use gnulib's update-copyright script to update copyright years
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
7b6bb8da
JB
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
615967cb 23#include "doublest.h"
c906108c 24#include "frame.h"
d2427a71
RH
25#include "frame-unwind.h"
26#include "frame-base.h"
baa490c4 27#include "dwarf2-frame.h"
c906108c
SS
28#include "inferior.h"
29#include "symtab.h"
30#include "value.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "gdb_string.h"
c5f0f3d0 37#include "linespec.h"
4e052eda 38#include "regcache.h"
615967cb 39#include "reggroups.h"
dc129d82 40#include "arch-utils.h"
4be87837 41#include "osabi.h"
fe898f56 42#include "block.h"
7d9b040b 43#include "infcall.h"
07ea644b 44#include "trad-frame.h"
dc129d82
JT
45
46#include "elf-bfd.h"
47
48#include "alpha-tdep.h"
49
3a48e6ff
JG
50/* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
52 handbook. */
53
54#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55
56/* Memory instruction format */
57#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59#define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61
62static const int lda_opcode = 0x08;
63static const int stq_opcode = 0x2d;
64
65/* Branch instruction format */
66#define BR_RA(insn) MEM_RA(insn)
67
46ad3598 68static const int br_opcode = 0x30;
3a48e6ff
JG
69static const int bne_opcode = 0x3d;
70
71/* Operate instruction format */
72#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
73#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
74#define OPR_RA(insn) MEM_RA(insn)
75#define OPR_RC(insn) ((insn & 0x1f))
76#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
77
78static const int subq_opcode = 0x10;
79static const int subq_function = 0x29;
80
c906108c 81\f
515921d7
JB
82/* Return the name of the REGNO register.
83
84 An empty name corresponds to a register number that used to
0963b4bd 85 be used for a virtual register. That virtual register has
515921d7
JB
86 been removed, but the index is still reserved to maintain
87 compatibility with existing remote alpha targets. */
88
fa88f677 89static const char *
d93859e2 90alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 91{
5ab84872 92 static const char * const register_names[] =
636a6dfc
JT
93 {
94 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
95 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
96 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
97 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
98 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
99 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
100 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
101 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 102 "pc", "", "unique"
636a6dfc
JT
103 };
104
105 if (regno < 0)
5ab84872 106 return NULL;
e8d2d628 107 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
108 return NULL;
109 return register_names[regno];
636a6dfc 110}
d734c450 111
dc129d82 112static int
64a3914f 113alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 114{
4a1be8d2 115 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
116}
117
dc129d82 118static int
64a3914f 119alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 120{
515921d7 121 return (regno == ALPHA_ZERO_REGNUM
64a3914f 122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
123}
124
dc129d82 125static struct type *
c483c494 126alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 127{
72667056 128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 130 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 131 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
132
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
b38b6be2 135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 136 return builtin_type (gdbarch)->builtin_double;
72667056 137
df4df182 138 return builtin_type (gdbarch)->builtin_int64;
0d056799 139}
f8453e34 140
615967cb
RH
141/* Is REGNUM a member of REGGROUP? */
142
143static int
144alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
146{
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
151 return 0;
152
df4a182b
RH
153 if (group == all_reggroup)
154 return 1;
155
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
161 return 0;
162
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
165 return 1;
166
167 /* All other groups are non-overlapping. */
168
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
172
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
176
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
179 else
180 return group == general_reggroup;
181}
182
c483c494
RH
183/* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
186
187static void
e17a4113 188alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 189{
e17a4113
UW
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
c483c494
RH
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
e17a4113 211 store_unsigned_integer (out, 8, byte_order, reg);
c483c494
RH
212}
213
214/* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
39efb398 217static void
e17a4113 218alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 219{
e17a4113 220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
221 ULONGEST reg, mem;
222
e17a4113 223 reg = extract_unsigned_integer (in, 8, byte_order);
c483c494 224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
e17a4113 225 store_unsigned_integer (out, 4, byte_order, mem);
c483c494
RH
226}
227
d2427a71
RH
228/* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
0963b4bd 232 registers is different. */
d2427a71 233
c483c494 234static int
0963b4bd
MS
235alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
14696584 237{
83acabca
DJ
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
14696584
RH
240}
241
8dccd430 242static int
ff2e87ac 243alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
5868c862 246{
8dccd430 247 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
248 gdb_byte in[MAX_REGISTER_SIZE];
249
8dccd430
PA
250 /* Convert to TYPE. */
251 if (!get_frame_register_bytes (frame, regnum, 0,
252 register_size (gdbarch, regnum),
253 in, optimizedp, unavailablep))
254 return 0;
255
256 if (TYPE_LENGTH (valtype) == 4)
d2427a71 257 {
8dccd430
PA
258 alpha_sts (gdbarch, out, in);
259 *optimizedp = *unavailablep = 0;
260 return 1;
d2427a71 261 }
8dccd430
PA
262
263 error (_("Cannot retrieve value from floating point register"));
d2427a71 264}
5868c862 265
d2427a71 266static void
ff2e87ac 267alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 268 struct type *valtype, const gdb_byte *in)
d2427a71 269{
2a1ce6ec
MK
270 gdb_byte out[MAX_REGISTER_SIZE];
271
c483c494 272 switch (TYPE_LENGTH (valtype))
d2427a71 273 {
c483c494 274 case 4:
e17a4113 275 alpha_lds (get_frame_arch (frame), out, in);
c483c494 276 break;
c483c494 277 default:
323e0a4a 278 error (_("Cannot store value in floating point register"));
d2427a71 279 }
ff2e87ac 280 put_frame_register (frame, regnum, out);
5868c862
JT
281}
282
d2427a71
RH
283\f
284/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
d2427a71
RH
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
c906108c 295
d2427a71 296static CORE_ADDR
7d9b040b 297alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
c906108c 301{
e17a4113 302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
d2427a71 305 struct alpha_arg
c906108c 306 {
f42a0a33 307 const gdb_byte *contents;
d2427a71
RH
308 int len;
309 int offset;
310 };
c88e30c0
RH
311 struct alpha_arg *alpha_args
312 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 313 struct alpha_arg *m_arg;
2a1ce6ec 314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 315 int required_arg_regs;
7d9b040b 316 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 317
c88e30c0
RH
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
320
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
324
325 /* Lay out the arguments in memory. */
d2427a71
RH
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
327 {
328 struct value *arg = args[i];
4991999e 329 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 330
d2427a71
RH
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
c906108c 333 {
d2427a71
RH
334 case TYPE_CODE_INT:
335 case TYPE_CODE_BOOL:
336 case TYPE_CODE_CHAR:
337 case TYPE_CODE_RANGE:
338 case TYPE_CODE_ENUM:
0ede8eca 339 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 340 {
0ede8eca
RH
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
df4df182 343 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
344 arg = value_cast (arg_type, arg);
345 }
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
347 {
df4df182 348 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
349 arg = value_cast (arg_type, arg);
350 }
351 break;
7b5e1cb3 352
c88e30c0
RH
353 case TYPE_CODE_FLT:
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
358 {
27067745 359 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
360 arg = value_cast (arg_type, arg);
361 }
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
365 {
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
368
369 /* Write the real data into the stack. */
0fd88904 370 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
371
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
375 }
376 break;
7b5e1cb3
RH
377
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
382
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
386 {
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
389
390 /* Write the real data into the stack. */
0fd88904 391 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
392
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
396 }
397 break;
398
d2427a71
RH
399 default:
400 break;
c906108c 401 }
d2427a71
RH
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 405 m_arg->contents = value_contents (arg);
c906108c
SS
406 }
407
d2427a71
RH
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 413
d2427a71 414 /* Make room for the arguments on the stack. */
c88e30c0
RH
415 if (accumulate_size < sizeof(arg_reg_buffer))
416 accumulate_size = 0;
417 else
418 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 419 sp -= accumulate_size;
c906108c 420
c88e30c0 421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 422 sp &= ~15;
c906108c 423
d2427a71
RH
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
c906108c 426 {
f42a0a33 427 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
428 int offset = m_arg->offset;
429 int len = m_arg->len;
430
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
433 {
434 if (offset + len <= sizeof(arg_reg_buffer))
435 {
436 memcpy (arg_reg_buffer + offset, contents, len);
437 continue;
438 }
439 else
440 {
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
443 offset += tlen;
444 contents += tlen;
445 len -= tlen;
446 }
447 }
448
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 451 }
c88e30c0 452 if (struct_return)
e17a4113
UW
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
c906108c 455
d2427a71
RH
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
458 {
09cc52fd
RH
459 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 463 }
c906108c 464
09cc52fd
RH
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
467
c88e30c0 468 return sp;
c906108c
SS
469}
470
5ec2bb99
RH
471/* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
d2427a71 473
dc129d82 474static void
5ec2bb99 475alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 476 gdb_byte *valbuf)
140f9984 477{
e17a4113
UW
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7b5e1cb3 480 int length = TYPE_LENGTH (valtype);
2a1ce6ec 481 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
482 ULONGEST l;
483
484 switch (TYPE_CODE (valtype))
485 {
486 case TYPE_CODE_FLT:
7b5e1cb3 487 switch (length)
5ec2bb99
RH
488 {
489 case 4:
490 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 491 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
492 break;
493
494 case 8:
495 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
496 break;
497
24064b5c
RH
498 case 16:
499 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
500 read_memory (l, valbuf, 16);
501 break;
502
5ec2bb99 503 default:
0963b4bd
MS
504 internal_error (__FILE__, __LINE__,
505 _("unknown floating point width"));
5ec2bb99
RH
506 }
507 break;
508
7b5e1cb3
RH
509 case TYPE_CODE_COMPLEX:
510 switch (length)
511 {
512 case 8:
513 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
515 break;
516
517 case 16:
518 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 519 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
520 break;
521
522 case 32:
523 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
524 read_memory (l, valbuf, 32);
525 break;
526
527 default:
0963b4bd
MS
528 internal_error (__FILE__, __LINE__,
529 _("unknown floating point width"));
7b5e1cb3
RH
530 }
531 break;
532
5ec2bb99
RH
533 default:
534 /* Assume everything else degenerates to an integer. */
535 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
e17a4113 536 store_unsigned_integer (valbuf, length, byte_order, l);
5ec2bb99
RH
537 break;
538 }
140f9984
JT
539}
540
5ec2bb99
RH
541/* Insert the given value into REGCACHE as if it was being
542 returned by a function. */
0d056799 543
d2427a71 544static void
5ec2bb99 545alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 546 const gdb_byte *valbuf)
c906108c 547{
df4df182 548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d2427a71 549 int length = TYPE_LENGTH (valtype);
2a1ce6ec 550 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 551 ULONGEST l;
d2427a71 552
5ec2bb99 553 switch (TYPE_CODE (valtype))
c906108c 554 {
5ec2bb99
RH
555 case TYPE_CODE_FLT:
556 switch (length)
557 {
558 case 4:
e17a4113 559 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
561 break;
5ec2bb99
RH
562
563 case 8:
564 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
565 break;
566
24064b5c
RH
567 case 16:
568 /* FIXME: 128-bit long doubles are returned like structures:
569 by writing into indirect storage provided by the caller
570 as the first argument. */
323e0a4a 571 error (_("Cannot set a 128-bit long double return value."));
24064b5c 572
5ec2bb99 573 default:
0963b4bd
MS
574 internal_error (__FILE__, __LINE__,
575 _("unknown floating point width"));
5ec2bb99
RH
576 }
577 break;
d2427a71 578
7b5e1cb3
RH
579 case TYPE_CODE_COMPLEX:
580 switch (length)
581 {
582 case 8:
583 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 break;
586
587 case 16:
588 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 589 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
590 break;
591
592 case 32:
593 /* FIXME: 128-bit long doubles are returned like structures:
594 by writing into indirect storage provided by the caller
595 as the first argument. */
323e0a4a 596 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
597
598 default:
0963b4bd
MS
599 internal_error (__FILE__, __LINE__,
600 _("unknown floating point width"));
7b5e1cb3
RH
601 }
602 break;
603
5ec2bb99
RH
604 default:
605 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
606 /* 32-bit values must be sign-extended to 64 bits
607 even if the base data type is unsigned. */
608 if (length == 4)
df4df182 609 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
610 l = unpack_long (valtype, valbuf);
611 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
612 break;
613 }
c906108c
SS
614}
615
9823e921 616static enum return_value_convention
c055b101
CV
617alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
618 struct type *type, struct regcache *regcache,
619 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
620{
621 enum type_code code = TYPE_CODE (type);
622
623 if ((code == TYPE_CODE_STRUCT
624 || code == TYPE_CODE_UNION
625 || code == TYPE_CODE_ARRAY)
626 && gdbarch_tdep (gdbarch)->return_in_memory (type))
627 {
628 if (readbuf)
629 {
630 ULONGEST addr;
631 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 if (readbuf)
639 alpha_extract_return_value (type, regcache, readbuf);
640 if (writebuf)
641 alpha_store_return_value (type, regcache, writebuf);
642
643 return RETURN_VALUE_REGISTER_CONVENTION;
644}
645
646static int
647alpha_return_in_memory_always (struct type *type)
648{
649 return 1;
650}
d2427a71 651\f
2a1ce6ec 652static const gdb_byte *
67d57894 653alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 654{
2a1ce6ec 655 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 656
2a1ce6ec
MK
657 *len = sizeof(break_insn);
658 return break_insn;
d2427a71 659}
c906108c 660
d2427a71
RH
661\f
662/* This returns the PC of the first insn after the prologue.
663 If we can't find the prologue, then return 0. */
c906108c 664
d2427a71
RH
665CORE_ADDR
666alpha_after_prologue (CORE_ADDR pc)
c906108c 667{
d2427a71
RH
668 struct symtab_and_line sal;
669 CORE_ADDR func_addr, func_end;
c906108c 670
d2427a71 671 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 672 return 0;
c906108c 673
d2427a71
RH
674 sal = find_pc_line (func_addr, 0);
675 if (sal.end < func_end)
676 return sal.end;
c5aa993b 677
d2427a71
RH
678 /* The line after the prologue is after the end of the function. In this
679 case, tell the caller to find the prologue the hard way. */
680 return 0;
c906108c
SS
681}
682
d2427a71
RH
683/* Read an instruction from memory at PC, looking through breakpoints. */
684
685unsigned int
e17a4113 686alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 687{
e17a4113 688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 689 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 690 int status;
c5aa993b 691
8defab1a 692 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
693 if (status)
694 memory_error (status, pc);
e17a4113 695 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 696}
c5aa993b 697
d2427a71
RH
698/* To skip prologues, I use this predicate. Returns either PC itself
699 if the code at PC does not look like a function prologue; otherwise
700 returns an address that (if we're lucky) follows the prologue. If
701 LENIENT, then we must skip everything which is involved in setting
702 up the frame (it's OK to skip more, just so long as we don't skip
703 anything which might clobber the registers which are being saved. */
c906108c 704
d2427a71 705static CORE_ADDR
6093d2eb 706alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
707{
708 unsigned long inst;
709 int offset;
710 CORE_ADDR post_prologue_pc;
e8d2d628 711 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 712
d2427a71
RH
713 /* Silently return the unaltered pc upon memory errors.
714 This could happen on OSF/1 if decode_line_1 tries to skip the
715 prologue for quickstarted shared library functions when the
716 shared library is not yet mapped in.
717 Reading target memory is slow over serial lines, so we perform
718 this check only if the target has shared libraries (which all
719 Alpha targets do). */
e8d2d628 720 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 721 return pc;
c906108c 722
d2427a71
RH
723 /* See if we can determine the end of the prologue via the symbol table.
724 If so, then return either PC, or the PC after the prologue, whichever
725 is greater. */
c906108c 726
d2427a71
RH
727 post_prologue_pc = alpha_after_prologue (pc);
728 if (post_prologue_pc != 0)
729 return max (pc, post_prologue_pc);
c906108c 730
d2427a71
RH
731 /* Can't determine prologue from the symbol table, need to examine
732 instructions. */
dc1b0db2 733
0963b4bd 734 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
735 instruction and the instructions that save registers on the stack
736 or in the gcc frame. */
e8d2d628 737 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 738 {
e17a4113 739 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 740
d2427a71
RH
741 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
744 continue;
745 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
746 continue;
747 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
748 continue;
c906108c 749
d2427a71
RH
750 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
751 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
752 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
753 continue;
c906108c 754
d2427a71
RH
755 if (inst == 0x47de040f) /* bis sp,sp,fp */
756 continue;
757 if (inst == 0x47fe040f) /* bis zero,sp,fp */
758 continue;
c906108c 759
d2427a71 760 break;
c906108c 761 }
d2427a71
RH
762 return pc + offset;
763}
c906108c 764
46ad3598
UW
765\f
766static const int ldl_l_opcode = 0x2a;
767static const int ldq_l_opcode = 0x2b;
768static const int stl_c_opcode = 0x2e;
769static const int stq_c_opcode = 0x2f;
770
771/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
772 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
773 is found, attempt to step through it. A breakpoint is placed at the end of
774 the sequence. */
775
776int
777alpha_deal_with_atomic_sequence (struct frame_info *frame)
778{
779 struct gdbarch *gdbarch = get_frame_arch (frame);
780 struct address_space *aspace = get_frame_address_space (frame);
781 CORE_ADDR pc = get_frame_pc (frame);
782 CORE_ADDR breaks[2] = {-1, -1};
783 CORE_ADDR loc = pc;
784 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
785 unsigned int insn = alpha_read_insn (gdbarch, loc);
786 int insn_count;
787 int index;
788 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
789 const int atomic_sequence_length = 16; /* Instruction sequence length. */
790 int bc_insn_count = 0; /* Conditional branch instruction count. */
791
792 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
793 if (INSN_OPCODE (insn) != ldl_l_opcode
794 && INSN_OPCODE (insn) != ldq_l_opcode)
795 return 0;
796
797 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
798 instructions. */
799 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
800 {
801 loc += ALPHA_INSN_SIZE;
802 insn = alpha_read_insn (gdbarch, loc);
803
804 /* Assume that there is at most one branch in the atomic
805 sequence. If a branch is found, put a breakpoint in
806 its destination address. */
807 if (INSN_OPCODE (insn) >= br_opcode)
808 {
809 int immediate = (insn & 0x001fffff) << 2;
810
811 immediate = (immediate ^ 0x400000) - 0x400000;
812
813 if (bc_insn_count >= 1)
814 return 0; /* More than one branch found, fallback
815 to the standard single-step code. */
816
817 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
818
819 bc_insn_count++;
820 last_breakpoint++;
821 }
822
823 if (INSN_OPCODE (insn) == stl_c_opcode
824 || INSN_OPCODE (insn) == stq_c_opcode)
825 break;
826 }
827
828 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
829 if (INSN_OPCODE (insn) != stl_c_opcode
830 && INSN_OPCODE (insn) != stq_c_opcode)
831 return 0;
832
833 closing_insn = loc;
834 loc += ALPHA_INSN_SIZE;
835
836 /* Insert a breakpoint right after the end of the atomic sequence. */
837 breaks[0] = loc;
838
839 /* Check for duplicated breakpoints. Check also for a breakpoint
840 placed (branch instruction's destination) anywhere in sequence. */
841 if (last_breakpoint
842 && (breaks[1] == breaks[0]
843 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
844 last_breakpoint = 0;
845
846 /* Effectively inserts the breakpoints. */
847 for (index = 0; index <= last_breakpoint; index++)
848 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
849
850 return 1;
851}
852
d2427a71
RH
853\f
854/* Figure out where the longjmp will land.
855 We expect the first arg to be a pointer to the jmp_buf structure from
856 which we extract the PC (JB_PC) that we will land at. The PC is copied
857 into the "pc". This routine returns true on success. */
c906108c
SS
858
859static int
60ade65d 860alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 861{
e17a4113
UW
862 struct gdbarch *gdbarch = get_frame_arch (frame);
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 865 CORE_ADDR jb_addr;
2a1ce6ec 866 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 867
60ade65d 868 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 869
d2427a71
RH
870 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
871 raw_buffer, tdep->jb_elt_size))
c906108c 872 return 0;
d2427a71 873
e17a4113 874 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 875 return 1;
c906108c
SS
876}
877
d2427a71
RH
878\f
879/* Frame unwinder for signal trampolines. We use alpha tdep bits that
880 describe the location and shape of the sigcontext structure. After
881 that, all registers are in memory, so it's easy. */
882/* ??? Shouldn't we be able to do this generically, rather than with
883 OSABI data specific to Alpha? */
884
885struct alpha_sigtramp_unwind_cache
c906108c 886{
d2427a71
RH
887 CORE_ADDR sigcontext_addr;
888};
c906108c 889
d2427a71 890static struct alpha_sigtramp_unwind_cache *
6834c9bb 891alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
892 void **this_prologue_cache)
893{
894 struct alpha_sigtramp_unwind_cache *info;
895 struct gdbarch_tdep *tdep;
c906108c 896
d2427a71
RH
897 if (*this_prologue_cache)
898 return *this_prologue_cache;
c906108c 899
d2427a71
RH
900 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
901 *this_prologue_cache = info;
c906108c 902
6834c9bb
JB
903 tdep = gdbarch_tdep (get_frame_arch (this_frame));
904 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 905
d2427a71 906 return info;
c906108c
SS
907}
908
138e7be5
MK
909/* Return the address of REGNUM in a sigtramp frame. Since this is
910 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 911
d2427a71 912static CORE_ADDR
be8626e0
MD
913alpha_sigtramp_register_address (struct gdbarch *gdbarch,
914 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 915{
be8626e0 916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
917
918 if (regnum >= 0 && regnum < 32)
919 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
920 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
921 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
922 else if (regnum == ALPHA_PC_REGNUM)
923 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 924
d2427a71 925 return 0;
c906108c
SS
926}
927
d2427a71
RH
928/* Given a GDB frame, determine the address of the calling function's
929 frame. This will be used to create a new GDB frame struct. */
140f9984 930
dc129d82 931static void
6834c9bb 932alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
933 void **this_prologue_cache,
934 struct frame_id *this_id)
c906108c 935{
6834c9bb 936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 938 struct alpha_sigtramp_unwind_cache *info
6834c9bb 939 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
940 CORE_ADDR stack_addr, code_addr;
941
942 /* If the OSABI couldn't locate the sigcontext, give up. */
943 if (info->sigcontext_addr == 0)
944 return;
945
946 /* If we have dynamic signal trampolines, find their start.
947 If we do not, then we must assume there is a symbol record
948 that can provide the start address. */
d2427a71 949 if (tdep->dynamic_sigtramp_offset)
c906108c 950 {
d2427a71 951 int offset;
6834c9bb 952 code_addr = get_frame_pc (this_frame);
e17a4113 953 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
954 if (offset >= 0)
955 code_addr -= offset;
c906108c 956 else
d2427a71 957 code_addr = 0;
c906108c 958 }
d2427a71 959 else
6834c9bb 960 code_addr = get_frame_func (this_frame);
c906108c 961
d2427a71 962 /* The stack address is trivially read from the sigcontext. */
be8626e0 963 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 964 ALPHA_SP_REGNUM);
6834c9bb 965 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 966 ALPHA_REGISTER_SIZE);
c906108c 967
d2427a71 968 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
969}
970
d2427a71 971/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 972
6834c9bb
JB
973static struct value *
974alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
975 void **this_prologue_cache, int regnum)
c906108c 976{
d2427a71 977 struct alpha_sigtramp_unwind_cache *info
6834c9bb 978 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 979 CORE_ADDR addr;
c906108c 980
d2427a71 981 if (info->sigcontext_addr != 0)
c906108c 982 {
d2427a71 983 /* All integer and fp registers are stored in memory. */
6834c9bb 984 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 985 info->sigcontext_addr, regnum);
d2427a71 986 if (addr != 0)
6834c9bb 987 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
988 }
989
d2427a71
RH
990 /* This extra register may actually be in the sigcontext, but our
991 current description of it in alpha_sigtramp_frame_unwind_cache
992 doesn't include it. Too bad. Fall back on whatever's in the
993 outer frame. */
6834c9bb 994 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 995}
c906108c 996
6834c9bb
JB
997static int
998alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
999 struct frame_info *this_frame,
1000 void **this_prologue_cache)
d2427a71 1001{
6834c9bb
JB
1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1003 CORE_ADDR pc = get_frame_pc (this_frame);
d2427a71 1004 char *name;
c906108c 1005
f2524b93
AC
1006 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1007 look at tramp-frame.h and other simplier per-architecture
1008 sigtramp unwinders. */
1009
1010 /* We shouldn't even bother to try if the OSABI didn't register a
1011 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1012 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1013 return 0;
ec7cc0e8 1014 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1015 return 0;
c906108c 1016
d2427a71
RH
1017 /* Otherwise we should be in a signal frame. */
1018 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1019 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1020 return 1;
c906108c 1021
6834c9bb 1022 return 0;
c906108c 1023}
6834c9bb
JB
1024
1025static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1026 SIGTRAMP_FRAME,
8fbca658 1027 default_frame_unwind_stop_reason,
6834c9bb
JB
1028 alpha_sigtramp_frame_this_id,
1029 alpha_sigtramp_frame_prev_register,
1030 NULL,
1031 alpha_sigtramp_frame_sniffer
1032};
1033
d2427a71 1034\f
c906108c 1035
d2427a71
RH
1036/* Heuristic_proc_start may hunt through the text section for a long
1037 time across a 2400 baud serial line. Allows the user to limit this
1038 search. */
1039static unsigned int heuristic_fence_post = 0;
c906108c 1040
d2427a71
RH
1041/* Attempt to locate the start of the function containing PC. We assume that
1042 the previous function ends with an about_to_return insn. Not foolproof by
1043 any means, since gcc is happy to put the epilogue in the middle of a
1044 function. But we're guessing anyway... */
c906108c 1045
d2427a71 1046static CORE_ADDR
be8626e0 1047alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1048{
be8626e0 1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1050 CORE_ADDR last_non_nop = pc;
1051 CORE_ADDR fence = pc - heuristic_fence_post;
1052 CORE_ADDR orig_pc = pc;
fbe586ae 1053 CORE_ADDR func;
d6b48e9c 1054 struct inferior *inf;
9e0b60a8 1055
d2427a71
RH
1056 if (pc == 0)
1057 return 0;
9e0b60a8 1058
fbe586ae
RH
1059 /* First see if we can find the start of the function from minimal
1060 symbol information. This can succeed with a binary that doesn't
1061 have debug info, but hasn't been stripped. */
1062 func = get_pc_function_start (pc);
1063 if (func)
1064 return func;
1065
d2427a71
RH
1066 if (heuristic_fence_post == UINT_MAX
1067 || fence < tdep->vm_min_address)
1068 fence = tdep->vm_min_address;
c906108c 1069
d2427a71
RH
1070 /* Search back for previous return; also stop at a 0, which might be
1071 seen for instance before the start of a code section. Don't include
1072 nops, since this usually indicates padding between functions. */
e8d2d628 1073 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1074 {
e17a4113 1075 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1076 switch (insn)
c906108c 1077 {
d2427a71
RH
1078 case 0: /* invalid insn */
1079 case 0x6bfa8001: /* ret $31,($26),1 */
1080 return last_non_nop;
1081
1082 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1083 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1084 break;
1085
1086 default:
1087 last_non_nop = pc;
1088 break;
c906108c 1089 }
d2427a71 1090 }
c906108c 1091
d6b48e9c
PA
1092 inf = current_inferior ();
1093
d2427a71
RH
1094 /* It's not clear to me why we reach this point when stopping quietly,
1095 but with this test, at least we don't print out warnings for every
1096 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1097 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1098 {
1099 static int blurb_printed = 0;
c906108c 1100
d2427a71 1101 if (fence == tdep->vm_min_address)
323e0a4a 1102 warning (_("Hit beginning of text section without finding \
5af949e3 1103enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1104 else
323e0a4a 1105 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1106enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1107
d2427a71
RH
1108 if (!blurb_printed)
1109 {
323e0a4a 1110 printf_filtered (_("\
d2427a71
RH
1111This warning occurs if you are debugging a function without any symbols\n\
1112(for example, in a stripped executable). In that case, you may wish to\n\
1113increase the size of the search with the `set heuristic-fence-post' command.\n\
1114\n\
1115Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1116(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1117 blurb_printed = 1;
1118 }
1119 }
c906108c 1120
d2427a71
RH
1121 return 0;
1122}
c906108c 1123
07ea644b
MD
1124/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1125 something about the traditional layout of alpha stack frames. */
1126
1127struct alpha_heuristic_unwind_cache
1128{
1129 CORE_ADDR vfp;
1130 CORE_ADDR start_pc;
1131 struct trad_frame_saved_reg *saved_regs;
1132 int return_reg;
1133};
1134
3a48e6ff
JG
1135/* If a probing loop sequence starts at PC, simulate it and compute
1136 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1137 FRAME_SIZE unchanged. */
1138
1139static void
1140alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1141 int *frame_size)
1142{
1143 CORE_ADDR cur_pc = *pc;
1144 int cur_frame_size = *frame_size;
1145 int nb_of_iterations, reg_index, reg_probe;
1146 unsigned int insn;
1147
1148 /* The following pattern is recognized as a probing loop:
1149
1150 lda REG_INDEX,NB_OF_ITERATIONS
1151 lda REG_PROBE,<immediate>(sp)
1152
1153 LOOP_START:
1154 stq zero,<immediate>(REG_PROBE)
1155 subq REG_INDEX,0x1,REG_INDEX
1156 lda REG_PROBE,<immediate>(REG_PROBE)
1157 bne REG_INDEX, LOOP_START
1158
1159 lda sp,<immediate>(REG_PROBE)
1160
1161 If anything different is found, the function returns without
1162 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1163 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1164
1165 /* lda REG_INDEX,NB_OF_ITERATIONS */
1166
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode)
1169 return;
1170 reg_index = MEM_RA (insn);
1171 nb_of_iterations = MEM_DISP (insn);
1172
1173 /* lda REG_PROBE,<immediate>(sp) */
1174
1175 cur_pc += ALPHA_INSN_SIZE;
1176 insn = alpha_read_insn (gdbarch, cur_pc);
1177 if (INSN_OPCODE (insn) != lda_opcode
1178 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1179 return;
1180 reg_probe = MEM_RA (insn);
1181 cur_frame_size -= MEM_DISP (insn);
1182
1183 /* stq zero,<immediate>(REG_PROBE) */
1184
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != stq_opcode
1188 || MEM_RA (insn) != 0x1f
1189 || MEM_RB (insn) != reg_probe)
1190 return;
1191
1192 /* subq REG_INDEX,0x1,REG_INDEX */
1193
1194 cur_pc += ALPHA_INSN_SIZE;
1195 insn = alpha_read_insn (gdbarch, cur_pc);
1196 if (INSN_OPCODE (insn) != subq_opcode
1197 || !OPR_HAS_IMMEDIATE (insn)
1198 || OPR_FUNCTION (insn) != subq_function
1199 || OPR_LIT(insn) != 1
1200 || OPR_RA (insn) != reg_index
1201 || OPR_RC (insn) != reg_index)
1202 return;
1203
1204 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1205
1206 cur_pc += ALPHA_INSN_SIZE;
1207 insn = alpha_read_insn (gdbarch, cur_pc);
1208 if (INSN_OPCODE (insn) != lda_opcode
1209 || MEM_RA (insn) != reg_probe
1210 || MEM_RB (insn) != reg_probe)
1211 return;
1212 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1213
1214 /* bne REG_INDEX, LOOP_START */
1215
1216 cur_pc += ALPHA_INSN_SIZE;
1217 insn = alpha_read_insn (gdbarch, cur_pc);
1218 if (INSN_OPCODE (insn) != bne_opcode
1219 || MEM_RA (insn) != reg_index)
1220 return;
1221
1222 /* lda sp,<immediate>(REG_PROBE) */
1223
1224 cur_pc += ALPHA_INSN_SIZE;
1225 insn = alpha_read_insn (gdbarch, cur_pc);
1226 if (INSN_OPCODE (insn) != lda_opcode
1227 || MEM_RA (insn) != ALPHA_SP_REGNUM
1228 || MEM_RB (insn) != reg_probe)
1229 return;
1230 cur_frame_size -= MEM_DISP (insn);
1231
1232 *pc = cur_pc;
1233 *frame_size = cur_frame_size;
1234}
1235
fbe586ae 1236static struct alpha_heuristic_unwind_cache *
6834c9bb 1237alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1238 void **this_prologue_cache,
1239 CORE_ADDR start_pc)
1240{
6834c9bb 1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1242 struct alpha_heuristic_unwind_cache *info;
1243 ULONGEST val;
1244 CORE_ADDR limit_pc, cur_pc;
1245 int frame_reg, frame_size, return_reg, reg;
c906108c 1246
d2427a71
RH
1247 if (*this_prologue_cache)
1248 return *this_prologue_cache;
c906108c 1249
d2427a71
RH
1250 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1251 *this_prologue_cache = info;
6834c9bb 1252 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1253
6834c9bb 1254 limit_pc = get_frame_pc (this_frame);
d2427a71 1255 if (start_pc == 0)
be8626e0 1256 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1257 info->start_pc = start_pc;
c906108c 1258
d2427a71
RH
1259 frame_reg = ALPHA_SP_REGNUM;
1260 frame_size = 0;
1261 return_reg = -1;
c906108c 1262
d2427a71
RH
1263 /* If we've identified a likely place to start, do code scanning. */
1264 if (start_pc != 0)
c5aa993b 1265 {
d2427a71
RH
1266 /* Limit the forward search to 50 instructions. */
1267 if (start_pc + 200 < limit_pc)
1268 limit_pc = start_pc + 200;
c5aa993b 1269
e8d2d628 1270 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1271 {
e17a4113 1272 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1273
d2427a71
RH
1274 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1275 {
1276 if (word & 0x8000)
1277 {
1278 /* Consider only the first stack allocation instruction
0963b4bd 1279 to contain the static size of the frame. */
d2427a71
RH
1280 if (frame_size == 0)
1281 frame_size = (-word) & 0xffff;
1282 }
1283 else
1284 {
1285 /* Exit loop if a positive stack adjustment is found, which
1286 usually means that the stack cleanup code in the function
1287 epilogue is reached. */
1288 break;
1289 }
1290 }
1291 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1292 {
1293 reg = (word & 0x03e00000) >> 21;
1294
d15bfd3a
AC
1295 /* Ignore this instruction if we have already encountered
1296 an instruction saving the same register earlier in the
1297 function code. The current instruction does not tell
1298 us where the original value upon function entry is saved.
1299 All it says is that the function we are scanning reused
1300 that register for some computation of its own, and is now
1301 saving its result. */
07ea644b 1302 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1303 continue;
1304
d2427a71
RH
1305 if (reg == 31)
1306 continue;
1307
1308 /* Do not compute the address where the register was saved yet,
1309 because we don't know yet if the offset will need to be
1310 relative to $sp or $fp (we can not compute the address
1311 relative to $sp if $sp is updated during the execution of
1312 the current subroutine, for instance when doing some alloca).
1313 So just store the offset for the moment, and compute the
1314 address later when we know whether this frame has a frame
1315 pointer or not. */
1316 /* Hack: temporarily add one, so that the offset is non-zero
1317 and we can tell which registers have save offsets below. */
07ea644b 1318 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1319
1320 /* Starting with OSF/1-3.2C, the system libraries are shipped
1321 without local symbols, but they still contain procedure
1322 descriptors without a symbol reference. GDB is currently
1323 unable to find these procedure descriptors and uses
1324 heuristic_proc_desc instead.
1325 As some low level compiler support routines (__div*, __add*)
1326 use a non-standard return address register, we have to
1327 add some heuristics to determine the return address register,
1328 or stepping over these routines will fail.
1329 Usually the return address register is the first register
1330 saved on the stack, but assembler optimization might
1331 rearrange the register saves.
1332 So we recognize only a few registers (t7, t9, ra) within
1333 the procedure prologue as valid return address registers.
1334 If we encounter a return instruction, we extract the
7a9dd1b2 1335 return address register from it.
d2427a71
RH
1336
1337 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1338 e.g. via the minimal symbol table, might obviate this
1339 hack. */
d2427a71
RH
1340 if (return_reg == -1
1341 && cur_pc < (start_pc + 80)
1342 && (reg == ALPHA_T7_REGNUM
1343 || reg == ALPHA_T9_REGNUM
1344 || reg == ALPHA_RA_REGNUM))
1345 return_reg = reg;
1346 }
1347 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1348 return_reg = (word >> 16) & 0x1f;
1349 else if (word == 0x47de040f) /* bis sp,sp,fp */
1350 frame_reg = ALPHA_GCC_FP_REGNUM;
1351 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1352 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1353
1354 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1355 }
c5aa993b 1356
d2427a71
RH
1357 /* If we haven't found a valid return address register yet, keep
1358 searching in the procedure prologue. */
1359 if (return_reg == -1)
1360 {
1361 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1362 {
e17a4113 1363 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1364
d2427a71
RH
1365 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1366 {
1367 reg = (word & 0x03e00000) >> 21;
1368 if (reg == ALPHA_T7_REGNUM
1369 || reg == ALPHA_T9_REGNUM
1370 || reg == ALPHA_RA_REGNUM)
1371 {
1372 return_reg = reg;
1373 break;
1374 }
1375 }
1376 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1377 {
1378 return_reg = (word >> 16) & 0x1f;
1379 break;
1380 }
85b32d22 1381
e8d2d628 1382 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1383 }
1384 }
c906108c 1385 }
c906108c 1386
d2427a71
RH
1387 /* Failing that, do default to the customary RA. */
1388 if (return_reg == -1)
1389 return_reg = ALPHA_RA_REGNUM;
1390 info->return_reg = return_reg;
f8453e34 1391
6834c9bb 1392 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1393 info->vfp = val + frame_size;
c906108c 1394
d2427a71
RH
1395 /* Convert offsets to absolute addresses. See above about adding
1396 one to the offsets to make all detected offsets non-zero. */
1397 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1398 if (trad_frame_addr_p(info->saved_regs, reg))
1399 info->saved_regs[reg].addr += val - 1;
d2427a71 1400
bfd66dd9
JB
1401 /* The stack pointer of the previous frame is computed by popping
1402 the current stack frame. */
1403 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1404 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1405
d2427a71 1406 return info;
c906108c 1407}
c906108c 1408
d2427a71
RH
1409/* Given a GDB frame, determine the address of the calling function's
1410 frame. This will be used to create a new GDB frame struct. */
1411
fbe586ae 1412static void
6834c9bb
JB
1413alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1414 void **this_prologue_cache,
1415 struct frame_id *this_id)
c906108c 1416{
d2427a71 1417 struct alpha_heuristic_unwind_cache *info
6834c9bb 1418 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1419
d2427a71 1420 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1421}
1422
d2427a71
RH
1423/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1424
6834c9bb
JB
1425static struct value *
1426alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1427 void **this_prologue_cache, int regnum)
c906108c 1428{
d2427a71 1429 struct alpha_heuristic_unwind_cache *info
6834c9bb 1430 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1431
1432 /* The PC of the previous frame is stored in the link register of
1433 the current frame. Frob regnum so that we pull the value from
1434 the correct place. */
1435 if (regnum == ALPHA_PC_REGNUM)
1436 regnum = info->return_reg;
1437
6834c9bb 1438 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1439}
1440
d2427a71
RH
1441static const struct frame_unwind alpha_heuristic_frame_unwind = {
1442 NORMAL_FRAME,
8fbca658 1443 default_frame_unwind_stop_reason,
d2427a71 1444 alpha_heuristic_frame_this_id,
6834c9bb
JB
1445 alpha_heuristic_frame_prev_register,
1446 NULL,
1447 default_frame_sniffer
d2427a71 1448};
c906108c 1449
fbe586ae 1450static CORE_ADDR
6834c9bb 1451alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1452 void **this_prologue_cache)
c906108c 1453{
d2427a71 1454 struct alpha_heuristic_unwind_cache *info
6834c9bb 1455 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1456
d2427a71 1457 return info->vfp;
c906108c
SS
1458}
1459
d2427a71
RH
1460static const struct frame_base alpha_heuristic_frame_base = {
1461 &alpha_heuristic_frame_unwind,
1462 alpha_heuristic_frame_base_address,
1463 alpha_heuristic_frame_base_address,
1464 alpha_heuristic_frame_base_address
1465};
1466
c906108c 1467/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1468 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1469
1470static void
fba45db2 1471reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1472{
1473 reinit_frame_cache ();
1474}
1475
d2427a71 1476\f
d2427a71
RH
1477/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1478 dummy frame. The frame ID's base needs to match the TOS value
1479 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1480 breakpoint. */
d734c450 1481
d2427a71 1482static struct frame_id
6834c9bb 1483alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1484{
d2427a71 1485 ULONGEST base;
6834c9bb
JB
1486 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1487 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1488}
1489
dc129d82 1490static CORE_ADDR
d2427a71 1491alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1492{
d2427a71 1493 ULONGEST pc;
11411de3 1494 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1495 return pc;
accc6d1f
JT
1496}
1497
98a8e1e5
RH
1498\f
1499/* Helper routines for alpha*-nat.c files to move register sets to and
1500 from core files. The UNIQUE pointer is allowed to be NULL, as most
1501 targets don't supply this value in their core files. */
1502
1503void
390c1522
UW
1504alpha_supply_int_regs (struct regcache *regcache, int regno,
1505 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1506{
2a1ce6ec 1507 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1508 int i;
1509
1510 for (i = 0; i < 31; ++i)
1511 if (regno == i || regno == -1)
390c1522 1512 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1513
1514 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1515 {
1516 const gdb_byte zero[8] = { 0 };
1517
1518 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1519 }
98a8e1e5
RH
1520
1521 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1522 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1523
1524 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1525 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1526}
1527
1528void
390c1522
UW
1529alpha_fill_int_regs (const struct regcache *regcache,
1530 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1531{
2a1ce6ec 1532 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1533 int i;
1534
1535 for (i = 0; i < 31; ++i)
1536 if (regno == i || regno == -1)
390c1522 1537 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1538
1539 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1540 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1541
1542 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1543 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1544}
1545
1546void
390c1522
UW
1547alpha_supply_fp_regs (struct regcache *regcache, int regno,
1548 const void *f0_f30, const void *fpcr)
98a8e1e5 1549{
2a1ce6ec 1550 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1551 int i;
1552
1553 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1554 if (regno == i || regno == -1)
390c1522 1555 regcache_raw_supply (regcache, i,
2a1ce6ec 1556 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1557
1558 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1559 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1560}
1561
1562void
390c1522
UW
1563alpha_fill_fp_regs (const struct regcache *regcache,
1564 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1565{
2a1ce6ec 1566 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1567 int i;
1568
1569 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1570 if (regno == i || regno == -1)
390c1522 1571 regcache_raw_collect (regcache, i,
2a1ce6ec 1572 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1573
1574 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1575 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1576}
1577
d2427a71 1578\f
0de94d4b
JB
1579
1580/* Return nonzero if the G_floating register value in REG is equal to
1581 zero for FP control instructions. */
1582
1583static int
1584fp_register_zero_p (LONGEST reg)
1585{
1586 /* Check that all bits except the sign bit are zero. */
1587 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1588
1589 return ((reg & zero_mask) == 0);
1590}
1591
1592/* Return the value of the sign bit for the G_floating register
1593 value held in REG. */
1594
1595static int
1596fp_register_sign_bit (LONGEST reg)
1597{
1598 const LONGEST sign_mask = (LONGEST) 1 << 63;
1599
1600 return ((reg & sign_mask) != 0);
1601}
1602
ec32e4be
JT
1603/* alpha_software_single_step() is called just before we want to resume
1604 the inferior, if we want to single-step it but there is no hardware
1605 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1606 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1607
1608static CORE_ADDR
0b1b3e42 1609alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1610{
e17a4113 1611 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1612 unsigned int insn;
1613 unsigned int op;
551e4f2e 1614 int regno;
ec32e4be
JT
1615 int offset;
1616 LONGEST rav;
1617
e17a4113 1618 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1619
0963b4bd 1620 /* Opcode is top 6 bits. */
ec32e4be
JT
1621 op = (insn >> 26) & 0x3f;
1622
1623 if (op == 0x1a)
1624 {
1625 /* Jump format: target PC is:
1626 RB & ~3 */
0b1b3e42 1627 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1628 }
1629
1630 if ((op & 0x30) == 0x30)
1631 {
1632 /* Branch format: target PC is:
1633 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1634 if (op == 0x30 /* BR */
1635 || op == 0x34) /* BSR */
ec32e4be
JT
1636 {
1637 branch_taken:
1638 offset = (insn & 0x001fffff);
1639 if (offset & 0x00100000)
1640 offset |= 0xffe00000;
e8d2d628
MK
1641 offset *= ALPHA_INSN_SIZE;
1642 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1643 }
1644
1645 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1646 regno = (insn >> 21) & 0x1f;
1647 switch (op)
1648 {
1649 case 0x31: /* FBEQ */
1650 case 0x36: /* FBGE */
1651 case 0x37: /* FBGT */
1652 case 0x33: /* FBLE */
1653 case 0x32: /* FBLT */
1654 case 0x35: /* FBNE */
e17a4113 1655 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1656 }
1657
0b1b3e42 1658 rav = get_frame_register_signed (frame, regno);
0de94d4b 1659
ec32e4be
JT
1660 switch (op)
1661 {
1662 case 0x38: /* BLBC */
1663 if ((rav & 1) == 0)
1664 goto branch_taken;
1665 break;
1666 case 0x3c: /* BLBS */
1667 if (rav & 1)
1668 goto branch_taken;
1669 break;
1670 case 0x39: /* BEQ */
1671 if (rav == 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3d: /* BNE */
1675 if (rav != 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3a: /* BLT */
1679 if (rav < 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3b: /* BLE */
1683 if (rav <= 0)
1684 goto branch_taken;
1685 break;
1686 case 0x3f: /* BGT */
1687 if (rav > 0)
1688 goto branch_taken;
1689 break;
1690 case 0x3e: /* BGE */
1691 if (rav >= 0)
1692 goto branch_taken;
1693 break;
d2427a71 1694
0de94d4b
JB
1695 /* Floating point branches. */
1696
1697 case 0x31: /* FBEQ */
1698 if (fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x36: /* FBGE */
1702 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x37: /* FBGT */
1706 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x33: /* FBLE */
1710 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
1713 case 0x32: /* FBLT */
1714 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1715 goto branch_taken;
1716 break;
1717 case 0x35: /* FBNE */
1718 if (! fp_register_zero_p (rav))
1719 goto branch_taken;
1720 break;
ec32e4be
JT
1721 }
1722 }
1723
1724 /* Not a branch or branch not taken; target PC is:
1725 pc + 4 */
e8d2d628 1726 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1727}
1728
e6590a1b 1729int
0b1b3e42 1730alpha_software_single_step (struct frame_info *frame)
ec32e4be 1731{
a6d9a66e 1732 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1733 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1734 CORE_ADDR pc, next_pc;
ec32e4be 1735
0b1b3e42
UW
1736 pc = get_frame_pc (frame);
1737 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1738
6c95b8df 1739 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1740 return 1;
c906108c
SS
1741}
1742
dc129d82 1743\f
dc129d82
JT
1744/* Initialize the current architecture based on INFO. If possible, re-use an
1745 architecture from ARCHES, which is a list of architectures already created
1746 during this debugging session.
1747
1748 Called e.g. at program startup, when reading a core file, and when reading
1749 a binary file. */
1750
1751static struct gdbarch *
1752alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1753{
1754 struct gdbarch_tdep *tdep;
1755 struct gdbarch *gdbarch;
dc129d82
JT
1756
1757 /* Try to determine the ABI of the object we are loading. */
4be87837 1758 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1759 {
4be87837
DJ
1760 /* If it's an ECOFF file, assume it's OSF/1. */
1761 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1762 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1763 }
1764
1765 /* Find a candidate among extant architectures. */
4be87837
DJ
1766 arches = gdbarch_list_lookup_by_info (arches, &info);
1767 if (arches != NULL)
1768 return arches->gdbarch;
dc129d82
JT
1769
1770 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1771 gdbarch = gdbarch_alloc (&info, tdep);
1772
d2427a71
RH
1773 /* Lowest text address. This is used by heuristic_proc_start()
1774 to decide when to stop looking. */
594706e6 1775 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1776
36a6271d 1777 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1778 tdep->sigcontext_addr = NULL;
138e7be5
MK
1779 tdep->sc_pc_offset = 2 * 8;
1780 tdep->sc_regs_offset = 4 * 8;
1781 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1782
0963b4bd 1783 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1784
9823e921
RH
1785 tdep->return_in_memory = alpha_return_in_memory_always;
1786
dc129d82
JT
1787 /* Type sizes */
1788 set_gdbarch_short_bit (gdbarch, 16);
1789 set_gdbarch_int_bit (gdbarch, 32);
1790 set_gdbarch_long_bit (gdbarch, 64);
1791 set_gdbarch_long_long_bit (gdbarch, 64);
1792 set_gdbarch_float_bit (gdbarch, 32);
1793 set_gdbarch_double_bit (gdbarch, 64);
1794 set_gdbarch_long_double_bit (gdbarch, 64);
1795 set_gdbarch_ptr_bit (gdbarch, 64);
1796
1797 /* Register info */
1798 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1799 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1800 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1801 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1802
1803 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1804 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1805
1806 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1807 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1808
c483c494
RH
1809 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1810 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1811 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1812
615967cb
RH
1813 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1814
d2427a71 1815 /* Prologue heuristics. */
dc129d82
JT
1816 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1817
5ef165c2
RH
1818 /* Disassembler. */
1819 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1820
d2427a71 1821 /* Call info. */
dc129d82 1822
9823e921 1823 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1824
1825 /* Settings for calling functions in the inferior. */
c88e30c0 1826 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1827
1828 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1829 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1830
1831 /* Return the unwound PC value. */
1832 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1833
1834 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1835 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1836
95b80706 1837 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1838 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1839 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1840
46ad3598
UW
1841 /* Handles single stepping of atomic sequences. */
1842 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1843
44dffaac 1844 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1845 gdbarch_init_osabi (info, gdbarch);
44dffaac 1846
accc6d1f
JT
1847 /* Now that we have tuned the configuration, set a few final things
1848 based on what the OS ABI has told us. */
1849
1850 if (tdep->jb_pc >= 0)
1851 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1852
6834c9bb
JB
1853 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1854 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1855
d2427a71 1856 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1857
d2427a71 1858 return gdbarch;
dc129d82
JT
1859}
1860
baa490c4
RH
1861void
1862alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1863{
6834c9bb 1864 dwarf2_append_unwinders (gdbarch);
336d1bba 1865 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1866}
1867
a78f21af
AC
1868extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1869
c906108c 1870void
fba45db2 1871_initialize_alpha_tdep (void)
c906108c
SS
1872{
1873 struct cmd_list_element *c;
1874
d2427a71 1875 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1876
1877 /* Let the user set the fence post for heuristic_proc_start. */
1878
1879 /* We really would like to have both "0" and "unlimited" work, but
1880 command.c doesn't deal with that. So make it a var_zinteger
1881 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1882 /* We need to throw away the frame cache when we set this, since it
1883 might change our ability to get backtraces. */
1884 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1885 &heuristic_fence_post, _("\
1886Set the distance searched for the start of a function."), _("\
1887Show the distance searched for the start of a function."), _("\
c906108c
SS
1888If you are debugging a stripped executable, GDB needs to search through the\n\
1889program for the start of a function. This command sets the distance of the\n\
323e0a4a 1890search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1891 reinit_frame_cache_sfunc,
0963b4bd
MS
1892 NULL, /* FIXME: i18n: The distance searched for
1893 the start of a function is \"%d\". */
edefbb7c 1894 &setlist, &showlist);
c906108c 1895}
This page took 0.998699 seconds and 4 git commands to generate.