Implement remote multi-process extensions.
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
9b254dd1 4 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
615967cb 22#include "doublest.h"
c906108c 23#include "frame.h"
d2427a71
RH
24#include "frame-unwind.h"
25#include "frame-base.h"
baa490c4 26#include "dwarf2-frame.h"
c906108c
SS
27#include "inferior.h"
28#include "symtab.h"
29#include "value.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "dis-asm.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "gdb_string.h"
c5f0f3d0 36#include "linespec.h"
4e052eda 37#include "regcache.h"
615967cb 38#include "reggroups.h"
dc129d82 39#include "arch-utils.h"
4be87837 40#include "osabi.h"
fe898f56 41#include "block.h"
7d9b040b 42#include "infcall.h"
07ea644b 43#include "trad-frame.h"
dc129d82
JT
44
45#include "elf-bfd.h"
46
47#include "alpha-tdep.h"
48
c906108c 49\f
515921d7
JB
50/* Return the name of the REGNO register.
51
52 An empty name corresponds to a register number that used to
53 be used for a virtual register. That virtual register has
54 been removed, but the index is still reserved to maintain
55 compatibility with existing remote alpha targets. */
56
fa88f677 57static const char *
d93859e2 58alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 59{
5ab84872 60 static const char * const register_names[] =
636a6dfc
JT
61 {
62 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
63 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
64 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
65 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
66 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
67 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
68 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
69 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 70 "pc", "", "unique"
636a6dfc
JT
71 };
72
73 if (regno < 0)
5ab84872 74 return NULL;
e8d2d628 75 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
76 return NULL;
77 return register_names[regno];
636a6dfc 78}
d734c450 79
dc129d82 80static int
64a3914f 81alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 82{
515921d7 83 return (regno == ALPHA_ZERO_REGNUM
64a3914f 84 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
85}
86
dc129d82 87static int
64a3914f 88alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 89{
515921d7 90 return (regno == ALPHA_ZERO_REGNUM
64a3914f 91 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
92}
93
dc129d82 94static struct type *
c483c494 95alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 96{
72667056 97 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 98 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 99 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 100 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
101
102 /* Don't need to worry about little vs big endian until
103 some jerk tries to port to alpha-unicosmk. */
b38b6be2 104 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
8da61cc4 105 return builtin_type_ieee_double;
72667056
RH
106
107 return builtin_type_int64;
0d056799 108}
f8453e34 109
615967cb
RH
110/* Is REGNUM a member of REGGROUP? */
111
112static int
113alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
114 struct reggroup *group)
115{
116 /* Filter out any registers eliminated, but whose regnum is
117 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
118 if (gdbarch_register_name (gdbarch, regnum) == NULL
119 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
120 return 0;
121
df4a182b
RH
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150}
151
c483c494
RH
152/* The following represents exactly the conversion performed by
153 the LDS instruction. This applies to both single-precision
154 floating point and 32-bit integers. */
155
156static void
157alpha_lds (void *out, const void *in)
158{
159 ULONGEST mem = extract_unsigned_integer (in, 4);
160 ULONGEST frac = (mem >> 0) & 0x7fffff;
161 ULONGEST sign = (mem >> 31) & 1;
162 ULONGEST exp_msb = (mem >> 30) & 1;
163 ULONGEST exp_low = (mem >> 23) & 0x7f;
164 ULONGEST exp, reg;
165
166 exp = (exp_msb << 10) | exp_low;
167 if (exp_msb)
168 {
169 if (exp_low == 0x7f)
170 exp = 0x7ff;
171 }
172 else
173 {
174 if (exp_low != 0x00)
175 exp |= 0x380;
176 }
177
178 reg = (sign << 63) | (exp << 52) | (frac << 29);
179 store_unsigned_integer (out, 8, reg);
180}
181
182/* Similarly, this represents exactly the conversion performed by
183 the STS instruction. */
184
39efb398 185static void
c483c494
RH
186alpha_sts (void *out, const void *in)
187{
188 ULONGEST reg, mem;
189
190 reg = extract_unsigned_integer (in, 8);
191 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
192 store_unsigned_integer (out, 4, mem);
193}
194
d2427a71
RH
195/* The alpha needs a conversion between register and memory format if the
196 register is a floating point register and memory format is float, as the
197 register format must be double or memory format is an integer with 4
198 bytes or less, as the representation of integers in floating point
199 registers is different. */
200
c483c494 201static int
0abe36f5 202alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
14696584 203{
83acabca
DJ
204 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
205 && TYPE_LENGTH (type) != 8);
14696584
RH
206}
207
d2427a71 208static void
ff2e87ac 209alpha_register_to_value (struct frame_info *frame, int regnum,
5b819568 210 struct type *valtype, gdb_byte *out)
5868c862 211{
2a1ce6ec
MK
212 gdb_byte in[MAX_REGISTER_SIZE];
213
ff2e87ac 214 frame_register_read (frame, regnum, in);
c483c494 215 switch (TYPE_LENGTH (valtype))
d2427a71 216 {
c483c494
RH
217 case 4:
218 alpha_sts (out, in);
219 break;
c483c494 220 default:
323e0a4a 221 error (_("Cannot retrieve value from floating point register"));
d2427a71 222 }
d2427a71 223}
5868c862 224
d2427a71 225static void
ff2e87ac 226alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 227 struct type *valtype, const gdb_byte *in)
d2427a71 228{
2a1ce6ec
MK
229 gdb_byte out[MAX_REGISTER_SIZE];
230
c483c494 231 switch (TYPE_LENGTH (valtype))
d2427a71 232 {
c483c494
RH
233 case 4:
234 alpha_lds (out, in);
235 break;
c483c494 236 default:
323e0a4a 237 error (_("Cannot store value in floating point register"));
d2427a71 238 }
ff2e87ac 239 put_frame_register (frame, regnum, out);
5868c862
JT
240}
241
d2427a71
RH
242\f
243/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
244 the stack. The register arguments are stored in ARG_REG_BUFFER, and
245 then moved into the register file; this simplifies the passing of a
246 large struct which extends from the registers to the stack, plus avoids
247 three ptrace invocations per word.
248
249 We don't bother tracking which register values should go in integer
250 regs or fp regs; we load the same values into both.
251
d2427a71
RH
252 If the called function is returning a structure, the address of the
253 structure to be returned is passed as a hidden first argument. */
c906108c 254
d2427a71 255static CORE_ADDR
7d9b040b 256alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
257 struct regcache *regcache, CORE_ADDR bp_addr,
258 int nargs, struct value **args, CORE_ADDR sp,
259 int struct_return, CORE_ADDR struct_addr)
c906108c 260{
d2427a71
RH
261 int i;
262 int accumulate_size = struct_return ? 8 : 0;
d2427a71 263 struct alpha_arg
c906108c 264 {
2a1ce6ec 265 gdb_byte *contents;
d2427a71
RH
266 int len;
267 int offset;
268 };
c88e30c0
RH
269 struct alpha_arg *alpha_args
270 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 271 struct alpha_arg *m_arg;
2a1ce6ec 272 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 273 int required_arg_regs;
7d9b040b 274 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 275
c88e30c0
RH
276 /* The ABI places the address of the called function in T12. */
277 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
278
279 /* Set the return address register to point to the entry point
280 of the program, where a breakpoint lies in wait. */
281 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
282
283 /* Lay out the arguments in memory. */
d2427a71
RH
284 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
285 {
286 struct value *arg = args[i];
4991999e 287 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 288
d2427a71
RH
289 /* Cast argument to long if necessary as the compiler does it too. */
290 switch (TYPE_CODE (arg_type))
c906108c 291 {
d2427a71
RH
292 case TYPE_CODE_INT:
293 case TYPE_CODE_BOOL:
294 case TYPE_CODE_CHAR:
295 case TYPE_CODE_RANGE:
296 case TYPE_CODE_ENUM:
0ede8eca 297 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 298 {
0ede8eca
RH
299 /* 32-bit values must be sign-extended to 64 bits
300 even if the base data type is unsigned. */
301 arg_type = builtin_type_int32;
302 arg = value_cast (arg_type, arg);
303 }
304 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
305 {
306 arg_type = builtin_type_int64;
d2427a71
RH
307 arg = value_cast (arg_type, arg);
308 }
309 break;
7b5e1cb3 310
c88e30c0
RH
311 case TYPE_CODE_FLT:
312 /* "float" arguments loaded in registers must be passed in
313 register format, aka "double". */
314 if (accumulate_size < sizeof (arg_reg_buffer)
315 && TYPE_LENGTH (arg_type) == 4)
316 {
8da61cc4 317 arg_type = builtin_type_ieee_double;
c88e30c0
RH
318 arg = value_cast (arg_type, arg);
319 }
320 /* Tru64 5.1 has a 128-bit long double, and passes this by
321 invisible reference. No one else uses this data type. */
322 else if (TYPE_LENGTH (arg_type) == 16)
323 {
324 /* Allocate aligned storage. */
325 sp = (sp & -16) - 16;
326
327 /* Write the real data into the stack. */
0fd88904 328 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
329
330 /* Construct the indirection. */
331 arg_type = lookup_pointer_type (arg_type);
332 arg = value_from_pointer (arg_type, sp);
333 }
334 break;
7b5e1cb3
RH
335
336 case TYPE_CODE_COMPLEX:
337 /* ??? The ABI says that complex values are passed as two
338 separate scalar values. This distinction only matters
339 for complex float. However, GCC does not implement this. */
340
341 /* Tru64 5.1 has a 128-bit long double, and passes this by
342 invisible reference. */
343 if (TYPE_LENGTH (arg_type) == 32)
344 {
345 /* Allocate aligned storage. */
346 sp = (sp & -16) - 16;
347
348 /* Write the real data into the stack. */
0fd88904 349 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
350
351 /* Construct the indirection. */
352 arg_type = lookup_pointer_type (arg_type);
353 arg = value_from_pointer (arg_type, sp);
354 }
355 break;
356
d2427a71
RH
357 default:
358 break;
c906108c 359 }
d2427a71
RH
360 m_arg->len = TYPE_LENGTH (arg_type);
361 m_arg->offset = accumulate_size;
362 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
0fd88904 363 m_arg->contents = value_contents_writeable (arg);
c906108c
SS
364 }
365
d2427a71
RH
366 /* Determine required argument register loads, loading an argument register
367 is expensive as it uses three ptrace calls. */
368 required_arg_regs = accumulate_size / 8;
369 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
370 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 371
d2427a71 372 /* Make room for the arguments on the stack. */
c88e30c0
RH
373 if (accumulate_size < sizeof(arg_reg_buffer))
374 accumulate_size = 0;
375 else
376 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 377 sp -= accumulate_size;
c906108c 378
c88e30c0 379 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 380 sp &= ~15;
c906108c 381
d2427a71
RH
382 /* `Push' arguments on the stack. */
383 for (i = nargs; m_arg--, --i >= 0;)
c906108c 384 {
2a1ce6ec 385 gdb_byte *contents = m_arg->contents;
c88e30c0
RH
386 int offset = m_arg->offset;
387 int len = m_arg->len;
388
389 /* Copy the bytes destined for registers into arg_reg_buffer. */
390 if (offset < sizeof(arg_reg_buffer))
391 {
392 if (offset + len <= sizeof(arg_reg_buffer))
393 {
394 memcpy (arg_reg_buffer + offset, contents, len);
395 continue;
396 }
397 else
398 {
399 int tlen = sizeof(arg_reg_buffer) - offset;
400 memcpy (arg_reg_buffer + offset, contents, tlen);
401 offset += tlen;
402 contents += tlen;
403 len -= tlen;
404 }
405 }
406
407 /* Everything else goes to the stack. */
408 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 409 }
c88e30c0
RH
410 if (struct_return)
411 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
c906108c 412
d2427a71
RH
413 /* Load the argument registers. */
414 for (i = 0; i < required_arg_regs; i++)
415 {
09cc52fd
RH
416 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
417 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
418 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
419 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 420 }
c906108c 421
09cc52fd
RH
422 /* Finally, update the stack pointer. */
423 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
424
c88e30c0 425 return sp;
c906108c
SS
426}
427
5ec2bb99
RH
428/* Extract from REGCACHE the value about to be returned from a function
429 and copy it into VALBUF. */
d2427a71 430
dc129d82 431static void
5ec2bb99 432alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 433 gdb_byte *valbuf)
140f9984 434{
7b5e1cb3 435 int length = TYPE_LENGTH (valtype);
2a1ce6ec 436 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
437 ULONGEST l;
438
439 switch (TYPE_CODE (valtype))
440 {
441 case TYPE_CODE_FLT:
7b5e1cb3 442 switch (length)
5ec2bb99
RH
443 {
444 case 4:
445 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
c483c494 446 alpha_sts (valbuf, raw_buffer);
5ec2bb99
RH
447 break;
448
449 case 8:
450 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
451 break;
452
24064b5c
RH
453 case 16:
454 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
455 read_memory (l, valbuf, 16);
456 break;
457
5ec2bb99 458 default:
323e0a4a 459 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
460 }
461 break;
462
7b5e1cb3
RH
463 case TYPE_CODE_COMPLEX:
464 switch (length)
465 {
466 case 8:
467 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
468 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
469 break;
470
471 case 16:
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 473 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
474 break;
475
476 case 32:
477 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
478 read_memory (l, valbuf, 32);
479 break;
480
481 default:
323e0a4a 482 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
483 }
484 break;
485
5ec2bb99
RH
486 default:
487 /* Assume everything else degenerates to an integer. */
488 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3 489 store_unsigned_integer (valbuf, length, l);
5ec2bb99
RH
490 break;
491 }
140f9984
JT
492}
493
5ec2bb99
RH
494/* Insert the given value into REGCACHE as if it was being
495 returned by a function. */
0d056799 496
d2427a71 497static void
5ec2bb99 498alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 499 const gdb_byte *valbuf)
c906108c 500{
d2427a71 501 int length = TYPE_LENGTH (valtype);
2a1ce6ec 502 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 503 ULONGEST l;
d2427a71 504
5ec2bb99 505 switch (TYPE_CODE (valtype))
c906108c 506 {
5ec2bb99
RH
507 case TYPE_CODE_FLT:
508 switch (length)
509 {
510 case 4:
c483c494 511 alpha_lds (raw_buffer, valbuf);
f75d70cc
RH
512 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
513 break;
5ec2bb99
RH
514
515 case 8:
516 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
517 break;
518
24064b5c
RH
519 case 16:
520 /* FIXME: 128-bit long doubles are returned like structures:
521 by writing into indirect storage provided by the caller
522 as the first argument. */
323e0a4a 523 error (_("Cannot set a 128-bit long double return value."));
24064b5c 524
5ec2bb99 525 default:
323e0a4a 526 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
527 }
528 break;
d2427a71 529
7b5e1cb3
RH
530 case TYPE_CODE_COMPLEX:
531 switch (length)
532 {
533 case 8:
534 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
535 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
536 break;
537
538 case 16:
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 540 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
541 break;
542
543 case 32:
544 /* FIXME: 128-bit long doubles are returned like structures:
545 by writing into indirect storage provided by the caller
546 as the first argument. */
323e0a4a 547 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
548
549 default:
323e0a4a 550 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
551 }
552 break;
553
5ec2bb99
RH
554 default:
555 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
556 /* 32-bit values must be sign-extended to 64 bits
557 even if the base data type is unsigned. */
558 if (length == 4)
559 valtype = builtin_type_int32;
5ec2bb99
RH
560 l = unpack_long (valtype, valbuf);
561 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
562 break;
563 }
c906108c
SS
564}
565
9823e921 566static enum return_value_convention
c055b101
CV
567alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
568 struct type *type, struct regcache *regcache,
569 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
570{
571 enum type_code code = TYPE_CODE (type);
572
573 if ((code == TYPE_CODE_STRUCT
574 || code == TYPE_CODE_UNION
575 || code == TYPE_CODE_ARRAY)
576 && gdbarch_tdep (gdbarch)->return_in_memory (type))
577 {
578 if (readbuf)
579 {
580 ULONGEST addr;
581 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
582 read_memory (addr, readbuf, TYPE_LENGTH (type));
583 }
584
585 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
586 }
587
588 if (readbuf)
589 alpha_extract_return_value (type, regcache, readbuf);
590 if (writebuf)
591 alpha_store_return_value (type, regcache, writebuf);
592
593 return RETURN_VALUE_REGISTER_CONVENTION;
594}
595
596static int
597alpha_return_in_memory_always (struct type *type)
598{
599 return 1;
600}
d2427a71 601\f
2a1ce6ec 602static const gdb_byte *
67d57894 603alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 604{
2a1ce6ec 605 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 606
2a1ce6ec
MK
607 *len = sizeof(break_insn);
608 return break_insn;
d2427a71 609}
c906108c 610
d2427a71
RH
611\f
612/* This returns the PC of the first insn after the prologue.
613 If we can't find the prologue, then return 0. */
c906108c 614
d2427a71
RH
615CORE_ADDR
616alpha_after_prologue (CORE_ADDR pc)
c906108c 617{
d2427a71
RH
618 struct symtab_and_line sal;
619 CORE_ADDR func_addr, func_end;
c906108c 620
d2427a71 621 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 622 return 0;
c906108c 623
d2427a71
RH
624 sal = find_pc_line (func_addr, 0);
625 if (sal.end < func_end)
626 return sal.end;
c5aa993b 627
d2427a71
RH
628 /* The line after the prologue is after the end of the function. In this
629 case, tell the caller to find the prologue the hard way. */
630 return 0;
c906108c
SS
631}
632
d2427a71
RH
633/* Read an instruction from memory at PC, looking through breakpoints. */
634
635unsigned int
636alpha_read_insn (CORE_ADDR pc)
c906108c 637{
e8d2d628 638 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 639 int status;
c5aa993b 640
8defab1a 641 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
642 if (status)
643 memory_error (status, pc);
e8d2d628 644 return extract_unsigned_integer (buf, sizeof (buf));
d2427a71 645}
c5aa993b 646
d2427a71
RH
647/* To skip prologues, I use this predicate. Returns either PC itself
648 if the code at PC does not look like a function prologue; otherwise
649 returns an address that (if we're lucky) follows the prologue. If
650 LENIENT, then we must skip everything which is involved in setting
651 up the frame (it's OK to skip more, just so long as we don't skip
652 anything which might clobber the registers which are being saved. */
c906108c 653
d2427a71 654static CORE_ADDR
6093d2eb 655alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
656{
657 unsigned long inst;
658 int offset;
659 CORE_ADDR post_prologue_pc;
e8d2d628 660 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 661
d2427a71
RH
662 /* Silently return the unaltered pc upon memory errors.
663 This could happen on OSF/1 if decode_line_1 tries to skip the
664 prologue for quickstarted shared library functions when the
665 shared library is not yet mapped in.
666 Reading target memory is slow over serial lines, so we perform
667 this check only if the target has shared libraries (which all
668 Alpha targets do). */
e8d2d628 669 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 670 return pc;
c906108c 671
d2427a71
RH
672 /* See if we can determine the end of the prologue via the symbol table.
673 If so, then return either PC, or the PC after the prologue, whichever
674 is greater. */
c906108c 675
d2427a71
RH
676 post_prologue_pc = alpha_after_prologue (pc);
677 if (post_prologue_pc != 0)
678 return max (pc, post_prologue_pc);
c906108c 679
d2427a71
RH
680 /* Can't determine prologue from the symbol table, need to examine
681 instructions. */
dc1b0db2 682
d2427a71
RH
683 /* Skip the typical prologue instructions. These are the stack adjustment
684 instruction and the instructions that save registers on the stack
685 or in the gcc frame. */
e8d2d628 686 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71
RH
687 {
688 inst = alpha_read_insn (pc + offset);
c906108c 689
d2427a71
RH
690 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
691 continue;
692 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
693 continue;
694 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
695 continue;
696 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
697 continue;
c906108c 698
d2427a71
RH
699 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
700 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
701 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
702 continue;
c906108c 703
d2427a71
RH
704 if (inst == 0x47de040f) /* bis sp,sp,fp */
705 continue;
706 if (inst == 0x47fe040f) /* bis zero,sp,fp */
707 continue;
c906108c 708
d2427a71 709 break;
c906108c 710 }
d2427a71
RH
711 return pc + offset;
712}
c906108c 713
d2427a71
RH
714\f
715/* Figure out where the longjmp will land.
716 We expect the first arg to be a pointer to the jmp_buf structure from
717 which we extract the PC (JB_PC) that we will land at. The PC is copied
718 into the "pc". This routine returns true on success. */
c906108c
SS
719
720static int
60ade65d 721alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 722{
60ade65d 723 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
d2427a71 724 CORE_ADDR jb_addr;
2a1ce6ec 725 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 726
60ade65d 727 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 728
d2427a71
RH
729 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
730 raw_buffer, tdep->jb_elt_size))
c906108c 731 return 0;
d2427a71 732
7c0b4a20 733 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
d2427a71 734 return 1;
c906108c
SS
735}
736
d2427a71
RH
737\f
738/* Frame unwinder for signal trampolines. We use alpha tdep bits that
739 describe the location and shape of the sigcontext structure. After
740 that, all registers are in memory, so it's easy. */
741/* ??? Shouldn't we be able to do this generically, rather than with
742 OSABI data specific to Alpha? */
743
744struct alpha_sigtramp_unwind_cache
c906108c 745{
d2427a71
RH
746 CORE_ADDR sigcontext_addr;
747};
c906108c 748
d2427a71 749static struct alpha_sigtramp_unwind_cache *
6834c9bb 750alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
751 void **this_prologue_cache)
752{
753 struct alpha_sigtramp_unwind_cache *info;
754 struct gdbarch_tdep *tdep;
c906108c 755
d2427a71
RH
756 if (*this_prologue_cache)
757 return *this_prologue_cache;
c906108c 758
d2427a71
RH
759 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
760 *this_prologue_cache = info;
c906108c 761
6834c9bb
JB
762 tdep = gdbarch_tdep (get_frame_arch (this_frame));
763 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 764
d2427a71 765 return info;
c906108c
SS
766}
767
138e7be5
MK
768/* Return the address of REGNUM in a sigtramp frame. Since this is
769 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 770
d2427a71 771static CORE_ADDR
be8626e0
MD
772alpha_sigtramp_register_address (struct gdbarch *gdbarch,
773 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 774{
be8626e0 775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
776
777 if (regnum >= 0 && regnum < 32)
778 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
779 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
780 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
781 else if (regnum == ALPHA_PC_REGNUM)
782 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 783
d2427a71 784 return 0;
c906108c
SS
785}
786
d2427a71
RH
787/* Given a GDB frame, determine the address of the calling function's
788 frame. This will be used to create a new GDB frame struct. */
140f9984 789
dc129d82 790static void
6834c9bb 791alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
792 void **this_prologue_cache,
793 struct frame_id *this_id)
c906108c 794{
6834c9bb 795 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 797 struct alpha_sigtramp_unwind_cache *info
6834c9bb 798 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
799 CORE_ADDR stack_addr, code_addr;
800
801 /* If the OSABI couldn't locate the sigcontext, give up. */
802 if (info->sigcontext_addr == 0)
803 return;
804
805 /* If we have dynamic signal trampolines, find their start.
806 If we do not, then we must assume there is a symbol record
807 that can provide the start address. */
d2427a71 808 if (tdep->dynamic_sigtramp_offset)
c906108c 809 {
d2427a71 810 int offset;
6834c9bb 811 code_addr = get_frame_pc (this_frame);
d2427a71
RH
812 offset = tdep->dynamic_sigtramp_offset (code_addr);
813 if (offset >= 0)
814 code_addr -= offset;
c906108c 815 else
d2427a71 816 code_addr = 0;
c906108c 817 }
d2427a71 818 else
6834c9bb 819 code_addr = get_frame_func (this_frame);
c906108c 820
d2427a71 821 /* The stack address is trivially read from the sigcontext. */
be8626e0 822 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 823 ALPHA_SP_REGNUM);
6834c9bb 824 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 825 ALPHA_REGISTER_SIZE);
c906108c 826
d2427a71 827 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
828}
829
d2427a71 830/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 831
6834c9bb
JB
832static struct value *
833alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
834 void **this_prologue_cache, int regnum)
c906108c 835{
d2427a71 836 struct alpha_sigtramp_unwind_cache *info
6834c9bb 837 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 838 CORE_ADDR addr;
c906108c 839
d2427a71 840 if (info->sigcontext_addr != 0)
c906108c 841 {
d2427a71 842 /* All integer and fp registers are stored in memory. */
6834c9bb 843 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 844 info->sigcontext_addr, regnum);
d2427a71 845 if (addr != 0)
6834c9bb 846 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
847 }
848
d2427a71
RH
849 /* This extra register may actually be in the sigcontext, but our
850 current description of it in alpha_sigtramp_frame_unwind_cache
851 doesn't include it. Too bad. Fall back on whatever's in the
852 outer frame. */
6834c9bb 853 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 854}
c906108c 855
6834c9bb
JB
856static int
857alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
858 struct frame_info *this_frame,
859 void **this_prologue_cache)
d2427a71 860{
6834c9bb
JB
861 struct gdbarch *gdbarch = get_frame_arch (this_frame);
862 CORE_ADDR pc = get_frame_pc (this_frame);
d2427a71 863 char *name;
c906108c 864
f2524b93
AC
865 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
866 look at tramp-frame.h and other simplier per-architecture
867 sigtramp unwinders. */
868
869 /* We shouldn't even bother to try if the OSABI didn't register a
870 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 871 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 872 return 0;
ec7cc0e8 873 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 874 return 0;
c906108c 875
d2427a71
RH
876 /* Otherwise we should be in a signal frame. */
877 find_pc_partial_function (pc, &name, NULL, NULL);
ec7cc0e8 878 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name))
6834c9bb 879 return 1;
c906108c 880
6834c9bb 881 return 0;
c906108c 882}
6834c9bb
JB
883
884static const struct frame_unwind alpha_sigtramp_frame_unwind = {
885 SIGTRAMP_FRAME,
886 alpha_sigtramp_frame_this_id,
887 alpha_sigtramp_frame_prev_register,
888 NULL,
889 alpha_sigtramp_frame_sniffer
890};
891
d2427a71 892\f
c906108c 893
d2427a71
RH
894/* Heuristic_proc_start may hunt through the text section for a long
895 time across a 2400 baud serial line. Allows the user to limit this
896 search. */
897static unsigned int heuristic_fence_post = 0;
c906108c 898
d2427a71
RH
899/* Attempt to locate the start of the function containing PC. We assume that
900 the previous function ends with an about_to_return insn. Not foolproof by
901 any means, since gcc is happy to put the epilogue in the middle of a
902 function. But we're guessing anyway... */
c906108c 903
d2427a71 904static CORE_ADDR
be8626e0 905alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 906{
be8626e0 907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
908 CORE_ADDR last_non_nop = pc;
909 CORE_ADDR fence = pc - heuristic_fence_post;
910 CORE_ADDR orig_pc = pc;
fbe586ae 911 CORE_ADDR func;
9e0b60a8 912
d2427a71
RH
913 if (pc == 0)
914 return 0;
9e0b60a8 915
fbe586ae
RH
916 /* First see if we can find the start of the function from minimal
917 symbol information. This can succeed with a binary that doesn't
918 have debug info, but hasn't been stripped. */
919 func = get_pc_function_start (pc);
920 if (func)
921 return func;
922
d2427a71
RH
923 if (heuristic_fence_post == UINT_MAX
924 || fence < tdep->vm_min_address)
925 fence = tdep->vm_min_address;
c906108c 926
d2427a71
RH
927 /* Search back for previous return; also stop at a 0, which might be
928 seen for instance before the start of a code section. Don't include
929 nops, since this usually indicates padding between functions. */
e8d2d628 930 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 931 {
d2427a71
RH
932 unsigned int insn = alpha_read_insn (pc);
933 switch (insn)
c906108c 934 {
d2427a71
RH
935 case 0: /* invalid insn */
936 case 0x6bfa8001: /* ret $31,($26),1 */
937 return last_non_nop;
938
939 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
940 case 0x47ff041f: /* nop: bis $31,$31,$31 */
941 break;
942
943 default:
944 last_non_nop = pc;
945 break;
c906108c 946 }
d2427a71 947 }
c906108c 948
d2427a71
RH
949 /* It's not clear to me why we reach this point when stopping quietly,
950 but with this test, at least we don't print out warnings for every
951 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
952 if (stop_soon == NO_STOP_QUIETLY)
953 {
954 static int blurb_printed = 0;
c906108c 955
d2427a71 956 if (fence == tdep->vm_min_address)
323e0a4a
AC
957 warning (_("Hit beginning of text section without finding \
958enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 959 else
323e0a4a
AC
960 warning (_("Hit heuristic-fence-post without finding \
961enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 962
d2427a71
RH
963 if (!blurb_printed)
964 {
323e0a4a 965 printf_filtered (_("\
d2427a71
RH
966This warning occurs if you are debugging a function without any symbols\n\
967(for example, in a stripped executable). In that case, you may wish to\n\
968increase the size of the search with the `set heuristic-fence-post' command.\n\
969\n\
970Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 971(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
972 blurb_printed = 1;
973 }
974 }
c906108c 975
d2427a71
RH
976 return 0;
977}
c906108c 978
07ea644b
MD
979/* Fallback alpha frame unwinder. Uses instruction scanning and knows
980 something about the traditional layout of alpha stack frames. */
981
982struct alpha_heuristic_unwind_cache
983{
984 CORE_ADDR vfp;
985 CORE_ADDR start_pc;
986 struct trad_frame_saved_reg *saved_regs;
987 int return_reg;
988};
989
fbe586ae 990static struct alpha_heuristic_unwind_cache *
6834c9bb 991alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
992 void **this_prologue_cache,
993 CORE_ADDR start_pc)
994{
6834c9bb 995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
996 struct alpha_heuristic_unwind_cache *info;
997 ULONGEST val;
998 CORE_ADDR limit_pc, cur_pc;
999 int frame_reg, frame_size, return_reg, reg;
c906108c 1000
d2427a71
RH
1001 if (*this_prologue_cache)
1002 return *this_prologue_cache;
c906108c 1003
d2427a71
RH
1004 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1005 *this_prologue_cache = info;
6834c9bb 1006 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1007
6834c9bb 1008 limit_pc = get_frame_pc (this_frame);
d2427a71 1009 if (start_pc == 0)
be8626e0 1010 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1011 info->start_pc = start_pc;
c906108c 1012
d2427a71
RH
1013 frame_reg = ALPHA_SP_REGNUM;
1014 frame_size = 0;
1015 return_reg = -1;
c906108c 1016
d2427a71
RH
1017 /* If we've identified a likely place to start, do code scanning. */
1018 if (start_pc != 0)
c5aa993b 1019 {
d2427a71
RH
1020 /* Limit the forward search to 50 instructions. */
1021 if (start_pc + 200 < limit_pc)
1022 limit_pc = start_pc + 200;
c5aa993b 1023
e8d2d628 1024 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71
RH
1025 {
1026 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1027
d2427a71
RH
1028 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1029 {
1030 if (word & 0x8000)
1031 {
1032 /* Consider only the first stack allocation instruction
1033 to contain the static size of the frame. */
1034 if (frame_size == 0)
1035 frame_size = (-word) & 0xffff;
1036 }
1037 else
1038 {
1039 /* Exit loop if a positive stack adjustment is found, which
1040 usually means that the stack cleanup code in the function
1041 epilogue is reached. */
1042 break;
1043 }
1044 }
1045 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1046 {
1047 reg = (word & 0x03e00000) >> 21;
1048
d15bfd3a
AC
1049 /* Ignore this instruction if we have already encountered
1050 an instruction saving the same register earlier in the
1051 function code. The current instruction does not tell
1052 us where the original value upon function entry is saved.
1053 All it says is that the function we are scanning reused
1054 that register for some computation of its own, and is now
1055 saving its result. */
07ea644b 1056 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1057 continue;
1058
d2427a71
RH
1059 if (reg == 31)
1060 continue;
1061
1062 /* Do not compute the address where the register was saved yet,
1063 because we don't know yet if the offset will need to be
1064 relative to $sp or $fp (we can not compute the address
1065 relative to $sp if $sp is updated during the execution of
1066 the current subroutine, for instance when doing some alloca).
1067 So just store the offset for the moment, and compute the
1068 address later when we know whether this frame has a frame
1069 pointer or not. */
1070 /* Hack: temporarily add one, so that the offset is non-zero
1071 and we can tell which registers have save offsets below. */
07ea644b 1072 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1073
1074 /* Starting with OSF/1-3.2C, the system libraries are shipped
1075 without local symbols, but they still contain procedure
1076 descriptors without a symbol reference. GDB is currently
1077 unable to find these procedure descriptors and uses
1078 heuristic_proc_desc instead.
1079 As some low level compiler support routines (__div*, __add*)
1080 use a non-standard return address register, we have to
1081 add some heuristics to determine the return address register,
1082 or stepping over these routines will fail.
1083 Usually the return address register is the first register
1084 saved on the stack, but assembler optimization might
1085 rearrange the register saves.
1086 So we recognize only a few registers (t7, t9, ra) within
1087 the procedure prologue as valid return address registers.
1088 If we encounter a return instruction, we extract the
1089 the return address register from it.
1090
1091 FIXME: Rewriting GDB to access the procedure descriptors,
1092 e.g. via the minimal symbol table, might obviate this hack. */
1093 if (return_reg == -1
1094 && cur_pc < (start_pc + 80)
1095 && (reg == ALPHA_T7_REGNUM
1096 || reg == ALPHA_T9_REGNUM
1097 || reg == ALPHA_RA_REGNUM))
1098 return_reg = reg;
1099 }
1100 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1101 return_reg = (word >> 16) & 0x1f;
1102 else if (word == 0x47de040f) /* bis sp,sp,fp */
1103 frame_reg = ALPHA_GCC_FP_REGNUM;
1104 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1105 frame_reg = ALPHA_GCC_FP_REGNUM;
1106 }
c5aa993b 1107
d2427a71
RH
1108 /* If we haven't found a valid return address register yet, keep
1109 searching in the procedure prologue. */
1110 if (return_reg == -1)
1111 {
1112 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1113 {
1114 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1115
d2427a71
RH
1116 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1117 {
1118 reg = (word & 0x03e00000) >> 21;
1119 if (reg == ALPHA_T7_REGNUM
1120 || reg == ALPHA_T9_REGNUM
1121 || reg == ALPHA_RA_REGNUM)
1122 {
1123 return_reg = reg;
1124 break;
1125 }
1126 }
1127 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1128 {
1129 return_reg = (word >> 16) & 0x1f;
1130 break;
1131 }
85b32d22 1132
e8d2d628 1133 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1134 }
1135 }
c906108c 1136 }
c906108c 1137
d2427a71
RH
1138 /* Failing that, do default to the customary RA. */
1139 if (return_reg == -1)
1140 return_reg = ALPHA_RA_REGNUM;
1141 info->return_reg = return_reg;
f8453e34 1142
6834c9bb 1143 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1144 info->vfp = val + frame_size;
c906108c 1145
d2427a71
RH
1146 /* Convert offsets to absolute addresses. See above about adding
1147 one to the offsets to make all detected offsets non-zero. */
1148 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1149 if (trad_frame_addr_p(info->saved_regs, reg))
1150 info->saved_regs[reg].addr += val - 1;
d2427a71 1151
bfd66dd9
JB
1152 /* The stack pointer of the previous frame is computed by popping
1153 the current stack frame. */
1154 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1155 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1156
d2427a71 1157 return info;
c906108c 1158}
c906108c 1159
d2427a71
RH
1160/* Given a GDB frame, determine the address of the calling function's
1161 frame. This will be used to create a new GDB frame struct. */
1162
fbe586ae 1163static void
6834c9bb
JB
1164alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1165 void **this_prologue_cache,
1166 struct frame_id *this_id)
c906108c 1167{
d2427a71 1168 struct alpha_heuristic_unwind_cache *info
6834c9bb 1169 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1170
d2427a71 1171 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1172}
1173
d2427a71
RH
1174/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1175
6834c9bb
JB
1176static struct value *
1177alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1178 void **this_prologue_cache, int regnum)
c906108c 1179{
d2427a71 1180 struct alpha_heuristic_unwind_cache *info
6834c9bb 1181 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1182
1183 /* The PC of the previous frame is stored in the link register of
1184 the current frame. Frob regnum so that we pull the value from
1185 the correct place. */
1186 if (regnum == ALPHA_PC_REGNUM)
1187 regnum = info->return_reg;
1188
6834c9bb 1189 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1190}
1191
d2427a71
RH
1192static const struct frame_unwind alpha_heuristic_frame_unwind = {
1193 NORMAL_FRAME,
1194 alpha_heuristic_frame_this_id,
6834c9bb
JB
1195 alpha_heuristic_frame_prev_register,
1196 NULL,
1197 default_frame_sniffer
d2427a71 1198};
c906108c 1199
fbe586ae 1200static CORE_ADDR
6834c9bb 1201alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1202 void **this_prologue_cache)
c906108c 1203{
d2427a71 1204 struct alpha_heuristic_unwind_cache *info
6834c9bb 1205 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1206
d2427a71 1207 return info->vfp;
c906108c
SS
1208}
1209
d2427a71
RH
1210static const struct frame_base alpha_heuristic_frame_base = {
1211 &alpha_heuristic_frame_unwind,
1212 alpha_heuristic_frame_base_address,
1213 alpha_heuristic_frame_base_address,
1214 alpha_heuristic_frame_base_address
1215};
1216
c906108c 1217/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1218 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1219
1220static void
fba45db2 1221reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1222{
1223 reinit_frame_cache ();
1224}
1225
d2427a71 1226\f
d2427a71
RH
1227/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1228 dummy frame. The frame ID's base needs to match the TOS value
1229 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1230 breakpoint. */
d734c450 1231
d2427a71 1232static struct frame_id
6834c9bb 1233alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1234{
d2427a71 1235 ULONGEST base;
6834c9bb
JB
1236 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1237 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1238}
1239
dc129d82 1240static CORE_ADDR
d2427a71 1241alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1242{
d2427a71 1243 ULONGEST pc;
11411de3 1244 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1245 return pc;
accc6d1f
JT
1246}
1247
98a8e1e5
RH
1248\f
1249/* Helper routines for alpha*-nat.c files to move register sets to and
1250 from core files. The UNIQUE pointer is allowed to be NULL, as most
1251 targets don't supply this value in their core files. */
1252
1253void
390c1522
UW
1254alpha_supply_int_regs (struct regcache *regcache, int regno,
1255 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1256{
2a1ce6ec 1257 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1258 int i;
1259
1260 for (i = 0; i < 31; ++i)
1261 if (regno == i || regno == -1)
390c1522 1262 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1263
1264 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
390c1522 1265 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
98a8e1e5
RH
1266
1267 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1268 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1269
1270 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1271 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1272}
1273
1274void
390c1522
UW
1275alpha_fill_int_regs (const struct regcache *regcache,
1276 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1277{
2a1ce6ec 1278 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1279 int i;
1280
1281 for (i = 0; i < 31; ++i)
1282 if (regno == i || regno == -1)
390c1522 1283 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1284
1285 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1286 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1287
1288 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1289 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1290}
1291
1292void
390c1522
UW
1293alpha_supply_fp_regs (struct regcache *regcache, int regno,
1294 const void *f0_f30, const void *fpcr)
98a8e1e5 1295{
2a1ce6ec 1296 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1297 int i;
1298
1299 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1300 if (regno == i || regno == -1)
390c1522 1301 regcache_raw_supply (regcache, i,
2a1ce6ec 1302 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1303
1304 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1305 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1306}
1307
1308void
390c1522
UW
1309alpha_fill_fp_regs (const struct regcache *regcache,
1310 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1311{
2a1ce6ec 1312 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1313 int i;
1314
1315 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1316 if (regno == i || regno == -1)
390c1522 1317 regcache_raw_collect (regcache, i,
2a1ce6ec 1318 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1319
1320 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1321 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1322}
1323
d2427a71 1324\f
0de94d4b
JB
1325
1326/* Return nonzero if the G_floating register value in REG is equal to
1327 zero for FP control instructions. */
1328
1329static int
1330fp_register_zero_p (LONGEST reg)
1331{
1332 /* Check that all bits except the sign bit are zero. */
1333 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1334
1335 return ((reg & zero_mask) == 0);
1336}
1337
1338/* Return the value of the sign bit for the G_floating register
1339 value held in REG. */
1340
1341static int
1342fp_register_sign_bit (LONGEST reg)
1343{
1344 const LONGEST sign_mask = (LONGEST) 1 << 63;
1345
1346 return ((reg & sign_mask) != 0);
1347}
1348
ec32e4be
JT
1349/* alpha_software_single_step() is called just before we want to resume
1350 the inferior, if we want to single-step it but there is no hardware
1351 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1352 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1353
1354static CORE_ADDR
0b1b3e42 1355alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be
JT
1356{
1357 unsigned int insn;
1358 unsigned int op;
551e4f2e 1359 int regno;
ec32e4be
JT
1360 int offset;
1361 LONGEST rav;
1362
b21fd293 1363 insn = alpha_read_insn (pc);
ec32e4be
JT
1364
1365 /* Opcode is top 6 bits. */
1366 op = (insn >> 26) & 0x3f;
1367
1368 if (op == 0x1a)
1369 {
1370 /* Jump format: target PC is:
1371 RB & ~3 */
0b1b3e42 1372 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1373 }
1374
1375 if ((op & 0x30) == 0x30)
1376 {
1377 /* Branch format: target PC is:
1378 (new PC) + (4 * sext(displacement)) */
1379 if (op == 0x30 || /* BR */
1380 op == 0x34) /* BSR */
1381 {
1382 branch_taken:
1383 offset = (insn & 0x001fffff);
1384 if (offset & 0x00100000)
1385 offset |= 0xffe00000;
e8d2d628
MK
1386 offset *= ALPHA_INSN_SIZE;
1387 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1388 }
1389
1390 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1391 regno = (insn >> 21) & 0x1f;
1392 switch (op)
1393 {
1394 case 0x31: /* FBEQ */
1395 case 0x36: /* FBGE */
1396 case 0x37: /* FBGT */
1397 case 0x33: /* FBLE */
1398 case 0x32: /* FBLT */
1399 case 0x35: /* FBNE */
ec7cc0e8 1400 regno += gdbarch_fp0_regnum (get_frame_arch (frame));
551e4f2e
JB
1401 }
1402
0b1b3e42 1403 rav = get_frame_register_signed (frame, regno);
0de94d4b 1404
ec32e4be
JT
1405 switch (op)
1406 {
1407 case 0x38: /* BLBC */
1408 if ((rav & 1) == 0)
1409 goto branch_taken;
1410 break;
1411 case 0x3c: /* BLBS */
1412 if (rav & 1)
1413 goto branch_taken;
1414 break;
1415 case 0x39: /* BEQ */
1416 if (rav == 0)
1417 goto branch_taken;
1418 break;
1419 case 0x3d: /* BNE */
1420 if (rav != 0)
1421 goto branch_taken;
1422 break;
1423 case 0x3a: /* BLT */
1424 if (rav < 0)
1425 goto branch_taken;
1426 break;
1427 case 0x3b: /* BLE */
1428 if (rav <= 0)
1429 goto branch_taken;
1430 break;
1431 case 0x3f: /* BGT */
1432 if (rav > 0)
1433 goto branch_taken;
1434 break;
1435 case 0x3e: /* BGE */
1436 if (rav >= 0)
1437 goto branch_taken;
1438 break;
d2427a71 1439
0de94d4b
JB
1440 /* Floating point branches. */
1441
1442 case 0x31: /* FBEQ */
1443 if (fp_register_zero_p (rav))
1444 goto branch_taken;
1445 break;
1446 case 0x36: /* FBGE */
1447 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1448 goto branch_taken;
1449 break;
1450 case 0x37: /* FBGT */
1451 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1452 goto branch_taken;
1453 break;
1454 case 0x33: /* FBLE */
1455 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1456 goto branch_taken;
1457 break;
1458 case 0x32: /* FBLT */
1459 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1460 goto branch_taken;
1461 break;
1462 case 0x35: /* FBNE */
1463 if (! fp_register_zero_p (rav))
1464 goto branch_taken;
1465 break;
ec32e4be
JT
1466 }
1467 }
1468
1469 /* Not a branch or branch not taken; target PC is:
1470 pc + 4 */
e8d2d628 1471 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1472}
1473
e6590a1b 1474int
0b1b3e42 1475alpha_software_single_step (struct frame_info *frame)
ec32e4be 1476{
e0cd558a 1477 CORE_ADDR pc, next_pc;
ec32e4be 1478
0b1b3e42
UW
1479 pc = get_frame_pc (frame);
1480 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1481
e0cd558a 1482 insert_single_step_breakpoint (next_pc);
e6590a1b 1483 return 1;
c906108c
SS
1484}
1485
dc129d82 1486\f
dc129d82
JT
1487/* Initialize the current architecture based on INFO. If possible, re-use an
1488 architecture from ARCHES, which is a list of architectures already created
1489 during this debugging session.
1490
1491 Called e.g. at program startup, when reading a core file, and when reading
1492 a binary file. */
1493
1494static struct gdbarch *
1495alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1496{
1497 struct gdbarch_tdep *tdep;
1498 struct gdbarch *gdbarch;
dc129d82
JT
1499
1500 /* Try to determine the ABI of the object we are loading. */
4be87837 1501 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1502 {
4be87837
DJ
1503 /* If it's an ECOFF file, assume it's OSF/1. */
1504 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1505 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1506 }
1507
1508 /* Find a candidate among extant architectures. */
4be87837
DJ
1509 arches = gdbarch_list_lookup_by_info (arches, &info);
1510 if (arches != NULL)
1511 return arches->gdbarch;
dc129d82
JT
1512
1513 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1514 gdbarch = gdbarch_alloc (&info, tdep);
1515
d2427a71
RH
1516 /* Lowest text address. This is used by heuristic_proc_start()
1517 to decide when to stop looking. */
594706e6 1518 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1519
36a6271d 1520 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1521 tdep->sigcontext_addr = NULL;
138e7be5
MK
1522 tdep->sc_pc_offset = 2 * 8;
1523 tdep->sc_regs_offset = 4 * 8;
1524 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1525
accc6d1f
JT
1526 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1527
9823e921
RH
1528 tdep->return_in_memory = alpha_return_in_memory_always;
1529
dc129d82
JT
1530 /* Type sizes */
1531 set_gdbarch_short_bit (gdbarch, 16);
1532 set_gdbarch_int_bit (gdbarch, 32);
1533 set_gdbarch_long_bit (gdbarch, 64);
1534 set_gdbarch_long_long_bit (gdbarch, 64);
1535 set_gdbarch_float_bit (gdbarch, 32);
1536 set_gdbarch_double_bit (gdbarch, 64);
1537 set_gdbarch_long_double_bit (gdbarch, 64);
1538 set_gdbarch_ptr_bit (gdbarch, 64);
1539
1540 /* Register info */
1541 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1542 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1543 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1544 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1545
1546 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1547 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1548
1549 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1550 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1551
c483c494
RH
1552 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1553 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1554 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1555
615967cb
RH
1556 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1557
d2427a71 1558 /* Prologue heuristics. */
dc129d82
JT
1559 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1560
5ef165c2
RH
1561 /* Disassembler. */
1562 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1563
d2427a71 1564 /* Call info. */
dc129d82 1565
9823e921 1566 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1567
1568 /* Settings for calling functions in the inferior. */
c88e30c0 1569 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1570
1571 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1572 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1573
1574 /* Return the unwound PC value. */
1575 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1576
1577 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1578 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1579
95b80706 1580 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1581 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1582 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1583
44dffaac 1584 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1585 gdbarch_init_osabi (info, gdbarch);
44dffaac 1586
accc6d1f
JT
1587 /* Now that we have tuned the configuration, set a few final things
1588 based on what the OS ABI has told us. */
1589
1590 if (tdep->jb_pc >= 0)
1591 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1592
6834c9bb
JB
1593 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1594 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1595
d2427a71 1596 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1597
d2427a71 1598 return gdbarch;
dc129d82
JT
1599}
1600
baa490c4
RH
1601void
1602alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1603{
6834c9bb 1604 dwarf2_append_unwinders (gdbarch);
336d1bba 1605 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1606}
1607
a78f21af
AC
1608extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1609
c906108c 1610void
fba45db2 1611_initialize_alpha_tdep (void)
c906108c
SS
1612{
1613 struct cmd_list_element *c;
1614
d2427a71 1615 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1616
1617 /* Let the user set the fence post for heuristic_proc_start. */
1618
1619 /* We really would like to have both "0" and "unlimited" work, but
1620 command.c doesn't deal with that. So make it a var_zinteger
1621 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1622 /* We need to throw away the frame cache when we set this, since it
1623 might change our ability to get backtraces. */
1624 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1625 &heuristic_fence_post, _("\
1626Set the distance searched for the start of a function."), _("\
1627Show the distance searched for the start of a function."), _("\
c906108c
SS
1628If you are debugging a stripped executable, GDB needs to search through the\n\
1629program for the start of a function. This command sets the distance of the\n\
323e0a4a 1630search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1631 reinit_frame_cache_sfunc,
7915a72c 1632 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
edefbb7c 1633 &setlist, &showlist);
c906108c 1634}
This page took 0.707653 seconds and 4 git commands to generate.