x86: Move x86-specific linker options to elf_linker_x86_params
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
42a4f53d 3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
d55e5aa6
TT
21
22/* Standard C++ includes. */
23#include <algorithm>
24
25/* Local non-gdb includes. */
26#include "alpha-tdep.h"
27#include "arch-utils.h"
28#include "block.h"
29#include "dis-asm.h"
baa490c4 30#include "dwarf2-frame.h"
d55e5aa6
TT
31#include "elf-bfd.h"
32#include "frame-base.h"
33#include "frame-unwind.h"
34#include "frame.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "gdbcore.h"
d55e5aa6
TT
37#include "infcall.h"
38#include "inferior.h"
c5f0f3d0 39#include "linespec.h"
d55e5aa6
TT
40#include "objfiles.h"
41#include "osabi.h"
4e052eda 42#include "regcache.h"
615967cb 43#include "reggroups.h"
d55e5aa6
TT
44#include "symfile.h"
45#include "symtab.h"
07ea644b 46#include "trad-frame.h"
d55e5aa6 47#include "value.h"
dc129d82 48
3a48e6ff
JG
49/* Instruction decoding. The notations for registers, immediates and
50 opcodes are the same as the one used in Compaq's Alpha architecture
51 handbook. */
52
53#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
54
55/* Memory instruction format */
56#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
57#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
58#define MEM_DISP(insn) \
59 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
60
61static const int lda_opcode = 0x08;
62static const int stq_opcode = 0x2d;
63
64/* Branch instruction format */
65#define BR_RA(insn) MEM_RA(insn)
66
46ad3598 67static const int br_opcode = 0x30;
3a48e6ff
JG
68static const int bne_opcode = 0x3d;
69
70/* Operate instruction format */
71#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73#define OPR_RA(insn) MEM_RA(insn)
74#define OPR_RC(insn) ((insn & 0x1f))
75#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77static const int subq_opcode = 0x10;
78static const int subq_function = 0x29;
79
c906108c 80\f
515921d7
JB
81/* Return the name of the REGNO register.
82
83 An empty name corresponds to a register number that used to
0963b4bd 84 be used for a virtual register. That virtual register has
515921d7
JB
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
fa88f677 88static const char *
d93859e2 89alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 90{
5ab84872 91 static const char * const register_names[] =
636a6dfc
JT
92 {
93 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
94 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
95 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
96 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
97 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
98 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
99 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
100 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 101 "pc", "", "unique"
636a6dfc
JT
102 };
103
104 if (regno < 0)
5ab84872 105 return NULL;
e8d2d628 106 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
107 return NULL;
108 return register_names[regno];
636a6dfc 109}
d734c450 110
dc129d82 111static int
64a3914f 112alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 113{
4a1be8d2 114 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
115}
116
dc129d82 117static int
64a3914f 118alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 119{
515921d7 120 return (regno == ALPHA_ZERO_REGNUM
64a3914f 121 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
122}
123
dc129d82 124static struct type *
c483c494 125alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 126{
72667056 127 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 129 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 130 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
131
132 /* Don't need to worry about little vs big endian until
133 some jerk tries to port to alpha-unicosmk. */
b38b6be2 134 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 135 return builtin_type (gdbarch)->builtin_double;
72667056 136
df4df182 137 return builtin_type (gdbarch)->builtin_int64;
0d056799 138}
f8453e34 139
615967cb
RH
140/* Is REGNUM a member of REGGROUP? */
141
142static int
143alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
144 struct reggroup *group)
145{
146 /* Filter out any registers eliminated, but whose regnum is
147 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
148 if (gdbarch_register_name (gdbarch, regnum) == NULL
149 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
150 return 0;
151
df4a182b
RH
152 if (group == all_reggroup)
153 return 1;
154
155 /* Zero should not be saved or restored. Technically it is a general
156 register (just as $f31 would be a float if we represented it), but
157 there's no point displaying it during "info regs", so leave it out
158 of all groups except for "all". */
159 if (regnum == ALPHA_ZERO_REGNUM)
160 return 0;
161
162 /* All other registers are saved and restored. */
163 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
164 return 1;
165
166 /* All other groups are non-overlapping. */
167
168 /* Since this is really a PALcode memory slot... */
169 if (regnum == ALPHA_UNIQUE_REGNUM)
170 return group == system_reggroup;
171
172 /* Force the FPCR to be considered part of the floating point state. */
173 if (regnum == ALPHA_FPCR_REGNUM)
174 return group == float_reggroup;
175
176 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
177 return group == float_reggroup;
178 else
179 return group == general_reggroup;
180}
181
c483c494
RH
182/* The following represents exactly the conversion performed by
183 the LDS instruction. This applies to both single-precision
184 floating point and 32-bit integers. */
185
186static void
e17a4113 187alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 188{
e17a4113 189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
190 ULONGEST mem
191 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 211 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
212}
213
214/* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
39efb398 217static void
e17a4113 218alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 219{
e17a4113 220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
221 ULONGEST reg, mem;
222
9a3c8263 223 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 225 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
226}
227
d2427a71
RH
228/* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
68fce50f 231 bytes, as the representation of integers in floating point
0963b4bd 232 registers is different. */
d2427a71 233
c483c494 234static int
0963b4bd
MS
235alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
14696584 237{
83acabca 238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
68fce50f 239 && TYPE_LENGTH (type) == 4);
14696584
RH
240}
241
8dccd430 242static int
ff2e87ac 243alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
5868c862 246{
8dccd430 247 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 248 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 249
fbe654c8
AH
250 gdb_assert (value != NULL);
251 *optimizedp = value_optimized_out (value);
252 *unavailablep = !value_entirely_available (value);
253
254 if (*optimizedp || *unavailablep)
255 {
256 release_value (value);
fbe654c8
AH
257 return 0;
258 }
259
260 /* Convert to VALTYPE. */
8dccd430 261
68fce50f 262 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
263 alpha_sts (gdbarch, out, value_contents_all (value));
264
265 release_value (value);
68fce50f 266 return 1;
d2427a71 267}
5868c862 268
d2427a71 269static void
ff2e87ac 270alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 271 struct type *valtype, const gdb_byte *in)
d2427a71 272{
fbe654c8 273 gdb_byte out[ALPHA_REGISTER_SIZE];
2a1ce6ec 274
68fce50f 275 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
276 gdb_assert (register_size (get_frame_arch (frame), regnum)
277 <= ALPHA_REGISTER_SIZE);
68fce50f
YQ
278 alpha_lds (get_frame_arch (frame), out, in);
279
ff2e87ac 280 put_frame_register (frame, regnum, out);
5868c862
JT
281}
282
d2427a71
RH
283\f
284/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
d2427a71
RH
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
c906108c 295
d2427a71 296static CORE_ADDR
7d9b040b 297alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
300 function_call_return_method return_method,
301 CORE_ADDR struct_addr)
c906108c 302{
e17a4113 303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 304 int i;
cf84fa6b 305 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
d2427a71 306 struct alpha_arg
c906108c 307 {
f42a0a33 308 const gdb_byte *contents;
d2427a71
RH
309 int len;
310 int offset;
311 };
8d749320 312 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 313 struct alpha_arg *m_arg;
2a1ce6ec 314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 315 int required_arg_regs;
7d9b040b 316 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 317
c88e30c0
RH
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
320
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
324
325 /* Lay out the arguments in memory. */
d2427a71
RH
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
327 {
328 struct value *arg = args[i];
4991999e 329 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 330
d2427a71
RH
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
c906108c 333 {
d2427a71
RH
334 case TYPE_CODE_INT:
335 case TYPE_CODE_BOOL:
336 case TYPE_CODE_CHAR:
337 case TYPE_CODE_RANGE:
338 case TYPE_CODE_ENUM:
0ede8eca 339 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 340 {
0ede8eca
RH
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
df4df182 343 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
344 arg = value_cast (arg_type, arg);
345 }
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
347 {
df4df182 348 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
349 arg = value_cast (arg_type, arg);
350 }
351 break;
7b5e1cb3 352
c88e30c0
RH
353 case TYPE_CODE_FLT:
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
358 {
27067745 359 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
360 arg = value_cast (arg_type, arg);
361 }
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
365 {
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
368
369 /* Write the real data into the stack. */
0fd88904 370 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
371
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
375 }
376 break;
7b5e1cb3
RH
377
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
382
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
386 {
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
389
390 /* Write the real data into the stack. */
0fd88904 391 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
392
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
396 }
397 break;
398
d2427a71
RH
399 default:
400 break;
c906108c 401 }
d2427a71
RH
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 405 m_arg->contents = value_contents (arg);
c906108c
SS
406 }
407
d2427a71
RH
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 413
d2427a71 414 /* Make room for the arguments on the stack. */
c88e30c0
RH
415 if (accumulate_size < sizeof(arg_reg_buffer))
416 accumulate_size = 0;
417 else
418 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 419 sp -= accumulate_size;
c906108c 420
c88e30c0 421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 422 sp &= ~15;
c906108c 423
d2427a71
RH
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
c906108c 426 {
f42a0a33 427 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
428 int offset = m_arg->offset;
429 int len = m_arg->len;
430
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
433 {
434 if (offset + len <= sizeof(arg_reg_buffer))
435 {
436 memcpy (arg_reg_buffer + offset, contents, len);
437 continue;
438 }
439 else
440 {
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
443 offset += tlen;
444 contents += tlen;
445 len -= tlen;
446 }
447 }
448
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 451 }
cf84fa6b 452 if (return_method == return_method_struct)
e17a4113
UW
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
c906108c 455
d2427a71
RH
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
458 {
b66f5587
SM
459 regcache->cooked_write (ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
461 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
d2427a71 463 }
c906108c 464
09cc52fd
RH
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
467
c88e30c0 468 return sp;
c906108c
SS
469}
470
5ec2bb99
RH
471/* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
d2427a71 473
dc129d82 474static void
5ec2bb99 475alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 476 gdb_byte *valbuf)
140f9984 477{
ac7936df 478 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 480 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
481 ULONGEST l;
482
483 switch (TYPE_CODE (valtype))
484 {
485 case TYPE_CODE_FLT:
744a8059 486 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
487 {
488 case 4:
dca08e1f 489 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 490 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
491 break;
492
493 case 8:
dca08e1f 494 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
495 break;
496
24064b5c
RH
497 case 16:
498 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
499 read_memory (l, valbuf, 16);
500 break;
501
5ec2bb99 502 default:
0963b4bd
MS
503 internal_error (__FILE__, __LINE__,
504 _("unknown floating point width"));
5ec2bb99
RH
505 }
506 break;
507
7b5e1cb3 508 case TYPE_CODE_COMPLEX:
744a8059 509 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
510 {
511 case 8:
512 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
dca08e1f 513 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
514 break;
515
516 case 16:
dca08e1f
SM
517 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
518 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
519 break;
520
521 case 32:
a9933661 522 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
523 read_memory (l, valbuf, 32);
524 break;
525
526 default:
0963b4bd
MS
527 internal_error (__FILE__, __LINE__,
528 _("unknown floating point width"));
7b5e1cb3
RH
529 }
530 break;
531
5ec2bb99
RH
532 default:
533 /* Assume everything else degenerates to an integer. */
534 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 535 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
536 break;
537 }
140f9984
JT
538}
539
5ec2bb99
RH
540/* Insert the given value into REGCACHE as if it was being
541 returned by a function. */
0d056799 542
d2427a71 543static void
5ec2bb99 544alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 545 const gdb_byte *valbuf)
c906108c 546{
ac7936df 547 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 548 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 549 ULONGEST l;
d2427a71 550
5ec2bb99 551 switch (TYPE_CODE (valtype))
c906108c 552 {
5ec2bb99 553 case TYPE_CODE_FLT:
744a8059 554 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
555 {
556 case 4:
e17a4113 557 alpha_lds (gdbarch, raw_buffer, valbuf);
b66f5587 558 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
f75d70cc 559 break;
5ec2bb99
RH
560
561 case 8:
b66f5587 562 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
563 break;
564
24064b5c
RH
565 case 16:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
323e0a4a 569 error (_("Cannot set a 128-bit long double return value."));
24064b5c 570
5ec2bb99 571 default:
0963b4bd
MS
572 internal_error (__FILE__, __LINE__,
573 _("unknown floating point width"));
5ec2bb99
RH
574 }
575 break;
d2427a71 576
7b5e1cb3 577 case TYPE_CODE_COMPLEX:
744a8059 578 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
579 {
580 case 8:
581 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
b66f5587 582 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
583 break;
584
585 case 16:
b66f5587
SM
586 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
587 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
588 break;
589
590 case 32:
591 /* FIXME: 128-bit long doubles are returned like structures:
592 by writing into indirect storage provided by the caller
593 as the first argument. */
323e0a4a 594 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
595
596 default:
0963b4bd
MS
597 internal_error (__FILE__, __LINE__,
598 _("unknown floating point width"));
7b5e1cb3
RH
599 }
600 break;
601
5ec2bb99
RH
602 default:
603 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
604 /* 32-bit values must be sign-extended to 64 bits
605 even if the base data type is unsigned. */
744a8059 606 if (TYPE_LENGTH (valtype) == 4)
df4df182 607 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
608 l = unpack_long (valtype, valbuf);
609 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
610 break;
611 }
c906108c
SS
612}
613
9823e921 614static enum return_value_convention
6a3a010b 615alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
616 struct type *type, struct regcache *regcache,
617 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
618{
619 enum type_code code = TYPE_CODE (type);
620
621 if ((code == TYPE_CODE_STRUCT
622 || code == TYPE_CODE_UNION
623 || code == TYPE_CODE_ARRAY)
624 && gdbarch_tdep (gdbarch)->return_in_memory (type))
625 {
626 if (readbuf)
627 {
628 ULONGEST addr;
629 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
630 read_memory (addr, readbuf, TYPE_LENGTH (type));
631 }
632
633 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
634 }
635
636 if (readbuf)
637 alpha_extract_return_value (type, regcache, readbuf);
638 if (writebuf)
639 alpha_store_return_value (type, regcache, writebuf);
640
641 return RETURN_VALUE_REGISTER_CONVENTION;
642}
643
644static int
645alpha_return_in_memory_always (struct type *type)
646{
647 return 1;
648}
d2427a71 649\f
c906108c 650
04180708 651constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 652
04180708 653typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 654
d2427a71
RH
655\f
656/* This returns the PC of the first insn after the prologue.
657 If we can't find the prologue, then return 0. */
c906108c 658
d2427a71
RH
659CORE_ADDR
660alpha_after_prologue (CORE_ADDR pc)
c906108c 661{
d2427a71
RH
662 struct symtab_and_line sal;
663 CORE_ADDR func_addr, func_end;
c906108c 664
d2427a71 665 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 666 return 0;
c906108c 667
d2427a71
RH
668 sal = find_pc_line (func_addr, 0);
669 if (sal.end < func_end)
670 return sal.end;
c5aa993b 671
d2427a71
RH
672 /* The line after the prologue is after the end of the function. In this
673 case, tell the caller to find the prologue the hard way. */
674 return 0;
c906108c
SS
675}
676
d2427a71
RH
677/* Read an instruction from memory at PC, looking through breakpoints. */
678
679unsigned int
e17a4113 680alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 681{
e17a4113 682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 683 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 684 int res;
c5aa993b 685
d09f2c3f
PA
686 res = target_read_memory (pc, buf, sizeof (buf));
687 if (res != 0)
688 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 689 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 690}
c5aa993b 691
d2427a71
RH
692/* To skip prologues, I use this predicate. Returns either PC itself
693 if the code at PC does not look like a function prologue; otherwise
694 returns an address that (if we're lucky) follows the prologue. If
695 LENIENT, then we must skip everything which is involved in setting
696 up the frame (it's OK to skip more, just so long as we don't skip
697 anything which might clobber the registers which are being saved. */
c906108c 698
d2427a71 699static CORE_ADDR
6093d2eb 700alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
701{
702 unsigned long inst;
703 int offset;
704 CORE_ADDR post_prologue_pc;
e8d2d628 705 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 706
d2427a71
RH
707 /* Silently return the unaltered pc upon memory errors.
708 This could happen on OSF/1 if decode_line_1 tries to skip the
709 prologue for quickstarted shared library functions when the
710 shared library is not yet mapped in.
711 Reading target memory is slow over serial lines, so we perform
712 this check only if the target has shared libraries (which all
713 Alpha targets do). */
e8d2d628 714 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 715 return pc;
c906108c 716
d2427a71
RH
717 /* See if we can determine the end of the prologue via the symbol table.
718 If so, then return either PC, or the PC after the prologue, whichever
719 is greater. */
c906108c 720
d2427a71
RH
721 post_prologue_pc = alpha_after_prologue (pc);
722 if (post_prologue_pc != 0)
325fac50 723 return std::max (pc, post_prologue_pc);
c906108c 724
d2427a71
RH
725 /* Can't determine prologue from the symbol table, need to examine
726 instructions. */
dc1b0db2 727
0963b4bd 728 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
729 instruction and the instructions that save registers on the stack
730 or in the gcc frame. */
e8d2d628 731 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 732 {
e17a4113 733 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 734
d2427a71
RH
735 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
738 continue;
739 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
740 continue;
741 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
742 continue;
c906108c 743
d2427a71
RH
744 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
745 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
746 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
747 continue;
c906108c 748
d2427a71
RH
749 if (inst == 0x47de040f) /* bis sp,sp,fp */
750 continue;
751 if (inst == 0x47fe040f) /* bis zero,sp,fp */
752 continue;
c906108c 753
d2427a71 754 break;
c906108c 755 }
d2427a71
RH
756 return pc + offset;
757}
c906108c 758
46ad3598
UW
759\f
760static const int ldl_l_opcode = 0x2a;
761static const int ldq_l_opcode = 0x2b;
762static const int stl_c_opcode = 0x2e;
763static const int stq_c_opcode = 0x2f;
764
765/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
766 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
767 is found, attempt to step through it. A breakpoint is placed at the end of
768 the sequence. */
769
a0ff9e1a 770static std::vector<CORE_ADDR>
68f81d60 771alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
46ad3598 772{
70ab8ccd 773 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
46ad3598
UW
774 CORE_ADDR loc = pc;
775 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
776 unsigned int insn = alpha_read_insn (gdbarch, loc);
777 int insn_count;
778 int index;
779 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
780 const int atomic_sequence_length = 16; /* Instruction sequence length. */
781 int bc_insn_count = 0; /* Conditional branch instruction count. */
782
783 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
784 if (INSN_OPCODE (insn) != ldl_l_opcode
785 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 786 return {};
46ad3598
UW
787
788 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
789 instructions. */
790 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
791 {
792 loc += ALPHA_INSN_SIZE;
793 insn = alpha_read_insn (gdbarch, loc);
794
795 /* Assume that there is at most one branch in the atomic
796 sequence. If a branch is found, put a breakpoint in
797 its destination address. */
798 if (INSN_OPCODE (insn) >= br_opcode)
799 {
800 int immediate = (insn & 0x001fffff) << 2;
801
802 immediate = (immediate ^ 0x400000) - 0x400000;
803
804 if (bc_insn_count >= 1)
a0ff9e1a
SM
805 return {}; /* More than one branch found, fallback
806 to the standard single-step code. */
46ad3598
UW
807
808 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
809
810 bc_insn_count++;
811 last_breakpoint++;
812 }
813
814 if (INSN_OPCODE (insn) == stl_c_opcode
815 || INSN_OPCODE (insn) == stq_c_opcode)
816 break;
817 }
818
819 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
820 if (INSN_OPCODE (insn) != stl_c_opcode
821 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 822 return {};
46ad3598
UW
823
824 closing_insn = loc;
825 loc += ALPHA_INSN_SIZE;
826
827 /* Insert a breakpoint right after the end of the atomic sequence. */
828 breaks[0] = loc;
829
830 /* Check for duplicated breakpoints. Check also for a breakpoint
831 placed (branch instruction's destination) anywhere in sequence. */
832 if (last_breakpoint
833 && (breaks[1] == breaks[0]
834 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
835 last_breakpoint = 0;
836
a0ff9e1a
SM
837 std::vector<CORE_ADDR> next_pcs;
838
46ad3598 839 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 840 next_pcs.push_back (breaks[index]);
46ad3598 841
93f9a11f 842 return next_pcs;
46ad3598
UW
843}
844
d2427a71
RH
845\f
846/* Figure out where the longjmp will land.
847 We expect the first arg to be a pointer to the jmp_buf structure from
848 which we extract the PC (JB_PC) that we will land at. The PC is copied
849 into the "pc". This routine returns true on success. */
c906108c
SS
850
851static int
60ade65d 852alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 853{
e17a4113
UW
854 struct gdbarch *gdbarch = get_frame_arch (frame);
855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 857 CORE_ADDR jb_addr;
2a1ce6ec 858 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 859
60ade65d 860 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 861
d2427a71
RH
862 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
863 raw_buffer, tdep->jb_elt_size))
c906108c 864 return 0;
d2427a71 865
e17a4113 866 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 867 return 1;
c906108c
SS
868}
869
d2427a71
RH
870\f
871/* Frame unwinder for signal trampolines. We use alpha tdep bits that
872 describe the location and shape of the sigcontext structure. After
873 that, all registers are in memory, so it's easy. */
874/* ??? Shouldn't we be able to do this generically, rather than with
875 OSABI data specific to Alpha? */
876
877struct alpha_sigtramp_unwind_cache
c906108c 878{
d2427a71
RH
879 CORE_ADDR sigcontext_addr;
880};
c906108c 881
d2427a71 882static struct alpha_sigtramp_unwind_cache *
6834c9bb 883alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
884 void **this_prologue_cache)
885{
886 struct alpha_sigtramp_unwind_cache *info;
887 struct gdbarch_tdep *tdep;
c906108c 888
d2427a71 889 if (*this_prologue_cache)
9a3c8263 890 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 891
d2427a71
RH
892 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
893 *this_prologue_cache = info;
c906108c 894
6834c9bb
JB
895 tdep = gdbarch_tdep (get_frame_arch (this_frame));
896 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 897
d2427a71 898 return info;
c906108c
SS
899}
900
138e7be5
MK
901/* Return the address of REGNUM in a sigtramp frame. Since this is
902 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 903
d2427a71 904static CORE_ADDR
be8626e0
MD
905alpha_sigtramp_register_address (struct gdbarch *gdbarch,
906 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 907{
be8626e0 908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
909
910 if (regnum >= 0 && regnum < 32)
911 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
912 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
913 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
914 else if (regnum == ALPHA_PC_REGNUM)
915 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 916
d2427a71 917 return 0;
c906108c
SS
918}
919
d2427a71
RH
920/* Given a GDB frame, determine the address of the calling function's
921 frame. This will be used to create a new GDB frame struct. */
140f9984 922
dc129d82 923static void
6834c9bb 924alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
925 void **this_prologue_cache,
926 struct frame_id *this_id)
c906108c 927{
6834c9bb 928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 930 struct alpha_sigtramp_unwind_cache *info
6834c9bb 931 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
932 CORE_ADDR stack_addr, code_addr;
933
934 /* If the OSABI couldn't locate the sigcontext, give up. */
935 if (info->sigcontext_addr == 0)
936 return;
937
938 /* If we have dynamic signal trampolines, find their start.
939 If we do not, then we must assume there is a symbol record
940 that can provide the start address. */
d2427a71 941 if (tdep->dynamic_sigtramp_offset)
c906108c 942 {
d2427a71 943 int offset;
6834c9bb 944 code_addr = get_frame_pc (this_frame);
e17a4113 945 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
946 if (offset >= 0)
947 code_addr -= offset;
c906108c 948 else
d2427a71 949 code_addr = 0;
c906108c 950 }
d2427a71 951 else
6834c9bb 952 code_addr = get_frame_func (this_frame);
c906108c 953
d2427a71 954 /* The stack address is trivially read from the sigcontext. */
be8626e0 955 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 956 ALPHA_SP_REGNUM);
6834c9bb 957 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 958 ALPHA_REGISTER_SIZE);
c906108c 959
d2427a71 960 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
961}
962
d2427a71 963/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 964
6834c9bb
JB
965static struct value *
966alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
967 void **this_prologue_cache, int regnum)
c906108c 968{
d2427a71 969 struct alpha_sigtramp_unwind_cache *info
6834c9bb 970 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 971 CORE_ADDR addr;
c906108c 972
d2427a71 973 if (info->sigcontext_addr != 0)
c906108c 974 {
d2427a71 975 /* All integer and fp registers are stored in memory. */
6834c9bb 976 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 977 info->sigcontext_addr, regnum);
d2427a71 978 if (addr != 0)
6834c9bb 979 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
980 }
981
d2427a71
RH
982 /* This extra register may actually be in the sigcontext, but our
983 current description of it in alpha_sigtramp_frame_unwind_cache
984 doesn't include it. Too bad. Fall back on whatever's in the
985 outer frame. */
6834c9bb 986 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 987}
c906108c 988
6834c9bb
JB
989static int
990alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
991 struct frame_info *this_frame,
992 void **this_prologue_cache)
d2427a71 993{
6834c9bb
JB
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 996 const char *name;
c906108c 997
f2524b93
AC
998 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
999 look at tramp-frame.h and other simplier per-architecture
1000 sigtramp unwinders. */
1001
1002 /* We shouldn't even bother to try if the OSABI didn't register a
1003 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1004 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1005 return 0;
ec7cc0e8 1006 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1007 return 0;
c906108c 1008
d2427a71
RH
1009 /* Otherwise we should be in a signal frame. */
1010 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1011 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1012 return 1;
c906108c 1013
6834c9bb 1014 return 0;
c906108c 1015}
6834c9bb
JB
1016
1017static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1018 SIGTRAMP_FRAME,
8fbca658 1019 default_frame_unwind_stop_reason,
6834c9bb
JB
1020 alpha_sigtramp_frame_this_id,
1021 alpha_sigtramp_frame_prev_register,
1022 NULL,
1023 alpha_sigtramp_frame_sniffer
1024};
1025
d2427a71 1026\f
c906108c 1027
d2427a71
RH
1028/* Heuristic_proc_start may hunt through the text section for a long
1029 time across a 2400 baud serial line. Allows the user to limit this
1030 search. */
44096aee 1031static int heuristic_fence_post = 0;
c906108c 1032
d2427a71
RH
1033/* Attempt to locate the start of the function containing PC. We assume that
1034 the previous function ends with an about_to_return insn. Not foolproof by
1035 any means, since gcc is happy to put the epilogue in the middle of a
1036 function. But we're guessing anyway... */
c906108c 1037
d2427a71 1038static CORE_ADDR
be8626e0 1039alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1040{
be8626e0 1041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1042 CORE_ADDR last_non_nop = pc;
1043 CORE_ADDR fence = pc - heuristic_fence_post;
1044 CORE_ADDR orig_pc = pc;
fbe586ae 1045 CORE_ADDR func;
d6b48e9c 1046 struct inferior *inf;
9e0b60a8 1047
d2427a71
RH
1048 if (pc == 0)
1049 return 0;
9e0b60a8 1050
fbe586ae
RH
1051 /* First see if we can find the start of the function from minimal
1052 symbol information. This can succeed with a binary that doesn't
1053 have debug info, but hasn't been stripped. */
1054 func = get_pc_function_start (pc);
1055 if (func)
1056 return func;
1057
44096aee 1058 if (heuristic_fence_post == -1
d2427a71
RH
1059 || fence < tdep->vm_min_address)
1060 fence = tdep->vm_min_address;
c906108c 1061
d2427a71
RH
1062 /* Search back for previous return; also stop at a 0, which might be
1063 seen for instance before the start of a code section. Don't include
1064 nops, since this usually indicates padding between functions. */
e8d2d628 1065 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1066 {
e17a4113 1067 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1068 switch (insn)
c906108c 1069 {
d2427a71
RH
1070 case 0: /* invalid insn */
1071 case 0x6bfa8001: /* ret $31,($26),1 */
1072 return last_non_nop;
1073
1074 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1075 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1076 break;
1077
1078 default:
1079 last_non_nop = pc;
1080 break;
c906108c 1081 }
d2427a71 1082 }
c906108c 1083
d6b48e9c
PA
1084 inf = current_inferior ();
1085
d2427a71
RH
1086 /* It's not clear to me why we reach this point when stopping quietly,
1087 but with this test, at least we don't print out warnings for every
1088 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1089 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1090 {
1091 static int blurb_printed = 0;
c906108c 1092
d2427a71 1093 if (fence == tdep->vm_min_address)
323e0a4a 1094 warning (_("Hit beginning of text section without finding \
5af949e3 1095enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1096 else
323e0a4a 1097 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1098enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1099
d2427a71
RH
1100 if (!blurb_printed)
1101 {
323e0a4a 1102 printf_filtered (_("\
d2427a71
RH
1103This warning occurs if you are debugging a function without any symbols\n\
1104(for example, in a stripped executable). In that case, you may wish to\n\
1105increase the size of the search with the `set heuristic-fence-post' command.\n\
1106\n\
1107Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1108(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1109 blurb_printed = 1;
1110 }
1111 }
c906108c 1112
d2427a71
RH
1113 return 0;
1114}
c906108c 1115
07ea644b
MD
1116/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1117 something about the traditional layout of alpha stack frames. */
1118
1119struct alpha_heuristic_unwind_cache
1120{
1121 CORE_ADDR vfp;
1122 CORE_ADDR start_pc;
1123 struct trad_frame_saved_reg *saved_regs;
1124 int return_reg;
1125};
1126
3a48e6ff
JG
1127/* If a probing loop sequence starts at PC, simulate it and compute
1128 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1129 FRAME_SIZE unchanged. */
1130
1131static void
1132alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1133 int *frame_size)
1134{
1135 CORE_ADDR cur_pc = *pc;
1136 int cur_frame_size = *frame_size;
1137 int nb_of_iterations, reg_index, reg_probe;
1138 unsigned int insn;
1139
1140 /* The following pattern is recognized as a probing loop:
1141
1142 lda REG_INDEX,NB_OF_ITERATIONS
1143 lda REG_PROBE,<immediate>(sp)
1144
1145 LOOP_START:
1146 stq zero,<immediate>(REG_PROBE)
1147 subq REG_INDEX,0x1,REG_INDEX
1148 lda REG_PROBE,<immediate>(REG_PROBE)
1149 bne REG_INDEX, LOOP_START
1150
1151 lda sp,<immediate>(REG_PROBE)
1152
1153 If anything different is found, the function returns without
1154 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1155 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1156
1157 /* lda REG_INDEX,NB_OF_ITERATIONS */
1158
1159 insn = alpha_read_insn (gdbarch, cur_pc);
1160 if (INSN_OPCODE (insn) != lda_opcode)
1161 return;
1162 reg_index = MEM_RA (insn);
1163 nb_of_iterations = MEM_DISP (insn);
1164
1165 /* lda REG_PROBE,<immediate>(sp) */
1166
1167 cur_pc += ALPHA_INSN_SIZE;
1168 insn = alpha_read_insn (gdbarch, cur_pc);
1169 if (INSN_OPCODE (insn) != lda_opcode
1170 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1171 return;
1172 reg_probe = MEM_RA (insn);
1173 cur_frame_size -= MEM_DISP (insn);
1174
1175 /* stq zero,<immediate>(REG_PROBE) */
1176
1177 cur_pc += ALPHA_INSN_SIZE;
1178 insn = alpha_read_insn (gdbarch, cur_pc);
1179 if (INSN_OPCODE (insn) != stq_opcode
1180 || MEM_RA (insn) != 0x1f
1181 || MEM_RB (insn) != reg_probe)
1182 return;
1183
1184 /* subq REG_INDEX,0x1,REG_INDEX */
1185
1186 cur_pc += ALPHA_INSN_SIZE;
1187 insn = alpha_read_insn (gdbarch, cur_pc);
1188 if (INSN_OPCODE (insn) != subq_opcode
1189 || !OPR_HAS_IMMEDIATE (insn)
1190 || OPR_FUNCTION (insn) != subq_function
1191 || OPR_LIT(insn) != 1
1192 || OPR_RA (insn) != reg_index
1193 || OPR_RC (insn) != reg_index)
1194 return;
1195
1196 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1197
1198 cur_pc += ALPHA_INSN_SIZE;
1199 insn = alpha_read_insn (gdbarch, cur_pc);
1200 if (INSN_OPCODE (insn) != lda_opcode
1201 || MEM_RA (insn) != reg_probe
1202 || MEM_RB (insn) != reg_probe)
1203 return;
1204 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1205
1206 /* bne REG_INDEX, LOOP_START */
1207
1208 cur_pc += ALPHA_INSN_SIZE;
1209 insn = alpha_read_insn (gdbarch, cur_pc);
1210 if (INSN_OPCODE (insn) != bne_opcode
1211 || MEM_RA (insn) != reg_index)
1212 return;
1213
1214 /* lda sp,<immediate>(REG_PROBE) */
1215
1216 cur_pc += ALPHA_INSN_SIZE;
1217 insn = alpha_read_insn (gdbarch, cur_pc);
1218 if (INSN_OPCODE (insn) != lda_opcode
1219 || MEM_RA (insn) != ALPHA_SP_REGNUM
1220 || MEM_RB (insn) != reg_probe)
1221 return;
1222 cur_frame_size -= MEM_DISP (insn);
1223
1224 *pc = cur_pc;
1225 *frame_size = cur_frame_size;
1226}
1227
fbe586ae 1228static struct alpha_heuristic_unwind_cache *
6834c9bb 1229alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1230 void **this_prologue_cache,
1231 CORE_ADDR start_pc)
1232{
6834c9bb 1233 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1234 struct alpha_heuristic_unwind_cache *info;
1235 ULONGEST val;
1236 CORE_ADDR limit_pc, cur_pc;
1237 int frame_reg, frame_size, return_reg, reg;
c906108c 1238
d2427a71 1239 if (*this_prologue_cache)
9a3c8263 1240 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1241
d2427a71
RH
1242 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1243 *this_prologue_cache = info;
6834c9bb 1244 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1245
6834c9bb 1246 limit_pc = get_frame_pc (this_frame);
d2427a71 1247 if (start_pc == 0)
be8626e0 1248 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1249 info->start_pc = start_pc;
c906108c 1250
d2427a71
RH
1251 frame_reg = ALPHA_SP_REGNUM;
1252 frame_size = 0;
1253 return_reg = -1;
c906108c 1254
d2427a71
RH
1255 /* If we've identified a likely place to start, do code scanning. */
1256 if (start_pc != 0)
c5aa993b 1257 {
d2427a71
RH
1258 /* Limit the forward search to 50 instructions. */
1259 if (start_pc + 200 < limit_pc)
1260 limit_pc = start_pc + 200;
c5aa993b 1261
e8d2d628 1262 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1263 {
e17a4113 1264 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1265
d2427a71
RH
1266 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1267 {
1268 if (word & 0x8000)
1269 {
1270 /* Consider only the first stack allocation instruction
0963b4bd 1271 to contain the static size of the frame. */
d2427a71
RH
1272 if (frame_size == 0)
1273 frame_size = (-word) & 0xffff;
1274 }
1275 else
1276 {
1277 /* Exit loop if a positive stack adjustment is found, which
1278 usually means that the stack cleanup code in the function
1279 epilogue is reached. */
1280 break;
1281 }
1282 }
1283 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1284 {
1285 reg = (word & 0x03e00000) >> 21;
1286
d15bfd3a
AC
1287 /* Ignore this instruction if we have already encountered
1288 an instruction saving the same register earlier in the
1289 function code. The current instruction does not tell
1290 us where the original value upon function entry is saved.
1291 All it says is that the function we are scanning reused
1292 that register for some computation of its own, and is now
1293 saving its result. */
07ea644b 1294 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1295 continue;
1296
d2427a71
RH
1297 if (reg == 31)
1298 continue;
1299
1300 /* Do not compute the address where the register was saved yet,
1301 because we don't know yet if the offset will need to be
1302 relative to $sp or $fp (we can not compute the address
1303 relative to $sp if $sp is updated during the execution of
1304 the current subroutine, for instance when doing some alloca).
1305 So just store the offset for the moment, and compute the
1306 address later when we know whether this frame has a frame
1307 pointer or not. */
1308 /* Hack: temporarily add one, so that the offset is non-zero
1309 and we can tell which registers have save offsets below. */
07ea644b 1310 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1311
1312 /* Starting with OSF/1-3.2C, the system libraries are shipped
1313 without local symbols, but they still contain procedure
1314 descriptors without a symbol reference. GDB is currently
1315 unable to find these procedure descriptors and uses
1316 heuristic_proc_desc instead.
1317 As some low level compiler support routines (__div*, __add*)
1318 use a non-standard return address register, we have to
1319 add some heuristics to determine the return address register,
1320 or stepping over these routines will fail.
1321 Usually the return address register is the first register
1322 saved on the stack, but assembler optimization might
1323 rearrange the register saves.
1324 So we recognize only a few registers (t7, t9, ra) within
1325 the procedure prologue as valid return address registers.
1326 If we encounter a return instruction, we extract the
7a9dd1b2 1327 return address register from it.
d2427a71
RH
1328
1329 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1330 e.g. via the minimal symbol table, might obviate this
1331 hack. */
d2427a71
RH
1332 if (return_reg == -1
1333 && cur_pc < (start_pc + 80)
1334 && (reg == ALPHA_T7_REGNUM
1335 || reg == ALPHA_T9_REGNUM
1336 || reg == ALPHA_RA_REGNUM))
1337 return_reg = reg;
1338 }
1339 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1340 return_reg = (word >> 16) & 0x1f;
1341 else if (word == 0x47de040f) /* bis sp,sp,fp */
1342 frame_reg = ALPHA_GCC_FP_REGNUM;
1343 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1344 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1345
1346 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1347 }
c5aa993b 1348
d2427a71
RH
1349 /* If we haven't found a valid return address register yet, keep
1350 searching in the procedure prologue. */
1351 if (return_reg == -1)
1352 {
1353 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1354 {
e17a4113 1355 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1356
d2427a71
RH
1357 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1358 {
1359 reg = (word & 0x03e00000) >> 21;
1360 if (reg == ALPHA_T7_REGNUM
1361 || reg == ALPHA_T9_REGNUM
1362 || reg == ALPHA_RA_REGNUM)
1363 {
1364 return_reg = reg;
1365 break;
1366 }
1367 }
1368 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1369 {
1370 return_reg = (word >> 16) & 0x1f;
1371 break;
1372 }
85b32d22 1373
e8d2d628 1374 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1375 }
1376 }
c906108c 1377 }
c906108c 1378
d2427a71
RH
1379 /* Failing that, do default to the customary RA. */
1380 if (return_reg == -1)
1381 return_reg = ALPHA_RA_REGNUM;
1382 info->return_reg = return_reg;
f8453e34 1383
6834c9bb 1384 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1385 info->vfp = val + frame_size;
c906108c 1386
d2427a71
RH
1387 /* Convert offsets to absolute addresses. See above about adding
1388 one to the offsets to make all detected offsets non-zero. */
1389 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1390 if (trad_frame_addr_p(info->saved_regs, reg))
1391 info->saved_regs[reg].addr += val - 1;
d2427a71 1392
bfd66dd9
JB
1393 /* The stack pointer of the previous frame is computed by popping
1394 the current stack frame. */
1395 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1396 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1397
d2427a71 1398 return info;
c906108c 1399}
c906108c 1400
d2427a71
RH
1401/* Given a GDB frame, determine the address of the calling function's
1402 frame. This will be used to create a new GDB frame struct. */
1403
fbe586ae 1404static void
6834c9bb
JB
1405alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1406 void **this_prologue_cache,
1407 struct frame_id *this_id)
c906108c 1408{
d2427a71 1409 struct alpha_heuristic_unwind_cache *info
6834c9bb 1410 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1411
d2427a71 1412 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1413}
1414
d2427a71
RH
1415/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1416
6834c9bb
JB
1417static struct value *
1418alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1419 void **this_prologue_cache, int regnum)
c906108c 1420{
d2427a71 1421 struct alpha_heuristic_unwind_cache *info
6834c9bb 1422 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1423
1424 /* The PC of the previous frame is stored in the link register of
1425 the current frame. Frob regnum so that we pull the value from
1426 the correct place. */
1427 if (regnum == ALPHA_PC_REGNUM)
1428 regnum = info->return_reg;
1429
6834c9bb 1430 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1431}
1432
d2427a71
RH
1433static const struct frame_unwind alpha_heuristic_frame_unwind = {
1434 NORMAL_FRAME,
8fbca658 1435 default_frame_unwind_stop_reason,
d2427a71 1436 alpha_heuristic_frame_this_id,
6834c9bb
JB
1437 alpha_heuristic_frame_prev_register,
1438 NULL,
1439 default_frame_sniffer
d2427a71 1440};
c906108c 1441
fbe586ae 1442static CORE_ADDR
6834c9bb 1443alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1444 void **this_prologue_cache)
c906108c 1445{
d2427a71 1446 struct alpha_heuristic_unwind_cache *info
6834c9bb 1447 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1448
d2427a71 1449 return info->vfp;
c906108c
SS
1450}
1451
d2427a71
RH
1452static const struct frame_base alpha_heuristic_frame_base = {
1453 &alpha_heuristic_frame_unwind,
1454 alpha_heuristic_frame_base_address,
1455 alpha_heuristic_frame_base_address,
1456 alpha_heuristic_frame_base_address
1457};
1458
c906108c 1459/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1460 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1461
1462static void
eb4c3f4a
TT
1463reinit_frame_cache_sfunc (const char *args,
1464 int from_tty, struct cmd_list_element *c)
c906108c
SS
1465{
1466 reinit_frame_cache ();
1467}
98a8e1e5
RH
1468\f
1469/* Helper routines for alpha*-nat.c files to move register sets to and
1470 from core files. The UNIQUE pointer is allowed to be NULL, as most
1471 targets don't supply this value in their core files. */
1472
1473void
390c1522
UW
1474alpha_supply_int_regs (struct regcache *regcache, int regno,
1475 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1476{
9a3c8263 1477 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1478 int i;
1479
1480 for (i = 0; i < 31; ++i)
1481 if (regno == i || regno == -1)
73e1c03f 1482 regcache->raw_supply (i, regs + i * 8);
98a8e1e5
RH
1483
1484 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1485 {
1486 const gdb_byte zero[8] = { 0 };
1487
73e1c03f 1488 regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
4a1be8d2 1489 }
98a8e1e5
RH
1490
1491 if (regno == ALPHA_PC_REGNUM || regno == -1)
73e1c03f 1492 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1493
1494 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
73e1c03f 1495 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1496}
1497
1498void
390c1522
UW
1499alpha_fill_int_regs (const struct regcache *regcache,
1500 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1501{
9a3c8263 1502 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1503 int i;
1504
1505 for (i = 0; i < 31; ++i)
1506 if (regno == i || regno == -1)
34a79281 1507 regcache->raw_collect (i, regs + i * 8);
98a8e1e5
RH
1508
1509 if (regno == ALPHA_PC_REGNUM || regno == -1)
34a79281 1510 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1511
1512 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
34a79281 1513 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1514}
1515
1516void
390c1522
UW
1517alpha_supply_fp_regs (struct regcache *regcache, int regno,
1518 const void *f0_f30, const void *fpcr)
98a8e1e5 1519{
9a3c8263 1520 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1521 int i;
1522
1523 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1524 if (regno == i || regno == -1)
73e1c03f 1525 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1526
1527 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
73e1c03f 1528 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1529}
1530
1531void
390c1522
UW
1532alpha_fill_fp_regs (const struct regcache *regcache,
1533 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1534{
9a3c8263 1535 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1536 int i;
1537
1538 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1539 if (regno == i || regno == -1)
34a79281 1540 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1541
1542 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
34a79281 1543 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1544}
1545
d2427a71 1546\f
0de94d4b
JB
1547
1548/* Return nonzero if the G_floating register value in REG is equal to
1549 zero for FP control instructions. */
1550
1551static int
1552fp_register_zero_p (LONGEST reg)
1553{
1554 /* Check that all bits except the sign bit are zero. */
1555 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1556
1557 return ((reg & zero_mask) == 0);
1558}
1559
1560/* Return the value of the sign bit for the G_floating register
1561 value held in REG. */
1562
1563static int
1564fp_register_sign_bit (LONGEST reg)
1565{
1566 const LONGEST sign_mask = (LONGEST) 1 << 63;
1567
1568 return ((reg & sign_mask) != 0);
1569}
1570
ec32e4be
JT
1571/* alpha_software_single_step() is called just before we want to resume
1572 the inferior, if we want to single-step it but there is no hardware
1573 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1574 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1575
1576static CORE_ADDR
7ab2d087 1577alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1578{
ac7936df 1579 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1580 unsigned int insn;
1581 unsigned int op;
551e4f2e 1582 int regno;
ec32e4be
JT
1583 int offset;
1584 LONGEST rav;
1585
e17a4113 1586 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1587
0963b4bd 1588 /* Opcode is top 6 bits. */
ec32e4be
JT
1589 op = (insn >> 26) & 0x3f;
1590
1591 if (op == 0x1a)
1592 {
1593 /* Jump format: target PC is:
1594 RB & ~3 */
7ab2d087 1595 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1596 }
1597
1598 if ((op & 0x30) == 0x30)
1599 {
1600 /* Branch format: target PC is:
1601 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1602 if (op == 0x30 /* BR */
1603 || op == 0x34) /* BSR */
ec32e4be
JT
1604 {
1605 branch_taken:
1606 offset = (insn & 0x001fffff);
1607 if (offset & 0x00100000)
1608 offset |= 0xffe00000;
e8d2d628
MK
1609 offset *= ALPHA_INSN_SIZE;
1610 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1611 }
1612
1613 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1614 regno = (insn >> 21) & 0x1f;
1615 switch (op)
1616 {
1617 case 0x31: /* FBEQ */
1618 case 0x36: /* FBGE */
1619 case 0x37: /* FBGT */
1620 case 0x33: /* FBLE */
1621 case 0x32: /* FBLT */
1622 case 0x35: /* FBNE */
e17a4113 1623 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1624 }
1625
7ab2d087 1626 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1627
ec32e4be
JT
1628 switch (op)
1629 {
1630 case 0x38: /* BLBC */
1631 if ((rav & 1) == 0)
1632 goto branch_taken;
1633 break;
1634 case 0x3c: /* BLBS */
1635 if (rav & 1)
1636 goto branch_taken;
1637 break;
1638 case 0x39: /* BEQ */
1639 if (rav == 0)
1640 goto branch_taken;
1641 break;
1642 case 0x3d: /* BNE */
1643 if (rav != 0)
1644 goto branch_taken;
1645 break;
1646 case 0x3a: /* BLT */
1647 if (rav < 0)
1648 goto branch_taken;
1649 break;
1650 case 0x3b: /* BLE */
1651 if (rav <= 0)
1652 goto branch_taken;
1653 break;
1654 case 0x3f: /* BGT */
1655 if (rav > 0)
1656 goto branch_taken;
1657 break;
1658 case 0x3e: /* BGE */
1659 if (rav >= 0)
1660 goto branch_taken;
1661 break;
d2427a71 1662
0de94d4b
JB
1663 /* Floating point branches. */
1664
1665 case 0x31: /* FBEQ */
1666 if (fp_register_zero_p (rav))
1667 goto branch_taken;
1668 break;
1669 case 0x36: /* FBGE */
1670 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1671 goto branch_taken;
1672 break;
1673 case 0x37: /* FBGT */
1674 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1675 goto branch_taken;
1676 break;
1677 case 0x33: /* FBLE */
1678 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1679 goto branch_taken;
1680 break;
1681 case 0x32: /* FBLT */
1682 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1683 goto branch_taken;
1684 break;
1685 case 0x35: /* FBNE */
1686 if (! fp_register_zero_p (rav))
1687 goto branch_taken;
1688 break;
ec32e4be
JT
1689 }
1690 }
1691
1692 /* Not a branch or branch not taken; target PC is:
1693 pc + 4 */
e8d2d628 1694 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1695}
1696
a0ff9e1a 1697std::vector<CORE_ADDR>
f5ea389a 1698alpha_software_single_step (struct regcache *regcache)
ec32e4be 1699{
68f81d60
RH
1700 struct gdbarch *gdbarch = regcache->arch ();
1701
1702 CORE_ADDR pc = regcache_read_pc (regcache);
1703
1704 std::vector<CORE_ADDR> next_pcs
1705 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1706 if (!next_pcs.empty ())
1707 return next_pcs;
ec32e4be 1708
68f81d60
RH
1709 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1710 return {next_pc};
c906108c
SS
1711}
1712
dc129d82 1713\f
dc129d82
JT
1714/* Initialize the current architecture based on INFO. If possible, re-use an
1715 architecture from ARCHES, which is a list of architectures already created
1716 during this debugging session.
1717
1718 Called e.g. at program startup, when reading a core file, and when reading
1719 a binary file. */
1720
1721static struct gdbarch *
1722alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1723{
1724 struct gdbarch_tdep *tdep;
1725 struct gdbarch *gdbarch;
dc129d82 1726
dc129d82 1727 /* Find a candidate among extant architectures. */
4be87837
DJ
1728 arches = gdbarch_list_lookup_by_info (arches, &info);
1729 if (arches != NULL)
1730 return arches->gdbarch;
dc129d82 1731
cdd238da 1732 tdep = XCNEW (struct gdbarch_tdep);
dc129d82
JT
1733 gdbarch = gdbarch_alloc (&info, tdep);
1734
d2427a71
RH
1735 /* Lowest text address. This is used by heuristic_proc_start()
1736 to decide when to stop looking. */
594706e6 1737 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1738
36a6271d 1739 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1740 tdep->sigcontext_addr = NULL;
138e7be5
MK
1741 tdep->sc_pc_offset = 2 * 8;
1742 tdep->sc_regs_offset = 4 * 8;
1743 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1744
0963b4bd 1745 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1746
9823e921
RH
1747 tdep->return_in_memory = alpha_return_in_memory_always;
1748
dc129d82
JT
1749 /* Type sizes */
1750 set_gdbarch_short_bit (gdbarch, 16);
1751 set_gdbarch_int_bit (gdbarch, 32);
1752 set_gdbarch_long_bit (gdbarch, 64);
1753 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1754 set_gdbarch_wchar_bit (gdbarch, 64);
1755 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1756 set_gdbarch_float_bit (gdbarch, 32);
1757 set_gdbarch_double_bit (gdbarch, 64);
1758 set_gdbarch_long_double_bit (gdbarch, 64);
1759 set_gdbarch_ptr_bit (gdbarch, 64);
1760
1761 /* Register info */
1762 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1763 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1764 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1765 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1766
1767 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1768 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1769
1770 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1771 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1772
c483c494
RH
1773 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1774 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1775 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1776
615967cb
RH
1777 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1778
d2427a71 1779 /* Prologue heuristics. */
dc129d82
JT
1780 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1781
d2427a71 1782 /* Call info. */
dc129d82 1783
9823e921 1784 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1785
1786 /* Settings for calling functions in the inferior. */
c88e30c0 1787 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71 1788
dc129d82 1789 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1790 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1791
04180708
YQ
1792 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1793 alpha_breakpoint::kind_from_pc);
1794 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1795 alpha_breakpoint::bp_from_kind);
e8d2d628 1796 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1797 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1798
46ad3598 1799 /* Handles single stepping of atomic sequences. */
68f81d60 1800 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
46ad3598 1801
44dffaac 1802 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1803 gdbarch_init_osabi (info, gdbarch);
44dffaac 1804
accc6d1f
JT
1805 /* Now that we have tuned the configuration, set a few final things
1806 based on what the OS ABI has told us. */
1807
1808 if (tdep->jb_pc >= 0)
1809 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1810
6834c9bb
JB
1811 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1812 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1813
d2427a71 1814 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1815
d2427a71 1816 return gdbarch;
dc129d82
JT
1817}
1818
baa490c4
RH
1819void
1820alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1821{
6834c9bb 1822 dwarf2_append_unwinders (gdbarch);
336d1bba 1823 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1824}
1825
c906108c 1826void
fba45db2 1827_initialize_alpha_tdep (void)
c906108c 1828{
c906108c 1829
d2427a71 1830 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1831
1832 /* Let the user set the fence post for heuristic_proc_start. */
1833
1834 /* We really would like to have both "0" and "unlimited" work, but
1835 command.c doesn't deal with that. So make it a var_zinteger
1836 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1837 /* We need to throw away the frame cache when we set this, since it
1838 might change our ability to get backtraces. */
1839 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1840 &heuristic_fence_post, _("\
1841Set the distance searched for the start of a function."), _("\
1842Show the distance searched for the start of a function."), _("\
c906108c
SS
1843If you are debugging a stripped executable, GDB needs to search through the\n\
1844program for the start of a function. This command sets the distance of the\n\
323e0a4a 1845search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1846 reinit_frame_cache_sfunc,
0963b4bd
MS
1847 NULL, /* FIXME: i18n: The distance searched for
1848 the start of a function is \"%d\". */
edefbb7c 1849 &setlist, &showlist);
c906108c 1850}
This page took 1.274352 seconds and 4 git commands to generate.