Fix PR c++/21323: GDB thinks char16_t and char32_t are signed in C++
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
615967cb 21#include "doublest.h"
c906108c 22#include "frame.h"
d2427a71
RH
23#include "frame-unwind.h"
24#include "frame-base.h"
baa490c4 25#include "dwarf2-frame.h"
c906108c
SS
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
c5f0f3d0 34#include "linespec.h"
4e052eda 35#include "regcache.h"
615967cb 36#include "reggroups.h"
dc129d82 37#include "arch-utils.h"
4be87837 38#include "osabi.h"
fe898f56 39#include "block.h"
7d9b040b 40#include "infcall.h"
07ea644b 41#include "trad-frame.h"
dc129d82
JT
42
43#include "elf-bfd.h"
44
45#include "alpha-tdep.h"
325fac50 46#include <algorithm>
dc129d82 47
3a48e6ff
JG
48/* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54/* Memory instruction format */
55#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57#define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60static const int lda_opcode = 0x08;
61static const int stq_opcode = 0x2d;
62
63/* Branch instruction format */
64#define BR_RA(insn) MEM_RA(insn)
65
46ad3598 66static const int br_opcode = 0x30;
3a48e6ff
JG
67static const int bne_opcode = 0x3d;
68
69/* Operate instruction format */
70#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72#define OPR_RA(insn) MEM_RA(insn)
73#define OPR_RC(insn) ((insn & 0x1f))
74#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76static const int subq_opcode = 0x10;
77static const int subq_function = 0x29;
78
c906108c 79\f
515921d7
JB
80/* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
0963b4bd 83 be used for a virtual register. That virtual register has
515921d7
JB
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
fa88f677 87static const char *
d93859e2 88alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 89{
5ab84872 90 static const char * const register_names[] =
636a6dfc
JT
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 100 "pc", "", "unique"
636a6dfc
JT
101 };
102
103 if (regno < 0)
5ab84872 104 return NULL;
e8d2d628 105 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
106 return NULL;
107 return register_names[regno];
636a6dfc 108}
d734c450 109
dc129d82 110static int
64a3914f 111alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 112{
4a1be8d2 113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
114}
115
dc129d82 116static int
64a3914f 117alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 118{
515921d7 119 return (regno == ALPHA_ZERO_REGNUM
64a3914f 120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
121}
122
dc129d82 123static struct type *
c483c494 124alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 125{
72667056 126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 127 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 128 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
b38b6be2 133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 134 return builtin_type (gdbarch)->builtin_double;
72667056 135
df4df182 136 return builtin_type (gdbarch)->builtin_int64;
0d056799 137}
f8453e34 138
615967cb
RH
139/* Is REGNUM a member of REGGROUP? */
140
141static int
142alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144{
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
149 return 0;
150
df4a182b
RH
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179}
180
c483c494
RH
181/* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185static void
e17a4113 186alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 187{
e17a4113 188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
189 ULONGEST mem
190 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
191 ULONGEST frac = (mem >> 0) & 0x7fffff;
192 ULONGEST sign = (mem >> 31) & 1;
193 ULONGEST exp_msb = (mem >> 30) & 1;
194 ULONGEST exp_low = (mem >> 23) & 0x7f;
195 ULONGEST exp, reg;
196
197 exp = (exp_msb << 10) | exp_low;
198 if (exp_msb)
199 {
200 if (exp_low == 0x7f)
201 exp = 0x7ff;
202 }
203 else
204 {
205 if (exp_low != 0x00)
206 exp |= 0x380;
207 }
208
209 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 210 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
211}
212
213/* Similarly, this represents exactly the conversion performed by
214 the STS instruction. */
215
39efb398 216static void
e17a4113 217alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 218{
e17a4113 219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
220 ULONGEST reg, mem;
221
9a3c8263 222 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 223 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 224 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
225}
226
d2427a71
RH
227/* The alpha needs a conversion between register and memory format if the
228 register is a floating point register and memory format is float, as the
229 register format must be double or memory format is an integer with 4
230 bytes or less, as the representation of integers in floating point
0963b4bd 231 registers is different. */
d2427a71 232
c483c494 233static int
0963b4bd
MS
234alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
235 struct type *type)
14696584 236{
83acabca
DJ
237 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
238 && TYPE_LENGTH (type) != 8);
14696584
RH
239}
240
8dccd430 241static int
ff2e87ac 242alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
243 struct type *valtype, gdb_byte *out,
244 int *optimizedp, int *unavailablep)
5868c862 245{
8dccd430 246 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
247 gdb_byte in[MAX_REGISTER_SIZE];
248
8dccd430
PA
249 /* Convert to TYPE. */
250 if (!get_frame_register_bytes (frame, regnum, 0,
251 register_size (gdbarch, regnum),
252 in, optimizedp, unavailablep))
253 return 0;
254
255 if (TYPE_LENGTH (valtype) == 4)
d2427a71 256 {
8dccd430
PA
257 alpha_sts (gdbarch, out, in);
258 *optimizedp = *unavailablep = 0;
259 return 1;
d2427a71 260 }
8dccd430
PA
261
262 error (_("Cannot retrieve value from floating point register"));
d2427a71 263}
5868c862 264
d2427a71 265static void
ff2e87ac 266alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 267 struct type *valtype, const gdb_byte *in)
d2427a71 268{
2a1ce6ec
MK
269 gdb_byte out[MAX_REGISTER_SIZE];
270
c483c494 271 switch (TYPE_LENGTH (valtype))
d2427a71 272 {
c483c494 273 case 4:
e17a4113 274 alpha_lds (get_frame_arch (frame), out, in);
c483c494 275 break;
c483c494 276 default:
323e0a4a 277 error (_("Cannot store value in floating point register"));
d2427a71 278 }
ff2e87ac 279 put_frame_register (frame, regnum, out);
5868c862
JT
280}
281
d2427a71
RH
282\f
283/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
284 the stack. The register arguments are stored in ARG_REG_BUFFER, and
285 then moved into the register file; this simplifies the passing of a
286 large struct which extends from the registers to the stack, plus avoids
287 three ptrace invocations per word.
288
289 We don't bother tracking which register values should go in integer
290 regs or fp regs; we load the same values into both.
291
d2427a71
RH
292 If the called function is returning a structure, the address of the
293 structure to be returned is passed as a hidden first argument. */
c906108c 294
d2427a71 295static CORE_ADDR
7d9b040b 296alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
297 struct regcache *regcache, CORE_ADDR bp_addr,
298 int nargs, struct value **args, CORE_ADDR sp,
299 int struct_return, CORE_ADDR struct_addr)
c906108c 300{
e17a4113 301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
302 int i;
303 int accumulate_size = struct_return ? 8 : 0;
d2427a71 304 struct alpha_arg
c906108c 305 {
f42a0a33 306 const gdb_byte *contents;
d2427a71
RH
307 int len;
308 int offset;
309 };
8d749320 310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71
RH
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
0fd88904 368 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
0fd88904 389 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 403 m_arg->contents = value_contents (arg);
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
c88e30c0 450 if (struct_return)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
09cc52fd
RH
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
e17a4113
UW
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
479 ULONGEST l;
480
481 switch (TYPE_CODE (valtype))
482 {
483 case TYPE_CODE_FLT:
744a8059 484 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
485 {
486 case 4:
487 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 488 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
489 break;
490
491 case 8:
492 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 break;
494
24064b5c
RH
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
5ec2bb99 500 default:
0963b4bd
MS
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
5ec2bb99
RH
503 }
504 break;
505
7b5e1cb3 506 case TYPE_CODE_COMPLEX:
744a8059 507 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
517 break;
518
519 case 32:
a9933661 520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
0963b4bd
MS
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
7b5e1cb3
RH
527 }
528 break;
529
5ec2bb99
RH
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
534 break;
535 }
140f9984
JT
536}
537
5ec2bb99
RH
538/* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
0d056799 540
d2427a71 541static void
5ec2bb99 542alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 543 const gdb_byte *valbuf)
c906108c 544{
df4df182 545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2a1ce6ec 546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 547 ULONGEST l;
d2427a71 548
5ec2bb99 549 switch (TYPE_CODE (valtype))
c906108c 550 {
5ec2bb99 551 case TYPE_CODE_FLT:
744a8059 552 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
553 {
554 case 4:
e17a4113 555 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 break;
5ec2bb99
RH
558
559 case 8:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 break;
562
24064b5c
RH
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
323e0a4a 567 error (_("Cannot set a 128-bit long double return value."));
24064b5c 568
5ec2bb99 569 default:
0963b4bd
MS
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
5ec2bb99
RH
572 }
573 break;
d2427a71 574
7b5e1cb3 575 case TYPE_CODE_COMPLEX:
744a8059 576 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
323e0a4a 592 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
593
594 default:
0963b4bd
MS
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
7b5e1cb3
RH
597 }
598 break;
599
5ec2bb99
RH
600 default:
601 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
744a8059 604 if (TYPE_LENGTH (valtype) == 4)
df4df182 605 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
c906108c
SS
610}
611
9823e921 612static enum return_value_convention
6a3a010b 613alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
616{
617 enum type_code code = TYPE_CODE (type);
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640}
641
642static int
643alpha_return_in_memory_always (struct type *type)
644{
645 return 1;
646}
d2427a71 647\f
c906108c 648
04180708 649constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 650
04180708 651typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 652
d2427a71
RH
653\f
654/* This returns the PC of the first insn after the prologue.
655 If we can't find the prologue, then return 0. */
c906108c 656
d2427a71
RH
657CORE_ADDR
658alpha_after_prologue (CORE_ADDR pc)
c906108c 659{
d2427a71
RH
660 struct symtab_and_line sal;
661 CORE_ADDR func_addr, func_end;
c906108c 662
d2427a71 663 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 664 return 0;
c906108c 665
d2427a71
RH
666 sal = find_pc_line (func_addr, 0);
667 if (sal.end < func_end)
668 return sal.end;
c5aa993b 669
d2427a71
RH
670 /* The line after the prologue is after the end of the function. In this
671 case, tell the caller to find the prologue the hard way. */
672 return 0;
c906108c
SS
673}
674
d2427a71
RH
675/* Read an instruction from memory at PC, looking through breakpoints. */
676
677unsigned int
e17a4113 678alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 679{
e17a4113 680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 681 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 682 int res;
c5aa993b 683
d09f2c3f
PA
684 res = target_read_memory (pc, buf, sizeof (buf));
685 if (res != 0)
686 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 687 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 688}
c5aa993b 689
d2427a71
RH
690/* To skip prologues, I use this predicate. Returns either PC itself
691 if the code at PC does not look like a function prologue; otherwise
692 returns an address that (if we're lucky) follows the prologue. If
693 LENIENT, then we must skip everything which is involved in setting
694 up the frame (it's OK to skip more, just so long as we don't skip
695 anything which might clobber the registers which are being saved. */
c906108c 696
d2427a71 697static CORE_ADDR
6093d2eb 698alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
699{
700 unsigned long inst;
701 int offset;
702 CORE_ADDR post_prologue_pc;
e8d2d628 703 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 704
d2427a71
RH
705 /* Silently return the unaltered pc upon memory errors.
706 This could happen on OSF/1 if decode_line_1 tries to skip the
707 prologue for quickstarted shared library functions when the
708 shared library is not yet mapped in.
709 Reading target memory is slow over serial lines, so we perform
710 this check only if the target has shared libraries (which all
711 Alpha targets do). */
e8d2d628 712 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 713 return pc;
c906108c 714
d2427a71
RH
715 /* See if we can determine the end of the prologue via the symbol table.
716 If so, then return either PC, or the PC after the prologue, whichever
717 is greater. */
c906108c 718
d2427a71
RH
719 post_prologue_pc = alpha_after_prologue (pc);
720 if (post_prologue_pc != 0)
325fac50 721 return std::max (pc, post_prologue_pc);
c906108c 722
d2427a71
RH
723 /* Can't determine prologue from the symbol table, need to examine
724 instructions. */
dc1b0db2 725
0963b4bd 726 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
727 instruction and the instructions that save registers on the stack
728 or in the gcc frame. */
e8d2d628 729 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 730 {
e17a4113 731 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 732
d2427a71
RH
733 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
734 continue;
735 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
738 continue;
739 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
740 continue;
c906108c 741
d2427a71
RH
742 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
743 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
744 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
745 continue;
c906108c 746
d2427a71
RH
747 if (inst == 0x47de040f) /* bis sp,sp,fp */
748 continue;
749 if (inst == 0x47fe040f) /* bis zero,sp,fp */
750 continue;
c906108c 751
d2427a71 752 break;
c906108c 753 }
d2427a71
RH
754 return pc + offset;
755}
c906108c 756
46ad3598
UW
757\f
758static const int ldl_l_opcode = 0x2a;
759static const int ldq_l_opcode = 0x2b;
760static const int stl_c_opcode = 0x2e;
761static const int stq_c_opcode = 0x2f;
762
763/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
765 is found, attempt to step through it. A breakpoint is placed at the end of
766 the sequence. */
767
93f9a11f 768static VEC (CORE_ADDR) *
f5ea389a 769alpha_deal_with_atomic_sequence (struct regcache *regcache)
46ad3598 770{
7ab2d087
YQ
771 struct gdbarch *gdbarch = get_regcache_arch (regcache);
772 CORE_ADDR pc = regcache_read_pc (regcache);
46ad3598
UW
773 CORE_ADDR breaks[2] = {-1, -1};
774 CORE_ADDR loc = pc;
775 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
776 unsigned int insn = alpha_read_insn (gdbarch, loc);
777 int insn_count;
778 int index;
779 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
780 const int atomic_sequence_length = 16; /* Instruction sequence length. */
781 int bc_insn_count = 0; /* Conditional branch instruction count. */
93f9a11f 782 VEC (CORE_ADDR) *next_pcs = NULL;
46ad3598
UW
783
784 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
785 if (INSN_OPCODE (insn) != ldl_l_opcode
786 && INSN_OPCODE (insn) != ldq_l_opcode)
93f9a11f 787 return NULL;
46ad3598
UW
788
789 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
790 instructions. */
791 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
792 {
793 loc += ALPHA_INSN_SIZE;
794 insn = alpha_read_insn (gdbarch, loc);
795
796 /* Assume that there is at most one branch in the atomic
797 sequence. If a branch is found, put a breakpoint in
798 its destination address. */
799 if (INSN_OPCODE (insn) >= br_opcode)
800 {
801 int immediate = (insn & 0x001fffff) << 2;
802
803 immediate = (immediate ^ 0x400000) - 0x400000;
804
805 if (bc_insn_count >= 1)
93f9a11f
YQ
806 return NULL; /* More than one branch found, fallback
807 to the standard single-step code. */
46ad3598
UW
808
809 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
810
811 bc_insn_count++;
812 last_breakpoint++;
813 }
814
815 if (INSN_OPCODE (insn) == stl_c_opcode
816 || INSN_OPCODE (insn) == stq_c_opcode)
817 break;
818 }
819
820 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
821 if (INSN_OPCODE (insn) != stl_c_opcode
822 && INSN_OPCODE (insn) != stq_c_opcode)
93f9a11f 823 return NULL;
46ad3598
UW
824
825 closing_insn = loc;
826 loc += ALPHA_INSN_SIZE;
827
828 /* Insert a breakpoint right after the end of the atomic sequence. */
829 breaks[0] = loc;
830
831 /* Check for duplicated breakpoints. Check also for a breakpoint
832 placed (branch instruction's destination) anywhere in sequence. */
833 if (last_breakpoint
834 && (breaks[1] == breaks[0]
835 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
836 last_breakpoint = 0;
837
46ad3598 838 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 839 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
46ad3598 840
93f9a11f 841 return next_pcs;
46ad3598
UW
842}
843
d2427a71
RH
844\f
845/* Figure out where the longjmp will land.
846 We expect the first arg to be a pointer to the jmp_buf structure from
847 which we extract the PC (JB_PC) that we will land at. The PC is copied
848 into the "pc". This routine returns true on success. */
c906108c
SS
849
850static int
60ade65d 851alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 852{
e17a4113
UW
853 struct gdbarch *gdbarch = get_frame_arch (frame);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 856 CORE_ADDR jb_addr;
2a1ce6ec 857 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 858
60ade65d 859 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 860
d2427a71
RH
861 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
862 raw_buffer, tdep->jb_elt_size))
c906108c 863 return 0;
d2427a71 864
e17a4113 865 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 866 return 1;
c906108c
SS
867}
868
d2427a71
RH
869\f
870/* Frame unwinder for signal trampolines. We use alpha tdep bits that
871 describe the location and shape of the sigcontext structure. After
872 that, all registers are in memory, so it's easy. */
873/* ??? Shouldn't we be able to do this generically, rather than with
874 OSABI data specific to Alpha? */
875
876struct alpha_sigtramp_unwind_cache
c906108c 877{
d2427a71
RH
878 CORE_ADDR sigcontext_addr;
879};
c906108c 880
d2427a71 881static struct alpha_sigtramp_unwind_cache *
6834c9bb 882alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
883 void **this_prologue_cache)
884{
885 struct alpha_sigtramp_unwind_cache *info;
886 struct gdbarch_tdep *tdep;
c906108c 887
d2427a71 888 if (*this_prologue_cache)
9a3c8263 889 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 890
d2427a71
RH
891 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
892 *this_prologue_cache = info;
c906108c 893
6834c9bb
JB
894 tdep = gdbarch_tdep (get_frame_arch (this_frame));
895 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 896
d2427a71 897 return info;
c906108c
SS
898}
899
138e7be5
MK
900/* Return the address of REGNUM in a sigtramp frame. Since this is
901 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 902
d2427a71 903static CORE_ADDR
be8626e0
MD
904alpha_sigtramp_register_address (struct gdbarch *gdbarch,
905 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 906{
be8626e0 907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
908
909 if (regnum >= 0 && regnum < 32)
910 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
911 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
912 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
913 else if (regnum == ALPHA_PC_REGNUM)
914 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 915
d2427a71 916 return 0;
c906108c
SS
917}
918
d2427a71
RH
919/* Given a GDB frame, determine the address of the calling function's
920 frame. This will be used to create a new GDB frame struct. */
140f9984 921
dc129d82 922static void
6834c9bb 923alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
924 void **this_prologue_cache,
925 struct frame_id *this_id)
c906108c 926{
6834c9bb 927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 929 struct alpha_sigtramp_unwind_cache *info
6834c9bb 930 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
931 CORE_ADDR stack_addr, code_addr;
932
933 /* If the OSABI couldn't locate the sigcontext, give up. */
934 if (info->sigcontext_addr == 0)
935 return;
936
937 /* If we have dynamic signal trampolines, find their start.
938 If we do not, then we must assume there is a symbol record
939 that can provide the start address. */
d2427a71 940 if (tdep->dynamic_sigtramp_offset)
c906108c 941 {
d2427a71 942 int offset;
6834c9bb 943 code_addr = get_frame_pc (this_frame);
e17a4113 944 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
945 if (offset >= 0)
946 code_addr -= offset;
c906108c 947 else
d2427a71 948 code_addr = 0;
c906108c 949 }
d2427a71 950 else
6834c9bb 951 code_addr = get_frame_func (this_frame);
c906108c 952
d2427a71 953 /* The stack address is trivially read from the sigcontext. */
be8626e0 954 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 955 ALPHA_SP_REGNUM);
6834c9bb 956 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 957 ALPHA_REGISTER_SIZE);
c906108c 958
d2427a71 959 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
960}
961
d2427a71 962/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 963
6834c9bb
JB
964static struct value *
965alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
966 void **this_prologue_cache, int regnum)
c906108c 967{
d2427a71 968 struct alpha_sigtramp_unwind_cache *info
6834c9bb 969 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 970 CORE_ADDR addr;
c906108c 971
d2427a71 972 if (info->sigcontext_addr != 0)
c906108c 973 {
d2427a71 974 /* All integer and fp registers are stored in memory. */
6834c9bb 975 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 976 info->sigcontext_addr, regnum);
d2427a71 977 if (addr != 0)
6834c9bb 978 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
979 }
980
d2427a71
RH
981 /* This extra register may actually be in the sigcontext, but our
982 current description of it in alpha_sigtramp_frame_unwind_cache
983 doesn't include it. Too bad. Fall back on whatever's in the
984 outer frame. */
6834c9bb 985 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 986}
c906108c 987
6834c9bb
JB
988static int
989alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
990 struct frame_info *this_frame,
991 void **this_prologue_cache)
d2427a71 992{
6834c9bb
JB
993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
994 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 995 const char *name;
c906108c 996
f2524b93
AC
997 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
998 look at tramp-frame.h and other simplier per-architecture
999 sigtramp unwinders. */
1000
1001 /* We shouldn't even bother to try if the OSABI didn't register a
1002 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1003 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1004 return 0;
ec7cc0e8 1005 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1006 return 0;
c906108c 1007
d2427a71
RH
1008 /* Otherwise we should be in a signal frame. */
1009 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1010 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1011 return 1;
c906108c 1012
6834c9bb 1013 return 0;
c906108c 1014}
6834c9bb
JB
1015
1016static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1017 SIGTRAMP_FRAME,
8fbca658 1018 default_frame_unwind_stop_reason,
6834c9bb
JB
1019 alpha_sigtramp_frame_this_id,
1020 alpha_sigtramp_frame_prev_register,
1021 NULL,
1022 alpha_sigtramp_frame_sniffer
1023};
1024
d2427a71 1025\f
c906108c 1026
d2427a71
RH
1027/* Heuristic_proc_start may hunt through the text section for a long
1028 time across a 2400 baud serial line. Allows the user to limit this
1029 search. */
44096aee 1030static int heuristic_fence_post = 0;
c906108c 1031
d2427a71
RH
1032/* Attempt to locate the start of the function containing PC. We assume that
1033 the previous function ends with an about_to_return insn. Not foolproof by
1034 any means, since gcc is happy to put the epilogue in the middle of a
1035 function. But we're guessing anyway... */
c906108c 1036
d2427a71 1037static CORE_ADDR
be8626e0 1038alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1039{
be8626e0 1040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1041 CORE_ADDR last_non_nop = pc;
1042 CORE_ADDR fence = pc - heuristic_fence_post;
1043 CORE_ADDR orig_pc = pc;
fbe586ae 1044 CORE_ADDR func;
d6b48e9c 1045 struct inferior *inf;
9e0b60a8 1046
d2427a71
RH
1047 if (pc == 0)
1048 return 0;
9e0b60a8 1049
fbe586ae
RH
1050 /* First see if we can find the start of the function from minimal
1051 symbol information. This can succeed with a binary that doesn't
1052 have debug info, but hasn't been stripped. */
1053 func = get_pc_function_start (pc);
1054 if (func)
1055 return func;
1056
44096aee 1057 if (heuristic_fence_post == -1
d2427a71
RH
1058 || fence < tdep->vm_min_address)
1059 fence = tdep->vm_min_address;
c906108c 1060
d2427a71
RH
1061 /* Search back for previous return; also stop at a 0, which might be
1062 seen for instance before the start of a code section. Don't include
1063 nops, since this usually indicates padding between functions. */
e8d2d628 1064 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1065 {
e17a4113 1066 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1067 switch (insn)
c906108c 1068 {
d2427a71
RH
1069 case 0: /* invalid insn */
1070 case 0x6bfa8001: /* ret $31,($26),1 */
1071 return last_non_nop;
1072
1073 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1074 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1075 break;
1076
1077 default:
1078 last_non_nop = pc;
1079 break;
c906108c 1080 }
d2427a71 1081 }
c906108c 1082
d6b48e9c
PA
1083 inf = current_inferior ();
1084
d2427a71
RH
1085 /* It's not clear to me why we reach this point when stopping quietly,
1086 but with this test, at least we don't print out warnings for every
1087 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1088 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1089 {
1090 static int blurb_printed = 0;
c906108c 1091
d2427a71 1092 if (fence == tdep->vm_min_address)
323e0a4a 1093 warning (_("Hit beginning of text section without finding \
5af949e3 1094enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1095 else
323e0a4a 1096 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1097enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1098
d2427a71
RH
1099 if (!blurb_printed)
1100 {
323e0a4a 1101 printf_filtered (_("\
d2427a71
RH
1102This warning occurs if you are debugging a function without any symbols\n\
1103(for example, in a stripped executable). In that case, you may wish to\n\
1104increase the size of the search with the `set heuristic-fence-post' command.\n\
1105\n\
1106Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1107(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1108 blurb_printed = 1;
1109 }
1110 }
c906108c 1111
d2427a71
RH
1112 return 0;
1113}
c906108c 1114
07ea644b
MD
1115/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1116 something about the traditional layout of alpha stack frames. */
1117
1118struct alpha_heuristic_unwind_cache
1119{
1120 CORE_ADDR vfp;
1121 CORE_ADDR start_pc;
1122 struct trad_frame_saved_reg *saved_regs;
1123 int return_reg;
1124};
1125
3a48e6ff
JG
1126/* If a probing loop sequence starts at PC, simulate it and compute
1127 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1128 FRAME_SIZE unchanged. */
1129
1130static void
1131alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1132 int *frame_size)
1133{
1134 CORE_ADDR cur_pc = *pc;
1135 int cur_frame_size = *frame_size;
1136 int nb_of_iterations, reg_index, reg_probe;
1137 unsigned int insn;
1138
1139 /* The following pattern is recognized as a probing loop:
1140
1141 lda REG_INDEX,NB_OF_ITERATIONS
1142 lda REG_PROBE,<immediate>(sp)
1143
1144 LOOP_START:
1145 stq zero,<immediate>(REG_PROBE)
1146 subq REG_INDEX,0x1,REG_INDEX
1147 lda REG_PROBE,<immediate>(REG_PROBE)
1148 bne REG_INDEX, LOOP_START
1149
1150 lda sp,<immediate>(REG_PROBE)
1151
1152 If anything different is found, the function returns without
1153 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1154 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1155
1156 /* lda REG_INDEX,NB_OF_ITERATIONS */
1157
1158 insn = alpha_read_insn (gdbarch, cur_pc);
1159 if (INSN_OPCODE (insn) != lda_opcode)
1160 return;
1161 reg_index = MEM_RA (insn);
1162 nb_of_iterations = MEM_DISP (insn);
1163
1164 /* lda REG_PROBE,<immediate>(sp) */
1165
1166 cur_pc += ALPHA_INSN_SIZE;
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode
1169 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1170 return;
1171 reg_probe = MEM_RA (insn);
1172 cur_frame_size -= MEM_DISP (insn);
1173
1174 /* stq zero,<immediate>(REG_PROBE) */
1175
1176 cur_pc += ALPHA_INSN_SIZE;
1177 insn = alpha_read_insn (gdbarch, cur_pc);
1178 if (INSN_OPCODE (insn) != stq_opcode
1179 || MEM_RA (insn) != 0x1f
1180 || MEM_RB (insn) != reg_probe)
1181 return;
1182
1183 /* subq REG_INDEX,0x1,REG_INDEX */
1184
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != subq_opcode
1188 || !OPR_HAS_IMMEDIATE (insn)
1189 || OPR_FUNCTION (insn) != subq_function
1190 || OPR_LIT(insn) != 1
1191 || OPR_RA (insn) != reg_index
1192 || OPR_RC (insn) != reg_index)
1193 return;
1194
1195 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1196
1197 cur_pc += ALPHA_INSN_SIZE;
1198 insn = alpha_read_insn (gdbarch, cur_pc);
1199 if (INSN_OPCODE (insn) != lda_opcode
1200 || MEM_RA (insn) != reg_probe
1201 || MEM_RB (insn) != reg_probe)
1202 return;
1203 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1204
1205 /* bne REG_INDEX, LOOP_START */
1206
1207 cur_pc += ALPHA_INSN_SIZE;
1208 insn = alpha_read_insn (gdbarch, cur_pc);
1209 if (INSN_OPCODE (insn) != bne_opcode
1210 || MEM_RA (insn) != reg_index)
1211 return;
1212
1213 /* lda sp,<immediate>(REG_PROBE) */
1214
1215 cur_pc += ALPHA_INSN_SIZE;
1216 insn = alpha_read_insn (gdbarch, cur_pc);
1217 if (INSN_OPCODE (insn) != lda_opcode
1218 || MEM_RA (insn) != ALPHA_SP_REGNUM
1219 || MEM_RB (insn) != reg_probe)
1220 return;
1221 cur_frame_size -= MEM_DISP (insn);
1222
1223 *pc = cur_pc;
1224 *frame_size = cur_frame_size;
1225}
1226
fbe586ae 1227static struct alpha_heuristic_unwind_cache *
6834c9bb 1228alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1229 void **this_prologue_cache,
1230 CORE_ADDR start_pc)
1231{
6834c9bb 1232 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1233 struct alpha_heuristic_unwind_cache *info;
1234 ULONGEST val;
1235 CORE_ADDR limit_pc, cur_pc;
1236 int frame_reg, frame_size, return_reg, reg;
c906108c 1237
d2427a71 1238 if (*this_prologue_cache)
9a3c8263 1239 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1240
d2427a71
RH
1241 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1242 *this_prologue_cache = info;
6834c9bb 1243 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1244
6834c9bb 1245 limit_pc = get_frame_pc (this_frame);
d2427a71 1246 if (start_pc == 0)
be8626e0 1247 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1248 info->start_pc = start_pc;
c906108c 1249
d2427a71
RH
1250 frame_reg = ALPHA_SP_REGNUM;
1251 frame_size = 0;
1252 return_reg = -1;
c906108c 1253
d2427a71
RH
1254 /* If we've identified a likely place to start, do code scanning. */
1255 if (start_pc != 0)
c5aa993b 1256 {
d2427a71
RH
1257 /* Limit the forward search to 50 instructions. */
1258 if (start_pc + 200 < limit_pc)
1259 limit_pc = start_pc + 200;
c5aa993b 1260
e8d2d628 1261 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1262 {
e17a4113 1263 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1264
d2427a71
RH
1265 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1266 {
1267 if (word & 0x8000)
1268 {
1269 /* Consider only the first stack allocation instruction
0963b4bd 1270 to contain the static size of the frame. */
d2427a71
RH
1271 if (frame_size == 0)
1272 frame_size = (-word) & 0xffff;
1273 }
1274 else
1275 {
1276 /* Exit loop if a positive stack adjustment is found, which
1277 usually means that the stack cleanup code in the function
1278 epilogue is reached. */
1279 break;
1280 }
1281 }
1282 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1283 {
1284 reg = (word & 0x03e00000) >> 21;
1285
d15bfd3a
AC
1286 /* Ignore this instruction if we have already encountered
1287 an instruction saving the same register earlier in the
1288 function code. The current instruction does not tell
1289 us where the original value upon function entry is saved.
1290 All it says is that the function we are scanning reused
1291 that register for some computation of its own, and is now
1292 saving its result. */
07ea644b 1293 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1294 continue;
1295
d2427a71
RH
1296 if (reg == 31)
1297 continue;
1298
1299 /* Do not compute the address where the register was saved yet,
1300 because we don't know yet if the offset will need to be
1301 relative to $sp or $fp (we can not compute the address
1302 relative to $sp if $sp is updated during the execution of
1303 the current subroutine, for instance when doing some alloca).
1304 So just store the offset for the moment, and compute the
1305 address later when we know whether this frame has a frame
1306 pointer or not. */
1307 /* Hack: temporarily add one, so that the offset is non-zero
1308 and we can tell which registers have save offsets below. */
07ea644b 1309 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1310
1311 /* Starting with OSF/1-3.2C, the system libraries are shipped
1312 without local symbols, but they still contain procedure
1313 descriptors without a symbol reference. GDB is currently
1314 unable to find these procedure descriptors and uses
1315 heuristic_proc_desc instead.
1316 As some low level compiler support routines (__div*, __add*)
1317 use a non-standard return address register, we have to
1318 add some heuristics to determine the return address register,
1319 or stepping over these routines will fail.
1320 Usually the return address register is the first register
1321 saved on the stack, but assembler optimization might
1322 rearrange the register saves.
1323 So we recognize only a few registers (t7, t9, ra) within
1324 the procedure prologue as valid return address registers.
1325 If we encounter a return instruction, we extract the
7a9dd1b2 1326 return address register from it.
d2427a71
RH
1327
1328 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1329 e.g. via the minimal symbol table, might obviate this
1330 hack. */
d2427a71
RH
1331 if (return_reg == -1
1332 && cur_pc < (start_pc + 80)
1333 && (reg == ALPHA_T7_REGNUM
1334 || reg == ALPHA_T9_REGNUM
1335 || reg == ALPHA_RA_REGNUM))
1336 return_reg = reg;
1337 }
1338 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1339 return_reg = (word >> 16) & 0x1f;
1340 else if (word == 0x47de040f) /* bis sp,sp,fp */
1341 frame_reg = ALPHA_GCC_FP_REGNUM;
1342 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1343 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1344
1345 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1346 }
c5aa993b 1347
d2427a71
RH
1348 /* If we haven't found a valid return address register yet, keep
1349 searching in the procedure prologue. */
1350 if (return_reg == -1)
1351 {
1352 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1353 {
e17a4113 1354 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1355
d2427a71
RH
1356 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1357 {
1358 reg = (word & 0x03e00000) >> 21;
1359 if (reg == ALPHA_T7_REGNUM
1360 || reg == ALPHA_T9_REGNUM
1361 || reg == ALPHA_RA_REGNUM)
1362 {
1363 return_reg = reg;
1364 break;
1365 }
1366 }
1367 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1368 {
1369 return_reg = (word >> 16) & 0x1f;
1370 break;
1371 }
85b32d22 1372
e8d2d628 1373 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1374 }
1375 }
c906108c 1376 }
c906108c 1377
d2427a71
RH
1378 /* Failing that, do default to the customary RA. */
1379 if (return_reg == -1)
1380 return_reg = ALPHA_RA_REGNUM;
1381 info->return_reg = return_reg;
f8453e34 1382
6834c9bb 1383 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1384 info->vfp = val + frame_size;
c906108c 1385
d2427a71
RH
1386 /* Convert offsets to absolute addresses. See above about adding
1387 one to the offsets to make all detected offsets non-zero. */
1388 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1389 if (trad_frame_addr_p(info->saved_regs, reg))
1390 info->saved_regs[reg].addr += val - 1;
d2427a71 1391
bfd66dd9
JB
1392 /* The stack pointer of the previous frame is computed by popping
1393 the current stack frame. */
1394 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1395 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1396
d2427a71 1397 return info;
c906108c 1398}
c906108c 1399
d2427a71
RH
1400/* Given a GDB frame, determine the address of the calling function's
1401 frame. This will be used to create a new GDB frame struct. */
1402
fbe586ae 1403static void
6834c9bb
JB
1404alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1405 void **this_prologue_cache,
1406 struct frame_id *this_id)
c906108c 1407{
d2427a71 1408 struct alpha_heuristic_unwind_cache *info
6834c9bb 1409 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1410
d2427a71 1411 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1412}
1413
d2427a71
RH
1414/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1415
6834c9bb
JB
1416static struct value *
1417alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1418 void **this_prologue_cache, int regnum)
c906108c 1419{
d2427a71 1420 struct alpha_heuristic_unwind_cache *info
6834c9bb 1421 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1422
1423 /* The PC of the previous frame is stored in the link register of
1424 the current frame. Frob regnum so that we pull the value from
1425 the correct place. */
1426 if (regnum == ALPHA_PC_REGNUM)
1427 regnum = info->return_reg;
1428
6834c9bb 1429 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1430}
1431
d2427a71
RH
1432static const struct frame_unwind alpha_heuristic_frame_unwind = {
1433 NORMAL_FRAME,
8fbca658 1434 default_frame_unwind_stop_reason,
d2427a71 1435 alpha_heuristic_frame_this_id,
6834c9bb
JB
1436 alpha_heuristic_frame_prev_register,
1437 NULL,
1438 default_frame_sniffer
d2427a71 1439};
c906108c 1440
fbe586ae 1441static CORE_ADDR
6834c9bb 1442alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1443 void **this_prologue_cache)
c906108c 1444{
d2427a71 1445 struct alpha_heuristic_unwind_cache *info
6834c9bb 1446 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1447
d2427a71 1448 return info->vfp;
c906108c
SS
1449}
1450
d2427a71
RH
1451static const struct frame_base alpha_heuristic_frame_base = {
1452 &alpha_heuristic_frame_unwind,
1453 alpha_heuristic_frame_base_address,
1454 alpha_heuristic_frame_base_address,
1455 alpha_heuristic_frame_base_address
1456};
1457
c906108c 1458/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1459 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1460
1461static void
fba45db2 1462reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1463{
1464 reinit_frame_cache ();
1465}
1466
d2427a71 1467\f
d2427a71
RH
1468/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1469 dummy frame. The frame ID's base needs to match the TOS value
1470 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1471 breakpoint. */
d734c450 1472
d2427a71 1473static struct frame_id
6834c9bb 1474alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1475{
d2427a71 1476 ULONGEST base;
6834c9bb
JB
1477 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1478 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1479}
1480
dc129d82 1481static CORE_ADDR
d2427a71 1482alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1483{
d2427a71 1484 ULONGEST pc;
11411de3 1485 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1486 return pc;
accc6d1f
JT
1487}
1488
98a8e1e5
RH
1489\f
1490/* Helper routines for alpha*-nat.c files to move register sets to and
1491 from core files. The UNIQUE pointer is allowed to be NULL, as most
1492 targets don't supply this value in their core files. */
1493
1494void
390c1522
UW
1495alpha_supply_int_regs (struct regcache *regcache, int regno,
1496 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1497{
9a3c8263 1498 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1499 int i;
1500
1501 for (i = 0; i < 31; ++i)
1502 if (regno == i || regno == -1)
390c1522 1503 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1504
1505 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1506 {
1507 const gdb_byte zero[8] = { 0 };
1508
1509 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1510 }
98a8e1e5
RH
1511
1512 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1513 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1514
1515 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1516 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1517}
1518
1519void
390c1522
UW
1520alpha_fill_int_regs (const struct regcache *regcache,
1521 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1522{
9a3c8263 1523 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1524 int i;
1525
1526 for (i = 0; i < 31; ++i)
1527 if (regno == i || regno == -1)
390c1522 1528 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1529
1530 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1531 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1532
1533 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1534 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1535}
1536
1537void
390c1522
UW
1538alpha_supply_fp_regs (struct regcache *regcache, int regno,
1539 const void *f0_f30, const void *fpcr)
98a8e1e5 1540{
9a3c8263 1541 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1542 int i;
1543
1544 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1545 if (regno == i || regno == -1)
390c1522 1546 regcache_raw_supply (regcache, i,
2a1ce6ec 1547 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1548
1549 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1550 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1551}
1552
1553void
390c1522
UW
1554alpha_fill_fp_regs (const struct regcache *regcache,
1555 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1556{
9a3c8263 1557 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1558 int i;
1559
1560 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1561 if (regno == i || regno == -1)
390c1522 1562 regcache_raw_collect (regcache, i,
2a1ce6ec 1563 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1564
1565 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1566 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1567}
1568
d2427a71 1569\f
0de94d4b
JB
1570
1571/* Return nonzero if the G_floating register value in REG is equal to
1572 zero for FP control instructions. */
1573
1574static int
1575fp_register_zero_p (LONGEST reg)
1576{
1577 /* Check that all bits except the sign bit are zero. */
1578 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1579
1580 return ((reg & zero_mask) == 0);
1581}
1582
1583/* Return the value of the sign bit for the G_floating register
1584 value held in REG. */
1585
1586static int
1587fp_register_sign_bit (LONGEST reg)
1588{
1589 const LONGEST sign_mask = (LONGEST) 1 << 63;
1590
1591 return ((reg & sign_mask) != 0);
1592}
1593
ec32e4be
JT
1594/* alpha_software_single_step() is called just before we want to resume
1595 the inferior, if we want to single-step it but there is no hardware
1596 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1597 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1598
1599static CORE_ADDR
7ab2d087 1600alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1601{
7ab2d087 1602 struct gdbarch *gdbarch = get_regcache_arch (regcache);
ec32e4be
JT
1603 unsigned int insn;
1604 unsigned int op;
551e4f2e 1605 int regno;
ec32e4be
JT
1606 int offset;
1607 LONGEST rav;
1608
e17a4113 1609 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1610
0963b4bd 1611 /* Opcode is top 6 bits. */
ec32e4be
JT
1612 op = (insn >> 26) & 0x3f;
1613
1614 if (op == 0x1a)
1615 {
1616 /* Jump format: target PC is:
1617 RB & ~3 */
7ab2d087 1618 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1619 }
1620
1621 if ((op & 0x30) == 0x30)
1622 {
1623 /* Branch format: target PC is:
1624 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1625 if (op == 0x30 /* BR */
1626 || op == 0x34) /* BSR */
ec32e4be
JT
1627 {
1628 branch_taken:
1629 offset = (insn & 0x001fffff);
1630 if (offset & 0x00100000)
1631 offset |= 0xffe00000;
e8d2d628
MK
1632 offset *= ALPHA_INSN_SIZE;
1633 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1634 }
1635
1636 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1637 regno = (insn >> 21) & 0x1f;
1638 switch (op)
1639 {
1640 case 0x31: /* FBEQ */
1641 case 0x36: /* FBGE */
1642 case 0x37: /* FBGT */
1643 case 0x33: /* FBLE */
1644 case 0x32: /* FBLT */
1645 case 0x35: /* FBNE */
e17a4113 1646 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1647 }
1648
7ab2d087 1649 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1650
ec32e4be
JT
1651 switch (op)
1652 {
1653 case 0x38: /* BLBC */
1654 if ((rav & 1) == 0)
1655 goto branch_taken;
1656 break;
1657 case 0x3c: /* BLBS */
1658 if (rav & 1)
1659 goto branch_taken;
1660 break;
1661 case 0x39: /* BEQ */
1662 if (rav == 0)
1663 goto branch_taken;
1664 break;
1665 case 0x3d: /* BNE */
1666 if (rav != 0)
1667 goto branch_taken;
1668 break;
1669 case 0x3a: /* BLT */
1670 if (rav < 0)
1671 goto branch_taken;
1672 break;
1673 case 0x3b: /* BLE */
1674 if (rav <= 0)
1675 goto branch_taken;
1676 break;
1677 case 0x3f: /* BGT */
1678 if (rav > 0)
1679 goto branch_taken;
1680 break;
1681 case 0x3e: /* BGE */
1682 if (rav >= 0)
1683 goto branch_taken;
1684 break;
d2427a71 1685
0de94d4b
JB
1686 /* Floating point branches. */
1687
1688 case 0x31: /* FBEQ */
1689 if (fp_register_zero_p (rav))
1690 goto branch_taken;
1691 break;
1692 case 0x36: /* FBGE */
1693 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1694 goto branch_taken;
1695 break;
1696 case 0x37: /* FBGT */
1697 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1698 goto branch_taken;
1699 break;
1700 case 0x33: /* FBLE */
1701 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1702 goto branch_taken;
1703 break;
1704 case 0x32: /* FBLT */
1705 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1706 goto branch_taken;
1707 break;
1708 case 0x35: /* FBNE */
1709 if (! fp_register_zero_p (rav))
1710 goto branch_taken;
1711 break;
ec32e4be
JT
1712 }
1713 }
1714
1715 /* Not a branch or branch not taken; target PC is:
1716 pc + 4 */
e8d2d628 1717 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1718}
1719
93f9a11f 1720VEC (CORE_ADDR) *
f5ea389a 1721alpha_software_single_step (struct regcache *regcache)
ec32e4be 1722{
7ab2d087 1723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
93f9a11f
YQ
1724 CORE_ADDR pc;
1725 VEC (CORE_ADDR) *next_pcs = NULL;
ec32e4be 1726
7ab2d087 1727 pc = regcache_read_pc (regcache);
ec32e4be 1728
7ab2d087 1729 VEC_safe_push (CORE_ADDR, next_pcs, alpha_next_pc (regcache, pc));
93f9a11f 1730 return next_pcs;
c906108c
SS
1731}
1732
dc129d82 1733\f
dc129d82
JT
1734/* Initialize the current architecture based on INFO. If possible, re-use an
1735 architecture from ARCHES, which is a list of architectures already created
1736 during this debugging session.
1737
1738 Called e.g. at program startup, when reading a core file, and when reading
1739 a binary file. */
1740
1741static struct gdbarch *
1742alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1743{
1744 struct gdbarch_tdep *tdep;
1745 struct gdbarch *gdbarch;
dc129d82 1746
dc129d82 1747 /* Find a candidate among extant architectures. */
4be87837
DJ
1748 arches = gdbarch_list_lookup_by_info (arches, &info);
1749 if (arches != NULL)
1750 return arches->gdbarch;
dc129d82 1751
8d749320 1752 tdep = XNEW (struct gdbarch_tdep);
dc129d82
JT
1753 gdbarch = gdbarch_alloc (&info, tdep);
1754
d2427a71
RH
1755 /* Lowest text address. This is used by heuristic_proc_start()
1756 to decide when to stop looking. */
594706e6 1757 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1758
36a6271d 1759 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1760 tdep->sigcontext_addr = NULL;
138e7be5
MK
1761 tdep->sc_pc_offset = 2 * 8;
1762 tdep->sc_regs_offset = 4 * 8;
1763 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1764
0963b4bd 1765 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1766
9823e921
RH
1767 tdep->return_in_memory = alpha_return_in_memory_always;
1768
dc129d82
JT
1769 /* Type sizes */
1770 set_gdbarch_short_bit (gdbarch, 16);
1771 set_gdbarch_int_bit (gdbarch, 32);
1772 set_gdbarch_long_bit (gdbarch, 64);
1773 set_gdbarch_long_long_bit (gdbarch, 64);
1774 set_gdbarch_float_bit (gdbarch, 32);
1775 set_gdbarch_double_bit (gdbarch, 64);
1776 set_gdbarch_long_double_bit (gdbarch, 64);
1777 set_gdbarch_ptr_bit (gdbarch, 64);
1778
1779 /* Register info */
1780 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1781 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1782 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1783 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1784
1785 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1786 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1787
1788 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1789 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1790
c483c494
RH
1791 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1792 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1793 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1794
615967cb
RH
1795 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1796
d2427a71 1797 /* Prologue heuristics. */
dc129d82
JT
1798 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1799
5ef165c2
RH
1800 /* Disassembler. */
1801 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1802
d2427a71 1803 /* Call info. */
dc129d82 1804
9823e921 1805 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1806
1807 /* Settings for calling functions in the inferior. */
c88e30c0 1808 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1809
1810 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1811 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1812
1813 /* Return the unwound PC value. */
1814 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1815
1816 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1817 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1818
04180708
YQ
1819 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1820 alpha_breakpoint::kind_from_pc);
1821 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1822 alpha_breakpoint::bp_from_kind);
e8d2d628 1823 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1824 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1825
46ad3598
UW
1826 /* Handles single stepping of atomic sequences. */
1827 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1828
44dffaac 1829 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1830 gdbarch_init_osabi (info, gdbarch);
44dffaac 1831
accc6d1f
JT
1832 /* Now that we have tuned the configuration, set a few final things
1833 based on what the OS ABI has told us. */
1834
1835 if (tdep->jb_pc >= 0)
1836 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1837
6834c9bb
JB
1838 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1839 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1840
d2427a71 1841 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1842
d2427a71 1843 return gdbarch;
dc129d82
JT
1844}
1845
baa490c4
RH
1846void
1847alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1848{
6834c9bb 1849 dwarf2_append_unwinders (gdbarch);
336d1bba 1850 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1851}
1852
a78f21af
AC
1853extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1854
c906108c 1855void
fba45db2 1856_initialize_alpha_tdep (void)
c906108c 1857{
c906108c 1858
d2427a71 1859 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1860
1861 /* Let the user set the fence post for heuristic_proc_start. */
1862
1863 /* We really would like to have both "0" and "unlimited" work, but
1864 command.c doesn't deal with that. So make it a var_zinteger
1865 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1866 /* We need to throw away the frame cache when we set this, since it
1867 might change our ability to get backtraces. */
1868 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1869 &heuristic_fence_post, _("\
1870Set the distance searched for the start of a function."), _("\
1871Show the distance searched for the start of a function."), _("\
c906108c
SS
1872If you are debugging a stripped executable, GDB needs to search through the\n\
1873program for the start of a function. This command sets the distance of the\n\
323e0a4a 1874search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1875 reinit_frame_cache_sfunc,
0963b4bd
MS
1876 NULL, /* FIXME: i18n: The distance searched for
1877 the start of a function is \"%d\". */
edefbb7c 1878 &setlist, &showlist);
c906108c 1879}
This page took 1.066777 seconds and 4 git commands to generate.