frame, determine the address of the calling function's
1406 frame. This will be used to create a new GDB frame struct. */
1407
fbe586ae 1408static void
6834c9bb
JB
1409alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1410 void **this_prologue_cache,
1411 struct frame_id *this_id)
c906108c 1412{
d2427a71 1413 struct alpha_heuristic_unwind_cache *info
6834c9bb 1414 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1415
d2427a71 1416 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1417}
1418
d2427a71
RH
1419/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1420
6834c9bb
JB
1421static struct value *
1422alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1423 void **this_prologue_cache, int regnum)
c906108c 1424{
d2427a71 1425 struct alpha_heuristic_unwind_cache *info
6834c9bb 1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1427
1428 /* The PC of the previous frame is stored in the link register of
1429 the current frame. Frob regnum so that we pull the value from
1430 the correct place. */
1431 if (regnum == ALPHA_PC_REGNUM)
1432 regnum = info->return_reg;
1433
6834c9bb 1434 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1435}
1436
d2427a71
RH
1437static const struct frame_unwind alpha_heuristic_frame_unwind = {
1438 NORMAL_FRAME,
8fbca658 1439 default_frame_unwind_stop_reason,
d2427a71 1440 alpha_heuristic_frame_this_id,
6834c9bb
JB
1441 alpha_heuristic_frame_prev_register,
1442 NULL,
1443 default_frame_sniffer
d2427a71 1444};
c906108c 1445
fbe586ae 1446static CORE_ADDR
6834c9bb 1447alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1448 void **this_prologue_cache)
c906108c 1449{
d2427a71 1450 struct alpha_heuristic_unwind_cache *info
6834c9bb 1451 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1452
d2427a71 1453 return info->vfp;
c906108c
SS
1454}
1455
d2427a71
RH
1456static const struct frame_base alpha_heuristic_frame_base = {
1457 &alpha_heuristic_frame_unwind,
1458 alpha_heuristic_frame_base_address,
1459 alpha_heuristic_frame_base_address,
1460 alpha_heuristic_frame_base_address
1461};
1462
c906108c 1463/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1464 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1465
1466static void
fba45db2 1467reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1468{
1469 reinit_frame_cache ();
1470}
1471
d2427a71 1472\f
d2427a71
RH
1473/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1474 dummy frame. The frame ID's base needs to match the TOS value
1475 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1476 breakpoint. */
d734c450 1477
d2427a71 1478static struct frame_id
6834c9bb 1479alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1480{
d2427a71 1481 ULONGEST base;
6834c9bb
JB
1482 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1483 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1484}
1485
dc129d82 1486static CORE_ADDR
d2427a71 1487alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1488{
d2427a71 1489 ULONGEST pc;
11411de3 1490 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1491 return pc;
accc6d1f
JT
1492}
1493
98a8e1e5
RH
1494\f
1495/* Helper routines for alpha*-nat.c files to move register sets to and
1496 from core files. The UNIQUE pointer is allowed to be NULL, as most
1497 targets don't supply this value in their core files. */
1498
1499void
390c1522
UW
1500alpha_supply_int_regs (struct regcache *regcache, int regno,
1501 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1502{
2a1ce6ec 1503 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1504 int i;
1505
1506 for (i = 0; i < 31; ++i)
1507 if (regno == i || regno == -1)
390c1522 1508 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1509
1510 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1511 {
1512 const gdb_byte zero[8] = { 0 };
1513
1514 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1515 }
98a8e1e5
RH
1516
1517 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1518 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1519
1520 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1521 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1522}
1523
1524void
390c1522
UW
1525alpha_fill_int_regs (const struct regcache *regcache,
1526 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1527{
2a1ce6ec 1528 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1529 int i;
1530
1531 for (i = 0; i < 31; ++i)
1532 if (regno == i || regno == -1)
390c1522 1533 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1534
1535 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1536 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1537
1538 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1539 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1540}
1541
1542void
390c1522
UW
1543alpha_supply_fp_regs (struct regcache *regcache, int regno,
1544 const void *f0_f30, const void *fpcr)
98a8e1e5 1545{
2a1ce6ec 1546 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1547 int i;
1548
1549 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1550 if (regno == i || regno == -1)
390c1522 1551 regcache_raw_supply (regcache, i,
2a1ce6ec 1552 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1553
1554 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1555 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1556}
1557
1558void
390c1522
UW
1559alpha_fill_fp_regs (const struct regcache *regcache,
1560 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1561{
2a1ce6ec 1562 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1563 int i;
1564
1565 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1566 if (regno == i || regno == -1)
390c1522 1567 regcache_raw_collect (regcache, i,
2a1ce6ec 1568 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1569
1570 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1571 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1572}
1573
d2427a71 1574\f
0de94d4b
JB
1575
1576/* Return nonzero if the G_floating register value in REG is equal to
1577 zero for FP control instructions. */
1578
1579static int
1580fp_register_zero_p (LONGEST reg)
1581{
1582 /* Check that all bits except the sign bit are zero. */
1583 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1584
1585 return ((reg & zero_mask) == 0);
1586}
1587
1588/* Return the value of the sign bit for the G_floating register
1589 value held in REG. */
1590
1591static int
1592fp_register_sign_bit (LONGEST reg)
1593{
1594 const LONGEST sign_mask = (LONGEST) 1 << 63;
1595
1596 return ((reg & sign_mask) != 0);
1597}
1598
ec32e4be
JT
1599/* alpha_software_single_step() is called just before we want to resume
1600 the inferior, if we want to single-step it but there is no hardware
1601 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1602 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1603
1604static CORE_ADDR
0b1b3e42 1605alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1606{
e17a4113 1607 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1608 unsigned int insn;
1609 unsigned int op;
551e4f2e 1610 int regno;
ec32e4be
JT
1611 int offset;
1612 LONGEST rav;
1613
e17a4113 1614 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1615
0963b4bd 1616 /* Opcode is top 6 bits. */
ec32e4be
JT
1617 op = (insn >> 26) & 0x3f;
1618
1619 if (op == 0x1a)
1620 {
1621 /* Jump format: target PC is:
1622 RB & ~3 */
0b1b3e42 1623 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1624 }
1625
1626 if ((op & 0x30) == 0x30)
1627 {
1628 /* Branch format: target PC is:
1629 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1630 if (op == 0x30 /* BR */
1631 || op == 0x34) /* BSR */
ec32e4be
JT
1632 {
1633 branch_taken:
1634 offset = (insn & 0x001fffff);
1635 if (offset & 0x00100000)
1636 offset |= 0xffe00000;
e8d2d628
MK
1637 offset *= ALPHA_INSN_SIZE;
1638 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1639 }
1640
1641 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1642 regno = (insn >> 21) & 0x1f;
1643 switch (op)
1644 {
1645 case 0x31: /* FBEQ */
1646 case 0x36: /* FBGE */
1647 case 0x37: /* FBGT */
1648 case 0x33: /* FBLE */
1649 case 0x32: /* FBLT */
1650 case 0x35: /* FBNE */
e17a4113 1651 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1652 }
1653
0b1b3e42 1654 rav = get_frame_register_signed (frame, regno);
0de94d4b 1655
ec32e4be
JT
1656 switch (op)
1657 {
1658 case 0x38: /* BLBC */
1659 if ((rav & 1) == 0)
1660 goto branch_taken;
1661 break;
1662 case 0x3c: /* BLBS */
1663 if (rav & 1)
1664 goto branch_taken;
1665 break;
1666 case 0x39: /* BEQ */
1667 if (rav == 0)
1668 goto branch_taken;
1669 break;
1670 case 0x3d: /* BNE */
1671 if (rav != 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3a: /* BLT */
1675 if (rav < 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3b: /* BLE */
1679 if (rav <= 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3f: /* BGT */
1683 if (rav > 0)
1684 goto branch_taken;
1685 break;
1686 case 0x3e: /* BGE */
1687 if (rav >= 0)
1688 goto branch_taken;
1689 break;
d2427a71 1690
0de94d4b
JB
1691 /* Floating point branches. */
1692
1693 case 0x31: /* FBEQ */
1694 if (fp_register_zero_p (rav))
1695 goto branch_taken;
1696 break;
1697 case 0x36: /* FBGE */
1698 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x37: /* FBGT */
1702 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x33: /* FBLE */
1706 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x32: /* FBLT */
1710 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
1713 case 0x35: /* FBNE */
1714 if (! fp_register_zero_p (rav))
1715 goto branch_taken;
1716 break;
ec32e4be
JT
1717 }
1718 }
1719
1720 /* Not a branch or branch not taken; target PC is:
1721 pc + 4 */
e8d2d628 1722 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1723}
1724
e6590a1b 1725int
0b1b3e42 1726alpha_software_single_step (struct frame_info *frame)
ec32e4be 1727{
a6d9a66e 1728 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1729 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1730 CORE_ADDR pc, next_pc;
ec32e4be 1731
0b1b3e42
UW
1732 pc = get_frame_pc (frame);
1733 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1734
6c95b8df 1735 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1736 return 1;
c906108c
SS
1737}
1738
dc129d82 1739\f
dc129d82
JT
1740/* Initialize the current architecture based on INFO. If possible, re-use an
1741 architecture from ARCHES, which is a list of architectures already created
1742 during this debugging session.
1743
1744 Called e.g. at program startup, when reading a core file, and when reading
1745 a binary file. */
1746
1747static struct gdbarch *
1748alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1749{
1750 struct gdbarch_tdep *tdep;
1751 struct gdbarch *gdbarch;
dc129d82
JT
1752
1753 /* Try to determine the ABI of the object we are loading. */
4be87837 1754 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1755 {
4be87837
DJ
1756 /* If it's an ECOFF file, assume it's OSF/1. */
1757 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1758 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1759 }
1760
1761 /* Find a candidate among extant architectures. */
4be87837
DJ
1762 arches = gdbarch_list_lookup_by_info (arches, &info);
1763 if (arches != NULL)
1764 return arches->gdbarch;
dc129d82
JT
1765
1766 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1767 gdbarch = gdbarch_alloc (&info, tdep);
1768
d2427a71
RH
1769 /* Lowest text address. This is used by heuristic_proc_start()
1770 to decide when to stop looking. */
594706e6 1771 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1772
36a6271d 1773 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1774 tdep->sigcontext_addr = NULL;
138e7be5
MK
1775 tdep->sc_pc_offset = 2 * 8;
1776 tdep->sc_regs_offset = 4 * 8;
1777 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1778
0963b4bd 1779 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1780
9823e921
RH
1781 tdep->return_in_memory = alpha_return_in_memory_always;
1782
dc129d82
JT
1783 /* Type sizes */
1784 set_gdbarch_short_bit (gdbarch, 16);
1785 set_gdbarch_int_bit (gdbarch, 32);
1786 set_gdbarch_long_bit (gdbarch, 64);
1787 set_gdbarch_long_long_bit (gdbarch, 64);
1788 set_gdbarch_float_bit (gdbarch, 32);
1789 set_gdbarch_double_bit (gdbarch, 64);
1790 set_gdbarch_long_double_bit (gdbarch, 64);
1791 set_gdbarch_ptr_bit (gdbarch, 64);
1792
1793 /* Register info */
1794 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1795 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1796 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1797 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1798
1799 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1800 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1801
1802 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1803 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1804
c483c494
RH
1805 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1806 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1807 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1808
615967cb
RH
1809 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1810
d2427a71 1811 /* Prologue heuristics. */
dc129d82
JT
1812 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1813
5ef165c2
RH
1814 /* Disassembler. */
1815 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1816
d2427a71 1817 /* Call info. */
dc129d82 1818
9823e921 1819 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1820
1821 /* Settings for calling functions in the inferior. */
c88e30c0 1822 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1823
1824 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1825 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1826
1827 /* Return the unwound PC value. */
1828 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1829
1830 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1831 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1832
95b80706 1833 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1834 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1835 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1836
46ad3598
UW
1837 /* Handles single stepping of atomic sequences. */
1838 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1839
44dffaac 1840 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1841 gdbarch_init_osabi (info, gdbarch);
44dffaac 1842
accc6d1f
JT
1843 /* Now that we have tuned the configuration, set a few final things
1844 based on what the OS ABI has told us. */
1845
1846 if (tdep->jb_pc >= 0)
1847 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1848
6834c9bb
JB
1849 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1850 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1851
d2427a71 1852 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1853
d2427a71 1854 return gdbarch;
dc129d82
JT
1855}
1856
baa490c4
RH
1857void
1858alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1859{
6834c9bb 1860 dwarf2_append_unwinders (gdbarch);
336d1bba 1861 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1862}
1863
a78f21af
AC
1864extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1865
c906108c 1866void
fba45db2 1867_initialize_alpha_tdep (void)
c906108c
SS
1868{
1869 struct cmd_list_element *c;
1870
d2427a71 1871 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1872
1873 /* Let the user set the fence post for heuristic_proc_start. */
1874
1875 /* We really would like to have both "0" and "unlimited" work, but
1876 command.c doesn't deal with that. So make it a var_zinteger
1877 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1878 /* We need to throw away the frame cache when we set this, since it
1879 might change our ability to get backtraces. */
1880 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1881 &heuristic_fence_post, _("\
1882Set the distance searched for the start of a function."), _("\
1883Show the distance searched for the start of a function."), _("\
c906108c
SS
1884If you are debugging a stripped executable, GDB needs to search through the\n\
1885program for the start of a function. This command sets the distance of the\n\
323e0a4a 1886search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1887 reinit_frame_cache_sfunc,
0963b4bd
MS
1888 NULL, /* FIXME: i18n: The distance searched for
1889 the start of a function is \"%d\". */
edefbb7c 1890 &setlist, &showlist);
c906108c 1891}
This page took 0.867221 seconds and 4 git commands to generate.