gdb/
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
7b6bb8da
JB
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
615967cb 23#include "doublest.h"
c906108c 24#include "frame.h"
d2427a71
RH
25#include "frame-unwind.h"
26#include "frame-base.h"
baa490c4 27#include "dwarf2-frame.h"
c906108c
SS
28#include "inferior.h"
29#include "symtab.h"
30#include "value.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "gdb_string.h"
c5f0f3d0 37#include "linespec.h"
4e052eda 38#include "regcache.h"
615967cb 39#include "reggroups.h"
dc129d82 40#include "arch-utils.h"
4be87837 41#include "osabi.h"
fe898f56 42#include "block.h"
7d9b040b 43#include "infcall.h"
07ea644b 44#include "trad-frame.h"
dc129d82
JT
45
46#include "elf-bfd.h"
47
48#include "alpha-tdep.h"
49
3a48e6ff
JG
50/* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
52 handbook. */
53
54#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55
56/* Memory instruction format */
57#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59#define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61
62static const int lda_opcode = 0x08;
63static const int stq_opcode = 0x2d;
64
65/* Branch instruction format */
66#define BR_RA(insn) MEM_RA(insn)
67
68static const int bne_opcode = 0x3d;
69
70/* Operate instruction format */
71#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73#define OPR_RA(insn) MEM_RA(insn)
74#define OPR_RC(insn) ((insn & 0x1f))
75#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77static const int subq_opcode = 0x10;
78static const int subq_function = 0x29;
79
c906108c 80\f
515921d7
JB
81/* Return the name of the REGNO register.
82
83 An empty name corresponds to a register number that used to
0963b4bd 84 be used for a virtual register. That virtual register has
515921d7
JB
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
fa88f677 88static const char *
d93859e2 89alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 90{
5ab84872 91 static const char * const register_names[] =
636a6dfc
JT
92 {
93 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
94 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
95 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
96 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
97 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
98 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
99 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
100 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 101 "pc", "", "unique"
636a6dfc
JT
102 };
103
104 if (regno < 0)
5ab84872 105 return NULL;
e8d2d628 106 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
107 return NULL;
108 return register_names[regno];
636a6dfc 109}
d734c450 110
dc129d82 111static int
64a3914f 112alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 113{
515921d7 114 return (regno == ALPHA_ZERO_REGNUM
64a3914f 115 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
116}
117
dc129d82 118static int
64a3914f 119alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 120{
515921d7 121 return (regno == ALPHA_ZERO_REGNUM
64a3914f 122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
123}
124
dc129d82 125static struct type *
c483c494 126alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 127{
72667056 128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 130 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 131 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
132
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
b38b6be2 135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 136 return builtin_type (gdbarch)->builtin_double;
72667056 137
df4df182 138 return builtin_type (gdbarch)->builtin_int64;
0d056799 139}
f8453e34 140
615967cb
RH
141/* Is REGNUM a member of REGGROUP? */
142
143static int
144alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
146{
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
151 return 0;
152
df4a182b
RH
153 if (group == all_reggroup)
154 return 1;
155
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
161 return 0;
162
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
165 return 1;
166
167 /* All other groups are non-overlapping. */
168
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
172
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
176
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
179 else
180 return group == general_reggroup;
181}
182
c483c494
RH
183/* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
186
187static void
e17a4113 188alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 189{
e17a4113
UW
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
c483c494
RH
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
e17a4113 211 store_unsigned_integer (out, 8, byte_order, reg);
c483c494
RH
212}
213
214/* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
39efb398 217static void
e17a4113 218alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 219{
e17a4113 220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
221 ULONGEST reg, mem;
222
e17a4113 223 reg = extract_unsigned_integer (in, 8, byte_order);
c483c494 224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
e17a4113 225 store_unsigned_integer (out, 4, byte_order, mem);
c483c494
RH
226}
227
d2427a71
RH
228/* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
0963b4bd 232 registers is different. */
d2427a71 233
c483c494 234static int
0963b4bd
MS
235alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
14696584 237{
83acabca
DJ
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
14696584
RH
240}
241
8dccd430 242static int
ff2e87ac 243alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
5868c862 246{
8dccd430 247 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
248 gdb_byte in[MAX_REGISTER_SIZE];
249
8dccd430
PA
250 /* Convert to TYPE. */
251 if (!get_frame_register_bytes (frame, regnum, 0,
252 register_size (gdbarch, regnum),
253 in, optimizedp, unavailablep))
254 return 0;
255
256 if (TYPE_LENGTH (valtype) == 4)
d2427a71 257 {
8dccd430
PA
258 alpha_sts (gdbarch, out, in);
259 *optimizedp = *unavailablep = 0;
260 return 1;
d2427a71 261 }
8dccd430
PA
262
263 error (_("Cannot retrieve value from floating point register"));
d2427a71 264}
5868c862 265
d2427a71 266static void
ff2e87ac 267alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 268 struct type *valtype, const gdb_byte *in)
d2427a71 269{
2a1ce6ec
MK
270 gdb_byte out[MAX_REGISTER_SIZE];
271
c483c494 272 switch (TYPE_LENGTH (valtype))
d2427a71 273 {
c483c494 274 case 4:
e17a4113 275 alpha_lds (get_frame_arch (frame), out, in);
c483c494 276 break;
c483c494 277 default:
323e0a4a 278 error (_("Cannot store value in floating point register"));
d2427a71 279 }
ff2e87ac 280 put_frame_register (frame, regnum, out);
5868c862
JT
281}
282
d2427a71
RH
283\f
284/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
d2427a71
RH
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
c906108c 295
d2427a71 296static CORE_ADDR
7d9b040b 297alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
c906108c 301{
e17a4113 302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
d2427a71 305 struct alpha_arg
c906108c 306 {
f42a0a33 307 const gdb_byte *contents;
d2427a71
RH
308 int len;
309 int offset;
310 };
c88e30c0
RH
311 struct alpha_arg *alpha_args
312 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 313 struct alpha_arg *m_arg;
2a1ce6ec 314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 315 int required_arg_regs;
7d9b040b 316 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 317
c88e30c0
RH
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
320
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
324
325 /* Lay out the arguments in memory. */
d2427a71
RH
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
327 {
328 struct value *arg = args[i];
4991999e 329 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 330
d2427a71
RH
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
c906108c 333 {
d2427a71
RH
334 case TYPE_CODE_INT:
335 case TYPE_CODE_BOOL:
336 case TYPE_CODE_CHAR:
337 case TYPE_CODE_RANGE:
338 case TYPE_CODE_ENUM:
0ede8eca 339 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 340 {
0ede8eca
RH
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
df4df182 343 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
344 arg = value_cast (arg_type, arg);
345 }
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
347 {
df4df182 348 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
349 arg = value_cast (arg_type, arg);
350 }
351 break;
7b5e1cb3 352
c88e30c0
RH
353 case TYPE_CODE_FLT:
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
358 {
27067745 359 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
360 arg = value_cast (arg_type, arg);
361 }
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
365 {
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
368
369 /* Write the real data into the stack. */
0fd88904 370 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
371
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
375 }
376 break;
7b5e1cb3
RH
377
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
382
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
386 {
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
389
390 /* Write the real data into the stack. */
0fd88904 391 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
392
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
396 }
397 break;
398
d2427a71
RH
399 default:
400 break;
c906108c 401 }
d2427a71
RH
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 405 m_arg->contents = value_contents (arg);
c906108c
SS
406 }
407
d2427a71
RH
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 413
d2427a71 414 /* Make room for the arguments on the stack. */
c88e30c0
RH
415 if (accumulate_size < sizeof(arg_reg_buffer))
416 accumulate_size = 0;
417 else
418 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 419 sp -= accumulate_size;
c906108c 420
c88e30c0 421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 422 sp &= ~15;
c906108c 423
d2427a71
RH
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
c906108c 426 {
f42a0a33 427 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
428 int offset = m_arg->offset;
429 int len = m_arg->len;
430
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
433 {
434 if (offset + len <= sizeof(arg_reg_buffer))
435 {
436 memcpy (arg_reg_buffer + offset, contents, len);
437 continue;
438 }
439 else
440 {
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
443 offset += tlen;
444 contents += tlen;
445 len -= tlen;
446 }
447 }
448
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 451 }
c88e30c0 452 if (struct_return)
e17a4113
UW
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
c906108c 455
d2427a71
RH
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
458 {
09cc52fd
RH
459 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 463 }
c906108c 464
09cc52fd
RH
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
467
c88e30c0 468 return sp;
c906108c
SS
469}
470
5ec2bb99
RH
471/* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
d2427a71 473
dc129d82 474static void
5ec2bb99 475alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 476 gdb_byte *valbuf)
140f9984 477{
e17a4113
UW
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7b5e1cb3 480 int length = TYPE_LENGTH (valtype);
2a1ce6ec 481 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
482 ULONGEST l;
483
484 switch (TYPE_CODE (valtype))
485 {
486 case TYPE_CODE_FLT:
7b5e1cb3 487 switch (length)
5ec2bb99
RH
488 {
489 case 4:
490 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 491 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
492 break;
493
494 case 8:
495 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
496 break;
497
24064b5c
RH
498 case 16:
499 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
500 read_memory (l, valbuf, 16);
501 break;
502
5ec2bb99 503 default:
0963b4bd
MS
504 internal_error (__FILE__, __LINE__,
505 _("unknown floating point width"));
5ec2bb99
RH
506 }
507 break;
508
7b5e1cb3
RH
509 case TYPE_CODE_COMPLEX:
510 switch (length)
511 {
512 case 8:
513 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
515 break;
516
517 case 16:
518 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 519 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
520 break;
521
522 case 32:
523 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
524 read_memory (l, valbuf, 32);
525 break;
526
527 default:
0963b4bd
MS
528 internal_error (__FILE__, __LINE__,
529 _("unknown floating point width"));
7b5e1cb3
RH
530 }
531 break;
532
5ec2bb99
RH
533 default:
534 /* Assume everything else degenerates to an integer. */
535 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
e17a4113 536 store_unsigned_integer (valbuf, length, byte_order, l);
5ec2bb99
RH
537 break;
538 }
140f9984
JT
539}
540
5ec2bb99
RH
541/* Insert the given value into REGCACHE as if it was being
542 returned by a function. */
0d056799 543
d2427a71 544static void
5ec2bb99 545alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 546 const gdb_byte *valbuf)
c906108c 547{
df4df182 548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d2427a71 549 int length = TYPE_LENGTH (valtype);
2a1ce6ec 550 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 551 ULONGEST l;
d2427a71 552
5ec2bb99 553 switch (TYPE_CODE (valtype))
c906108c 554 {
5ec2bb99
RH
555 case TYPE_CODE_FLT:
556 switch (length)
557 {
558 case 4:
e17a4113 559 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
561 break;
5ec2bb99
RH
562
563 case 8:
564 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
565 break;
566
24064b5c
RH
567 case 16:
568 /* FIXME: 128-bit long doubles are returned like structures:
569 by writing into indirect storage provided by the caller
570 as the first argument. */
323e0a4a 571 error (_("Cannot set a 128-bit long double return value."));
24064b5c 572
5ec2bb99 573 default:
0963b4bd
MS
574 internal_error (__FILE__, __LINE__,
575 _("unknown floating point width"));
5ec2bb99
RH
576 }
577 break;
d2427a71 578
7b5e1cb3
RH
579 case TYPE_CODE_COMPLEX:
580 switch (length)
581 {
582 case 8:
583 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 break;
586
587 case 16:
588 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 589 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
590 break;
591
592 case 32:
593 /* FIXME: 128-bit long doubles are returned like structures:
594 by writing into indirect storage provided by the caller
595 as the first argument. */
323e0a4a 596 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
597
598 default:
0963b4bd
MS
599 internal_error (__FILE__, __LINE__,
600 _("unknown floating point width"));
7b5e1cb3
RH
601 }
602 break;
603
5ec2bb99
RH
604 default:
605 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
606 /* 32-bit values must be sign-extended to 64 bits
607 even if the base data type is unsigned. */
608 if (length == 4)
df4df182 609 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
610 l = unpack_long (valtype, valbuf);
611 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
612 break;
613 }
c906108c
SS
614}
615
9823e921 616static enum return_value_convention
c055b101
CV
617alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
618 struct type *type, struct regcache *regcache,
619 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
620{
621 enum type_code code = TYPE_CODE (type);
622
623 if ((code == TYPE_CODE_STRUCT
624 || code == TYPE_CODE_UNION
625 || code == TYPE_CODE_ARRAY)
626 && gdbarch_tdep (gdbarch)->return_in_memory (type))
627 {
628 if (readbuf)
629 {
630 ULONGEST addr;
631 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 if (readbuf)
639 alpha_extract_return_value (type, regcache, readbuf);
640 if (writebuf)
641 alpha_store_return_value (type, regcache, writebuf);
642
643 return RETURN_VALUE_REGISTER_CONVENTION;
644}
645
646static int
647alpha_return_in_memory_always (struct type *type)
648{
649 return 1;
650}
d2427a71 651\f
2a1ce6ec 652static const gdb_byte *
67d57894 653alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 654{
2a1ce6ec 655 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 656
2a1ce6ec
MK
657 *len = sizeof(break_insn);
658 return break_insn;
d2427a71 659}
c906108c 660
d2427a71
RH
661\f
662/* This returns the PC of the first insn after the prologue.
663 If we can't find the prologue, then return 0. */
c906108c 664
d2427a71
RH
665CORE_ADDR
666alpha_after_prologue (CORE_ADDR pc)
c906108c 667{
d2427a71
RH
668 struct symtab_and_line sal;
669 CORE_ADDR func_addr, func_end;
c906108c 670
d2427a71 671 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 672 return 0;
c906108c 673
d2427a71
RH
674 sal = find_pc_line (func_addr, 0);
675 if (sal.end < func_end)
676 return sal.end;
c5aa993b 677
d2427a71
RH
678 /* The line after the prologue is after the end of the function. In this
679 case, tell the caller to find the prologue the hard way. */
680 return 0;
c906108c
SS
681}
682
d2427a71
RH
683/* Read an instruction from memory at PC, looking through breakpoints. */
684
685unsigned int
e17a4113 686alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 687{
e17a4113 688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 689 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 690 int status;
c5aa993b 691
8defab1a 692 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
693 if (status)
694 memory_error (status, pc);
e17a4113 695 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 696}
c5aa993b 697
d2427a71
RH
698/* To skip prologues, I use this predicate. Returns either PC itself
699 if the code at PC does not look like a function prologue; otherwise
700 returns an address that (if we're lucky) follows the prologue. If
701 LENIENT, then we must skip everything which is involved in setting
702 up the frame (it's OK to skip more, just so long as we don't skip
703 anything which might clobber the registers which are being saved. */
c906108c 704
d2427a71 705static CORE_ADDR
6093d2eb 706alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
707{
708 unsigned long inst;
709 int offset;
710 CORE_ADDR post_prologue_pc;
e8d2d628 711 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 712
d2427a71
RH
713 /* Silently return the unaltered pc upon memory errors.
714 This could happen on OSF/1 if decode_line_1 tries to skip the
715 prologue for quickstarted shared library functions when the
716 shared library is not yet mapped in.
717 Reading target memory is slow over serial lines, so we perform
718 this check only if the target has shared libraries (which all
719 Alpha targets do). */
e8d2d628 720 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 721 return pc;
c906108c 722
d2427a71
RH
723 /* See if we can determine the end of the prologue via the symbol table.
724 If so, then return either PC, or the PC after the prologue, whichever
725 is greater. */
c906108c 726
d2427a71
RH
727 post_prologue_pc = alpha_after_prologue (pc);
728 if (post_prologue_pc != 0)
729 return max (pc, post_prologue_pc);
c906108c 730
d2427a71
RH
731 /* Can't determine prologue from the symbol table, need to examine
732 instructions. */
dc1b0db2 733
0963b4bd 734 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
735 instruction and the instructions that save registers on the stack
736 or in the gcc frame. */
e8d2d628 737 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 738 {
e17a4113 739 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 740
d2427a71
RH
741 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
744 continue;
745 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
746 continue;
747 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
748 continue;
c906108c 749
d2427a71
RH
750 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
751 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
752 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
753 continue;
c906108c 754
d2427a71
RH
755 if (inst == 0x47de040f) /* bis sp,sp,fp */
756 continue;
757 if (inst == 0x47fe040f) /* bis zero,sp,fp */
758 continue;
c906108c 759
d2427a71 760 break;
c906108c 761 }
d2427a71
RH
762 return pc + offset;
763}
c906108c 764
d2427a71
RH
765\f
766/* Figure out where the longjmp will land.
767 We expect the first arg to be a pointer to the jmp_buf structure from
768 which we extract the PC (JB_PC) that we will land at. The PC is copied
769 into the "pc". This routine returns true on success. */
c906108c
SS
770
771static int
60ade65d 772alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 773{
e17a4113
UW
774 struct gdbarch *gdbarch = get_frame_arch (frame);
775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
776 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 777 CORE_ADDR jb_addr;
2a1ce6ec 778 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 779
60ade65d 780 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 781
d2427a71
RH
782 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
783 raw_buffer, tdep->jb_elt_size))
c906108c 784 return 0;
d2427a71 785
e17a4113 786 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 787 return 1;
c906108c
SS
788}
789
d2427a71
RH
790\f
791/* Frame unwinder for signal trampolines. We use alpha tdep bits that
792 describe the location and shape of the sigcontext structure. After
793 that, all registers are in memory, so it's easy. */
794/* ??? Shouldn't we be able to do this generically, rather than with
795 OSABI data specific to Alpha? */
796
797struct alpha_sigtramp_unwind_cache
c906108c 798{
d2427a71
RH
799 CORE_ADDR sigcontext_addr;
800};
c906108c 801
d2427a71 802static struct alpha_sigtramp_unwind_cache *
6834c9bb 803alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
804 void **this_prologue_cache)
805{
806 struct alpha_sigtramp_unwind_cache *info;
807 struct gdbarch_tdep *tdep;
c906108c 808
d2427a71
RH
809 if (*this_prologue_cache)
810 return *this_prologue_cache;
c906108c 811
d2427a71
RH
812 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
813 *this_prologue_cache = info;
c906108c 814
6834c9bb
JB
815 tdep = gdbarch_tdep (get_frame_arch (this_frame));
816 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 817
d2427a71 818 return info;
c906108c
SS
819}
820
138e7be5
MK
821/* Return the address of REGNUM in a sigtramp frame. Since this is
822 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 823
d2427a71 824static CORE_ADDR
be8626e0
MD
825alpha_sigtramp_register_address (struct gdbarch *gdbarch,
826 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 827{
be8626e0 828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
829
830 if (regnum >= 0 && regnum < 32)
831 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
832 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
833 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
834 else if (regnum == ALPHA_PC_REGNUM)
835 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 836
d2427a71 837 return 0;
c906108c
SS
838}
839
d2427a71
RH
840/* Given a GDB frame, determine the address of the calling function's
841 frame. This will be used to create a new GDB frame struct. */
140f9984 842
dc129d82 843static void
6834c9bb 844alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
845 void **this_prologue_cache,
846 struct frame_id *this_id)
c906108c 847{
6834c9bb 848 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 850 struct alpha_sigtramp_unwind_cache *info
6834c9bb 851 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
852 CORE_ADDR stack_addr, code_addr;
853
854 /* If the OSABI couldn't locate the sigcontext, give up. */
855 if (info->sigcontext_addr == 0)
856 return;
857
858 /* If we have dynamic signal trampolines, find their start.
859 If we do not, then we must assume there is a symbol record
860 that can provide the start address. */
d2427a71 861 if (tdep->dynamic_sigtramp_offset)
c906108c 862 {
d2427a71 863 int offset;
6834c9bb 864 code_addr = get_frame_pc (this_frame);
e17a4113 865 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
866 if (offset >= 0)
867 code_addr -= offset;
c906108c 868 else
d2427a71 869 code_addr = 0;
c906108c 870 }
d2427a71 871 else
6834c9bb 872 code_addr = get_frame_func (this_frame);
c906108c 873
d2427a71 874 /* The stack address is trivially read from the sigcontext. */
be8626e0 875 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 876 ALPHA_SP_REGNUM);
6834c9bb 877 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 878 ALPHA_REGISTER_SIZE);
c906108c 879
d2427a71 880 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
881}
882
d2427a71 883/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 884
6834c9bb
JB
885static struct value *
886alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
887 void **this_prologue_cache, int regnum)
c906108c 888{
d2427a71 889 struct alpha_sigtramp_unwind_cache *info
6834c9bb 890 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 891 CORE_ADDR addr;
c906108c 892
d2427a71 893 if (info->sigcontext_addr != 0)
c906108c 894 {
d2427a71 895 /* All integer and fp registers are stored in memory. */
6834c9bb 896 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 897 info->sigcontext_addr, regnum);
d2427a71 898 if (addr != 0)
6834c9bb 899 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
900 }
901
d2427a71
RH
902 /* This extra register may actually be in the sigcontext, but our
903 current description of it in alpha_sigtramp_frame_unwind_cache
904 doesn't include it. Too bad. Fall back on whatever's in the
905 outer frame. */
6834c9bb 906 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 907}
c906108c 908
6834c9bb
JB
909static int
910alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
911 struct frame_info *this_frame,
912 void **this_prologue_cache)
d2427a71 913{
6834c9bb
JB
914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
915 CORE_ADDR pc = get_frame_pc (this_frame);
d2427a71 916 char *name;
c906108c 917
f2524b93
AC
918 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
919 look at tramp-frame.h and other simplier per-architecture
920 sigtramp unwinders. */
921
922 /* We shouldn't even bother to try if the OSABI didn't register a
923 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 924 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 925 return 0;
ec7cc0e8 926 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 927 return 0;
c906108c 928
d2427a71
RH
929 /* Otherwise we should be in a signal frame. */
930 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 931 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 932 return 1;
c906108c 933
6834c9bb 934 return 0;
c906108c 935}
6834c9bb
JB
936
937static const struct frame_unwind alpha_sigtramp_frame_unwind = {
938 SIGTRAMP_FRAME,
8fbca658 939 default_frame_unwind_stop_reason,
6834c9bb
JB
940 alpha_sigtramp_frame_this_id,
941 alpha_sigtramp_frame_prev_register,
942 NULL,
943 alpha_sigtramp_frame_sniffer
944};
945
d2427a71 946\f
c906108c 947
d2427a71
RH
948/* Heuristic_proc_start may hunt through the text section for a long
949 time across a 2400 baud serial line. Allows the user to limit this
950 search. */
951static unsigned int heuristic_fence_post = 0;
c906108c 952
d2427a71
RH
953/* Attempt to locate the start of the function containing PC. We assume that
954 the previous function ends with an about_to_return insn. Not foolproof by
955 any means, since gcc is happy to put the epilogue in the middle of a
956 function. But we're guessing anyway... */
c906108c 957
d2427a71 958static CORE_ADDR
be8626e0 959alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 960{
be8626e0 961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
962 CORE_ADDR last_non_nop = pc;
963 CORE_ADDR fence = pc - heuristic_fence_post;
964 CORE_ADDR orig_pc = pc;
fbe586ae 965 CORE_ADDR func;
d6b48e9c 966 struct inferior *inf;
9e0b60a8 967
d2427a71
RH
968 if (pc == 0)
969 return 0;
9e0b60a8 970
fbe586ae
RH
971 /* First see if we can find the start of the function from minimal
972 symbol information. This can succeed with a binary that doesn't
973 have debug info, but hasn't been stripped. */
974 func = get_pc_function_start (pc);
975 if (func)
976 return func;
977
d2427a71
RH
978 if (heuristic_fence_post == UINT_MAX
979 || fence < tdep->vm_min_address)
980 fence = tdep->vm_min_address;
c906108c 981
d2427a71
RH
982 /* Search back for previous return; also stop at a 0, which might be
983 seen for instance before the start of a code section. Don't include
984 nops, since this usually indicates padding between functions. */
e8d2d628 985 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 986 {
e17a4113 987 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 988 switch (insn)
c906108c 989 {
d2427a71
RH
990 case 0: /* invalid insn */
991 case 0x6bfa8001: /* ret $31,($26),1 */
992 return last_non_nop;
993
994 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
995 case 0x47ff041f: /* nop: bis $31,$31,$31 */
996 break;
997
998 default:
999 last_non_nop = pc;
1000 break;
c906108c 1001 }
d2427a71 1002 }
c906108c 1003
d6b48e9c
PA
1004 inf = current_inferior ();
1005
d2427a71
RH
1006 /* It's not clear to me why we reach this point when stopping quietly,
1007 but with this test, at least we don't print out warnings for every
1008 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1009 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1010 {
1011 static int blurb_printed = 0;
c906108c 1012
d2427a71 1013 if (fence == tdep->vm_min_address)
323e0a4a 1014 warning (_("Hit beginning of text section without finding \
5af949e3 1015enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1016 else
323e0a4a 1017 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1018enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1019
d2427a71
RH
1020 if (!blurb_printed)
1021 {
323e0a4a 1022 printf_filtered (_("\
d2427a71
RH
1023This warning occurs if you are debugging a function without any symbols\n\
1024(for example, in a stripped executable). In that case, you may wish to\n\
1025increase the size of the search with the `set heuristic-fence-post' command.\n\
1026\n\
1027Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1028(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1029 blurb_printed = 1;
1030 }
1031 }
c906108c 1032
d2427a71
RH
1033 return 0;
1034}
c906108c 1035
07ea644b
MD
1036/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1037 something about the traditional layout of alpha stack frames. */
1038
1039struct alpha_heuristic_unwind_cache
1040{
1041 CORE_ADDR vfp;
1042 CORE_ADDR start_pc;
1043 struct trad_frame_saved_reg *saved_regs;
1044 int return_reg;
1045};
1046
3a48e6ff
JG
1047/* If a probing loop sequence starts at PC, simulate it and compute
1048 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1049 FRAME_SIZE unchanged. */
1050
1051static void
1052alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1053 int *frame_size)
1054{
1055 CORE_ADDR cur_pc = *pc;
1056 int cur_frame_size = *frame_size;
1057 int nb_of_iterations, reg_index, reg_probe;
1058 unsigned int insn;
1059
1060 /* The following pattern is recognized as a probing loop:
1061
1062 lda REG_INDEX,NB_OF_ITERATIONS
1063 lda REG_PROBE,<immediate>(sp)
1064
1065 LOOP_START:
1066 stq zero,<immediate>(REG_PROBE)
1067 subq REG_INDEX,0x1,REG_INDEX
1068 lda REG_PROBE,<immediate>(REG_PROBE)
1069 bne REG_INDEX, LOOP_START
1070
1071 lda sp,<immediate>(REG_PROBE)
1072
1073 If anything different is found, the function returns without
1074 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1075 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1076
1077 /* lda REG_INDEX,NB_OF_ITERATIONS */
1078
1079 insn = alpha_read_insn (gdbarch, cur_pc);
1080 if (INSN_OPCODE (insn) != lda_opcode)
1081 return;
1082 reg_index = MEM_RA (insn);
1083 nb_of_iterations = MEM_DISP (insn);
1084
1085 /* lda REG_PROBE,<immediate>(sp) */
1086
1087 cur_pc += ALPHA_INSN_SIZE;
1088 insn = alpha_read_insn (gdbarch, cur_pc);
1089 if (INSN_OPCODE (insn) != lda_opcode
1090 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1091 return;
1092 reg_probe = MEM_RA (insn);
1093 cur_frame_size -= MEM_DISP (insn);
1094
1095 /* stq zero,<immediate>(REG_PROBE) */
1096
1097 cur_pc += ALPHA_INSN_SIZE;
1098 insn = alpha_read_insn (gdbarch, cur_pc);
1099 if (INSN_OPCODE (insn) != stq_opcode
1100 || MEM_RA (insn) != 0x1f
1101 || MEM_RB (insn) != reg_probe)
1102 return;
1103
1104 /* subq REG_INDEX,0x1,REG_INDEX */
1105
1106 cur_pc += ALPHA_INSN_SIZE;
1107 insn = alpha_read_insn (gdbarch, cur_pc);
1108 if (INSN_OPCODE (insn) != subq_opcode
1109 || !OPR_HAS_IMMEDIATE (insn)
1110 || OPR_FUNCTION (insn) != subq_function
1111 || OPR_LIT(insn) != 1
1112 || OPR_RA (insn) != reg_index
1113 || OPR_RC (insn) != reg_index)
1114 return;
1115
1116 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1117
1118 cur_pc += ALPHA_INSN_SIZE;
1119 insn = alpha_read_insn (gdbarch, cur_pc);
1120 if (INSN_OPCODE (insn) != lda_opcode
1121 || MEM_RA (insn) != reg_probe
1122 || MEM_RB (insn) != reg_probe)
1123 return;
1124 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1125
1126 /* bne REG_INDEX, LOOP_START */
1127
1128 cur_pc += ALPHA_INSN_SIZE;
1129 insn = alpha_read_insn (gdbarch, cur_pc);
1130 if (INSN_OPCODE (insn) != bne_opcode
1131 || MEM_RA (insn) != reg_index)
1132 return;
1133
1134 /* lda sp,<immediate>(REG_PROBE) */
1135
1136 cur_pc += ALPHA_INSN_SIZE;
1137 insn = alpha_read_insn (gdbarch, cur_pc);
1138 if (INSN_OPCODE (insn) != lda_opcode
1139 || MEM_RA (insn) != ALPHA_SP_REGNUM
1140 || MEM_RB (insn) != reg_probe)
1141 return;
1142 cur_frame_size -= MEM_DISP (insn);
1143
1144 *pc = cur_pc;
1145 *frame_size = cur_frame_size;
1146}
1147
fbe586ae 1148static struct alpha_heuristic_unwind_cache *
6834c9bb 1149alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1150 void **this_prologue_cache,
1151 CORE_ADDR start_pc)
1152{
6834c9bb 1153 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1154 struct alpha_heuristic_unwind_cache *info;
1155 ULONGEST val;
1156 CORE_ADDR limit_pc, cur_pc;
1157 int frame_reg, frame_size, return_reg, reg;
c906108c 1158
d2427a71
RH
1159 if (*this_prologue_cache)
1160 return *this_prologue_cache;
c906108c 1161
d2427a71
RH
1162 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1163 *this_prologue_cache = info;
6834c9bb 1164 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1165
6834c9bb 1166 limit_pc = get_frame_pc (this_frame);
d2427a71 1167 if (start_pc == 0)
be8626e0 1168 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1169 info->start_pc = start_pc;
c906108c 1170
d2427a71
RH
1171 frame_reg = ALPHA_SP_REGNUM;
1172 frame_size = 0;
1173 return_reg = -1;
c906108c 1174
d2427a71
RH
1175 /* If we've identified a likely place to start, do code scanning. */
1176 if (start_pc != 0)
c5aa993b 1177 {
d2427a71
RH
1178 /* Limit the forward search to 50 instructions. */
1179 if (start_pc + 200 < limit_pc)
1180 limit_pc = start_pc + 200;
c5aa993b 1181
e8d2d628 1182 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1183 {
e17a4113 1184 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1185
d2427a71
RH
1186 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1187 {
1188 if (word & 0x8000)
1189 {
1190 /* Consider only the first stack allocation instruction
0963b4bd 1191 to contain the static size of the frame. */
d2427a71
RH
1192 if (frame_size == 0)
1193 frame_size = (-word) & 0xffff;
1194 }
1195 else
1196 {
1197 /* Exit loop if a positive stack adjustment is found, which
1198 usually means that the stack cleanup code in the function
1199 epilogue is reached. */
1200 break;
1201 }
1202 }
1203 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1204 {
1205 reg = (word & 0x03e00000) >> 21;
1206
d15bfd3a
AC
1207 /* Ignore this instruction if we have already encountered
1208 an instruction saving the same register earlier in the
1209 function code. The current instruction does not tell
1210 us where the original value upon function entry is saved.
1211 All it says is that the function we are scanning reused
1212 that register for some computation of its own, and is now
1213 saving its result. */
07ea644b 1214 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1215 continue;
1216
d2427a71
RH
1217 if (reg == 31)
1218 continue;
1219
1220 /* Do not compute the address where the register was saved yet,
1221 because we don't know yet if the offset will need to be
1222 relative to $sp or $fp (we can not compute the address
1223 relative to $sp if $sp is updated during the execution of
1224 the current subroutine, for instance when doing some alloca).
1225 So just store the offset for the moment, and compute the
1226 address later when we know whether this frame has a frame
1227 pointer or not. */
1228 /* Hack: temporarily add one, so that the offset is non-zero
1229 and we can tell which registers have save offsets below. */
07ea644b 1230 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1231
1232 /* Starting with OSF/1-3.2C, the system libraries are shipped
1233 without local symbols, but they still contain procedure
1234 descriptors without a symbol reference. GDB is currently
1235 unable to find these procedure descriptors and uses
1236 heuristic_proc_desc instead.
1237 As some low level compiler support routines (__div*, __add*)
1238 use a non-standard return address register, we have to
1239 add some heuristics to determine the return address register,
1240 or stepping over these routines will fail.
1241 Usually the return address register is the first register
1242 saved on the stack, but assembler optimization might
1243 rearrange the register saves.
1244 So we recognize only a few registers (t7, t9, ra) within
1245 the procedure prologue as valid return address registers.
1246 If we encounter a return instruction, we extract the
1247 the return address register from it.
1248
1249 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1250 e.g. via the minimal symbol table, might obviate this
1251 hack. */
d2427a71
RH
1252 if (return_reg == -1
1253 && cur_pc < (start_pc + 80)
1254 && (reg == ALPHA_T7_REGNUM
1255 || reg == ALPHA_T9_REGNUM
1256 || reg == ALPHA_RA_REGNUM))
1257 return_reg = reg;
1258 }
1259 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1260 return_reg = (word >> 16) & 0x1f;
1261 else if (word == 0x47de040f) /* bis sp,sp,fp */
1262 frame_reg = ALPHA_GCC_FP_REGNUM;
1263 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1264 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1265
1266 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1267 }
c5aa993b 1268
d2427a71
RH
1269 /* If we haven't found a valid return address register yet, keep
1270 searching in the procedure prologue. */
1271 if (return_reg == -1)
1272 {
1273 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1274 {
e17a4113 1275 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1276
d2427a71
RH
1277 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1278 {
1279 reg = (word & 0x03e00000) >> 21;
1280 if (reg == ALPHA_T7_REGNUM
1281 || reg == ALPHA_T9_REGNUM
1282 || reg == ALPHA_RA_REGNUM)
1283 {
1284 return_reg = reg;
1285 break;
1286 }
1287 }
1288 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1289 {
1290 return_reg = (word >> 16) & 0x1f;
1291 break;
1292 }
85b32d22 1293
e8d2d628 1294 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1295 }
1296 }
c906108c 1297 }
c906108c 1298
d2427a71
RH
1299 /* Failing that, do default to the customary RA. */
1300 if (return_reg == -1)
1301 return_reg = ALPHA_RA_REGNUM;
1302 info->return_reg = return_reg;
f8453e34 1303
6834c9bb 1304 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1305 info->vfp = val + frame_size;
c906108c 1306
d2427a71
RH
1307 /* Convert offsets to absolute addresses. See above about adding
1308 one to the offsets to make all detected offsets non-zero. */
1309 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1310 if (trad_frame_addr_p(info->saved_regs, reg))
1311 info->saved_regs[reg].addr += val - 1;
d2427a71 1312
bfd66dd9
JB
1313 /* The stack pointer of the previous frame is computed by popping
1314 the current stack frame. */
1315 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1316 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1317
d2427a71 1318 return info;
c906108c 1319}
c906108c 1320
d2427a71
RH
1321/* Given a GDB frame, determine the address of the calling function's
1322 frame. This will be used to create a new GDB frame struct. */
1323
fbe586ae 1324static void
6834c9bb
JB
1325alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1326 void **this_prologue_cache,
1327 struct frame_id *this_id)
c906108c 1328{
d2427a71 1329 struct alpha_heuristic_unwind_cache *info
6834c9bb 1330 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1331
d2427a71 1332 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1333}
1334
d2427a71
RH
1335/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1336
6834c9bb
JB
1337static struct value *
1338alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1339 void **this_prologue_cache, int regnum)
c906108c 1340{
d2427a71 1341 struct alpha_heuristic_unwind_cache *info
6834c9bb 1342 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1343
1344 /* The PC of the previous frame is stored in the link register of
1345 the current frame. Frob regnum so that we pull the value from
1346 the correct place. */
1347 if (regnum == ALPHA_PC_REGNUM)
1348 regnum = info->return_reg;
1349
6834c9bb 1350 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1351}
1352
d2427a71
RH
1353static const struct frame_unwind alpha_heuristic_frame_unwind = {
1354 NORMAL_FRAME,
8fbca658 1355 default_frame_unwind_stop_reason,
d2427a71 1356 alpha_heuristic_frame_this_id,
6834c9bb
JB
1357 alpha_heuristic_frame_prev_register,
1358 NULL,
1359 default_frame_sniffer
d2427a71 1360};
c906108c 1361
fbe586ae 1362static CORE_ADDR
6834c9bb 1363alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1364 void **this_prologue_cache)
c906108c 1365{
d2427a71 1366 struct alpha_heuristic_unwind_cache *info
6834c9bb 1367 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1368
d2427a71 1369 return info->vfp;
c906108c
SS
1370}
1371
d2427a71
RH
1372static const struct frame_base alpha_heuristic_frame_base = {
1373 &alpha_heuristic_frame_unwind,
1374 alpha_heuristic_frame_base_address,
1375 alpha_heuristic_frame_base_address,
1376 alpha_heuristic_frame_base_address
1377};
1378
c906108c 1379/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1380 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1381
1382static void
fba45db2 1383reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1384{
1385 reinit_frame_cache ();
1386}
1387
d2427a71 1388\f
d2427a71
RH
1389/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1390 dummy frame. The frame ID's base needs to match the TOS value
1391 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1392 breakpoint. */
d734c450 1393
d2427a71 1394static struct frame_id
6834c9bb 1395alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1396{
d2427a71 1397 ULONGEST base;
6834c9bb
JB
1398 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1399 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1400}
1401
dc129d82 1402static CORE_ADDR
d2427a71 1403alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1404{
d2427a71 1405 ULONGEST pc;
11411de3 1406 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1407 return pc;
accc6d1f
JT
1408}
1409
98a8e1e5
RH
1410\f
1411/* Helper routines for alpha*-nat.c files to move register sets to and
1412 from core files. The UNIQUE pointer is allowed to be NULL, as most
1413 targets don't supply this value in their core files. */
1414
1415void
390c1522
UW
1416alpha_supply_int_regs (struct regcache *regcache, int regno,
1417 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1418{
2a1ce6ec 1419 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1420 int i;
1421
1422 for (i = 0; i < 31; ++i)
1423 if (regno == i || regno == -1)
390c1522 1424 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1425
1426 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
390c1522 1427 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
98a8e1e5
RH
1428
1429 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1430 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1431
1432 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1433 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1434}
1435
1436void
390c1522
UW
1437alpha_fill_int_regs (const struct regcache *regcache,
1438 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1439{
2a1ce6ec 1440 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1441 int i;
1442
1443 for (i = 0; i < 31; ++i)
1444 if (regno == i || regno == -1)
390c1522 1445 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1446
1447 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1448 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1449
1450 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1451 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1452}
1453
1454void
390c1522
UW
1455alpha_supply_fp_regs (struct regcache *regcache, int regno,
1456 const void *f0_f30, const void *fpcr)
98a8e1e5 1457{
2a1ce6ec 1458 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1459 int i;
1460
1461 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1462 if (regno == i || regno == -1)
390c1522 1463 regcache_raw_supply (regcache, i,
2a1ce6ec 1464 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1465
1466 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1467 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1468}
1469
1470void
390c1522
UW
1471alpha_fill_fp_regs (const struct regcache *regcache,
1472 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1473{
2a1ce6ec 1474 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1475 int i;
1476
1477 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1478 if (regno == i || regno == -1)
390c1522 1479 regcache_raw_collect (regcache, i,
2a1ce6ec 1480 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1481
1482 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1483 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1484}
1485
d2427a71 1486\f
0de94d4b
JB
1487
1488/* Return nonzero if the G_floating register value in REG is equal to
1489 zero for FP control instructions. */
1490
1491static int
1492fp_register_zero_p (LONGEST reg)
1493{
1494 /* Check that all bits except the sign bit are zero. */
1495 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1496
1497 return ((reg & zero_mask) == 0);
1498}
1499
1500/* Return the value of the sign bit for the G_floating register
1501 value held in REG. */
1502
1503static int
1504fp_register_sign_bit (LONGEST reg)
1505{
1506 const LONGEST sign_mask = (LONGEST) 1 << 63;
1507
1508 return ((reg & sign_mask) != 0);
1509}
1510
ec32e4be
JT
1511/* alpha_software_single_step() is called just before we want to resume
1512 the inferior, if we want to single-step it but there is no hardware
1513 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1514 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1515
1516static CORE_ADDR
0b1b3e42 1517alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1518{
e17a4113 1519 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1520 unsigned int insn;
1521 unsigned int op;
551e4f2e 1522 int regno;
ec32e4be
JT
1523 int offset;
1524 LONGEST rav;
1525
e17a4113 1526 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1527
0963b4bd 1528 /* Opcode is top 6 bits. */
ec32e4be
JT
1529 op = (insn >> 26) & 0x3f;
1530
1531 if (op == 0x1a)
1532 {
1533 /* Jump format: target PC is:
1534 RB & ~3 */
0b1b3e42 1535 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1536 }
1537
1538 if ((op & 0x30) == 0x30)
1539 {
1540 /* Branch format: target PC is:
1541 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1542 if (op == 0x30 /* BR */
1543 || op == 0x34) /* BSR */
ec32e4be
JT
1544 {
1545 branch_taken:
1546 offset = (insn & 0x001fffff);
1547 if (offset & 0x00100000)
1548 offset |= 0xffe00000;
e8d2d628
MK
1549 offset *= ALPHA_INSN_SIZE;
1550 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1551 }
1552
1553 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1554 regno = (insn >> 21) & 0x1f;
1555 switch (op)
1556 {
1557 case 0x31: /* FBEQ */
1558 case 0x36: /* FBGE */
1559 case 0x37: /* FBGT */
1560 case 0x33: /* FBLE */
1561 case 0x32: /* FBLT */
1562 case 0x35: /* FBNE */
e17a4113 1563 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1564 }
1565
0b1b3e42 1566 rav = get_frame_register_signed (frame, regno);
0de94d4b 1567
ec32e4be
JT
1568 switch (op)
1569 {
1570 case 0x38: /* BLBC */
1571 if ((rav & 1) == 0)
1572 goto branch_taken;
1573 break;
1574 case 0x3c: /* BLBS */
1575 if (rav & 1)
1576 goto branch_taken;
1577 break;
1578 case 0x39: /* BEQ */
1579 if (rav == 0)
1580 goto branch_taken;
1581 break;
1582 case 0x3d: /* BNE */
1583 if (rav != 0)
1584 goto branch_taken;
1585 break;
1586 case 0x3a: /* BLT */
1587 if (rav < 0)
1588 goto branch_taken;
1589 break;
1590 case 0x3b: /* BLE */
1591 if (rav <= 0)
1592 goto branch_taken;
1593 break;
1594 case 0x3f: /* BGT */
1595 if (rav > 0)
1596 goto branch_taken;
1597 break;
1598 case 0x3e: /* BGE */
1599 if (rav >= 0)
1600 goto branch_taken;
1601 break;
d2427a71 1602
0de94d4b
JB
1603 /* Floating point branches. */
1604
1605 case 0x31: /* FBEQ */
1606 if (fp_register_zero_p (rav))
1607 goto branch_taken;
1608 break;
1609 case 0x36: /* FBGE */
1610 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1611 goto branch_taken;
1612 break;
1613 case 0x37: /* FBGT */
1614 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1615 goto branch_taken;
1616 break;
1617 case 0x33: /* FBLE */
1618 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1619 goto branch_taken;
1620 break;
1621 case 0x32: /* FBLT */
1622 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1623 goto branch_taken;
1624 break;
1625 case 0x35: /* FBNE */
1626 if (! fp_register_zero_p (rav))
1627 goto branch_taken;
1628 break;
ec32e4be
JT
1629 }
1630 }
1631
1632 /* Not a branch or branch not taken; target PC is:
1633 pc + 4 */
e8d2d628 1634 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1635}
1636
e6590a1b 1637int
0b1b3e42 1638alpha_software_single_step (struct frame_info *frame)
ec32e4be 1639{
a6d9a66e 1640 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1641 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1642 CORE_ADDR pc, next_pc;
ec32e4be 1643
0b1b3e42
UW
1644 pc = get_frame_pc (frame);
1645 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1646
6c95b8df 1647 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1648 return 1;
c906108c
SS
1649}
1650
dc129d82 1651\f
dc129d82
JT
1652/* Initialize the current architecture based on INFO. If possible, re-use an
1653 architecture from ARCHES, which is a list of architectures already created
1654 during this debugging session.
1655
1656 Called e.g. at program startup, when reading a core file, and when reading
1657 a binary file. */
1658
1659static struct gdbarch *
1660alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1661{
1662 struct gdbarch_tdep *tdep;
1663 struct gdbarch *gdbarch;
dc129d82
JT
1664
1665 /* Try to determine the ABI of the object we are loading. */
4be87837 1666 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1667 {
4be87837
DJ
1668 /* If it's an ECOFF file, assume it's OSF/1. */
1669 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1670 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1671 }
1672
1673 /* Find a candidate among extant architectures. */
4be87837
DJ
1674 arches = gdbarch_list_lookup_by_info (arches, &info);
1675 if (arches != NULL)
1676 return arches->gdbarch;
dc129d82
JT
1677
1678 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1679 gdbarch = gdbarch_alloc (&info, tdep);
1680
d2427a71
RH
1681 /* Lowest text address. This is used by heuristic_proc_start()
1682 to decide when to stop looking. */
594706e6 1683 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1684
36a6271d 1685 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1686 tdep->sigcontext_addr = NULL;
138e7be5
MK
1687 tdep->sc_pc_offset = 2 * 8;
1688 tdep->sc_regs_offset = 4 * 8;
1689 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1690
0963b4bd 1691 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1692
9823e921
RH
1693 tdep->return_in_memory = alpha_return_in_memory_always;
1694
dc129d82
JT
1695 /* Type sizes */
1696 set_gdbarch_short_bit (gdbarch, 16);
1697 set_gdbarch_int_bit (gdbarch, 32);
1698 set_gdbarch_long_bit (gdbarch, 64);
1699 set_gdbarch_long_long_bit (gdbarch, 64);
1700 set_gdbarch_float_bit (gdbarch, 32);
1701 set_gdbarch_double_bit (gdbarch, 64);
1702 set_gdbarch_long_double_bit (gdbarch, 64);
1703 set_gdbarch_ptr_bit (gdbarch, 64);
1704
1705 /* Register info */
1706 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1707 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1708 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1709 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1710
1711 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1712 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1713
1714 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1715 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1716
c483c494
RH
1717 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1718 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1719 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1720
615967cb
RH
1721 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1722
d2427a71 1723 /* Prologue heuristics. */
dc129d82
JT
1724 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1725
5ef165c2
RH
1726 /* Disassembler. */
1727 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1728
d2427a71 1729 /* Call info. */
dc129d82 1730
9823e921 1731 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1732
1733 /* Settings for calling functions in the inferior. */
c88e30c0 1734 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1735
1736 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1737 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1738
1739 /* Return the unwound PC value. */
1740 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1741
1742 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1743 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1744
95b80706 1745 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1746 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1747 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1748
44dffaac 1749 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1750 gdbarch_init_osabi (info, gdbarch);
44dffaac 1751
accc6d1f
JT
1752 /* Now that we have tuned the configuration, set a few final things
1753 based on what the OS ABI has told us. */
1754
1755 if (tdep->jb_pc >= 0)
1756 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1757
6834c9bb
JB
1758 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1759 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1760
d2427a71 1761 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1762
d2427a71 1763 return gdbarch;
dc129d82
JT
1764}
1765
baa490c4
RH
1766void
1767alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1768{
6834c9bb 1769 dwarf2_append_unwinders (gdbarch);
336d1bba 1770 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1771}
1772
a78f21af
AC
1773extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1774
c906108c 1775void
fba45db2 1776_initialize_alpha_tdep (void)
c906108c
SS
1777{
1778 struct cmd_list_element *c;
1779
d2427a71 1780 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1781
1782 /* Let the user set the fence post for heuristic_proc_start. */
1783
1784 /* We really would like to have both "0" and "unlimited" work, but
1785 command.c doesn't deal with that. So make it a var_zinteger
1786 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1787 /* We need to throw away the frame cache when we set this, since it
1788 might change our ability to get backtraces. */
1789 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1790 &heuristic_fence_post, _("\
1791Set the distance searched for the start of a function."), _("\
1792Show the distance searched for the start of a function."), _("\
c906108c
SS
1793If you are debugging a stripped executable, GDB needs to search through the\n\
1794program for the start of a function. This command sets the distance of the\n\
323e0a4a 1795search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1796 reinit_frame_cache_sfunc,
0963b4bd
MS
1797 NULL, /* FIXME: i18n: The distance searched for
1798 the start of a function is \"%d\". */
edefbb7c 1799 &setlist, &showlist);
c906108c 1800}
This page took 1.208456 seconds and 4 git commands to generate.