Introduce ref_ptr::new_reference
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
e2882c85 3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
35669430
DE
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
28#include "frame.h"
29#include "frame-base.h"
30#include "frame-unwind.h"
53e95fcf 31#include "inferior.h"
45741a9c 32#include "infrun.h"
53e95fcf 33#include "gdbcmd.h"
c4f35dd8
MK
34#include "gdbcore.h"
35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
eda5a4d7 39#include "disasm.h"
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
97de3545 42#include "x86-xstate.h"
325fac50 43#include <algorithm>
22916b07
YQ
44#include "target-descriptions.h"
45#include "arch/amd64.h"
b32b108a 46#include "producer.h"
6710bf39
SS
47#include "ax.h"
48#include "ax-gdb.h"
cfba9872 49#include "common/byte-vector.h"
c912f608 50#include "osabi.h"
1d509aa6 51#include "x86-tdep.h"
6710bf39 52
e53bef9f
MK
53/* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
90f90721 55 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
402ecd56 60/* Register information. */
c4f35dd8 61
6707b003 62static const char *amd64_register_names[] =
de220d0f 63{
6707b003 64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
65
66 /* %r8 is indeed register number 8. */
6707b003
UW
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 69
af233647 70 /* %st0 is register number 24. */
6707b003
UW
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 73
af233647 74 /* %xmm0 is register number 40. */
6707b003
UW
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
0e04a514
ML
78};
79
a055a187
L
80static const char *amd64_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86};
87
01f9f808
MS
88static const char *amd64_ymm_avx512_names[] =
89{
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94};
95
a055a187
L
96static const char *amd64_ymmh_names[] =
97{
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102};
de220d0f 103
01f9f808
MS
104static const char *amd64_ymmh_avx512_names[] =
105{
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110};
111
e43e105e
WT
112static const char *amd64_mpx_names[] =
113{
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115};
116
01f9f808
MS
117static const char *amd64_k_names[] =
118{
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121};
122
123static const char *amd64_zmmh_names[] =
124{
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133};
134
135static const char *amd64_zmm_names[] =
136{
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145};
146
147static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152};
153
51547df6
MS
154static const char *amd64_pkeys_names[] = {
155 "pkru"
156};
157
c4f35dd8
MK
158/* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
53e95fcf 160
e53bef9f 161static int amd64_dwarf_regmap[] =
0e04a514 162{
c4f35dd8 163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
167
168 /* Frame Pointer Register RBP. */
90f90721 169 AMD64_RBP_REGNUM,
c4f35dd8
MK
170
171 /* Stack Pointer Register RSP. */
90f90721 172 AMD64_RSP_REGNUM,
c4f35dd8
MK
173
174 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 183
59207364 184 /* Return Address RA. Mapped to RIP. */
90f90721 185 AMD64_RIP_REGNUM,
c4f35dd8
MK
186
187 /* SSE Registers 0 - 7. */
90f90721
MK
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
192
193 /* Extended SSE Registers 8 - 15. */
90f90721
MK
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
198
199 /* Floating Point Registers 0-7. */
90f90721
MK
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
c6f4c129
JB
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
c4f35dd8 238};
0e04a514 239
e53bef9f
MK
240static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 242
c4f35dd8
MK
243/* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
26abbdc4 245
c4f35dd8 246static int
d3f73121 247amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 248{
a055a187
L
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 251 int regnum = -1;
53e95fcf 252
16aff9a6 253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 254 regnum = amd64_dwarf_regmap[reg];
53e95fcf 255
0fde2c53 256 if (ymm0_regnum >= 0
a055a187
L
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
259
260 return regnum;
53e95fcf 261}
d532c08f 262
35669430
DE
263/* Map architectural register numbers to gdb register numbers. */
264
265static const int amd64_arch_regmap[16] =
266{
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283};
284
285static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288/* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291static int
292amd64_arch_reg_to_regnum (int reg)
293{
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297}
298
1ba53b71
L
299/* Register names for byte pseudo-registers. */
300
301static const char *amd64_byte_names[] =
302{
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
1ba53b71
L
306};
307
fe01d668
L
308/* Number of lower byte registers. */
309#define AMD64_NUM_LOWER_BYTE_REGS 16
310
1ba53b71
L
311/* Register names for word pseudo-registers. */
312
313static const char *amd64_word_names[] =
314{
9cad29ac 315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317};
318
319/* Register names for dword pseudo-registers. */
320
321static const char *amd64_dword_names[] =
322{
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
1ba53b71
L
326};
327
328/* Return the name of register REGNUM. */
329
330static const char *
331amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332{
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348}
349
3543a589
TT
350static struct value *
351amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 352 readable_regcache *regcache,
3543a589 353 int regnum)
1ba53b71 354{
9890e433 355 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1ba53b71 356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
05d1431c 357 enum register_status status;
3543a589
TT
358 struct value *result_value;
359 gdb_byte *buf;
360
361 result_value = allocate_value (register_type (gdbarch, regnum));
362 VALUE_LVAL (result_value) = lval_register;
363 VALUE_REGNUM (result_value) = regnum;
364 buf = value_contents_raw (result_value);
1ba53b71
L
365
366 if (i386_byte_regnum_p (gdbarch, regnum))
367 {
368 int gpnum = regnum - tdep->al_regnum;
369
370 /* Extract (always little endian). */
fe01d668
L
371 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
372 {
373 /* Special handling for AH, BH, CH, DH. */
03f50fc8
YQ
374 status = regcache->raw_read (gpnum - AMD64_NUM_LOWER_BYTE_REGS,
375 raw_buf);
05d1431c
PA
376 if (status == REG_VALID)
377 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
378 else
379 mark_value_bytes_unavailable (result_value, 0,
380 TYPE_LENGTH (value_type (result_value)));
fe01d668
L
381 }
382 else
383 {
03f50fc8 384 status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
3543a589
TT
387 else
388 mark_value_bytes_unavailable (result_value, 0,
389 TYPE_LENGTH (value_type (result_value)));
fe01d668 390 }
1ba53b71
L
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
395 /* Extract (always little endian). */
03f50fc8 396 status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
3543a589
TT
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
1ba53b71
L
402 }
403 else
3543a589
TT
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
1ba53b71
L
408}
409
410static void
411amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414{
9890e433 415 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1ba53b71
L
416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
fe01d668
L
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
424 /* Read ... AH, BH, CH, DH. */
425 regcache_raw_read (regcache,
426 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
427 /* ... Modify ... (always little endian). */
428 memcpy (raw_buf + 1, buf, 1);
429 /* ... Write. */
430 regcache_raw_write (regcache,
431 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
432 }
433 else
434 {
435 /* Read ... */
436 regcache_raw_read (regcache, gpnum, raw_buf);
437 /* ... Modify ... (always little endian). */
438 memcpy (raw_buf, buf, 1);
439 /* ... Write. */
440 regcache_raw_write (regcache, gpnum, raw_buf);
441 }
1ba53b71
L
442 }
443 else if (i386_dword_regnum_p (gdbarch, regnum))
444 {
445 int gpnum = regnum - tdep->eax_regnum;
446
447 /* Read ... */
448 regcache_raw_read (regcache, gpnum, raw_buf);
449 /* ... Modify ... (always little endian). */
450 memcpy (raw_buf, buf, 4);
451 /* ... Write. */
452 regcache_raw_write (regcache, gpnum, raw_buf);
453 }
454 else
455 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
456}
457
62e5fd57
MK
458/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
459
460static int
461amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
462 struct agent_expr *ax, int regnum)
463{
464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
465
466 if (i386_byte_regnum_p (gdbarch, regnum))
467 {
468 int gpnum = regnum - tdep->al_regnum;
469
470 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
471 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
472 else
473 ax_reg_mask (ax, gpnum);
474 return 0;
475 }
476 else if (i386_dword_regnum_p (gdbarch, regnum))
477 {
478 int gpnum = regnum - tdep->eax_regnum;
479
480 ax_reg_mask (ax, gpnum);
481 return 0;
482 }
483 else
484 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
485}
486
53e95fcf
JS
487\f
488
bf4d6c1c
JB
489/* Register classes as defined in the psABI. */
490
491enum amd64_reg_class
492{
493 AMD64_INTEGER,
494 AMD64_SSE,
495 AMD64_SSEUP,
496 AMD64_X87,
497 AMD64_X87UP,
498 AMD64_COMPLEX_X87,
499 AMD64_NO_CLASS,
500 AMD64_MEMORY
501};
502
efb1c01c
MK
503/* Return the union class of CLASS1 and CLASS2. See the psABI for
504 details. */
505
506static enum amd64_reg_class
507amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
508{
509 /* Rule (a): If both classes are equal, this is the resulting class. */
510 if (class1 == class2)
511 return class1;
512
513 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
514 is the other class. */
515 if (class1 == AMD64_NO_CLASS)
516 return class2;
517 if (class2 == AMD64_NO_CLASS)
518 return class1;
519
520 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
521 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
522 return AMD64_MEMORY;
523
524 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
525 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
526 return AMD64_INTEGER;
527
528 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
529 MEMORY is used as class. */
530 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
531 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
532 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
533 return AMD64_MEMORY;
534
535 /* Rule (f): Otherwise class SSE is used. */
536 return AMD64_SSE;
537}
538
fe978cb0 539static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 540
79b1ab3d
MK
541/* Return non-zero if TYPE is a non-POD structure or union type. */
542
543static int
544amd64_non_pod_p (struct type *type)
545{
546 /* ??? A class with a base class certainly isn't POD, but does this
547 catch all non-POD structure types? */
548 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
549 return 1;
550
551 return 0;
552}
553
efb1c01c
MK
554/* Classify TYPE according to the rules for aggregate (structures and
555 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
556
557static void
fe978cb0 558amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 559{
efb1c01c
MK
560 /* 1. If the size of an object is larger than two eightbytes, or in
561 C++, is a non-POD structure or union type, or contains
562 unaligned fields, it has class memory. */
744a8059 563 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
53e95fcf 564 {
fe978cb0 565 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 566 return;
53e95fcf 567 }
efb1c01c
MK
568
569 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 570 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
571
572 /* 3. Each field of an object is classified recursively so that
573 always two fields are considered. The resulting class is
574 calculated according to the classes of the fields in the
575 eightbyte: */
576
577 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 578 {
efb1c01c
MK
579 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
580
581 /* All fields in an array have the same type. */
fe978cb0
PA
582 amd64_classify (subtype, theclass);
583 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
584 theclass[1] = theclass[0];
8ffd9b1b 585 }
53e95fcf
JS
586 else
587 {
efb1c01c 588 int i;
53e95fcf 589
efb1c01c
MK
590 /* Structure or union. */
591 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
592 || TYPE_CODE (type) == TYPE_CODE_UNION);
593
594 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 595 {
efb1c01c
MK
596 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
597 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
598 enum amd64_reg_class subclass[2];
e4e2711a
JB
599 int bitsize = TYPE_FIELD_BITSIZE (type, i);
600 int endpos;
601
602 if (bitsize == 0)
603 bitsize = TYPE_LENGTH (subtype) * 8;
604 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
efb1c01c 605
5dc43913
AB
606 /* Ignore static fields, or empty fields, for example nested
607 empty structures.*/
608 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
562c50c2
MK
609 continue;
610
efb1c01c
MK
611 gdb_assert (pos == 0 || pos == 1);
612
613 amd64_classify (subtype, subclass);
fe978cb0 614 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
e4e2711a
JB
615 if (bitsize <= 64 && pos == 0 && endpos == 1)
616 /* This is a bit of an odd case: We have a field that would
617 normally fit in one of the two eightbytes, except that
618 it is placed in a way that this field straddles them.
619 This has been seen with a structure containing an array.
620
621 The ABI is a bit unclear in this case, but we assume that
622 this field's class (stored in subclass[0]) must also be merged
623 into class[1]. In other words, our field has a piece stored
624 in the second eight-byte, and thus its class applies to
625 the second eight-byte as well.
626
627 In the case where the field length exceeds 8 bytes,
628 it should not be necessary to merge the field class
629 into class[1]. As LEN > 8, subclass[1] is necessarily
630 different from AMD64_NO_CLASS. If subclass[1] is equal
631 to subclass[0], then the normal class[1]/subclass[1]
632 merging will take care of everything. For subclass[1]
633 to be different from subclass[0], I can only see the case
634 where we have a SSE/SSEUP or X87/X87UP pair, which both
635 use up all 16 bytes of the aggregate, and are already
636 handled just fine (because each portion sits on its own
637 8-byte). */
fe978cb0 638 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
efb1c01c 639 if (pos == 0)
fe978cb0 640 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
53e95fcf 641 }
53e95fcf 642 }
efb1c01c
MK
643
644 /* 4. Then a post merger cleanup is done: */
645
646 /* Rule (a): If one of the classes is MEMORY, the whole argument is
647 passed in memory. */
fe978cb0
PA
648 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
649 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 650
177b42fe 651 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 652 SSE. */
fe978cb0
PA
653 if (theclass[0] == AMD64_SSEUP)
654 theclass[0] = AMD64_SSE;
655 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
656 theclass[1] = AMD64_SSE;
efb1c01c
MK
657}
658
659/* Classify TYPE, and store the result in CLASS. */
660
bf4d6c1c 661static void
fe978cb0 662amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c
MK
663{
664 enum type_code code = TYPE_CODE (type);
665 int len = TYPE_LENGTH (type);
666
fe978cb0 667 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
668
669 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
670 long, long long, and pointers are in the INTEGER class. Similarly,
671 range types, used by languages such as Ada, are also in the INTEGER
672 class. */
efb1c01c 673 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 674 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 675 || code == TYPE_CODE_CHAR
aa006118 676 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
efb1c01c 677 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 678 theclass[0] = AMD64_INTEGER;
efb1c01c 679
5daa78cc
TJB
680 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
681 are in class SSE. */
682 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
683 && (len == 4 || len == 8))
efb1c01c 684 /* FIXME: __m64 . */
fe978cb0 685 theclass[0] = AMD64_SSE;
efb1c01c 686
5daa78cc
TJB
687 /* Arguments of types __float128, _Decimal128 and __m128 are split into
688 two halves. The least significant ones belong to class SSE, the most
efb1c01c 689 significant one to class SSEUP. */
5daa78cc
TJB
690 else if (code == TYPE_CODE_DECFLOAT && len == 16)
691 /* FIXME: __float128, __m128. */
fe978cb0 692 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
693
694 /* The 64-bit mantissa of arguments of type long double belongs to
695 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
696 class X87UP. */
697 else if (code == TYPE_CODE_FLT && len == 16)
698 /* Class X87 and X87UP. */
fe978cb0 699 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 700
7f7930dd
MK
701 /* Arguments of complex T where T is one of the types float or
702 double get treated as if they are implemented as:
703
704 struct complexT {
705 T real;
706 T imag;
5f52445b
YQ
707 };
708
709 */
7f7930dd 710 else if (code == TYPE_CODE_COMPLEX && len == 8)
fe978cb0 711 theclass[0] = AMD64_SSE;
7f7930dd 712 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 713 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
714
715 /* A variable of type complex long double is classified as type
716 COMPLEX_X87. */
717 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 718 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 719
efb1c01c
MK
720 /* Aggregates. */
721 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
722 || code == TYPE_CODE_UNION)
fe978cb0 723 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
724}
725
726static enum return_value_convention
6a3a010b 727amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 728 struct type *type, struct regcache *regcache,
42835c2b 729 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c 730{
fe978cb0 731 enum amd64_reg_class theclass[2];
efb1c01c 732 int len = TYPE_LENGTH (type);
90f90721
MK
733 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
734 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
735 int integer_reg = 0;
736 int sse_reg = 0;
737 int i;
738
739 gdb_assert (!(readbuf && writebuf));
740
741 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 742 amd64_classify (type, theclass);
efb1c01c
MK
743
744 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 745 for the return value and passes the address of this storage in
0963b4bd 746 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
747 this address becomes a hidden first argument.
748
749 On return %rax will contain the address that has been passed in
750 by the caller in %rdi. */
fe978cb0 751 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
752 {
753 /* As indicated by the comment above, the ABI guarantees that we
754 can always find the return value just after the function has
755 returned. */
756
757 if (readbuf)
758 {
759 ULONGEST addr;
760
761 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
762 read_memory (addr, readbuf, TYPE_LENGTH (type));
763 }
764
765 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
766 }
efb1c01c 767
7f7930dd
MK
768 /* 8. If the class is COMPLEX_X87, the real part of the value is
769 returned in %st0 and the imaginary part in %st1. */
fe978cb0 770 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
771 {
772 if (readbuf)
773 {
774 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
775 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
776 }
777
778 if (writebuf)
779 {
780 i387_return_value (gdbarch, regcache);
781 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
782 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
783
784 /* Fix up the tag word such that both %st(0) and %st(1) are
785 marked as valid. */
786 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
787 }
788
789 return RETURN_VALUE_REGISTER_CONVENTION;
790 }
791
fe978cb0 792 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 793 gdb_assert (len <= 16);
efb1c01c
MK
794
795 for (i = 0; len > 0; i++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
fe978cb0 800 switch (theclass[i])
efb1c01c
MK
801 {
802 case AMD64_INTEGER:
803 /* 3. If the class is INTEGER, the next available register
804 of the sequence %rax, %rdx is used. */
805 regnum = integer_regnum[integer_reg++];
806 break;
807
808 case AMD64_SSE:
809 /* 4. If the class is SSE, the next available SSE register
810 of the sequence %xmm0, %xmm1 is used. */
811 regnum = sse_regnum[sse_reg++];
812 break;
813
814 case AMD64_SSEUP:
815 /* 5. If the class is SSEUP, the eightbyte is passed in the
816 upper half of the last used SSE register. */
817 gdb_assert (sse_reg > 0);
818 regnum = sse_regnum[sse_reg - 1];
819 offset = 8;
820 break;
821
822 case AMD64_X87:
823 /* 6. If the class is X87, the value is returned on the X87
824 stack in %st0 as 80-bit x87 number. */
90f90721 825 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
826 if (writebuf)
827 i387_return_value (gdbarch, regcache);
828 break;
829
830 case AMD64_X87UP:
831 /* 7. If the class is X87UP, the value is returned together
832 with the previous X87 value in %st0. */
fe978cb0 833 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 834 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
835 offset = 8;
836 len = 2;
837 break;
838
839 case AMD64_NO_CLASS:
840 continue;
841
842 default:
843 gdb_assert (!"Unexpected register class.");
844 }
845
846 gdb_assert (regnum != -1);
847
848 if (readbuf)
325fac50 849 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
42835c2b 850 readbuf + i * 8);
efb1c01c 851 if (writebuf)
325fac50 852 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
42835c2b 853 writebuf + i * 8);
efb1c01c
MK
854 }
855
856 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
857}
858\f
859
720aa428
MK
860static CORE_ADDR
861amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 862 struct value **args, CORE_ADDR sp, int struct_return)
720aa428 863{
bf4d6c1c
JB
864 static int integer_regnum[] =
865 {
866 AMD64_RDI_REGNUM, /* %rdi */
867 AMD64_RSI_REGNUM, /* %rsi */
868 AMD64_RDX_REGNUM, /* %rdx */
869 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
870 AMD64_R8_REGNUM, /* %r8 */
871 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 872 };
720aa428
MK
873 static int sse_regnum[] =
874 {
875 /* %xmm0 ... %xmm7 */
90f90721
MK
876 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
877 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
878 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
879 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428 880 };
224c3ddb 881 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
720aa428
MK
882 int num_stack_args = 0;
883 int num_elements = 0;
884 int element = 0;
885 int integer_reg = 0;
886 int sse_reg = 0;
887 int i;
888
6470d250
MK
889 /* Reserve a register for the "hidden" argument. */
890 if (struct_return)
891 integer_reg++;
892
720aa428
MK
893 for (i = 0; i < nargs; i++)
894 {
4991999e 895 struct type *type = value_type (args[i]);
720aa428 896 int len = TYPE_LENGTH (type);
fe978cb0 897 enum amd64_reg_class theclass[2];
720aa428
MK
898 int needed_integer_regs = 0;
899 int needed_sse_regs = 0;
900 int j;
901
902 /* Classify argument. */
fe978cb0 903 amd64_classify (type, theclass);
720aa428
MK
904
905 /* Calculate the number of integer and SSE registers needed for
906 this argument. */
907 for (j = 0; j < 2; j++)
908 {
fe978cb0 909 if (theclass[j] == AMD64_INTEGER)
720aa428 910 needed_integer_regs++;
fe978cb0 911 else if (theclass[j] == AMD64_SSE)
720aa428
MK
912 needed_sse_regs++;
913 }
914
915 /* Check whether enough registers are available, and if the
916 argument should be passed in registers at all. */
bf4d6c1c 917 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
918 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
919 || (needed_integer_regs == 0 && needed_sse_regs == 0))
920 {
921 /* The argument will be passed on the stack. */
922 num_elements += ((len + 7) / 8);
849e9755 923 stack_args[num_stack_args++] = args[i];
720aa428
MK
924 }
925 else
926 {
927 /* The argument will be passed in registers. */
d8de1ef7
MK
928 const gdb_byte *valbuf = value_contents (args[i]);
929 gdb_byte buf[8];
720aa428
MK
930
931 gdb_assert (len <= 16);
932
933 for (j = 0; len > 0; j++, len -= 8)
934 {
935 int regnum = -1;
936 int offset = 0;
937
fe978cb0 938 switch (theclass[j])
720aa428
MK
939 {
940 case AMD64_INTEGER:
bf4d6c1c 941 regnum = integer_regnum[integer_reg++];
720aa428
MK
942 break;
943
944 case AMD64_SSE:
945 regnum = sse_regnum[sse_reg++];
946 break;
947
948 case AMD64_SSEUP:
949 gdb_assert (sse_reg > 0);
950 regnum = sse_regnum[sse_reg - 1];
951 offset = 8;
952 break;
953
954 default:
955 gdb_assert (!"Unexpected register class.");
956 }
957
958 gdb_assert (regnum != -1);
959 memset (buf, 0, sizeof buf);
325fac50 960 memcpy (buf, valbuf + j * 8, std::min (len, 8));
720aa428
MK
961 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
962 }
963 }
964 }
965
966 /* Allocate space for the arguments on the stack. */
967 sp -= num_elements * 8;
968
969 /* The psABI says that "The end of the input argument area shall be
970 aligned on a 16 byte boundary." */
971 sp &= ~0xf;
972
973 /* Write out the arguments to the stack. */
974 for (i = 0; i < num_stack_args; i++)
975 {
4991999e 976 struct type *type = value_type (stack_args[i]);
d8de1ef7 977 const gdb_byte *valbuf = value_contents (stack_args[i]);
849e9755
JB
978 int len = TYPE_LENGTH (type);
979
980 write_memory (sp + element * 8, valbuf, len);
981 element += ((len + 7) / 8);
720aa428
MK
982 }
983
984 /* The psABI says that "For calls that may call functions that use
985 varargs or stdargs (prototype-less calls or calls to functions
986 containing ellipsis (...) in the declaration) %al is used as
987 hidden argument to specify the number of SSE registers used. */
90f90721 988 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
989 return sp;
990}
991
c4f35dd8 992static CORE_ADDR
7d9b040b 993amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
994 struct regcache *regcache, CORE_ADDR bp_addr,
995 int nargs, struct value **args, CORE_ADDR sp,
996 int struct_return, CORE_ADDR struct_addr)
53e95fcf 997{
e17a4113 998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 999 gdb_byte buf[8];
c4f35dd8 1000
4a612d6f
WT
1001 /* BND registers can be in arbitrary values at the moment of the
1002 inferior call. This can cause boundary violations that are not
1003 due to a real bug or even desired by the user. The best to be done
1004 is set the BND registers to allow access to the whole memory, INIT
1005 state, before pushing the inferior call. */
1006 i387_reset_bnd_regs (gdbarch, regcache);
1007
c4f35dd8 1008 /* Pass arguments. */
6470d250 1009 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
1010
1011 /* Pass "hidden" argument". */
1012 if (struct_return)
1013 {
e17a4113 1014 store_unsigned_integer (buf, 8, byte_order, struct_addr);
bf4d6c1c 1015 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
1016 }
1017
1018 /* Store return address. */
1019 sp -= 8;
e17a4113 1020 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
1021 write_memory (sp, buf, 8);
1022
1023 /* Finally, update the stack pointer... */
e17a4113 1024 store_unsigned_integer (buf, 8, byte_order, sp);
90f90721 1025 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
1026
1027 /* ...and fake a frame pointer. */
90f90721 1028 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 1029
3e210248 1030 return sp + 16;
53e95fcf 1031}
c4f35dd8 1032\f
35669430
DE
1033/* Displaced instruction handling. */
1034
1035/* A partially decoded instruction.
1036 This contains enough details for displaced stepping purposes. */
1037
1038struct amd64_insn
1039{
1040 /* The number of opcode bytes. */
1041 int opcode_len;
50a1fdd5
PA
1042 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1043 not present. */
1044 int enc_prefix_offset;
35669430
DE
1045 /* The offset to the first opcode byte. */
1046 int opcode_offset;
1047 /* The offset to the modrm byte or -1 if not present. */
1048 int modrm_offset;
1049
1050 /* The raw instruction. */
1051 gdb_byte *raw_insn;
1052};
1053
cfba9872 1054struct amd64_displaced_step_closure : public displaced_step_closure
35669430 1055{
cfba9872
SM
1056 amd64_displaced_step_closure (int insn_buf_len)
1057 : insn_buf (insn_buf_len, 0)
1058 {}
1059
35669430 1060 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
cfba9872 1061 int tmp_used = 0;
35669430
DE
1062 int tmp_regno;
1063 ULONGEST tmp_save;
1064
1065 /* Details of the instruction. */
1066 struct amd64_insn insn_details;
1067
cfba9872
SM
1068 /* The possibly modified insn. */
1069 gdb::byte_vector insn_buf;
35669430
DE
1070};
1071
1072/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1073 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1074 at which point delete these in favor of libopcodes' versions). */
1075
1076static const unsigned char onebyte_has_modrm[256] = {
1077 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1078 /* ------------------------------- */
1079 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1080 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1081 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1082 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1083 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1084 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1085 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1086 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1087 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1088 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1089 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1090 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1091 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1092 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1093 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1094 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1095 /* ------------------------------- */
1096 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1097};
1098
1099static const unsigned char twobyte_has_modrm[256] = {
1100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1101 /* ------------------------------- */
1102 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1103 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1104 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1105 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1106 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1107 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1108 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1109 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1110 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1111 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1112 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1113 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1114 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1115 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1116 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1117 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1118 /* ------------------------------- */
1119 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1120};
1121
1122static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1123
1124static int
1125rex_prefix_p (gdb_byte pfx)
1126{
1127 return REX_PREFIX_P (pfx);
1128}
1129
50a1fdd5
PA
1130/* True if PFX is the start of the 2-byte VEX prefix. */
1131
1132static bool
1133vex2_prefix_p (gdb_byte pfx)
1134{
1135 return pfx == 0xc5;
1136}
1137
1138/* True if PFX is the start of the 3-byte VEX prefix. */
1139
1140static bool
1141vex3_prefix_p (gdb_byte pfx)
1142{
1143 return pfx == 0xc4;
1144}
1145
35669430
DE
1146/* Skip the legacy instruction prefixes in INSN.
1147 We assume INSN is properly sentineled so we don't have to worry
1148 about falling off the end of the buffer. */
1149
1150static gdb_byte *
1903f0e6 1151amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1152{
1153 while (1)
1154 {
1155 switch (*insn)
1156 {
1157 case DATA_PREFIX_OPCODE:
1158 case ADDR_PREFIX_OPCODE:
1159 case CS_PREFIX_OPCODE:
1160 case DS_PREFIX_OPCODE:
1161 case ES_PREFIX_OPCODE:
1162 case FS_PREFIX_OPCODE:
1163 case GS_PREFIX_OPCODE:
1164 case SS_PREFIX_OPCODE:
1165 case LOCK_PREFIX_OPCODE:
1166 case REPE_PREFIX_OPCODE:
1167 case REPNE_PREFIX_OPCODE:
1168 ++insn;
1169 continue;
1170 default:
1171 break;
1172 }
1173 break;
1174 }
1175
1176 return insn;
1177}
1178
35669430
DE
1179/* Return an integer register (other than RSP) that is unused as an input
1180 operand in INSN.
1181 In order to not require adding a rex prefix if the insn doesn't already
1182 have one, the result is restricted to RAX ... RDI, sans RSP.
1183 The register numbering of the result follows architecture ordering,
1184 e.g. RDI = 7. */
1185
1186static int
1187amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1188{
1189 /* 1 bit for each reg */
1190 int used_regs_mask = 0;
1191
1192 /* There can be at most 3 int regs used as inputs in an insn, and we have
1193 7 to choose from (RAX ... RDI, sans RSP).
1194 This allows us to take a conservative approach and keep things simple.
1195 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1196 that implicitly specify RAX. */
1197
1198 /* Avoid RAX. */
1199 used_regs_mask |= 1 << EAX_REG_NUM;
1200 /* Similarily avoid RDX, implicit operand in divides. */
1201 used_regs_mask |= 1 << EDX_REG_NUM;
1202 /* Avoid RSP. */
1203 used_regs_mask |= 1 << ESP_REG_NUM;
1204
1205 /* If the opcode is one byte long and there's no ModRM byte,
1206 assume the opcode specifies a register. */
1207 if (details->opcode_len == 1 && details->modrm_offset == -1)
1208 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1209
1210 /* Mark used regs in the modrm/sib bytes. */
1211 if (details->modrm_offset != -1)
1212 {
1213 int modrm = details->raw_insn[details->modrm_offset];
1214 int mod = MODRM_MOD_FIELD (modrm);
1215 int reg = MODRM_REG_FIELD (modrm);
1216 int rm = MODRM_RM_FIELD (modrm);
1217 int have_sib = mod != 3 && rm == 4;
1218
1219 /* Assume the reg field of the modrm byte specifies a register. */
1220 used_regs_mask |= 1 << reg;
1221
1222 if (have_sib)
1223 {
1224 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1225 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1226 used_regs_mask |= 1 << base;
d48ebb5b 1227 used_regs_mask |= 1 << idx;
35669430
DE
1228 }
1229 else
1230 {
1231 used_regs_mask |= 1 << rm;
1232 }
1233 }
1234
1235 gdb_assert (used_regs_mask < 256);
1236 gdb_assert (used_regs_mask != 255);
1237
1238 /* Finally, find a free reg. */
1239 {
1240 int i;
1241
1242 for (i = 0; i < 8; ++i)
1243 {
1244 if (! (used_regs_mask & (1 << i)))
1245 return i;
1246 }
1247
1248 /* We shouldn't get here. */
1249 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1250 }
1251}
1252
1253/* Extract the details of INSN that we need. */
1254
1255static void
1256amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1257{
1258 gdb_byte *start = insn;
1259 int need_modrm;
1260
1261 details->raw_insn = insn;
1262
1263 details->opcode_len = -1;
50a1fdd5 1264 details->enc_prefix_offset = -1;
35669430
DE
1265 details->opcode_offset = -1;
1266 details->modrm_offset = -1;
1267
1268 /* Skip legacy instruction prefixes. */
1903f0e6 1269 insn = amd64_skip_prefixes (insn);
35669430 1270
50a1fdd5 1271 /* Skip REX/VEX instruction encoding prefixes. */
35669430
DE
1272 if (rex_prefix_p (*insn))
1273 {
50a1fdd5 1274 details->enc_prefix_offset = insn - start;
35669430
DE
1275 ++insn;
1276 }
50a1fdd5
PA
1277 else if (vex2_prefix_p (*insn))
1278 {
1279 /* Don't record the offset in this case because this prefix has
1280 no REX.B equivalent. */
1281 insn += 2;
1282 }
1283 else if (vex3_prefix_p (*insn))
1284 {
1285 details->enc_prefix_offset = insn - start;
1286 insn += 3;
1287 }
35669430
DE
1288
1289 details->opcode_offset = insn - start;
1290
1291 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1292 {
1293 /* Two or three-byte opcode. */
1294 ++insn;
1295 need_modrm = twobyte_has_modrm[*insn];
1296
1297 /* Check for three-byte opcode. */
1903f0e6 1298 switch (*insn)
35669430 1299 {
1903f0e6
DE
1300 case 0x24:
1301 case 0x25:
1302 case 0x38:
1303 case 0x3a:
1304 case 0x7a:
1305 case 0x7b:
35669430
DE
1306 ++insn;
1307 details->opcode_len = 3;
1903f0e6
DE
1308 break;
1309 default:
1310 details->opcode_len = 2;
1311 break;
35669430 1312 }
35669430
DE
1313 }
1314 else
1315 {
1316 /* One-byte opcode. */
1317 need_modrm = onebyte_has_modrm[*insn];
1318 details->opcode_len = 1;
1319 }
1320
1321 if (need_modrm)
1322 {
1323 ++insn;
1324 details->modrm_offset = insn - start;
1325 }
1326}
1327
1328/* Update %rip-relative addressing in INSN.
1329
1330 %rip-relative addressing only uses a 32-bit displacement.
1331 32 bits is not enough to be guaranteed to cover the distance between where
1332 the real instruction is and where its copy is.
1333 Convert the insn to use base+disp addressing.
1334 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1335
35669430 1336static void
cfba9872 1337fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
35669430
DE
1338 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1339{
1340 const struct amd64_insn *insn_details = &dsc->insn_details;
1341 int modrm_offset = insn_details->modrm_offset;
1342 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1343 CORE_ADDR rip_base;
35669430
DE
1344 int insn_length;
1345 int arch_tmp_regno, tmp_regno;
1346 ULONGEST orig_value;
1347
1348 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1349 ++insn;
1350
1351 /* Compute the rip-relative address. */
cfba9872
SM
1352 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1353 dsc->insn_buf.size (), from);
35669430
DE
1354 rip_base = from + insn_length;
1355
1356 /* We need a register to hold the address.
1357 Pick one not used in the insn.
1358 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1359 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1360 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1361
50a1fdd5
PA
1362 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1363 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1364
1365 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1366 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1367 is not r8-r15. */
1368 if (insn_details->enc_prefix_offset != -1)
1369 {
1370 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1371 if (rex_prefix_p (pfx[0]))
1372 pfx[0] &= ~REX_B;
1373 else if (vex3_prefix_p (pfx[0]))
1374 pfx[1] |= VEX3_NOT_B;
1375 else
1376 gdb_assert_not_reached ("unhandled prefix");
1377 }
35669430
DE
1378
1379 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1380 dsc->tmp_regno = tmp_regno;
1381 dsc->tmp_save = orig_value;
1382 dsc->tmp_used = 1;
1383
1384 /* Convert the ModRM field to be base+disp. */
1385 dsc->insn_buf[modrm_offset] &= ~0xc7;
1386 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1387
1388 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1389
1390 if (debug_displaced)
1391 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
5af949e3
UW
1392 "displaced: using temp reg %d, old value %s, new value %s\n",
1393 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1394 paddress (gdbarch, rip_base));
35669430
DE
1395}
1396
1397static void
1398fixup_displaced_copy (struct gdbarch *gdbarch,
cfba9872 1399 amd64_displaced_step_closure *dsc,
35669430
DE
1400 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1401{
1402 const struct amd64_insn *details = &dsc->insn_details;
1403
1404 if (details->modrm_offset != -1)
1405 {
1406 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1407
1408 if ((modrm & 0xc7) == 0x05)
1409 {
1410 /* The insn uses rip-relative addressing.
1411 Deal with it. */
1412 fixup_riprel (gdbarch, dsc, from, to, regs);
1413 }
1414 }
1415}
1416
1417struct displaced_step_closure *
1418amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1419 CORE_ADDR from, CORE_ADDR to,
1420 struct regcache *regs)
1421{
1422 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1423 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1424 continually watch for running off the end of the buffer. */
1425 int fixup_sentinel_space = len;
cfba9872
SM
1426 amd64_displaced_step_closure *dsc
1427 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
35669430
DE
1428 gdb_byte *buf = &dsc->insn_buf[0];
1429 struct amd64_insn *details = &dsc->insn_details;
1430
35669430
DE
1431 read_memory (from, buf, len);
1432
1433 /* Set up the sentinel space so we don't have to worry about running
1434 off the end of the buffer. An excessive number of leading prefixes
1435 could otherwise cause this. */
1436 memset (buf + len, 0, fixup_sentinel_space);
1437
1438 amd64_get_insn_details (buf, details);
1439
1440 /* GDB may get control back after the insn after the syscall.
1441 Presumably this is a kernel bug.
1442 If this is a syscall, make sure there's a nop afterwards. */
1443 {
1444 int syscall_length;
1445
1446 if (amd64_syscall_p (details, &syscall_length))
1447 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1448 }
1449
1450 /* Modify the insn to cope with the address where it will be executed from.
1451 In particular, handle any rip-relative addressing. */
1452 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1453
1454 write_memory (to, buf, len);
1455
1456 if (debug_displaced)
1457 {
5af949e3
UW
1458 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1459 paddress (gdbarch, from), paddress (gdbarch, to));
35669430
DE
1460 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1461 }
1462
1463 return dsc;
1464}
1465
1466static int
1467amd64_absolute_jmp_p (const struct amd64_insn *details)
1468{
1469 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1470
1471 if (insn[0] == 0xff)
1472 {
1473 /* jump near, absolute indirect (/4) */
1474 if ((insn[1] & 0x38) == 0x20)
1475 return 1;
1476
1477 /* jump far, absolute indirect (/5) */
1478 if ((insn[1] & 0x38) == 0x28)
1479 return 1;
1480 }
1481
1482 return 0;
1483}
1484
c2170eef
MM
1485/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1486
1487static int
1488amd64_jmp_p (const struct amd64_insn *details)
1489{
1490 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1491
1492 /* jump short, relative. */
1493 if (insn[0] == 0xeb)
1494 return 1;
1495
1496 /* jump near, relative. */
1497 if (insn[0] == 0xe9)
1498 return 1;
1499
1500 return amd64_absolute_jmp_p (details);
1501}
1502
35669430
DE
1503static int
1504amd64_absolute_call_p (const struct amd64_insn *details)
1505{
1506 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1507
1508 if (insn[0] == 0xff)
1509 {
1510 /* Call near, absolute indirect (/2) */
1511 if ((insn[1] & 0x38) == 0x10)
1512 return 1;
1513
1514 /* Call far, absolute indirect (/3) */
1515 if ((insn[1] & 0x38) == 0x18)
1516 return 1;
1517 }
1518
1519 return 0;
1520}
1521
1522static int
1523amd64_ret_p (const struct amd64_insn *details)
1524{
1525 /* NOTE: gcc can emit "repz ; ret". */
1526 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1527
1528 switch (insn[0])
1529 {
1530 case 0xc2: /* ret near, pop N bytes */
1531 case 0xc3: /* ret near */
1532 case 0xca: /* ret far, pop N bytes */
1533 case 0xcb: /* ret far */
1534 case 0xcf: /* iret */
1535 return 1;
1536
1537 default:
1538 return 0;
1539 }
1540}
1541
1542static int
1543amd64_call_p (const struct amd64_insn *details)
1544{
1545 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1546
1547 if (amd64_absolute_call_p (details))
1548 return 1;
1549
1550 /* call near, relative */
1551 if (insn[0] == 0xe8)
1552 return 1;
1553
1554 return 0;
1555}
1556
35669430
DE
1557/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1558 length in bytes. Otherwise, return zero. */
1559
1560static int
1561amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1562{
1563 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1564
1565 if (insn[0] == 0x0f && insn[1] == 0x05)
1566 {
1567 *lengthp = 2;
1568 return 1;
1569 }
1570
1571 return 0;
1572}
1573
c2170eef
MM
1574/* Classify the instruction at ADDR using PRED.
1575 Throw an error if the memory can't be read. */
1576
1577static int
1578amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1579 int (*pred) (const struct amd64_insn *))
1580{
1581 struct amd64_insn details;
1582 gdb_byte *buf;
1583 int len, classification;
1584
1585 len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1586 buf = (gdb_byte *) alloca (len);
c2170eef
MM
1587
1588 read_code (addr, buf, len);
1589 amd64_get_insn_details (buf, &details);
1590
1591 classification = pred (&details);
1592
1593 return classification;
1594}
1595
1596/* The gdbarch insn_is_call method. */
1597
1598static int
1599amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1600{
1601 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1602}
1603
1604/* The gdbarch insn_is_ret method. */
1605
1606static int
1607amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1608{
1609 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1610}
1611
1612/* The gdbarch insn_is_jump method. */
1613
1614static int
1615amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1616{
1617 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1618}
1619
35669430
DE
1620/* Fix up the state of registers and memory after having single-stepped
1621 a displaced instruction. */
1622
1623void
1624amd64_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 1625 struct displaced_step_closure *dsc_,
35669430
DE
1626 CORE_ADDR from, CORE_ADDR to,
1627 struct regcache *regs)
1628{
cfba9872 1629 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
e17a4113 1630 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1631 /* The offset we applied to the instruction's address. */
1632 ULONGEST insn_offset = to - from;
cfba9872 1633 gdb_byte *insn = dsc->insn_buf.data ();
35669430
DE
1634 const struct amd64_insn *insn_details = &dsc->insn_details;
1635
1636 if (debug_displaced)
1637 fprintf_unfiltered (gdb_stdlog,
5af949e3 1638 "displaced: fixup (%s, %s), "
35669430 1639 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
1640 paddress (gdbarch, from), paddress (gdbarch, to),
1641 insn[0], insn[1]);
35669430
DE
1642
1643 /* If we used a tmp reg, restore it. */
1644
1645 if (dsc->tmp_used)
1646 {
1647 if (debug_displaced)
5af949e3
UW
1648 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1649 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1650 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1651 }
1652
1653 /* The list of issues to contend with here is taken from
1654 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1655 Yay for Free Software! */
1656
1657 /* Relocate the %rip back to the program's instruction stream,
1658 if necessary. */
1659
1660 /* Except in the case of absolute or indirect jump or call
1661 instructions, or a return instruction, the new rip is relative to
1662 the displaced instruction; make it relative to the original insn.
1663 Well, signal handler returns don't need relocation either, but we use the
1664 value of %rip to recognize those; see below. */
1665 if (! amd64_absolute_jmp_p (insn_details)
1666 && ! amd64_absolute_call_p (insn_details)
1667 && ! amd64_ret_p (insn_details))
1668 {
1669 ULONGEST orig_rip;
1670 int insn_len;
1671
1672 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1673
1674 /* A signal trampoline system call changes the %rip, resuming
1675 execution of the main program after the signal handler has
1676 returned. That makes them like 'return' instructions; we
1677 shouldn't relocate %rip.
1678
1679 But most system calls don't, and we do need to relocate %rip.
1680
1681 Our heuristic for distinguishing these cases: if stepping
1682 over the system call instruction left control directly after
1683 the instruction, the we relocate --- control almost certainly
1684 doesn't belong in the displaced copy. Otherwise, we assume
1685 the instruction has put control where it belongs, and leave
1686 it unrelocated. Goodness help us if there are PC-relative
1687 system calls. */
1688 if (amd64_syscall_p (insn_details, &insn_len)
1689 && orig_rip != to + insn_len
1690 /* GDB can get control back after the insn after the syscall.
1691 Presumably this is a kernel bug.
1692 Fixup ensures its a nop, we add one to the length for it. */
1693 && orig_rip != to + insn_len + 1)
1694 {
1695 if (debug_displaced)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "displaced: syscall changed %%rip; "
1698 "not relocating\n");
1699 }
1700 else
1701 {
1702 ULONGEST rip = orig_rip - insn_offset;
1703
1903f0e6
DE
1704 /* If we just stepped over a breakpoint insn, we don't backup
1705 the pc on purpose; this is to match behaviour without
1706 stepping. */
35669430
DE
1707
1708 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1709
1710 if (debug_displaced)
1711 fprintf_unfiltered (gdb_stdlog,
1712 "displaced: "
5af949e3
UW
1713 "relocated %%rip from %s to %s\n",
1714 paddress (gdbarch, orig_rip),
1715 paddress (gdbarch, rip));
35669430
DE
1716 }
1717 }
1718
1719 /* If the instruction was PUSHFL, then the TF bit will be set in the
1720 pushed value, and should be cleared. We'll leave this for later,
1721 since GDB already messes up the TF flag when stepping over a
1722 pushfl. */
1723
1724 /* If the instruction was a call, the return address now atop the
1725 stack is the address following the copied instruction. We need
1726 to make it the address following the original instruction. */
1727 if (amd64_call_p (insn_details))
1728 {
1729 ULONGEST rsp;
1730 ULONGEST retaddr;
1731 const ULONGEST retaddr_len = 8;
1732
1733 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1734 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1735 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1736 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430
DE
1737
1738 if (debug_displaced)
1739 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1740 "displaced: relocated return addr at %s "
1741 "to %s\n",
1742 paddress (gdbarch, rsp),
1743 paddress (gdbarch, retaddr));
35669430
DE
1744 }
1745}
dde08ee1
PA
1746
1747/* If the instruction INSN uses RIP-relative addressing, return the
1748 offset into the raw INSN where the displacement to be adjusted is
1749 found. Returns 0 if the instruction doesn't use RIP-relative
1750 addressing. */
1751
1752static int
1753rip_relative_offset (struct amd64_insn *insn)
1754{
1755 if (insn->modrm_offset != -1)
1756 {
1757 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1758
1759 if ((modrm & 0xc7) == 0x05)
1760 {
1761 /* The displacement is found right after the ModRM byte. */
1762 return insn->modrm_offset + 1;
1763 }
1764 }
1765
1766 return 0;
1767}
1768
1769static void
1770append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1771{
1772 target_write_memory (*to, buf, len);
1773 *to += len;
1774}
1775
60965737 1776static void
dde08ee1
PA
1777amd64_relocate_instruction (struct gdbarch *gdbarch,
1778 CORE_ADDR *to, CORE_ADDR oldloc)
1779{
1780 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1781 int len = gdbarch_max_insn_length (gdbarch);
1782 /* Extra space for sentinels. */
1783 int fixup_sentinel_space = len;
224c3ddb 1784 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
dde08ee1
PA
1785 struct amd64_insn insn_details;
1786 int offset = 0;
1787 LONGEST rel32, newrel;
1788 gdb_byte *insn;
1789 int insn_length;
1790
1791 read_memory (oldloc, buf, len);
1792
1793 /* Set up the sentinel space so we don't have to worry about running
1794 off the end of the buffer. An excessive number of leading prefixes
1795 could otherwise cause this. */
1796 memset (buf + len, 0, fixup_sentinel_space);
1797
1798 insn = buf;
1799 amd64_get_insn_details (insn, &insn_details);
1800
1801 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1802
1803 /* Skip legacy instruction prefixes. */
1804 insn = amd64_skip_prefixes (insn);
1805
1806 /* Adjust calls with 32-bit relative addresses as push/jump, with
1807 the address pushed being the location where the original call in
1808 the user program would return to. */
1809 if (insn[0] == 0xe8)
1810 {
f077e978
PA
1811 gdb_byte push_buf[32];
1812 CORE_ADDR ret_addr;
1813 int i = 0;
dde08ee1
PA
1814
1815 /* Where "ret" in the original code will return to. */
1816 ret_addr = oldloc + insn_length;
f077e978
PA
1817
1818 /* If pushing an address higher than or equal to 0x80000000,
1819 avoid 'pushq', as that sign extends its 32-bit operand, which
1820 would be incorrect. */
1821 if (ret_addr <= 0x7fffffff)
1822 {
1823 push_buf[0] = 0x68; /* pushq $... */
1824 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1825 i = 5;
1826 }
1827 else
1828 {
1829 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1830 push_buf[i++] = 0x83;
1831 push_buf[i++] = 0xec;
1832 push_buf[i++] = 0x08;
1833
1834 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1835 push_buf[i++] = 0x04;
1836 push_buf[i++] = 0x24;
1837 store_unsigned_integer (&push_buf[i], 4, byte_order,
1838 ret_addr & 0xffffffff);
1839 i += 4;
1840
1841 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1842 push_buf[i++] = 0x44;
1843 push_buf[i++] = 0x24;
1844 push_buf[i++] = 0x04;
1845 store_unsigned_integer (&push_buf[i], 4, byte_order,
1846 ret_addr >> 32);
1847 i += 4;
1848 }
1849 gdb_assert (i <= sizeof (push_buf));
dde08ee1 1850 /* Push the push. */
f077e978 1851 append_insns (to, i, push_buf);
dde08ee1
PA
1852
1853 /* Convert the relative call to a relative jump. */
1854 insn[0] = 0xe9;
1855
1856 /* Adjust the destination offset. */
1857 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1858 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1859 store_signed_integer (insn + 1, 4, byte_order, newrel);
1860
1861 if (debug_displaced)
1862 fprintf_unfiltered (gdb_stdlog,
1863 "Adjusted insn rel32=%s at %s to"
1864 " rel32=%s at %s\n",
1865 hex_string (rel32), paddress (gdbarch, oldloc),
1866 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1867
1868 /* Write the adjusted jump into its displaced location. */
1869 append_insns (to, 5, insn);
1870 return;
1871 }
1872
1873 offset = rip_relative_offset (&insn_details);
1874 if (!offset)
1875 {
1876 /* Adjust jumps with 32-bit relative addresses. Calls are
1877 already handled above. */
1878 if (insn[0] == 0xe9)
1879 offset = 1;
1880 /* Adjust conditional jumps. */
1881 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1882 offset = 2;
1883 }
1884
1885 if (offset)
1886 {
1887 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1888 newrel = (oldloc - *to) + rel32;
f4a1794a 1889 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1890 if (debug_displaced)
1891 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1892 "Adjusted insn rel32=%s at %s to"
1893 " rel32=%s at %s\n",
dde08ee1
PA
1894 hex_string (rel32), paddress (gdbarch, oldloc),
1895 hex_string (newrel), paddress (gdbarch, *to));
1896 }
1897
1898 /* Write the adjusted instruction into its displaced location. */
1899 append_insns (to, insn_length, buf);
1900}
1901
35669430 1902\f
c4f35dd8 1903/* The maximum number of saved registers. This should include %rip. */
90f90721 1904#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1905
e53bef9f 1906struct amd64_frame_cache
c4f35dd8
MK
1907{
1908 /* Base address. */
1909 CORE_ADDR base;
8fbca658 1910 int base_p;
c4f35dd8
MK
1911 CORE_ADDR sp_offset;
1912 CORE_ADDR pc;
1913
1914 /* Saved registers. */
e53bef9f 1915 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1916 CORE_ADDR saved_sp;
e0c62198 1917 int saved_sp_reg;
c4f35dd8
MK
1918
1919 /* Do we have a frame? */
1920 int frameless_p;
1921};
8dda9770 1922
d2449ee8 1923/* Initialize a frame cache. */
c4f35dd8 1924
d2449ee8
DJ
1925static void
1926amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1927{
c4f35dd8
MK
1928 int i;
1929
c4f35dd8
MK
1930 /* Base address. */
1931 cache->base = 0;
8fbca658 1932 cache->base_p = 0;
c4f35dd8
MK
1933 cache->sp_offset = -8;
1934 cache->pc = 0;
1935
1936 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1937 offset (that's where %rbp is supposed to be stored).
1938 The values start out as being offsets, and are later converted to
1939 addresses (at which point -1 is interpreted as an address, still meaning
1940 "invalid"). */
e53bef9f 1941 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1942 cache->saved_regs[i] = -1;
1943 cache->saved_sp = 0;
e0c62198 1944 cache->saved_sp_reg = -1;
c4f35dd8
MK
1945
1946 /* Frameless until proven otherwise. */
1947 cache->frameless_p = 1;
d2449ee8 1948}
c4f35dd8 1949
d2449ee8
DJ
1950/* Allocate and initialize a frame cache. */
1951
1952static struct amd64_frame_cache *
1953amd64_alloc_frame_cache (void)
1954{
1955 struct amd64_frame_cache *cache;
1956
1957 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1958 amd64_init_frame_cache (cache);
c4f35dd8 1959 return cache;
8dda9770 1960}
53e95fcf 1961
e0c62198
L
1962/* GCC 4.4 and later, can put code in the prologue to realign the
1963 stack pointer. Check whether PC points to such code, and update
1964 CACHE accordingly. Return the first instruction after the code
1965 sequence or CURRENT_PC, whichever is smaller. If we don't
1966 recognize the code, return PC. */
1967
1968static CORE_ADDR
1969amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1970 struct amd64_frame_cache *cache)
1971{
1972 /* There are 2 code sequences to re-align stack before the frame
1973 gets set up:
1974
1975 1. Use a caller-saved saved register:
1976
1977 leaq 8(%rsp), %reg
1978 andq $-XXX, %rsp
1979 pushq -8(%reg)
1980
1981 2. Use a callee-saved saved register:
1982
1983 pushq %reg
1984 leaq 16(%rsp), %reg
1985 andq $-XXX, %rsp
1986 pushq -8(%reg)
1987
1988 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1989
1990 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1991 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1992 */
1993
1994 gdb_byte buf[18];
1995 int reg, r;
1996 int offset, offset_and;
e0c62198 1997
bae8a07a 1998 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1999 return pc;
2000
2001 /* Check caller-saved saved register. The first instruction has
2002 to be "leaq 8(%rsp), %reg". */
2003 if ((buf[0] & 0xfb) == 0x48
2004 && buf[1] == 0x8d
2005 && buf[3] == 0x24
2006 && buf[4] == 0x8)
2007 {
2008 /* MOD must be binary 10 and R/M must be binary 100. */
2009 if ((buf[2] & 0xc7) != 0x44)
2010 return pc;
2011
2012 /* REG has register number. */
2013 reg = (buf[2] >> 3) & 7;
2014
2015 /* Check the REX.R bit. */
2016 if (buf[0] == 0x4c)
2017 reg += 8;
2018
2019 offset = 5;
2020 }
2021 else
2022 {
2023 /* Check callee-saved saved register. The first instruction
2024 has to be "pushq %reg". */
2025 reg = 0;
2026 if ((buf[0] & 0xf8) == 0x50)
2027 offset = 0;
2028 else if ((buf[0] & 0xf6) == 0x40
2029 && (buf[1] & 0xf8) == 0x50)
2030 {
2031 /* Check the REX.B bit. */
2032 if ((buf[0] & 1) != 0)
2033 reg = 8;
2034
2035 offset = 1;
2036 }
2037 else
2038 return pc;
2039
2040 /* Get register. */
2041 reg += buf[offset] & 0x7;
2042
2043 offset++;
2044
2045 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2046 if ((buf[offset] & 0xfb) != 0x48
2047 || buf[offset + 1] != 0x8d
2048 || buf[offset + 3] != 0x24
2049 || buf[offset + 4] != 0x10)
2050 return pc;
2051
2052 /* MOD must be binary 10 and R/M must be binary 100. */
2053 if ((buf[offset + 2] & 0xc7) != 0x44)
2054 return pc;
2055
2056 /* REG has register number. */
2057 r = (buf[offset + 2] >> 3) & 7;
2058
2059 /* Check the REX.R bit. */
2060 if (buf[offset] == 0x4c)
2061 r += 8;
2062
2063 /* Registers in pushq and leaq have to be the same. */
2064 if (reg != r)
2065 return pc;
2066
2067 offset += 5;
2068 }
2069
2070 /* Rigister can't be %rsp nor %rbp. */
2071 if (reg == 4 || reg == 5)
2072 return pc;
2073
2074 /* The next instruction has to be "andq $-XXX, %rsp". */
2075 if (buf[offset] != 0x48
2076 || buf[offset + 2] != 0xe4
2077 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2078 return pc;
2079
2080 offset_and = offset;
2081 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2082
2083 /* The next instruction has to be "pushq -8(%reg)". */
2084 r = 0;
2085 if (buf[offset] == 0xff)
2086 offset++;
2087 else if ((buf[offset] & 0xf6) == 0x40
2088 && buf[offset + 1] == 0xff)
2089 {
2090 /* Check the REX.B bit. */
2091 if ((buf[offset] & 0x1) != 0)
2092 r = 8;
2093 offset += 2;
2094 }
2095 else
2096 return pc;
2097
2098 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2099 01. */
2100 if (buf[offset + 1] != 0xf8
2101 || (buf[offset] & 0xf8) != 0x70)
2102 return pc;
2103
2104 /* R/M has register. */
2105 r += buf[offset] & 7;
2106
2107 /* Registers in leaq and pushq have to be the same. */
2108 if (reg != r)
2109 return pc;
2110
2111 if (current_pc > pc + offset_and)
35669430 2112 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198 2113
325fac50 2114 return std::min (pc + offset + 2, current_pc);
e0c62198
L
2115}
2116
ac142d96
L
2117/* Similar to amd64_analyze_stack_align for x32. */
2118
2119static CORE_ADDR
2120amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2121 struct amd64_frame_cache *cache)
2122{
2123 /* There are 2 code sequences to re-align stack before the frame
2124 gets set up:
2125
2126 1. Use a caller-saved saved register:
2127
2128 leaq 8(%rsp), %reg
2129 andq $-XXX, %rsp
2130 pushq -8(%reg)
2131
2132 or
2133
2134 [addr32] leal 8(%rsp), %reg
2135 andl $-XXX, %esp
2136 [addr32] pushq -8(%reg)
2137
2138 2. Use a callee-saved saved register:
2139
2140 pushq %reg
2141 leaq 16(%rsp), %reg
2142 andq $-XXX, %rsp
2143 pushq -8(%reg)
2144
2145 or
2146
2147 pushq %reg
2148 [addr32] leal 16(%rsp), %reg
2149 andl $-XXX, %esp
2150 [addr32] pushq -8(%reg)
2151
2152 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2153
2154 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2155 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2156
2157 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2158
2159 0x83 0xe4 0xf0 andl $-16, %esp
2160 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2161 */
2162
2163 gdb_byte buf[19];
2164 int reg, r;
2165 int offset, offset_and;
2166
2167 if (target_read_memory (pc, buf, sizeof buf))
2168 return pc;
2169
2170 /* Skip optional addr32 prefix. */
2171 offset = buf[0] == 0x67 ? 1 : 0;
2172
2173 /* Check caller-saved saved register. The first instruction has
2174 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2175 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2176 && buf[offset + 1] == 0x8d
2177 && buf[offset + 3] == 0x24
2178 && buf[offset + 4] == 0x8)
2179 {
2180 /* MOD must be binary 10 and R/M must be binary 100. */
2181 if ((buf[offset + 2] & 0xc7) != 0x44)
2182 return pc;
2183
2184 /* REG has register number. */
2185 reg = (buf[offset + 2] >> 3) & 7;
2186
2187 /* Check the REX.R bit. */
2188 if ((buf[offset] & 0x4) != 0)
2189 reg += 8;
2190
2191 offset += 5;
2192 }
2193 else
2194 {
2195 /* Check callee-saved saved register. The first instruction
2196 has to be "pushq %reg". */
2197 reg = 0;
2198 if ((buf[offset] & 0xf6) == 0x40
2199 && (buf[offset + 1] & 0xf8) == 0x50)
2200 {
2201 /* Check the REX.B bit. */
2202 if ((buf[offset] & 1) != 0)
2203 reg = 8;
2204
2205 offset += 1;
2206 }
2207 else if ((buf[offset] & 0xf8) != 0x50)
2208 return pc;
2209
2210 /* Get register. */
2211 reg += buf[offset] & 0x7;
2212
2213 offset++;
2214
2215 /* Skip optional addr32 prefix. */
2216 if (buf[offset] == 0x67)
2217 offset++;
2218
2219 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2220 "leal 16(%rsp), %reg". */
2221 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2222 || buf[offset + 1] != 0x8d
2223 || buf[offset + 3] != 0x24
2224 || buf[offset + 4] != 0x10)
2225 return pc;
2226
2227 /* MOD must be binary 10 and R/M must be binary 100. */
2228 if ((buf[offset + 2] & 0xc7) != 0x44)
2229 return pc;
2230
2231 /* REG has register number. */
2232 r = (buf[offset + 2] >> 3) & 7;
2233
2234 /* Check the REX.R bit. */
2235 if ((buf[offset] & 0x4) != 0)
2236 r += 8;
2237
2238 /* Registers in pushq and leaq have to be the same. */
2239 if (reg != r)
2240 return pc;
2241
2242 offset += 5;
2243 }
2244
2245 /* Rigister can't be %rsp nor %rbp. */
2246 if (reg == 4 || reg == 5)
2247 return pc;
2248
2249 /* The next instruction may be "andq $-XXX, %rsp" or
2250 "andl $-XXX, %esp". */
2251 if (buf[offset] != 0x48)
2252 offset--;
2253
2254 if (buf[offset + 2] != 0xe4
2255 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2256 return pc;
2257
2258 offset_and = offset;
2259 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2260
2261 /* Skip optional addr32 prefix. */
2262 if (buf[offset] == 0x67)
2263 offset++;
2264
2265 /* The next instruction has to be "pushq -8(%reg)". */
2266 r = 0;
2267 if (buf[offset] == 0xff)
2268 offset++;
2269 else if ((buf[offset] & 0xf6) == 0x40
2270 && buf[offset + 1] == 0xff)
2271 {
2272 /* Check the REX.B bit. */
2273 if ((buf[offset] & 0x1) != 0)
2274 r = 8;
2275 offset += 2;
2276 }
2277 else
2278 return pc;
2279
2280 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2281 01. */
2282 if (buf[offset + 1] != 0xf8
2283 || (buf[offset] & 0xf8) != 0x70)
2284 return pc;
2285
2286 /* R/M has register. */
2287 r += buf[offset] & 7;
2288
2289 /* Registers in leaq and pushq have to be the same. */
2290 if (reg != r)
2291 return pc;
2292
2293 if (current_pc > pc + offset_and)
2294 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2295
325fac50 2296 return std::min (pc + offset + 2, current_pc);
ac142d96
L
2297}
2298
c4f35dd8
MK
2299/* Do a limited analysis of the prologue at PC and update CACHE
2300 accordingly. Bail out early if CURRENT_PC is reached. Return the
2301 address where the analysis stopped.
2302
2303 We will handle only functions beginning with:
2304
2305 pushq %rbp 0x55
50f1ae7b 2306 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2307
649e6d92
MK
2308 or (for the X32 ABI):
2309
2310 pushq %rbp 0x55
2311 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2312
2313 Any function that doesn't start with one of these sequences will be
2314 assumed to have no prologue and thus no valid frame pointer in
2315 %rbp. */
c4f35dd8
MK
2316
2317static CORE_ADDR
e17a4113
UW
2318amd64_analyze_prologue (struct gdbarch *gdbarch,
2319 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2320 struct amd64_frame_cache *cache)
53e95fcf 2321{
e17a4113 2322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
50f1ae7b
DE
2323 /* There are two variations of movq %rsp, %rbp. */
2324 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2325 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2326 /* Ditto for movl %esp, %ebp. */
2327 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2328 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2329
d8de1ef7
MK
2330 gdb_byte buf[3];
2331 gdb_byte op;
c4f35dd8
MK
2332
2333 if (current_pc <= pc)
2334 return current_pc;
2335
ac142d96
L
2336 if (gdbarch_ptr_bit (gdbarch) == 32)
2337 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2338 else
2339 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2340
bae8a07a 2341 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8
MK
2342
2343 if (op == 0x55) /* pushq %rbp */
2344 {
2345 /* Take into account that we've executed the `pushq %rbp' that
2346 starts this instruction sequence. */
90f90721 2347 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2348 cache->sp_offset += 8;
2349
2350 /* If that's all, return now. */
2351 if (current_pc <= pc + 1)
2352 return current_pc;
2353
bae8a07a 2354 read_code (pc + 1, buf, 3);
c4f35dd8 2355
649e6d92
MK
2356 /* Check for `movq %rsp, %rbp'. */
2357 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2358 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2359 {
2360 /* OK, we actually have a frame. */
2361 cache->frameless_p = 0;
2362 return pc + 4;
2363 }
2364
2365 /* For X32, also check for `movq %esp, %ebp'. */
2366 if (gdbarch_ptr_bit (gdbarch) == 32)
2367 {
2368 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2369 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2370 {
2371 /* OK, we actually have a frame. */
2372 cache->frameless_p = 0;
2373 return pc + 3;
2374 }
2375 }
2376
2377 return pc + 1;
c4f35dd8
MK
2378 }
2379
2380 return pc;
53e95fcf
JS
2381}
2382
df15bd07
JK
2383/* Work around false termination of prologue - GCC PR debug/48827.
2384
2385 START_PC is the first instruction of a function, PC is its minimal already
2386 determined advanced address. Function returns PC if it has nothing to do.
2387
2388 84 c0 test %al,%al
2389 74 23 je after
2390 <-- here is 0 lines advance - the false prologue end marker.
2391 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2392 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2393 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2394 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2395 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2396 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2397 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2398 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2399 after: */
c4f35dd8
MK
2400
2401static CORE_ADDR
df15bd07 2402amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2403{
08711b9a
JK
2404 struct symtab_and_line start_pc_sal, next_sal;
2405 gdb_byte buf[4 + 8 * 7];
2406 int offset, xmmreg;
c4f35dd8 2407
08711b9a
JK
2408 if (pc == start_pc)
2409 return pc;
2410
2411 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2412 if (start_pc_sal.symtab == NULL
43f3e411
DE
2413 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2414 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
08711b9a
JK
2415 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2416 return pc;
2417
2418 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2419 if (next_sal.line != start_pc_sal.line)
2420 return pc;
2421
2422 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2423 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2424 return pc;
2425
2426 /* test %al,%al */
2427 if (buf[0] != 0x84 || buf[1] != 0xc0)
2428 return pc;
2429 /* je AFTER */
2430 if (buf[2] != 0x74)
2431 return pc;
2432
2433 offset = 4;
2434 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2435 {
bede5f5f 2436 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2437 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
bede5f5f 2438 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2439 return pc;
2440
bede5f5f
JK
2441 /* 0b01?????? */
2442 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2443 {
2444 /* 8-bit displacement. */
2445 offset += 4;
2446 }
bede5f5f
JK
2447 /* 0b10?????? */
2448 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2449 {
2450 /* 32-bit displacement. */
2451 offset += 7;
2452 }
2453 else
2454 return pc;
2455 }
2456
2457 /* je AFTER */
2458 if (offset - 4 != buf[3])
2459 return pc;
2460
2461 return next_sal.end;
53e95fcf 2462}
df15bd07
JK
2463
2464/* Return PC of first real instruction. */
2465
2466static CORE_ADDR
2467amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2468{
2469 struct amd64_frame_cache cache;
2470 CORE_ADDR pc;
56bf0743
KB
2471 CORE_ADDR func_addr;
2472
2473 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2474 {
2475 CORE_ADDR post_prologue_pc
2476 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2477 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
2478
2479 /* Clang always emits a line note before the prologue and another
2480 one after. We trust clang to emit usable line notes. */
2481 if (post_prologue_pc
43f3e411
DE
2482 && (cust != NULL
2483 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 2484 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 2485 return std::max (start_pc, post_prologue_pc);
56bf0743 2486 }
df15bd07
JK
2487
2488 amd64_init_frame_cache (&cache);
2489 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2490 &cache);
2491 if (cache.frameless_p)
2492 return start_pc;
2493
2494 return amd64_skip_xmm_prologue (pc, start_pc);
2495}
c4f35dd8 2496\f
53e95fcf 2497
c4f35dd8
MK
2498/* Normal frames. */
2499
8fbca658
PA
2500static void
2501amd64_frame_cache_1 (struct frame_info *this_frame,
2502 struct amd64_frame_cache *cache)
6d686a84 2503{
e17a4113
UW
2504 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2506 gdb_byte buf[8];
6d686a84 2507 int i;
6d686a84 2508
10458914 2509 cache->pc = get_frame_func (this_frame);
c4f35dd8 2510 if (cache->pc != 0)
e17a4113
UW
2511 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2512 cache);
c4f35dd8
MK
2513
2514 if (cache->frameless_p)
2515 {
4a28816e
MK
2516 /* We didn't find a valid frame. If we're at the start of a
2517 function, or somewhere half-way its prologue, the function's
2518 frame probably hasn't been fully setup yet. Try to
2519 reconstruct the base address for the stack frame by looking
2520 at the stack pointer. For truly "frameless" functions this
2521 might work too. */
c4f35dd8 2522
e0c62198
L
2523 if (cache->saved_sp_reg != -1)
2524 {
8fbca658
PA
2525 /* Stack pointer has been saved. */
2526 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2527 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2528
e0c62198
L
2529 /* We're halfway aligning the stack. */
2530 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2531 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2532
2533 /* This will be added back below. */
2534 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2535 }
2536 else
2537 {
2538 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2539 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2540 + cache->sp_offset;
e0c62198 2541 }
c4f35dd8 2542 }
35883a3f
MK
2543 else
2544 {
10458914 2545 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2546 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2547 }
c4f35dd8
MK
2548
2549 /* Now that we have the base address for the stack frame we can
2550 calculate the value of %rsp in the calling frame. */
2551 cache->saved_sp = cache->base + 16;
2552
35883a3f
MK
2553 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2554 frame we find it at the same offset from the reconstructed base
e0c62198
L
2555 address. If we're halfway aligning the stack, %rip is handled
2556 differently (see above). */
2557 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2558 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2559
c4f35dd8
MK
2560 /* Adjust all the saved registers such that they contain addresses
2561 instead of offsets. */
e53bef9f 2562 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2563 if (cache->saved_regs[i] != -1)
2564 cache->saved_regs[i] += cache->base;
2565
8fbca658
PA
2566 cache->base_p = 1;
2567}
2568
2569static struct amd64_frame_cache *
2570amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2571{
8fbca658
PA
2572 struct amd64_frame_cache *cache;
2573
2574 if (*this_cache)
9a3c8263 2575 return (struct amd64_frame_cache *) *this_cache;
8fbca658
PA
2576
2577 cache = amd64_alloc_frame_cache ();
2578 *this_cache = cache;
2579
492d29ea 2580 TRY
8fbca658
PA
2581 {
2582 amd64_frame_cache_1 (this_frame, cache);
2583 }
492d29ea 2584 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2585 {
2586 if (ex.error != NOT_AVAILABLE_ERROR)
2587 throw_exception (ex);
2588 }
492d29ea 2589 END_CATCH
8fbca658 2590
c4f35dd8 2591 return cache;
6d686a84
ML
2592}
2593
8fbca658
PA
2594static enum unwind_stop_reason
2595amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2596 void **this_cache)
2597{
2598 struct amd64_frame_cache *cache =
2599 amd64_frame_cache (this_frame, this_cache);
2600
2601 if (!cache->base_p)
2602 return UNWIND_UNAVAILABLE;
2603
2604 /* This marks the outermost frame. */
2605 if (cache->base == 0)
2606 return UNWIND_OUTERMOST;
2607
2608 return UNWIND_NO_REASON;
2609}
2610
c4f35dd8 2611static void
10458914 2612amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
e53bef9f 2613 struct frame_id *this_id)
c4f35dd8 2614{
e53bef9f 2615 struct amd64_frame_cache *cache =
10458914 2616 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2617
8fbca658 2618 if (!cache->base_p)
5ce0145d
PA
2619 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2620 else if (cache->base == 0)
2621 {
2622 /* This marks the outermost frame. */
2623 return;
2624 }
2625 else
2626 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2627}
e76e1718 2628
10458914
DJ
2629static struct value *
2630amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2631 int regnum)
53e95fcf 2632{
10458914 2633 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2634 struct amd64_frame_cache *cache =
10458914 2635 amd64_frame_cache (this_frame, this_cache);
e76e1718 2636
c4f35dd8 2637 gdb_assert (regnum >= 0);
b1ab997b 2638
2ae02b47 2639 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2640 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2641
e53bef9f 2642 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2643 return frame_unwind_got_memory (this_frame, regnum,
2644 cache->saved_regs[regnum]);
e76e1718 2645
10458914 2646 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2647}
e76e1718 2648
e53bef9f 2649static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
2650{
2651 NORMAL_FRAME,
8fbca658 2652 amd64_frame_unwind_stop_reason,
e53bef9f 2653 amd64_frame_this_id,
10458914
DJ
2654 amd64_frame_prev_register,
2655 NULL,
2656 default_frame_sniffer
c4f35dd8 2657};
c4f35dd8 2658\f
6710bf39
SS
2659/* Generate a bytecode expression to get the value of the saved PC. */
2660
2661static void
2662amd64_gen_return_address (struct gdbarch *gdbarch,
2663 struct agent_expr *ax, struct axs_value *value,
2664 CORE_ADDR scope)
2665{
2666 /* The following sequence assumes the traditional use of the base
2667 register. */
2668 ax_reg (ax, AMD64_RBP_REGNUM);
2669 ax_const_l (ax, 8);
2670 ax_simple (ax, aop_add);
2671 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2672 value->kind = axs_lvalue_memory;
2673}
2674\f
e76e1718 2675
c4f35dd8
MK
2676/* Signal trampolines. */
2677
2678/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2679 64-bit variants. This would require using identical frame caches
2680 on both platforms. */
2681
e53bef9f 2682static struct amd64_frame_cache *
10458914 2683amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2684{
e17a4113
UW
2685 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2686 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2687 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2688 struct amd64_frame_cache *cache;
c4f35dd8 2689 CORE_ADDR addr;
d8de1ef7 2690 gdb_byte buf[8];
2b5e0749 2691 int i;
c4f35dd8
MK
2692
2693 if (*this_cache)
9a3c8263 2694 return (struct amd64_frame_cache *) *this_cache;
c4f35dd8 2695
e53bef9f 2696 cache = amd64_alloc_frame_cache ();
c4f35dd8 2697
492d29ea 2698 TRY
8fbca658
PA
2699 {
2700 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2701 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2702
2703 addr = tdep->sigcontext_addr (this_frame);
2704 gdb_assert (tdep->sc_reg_offset);
2705 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2706 for (i = 0; i < tdep->sc_num_regs; i++)
2707 if (tdep->sc_reg_offset[i] != -1)
2708 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2709
8fbca658
PA
2710 cache->base_p = 1;
2711 }
492d29ea 2712 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2713 {
2714 if (ex.error != NOT_AVAILABLE_ERROR)
2715 throw_exception (ex);
2716 }
492d29ea 2717 END_CATCH
c4f35dd8
MK
2718
2719 *this_cache = cache;
2720 return cache;
53e95fcf
JS
2721}
2722
8fbca658
PA
2723static enum unwind_stop_reason
2724amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2725 void **this_cache)
2726{
2727 struct amd64_frame_cache *cache =
2728 amd64_sigtramp_frame_cache (this_frame, this_cache);
2729
2730 if (!cache->base_p)
2731 return UNWIND_UNAVAILABLE;
2732
2733 return UNWIND_NO_REASON;
2734}
2735
c4f35dd8 2736static void
10458914 2737amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
e53bef9f 2738 void **this_cache, struct frame_id *this_id)
c4f35dd8 2739{
e53bef9f 2740 struct amd64_frame_cache *cache =
10458914 2741 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2742
8fbca658 2743 if (!cache->base_p)
5ce0145d
PA
2744 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2745 else if (cache->base == 0)
2746 {
2747 /* This marks the outermost frame. */
2748 return;
2749 }
2750 else
2751 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2752}
2753
10458914
DJ
2754static struct value *
2755amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2756 void **this_cache, int regnum)
c4f35dd8
MK
2757{
2758 /* Make sure we've initialized the cache. */
10458914 2759 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2760
10458914 2761 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2762}
2763
10458914
DJ
2764static int
2765amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2766 struct frame_info *this_frame,
2767 void **this_cache)
c4f35dd8 2768{
10458914 2769 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
911bc6ee
MK
2770
2771 /* We shouldn't even bother if we don't have a sigcontext_addr
2772 handler. */
2773 if (tdep->sigcontext_addr == NULL)
10458914 2774 return 0;
911bc6ee
MK
2775
2776 if (tdep->sigtramp_p != NULL)
2777 {
10458914
DJ
2778 if (tdep->sigtramp_p (this_frame))
2779 return 1;
911bc6ee 2780 }
c4f35dd8 2781
911bc6ee 2782 if (tdep->sigtramp_start != 0)
1c3545ae 2783 {
10458914 2784 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2785
911bc6ee
MK
2786 gdb_assert (tdep->sigtramp_end != 0);
2787 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2788 return 1;
1c3545ae 2789 }
c4f35dd8 2790
10458914 2791 return 0;
c4f35dd8 2792}
10458914
DJ
2793
2794static const struct frame_unwind amd64_sigtramp_frame_unwind =
2795{
2796 SIGTRAMP_FRAME,
8fbca658 2797 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2798 amd64_sigtramp_frame_this_id,
2799 amd64_sigtramp_frame_prev_register,
2800 NULL,
2801 amd64_sigtramp_frame_sniffer
2802};
c4f35dd8
MK
2803\f
2804
2805static CORE_ADDR
10458914 2806amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2807{
e53bef9f 2808 struct amd64_frame_cache *cache =
10458914 2809 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2810
2811 return cache->base;
2812}
2813
e53bef9f 2814static const struct frame_base amd64_frame_base =
c4f35dd8 2815{
e53bef9f
MK
2816 &amd64_frame_unwind,
2817 amd64_frame_base_address,
2818 amd64_frame_base_address,
2819 amd64_frame_base_address
c4f35dd8
MK
2820};
2821
872761f4
MS
2822/* Normal frames, but in a function epilogue. */
2823
c9cf6e20
MG
2824/* Implement the stack_frame_destroyed_p gdbarch method.
2825
2826 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2827 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2828 the function's stack frame. */
2829
2830static int
c9cf6e20 2831amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2832{
2833 gdb_byte insn;
43f3e411 2834 struct compunit_symtab *cust;
e0d00bc7 2835
43f3e411
DE
2836 cust = find_pc_compunit_symtab (pc);
2837 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2838 return 0;
872761f4
MS
2839
2840 if (target_read_memory (pc, &insn, 1))
2841 return 0; /* Can't read memory at pc. */
2842
2843 if (insn != 0xc3) /* 'ret' instruction. */
2844 return 0;
2845
2846 return 1;
2847}
2848
2849static int
2850amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2851 struct frame_info *this_frame,
2852 void **this_prologue_cache)
2853{
2854 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2855 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2856 get_frame_pc (this_frame));
872761f4
MS
2857 else
2858 return 0;
2859}
2860
2861static struct amd64_frame_cache *
2862amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2863{
2864 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2866 struct amd64_frame_cache *cache;
6c10c06b 2867 gdb_byte buf[8];
872761f4
MS
2868
2869 if (*this_cache)
9a3c8263 2870 return (struct amd64_frame_cache *) *this_cache;
872761f4
MS
2871
2872 cache = amd64_alloc_frame_cache ();
2873 *this_cache = cache;
2874
492d29ea 2875 TRY
8fbca658
PA
2876 {
2877 /* Cache base will be %esp plus cache->sp_offset (-8). */
2878 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2879 cache->base = extract_unsigned_integer (buf, 8,
2880 byte_order) + cache->sp_offset;
2881
2882 /* Cache pc will be the frame func. */
2883 cache->pc = get_frame_pc (this_frame);
872761f4 2884
8fbca658
PA
2885 /* The saved %esp will be at cache->base plus 16. */
2886 cache->saved_sp = cache->base + 16;
872761f4 2887
8fbca658
PA
2888 /* The saved %eip will be at cache->base plus 8. */
2889 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2890
8fbca658
PA
2891 cache->base_p = 1;
2892 }
492d29ea 2893 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2894 {
2895 if (ex.error != NOT_AVAILABLE_ERROR)
2896 throw_exception (ex);
2897 }
492d29ea 2898 END_CATCH
872761f4
MS
2899
2900 return cache;
2901}
2902
8fbca658
PA
2903static enum unwind_stop_reason
2904amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2905 void **this_cache)
2906{
2907 struct amd64_frame_cache *cache
2908 = amd64_epilogue_frame_cache (this_frame, this_cache);
2909
2910 if (!cache->base_p)
2911 return UNWIND_UNAVAILABLE;
2912
2913 return UNWIND_NO_REASON;
2914}
2915
872761f4
MS
2916static void
2917amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2918 void **this_cache,
2919 struct frame_id *this_id)
2920{
2921 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2922 this_cache);
2923
8fbca658 2924 if (!cache->base_p)
5ce0145d
PA
2925 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2926 else
2927 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
872761f4
MS
2928}
2929
2930static const struct frame_unwind amd64_epilogue_frame_unwind =
2931{
2932 NORMAL_FRAME,
8fbca658 2933 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
2934 amd64_epilogue_frame_this_id,
2935 amd64_frame_prev_register,
2936 NULL,
2937 amd64_epilogue_frame_sniffer
2938};
2939
166f4c7b 2940static struct frame_id
10458914 2941amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
166f4c7b 2942{
c4f35dd8
MK
2943 CORE_ADDR fp;
2944
10458914 2945 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 2946
10458914 2947 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
2948}
2949
8b148df9
AC
2950/* 16 byte align the SP per frame requirements. */
2951
2952static CORE_ADDR
e53bef9f 2953amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
2954{
2955 return sp & -(CORE_ADDR)16;
2956}
473f17b0
MK
2957\f
2958
593adc23
MK
2959/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2960 in the floating-point register set REGSET to register cache
2961 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2962
2963static void
e53bef9f
MK
2964amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2965 int regnum, const void *fpregs, size_t len)
473f17b0 2966{
ac7936df 2967 struct gdbarch *gdbarch = regcache->arch ();
09424cff 2968 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 2969
1528345d 2970 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 2971 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 2972}
8b148df9 2973
593adc23
MK
2974/* Collect register REGNUM from the register cache REGCACHE and store
2975 it in the buffer specified by FPREGS and LEN as described by the
2976 floating-point register set REGSET. If REGNUM is -1, do this for
2977 all registers in REGSET. */
2978
2979static void
2980amd64_collect_fpregset (const struct regset *regset,
2981 const struct regcache *regcache,
2982 int regnum, void *fpregs, size_t len)
2983{
ac7936df 2984 struct gdbarch *gdbarch = regcache->arch ();
09424cff 2985 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
593adc23 2986
1528345d 2987 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
2988 amd64_collect_fxsave (regcache, regnum, fpregs);
2989}
2990
8f0435f7 2991const struct regset amd64_fpregset =
ecc37a5a
AA
2992 {
2993 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2994 };
c6b33596
MK
2995\f
2996
436675d3
PA
2997/* Figure out where the longjmp will land. Slurp the jmp_buf out of
2998 %rdi. We expect its value to be a pointer to the jmp_buf structure
2999 from which we extract the address that we will land at. This
3000 address is copied into PC. This routine returns non-zero on
3001 success. */
3002
3003static int
3004amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3005{
3006 gdb_byte buf[8];
3007 CORE_ADDR jb_addr;
3008 struct gdbarch *gdbarch = get_frame_arch (frame);
3009 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
0dfff4cb 3010 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3011
3012 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3013 longjmp will land. */
3014 if (jb_pc_offset == -1)
3015 return 0;
3016
3017 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
3018 jb_addr= extract_typed_address
3019 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
3020 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3021 return 0;
3022
0dfff4cb 3023 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3024
3025 return 1;
3026}
3027
cf648174
HZ
3028static const int amd64_record_regmap[] =
3029{
3030 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3031 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3032 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3033 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3034 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3035 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3036};
3037
1d509aa6
MM
3038/* Implement the "in_indirect_branch_thunk" gdbarch function. */
3039
3040static bool
3041amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3042{
3043 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3044 AMD64_RAX_REGNUM,
3045 AMD64_RIP_REGNUM);
3046}
3047
2213a65d 3048void
c55a47e7 3049amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3050 const target_desc *default_tdesc)
53e95fcf 3051{
0c1a73d6 3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 3053 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
3054 static const char *const stap_integer_prefixes[] = { "$", NULL };
3055 static const char *const stap_register_prefixes[] = { "%", NULL };
3056 static const char *const stap_register_indirection_prefixes[] = { "(",
3057 NULL };
3058 static const char *const stap_register_indirection_suffixes[] = { ")",
3059 NULL };
53e95fcf 3060
473f17b0
MK
3061 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3062 floating-point registers. */
3063 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 3064 tdep->fpregset = &amd64_fpregset;
473f17b0 3065
90884b2b 3066 if (! tdesc_has_registers (tdesc))
c55a47e7 3067 tdesc = default_tdesc;
90884b2b
L
3068 tdep->tdesc = tdesc;
3069
3070 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3071 tdep->register_names = amd64_register_names;
3072
01f9f808
MS
3073 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3074 {
3075 tdep->zmmh_register_names = amd64_zmmh_names;
3076 tdep->k_register_names = amd64_k_names;
3077 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3078 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3079
3080 tdep->num_zmm_regs = 32;
3081 tdep->num_xmm_avx512_regs = 16;
3082 tdep->num_ymm_avx512_regs = 16;
3083
3084 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3085 tdep->k0_regnum = AMD64_K0_REGNUM;
3086 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3087 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3088 }
3089
a055a187
L
3090 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3091 {
3092 tdep->ymmh_register_names = amd64_ymmh_names;
3093 tdep->num_ymm_regs = 16;
3094 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3095 }
3096
e43e105e
WT
3097 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3098 {
3099 tdep->mpx_register_names = amd64_mpx_names;
3100 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3101 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3102 }
3103
2735833d
WT
3104 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3105 {
3106 const struct tdesc_feature *feature =
3107 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3108 struct tdesc_arch_data *tdesc_data_segments =
3109 (struct tdesc_arch_data *) info.tdep_info;
3110
3111 tdesc_numbered_register (feature, tdesc_data_segments,
3112 AMD64_FSBASE_REGNUM, "fs_base");
3113 tdesc_numbered_register (feature, tdesc_data_segments,
3114 AMD64_GSBASE_REGNUM, "gs_base");
3115 }
3116
51547df6
MS
3117 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3118 {
3119 tdep->pkeys_register_names = amd64_pkeys_names;
3120 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3121 tdep->num_pkeys_regs = 1;
3122 }
3123
fe01d668 3124 tdep->num_byte_regs = 20;
1ba53b71
L
3125 tdep->num_word_regs = 16;
3126 tdep->num_dword_regs = 16;
3127 /* Avoid wiring in the MMX registers for now. */
3128 tdep->num_mmx_regs = 0;
3129
3543a589
TT
3130 set_gdbarch_pseudo_register_read_value (gdbarch,
3131 amd64_pseudo_register_read_value);
1ba53b71
L
3132 set_gdbarch_pseudo_register_write (gdbarch,
3133 amd64_pseudo_register_write);
62e5fd57
MK
3134 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3135 amd64_ax_pseudo_register_collect);
1ba53b71
L
3136
3137 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3138
5716833c 3139 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3140 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3141 tdep->num_xmm_regs = 16;
53e95fcf 3142
0c1a73d6 3143 /* This is what all the fuss is about. */
53e95fcf
JS
3144 set_gdbarch_long_bit (gdbarch, 64);
3145 set_gdbarch_long_long_bit (gdbarch, 64);
3146 set_gdbarch_ptr_bit (gdbarch, 64);
3147
e53bef9f
MK
3148 /* In contrast to the i386, on AMD64 a `long double' actually takes
3149 up 128 bits, even though it's still based on the i387 extended
3150 floating-point format which has only 80 significant bits. */
b83b026c
MK
3151 set_gdbarch_long_double_bit (gdbarch, 128);
3152
e53bef9f 3153 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3154
3155 /* Register numbers of various important registers. */
90f90721
MK
3156 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3157 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3158 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3159 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3160
e53bef9f
MK
3161 /* The "default" register numbering scheme for AMD64 is referred to
3162 as the "DWARF Register Number Mapping" in the System V psABI.
3163 The preferred debugging format for all known AMD64 targets is
3164 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3165 DWARF-1), but we provide the same mapping just in case. This
3166 mapping is also used for stabs, which GCC does support. */
3167 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3168 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3169
c4f35dd8 3170 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3171 be in use on any of the supported AMD64 targets. */
53e95fcf 3172
c4f35dd8 3173 /* Call dummy code. */
e53bef9f
MK
3174 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3175 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3176 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3177
83acabca 3178 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3179 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3180 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3181
efb1c01c 3182 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 3183
e53bef9f 3184 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3185
cf648174
HZ
3186 tdep->record_regmap = amd64_record_regmap;
3187
10458914 3188 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3189
872761f4
MS
3190 /* Hook the function epilogue frame unwinder. This unwinder is
3191 appended to the list first, so that it supercedes the other
3192 unwinders in function epilogues. */
3193 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3194
3195 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3196 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3197 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3198 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3199
436675d3 3200 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3201
3202 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3203
3204 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3205
3206 /* SystemTap variables and functions. */
05c0465e
SDJ
3207 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3208 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3209 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3210 stap_register_indirection_prefixes);
3211 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3212 stap_register_indirection_suffixes);
55aa24fb
SDJ
3213 set_gdbarch_stap_is_single_operand (gdbarch,
3214 i386_stap_is_single_operand);
3215 set_gdbarch_stap_parse_special_token (gdbarch,
3216 i386_stap_parse_special_token);
c2170eef
MM
3217 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3218 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3219 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
1d509aa6
MM
3220
3221 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3222 amd64_in_indirect_branch_thunk);
c4f35dd8 3223}
c912f608
SM
3224
3225/* Initialize ARCH for x86-64, no osabi. */
3226
3227static void
3228amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3229{
3230 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK));
3231}
fff4548b
MK
3232
3233static struct type *
3234amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3235{
3236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3237
3238 switch (regnum - tdep->eax_regnum)
3239 {
3240 case AMD64_RBP_REGNUM: /* %ebp */
3241 case AMD64_RSP_REGNUM: /* %esp */
3242 return builtin_type (gdbarch)->builtin_data_ptr;
3243 case AMD64_RIP_REGNUM: /* %eip */
3244 return builtin_type (gdbarch)->builtin_func_ptr;
3245 }
3246
3247 return i386_pseudo_register_type (gdbarch, regnum);
3248}
3249
3250void
c55a47e7 3251amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3252 const target_desc *default_tdesc)
fff4548b
MK
3253{
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fff4548b 3255
c55a47e7 3256 amd64_init_abi (info, gdbarch, default_tdesc);
fff4548b
MK
3257
3258 tdep->num_dword_regs = 17;
3259 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3260
3261 set_gdbarch_long_bit (gdbarch, 32);
3262 set_gdbarch_ptr_bit (gdbarch, 32);
3263}
90884b2b 3264
c912f608
SM
3265/* Initialize ARCH for x64-32, no osabi. */
3266
3267static void
3268amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3269{
3270 amd64_x32_init_abi (info, arch,
3271 amd64_target_description (X86_XSTATE_SSE_MASK));
3272}
3273
97de3545
JB
3274/* Return the target description for a specified XSAVE feature mask. */
3275
3276const struct target_desc *
3277amd64_target_description (uint64_t xcr0)
3278{
22916b07
YQ
3279 static target_desc *amd64_tdescs \
3280 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
3281 target_desc **tdesc;
3282
3283 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3284 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3285 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3286 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
3287
3288 if (*tdesc == NULL)
3289 *tdesc = amd64_create_target_description (xcr0, false, false);
3290
3291 return *tdesc;
97de3545
JB
3292}
3293
90884b2b
L
3294void
3295_initialize_amd64_tdep (void)
3296{
c912f608
SM
3297 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3298 amd64_none_init_abi);
3299 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3300 amd64_x32_none_init_abi);
3301
22916b07
YQ
3302#if GDB_SELF_TEST
3303 struct
3304 {
3305 const char *xml;
3306 uint64_t mask;
3307 } xml_masks[] = {
3308 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3309 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3310 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3311 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3312 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3313 { "i386/amd64-avx-mpx-avx512-pku.xml",
3314 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3315 };
3316
3317 for (auto &a : xml_masks)
3318 {
3319 auto tdesc = amd64_target_description (a.mask);
3320
3321 selftests::record_xml_tdesc (a.xml, tdesc);
3322 }
3323#endif /* GDB_SELF_TEST */
90884b2b 3324}
c4f35dd8
MK
3325\f
3326
41d041d6
MK
3327/* The 64-bit FXSAVE format differs from the 32-bit format in the
3328 sense that the instruction pointer and data pointer are simply
3329 64-bit offsets into the code segment and the data segment instead
3330 of a selector offset pair. The functions below store the upper 32
3331 bits of these pointers (instead of just the 16-bits of the segment
3332 selector). */
3333
3334/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3335 floating-point or SSE register value from *FXSAVE. If REGNUM is
3336 -1, do this for all registers. This function masks off any of the
3337 reserved bits in *FXSAVE. */
c4f35dd8
MK
3338
3339void
90f90721 3340amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3341 const void *fxsave)
c4f35dd8 3342{
ac7936df 3343 struct gdbarch *gdbarch = regcache->arch ();
20a6ec49
MD
3344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3345
41d041d6 3346 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3347
233dfcf0
L
3348 if (fxsave
3349 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3350 {
9a3c8263 3351 const gdb_byte *regs = (const gdb_byte *) fxsave;
41d041d6 3352
20a6ec49
MD
3353 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3354 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3355 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3356 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3357 }
0c1a73d6
MK
3358}
3359
a055a187
L
3360/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3361
3362void
3363amd64_supply_xsave (struct regcache *regcache, int regnum,
3364 const void *xsave)
3365{
ac7936df 3366 struct gdbarch *gdbarch = regcache->arch ();
a055a187
L
3367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3368
3369 i387_supply_xsave (regcache, regnum, xsave);
3370
233dfcf0
L
3371 if (xsave
3372 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187 3373 {
9a3c8263 3374 const gdb_byte *regs = (const gdb_byte *) xsave;
a055a187
L
3375
3376 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3377 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3378 regs + 12);
3379 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3380 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3381 regs + 20);
3382 }
3383}
3384
3c017e40
MK
3385/* Fill register REGNUM (if it is a floating-point or SSE register) in
3386 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3387 all registers. This function doesn't touch any of the reserved
3388 bits in *FXSAVE. */
3389
3390void
3391amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3392 void *fxsave)
3393{
ac7936df 3394 struct gdbarch *gdbarch = regcache->arch ();
20a6ec49 3395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3396 gdb_byte *regs = (gdb_byte *) fxsave;
3c017e40
MK
3397
3398 i387_collect_fxsave (regcache, regnum, fxsave);
3399
233dfcf0 3400 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3401 {
20a6ec49
MD
3402 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3403 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3404 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3405 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3406 }
3c017e40 3407}
a055a187 3408
7a9dd1b2 3409/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3410
3411void
3412amd64_collect_xsave (const struct regcache *regcache, int regnum,
3413 void *xsave, int gcore)
3414{
ac7936df 3415 struct gdbarch *gdbarch = regcache->arch ();
a055a187 3416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3417 gdb_byte *regs = (gdb_byte *) xsave;
a055a187
L
3418
3419 i387_collect_xsave (regcache, regnum, xsave, gcore);
3420
233dfcf0 3421 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3422 {
3423 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3424 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3425 regs + 12);
3426 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3427 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3428 regs + 20);
3429 }
3430}
This page took 1.468587 seconds and 4 git commands to generate.