Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
e53bef9f | 3 | Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
53e95fcf JS |
4 | Contributed by Jiri Smid, SuSE Labs. |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
c4f35dd8 MK |
24 | #include "arch-utils.h" |
25 | #include "block.h" | |
26 | #include "dummy-frame.h" | |
27 | #include "frame.h" | |
28 | #include "frame-base.h" | |
29 | #include "frame-unwind.h" | |
53e95fcf | 30 | #include "inferior.h" |
53e95fcf | 31 | #include "gdbcmd.h" |
c4f35dd8 MK |
32 | #include "gdbcore.h" |
33 | #include "objfiles.h" | |
53e95fcf | 34 | #include "regcache.h" |
2c261fae | 35 | #include "regset.h" |
53e95fcf | 36 | #include "symfile.h" |
c4f35dd8 | 37 | |
82dbc5f7 | 38 | #include "gdb_assert.h" |
c4f35dd8 | 39 | |
9c1488cb | 40 | #include "amd64-tdep.h" |
c4f35dd8 | 41 | #include "i387-tdep.h" |
53e95fcf | 42 | |
e53bef9f MK |
43 | /* Note that the AMD64 architecture was previously known as x86-64. |
44 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 45 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
46 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
47 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
48 | x86_64_-prefix since it's so much easier to type. */ | |
49 | ||
402ecd56 | 50 | /* Register information. */ |
c4f35dd8 | 51 | |
e53bef9f | 52 | struct amd64_register_info |
de220d0f | 53 | { |
de220d0f ML |
54 | char *name; |
55 | struct type **type; | |
56 | }; | |
53e95fcf | 57 | |
e53bef9f | 58 | static struct amd64_register_info amd64_register_info[] = |
c4f35dd8 MK |
59 | { |
60 | { "rax", &builtin_type_int64 }, | |
61 | { "rbx", &builtin_type_int64 }, | |
62 | { "rcx", &builtin_type_int64 }, | |
63 | { "rdx", &builtin_type_int64 }, | |
64 | { "rsi", &builtin_type_int64 }, | |
65 | { "rdi", &builtin_type_int64 }, | |
66 | { "rbp", &builtin_type_void_data_ptr }, | |
67 | { "rsp", &builtin_type_void_data_ptr }, | |
68 | ||
69 | /* %r8 is indeed register number 8. */ | |
70 | { "r8", &builtin_type_int64 }, | |
71 | { "r9", &builtin_type_int64 }, | |
72 | { "r10", &builtin_type_int64 }, | |
73 | { "r11", &builtin_type_int64 }, | |
74 | { "r12", &builtin_type_int64 }, | |
75 | { "r13", &builtin_type_int64 }, | |
76 | { "r14", &builtin_type_int64 }, | |
77 | { "r15", &builtin_type_int64 }, | |
78 | { "rip", &builtin_type_void_func_ptr }, | |
79 | { "eflags", &builtin_type_int32 }, | |
af233647 MK |
80 | { "cs", &builtin_type_int32 }, |
81 | { "ss", &builtin_type_int32 }, | |
c4f35dd8 MK |
82 | { "ds", &builtin_type_int32 }, |
83 | { "es", &builtin_type_int32 }, | |
84 | { "fs", &builtin_type_int32 }, | |
85 | { "gs", &builtin_type_int32 }, | |
86 | ||
af233647 | 87 | /* %st0 is register number 24. */ |
c4f35dd8 MK |
88 | { "st0", &builtin_type_i387_ext }, |
89 | { "st1", &builtin_type_i387_ext }, | |
90 | { "st2", &builtin_type_i387_ext }, | |
91 | { "st3", &builtin_type_i387_ext }, | |
92 | { "st4", &builtin_type_i387_ext }, | |
93 | { "st5", &builtin_type_i387_ext }, | |
94 | { "st6", &builtin_type_i387_ext }, | |
95 | { "st7", &builtin_type_i387_ext }, | |
96 | { "fctrl", &builtin_type_int32 }, | |
97 | { "fstat", &builtin_type_int32 }, | |
98 | { "ftag", &builtin_type_int32 }, | |
99 | { "fiseg", &builtin_type_int32 }, | |
100 | { "fioff", &builtin_type_int32 }, | |
101 | { "foseg", &builtin_type_int32 }, | |
102 | { "fooff", &builtin_type_int32 }, | |
103 | { "fop", &builtin_type_int32 }, | |
104 | ||
af233647 | 105 | /* %xmm0 is register number 40. */ |
c4f35dd8 MK |
106 | { "xmm0", &builtin_type_v4sf }, |
107 | { "xmm1", &builtin_type_v4sf }, | |
108 | { "xmm2", &builtin_type_v4sf }, | |
109 | { "xmm3", &builtin_type_v4sf }, | |
110 | { "xmm4", &builtin_type_v4sf }, | |
111 | { "xmm5", &builtin_type_v4sf }, | |
112 | { "xmm6", &builtin_type_v4sf }, | |
113 | { "xmm7", &builtin_type_v4sf }, | |
114 | { "xmm8", &builtin_type_v4sf }, | |
115 | { "xmm9", &builtin_type_v4sf }, | |
116 | { "xmm10", &builtin_type_v4sf }, | |
117 | { "xmm11", &builtin_type_v4sf }, | |
118 | { "xmm12", &builtin_type_v4sf }, | |
119 | { "xmm13", &builtin_type_v4sf }, | |
120 | { "xmm14", &builtin_type_v4sf }, | |
121 | { "xmm15", &builtin_type_v4sf }, | |
122 | { "mxcsr", &builtin_type_int32 } | |
0e04a514 ML |
123 | }; |
124 | ||
c4f35dd8 | 125 | /* Total number of registers. */ |
e53bef9f MK |
126 | #define AMD64_NUM_REGS \ |
127 | (sizeof (amd64_register_info) / sizeof (amd64_register_info[0])) | |
de220d0f | 128 | |
c4f35dd8 | 129 | /* Return the name of register REGNUM. */ |
b6779aa2 | 130 | |
c4f35dd8 | 131 | static const char * |
e53bef9f | 132 | amd64_register_name (int regnum) |
53e95fcf | 133 | { |
e53bef9f MK |
134 | if (regnum >= 0 && regnum < AMD64_NUM_REGS) |
135 | return amd64_register_info[regnum].name; | |
53e95fcf | 136 | |
c4f35dd8 | 137 | return NULL; |
53e95fcf JS |
138 | } |
139 | ||
140 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 141 | register REGNUM. */ |
53e95fcf | 142 | |
c4f35dd8 | 143 | static struct type * |
e53bef9f | 144 | amd64_register_type (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 145 | { |
e53bef9f | 146 | gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS); |
4657573b | 147 | |
e53bef9f | 148 | return *amd64_register_info[regnum].type; |
53e95fcf JS |
149 | } |
150 | ||
c4f35dd8 MK |
151 | /* DWARF Register Number Mapping as defined in the System V psABI, |
152 | section 3.6. */ | |
53e95fcf | 153 | |
e53bef9f | 154 | static int amd64_dwarf_regmap[] = |
0e04a514 | 155 | { |
c4f35dd8 | 156 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
157 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
158 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
159 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
160 | |
161 | /* Frame Pointer Register RBP. */ | |
90f90721 | 162 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
163 | |
164 | /* Stack Pointer Register RSP. */ | |
90f90721 | 165 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
166 | |
167 | /* Extended Integer Registers 8 - 15. */ | |
168 | 8, 9, 10, 11, 12, 13, 14, 15, | |
169 | ||
59207364 | 170 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 171 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
172 | |
173 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
174 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
175 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
176 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
177 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
178 | |
179 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
180 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
181 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
182 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
183 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
184 | |
185 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
186 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
187 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
188 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
189 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7 | |
c4f35dd8 | 190 | }; |
0e04a514 | 191 | |
e53bef9f MK |
192 | static const int amd64_dwarf_regmap_len = |
193 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 194 | |
c4f35dd8 MK |
195 | /* Convert DWARF register number REG to the appropriate register |
196 | number used by GDB. */ | |
26abbdc4 | 197 | |
c4f35dd8 | 198 | static int |
e53bef9f | 199 | amd64_dwarf_reg_to_regnum (int reg) |
53e95fcf | 200 | { |
c4f35dd8 | 201 | int regnum = -1; |
53e95fcf | 202 | |
e53bef9f MK |
203 | if (reg >= 0 || reg < amd64_dwarf_regmap_len) |
204 | regnum = amd64_dwarf_regmap[reg]; | |
53e95fcf | 205 | |
c4f35dd8 MK |
206 | if (regnum == -1) |
207 | warning ("Unmapped DWARF Register #%d encountered\n", reg); | |
208 | ||
209 | return regnum; | |
53e95fcf | 210 | } |
d532c08f MK |
211 | |
212 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
213 | needs any special handling. */ | |
214 | ||
215 | static int | |
e53bef9f | 216 | amd64_convert_register_p (int regnum, struct type *type) |
d532c08f MK |
217 | { |
218 | return i386_fp_regnum_p (regnum); | |
219 | } | |
53e95fcf JS |
220 | \f |
221 | ||
efb1c01c MK |
222 | /* Register classes as defined in the psABI. */ |
223 | ||
224 | enum amd64_reg_class | |
225 | { | |
226 | AMD64_INTEGER, | |
227 | AMD64_SSE, | |
228 | AMD64_SSEUP, | |
229 | AMD64_X87, | |
230 | AMD64_X87UP, | |
231 | AMD64_COMPLEX_X87, | |
232 | AMD64_NO_CLASS, | |
233 | AMD64_MEMORY | |
234 | }; | |
235 | ||
236 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
237 | details. */ | |
238 | ||
239 | static enum amd64_reg_class | |
240 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
241 | { | |
242 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
243 | if (class1 == class2) | |
244 | return class1; | |
245 | ||
246 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
247 | is the other class. */ | |
248 | if (class1 == AMD64_NO_CLASS) | |
249 | return class2; | |
250 | if (class2 == AMD64_NO_CLASS) | |
251 | return class1; | |
252 | ||
253 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
254 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
255 | return AMD64_MEMORY; | |
256 | ||
257 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
258 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
259 | return AMD64_INTEGER; | |
260 | ||
261 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
262 | MEMORY is used as class. */ | |
263 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
264 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
265 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
266 | return AMD64_MEMORY; | |
267 | ||
268 | /* Rule (f): Otherwise class SSE is used. */ | |
269 | return AMD64_SSE; | |
270 | } | |
271 | ||
272 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
273 | ||
79b1ab3d MK |
274 | /* Return non-zero if TYPE is a non-POD structure or union type. */ |
275 | ||
276 | static int | |
277 | amd64_non_pod_p (struct type *type) | |
278 | { | |
279 | /* ??? A class with a base class certainly isn't POD, but does this | |
280 | catch all non-POD structure types? */ | |
281 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | |
282 | return 1; | |
283 | ||
284 | return 0; | |
285 | } | |
286 | ||
efb1c01c MK |
287 | /* Classify TYPE according to the rules for aggregate (structures and |
288 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
289 | |
290 | static void | |
efb1c01c | 291 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
292 | { |
293 | int len = TYPE_LENGTH (type); | |
294 | ||
efb1c01c MK |
295 | /* 1. If the size of an object is larger than two eightbytes, or in |
296 | C++, is a non-POD structure or union type, or contains | |
297 | unaligned fields, it has class memory. */ | |
79b1ab3d | 298 | if (len > 16 || amd64_non_pod_p (type)) |
53e95fcf | 299 | { |
efb1c01c MK |
300 | class[0] = class[1] = AMD64_MEMORY; |
301 | return; | |
53e95fcf | 302 | } |
efb1c01c MK |
303 | |
304 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
305 | class[0] = class[1] = AMD64_NO_CLASS; | |
306 | ||
307 | /* 3. Each field of an object is classified recursively so that | |
308 | always two fields are considered. The resulting class is | |
309 | calculated according to the classes of the fields in the | |
310 | eightbyte: */ | |
311 | ||
312 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 313 | { |
efb1c01c MK |
314 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
315 | ||
316 | /* All fields in an array have the same type. */ | |
317 | amd64_classify (subtype, class); | |
318 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
319 | class[1] = class[0]; | |
8ffd9b1b | 320 | } |
53e95fcf JS |
321 | else |
322 | { | |
efb1c01c | 323 | int i; |
53e95fcf | 324 | |
efb1c01c MK |
325 | /* Structure or union. */ |
326 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
327 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
328 | ||
329 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 330 | { |
efb1c01c MK |
331 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
332 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
333 | enum amd64_reg_class subclass[2]; | |
334 | ||
562c50c2 MK |
335 | /* Ignore static fields. */ |
336 | if (TYPE_FIELD_STATIC (type, i)) | |
337 | continue; | |
338 | ||
efb1c01c MK |
339 | gdb_assert (pos == 0 || pos == 1); |
340 | ||
341 | amd64_classify (subtype, subclass); | |
342 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
343 | if (pos == 0) | |
344 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 345 | } |
53e95fcf | 346 | } |
efb1c01c MK |
347 | |
348 | /* 4. Then a post merger cleanup is done: */ | |
349 | ||
350 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
351 | passed in memory. */ | |
352 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
353 | class[0] = class[1] = AMD64_MEMORY; | |
354 | ||
355 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
356 | SSE. */ | |
357 | if (class[0] == AMD64_SSEUP) | |
358 | class[0] = AMD64_SSE; | |
359 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
360 | class[1] = AMD64_SSE; | |
361 | } | |
362 | ||
363 | /* Classify TYPE, and store the result in CLASS. */ | |
364 | ||
365 | static void | |
366 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
367 | { | |
368 | enum type_code code = TYPE_CODE (type); | |
369 | int len = TYPE_LENGTH (type); | |
370 | ||
371 | class[0] = class[1] = AMD64_NO_CLASS; | |
372 | ||
373 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
374 | long, long long, and pointers are in the INTEGER class. Similarly, |
375 | range types, used by languages such as Ada, are also in the INTEGER | |
376 | class. */ | |
efb1c01c | 377 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
5a7225ed | 378 | || code == TYPE_CODE_RANGE |
efb1c01c MK |
379 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
380 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
381 | class[0] = AMD64_INTEGER; | |
382 | ||
383 | /* Arguments of types float, double and __m64 are in class SSE. */ | |
384 | else if (code == TYPE_CODE_FLT && (len == 4 || len == 8)) | |
385 | /* FIXME: __m64 . */ | |
386 | class[0] = AMD64_SSE; | |
387 | ||
388 | /* Arguments of types __float128 and __m128 are split into two | |
389 | halves. The least significant ones belong to class SSE, the most | |
390 | significant one to class SSEUP. */ | |
391 | /* FIXME: __float128, __m128. */ | |
392 | ||
393 | /* The 64-bit mantissa of arguments of type long double belongs to | |
394 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
395 | class X87UP. */ | |
396 | else if (code == TYPE_CODE_FLT && len == 16) | |
397 | /* Class X87 and X87UP. */ | |
398 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
399 | ||
400 | /* Aggregates. */ | |
401 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
402 | || code == TYPE_CODE_UNION) | |
403 | amd64_classify_aggregate (type, class); | |
404 | } | |
405 | ||
406 | static enum return_value_convention | |
407 | amd64_return_value (struct gdbarch *gdbarch, struct type *type, | |
408 | struct regcache *regcache, | |
409 | void *readbuf, const void *writebuf) | |
410 | { | |
411 | enum amd64_reg_class class[2]; | |
412 | int len = TYPE_LENGTH (type); | |
90f90721 MK |
413 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
414 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
415 | int integer_reg = 0; |
416 | int sse_reg = 0; | |
417 | int i; | |
418 | ||
419 | gdb_assert (!(readbuf && writebuf)); | |
420 | ||
421 | /* 1. Classify the return type with the classification algorithm. */ | |
422 | amd64_classify (type, class); | |
423 | ||
424 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d MK |
425 | for the return value and passes the address of this storage in |
426 | %rdi as if it were the first argument to the function. In effect, | |
427 | this address becomes a hidden first argument. | |
428 | ||
429 | On return %rax will contain the address that has been passed in | |
430 | by the caller in %rdi. */ | |
efb1c01c | 431 | if (class[0] == AMD64_MEMORY) |
6fa57a7d MK |
432 | { |
433 | /* As indicated by the comment above, the ABI guarantees that we | |
434 | can always find the return value just after the function has | |
435 | returned. */ | |
436 | ||
437 | if (readbuf) | |
438 | { | |
439 | ULONGEST addr; | |
440 | ||
441 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
442 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
443 | } | |
444 | ||
445 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
446 | } | |
efb1c01c MK |
447 | |
448 | gdb_assert (class[1] != AMD64_MEMORY); | |
449 | gdb_assert (len <= 16); | |
450 | ||
451 | for (i = 0; len > 0; i++, len -= 8) | |
452 | { | |
453 | int regnum = -1; | |
454 | int offset = 0; | |
455 | ||
456 | switch (class[i]) | |
457 | { | |
458 | case AMD64_INTEGER: | |
459 | /* 3. If the class is INTEGER, the next available register | |
460 | of the sequence %rax, %rdx is used. */ | |
461 | regnum = integer_regnum[integer_reg++]; | |
462 | break; | |
463 | ||
464 | case AMD64_SSE: | |
465 | /* 4. If the class is SSE, the next available SSE register | |
466 | of the sequence %xmm0, %xmm1 is used. */ | |
467 | regnum = sse_regnum[sse_reg++]; | |
468 | break; | |
469 | ||
470 | case AMD64_SSEUP: | |
471 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
472 | upper half of the last used SSE register. */ | |
473 | gdb_assert (sse_reg > 0); | |
474 | regnum = sse_regnum[sse_reg - 1]; | |
475 | offset = 8; | |
476 | break; | |
477 | ||
478 | case AMD64_X87: | |
479 | /* 6. If the class is X87, the value is returned on the X87 | |
480 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 481 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
482 | if (writebuf) |
483 | i387_return_value (gdbarch, regcache); | |
484 | break; | |
485 | ||
486 | case AMD64_X87UP: | |
487 | /* 7. If the class is X87UP, the value is returned together | |
488 | with the previous X87 value in %st0. */ | |
489 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
90f90721 | 490 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
491 | offset = 8; |
492 | len = 2; | |
493 | break; | |
494 | ||
495 | case AMD64_NO_CLASS: | |
496 | continue; | |
497 | ||
498 | default: | |
499 | gdb_assert (!"Unexpected register class."); | |
500 | } | |
501 | ||
502 | gdb_assert (regnum != -1); | |
503 | ||
504 | if (readbuf) | |
505 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
506 | (char *) readbuf + i * 8); | |
507 | if (writebuf) | |
508 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
509 | (const char *) writebuf + i * 8); | |
510 | } | |
511 | ||
512 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
513 | } |
514 | \f | |
515 | ||
720aa428 MK |
516 | static CORE_ADDR |
517 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
6470d250 | 518 | struct value **args, CORE_ADDR sp, int struct_return) |
720aa428 MK |
519 | { |
520 | static int integer_regnum[] = | |
521 | { | |
90f90721 MK |
522 | AMD64_RDI_REGNUM, /* %rdi */ |
523 | AMD64_RSI_REGNUM, /* %rsi */ | |
524 | AMD64_RDX_REGNUM, /* %rdx */ | |
525 | AMD64_RCX_REGNUM, /* %rcx */ | |
526 | 8, /* %r8 */ | |
527 | 9 /* %r9 */ | |
720aa428 MK |
528 | }; |
529 | static int sse_regnum[] = | |
530 | { | |
531 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
532 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
533 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
534 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
535 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 MK |
536 | }; |
537 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
538 | int num_stack_args = 0; | |
539 | int num_elements = 0; | |
540 | int element = 0; | |
541 | int integer_reg = 0; | |
542 | int sse_reg = 0; | |
543 | int i; | |
544 | ||
6470d250 MK |
545 | /* Reserve a register for the "hidden" argument. */ |
546 | if (struct_return) | |
547 | integer_reg++; | |
548 | ||
720aa428 MK |
549 | for (i = 0; i < nargs; i++) |
550 | { | |
551 | struct type *type = VALUE_TYPE (args[i]); | |
552 | int len = TYPE_LENGTH (type); | |
553 | enum amd64_reg_class class[2]; | |
554 | int needed_integer_regs = 0; | |
555 | int needed_sse_regs = 0; | |
556 | int j; | |
557 | ||
558 | /* Classify argument. */ | |
559 | amd64_classify (type, class); | |
560 | ||
561 | /* Calculate the number of integer and SSE registers needed for | |
562 | this argument. */ | |
563 | for (j = 0; j < 2; j++) | |
564 | { | |
565 | if (class[j] == AMD64_INTEGER) | |
566 | needed_integer_regs++; | |
567 | else if (class[j] == AMD64_SSE) | |
568 | needed_sse_regs++; | |
569 | } | |
570 | ||
571 | /* Check whether enough registers are available, and if the | |
572 | argument should be passed in registers at all. */ | |
573 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
574 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
575 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
576 | { | |
577 | /* The argument will be passed on the stack. */ | |
578 | num_elements += ((len + 7) / 8); | |
579 | stack_args[num_stack_args++] = args[i]; | |
580 | } | |
581 | else | |
582 | { | |
583 | /* The argument will be passed in registers. */ | |
584 | char *valbuf = VALUE_CONTENTS (args[i]); | |
585 | char buf[8]; | |
586 | ||
587 | gdb_assert (len <= 16); | |
588 | ||
589 | for (j = 0; len > 0; j++, len -= 8) | |
590 | { | |
591 | int regnum = -1; | |
592 | int offset = 0; | |
593 | ||
594 | switch (class[j]) | |
595 | { | |
596 | case AMD64_INTEGER: | |
597 | regnum = integer_regnum[integer_reg++]; | |
598 | break; | |
599 | ||
600 | case AMD64_SSE: | |
601 | regnum = sse_regnum[sse_reg++]; | |
602 | break; | |
603 | ||
604 | case AMD64_SSEUP: | |
605 | gdb_assert (sse_reg > 0); | |
606 | regnum = sse_regnum[sse_reg - 1]; | |
607 | offset = 8; | |
608 | break; | |
609 | ||
610 | default: | |
611 | gdb_assert (!"Unexpected register class."); | |
612 | } | |
613 | ||
614 | gdb_assert (regnum != -1); | |
615 | memset (buf, 0, sizeof buf); | |
616 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
617 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
618 | } | |
619 | } | |
620 | } | |
621 | ||
622 | /* Allocate space for the arguments on the stack. */ | |
623 | sp -= num_elements * 8; | |
624 | ||
625 | /* The psABI says that "The end of the input argument area shall be | |
626 | aligned on a 16 byte boundary." */ | |
627 | sp &= ~0xf; | |
628 | ||
629 | /* Write out the arguments to the stack. */ | |
630 | for (i = 0; i < num_stack_args; i++) | |
631 | { | |
632 | struct type *type = VALUE_TYPE (stack_args[i]); | |
633 | char *valbuf = VALUE_CONTENTS (stack_args[i]); | |
634 | int len = TYPE_LENGTH (type); | |
635 | ||
636 | write_memory (sp + element * 8, valbuf, len); | |
637 | element += ((len + 7) / 8); | |
638 | } | |
639 | ||
640 | /* The psABI says that "For calls that may call functions that use | |
641 | varargs or stdargs (prototype-less calls or calls to functions | |
642 | containing ellipsis (...) in the declaration) %al is used as | |
643 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 644 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
645 | return sp; |
646 | } | |
647 | ||
c4f35dd8 | 648 | static CORE_ADDR |
e53bef9f MK |
649 | amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, |
650 | struct regcache *regcache, CORE_ADDR bp_addr, | |
651 | int nargs, struct value **args, CORE_ADDR sp, | |
652 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 653 | { |
c4f35dd8 MK |
654 | char buf[8]; |
655 | ||
656 | /* Pass arguments. */ | |
6470d250 | 657 | sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); |
c4f35dd8 MK |
658 | |
659 | /* Pass "hidden" argument". */ | |
660 | if (struct_return) | |
661 | { | |
662 | store_unsigned_integer (buf, 8, struct_addr); | |
90f90721 | 663 | regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf); |
c4f35dd8 MK |
664 | } |
665 | ||
666 | /* Store return address. */ | |
667 | sp -= 8; | |
10f93086 | 668 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
669 | write_memory (sp, buf, 8); |
670 | ||
671 | /* Finally, update the stack pointer... */ | |
672 | store_unsigned_integer (buf, 8, sp); | |
90f90721 | 673 | regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
674 | |
675 | /* ...and fake a frame pointer. */ | |
90f90721 | 676 | regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 677 | |
3e210248 | 678 | return sp + 16; |
53e95fcf | 679 | } |
c4f35dd8 MK |
680 | \f |
681 | ||
682 | /* The maximum number of saved registers. This should include %rip. */ | |
90f90721 | 683 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 684 | |
e53bef9f | 685 | struct amd64_frame_cache |
c4f35dd8 MK |
686 | { |
687 | /* Base address. */ | |
688 | CORE_ADDR base; | |
689 | CORE_ADDR sp_offset; | |
690 | CORE_ADDR pc; | |
691 | ||
692 | /* Saved registers. */ | |
e53bef9f | 693 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 MK |
694 | CORE_ADDR saved_sp; |
695 | ||
696 | /* Do we have a frame? */ | |
697 | int frameless_p; | |
698 | }; | |
8dda9770 | 699 | |
c4f35dd8 MK |
700 | /* Allocate and initialize a frame cache. */ |
701 | ||
e53bef9f MK |
702 | static struct amd64_frame_cache * |
703 | amd64_alloc_frame_cache (void) | |
8dda9770 | 704 | { |
e53bef9f | 705 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
706 | int i; |
707 | ||
e53bef9f | 708 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); |
8dda9770 | 709 | |
c4f35dd8 MK |
710 | /* Base address. */ |
711 | cache->base = 0; | |
712 | cache->sp_offset = -8; | |
713 | cache->pc = 0; | |
714 | ||
715 | /* Saved registers. We initialize these to -1 since zero is a valid | |
716 | offset (that's where %rbp is supposed to be stored). */ | |
e53bef9f | 717 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
718 | cache->saved_regs[i] = -1; |
719 | cache->saved_sp = 0; | |
720 | ||
721 | /* Frameless until proven otherwise. */ | |
722 | cache->frameless_p = 1; | |
723 | ||
724 | return cache; | |
8dda9770 | 725 | } |
53e95fcf | 726 | |
c4f35dd8 MK |
727 | /* Do a limited analysis of the prologue at PC and update CACHE |
728 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
729 | address where the analysis stopped. | |
730 | ||
731 | We will handle only functions beginning with: | |
732 | ||
733 | pushq %rbp 0x55 | |
734 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
735 | ||
736 | Any function that doesn't start with this sequence will be assumed | |
737 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
738 | ||
739 | static CORE_ADDR | |
e53bef9f MK |
740 | amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, |
741 | struct amd64_frame_cache *cache) | |
53e95fcf | 742 | { |
c4f35dd8 MK |
743 | static unsigned char proto[3] = { 0x48, 0x89, 0xe5 }; |
744 | unsigned char buf[3]; | |
745 | unsigned char op; | |
746 | ||
747 | if (current_pc <= pc) | |
748 | return current_pc; | |
749 | ||
750 | op = read_memory_unsigned_integer (pc, 1); | |
751 | ||
752 | if (op == 0x55) /* pushq %rbp */ | |
753 | { | |
754 | /* Take into account that we've executed the `pushq %rbp' that | |
755 | starts this instruction sequence. */ | |
90f90721 | 756 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
757 | cache->sp_offset += 8; |
758 | ||
759 | /* If that's all, return now. */ | |
760 | if (current_pc <= pc + 1) | |
761 | return current_pc; | |
762 | ||
763 | /* Check for `movq %rsp, %rbp'. */ | |
764 | read_memory (pc + 1, buf, 3); | |
765 | if (memcmp (buf, proto, 3) != 0) | |
766 | return pc + 1; | |
767 | ||
768 | /* OK, we actually have a frame. */ | |
769 | cache->frameless_p = 0; | |
770 | return pc + 4; | |
771 | } | |
772 | ||
773 | return pc; | |
53e95fcf JS |
774 | } |
775 | ||
c4f35dd8 MK |
776 | /* Return PC of first real instruction. */ |
777 | ||
778 | static CORE_ADDR | |
e53bef9f | 779 | amd64_skip_prologue (CORE_ADDR start_pc) |
53e95fcf | 780 | { |
e53bef9f | 781 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
782 | CORE_ADDR pc; |
783 | ||
e53bef9f | 784 | pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache); |
c4f35dd8 MK |
785 | if (cache.frameless_p) |
786 | return start_pc; | |
787 | ||
788 | return pc; | |
53e95fcf | 789 | } |
c4f35dd8 | 790 | \f |
53e95fcf | 791 | |
c4f35dd8 MK |
792 | /* Normal frames. */ |
793 | ||
e53bef9f MK |
794 | static struct amd64_frame_cache * |
795 | amd64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 796 | { |
e53bef9f | 797 | struct amd64_frame_cache *cache; |
c4f35dd8 | 798 | char buf[8]; |
6d686a84 | 799 | int i; |
6d686a84 | 800 | |
c4f35dd8 MK |
801 | if (*this_cache) |
802 | return *this_cache; | |
6d686a84 | 803 | |
e53bef9f | 804 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
805 | *this_cache = cache; |
806 | ||
c4f35dd8 MK |
807 | cache->pc = frame_func_unwind (next_frame); |
808 | if (cache->pc != 0) | |
e53bef9f | 809 | amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); |
c4f35dd8 MK |
810 | |
811 | if (cache->frameless_p) | |
812 | { | |
4a28816e MK |
813 | /* We didn't find a valid frame. If we're at the start of a |
814 | function, or somewhere half-way its prologue, the function's | |
815 | frame probably hasn't been fully setup yet. Try to | |
816 | reconstruct the base address for the stack frame by looking | |
817 | at the stack pointer. For truly "frameless" functions this | |
818 | might work too. */ | |
c4f35dd8 | 819 | |
90f90721 | 820 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
821 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; |
822 | } | |
35883a3f MK |
823 | else |
824 | { | |
90f90721 | 825 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
35883a3f MK |
826 | cache->base = extract_unsigned_integer (buf, 8); |
827 | } | |
c4f35dd8 MK |
828 | |
829 | /* Now that we have the base address for the stack frame we can | |
830 | calculate the value of %rsp in the calling frame. */ | |
831 | cache->saved_sp = cache->base + 16; | |
832 | ||
35883a3f MK |
833 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
834 | frame we find it at the same offset from the reconstructed base | |
835 | address. */ | |
90f90721 | 836 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; |
35883a3f | 837 | |
c4f35dd8 MK |
838 | /* Adjust all the saved registers such that they contain addresses |
839 | instead of offsets. */ | |
e53bef9f | 840 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
841 | if (cache->saved_regs[i] != -1) |
842 | cache->saved_regs[i] += cache->base; | |
843 | ||
844 | return cache; | |
6d686a84 ML |
845 | } |
846 | ||
c4f35dd8 | 847 | static void |
e53bef9f MK |
848 | amd64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
849 | struct frame_id *this_id) | |
c4f35dd8 | 850 | { |
e53bef9f MK |
851 | struct amd64_frame_cache *cache = |
852 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
853 | |
854 | /* This marks the outermost frame. */ | |
855 | if (cache->base == 0) | |
856 | return; | |
857 | ||
858 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
859 | } | |
e76e1718 | 860 | |
c4f35dd8 | 861 | static void |
e53bef9f MK |
862 | amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache, |
863 | int regnum, int *optimizedp, | |
864 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
865 | int *realnump, void *valuep) | |
53e95fcf | 866 | { |
e53bef9f MK |
867 | struct amd64_frame_cache *cache = |
868 | amd64_frame_cache (next_frame, this_cache); | |
e76e1718 | 869 | |
c4f35dd8 | 870 | gdb_assert (regnum >= 0); |
b1ab997b | 871 | |
c4f35dd8 MK |
872 | if (regnum == SP_REGNUM && cache->saved_sp) |
873 | { | |
874 | *optimizedp = 0; | |
875 | *lvalp = not_lval; | |
876 | *addrp = 0; | |
877 | *realnump = -1; | |
878 | if (valuep) | |
879 | { | |
880 | /* Store the value. */ | |
881 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
882 | } | |
883 | return; | |
884 | } | |
e76e1718 | 885 | |
e53bef9f | 886 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
c4f35dd8 MK |
887 | { |
888 | *optimizedp = 0; | |
889 | *lvalp = lval_memory; | |
890 | *addrp = cache->saved_regs[regnum]; | |
891 | *realnump = -1; | |
892 | if (valuep) | |
893 | { | |
894 | /* Read the value in from memory. */ | |
895 | read_memory (*addrp, valuep, | |
896 | register_size (current_gdbarch, regnum)); | |
897 | } | |
898 | return; | |
899 | } | |
e76e1718 | 900 | |
c4f35dd8 MK |
901 | frame_register_unwind (next_frame, regnum, |
902 | optimizedp, lvalp, addrp, realnump, valuep); | |
903 | } | |
e76e1718 | 904 | |
e53bef9f | 905 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
906 | { |
907 | NORMAL_FRAME, | |
e53bef9f MK |
908 | amd64_frame_this_id, |
909 | amd64_frame_prev_register | |
c4f35dd8 | 910 | }; |
e76e1718 | 911 | |
c4f35dd8 | 912 | static const struct frame_unwind * |
e53bef9f | 913 | amd64_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 914 | { |
e53bef9f | 915 | return &amd64_frame_unwind; |
c4f35dd8 MK |
916 | } |
917 | \f | |
e76e1718 | 918 | |
c4f35dd8 MK |
919 | /* Signal trampolines. */ |
920 | ||
921 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
922 | 64-bit variants. This would require using identical frame caches | |
923 | on both platforms. */ | |
924 | ||
e53bef9f MK |
925 | static struct amd64_frame_cache * |
926 | amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
c4f35dd8 | 927 | { |
e53bef9f | 928 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
929 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
930 | CORE_ADDR addr; | |
931 | char buf[8]; | |
2b5e0749 | 932 | int i; |
c4f35dd8 MK |
933 | |
934 | if (*this_cache) | |
935 | return *this_cache; | |
936 | ||
e53bef9f | 937 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 938 | |
90f90721 | 939 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
940 | cache->base = extract_unsigned_integer (buf, 8) - 8; |
941 | ||
942 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 | 943 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 944 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
945 | for (i = 0; i < tdep->sc_num_regs; i++) |
946 | if (tdep->sc_reg_offset[i] != -1) | |
947 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
948 | |
949 | *this_cache = cache; | |
950 | return cache; | |
53e95fcf JS |
951 | } |
952 | ||
c4f35dd8 | 953 | static void |
e53bef9f MK |
954 | amd64_sigtramp_frame_this_id (struct frame_info *next_frame, |
955 | void **this_cache, struct frame_id *this_id) | |
c4f35dd8 | 956 | { |
e53bef9f MK |
957 | struct amd64_frame_cache *cache = |
958 | amd64_sigtramp_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
959 | |
960 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
961 | } | |
962 | ||
963 | static void | |
e53bef9f MK |
964 | amd64_sigtramp_frame_prev_register (struct frame_info *next_frame, |
965 | void **this_cache, | |
966 | int regnum, int *optimizedp, | |
967 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
968 | int *realnump, void *valuep) | |
c4f35dd8 MK |
969 | { |
970 | /* Make sure we've initialized the cache. */ | |
e53bef9f | 971 | amd64_sigtramp_frame_cache (next_frame, this_cache); |
c4f35dd8 | 972 | |
e53bef9f MK |
973 | amd64_frame_prev_register (next_frame, this_cache, regnum, |
974 | optimizedp, lvalp, addrp, realnump, valuep); | |
c4f35dd8 MK |
975 | } |
976 | ||
e53bef9f | 977 | static const struct frame_unwind amd64_sigtramp_frame_unwind = |
c4f35dd8 MK |
978 | { |
979 | SIGTRAMP_FRAME, | |
e53bef9f MK |
980 | amd64_sigtramp_frame_this_id, |
981 | amd64_sigtramp_frame_prev_register | |
c4f35dd8 MK |
982 | }; |
983 | ||
984 | static const struct frame_unwind * | |
e53bef9f | 985 | amd64_sigtramp_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 986 | { |
911bc6ee MK |
987 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
988 | ||
989 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
990 | handler. */ | |
991 | if (tdep->sigcontext_addr == NULL) | |
992 | return NULL; | |
993 | ||
994 | if (tdep->sigtramp_p != NULL) | |
995 | { | |
996 | if (tdep->sigtramp_p (next_frame)) | |
997 | return &amd64_sigtramp_frame_unwind; | |
998 | } | |
c4f35dd8 | 999 | |
911bc6ee | 1000 | if (tdep->sigtramp_start != 0) |
1c3545ae | 1001 | { |
911bc6ee | 1002 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1c3545ae | 1003 | |
911bc6ee MK |
1004 | gdb_assert (tdep->sigtramp_end != 0); |
1005 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
1006 | return &amd64_sigtramp_frame_unwind; | |
1c3545ae | 1007 | } |
c4f35dd8 MK |
1008 | |
1009 | return NULL; | |
1010 | } | |
1011 | \f | |
1012 | ||
1013 | static CORE_ADDR | |
e53bef9f | 1014 | amd64_frame_base_address (struct frame_info *next_frame, void **this_cache) |
c4f35dd8 | 1015 | { |
e53bef9f MK |
1016 | struct amd64_frame_cache *cache = |
1017 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
1018 | |
1019 | return cache->base; | |
1020 | } | |
1021 | ||
e53bef9f | 1022 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 1023 | { |
e53bef9f MK |
1024 | &amd64_frame_unwind, |
1025 | amd64_frame_base_address, | |
1026 | amd64_frame_base_address, | |
1027 | amd64_frame_base_address | |
c4f35dd8 MK |
1028 | }; |
1029 | ||
166f4c7b | 1030 | static struct frame_id |
e53bef9f | 1031 | amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 1032 | { |
c4f35dd8 MK |
1033 | char buf[8]; |
1034 | CORE_ADDR fp; | |
1035 | ||
90f90721 | 1036 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
c4f35dd8 MK |
1037 | fp = extract_unsigned_integer (buf, 8); |
1038 | ||
1039 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
1040 | } |
1041 | ||
8b148df9 AC |
1042 | /* 16 byte align the SP per frame requirements. */ |
1043 | ||
1044 | static CORE_ADDR | |
e53bef9f | 1045 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
1046 | { |
1047 | return sp & -(CORE_ADDR)16; | |
1048 | } | |
473f17b0 MK |
1049 | \f |
1050 | ||
1051 | /* Supply register REGNUM from the floating-point register set REGSET | |
1052 | to register cache REGCACHE. If REGNUM is -1, do this for all | |
1053 | registers in REGSET. */ | |
1054 | ||
1055 | static void | |
e53bef9f MK |
1056 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
1057 | int regnum, const void *fpregs, size_t len) | |
473f17b0 MK |
1058 | { |
1059 | const struct gdbarch_tdep *tdep = regset->descr; | |
1060 | ||
1061 | gdb_assert (len == tdep->sizeof_fpregset); | |
90f90721 | 1062 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 1063 | } |
8b148df9 | 1064 | |
c6b33596 MK |
1065 | /* Return the appropriate register set for the core section identified |
1066 | by SECT_NAME and SECT_SIZE. */ | |
1067 | ||
1068 | static const struct regset * | |
e53bef9f MK |
1069 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
1070 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
1071 | { |
1072 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1073 | ||
1074 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
1075 | { | |
1076 | if (tdep->fpregset == NULL) | |
1077 | { | |
1078 | tdep->fpregset = XMALLOC (struct regset); | |
1079 | tdep->fpregset->descr = tdep; | |
e53bef9f | 1080 | tdep->fpregset->supply_regset = amd64_supply_fpregset; |
c6b33596 MK |
1081 | } |
1082 | ||
1083 | return tdep->fpregset; | |
1084 | } | |
1085 | ||
1086 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
1087 | } | |
1088 | \f | |
1089 | ||
2213a65d | 1090 | void |
90f90721 | 1091 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1092 | { |
0c1a73d6 | 1093 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1094 | |
473f17b0 MK |
1095 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
1096 | floating-point registers. */ | |
1097 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
1098 | ||
5716833c | 1099 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 1100 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 1101 | tdep->num_xmm_regs = 16; |
53e95fcf | 1102 | |
0c1a73d6 | 1103 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1104 | set_gdbarch_long_bit (gdbarch, 64); |
1105 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1106 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1107 | ||
e53bef9f MK |
1108 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
1109 | up 128 bits, even though it's still based on the i387 extended | |
1110 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
1111 | set_gdbarch_long_double_bit (gdbarch, 128); |
1112 | ||
e53bef9f MK |
1113 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
1114 | set_gdbarch_register_name (gdbarch, amd64_register_name); | |
1115 | set_gdbarch_register_type (gdbarch, amd64_register_type); | |
b83b026c MK |
1116 | |
1117 | /* Register numbers of various important registers. */ | |
90f90721 MK |
1118 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
1119 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
1120 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
1121 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 1122 | |
e53bef9f MK |
1123 | /* The "default" register numbering scheme for AMD64 is referred to |
1124 | as the "DWARF Register Number Mapping" in the System V psABI. | |
1125 | The preferred debugging format for all known AMD64 targets is | |
1126 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
1127 | DWARF-1), but we provide the same mapping just in case. This | |
1128 | mapping is also used for stabs, which GCC does support. */ | |
1129 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1130 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1131 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
de220d0f | 1132 | |
c4f35dd8 | 1133 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 1134 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 1135 | |
c4f35dd8 | 1136 | /* Call dummy code. */ |
e53bef9f MK |
1137 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
1138 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 1139 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 1140 | |
e53bef9f | 1141 | set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p); |
d532c08f MK |
1142 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
1143 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1144 | ||
efb1c01c | 1145 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 1146 | |
e53bef9f | 1147 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 1148 | |
c4f35dd8 | 1149 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 1150 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 1151 | tdep->mm0_regnum = -1; |
2213a65d | 1152 | |
e53bef9f | 1153 | set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id); |
53e95fcf | 1154 | |
b83b026c | 1155 | /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now, |
e53bef9f | 1156 | since all supported AMD64 targets are ELF, but that might change |
b83b026c | 1157 | in the future. */ |
8a8ab2b9 | 1158 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); |
c4f35dd8 | 1159 | |
e53bef9f MK |
1160 | frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer); |
1161 | frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer); | |
1162 | frame_base_set_default (gdbarch, &amd64_frame_base); | |
c6b33596 MK |
1163 | |
1164 | /* If we have a register mapping, enable the generic core file support. */ | |
1165 | if (tdep->gregset_reg_offset) | |
1166 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 1167 | amd64_regset_from_core_section); |
c4f35dd8 MK |
1168 | } |
1169 | \f | |
1170 | ||
90f90721 | 1171 | #define I387_ST0_REGNUM AMD64_ST0_REGNUM |
c4f35dd8 | 1172 | |
41d041d6 MK |
1173 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
1174 | sense that the instruction pointer and data pointer are simply | |
1175 | 64-bit offsets into the code segment and the data segment instead | |
1176 | of a selector offset pair. The functions below store the upper 32 | |
1177 | bits of these pointers (instead of just the 16-bits of the segment | |
1178 | selector). */ | |
1179 | ||
1180 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
1181 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
1182 | -1, do this for all registers. This function masks off any of the | |
1183 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
1184 | |
1185 | void | |
90f90721 | 1186 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
41d041d6 | 1187 | const void *fxsave) |
c4f35dd8 | 1188 | { |
41d041d6 | 1189 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 1190 | |
f0ef85a5 | 1191 | if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
c4f35dd8 | 1192 | { |
41d041d6 MK |
1193 | const char *regs = fxsave; |
1194 | ||
0485f6ad | 1195 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
41d041d6 | 1196 | regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); |
0485f6ad | 1197 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
41d041d6 | 1198 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); |
c4f35dd8 | 1199 | } |
0c1a73d6 MK |
1200 | } |
1201 | ||
3c017e40 MK |
1202 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
1203 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
1204 | all registers. This function doesn't touch any of the reserved | |
1205 | bits in *FXSAVE. */ | |
1206 | ||
1207 | void | |
1208 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
1209 | void *fxsave) | |
1210 | { | |
1211 | char *regs = fxsave; | |
1212 | ||
1213 | i387_collect_fxsave (regcache, regnum, fxsave); | |
1214 | ||
f0ef85a5 MK |
1215 | if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
1216 | { | |
1217 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) | |
1218 | regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12); | |
1219 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) | |
1220 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20); | |
1221 | } | |
3c017e40 | 1222 | } |