2003-06-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
1e698235 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
b6ba6518 3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
615967cb 23#include "doublest.h"
c906108c 24#include "frame.h"
d2427a71
RH
25#include "frame-unwind.h"
26#include "frame-base.h"
baa490c4 27#include "dwarf2-frame.h"
c906108c
SS
28#include "inferior.h"
29#include "symtab.h"
30#include "value.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "gdb_string.h"
c5f0f3d0 37#include "linespec.h"
4e052eda 38#include "regcache.h"
615967cb 39#include "reggroups.h"
dc129d82 40#include "arch-utils.h"
4be87837 41#include "osabi.h"
fe898f56 42#include "block.h"
dc129d82
JT
43
44#include "elf-bfd.h"
45
46#include "alpha-tdep.h"
47
c906108c 48\f
fa88f677 49static const char *
636a6dfc
JT
50alpha_register_name (int regno)
51{
5ab84872 52 static const char * const register_names[] =
636a6dfc
JT
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 62 "pc", "", "unique"
636a6dfc
JT
63 };
64
65 if (regno < 0)
5ab84872 66 return NULL;
636a6dfc 67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
5ab84872
RH
68 return NULL;
69 return register_names[regno];
636a6dfc 70}
d734c450 71
dc129d82 72static int
d734c450
JT
73alpha_cannot_fetch_register (int regno)
74{
44d88583 75 return regno == ALPHA_ZERO_REGNUM;
d734c450
JT
76}
77
dc129d82 78static int
d734c450
JT
79alpha_cannot_store_register (int regno)
80{
44d88583 81 return regno == ALPHA_ZERO_REGNUM;
d734c450
JT
82}
83
dc129d82 84static struct type *
c483c494 85alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 86{
72667056
RH
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
b38b6be2 94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
72667056
RH
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
0d056799 98}
f8453e34 99
615967cb
RH
100/* Is REGNUM a member of REGGROUP? */
101
102static int
103alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105{
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
df4a182b
RH
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139}
140
dc129d82 141static int
f8453e34
JT
142alpha_register_byte (int regno)
143{
144 return (regno * 8);
145}
146
dc129d82 147static int
f8453e34
JT
148alpha_register_raw_size (int regno)
149{
150 return 8;
151}
152
dc129d82 153static int
f8453e34
JT
154alpha_register_virtual_size (int regno)
155{
156 return 8;
157}
636a6dfc 158
c483c494
RH
159/* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163static void
164alpha_lds (void *out, const void *in)
165{
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187}
188
189/* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192static inline void
193alpha_sts (void *out, const void *in)
194{
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200}
201
d2427a71
RH
202/* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
c483c494
RH
208static int
209alpha_convert_register_p (int regno)
14696584 210{
c483c494 211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
14696584
RH
212}
213
d2427a71 214static void
c483c494 215alpha_register_to_value (int regnum, struct type *valtype, char *in, char *out)
5868c862 216{
c483c494 217 switch (TYPE_LENGTH (valtype))
d2427a71 218 {
c483c494
RH
219 case 4:
220 alpha_sts (out, in);
221 break;
222 case 8:
223 memcpy (out, in, 8);
224 break;
225 default:
226 error ("Cannot retrieve value from floating point register");
d2427a71 227 }
d2427a71 228}
5868c862 229
d2427a71 230static void
c483c494 231alpha_value_to_register (struct type *valtype, int regnum, char *in, char *out)
d2427a71 232{
c483c494 233 switch (TYPE_LENGTH (valtype))
d2427a71 234 {
c483c494
RH
235 case 4:
236 alpha_lds (out, in);
237 break;
238 case 8:
239 memcpy (out, in, 8);
240 break;
241 default:
242 error ("Cannot store value in floating point register");
d2427a71 243 }
5868c862
JT
244}
245
d2427a71
RH
246\f
247/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
248 the stack. The register arguments are stored in ARG_REG_BUFFER, and
249 then moved into the register file; this simplifies the passing of a
250 large struct which extends from the registers to the stack, plus avoids
251 three ptrace invocations per word.
252
253 We don't bother tracking which register values should go in integer
254 regs or fp regs; we load the same values into both.
255
d2427a71
RH
256 If the called function is returning a structure, the address of the
257 structure to be returned is passed as a hidden first argument. */
c906108c 258
d2427a71 259static CORE_ADDR
c88e30c0
RH
260alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
261 struct regcache *regcache, CORE_ADDR bp_addr,
262 int nargs, struct value **args, CORE_ADDR sp,
263 int struct_return, CORE_ADDR struct_addr)
c906108c 264{
d2427a71
RH
265 int i;
266 int accumulate_size = struct_return ? 8 : 0;
d2427a71 267 struct alpha_arg
c906108c 268 {
d2427a71
RH
269 char *contents;
270 int len;
271 int offset;
272 };
c88e30c0
RH
273 struct alpha_arg *alpha_args
274 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
d2427a71 275 register struct alpha_arg *m_arg;
c88e30c0 276 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 277 int required_arg_regs;
c906108c 278
c88e30c0
RH
279 /* The ABI places the address of the called function in T12. */
280 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
281
282 /* Set the return address register to point to the entry point
283 of the program, where a breakpoint lies in wait. */
284 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
285
286 /* Lay out the arguments in memory. */
d2427a71
RH
287 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
288 {
289 struct value *arg = args[i];
290 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
c88e30c0 291
d2427a71
RH
292 /* Cast argument to long if necessary as the compiler does it too. */
293 switch (TYPE_CODE (arg_type))
c906108c 294 {
d2427a71
RH
295 case TYPE_CODE_INT:
296 case TYPE_CODE_BOOL:
297 case TYPE_CODE_CHAR:
298 case TYPE_CODE_RANGE:
299 case TYPE_CODE_ENUM:
0ede8eca 300 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 301 {
0ede8eca
RH
302 /* 32-bit values must be sign-extended to 64 bits
303 even if the base data type is unsigned. */
304 arg_type = builtin_type_int32;
305 arg = value_cast (arg_type, arg);
306 }
307 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
308 {
309 arg_type = builtin_type_int64;
d2427a71
RH
310 arg = value_cast (arg_type, arg);
311 }
312 break;
7b5e1cb3 313
c88e30c0
RH
314 case TYPE_CODE_FLT:
315 /* "float" arguments loaded in registers must be passed in
316 register format, aka "double". */
317 if (accumulate_size < sizeof (arg_reg_buffer)
318 && TYPE_LENGTH (arg_type) == 4)
319 {
eb4edb88 320 arg_type = builtin_type_ieee_double_little;
c88e30c0
RH
321 arg = value_cast (arg_type, arg);
322 }
323 /* Tru64 5.1 has a 128-bit long double, and passes this by
324 invisible reference. No one else uses this data type. */
325 else if (TYPE_LENGTH (arg_type) == 16)
326 {
327 /* Allocate aligned storage. */
328 sp = (sp & -16) - 16;
329
330 /* Write the real data into the stack. */
331 write_memory (sp, VALUE_CONTENTS (arg), 16);
332
333 /* Construct the indirection. */
334 arg_type = lookup_pointer_type (arg_type);
335 arg = value_from_pointer (arg_type, sp);
336 }
337 break;
7b5e1cb3
RH
338
339 case TYPE_CODE_COMPLEX:
340 /* ??? The ABI says that complex values are passed as two
341 separate scalar values. This distinction only matters
342 for complex float. However, GCC does not implement this. */
343
344 /* Tru64 5.1 has a 128-bit long double, and passes this by
345 invisible reference. */
346 if (TYPE_LENGTH (arg_type) == 32)
347 {
348 /* Allocate aligned storage. */
349 sp = (sp & -16) - 16;
350
351 /* Write the real data into the stack. */
352 write_memory (sp, VALUE_CONTENTS (arg), 32);
353
354 /* Construct the indirection. */
355 arg_type = lookup_pointer_type (arg_type);
356 arg = value_from_pointer (arg_type, sp);
357 }
358 break;
359
d2427a71
RH
360 default:
361 break;
c906108c 362 }
d2427a71
RH
363 m_arg->len = TYPE_LENGTH (arg_type);
364 m_arg->offset = accumulate_size;
365 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
366 m_arg->contents = VALUE_CONTENTS (arg);
c906108c
SS
367 }
368
d2427a71
RH
369 /* Determine required argument register loads, loading an argument register
370 is expensive as it uses three ptrace calls. */
371 required_arg_regs = accumulate_size / 8;
372 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
373 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 374
d2427a71 375 /* Make room for the arguments on the stack. */
c88e30c0
RH
376 if (accumulate_size < sizeof(arg_reg_buffer))
377 accumulate_size = 0;
378 else
379 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 380 sp -= accumulate_size;
c906108c 381
c88e30c0 382 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 383 sp &= ~15;
c906108c 384
d2427a71
RH
385 /* `Push' arguments on the stack. */
386 for (i = nargs; m_arg--, --i >= 0;)
c906108c 387 {
c88e30c0
RH
388 char *contents = m_arg->contents;
389 int offset = m_arg->offset;
390 int len = m_arg->len;
391
392 /* Copy the bytes destined for registers into arg_reg_buffer. */
393 if (offset < sizeof(arg_reg_buffer))
394 {
395 if (offset + len <= sizeof(arg_reg_buffer))
396 {
397 memcpy (arg_reg_buffer + offset, contents, len);
398 continue;
399 }
400 else
401 {
402 int tlen = sizeof(arg_reg_buffer) - offset;
403 memcpy (arg_reg_buffer + offset, contents, tlen);
404 offset += tlen;
405 contents += tlen;
406 len -= tlen;
407 }
408 }
409
410 /* Everything else goes to the stack. */
411 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 412 }
c88e30c0
RH
413 if (struct_return)
414 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
c906108c 415
d2427a71
RH
416 /* Load the argument registers. */
417 for (i = 0; i < required_arg_regs; i++)
418 {
09cc52fd
RH
419 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
420 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
421 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
422 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 423 }
c906108c 424
09cc52fd
RH
425 /* Finally, update the stack pointer. */
426 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
427
c88e30c0 428 return sp;
c906108c
SS
429}
430
5ec2bb99
RH
431/* Extract from REGCACHE the value about to be returned from a function
432 and copy it into VALBUF. */
d2427a71 433
dc129d82 434static void
5ec2bb99
RH
435alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
436 void *valbuf)
140f9984 437{
7b5e1cb3 438 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
439 char raw_buffer[ALPHA_REGISTER_SIZE];
440 ULONGEST l;
441
442 switch (TYPE_CODE (valtype))
443 {
444 case TYPE_CODE_FLT:
7b5e1cb3 445 switch (length)
5ec2bb99
RH
446 {
447 case 4:
448 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
c483c494 449 alpha_sts (valbuf, raw_buffer);
5ec2bb99
RH
450 break;
451
452 case 8:
453 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
454 break;
455
24064b5c
RH
456 case 16:
457 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
458 read_memory (l, valbuf, 16);
459 break;
460
5ec2bb99 461 default:
67dfac52 462 internal_error (__FILE__, __LINE__, "unknown floating point width");
5ec2bb99
RH
463 }
464 break;
465
7b5e1cb3
RH
466 case TYPE_CODE_COMPLEX:
467 switch (length)
468 {
469 case 8:
470 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
471 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
472 break;
473
474 case 16:
475 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
477 (char *)valbuf + 8);
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
67dfac52 486 internal_error (__FILE__, __LINE__, "unknown floating point width");
7b5e1cb3
RH
487 }
488 break;
489
5ec2bb99
RH
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3 493 store_unsigned_integer (valbuf, length, l);
5ec2bb99
RH
494 break;
495 }
140f9984
JT
496}
497
5ec2bb99
RH
498/* Extract from REGCACHE the address of a structure about to be returned
499 from a function. */
500
501static CORE_ADDR
502alpha_extract_struct_value_address (struct regcache *regcache)
503{
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
506 return addr;
507}
508
509/* Insert the given value into REGCACHE as if it was being
510 returned by a function. */
0d056799 511
d2427a71 512static void
5ec2bb99
RH
513alpha_store_return_value (struct type *valtype, struct regcache *regcache,
514 const void *valbuf)
c906108c 515{
d2427a71 516 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
517 char raw_buffer[ALPHA_REGISTER_SIZE];
518 ULONGEST l;
d2427a71 519
5ec2bb99 520 switch (TYPE_CODE (valtype))
c906108c 521 {
5ec2bb99
RH
522 case TYPE_CODE_FLT:
523 switch (length)
524 {
525 case 4:
c483c494 526 alpha_lds (raw_buffer, valbuf);
f75d70cc
RH
527 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
528 break;
5ec2bb99
RH
529
530 case 8:
531 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
532 break;
533
24064b5c
RH
534 case 16:
535 /* FIXME: 128-bit long doubles are returned like structures:
536 by writing into indirect storage provided by the caller
537 as the first argument. */
538 error ("Cannot set a 128-bit long double return value.");
539
5ec2bb99 540 default:
67dfac52 541 internal_error (__FILE__, __LINE__, "unknown floating point width");
5ec2bb99
RH
542 }
543 break;
d2427a71 544
7b5e1cb3
RH
545 case TYPE_CODE_COMPLEX:
546 switch (length)
547 {
548 case 8:
549 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
550 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
551 break;
552
553 case 16:
554 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
556 (const char *)valbuf + 8);
557 break;
558
559 case 32:
560 /* FIXME: 128-bit long doubles are returned like structures:
561 by writing into indirect storage provided by the caller
562 as the first argument. */
563 error ("Cannot set a 128-bit long double return value.");
564
565 default:
67dfac52 566 internal_error (__FILE__, __LINE__, "unknown floating point width");
7b5e1cb3
RH
567 }
568 break;
569
5ec2bb99
RH
570 default:
571 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
572 /* 32-bit values must be sign-extended to 64 bits
573 even if the base data type is unsigned. */
574 if (length == 4)
575 valtype = builtin_type_int32;
5ec2bb99
RH
576 l = unpack_long (valtype, valbuf);
577 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
578 break;
579 }
c906108c
SS
580}
581
d2427a71
RH
582static int
583alpha_use_struct_convention (int gcc_p, struct type *type)
c906108c 584{
d2427a71
RH
585 /* Structures are returned by ref in extra arg0. */
586 return 1;
587}
c906108c 588
d2427a71
RH
589\f
590static const unsigned char *
591alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 592{
d2427a71
RH
593 static const unsigned char alpha_breakpoint[] =
594 { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 595
d2427a71
RH
596 *lenptr = sizeof(alpha_breakpoint);
597 return (alpha_breakpoint);
598}
c906108c 599
d2427a71
RH
600\f
601/* This returns the PC of the first insn after the prologue.
602 If we can't find the prologue, then return 0. */
c906108c 603
d2427a71
RH
604CORE_ADDR
605alpha_after_prologue (CORE_ADDR pc)
c906108c 606{
d2427a71
RH
607 struct symtab_and_line sal;
608 CORE_ADDR func_addr, func_end;
c906108c 609
d2427a71 610 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 611 return 0;
c906108c 612
d2427a71
RH
613 sal = find_pc_line (func_addr, 0);
614 if (sal.end < func_end)
615 return sal.end;
c5aa993b 616
d2427a71
RH
617 /* The line after the prologue is after the end of the function. In this
618 case, tell the caller to find the prologue the hard way. */
619 return 0;
c906108c
SS
620}
621
d2427a71
RH
622/* Read an instruction from memory at PC, looking through breakpoints. */
623
624unsigned int
625alpha_read_insn (CORE_ADDR pc)
c906108c 626{
d2427a71
RH
627 char buf[4];
628 int status;
c5aa993b 629
d2427a71
RH
630 status = read_memory_nobpt (pc, buf, 4);
631 if (status)
632 memory_error (status, pc);
633 return extract_unsigned_integer (buf, 4);
634}
c5aa993b 635
d2427a71
RH
636/* To skip prologues, I use this predicate. Returns either PC itself
637 if the code at PC does not look like a function prologue; otherwise
638 returns an address that (if we're lucky) follows the prologue. If
639 LENIENT, then we must skip everything which is involved in setting
640 up the frame (it's OK to skip more, just so long as we don't skip
641 anything which might clobber the registers which are being saved. */
c906108c 642
d2427a71
RH
643static CORE_ADDR
644alpha_skip_prologue (CORE_ADDR pc)
645{
646 unsigned long inst;
647 int offset;
648 CORE_ADDR post_prologue_pc;
649 char buf[4];
c906108c 650
d2427a71
RH
651 /* Silently return the unaltered pc upon memory errors.
652 This could happen on OSF/1 if decode_line_1 tries to skip the
653 prologue for quickstarted shared library functions when the
654 shared library is not yet mapped in.
655 Reading target memory is slow over serial lines, so we perform
656 this check only if the target has shared libraries (which all
657 Alpha targets do). */
658 if (target_read_memory (pc, buf, 4))
659 return pc;
c906108c 660
d2427a71
RH
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
c906108c 664
d2427a71
RH
665 post_prologue_pc = alpha_after_prologue (pc);
666 if (post_prologue_pc != 0)
667 return max (pc, post_prologue_pc);
c906108c 668
d2427a71
RH
669 /* Can't determine prologue from the symbol table, need to examine
670 instructions. */
dc1b0db2 671
d2427a71
RH
672 /* Skip the typical prologue instructions. These are the stack adjustment
673 instruction and the instructions that save registers on the stack
674 or in the gcc frame. */
675 for (offset = 0; offset < 100; offset += 4)
676 {
677 inst = alpha_read_insn (pc + offset);
c906108c 678
d2427a71
RH
679 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
680 continue;
681 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
682 continue;
683 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
684 continue;
685 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
686 continue;
c906108c 687
d2427a71
RH
688 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
689 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
690 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
691 continue;
c906108c 692
d2427a71
RH
693 if (inst == 0x47de040f) /* bis sp,sp,fp */
694 continue;
695 if (inst == 0x47fe040f) /* bis zero,sp,fp */
696 continue;
c906108c 697
d2427a71 698 break;
c906108c 699 }
d2427a71
RH
700 return pc + offset;
701}
c906108c 702
d2427a71
RH
703\f
704/* Figure out where the longjmp will land.
705 We expect the first arg to be a pointer to the jmp_buf structure from
706 which we extract the PC (JB_PC) that we will land at. The PC is copied
707 into the "pc". This routine returns true on success. */
c906108c
SS
708
709static int
d2427a71 710alpha_get_longjmp_target (CORE_ADDR *pc)
c906108c 711{
d2427a71
RH
712 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
713 CORE_ADDR jb_addr;
5ab84872 714 char raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 715
d2427a71 716 jb_addr = read_register (ALPHA_A0_REGNUM);
c906108c 717
d2427a71
RH
718 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
719 raw_buffer, tdep->jb_elt_size))
c906108c 720 return 0;
d2427a71 721
7c0b4a20 722 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
d2427a71 723 return 1;
c906108c
SS
724}
725
d2427a71
RH
726\f
727/* Frame unwinder for signal trampolines. We use alpha tdep bits that
728 describe the location and shape of the sigcontext structure. After
729 that, all registers are in memory, so it's easy. */
730/* ??? Shouldn't we be able to do this generically, rather than with
731 OSABI data specific to Alpha? */
732
733struct alpha_sigtramp_unwind_cache
c906108c 734{
d2427a71
RH
735 CORE_ADDR sigcontext_addr;
736};
c906108c 737
d2427a71
RH
738static struct alpha_sigtramp_unwind_cache *
739alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
740 void **this_prologue_cache)
741{
742 struct alpha_sigtramp_unwind_cache *info;
743 struct gdbarch_tdep *tdep;
c906108c 744
d2427a71
RH
745 if (*this_prologue_cache)
746 return *this_prologue_cache;
c906108c 747
d2427a71
RH
748 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
749 *this_prologue_cache = info;
c906108c 750
d2427a71
RH
751 tdep = gdbarch_tdep (current_gdbarch);
752 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
c906108c 753
d2427a71 754 return info;
c906108c
SS
755}
756
d2427a71
RH
757/* Return the address of REGNO in a sigtramp frame. Since this is all
758 arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 759
d2427a71
RH
760#ifndef SIGFRAME_PC_OFF
761#define SIGFRAME_PC_OFF (2 * 8)
762#define SIGFRAME_REGSAVE_OFF (4 * 8)
763#define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
764#endif
c5aa993b 765
d2427a71
RH
766static CORE_ADDR
767alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno)
768{
769 if (regno < 32)
770 return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8;
b38b6be2 771 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 32)
d2427a71 772 return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8;
b38b6be2 773 if (regno == ALPHA_PC_REGNUM)
d2427a71 774 return sigcontext_addr + SIGFRAME_PC_OFF;
c5aa993b 775
d2427a71 776 return 0;
c906108c
SS
777}
778
d2427a71
RH
779/* Given a GDB frame, determine the address of the calling function's
780 frame. This will be used to create a new GDB frame struct. */
140f9984 781
dc129d82 782static void
d2427a71
RH
783alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
784 void **this_prologue_cache,
785 struct frame_id *this_id)
c906108c 786{
d2427a71
RH
787 struct alpha_sigtramp_unwind_cache *info
788 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
789 struct gdbarch_tdep *tdep;
790 CORE_ADDR stack_addr, code_addr;
791
792 /* If the OSABI couldn't locate the sigcontext, give up. */
793 if (info->sigcontext_addr == 0)
794 return;
795
796 /* If we have dynamic signal trampolines, find their start.
797 If we do not, then we must assume there is a symbol record
798 that can provide the start address. */
799 tdep = gdbarch_tdep (current_gdbarch);
800 if (tdep->dynamic_sigtramp_offset)
c906108c 801 {
d2427a71
RH
802 int offset;
803 code_addr = frame_pc_unwind (next_frame);
804 offset = tdep->dynamic_sigtramp_offset (code_addr);
805 if (offset >= 0)
806 code_addr -= offset;
c906108c 807 else
d2427a71 808 code_addr = 0;
c906108c 809 }
d2427a71
RH
810 else
811 code_addr = frame_func_unwind (next_frame);
c906108c 812
d2427a71
RH
813 /* The stack address is trivially read from the sigcontext. */
814 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
815 ALPHA_SP_REGNUM);
b21fd293
RH
816 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
817 ALPHA_REGISTER_SIZE);
c906108c 818
d2427a71 819 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
820}
821
d2427a71 822/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 823
d2427a71
RH
824static void
825alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
826 void **this_prologue_cache,
827 int regnum, int *optimizedp,
828 enum lval_type *lvalp, CORE_ADDR *addrp,
829 int *realnump, void *bufferp)
c906108c 830{
d2427a71
RH
831 struct alpha_sigtramp_unwind_cache *info
832 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
833 CORE_ADDR addr;
c906108c 834
d2427a71 835 if (info->sigcontext_addr != 0)
c906108c 836 {
d2427a71
RH
837 /* All integer and fp registers are stored in memory. */
838 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
839 if (addr != 0)
c906108c 840 {
d2427a71
RH
841 *optimizedp = 0;
842 *lvalp = lval_memory;
843 *addrp = addr;
844 *realnump = -1;
845 if (bufferp != NULL)
b21fd293 846 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
d2427a71 847 return;
c906108c 848 }
c906108c
SS
849 }
850
d2427a71
RH
851 /* This extra register may actually be in the sigcontext, but our
852 current description of it in alpha_sigtramp_frame_unwind_cache
853 doesn't include it. Too bad. Fall back on whatever's in the
854 outer frame. */
855 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
856 realnump, bufferp);
857}
c906108c 858
d2427a71
RH
859static const struct frame_unwind alpha_sigtramp_frame_unwind = {
860 SIGTRAMP_FRAME,
861 alpha_sigtramp_frame_this_id,
862 alpha_sigtramp_frame_prev_register
863};
c906108c 864
d2427a71
RH
865static const struct frame_unwind *
866alpha_sigtramp_frame_p (CORE_ADDR pc)
867{
868 char *name;
c906108c 869
d2427a71
RH
870 /* We shouldn't even bother to try if the OSABI didn't register
871 a sigcontext_addr handler. */
872 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
873 return NULL;
c906108c 874
d2427a71
RH
875 /* Otherwise we should be in a signal frame. */
876 find_pc_partial_function (pc, &name, NULL, NULL);
877 if (PC_IN_SIGTRAMP (pc, name))
878 return &alpha_sigtramp_frame_unwind;
c906108c 879
d2427a71 880 return NULL;
c906108c 881}
d2427a71
RH
882\f
883/* Fallback alpha frame unwinder. Uses instruction scanning and knows
884 something about the traditional layout of alpha stack frames. */
c906108c 885
d2427a71 886struct alpha_heuristic_unwind_cache
c906108c 887{
d2427a71
RH
888 CORE_ADDR *saved_regs;
889 CORE_ADDR vfp;
890 CORE_ADDR start_pc;
891 int return_reg;
892};
c906108c 893
d2427a71
RH
894/* Heuristic_proc_start may hunt through the text section for a long
895 time across a 2400 baud serial line. Allows the user to limit this
896 search. */
897static unsigned int heuristic_fence_post = 0;
c906108c 898
d2427a71
RH
899/* Attempt to locate the start of the function containing PC. We assume that
900 the previous function ends with an about_to_return insn. Not foolproof by
901 any means, since gcc is happy to put the epilogue in the middle of a
902 function. But we're guessing anyway... */
c906108c 903
d2427a71
RH
904static CORE_ADDR
905alpha_heuristic_proc_start (CORE_ADDR pc)
906{
907 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
908 CORE_ADDR last_non_nop = pc;
909 CORE_ADDR fence = pc - heuristic_fence_post;
910 CORE_ADDR orig_pc = pc;
fbe586ae 911 CORE_ADDR func;
9e0b60a8 912
d2427a71
RH
913 if (pc == 0)
914 return 0;
9e0b60a8 915
fbe586ae
RH
916 /* First see if we can find the start of the function from minimal
917 symbol information. This can succeed with a binary that doesn't
918 have debug info, but hasn't been stripped. */
919 func = get_pc_function_start (pc);
920 if (func)
921 return func;
922
d2427a71
RH
923 if (heuristic_fence_post == UINT_MAX
924 || fence < tdep->vm_min_address)
925 fence = tdep->vm_min_address;
c906108c 926
d2427a71
RH
927 /* Search back for previous return; also stop at a 0, which might be
928 seen for instance before the start of a code section. Don't include
929 nops, since this usually indicates padding between functions. */
930 for (pc -= 4; pc >= fence; pc -= 4)
c906108c 931 {
d2427a71
RH
932 unsigned int insn = alpha_read_insn (pc);
933 switch (insn)
c906108c 934 {
d2427a71
RH
935 case 0: /* invalid insn */
936 case 0x6bfa8001: /* ret $31,($26),1 */
937 return last_non_nop;
938
939 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
940 case 0x47ff041f: /* nop: bis $31,$31,$31 */
941 break;
942
943 default:
944 last_non_nop = pc;
945 break;
c906108c 946 }
d2427a71 947 }
c906108c 948
d2427a71
RH
949 /* It's not clear to me why we reach this point when stopping quietly,
950 but with this test, at least we don't print out warnings for every
951 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
952 if (stop_soon == NO_STOP_QUIETLY)
953 {
954 static int blurb_printed = 0;
c906108c 955
d2427a71
RH
956 if (fence == tdep->vm_min_address)
957 warning ("Hit beginning of text section without finding");
c906108c 958 else
d2427a71
RH
959 warning ("Hit heuristic-fence-post without finding");
960 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
c906108c 961
d2427a71
RH
962 if (!blurb_printed)
963 {
964 printf_filtered ("\
965This warning occurs if you are debugging a function without any symbols\n\
966(for example, in a stripped executable). In that case, you may wish to\n\
967increase the size of the search with the `set heuristic-fence-post' command.\n\
968\n\
969Otherwise, you told GDB there was a function where there isn't one, or\n\
970(more likely) you have encountered a bug in GDB.\n");
971 blurb_printed = 1;
972 }
973 }
c906108c 974
d2427a71
RH
975 return 0;
976}
c906108c 977
fbe586ae 978static struct alpha_heuristic_unwind_cache *
d2427a71
RH
979alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
980 void **this_prologue_cache,
981 CORE_ADDR start_pc)
982{
983 struct alpha_heuristic_unwind_cache *info;
984 ULONGEST val;
985 CORE_ADDR limit_pc, cur_pc;
986 int frame_reg, frame_size, return_reg, reg;
c906108c 987
d2427a71
RH
988 if (*this_prologue_cache)
989 return *this_prologue_cache;
c906108c 990
d2427a71
RH
991 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
992 *this_prologue_cache = info;
993 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
c906108c 994
d2427a71
RH
995 limit_pc = frame_pc_unwind (next_frame);
996 if (start_pc == 0)
997 start_pc = alpha_heuristic_proc_start (limit_pc);
998 info->start_pc = start_pc;
c906108c 999
d2427a71
RH
1000 frame_reg = ALPHA_SP_REGNUM;
1001 frame_size = 0;
1002 return_reg = -1;
c906108c 1003
d2427a71
RH
1004 /* If we've identified a likely place to start, do code scanning. */
1005 if (start_pc != 0)
c5aa993b 1006 {
d2427a71
RH
1007 /* Limit the forward search to 50 instructions. */
1008 if (start_pc + 200 < limit_pc)
1009 limit_pc = start_pc + 200;
c5aa993b 1010
d2427a71
RH
1011 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1012 {
1013 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1014
d2427a71
RH
1015 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1016 {
1017 if (word & 0x8000)
1018 {
1019 /* Consider only the first stack allocation instruction
1020 to contain the static size of the frame. */
1021 if (frame_size == 0)
1022 frame_size = (-word) & 0xffff;
1023 }
1024 else
1025 {
1026 /* Exit loop if a positive stack adjustment is found, which
1027 usually means that the stack cleanup code in the function
1028 epilogue is reached. */
1029 break;
1030 }
1031 }
1032 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1033 {
1034 reg = (word & 0x03e00000) >> 21;
1035
1036 if (reg == 31)
1037 continue;
1038
1039 /* Do not compute the address where the register was saved yet,
1040 because we don't know yet if the offset will need to be
1041 relative to $sp or $fp (we can not compute the address
1042 relative to $sp if $sp is updated during the execution of
1043 the current subroutine, for instance when doing some alloca).
1044 So just store the offset for the moment, and compute the
1045 address later when we know whether this frame has a frame
1046 pointer or not. */
1047 /* Hack: temporarily add one, so that the offset is non-zero
1048 and we can tell which registers have save offsets below. */
1049 info->saved_regs[reg] = (word & 0xffff) + 1;
1050
1051 /* Starting with OSF/1-3.2C, the system libraries are shipped
1052 without local symbols, but they still contain procedure
1053 descriptors without a symbol reference. GDB is currently
1054 unable to find these procedure descriptors and uses
1055 heuristic_proc_desc instead.
1056 As some low level compiler support routines (__div*, __add*)
1057 use a non-standard return address register, we have to
1058 add some heuristics to determine the return address register,
1059 or stepping over these routines will fail.
1060 Usually the return address register is the first register
1061 saved on the stack, but assembler optimization might
1062 rearrange the register saves.
1063 So we recognize only a few registers (t7, t9, ra) within
1064 the procedure prologue as valid return address registers.
1065 If we encounter a return instruction, we extract the
1066 the return address register from it.
1067
1068 FIXME: Rewriting GDB to access the procedure descriptors,
1069 e.g. via the minimal symbol table, might obviate this hack. */
1070 if (return_reg == -1
1071 && cur_pc < (start_pc + 80)
1072 && (reg == ALPHA_T7_REGNUM
1073 || reg == ALPHA_T9_REGNUM
1074 || reg == ALPHA_RA_REGNUM))
1075 return_reg = reg;
1076 }
1077 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1078 return_reg = (word >> 16) & 0x1f;
1079 else if (word == 0x47de040f) /* bis sp,sp,fp */
1080 frame_reg = ALPHA_GCC_FP_REGNUM;
1081 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1082 frame_reg = ALPHA_GCC_FP_REGNUM;
1083 }
c5aa993b 1084
d2427a71
RH
1085 /* If we haven't found a valid return address register yet, keep
1086 searching in the procedure prologue. */
1087 if (return_reg == -1)
1088 {
1089 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1090 {
1091 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1092
d2427a71
RH
1093 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1094 {
1095 reg = (word & 0x03e00000) >> 21;
1096 if (reg == ALPHA_T7_REGNUM
1097 || reg == ALPHA_T9_REGNUM
1098 || reg == ALPHA_RA_REGNUM)
1099 {
1100 return_reg = reg;
1101 break;
1102 }
1103 }
1104 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1105 {
1106 return_reg = (word >> 16) & 0x1f;
1107 break;
1108 }
85b32d22
RH
1109
1110 cur_pc += 4;
d2427a71
RH
1111 }
1112 }
c906108c 1113 }
c906108c 1114
d2427a71
RH
1115 /* Failing that, do default to the customary RA. */
1116 if (return_reg == -1)
1117 return_reg = ALPHA_RA_REGNUM;
1118 info->return_reg = return_reg;
f8453e34 1119
d2427a71
RH
1120 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1121 info->vfp = val + frame_size;
c906108c 1122
d2427a71
RH
1123 /* Convert offsets to absolute addresses. See above about adding
1124 one to the offsets to make all detected offsets non-zero. */
1125 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1126 if (info->saved_regs[reg])
1127 info->saved_regs[reg] += val - 1;
1128
1129 return info;
c906108c 1130}
c906108c 1131
d2427a71
RH
1132/* Given a GDB frame, determine the address of the calling function's
1133 frame. This will be used to create a new GDB frame struct. */
1134
fbe586ae 1135static void
d2427a71
RH
1136alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1137 void **this_prologue_cache,
1138 struct frame_id *this_id)
c906108c 1139{
d2427a71
RH
1140 struct alpha_heuristic_unwind_cache *info
1141 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1142
fbe586ae
RH
1143 /* This is meant to halt the backtrace at "_start". Make sure we
1144 don't halt it at a generic dummy frame. */
1145 if (inside_entry_file (info->start_pc))
1146 return;
1147
d2427a71 1148 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1149}
1150
d2427a71
RH
1151/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1152
fbe586ae 1153static void
d2427a71
RH
1154alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1155 void **this_prologue_cache,
1156 int regnum, int *optimizedp,
1157 enum lval_type *lvalp, CORE_ADDR *addrp,
1158 int *realnump, void *bufferp)
c906108c 1159{
d2427a71
RH
1160 struct alpha_heuristic_unwind_cache *info
1161 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1162
1163 /* The PC of the previous frame is stored in the link register of
1164 the current frame. Frob regnum so that we pull the value from
1165 the correct place. */
1166 if (regnum == ALPHA_PC_REGNUM)
1167 regnum = info->return_reg;
1168
1169 /* For all registers known to be saved in the current frame,
1170 do the obvious and pull the value out. */
1171 if (info->saved_regs[regnum])
c906108c 1172 {
d2427a71
RH
1173 *optimizedp = 0;
1174 *lvalp = lval_memory;
1175 *addrp = info->saved_regs[regnum];
1176 *realnump = -1;
1177 if (bufferp != NULL)
b21fd293 1178 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
c906108c
SS
1179 return;
1180 }
1181
d2427a71
RH
1182 /* The stack pointer of the previous frame is computed by popping
1183 the current stack frame. */
1184 if (regnum == ALPHA_SP_REGNUM)
c906108c 1185 {
d2427a71
RH
1186 *optimizedp = 0;
1187 *lvalp = not_lval;
1188 *addrp = 0;
1189 *realnump = -1;
1190 if (bufferp != NULL)
1191 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1192 return;
c906108c 1193 }
95b80706 1194
d2427a71
RH
1195 /* Otherwise assume the next frame has the same register value. */
1196 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1197 realnump, bufferp);
95b80706
JT
1198}
1199
d2427a71
RH
1200static const struct frame_unwind alpha_heuristic_frame_unwind = {
1201 NORMAL_FRAME,
1202 alpha_heuristic_frame_this_id,
1203 alpha_heuristic_frame_prev_register
1204};
c906108c 1205
d2427a71
RH
1206static const struct frame_unwind *
1207alpha_heuristic_frame_p (CORE_ADDR pc)
c906108c 1208{
d2427a71 1209 return &alpha_heuristic_frame_unwind;
c906108c
SS
1210}
1211
fbe586ae 1212static CORE_ADDR
d2427a71
RH
1213alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1214 void **this_prologue_cache)
c906108c 1215{
d2427a71
RH
1216 struct alpha_heuristic_unwind_cache *info
1217 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1218
d2427a71 1219 return info->vfp;
c906108c
SS
1220}
1221
d2427a71
RH
1222static const struct frame_base alpha_heuristic_frame_base = {
1223 &alpha_heuristic_frame_unwind,
1224 alpha_heuristic_frame_base_address,
1225 alpha_heuristic_frame_base_address,
1226 alpha_heuristic_frame_base_address
1227};
1228
c906108c 1229/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1230 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1231
1232static void
fba45db2 1233reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1234{
1235 reinit_frame_cache ();
1236}
1237
d2427a71
RH
1238\f
1239/* ALPHA stack frames are almost impenetrable. When execution stops,
1240 we basically have to look at symbol information for the function
1241 that we stopped in, which tells us *which* register (if any) is
1242 the base of the frame pointer, and what offset from that register
1243 the frame itself is at.
c906108c 1244
d2427a71
RH
1245 This presents a problem when trying to examine a stack in memory
1246 (that isn't executing at the moment), using the "frame" command. We
1247 don't have a PC, nor do we have any registers except SP.
c906108c 1248
d2427a71
RH
1249 This routine takes two arguments, SP and PC, and tries to make the
1250 cached frames look as if these two arguments defined a frame on the
1251 cache. This allows the rest of info frame to extract the important
1252 arguments without difficulty. */
ec32e4be 1253
d2427a71
RH
1254struct frame_info *
1255alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
0d056799 1256{
d2427a71
RH
1257 if (argc != 2)
1258 error ("ALPHA frame specifications require two arguments: sp and pc");
0d056799 1259
d2427a71 1260 return create_new_frame (argv[0], argv[1]);
0d056799
JT
1261}
1262
d2427a71
RH
1263/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1264 dummy frame. The frame ID's base needs to match the TOS value
1265 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1266 breakpoint. */
d734c450 1267
d2427a71
RH
1268static struct frame_id
1269alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
0d056799 1270{
d2427a71
RH
1271 ULONGEST base;
1272 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1273 return frame_id_build (base, frame_pc_unwind (next_frame));
0d056799
JT
1274}
1275
dc129d82 1276static CORE_ADDR
d2427a71 1277alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1278{
d2427a71
RH
1279 ULONGEST pc;
1280 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1281 return pc;
accc6d1f
JT
1282}
1283
98a8e1e5
RH
1284\f
1285/* Helper routines for alpha*-nat.c files to move register sets to and
1286 from core files. The UNIQUE pointer is allowed to be NULL, as most
1287 targets don't supply this value in their core files. */
1288
1289void
1290alpha_supply_int_regs (int regno, const void *r0_r30,
1291 const void *pc, const void *unique)
1292{
1293 int i;
1294
1295 for (i = 0; i < 31; ++i)
1296 if (regno == i || regno == -1)
1297 supply_register (i, (const char *)r0_r30 + i*8);
1298
1299 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1300 supply_register (ALPHA_ZERO_REGNUM, NULL);
1301
1302 if (regno == ALPHA_PC_REGNUM || regno == -1)
1303 supply_register (ALPHA_PC_REGNUM, pc);
1304
1305 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1306 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1307}
1308
1309void
1310alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1311{
1312 int i;
1313
1314 for (i = 0; i < 31; ++i)
1315 if (regno == i || regno == -1)
1316 regcache_collect (i, (char *)r0_r30 + i*8);
1317
1318 if (regno == ALPHA_PC_REGNUM || regno == -1)
1319 regcache_collect (ALPHA_PC_REGNUM, pc);
1320
1321 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1322 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1323}
1324
1325void
1326alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1327{
1328 int i;
1329
1330 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1331 if (regno == i || regno == -1)
1332 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1333
1334 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1335 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1336}
1337
1338void
1339alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1340{
1341 int i;
1342
1343 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1344 if (regno == i || regno == -1)
1345 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1346
1347 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1348 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1349}
1350
d2427a71 1351\f
ec32e4be
JT
1352/* alpha_software_single_step() is called just before we want to resume
1353 the inferior, if we want to single-step it but there is no hardware
1354 or kernel single-step support (NetBSD on Alpha, for example). We find
1355 the target of the coming instruction and breakpoint it.
1356
1357 single_step is also called just after the inferior stops. If we had
1358 set up a simulated single-step, we undo our damage. */
1359
1360static CORE_ADDR
1361alpha_next_pc (CORE_ADDR pc)
1362{
1363 unsigned int insn;
1364 unsigned int op;
1365 int offset;
1366 LONGEST rav;
1367
b21fd293 1368 insn = alpha_read_insn (pc);
ec32e4be
JT
1369
1370 /* Opcode is top 6 bits. */
1371 op = (insn >> 26) & 0x3f;
1372
1373 if (op == 0x1a)
1374 {
1375 /* Jump format: target PC is:
1376 RB & ~3 */
1377 return (read_register ((insn >> 16) & 0x1f) & ~3);
1378 }
1379
1380 if ((op & 0x30) == 0x30)
1381 {
1382 /* Branch format: target PC is:
1383 (new PC) + (4 * sext(displacement)) */
1384 if (op == 0x30 || /* BR */
1385 op == 0x34) /* BSR */
1386 {
1387 branch_taken:
1388 offset = (insn & 0x001fffff);
1389 if (offset & 0x00100000)
1390 offset |= 0xffe00000;
1391 offset *= 4;
1392 return (pc + 4 + offset);
1393 }
1394
1395 /* Need to determine if branch is taken; read RA. */
1396 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1397 switch (op)
1398 {
1399 case 0x38: /* BLBC */
1400 if ((rav & 1) == 0)
1401 goto branch_taken;
1402 break;
1403 case 0x3c: /* BLBS */
1404 if (rav & 1)
1405 goto branch_taken;
1406 break;
1407 case 0x39: /* BEQ */
1408 if (rav == 0)
1409 goto branch_taken;
1410 break;
1411 case 0x3d: /* BNE */
1412 if (rav != 0)
1413 goto branch_taken;
1414 break;
1415 case 0x3a: /* BLT */
1416 if (rav < 0)
1417 goto branch_taken;
1418 break;
1419 case 0x3b: /* BLE */
1420 if (rav <= 0)
1421 goto branch_taken;
1422 break;
1423 case 0x3f: /* BGT */
1424 if (rav > 0)
1425 goto branch_taken;
1426 break;
1427 case 0x3e: /* BGE */
1428 if (rav >= 0)
1429 goto branch_taken;
1430 break;
d2427a71
RH
1431
1432 /* ??? Missing floating-point branches. */
ec32e4be
JT
1433 }
1434 }
1435
1436 /* Not a branch or branch not taken; target PC is:
1437 pc + 4 */
1438 return (pc + 4);
1439}
1440
1441void
1442alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1443{
1444 static CORE_ADDR next_pc;
1445 typedef char binsn_quantum[BREAKPOINT_MAX];
1446 static binsn_quantum break_mem;
1447 CORE_ADDR pc;
1448
1449 if (insert_breakpoints_p)
1450 {
1451 pc = read_pc ();
1452 next_pc = alpha_next_pc (pc);
1453
1454 target_insert_breakpoint (next_pc, break_mem);
1455 }
1456 else
1457 {
1458 target_remove_breakpoint (next_pc, break_mem);
1459 write_pc (next_pc);
1460 }
c906108c
SS
1461}
1462
dc129d82 1463\f
dc129d82
JT
1464/* Initialize the current architecture based on INFO. If possible, re-use an
1465 architecture from ARCHES, which is a list of architectures already created
1466 during this debugging session.
1467
1468 Called e.g. at program startup, when reading a core file, and when reading
1469 a binary file. */
1470
1471static struct gdbarch *
1472alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1473{
1474 struct gdbarch_tdep *tdep;
1475 struct gdbarch *gdbarch;
dc129d82
JT
1476
1477 /* Try to determine the ABI of the object we are loading. */
4be87837 1478 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1479 {
4be87837
DJ
1480 /* If it's an ECOFF file, assume it's OSF/1. */
1481 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1482 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1483 }
1484
1485 /* Find a candidate among extant architectures. */
4be87837
DJ
1486 arches = gdbarch_list_lookup_by_info (arches, &info);
1487 if (arches != NULL)
1488 return arches->gdbarch;
dc129d82
JT
1489
1490 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1491 gdbarch = gdbarch_alloc (&info, tdep);
1492
d2427a71
RH
1493 /* Lowest text address. This is used by heuristic_proc_start()
1494 to decide when to stop looking. */
d9b023cc
JT
1495 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1496
36a6271d 1497 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1498 tdep->sigcontext_addr = NULL;
36a6271d 1499
accc6d1f
JT
1500 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1501
dc129d82
JT
1502 /* Type sizes */
1503 set_gdbarch_short_bit (gdbarch, 16);
1504 set_gdbarch_int_bit (gdbarch, 32);
1505 set_gdbarch_long_bit (gdbarch, 64);
1506 set_gdbarch_long_long_bit (gdbarch, 64);
1507 set_gdbarch_float_bit (gdbarch, 32);
1508 set_gdbarch_double_bit (gdbarch, 64);
1509 set_gdbarch_long_double_bit (gdbarch, 64);
1510 set_gdbarch_ptr_bit (gdbarch, 64);
1511
1512 /* Register info */
1513 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1514 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1515 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1516 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1517
1518 set_gdbarch_register_name (gdbarch, alpha_register_name);
dc129d82
JT
1519 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1520 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
dc129d82 1521 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
c483c494 1522 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1523
1524 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1525 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1526
c483c494
RH
1527 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1528 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1529 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1530
615967cb
RH
1531 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1532
d2427a71 1533 /* Prologue heuristics. */
dc129d82
JT
1534 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1535
5ef165c2
RH
1536 /* Disassembler. */
1537 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1538
d2427a71 1539 /* Call info. */
dc129d82
JT
1540 set_gdbarch_frameless_function_invocation (gdbarch,
1541 generic_frameless_function_invocation_not);
1542
dc129d82 1543 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
5ec2bb99
RH
1544 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1545 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1546 set_gdbarch_extract_struct_value_address (gdbarch,
dc129d82
JT
1547 alpha_extract_struct_value_address);
1548
1549 /* Settings for calling functions in the inferior. */
c88e30c0 1550 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1551
1552 /* Methods for saving / extracting a dummy frame's ID. */
1553 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1554 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1555
1556 /* Return the unwound PC value. */
1557 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1558
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1560 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1561
95b80706 1562 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
dc129d82 1563 set_gdbarch_decr_pc_after_break (gdbarch, 4);
95b80706
JT
1564
1565 set_gdbarch_function_start_offset (gdbarch, 0);
dc129d82
JT
1566 set_gdbarch_frame_args_skip (gdbarch, 0);
1567
44dffaac 1568 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1569 gdbarch_init_osabi (info, gdbarch);
44dffaac 1570
accc6d1f
JT
1571 /* Now that we have tuned the configuration, set a few final things
1572 based on what the OS ABI has told us. */
1573
1574 if (tdep->jb_pc >= 0)
1575 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1576
d2427a71
RH
1577 frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p);
1578 frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p);
dc129d82 1579
d2427a71 1580 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1581
d2427a71 1582 return gdbarch;
dc129d82
JT
1583}
1584
baa490c4
RH
1585void
1586alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1587{
1588 frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
1589 frame_base_append_predicate (gdbarch, dwarf2_frame_base_p);
1590 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1591}
1592
a78f21af
AC
1593extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1594
c906108c 1595void
fba45db2 1596_initialize_alpha_tdep (void)
c906108c
SS
1597{
1598 struct cmd_list_element *c;
1599
d2427a71 1600 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1601
1602 /* Let the user set the fence post for heuristic_proc_start. */
1603
1604 /* We really would like to have both "0" and "unlimited" work, but
1605 command.c doesn't deal with that. So make it a var_zinteger
1606 because the user can always use "999999" or some such for unlimited. */
1607 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1608 (char *) &heuristic_fence_post,
1609 "\
1610Set the distance searched for the start of a function.\n\
1611If you are debugging a stripped executable, GDB needs to search through the\n\
1612program for the start of a function. This command sets the distance of the\n\
1613search. The only need to set it is when debugging a stripped executable.",
1614 &setlist);
1615 /* We need to throw away the frame cache when we set this, since it
1616 might change our ability to get backtraces. */
9f60d481 1617 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
1618 add_show_from_set (c, &showlist);
1619}
This page took 0.340639 seconds and 4 git commands to generate.