Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
0fb0cc75 | 3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
5ae96ec1 MK |
4 | Free Software Foundation, Inc. |
5 | ||
6 | Contributed by Jiri Smid, SuSE Labs. | |
53e95fcf JS |
7 | |
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
53e95fcf JS |
13 | (at your option) any later version. |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
53e95fcf JS |
22 | |
23 | #include "defs.h" | |
35669430 DE |
24 | #include "opcode/i386.h" |
25 | #include "dis-asm.h" | |
c4f35dd8 MK |
26 | #include "arch-utils.h" |
27 | #include "block.h" | |
28 | #include "dummy-frame.h" | |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
53e95fcf | 32 | #include "inferior.h" |
53e95fcf | 33 | #include "gdbcmd.h" |
c4f35dd8 MK |
34 | #include "gdbcore.h" |
35 | #include "objfiles.h" | |
53e95fcf | 36 | #include "regcache.h" |
2c261fae | 37 | #include "regset.h" |
53e95fcf | 38 | #include "symfile.h" |
c4f35dd8 | 39 | |
82dbc5f7 | 40 | #include "gdb_assert.h" |
c4f35dd8 | 41 | |
9c1488cb | 42 | #include "amd64-tdep.h" |
c4f35dd8 | 43 | #include "i387-tdep.h" |
53e95fcf | 44 | |
e53bef9f MK |
45 | /* Note that the AMD64 architecture was previously known as x86-64. |
46 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 47 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
48 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
49 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
50 | x86_64_-prefix since it's so much easier to type. */ | |
51 | ||
402ecd56 | 52 | /* Register information. */ |
c4f35dd8 | 53 | |
6707b003 | 54 | static const char *amd64_register_names[] = |
de220d0f | 55 | { |
6707b003 | 56 | "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", |
c4f35dd8 MK |
57 | |
58 | /* %r8 is indeed register number 8. */ | |
6707b003 UW |
59 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
60 | "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | |
c4f35dd8 | 61 | |
af233647 | 62 | /* %st0 is register number 24. */ |
6707b003 UW |
63 | "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", |
64 | "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | |
c4f35dd8 | 65 | |
af233647 | 66 | /* %xmm0 is register number 40. */ |
6707b003 UW |
67 | "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
68 | "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | |
69 | "mxcsr", | |
0e04a514 ML |
70 | }; |
71 | ||
c4f35dd8 | 72 | /* Total number of registers. */ |
6707b003 | 73 | #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names) |
de220d0f | 74 | |
c4f35dd8 | 75 | /* Return the name of register REGNUM. */ |
b6779aa2 | 76 | |
8695c747 | 77 | const char * |
d93859e2 | 78 | amd64_register_name (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 79 | { |
e53bef9f | 80 | if (regnum >= 0 && regnum < AMD64_NUM_REGS) |
6707b003 | 81 | return amd64_register_names[regnum]; |
53e95fcf | 82 | |
c4f35dd8 | 83 | return NULL; |
53e95fcf JS |
84 | } |
85 | ||
86 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 87 | register REGNUM. */ |
53e95fcf | 88 | |
8695c747 | 89 | struct type * |
e53bef9f | 90 | amd64_register_type (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 91 | { |
6707b003 | 92 | if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM) |
df4df182 | 93 | return builtin_type (gdbarch)->builtin_int64; |
6707b003 | 94 | if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM) |
0dfff4cb | 95 | return builtin_type (gdbarch)->builtin_data_ptr; |
6707b003 | 96 | if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM) |
df4df182 | 97 | return builtin_type (gdbarch)->builtin_int64; |
6707b003 | 98 | if (regnum == AMD64_RIP_REGNUM) |
0dfff4cb | 99 | return builtin_type (gdbarch)->builtin_func_ptr; |
6707b003 | 100 | if (regnum == AMD64_EFLAGS_REGNUM) |
209bd28e | 101 | return i386_eflags_type (gdbarch); |
6707b003 | 102 | if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM) |
df4df182 | 103 | return builtin_type (gdbarch)->builtin_int32; |
6707b003 | 104 | if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7) |
27067745 | 105 | return i387_ext_type (gdbarch); |
6707b003 | 106 | if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7) |
df4df182 | 107 | return builtin_type (gdbarch)->builtin_int32; |
6707b003 | 108 | if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) |
794ac428 | 109 | return i386_sse_type (gdbarch); |
6707b003 | 110 | if (regnum == AMD64_MXCSR_REGNUM) |
209bd28e | 111 | return i386_mxcsr_type (gdbarch); |
6707b003 UW |
112 | |
113 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
53e95fcf JS |
114 | } |
115 | ||
c4f35dd8 MK |
116 | /* DWARF Register Number Mapping as defined in the System V psABI, |
117 | section 3.6. */ | |
53e95fcf | 118 | |
e53bef9f | 119 | static int amd64_dwarf_regmap[] = |
0e04a514 | 120 | { |
c4f35dd8 | 121 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
122 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
123 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
124 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
125 | |
126 | /* Frame Pointer Register RBP. */ | |
90f90721 | 127 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
128 | |
129 | /* Stack Pointer Register RSP. */ | |
90f90721 | 130 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
131 | |
132 | /* Extended Integer Registers 8 - 15. */ | |
133 | 8, 9, 10, 11, 12, 13, 14, 15, | |
134 | ||
59207364 | 135 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 136 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
137 | |
138 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
139 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
140 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
141 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
142 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
143 | |
144 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
145 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
146 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
147 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
148 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
149 | |
150 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
151 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
152 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
153 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
c6f4c129 JB |
154 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
155 | ||
156 | /* Control and Status Flags Register. */ | |
157 | AMD64_EFLAGS_REGNUM, | |
158 | ||
159 | /* Selector Registers. */ | |
160 | AMD64_ES_REGNUM, | |
161 | AMD64_CS_REGNUM, | |
162 | AMD64_SS_REGNUM, | |
163 | AMD64_DS_REGNUM, | |
164 | AMD64_FS_REGNUM, | |
165 | AMD64_GS_REGNUM, | |
166 | -1, | |
167 | -1, | |
168 | ||
169 | /* Segment Base Address Registers. */ | |
170 | -1, | |
171 | -1, | |
172 | -1, | |
173 | -1, | |
174 | ||
175 | /* Special Selector Registers. */ | |
176 | -1, | |
177 | -1, | |
178 | ||
179 | /* Floating Point Control Registers. */ | |
180 | AMD64_MXCSR_REGNUM, | |
181 | AMD64_FCTRL_REGNUM, | |
182 | AMD64_FSTAT_REGNUM | |
c4f35dd8 | 183 | }; |
0e04a514 | 184 | |
e53bef9f MK |
185 | static const int amd64_dwarf_regmap_len = |
186 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 187 | |
c4f35dd8 MK |
188 | /* Convert DWARF register number REG to the appropriate register |
189 | number used by GDB. */ | |
26abbdc4 | 190 | |
c4f35dd8 | 191 | static int |
d3f73121 | 192 | amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
53e95fcf | 193 | { |
c4f35dd8 | 194 | int regnum = -1; |
53e95fcf | 195 | |
16aff9a6 | 196 | if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
e53bef9f | 197 | regnum = amd64_dwarf_regmap[reg]; |
53e95fcf | 198 | |
c4f35dd8 | 199 | if (regnum == -1) |
8a3fe4f8 | 200 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
c4f35dd8 MK |
201 | |
202 | return regnum; | |
53e95fcf | 203 | } |
d532c08f | 204 | |
35669430 DE |
205 | /* Map architectural register numbers to gdb register numbers. */ |
206 | ||
207 | static const int amd64_arch_regmap[16] = | |
208 | { | |
209 | AMD64_RAX_REGNUM, /* %rax */ | |
210 | AMD64_RCX_REGNUM, /* %rcx */ | |
211 | AMD64_RDX_REGNUM, /* %rdx */ | |
212 | AMD64_RBX_REGNUM, /* %rbx */ | |
213 | AMD64_RSP_REGNUM, /* %rsp */ | |
214 | AMD64_RBP_REGNUM, /* %rbp */ | |
215 | AMD64_RSI_REGNUM, /* %rsi */ | |
216 | AMD64_RDI_REGNUM, /* %rdi */ | |
217 | AMD64_R8_REGNUM, /* %r8 */ | |
218 | AMD64_R9_REGNUM, /* %r9 */ | |
219 | AMD64_R10_REGNUM, /* %r10 */ | |
220 | AMD64_R11_REGNUM, /* %r11 */ | |
221 | AMD64_R12_REGNUM, /* %r12 */ | |
222 | AMD64_R13_REGNUM, /* %r13 */ | |
223 | AMD64_R14_REGNUM, /* %r14 */ | |
224 | AMD64_R15_REGNUM /* %r15 */ | |
225 | }; | |
226 | ||
227 | static const int amd64_arch_regmap_len = | |
228 | (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); | |
229 | ||
230 | /* Convert architectural register number REG to the appropriate register | |
231 | number used by GDB. */ | |
232 | ||
233 | static int | |
234 | amd64_arch_reg_to_regnum (int reg) | |
235 | { | |
236 | gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); | |
237 | ||
238 | return amd64_arch_regmap[reg]; | |
239 | } | |
240 | ||
53e95fcf JS |
241 | \f |
242 | ||
efb1c01c MK |
243 | /* Register classes as defined in the psABI. */ |
244 | ||
245 | enum amd64_reg_class | |
246 | { | |
247 | AMD64_INTEGER, | |
248 | AMD64_SSE, | |
249 | AMD64_SSEUP, | |
250 | AMD64_X87, | |
251 | AMD64_X87UP, | |
252 | AMD64_COMPLEX_X87, | |
253 | AMD64_NO_CLASS, | |
254 | AMD64_MEMORY | |
255 | }; | |
256 | ||
257 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
258 | details. */ | |
259 | ||
260 | static enum amd64_reg_class | |
261 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
262 | { | |
263 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
264 | if (class1 == class2) | |
265 | return class1; | |
266 | ||
267 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
268 | is the other class. */ | |
269 | if (class1 == AMD64_NO_CLASS) | |
270 | return class2; | |
271 | if (class2 == AMD64_NO_CLASS) | |
272 | return class1; | |
273 | ||
274 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
275 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
276 | return AMD64_MEMORY; | |
277 | ||
278 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
279 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
280 | return AMD64_INTEGER; | |
281 | ||
282 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
283 | MEMORY is used as class. */ | |
284 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
285 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
286 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
287 | return AMD64_MEMORY; | |
288 | ||
289 | /* Rule (f): Otherwise class SSE is used. */ | |
290 | return AMD64_SSE; | |
291 | } | |
292 | ||
293 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
294 | ||
79b1ab3d MK |
295 | /* Return non-zero if TYPE is a non-POD structure or union type. */ |
296 | ||
297 | static int | |
298 | amd64_non_pod_p (struct type *type) | |
299 | { | |
300 | /* ??? A class with a base class certainly isn't POD, but does this | |
301 | catch all non-POD structure types? */ | |
302 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | |
303 | return 1; | |
304 | ||
305 | return 0; | |
306 | } | |
307 | ||
efb1c01c MK |
308 | /* Classify TYPE according to the rules for aggregate (structures and |
309 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
310 | |
311 | static void | |
efb1c01c | 312 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
313 | { |
314 | int len = TYPE_LENGTH (type); | |
315 | ||
efb1c01c MK |
316 | /* 1. If the size of an object is larger than two eightbytes, or in |
317 | C++, is a non-POD structure or union type, or contains | |
318 | unaligned fields, it has class memory. */ | |
79b1ab3d | 319 | if (len > 16 || amd64_non_pod_p (type)) |
53e95fcf | 320 | { |
efb1c01c MK |
321 | class[0] = class[1] = AMD64_MEMORY; |
322 | return; | |
53e95fcf | 323 | } |
efb1c01c MK |
324 | |
325 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
326 | class[0] = class[1] = AMD64_NO_CLASS; | |
327 | ||
328 | /* 3. Each field of an object is classified recursively so that | |
329 | always two fields are considered. The resulting class is | |
330 | calculated according to the classes of the fields in the | |
331 | eightbyte: */ | |
332 | ||
333 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 334 | { |
efb1c01c MK |
335 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
336 | ||
337 | /* All fields in an array have the same type. */ | |
338 | amd64_classify (subtype, class); | |
339 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
340 | class[1] = class[0]; | |
8ffd9b1b | 341 | } |
53e95fcf JS |
342 | else |
343 | { | |
efb1c01c | 344 | int i; |
53e95fcf | 345 | |
efb1c01c MK |
346 | /* Structure or union. */ |
347 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
348 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
349 | ||
350 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 351 | { |
efb1c01c MK |
352 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
353 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
354 | enum amd64_reg_class subclass[2]; | |
355 | ||
562c50c2 | 356 | /* Ignore static fields. */ |
d6a843b5 | 357 | if (field_is_static (&TYPE_FIELD (type, i))) |
562c50c2 MK |
358 | continue; |
359 | ||
efb1c01c MK |
360 | gdb_assert (pos == 0 || pos == 1); |
361 | ||
362 | amd64_classify (subtype, subclass); | |
363 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
364 | if (pos == 0) | |
365 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 366 | } |
53e95fcf | 367 | } |
efb1c01c MK |
368 | |
369 | /* 4. Then a post merger cleanup is done: */ | |
370 | ||
371 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
372 | passed in memory. */ | |
373 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
374 | class[0] = class[1] = AMD64_MEMORY; | |
375 | ||
376 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
377 | SSE. */ | |
378 | if (class[0] == AMD64_SSEUP) | |
379 | class[0] = AMD64_SSE; | |
380 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
381 | class[1] = AMD64_SSE; | |
382 | } | |
383 | ||
384 | /* Classify TYPE, and store the result in CLASS. */ | |
385 | ||
386 | static void | |
387 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
388 | { | |
389 | enum type_code code = TYPE_CODE (type); | |
390 | int len = TYPE_LENGTH (type); | |
391 | ||
392 | class[0] = class[1] = AMD64_NO_CLASS; | |
393 | ||
394 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
395 | long, long long, and pointers are in the INTEGER class. Similarly, |
396 | range types, used by languages such as Ada, are also in the INTEGER | |
397 | class. */ | |
efb1c01c | 398 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
b929c77f | 399 | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
9db13498 | 400 | || code == TYPE_CODE_CHAR |
efb1c01c MK |
401 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
402 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
403 | class[0] = AMD64_INTEGER; | |
404 | ||
5daa78cc TJB |
405 | /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64 |
406 | are in class SSE. */ | |
407 | else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) | |
408 | && (len == 4 || len == 8)) | |
efb1c01c MK |
409 | /* FIXME: __m64 . */ |
410 | class[0] = AMD64_SSE; | |
411 | ||
5daa78cc TJB |
412 | /* Arguments of types __float128, _Decimal128 and __m128 are split into |
413 | two halves. The least significant ones belong to class SSE, the most | |
efb1c01c | 414 | significant one to class SSEUP. */ |
5daa78cc TJB |
415 | else if (code == TYPE_CODE_DECFLOAT && len == 16) |
416 | /* FIXME: __float128, __m128. */ | |
417 | class[0] = AMD64_SSE, class[1] = AMD64_SSEUP; | |
efb1c01c MK |
418 | |
419 | /* The 64-bit mantissa of arguments of type long double belongs to | |
420 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
421 | class X87UP. */ | |
422 | else if (code == TYPE_CODE_FLT && len == 16) | |
423 | /* Class X87 and X87UP. */ | |
424 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
425 | ||
426 | /* Aggregates. */ | |
427 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
428 | || code == TYPE_CODE_UNION) | |
429 | amd64_classify_aggregate (type, class); | |
430 | } | |
431 | ||
432 | static enum return_value_convention | |
c055b101 CV |
433 | amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, |
434 | struct type *type, struct regcache *regcache, | |
42835c2b | 435 | gdb_byte *readbuf, const gdb_byte *writebuf) |
efb1c01c MK |
436 | { |
437 | enum amd64_reg_class class[2]; | |
438 | int len = TYPE_LENGTH (type); | |
90f90721 MK |
439 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
440 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
441 | int integer_reg = 0; |
442 | int sse_reg = 0; | |
443 | int i; | |
444 | ||
445 | gdb_assert (!(readbuf && writebuf)); | |
446 | ||
447 | /* 1. Classify the return type with the classification algorithm. */ | |
448 | amd64_classify (type, class); | |
449 | ||
450 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d MK |
451 | for the return value and passes the address of this storage in |
452 | %rdi as if it were the first argument to the function. In effect, | |
453 | this address becomes a hidden first argument. | |
454 | ||
455 | On return %rax will contain the address that has been passed in | |
456 | by the caller in %rdi. */ | |
efb1c01c | 457 | if (class[0] == AMD64_MEMORY) |
6fa57a7d MK |
458 | { |
459 | /* As indicated by the comment above, the ABI guarantees that we | |
460 | can always find the return value just after the function has | |
461 | returned. */ | |
462 | ||
463 | if (readbuf) | |
464 | { | |
465 | ULONGEST addr; | |
466 | ||
467 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
468 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
469 | } | |
470 | ||
471 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
472 | } | |
efb1c01c MK |
473 | |
474 | gdb_assert (class[1] != AMD64_MEMORY); | |
475 | gdb_assert (len <= 16); | |
476 | ||
477 | for (i = 0; len > 0; i++, len -= 8) | |
478 | { | |
479 | int regnum = -1; | |
480 | int offset = 0; | |
481 | ||
482 | switch (class[i]) | |
483 | { | |
484 | case AMD64_INTEGER: | |
485 | /* 3. If the class is INTEGER, the next available register | |
486 | of the sequence %rax, %rdx is used. */ | |
487 | regnum = integer_regnum[integer_reg++]; | |
488 | break; | |
489 | ||
490 | case AMD64_SSE: | |
491 | /* 4. If the class is SSE, the next available SSE register | |
492 | of the sequence %xmm0, %xmm1 is used. */ | |
493 | regnum = sse_regnum[sse_reg++]; | |
494 | break; | |
495 | ||
496 | case AMD64_SSEUP: | |
497 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
498 | upper half of the last used SSE register. */ | |
499 | gdb_assert (sse_reg > 0); | |
500 | regnum = sse_regnum[sse_reg - 1]; | |
501 | offset = 8; | |
502 | break; | |
503 | ||
504 | case AMD64_X87: | |
505 | /* 6. If the class is X87, the value is returned on the X87 | |
506 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 507 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
508 | if (writebuf) |
509 | i387_return_value (gdbarch, regcache); | |
510 | break; | |
511 | ||
512 | case AMD64_X87UP: | |
513 | /* 7. If the class is X87UP, the value is returned together | |
514 | with the previous X87 value in %st0. */ | |
515 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
90f90721 | 516 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
517 | offset = 8; |
518 | len = 2; | |
519 | break; | |
520 | ||
521 | case AMD64_NO_CLASS: | |
522 | continue; | |
523 | ||
524 | default: | |
525 | gdb_assert (!"Unexpected register class."); | |
526 | } | |
527 | ||
528 | gdb_assert (regnum != -1); | |
529 | ||
530 | if (readbuf) | |
531 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 532 | readbuf + i * 8); |
efb1c01c MK |
533 | if (writebuf) |
534 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 535 | writebuf + i * 8); |
efb1c01c MK |
536 | } |
537 | ||
538 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
539 | } |
540 | \f | |
541 | ||
720aa428 MK |
542 | static CORE_ADDR |
543 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
6470d250 | 544 | struct value **args, CORE_ADDR sp, int struct_return) |
720aa428 MK |
545 | { |
546 | static int integer_regnum[] = | |
547 | { | |
90f90721 MK |
548 | AMD64_RDI_REGNUM, /* %rdi */ |
549 | AMD64_RSI_REGNUM, /* %rsi */ | |
550 | AMD64_RDX_REGNUM, /* %rdx */ | |
551 | AMD64_RCX_REGNUM, /* %rcx */ | |
552 | 8, /* %r8 */ | |
553 | 9 /* %r9 */ | |
720aa428 MK |
554 | }; |
555 | static int sse_regnum[] = | |
556 | { | |
557 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
558 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
559 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
560 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
561 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 MK |
562 | }; |
563 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
564 | int num_stack_args = 0; | |
565 | int num_elements = 0; | |
566 | int element = 0; | |
567 | int integer_reg = 0; | |
568 | int sse_reg = 0; | |
569 | int i; | |
570 | ||
6470d250 MK |
571 | /* Reserve a register for the "hidden" argument. */ |
572 | if (struct_return) | |
573 | integer_reg++; | |
574 | ||
720aa428 MK |
575 | for (i = 0; i < nargs; i++) |
576 | { | |
4991999e | 577 | struct type *type = value_type (args[i]); |
720aa428 MK |
578 | int len = TYPE_LENGTH (type); |
579 | enum amd64_reg_class class[2]; | |
580 | int needed_integer_regs = 0; | |
581 | int needed_sse_regs = 0; | |
582 | int j; | |
583 | ||
584 | /* Classify argument. */ | |
585 | amd64_classify (type, class); | |
586 | ||
587 | /* Calculate the number of integer and SSE registers needed for | |
588 | this argument. */ | |
589 | for (j = 0; j < 2; j++) | |
590 | { | |
591 | if (class[j] == AMD64_INTEGER) | |
592 | needed_integer_regs++; | |
593 | else if (class[j] == AMD64_SSE) | |
594 | needed_sse_regs++; | |
595 | } | |
596 | ||
597 | /* Check whether enough registers are available, and if the | |
598 | argument should be passed in registers at all. */ | |
599 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
600 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
601 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
602 | { | |
603 | /* The argument will be passed on the stack. */ | |
604 | num_elements += ((len + 7) / 8); | |
605 | stack_args[num_stack_args++] = args[i]; | |
606 | } | |
607 | else | |
608 | { | |
609 | /* The argument will be passed in registers. */ | |
d8de1ef7 MK |
610 | const gdb_byte *valbuf = value_contents (args[i]); |
611 | gdb_byte buf[8]; | |
720aa428 MK |
612 | |
613 | gdb_assert (len <= 16); | |
614 | ||
615 | for (j = 0; len > 0; j++, len -= 8) | |
616 | { | |
617 | int regnum = -1; | |
618 | int offset = 0; | |
619 | ||
620 | switch (class[j]) | |
621 | { | |
622 | case AMD64_INTEGER: | |
623 | regnum = integer_regnum[integer_reg++]; | |
624 | break; | |
625 | ||
626 | case AMD64_SSE: | |
627 | regnum = sse_regnum[sse_reg++]; | |
628 | break; | |
629 | ||
630 | case AMD64_SSEUP: | |
631 | gdb_assert (sse_reg > 0); | |
632 | regnum = sse_regnum[sse_reg - 1]; | |
633 | offset = 8; | |
634 | break; | |
635 | ||
636 | default: | |
637 | gdb_assert (!"Unexpected register class."); | |
638 | } | |
639 | ||
640 | gdb_assert (regnum != -1); | |
641 | memset (buf, 0, sizeof buf); | |
642 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
643 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
644 | } | |
645 | } | |
646 | } | |
647 | ||
648 | /* Allocate space for the arguments on the stack. */ | |
649 | sp -= num_elements * 8; | |
650 | ||
651 | /* The psABI says that "The end of the input argument area shall be | |
652 | aligned on a 16 byte boundary." */ | |
653 | sp &= ~0xf; | |
654 | ||
655 | /* Write out the arguments to the stack. */ | |
656 | for (i = 0; i < num_stack_args; i++) | |
657 | { | |
4991999e | 658 | struct type *type = value_type (stack_args[i]); |
d8de1ef7 | 659 | const gdb_byte *valbuf = value_contents (stack_args[i]); |
720aa428 MK |
660 | int len = TYPE_LENGTH (type); |
661 | ||
662 | write_memory (sp + element * 8, valbuf, len); | |
663 | element += ((len + 7) / 8); | |
664 | } | |
665 | ||
666 | /* The psABI says that "For calls that may call functions that use | |
667 | varargs or stdargs (prototype-less calls or calls to functions | |
668 | containing ellipsis (...) in the declaration) %al is used as | |
669 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 670 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
671 | return sp; |
672 | } | |
673 | ||
c4f35dd8 | 674 | static CORE_ADDR |
7d9b040b | 675 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
e53bef9f MK |
676 | struct regcache *regcache, CORE_ADDR bp_addr, |
677 | int nargs, struct value **args, CORE_ADDR sp, | |
678 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 679 | { |
e17a4113 | 680 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d8de1ef7 | 681 | gdb_byte buf[8]; |
c4f35dd8 MK |
682 | |
683 | /* Pass arguments. */ | |
6470d250 | 684 | sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); |
c4f35dd8 MK |
685 | |
686 | /* Pass "hidden" argument". */ | |
687 | if (struct_return) | |
688 | { | |
e17a4113 | 689 | store_unsigned_integer (buf, 8, byte_order, struct_addr); |
90f90721 | 690 | regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf); |
c4f35dd8 MK |
691 | } |
692 | ||
693 | /* Store return address. */ | |
694 | sp -= 8; | |
e17a4113 | 695 | store_unsigned_integer (buf, 8, byte_order, bp_addr); |
c4f35dd8 MK |
696 | write_memory (sp, buf, 8); |
697 | ||
698 | /* Finally, update the stack pointer... */ | |
e17a4113 | 699 | store_unsigned_integer (buf, 8, byte_order, sp); |
90f90721 | 700 | regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
701 | |
702 | /* ...and fake a frame pointer. */ | |
90f90721 | 703 | regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 704 | |
3e210248 | 705 | return sp + 16; |
53e95fcf | 706 | } |
c4f35dd8 | 707 | \f |
35669430 DE |
708 | /* Displaced instruction handling. */ |
709 | ||
710 | /* A partially decoded instruction. | |
711 | This contains enough details for displaced stepping purposes. */ | |
712 | ||
713 | struct amd64_insn | |
714 | { | |
715 | /* The number of opcode bytes. */ | |
716 | int opcode_len; | |
717 | /* The offset of the rex prefix or -1 if not present. */ | |
718 | int rex_offset; | |
719 | /* The offset to the first opcode byte. */ | |
720 | int opcode_offset; | |
721 | /* The offset to the modrm byte or -1 if not present. */ | |
722 | int modrm_offset; | |
723 | ||
724 | /* The raw instruction. */ | |
725 | gdb_byte *raw_insn; | |
726 | }; | |
727 | ||
728 | struct displaced_step_closure | |
729 | { | |
730 | /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ | |
731 | int tmp_used; | |
732 | int tmp_regno; | |
733 | ULONGEST tmp_save; | |
734 | ||
735 | /* Details of the instruction. */ | |
736 | struct amd64_insn insn_details; | |
737 | ||
738 | /* Amount of space allocated to insn_buf. */ | |
739 | int max_len; | |
740 | ||
741 | /* The possibly modified insn. | |
742 | This is a variable-length field. */ | |
743 | gdb_byte insn_buf[1]; | |
744 | }; | |
745 | ||
746 | /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with | |
747 | ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, | |
748 | at which point delete these in favor of libopcodes' versions). */ | |
749 | ||
750 | static const unsigned char onebyte_has_modrm[256] = { | |
751 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
752 | /* ------------------------------- */ | |
753 | /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ | |
754 | /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ | |
755 | /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ | |
756 | /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ | |
757 | /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ | |
758 | /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ | |
759 | /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ | |
760 | /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ | |
761 | /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ | |
762 | /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ | |
763 | /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ | |
764 | /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ | |
765 | /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ | |
766 | /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ | |
767 | /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ | |
768 | /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */ | |
769 | /* ------------------------------- */ | |
770 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
771 | }; | |
772 | ||
773 | static const unsigned char twobyte_has_modrm[256] = { | |
774 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
775 | /* ------------------------------- */ | |
776 | /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ | |
777 | /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ | |
778 | /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ | |
779 | /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ | |
780 | /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ | |
781 | /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ | |
782 | /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ | |
783 | /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ | |
784 | /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ | |
785 | /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ | |
786 | /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ | |
787 | /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ | |
788 | /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ | |
789 | /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ | |
790 | /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ | |
791 | /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */ | |
792 | /* ------------------------------- */ | |
793 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
794 | }; | |
795 | ||
796 | static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); | |
797 | ||
798 | static int | |
799 | rex_prefix_p (gdb_byte pfx) | |
800 | { | |
801 | return REX_PREFIX_P (pfx); | |
802 | } | |
803 | ||
804 | /* Skip the legacy instruction prefixes in INSN. | |
805 | We assume INSN is properly sentineled so we don't have to worry | |
806 | about falling off the end of the buffer. */ | |
807 | ||
808 | static gdb_byte * | |
1903f0e6 | 809 | amd64_skip_prefixes (gdb_byte *insn) |
35669430 DE |
810 | { |
811 | while (1) | |
812 | { | |
813 | switch (*insn) | |
814 | { | |
815 | case DATA_PREFIX_OPCODE: | |
816 | case ADDR_PREFIX_OPCODE: | |
817 | case CS_PREFIX_OPCODE: | |
818 | case DS_PREFIX_OPCODE: | |
819 | case ES_PREFIX_OPCODE: | |
820 | case FS_PREFIX_OPCODE: | |
821 | case GS_PREFIX_OPCODE: | |
822 | case SS_PREFIX_OPCODE: | |
823 | case LOCK_PREFIX_OPCODE: | |
824 | case REPE_PREFIX_OPCODE: | |
825 | case REPNE_PREFIX_OPCODE: | |
826 | ++insn; | |
827 | continue; | |
828 | default: | |
829 | break; | |
830 | } | |
831 | break; | |
832 | } | |
833 | ||
834 | return insn; | |
835 | } | |
836 | ||
837 | /* fprintf-function for amd64_insn_length. | |
838 | This function is a nop, we don't want to print anything, we just want to | |
839 | compute the length of the insn. */ | |
840 | ||
841 | static int ATTR_FORMAT (printf, 2, 3) | |
842 | amd64_insn_length_fprintf (void *stream, const char *format, ...) | |
843 | { | |
844 | return 0; | |
845 | } | |
846 | ||
847 | /* Initialize a struct disassemble_info for amd64_insn_length. */ | |
848 | ||
849 | static void | |
850 | amd64_insn_length_init_dis (struct gdbarch *gdbarch, | |
851 | struct disassemble_info *di, | |
852 | const gdb_byte *insn, int max_len, | |
853 | CORE_ADDR addr) | |
854 | { | |
855 | init_disassemble_info (di, NULL, amd64_insn_length_fprintf); | |
856 | ||
857 | /* init_disassemble_info installs buffer_read_memory, etc. | |
858 | so we don't need to do that here. | |
859 | The cast is necessary until disassemble_info is const-ified. */ | |
860 | di->buffer = (gdb_byte *) insn; | |
861 | di->buffer_length = max_len; | |
862 | di->buffer_vma = addr; | |
863 | ||
864 | di->arch = gdbarch_bfd_arch_info (gdbarch)->arch; | |
865 | di->mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
866 | di->endian = gdbarch_byte_order (gdbarch); | |
867 | di->endian_code = gdbarch_byte_order_for_code (gdbarch); | |
868 | ||
869 | disassemble_init_for_target (di); | |
870 | } | |
871 | ||
872 | /* Return the length in bytes of INSN. | |
873 | MAX_LEN is the size of the buffer containing INSN. | |
874 | libopcodes currently doesn't export a utility to compute the | |
875 | instruction length, so use the disassembler until then. */ | |
876 | ||
877 | static int | |
878 | amd64_insn_length (struct gdbarch *gdbarch, | |
879 | const gdb_byte *insn, int max_len, CORE_ADDR addr) | |
880 | { | |
881 | struct disassemble_info di; | |
882 | ||
883 | amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr); | |
884 | ||
885 | return gdbarch_print_insn (gdbarch, addr, &di); | |
886 | } | |
887 | ||
888 | /* Return an integer register (other than RSP) that is unused as an input | |
889 | operand in INSN. | |
890 | In order to not require adding a rex prefix if the insn doesn't already | |
891 | have one, the result is restricted to RAX ... RDI, sans RSP. | |
892 | The register numbering of the result follows architecture ordering, | |
893 | e.g. RDI = 7. */ | |
894 | ||
895 | static int | |
896 | amd64_get_unused_input_int_reg (const struct amd64_insn *details) | |
897 | { | |
898 | /* 1 bit for each reg */ | |
899 | int used_regs_mask = 0; | |
900 | ||
901 | /* There can be at most 3 int regs used as inputs in an insn, and we have | |
902 | 7 to choose from (RAX ... RDI, sans RSP). | |
903 | This allows us to take a conservative approach and keep things simple. | |
904 | E.g. By avoiding RAX, we don't have to specifically watch for opcodes | |
905 | that implicitly specify RAX. */ | |
906 | ||
907 | /* Avoid RAX. */ | |
908 | used_regs_mask |= 1 << EAX_REG_NUM; | |
909 | /* Similarily avoid RDX, implicit operand in divides. */ | |
910 | used_regs_mask |= 1 << EDX_REG_NUM; | |
911 | /* Avoid RSP. */ | |
912 | used_regs_mask |= 1 << ESP_REG_NUM; | |
913 | ||
914 | /* If the opcode is one byte long and there's no ModRM byte, | |
915 | assume the opcode specifies a register. */ | |
916 | if (details->opcode_len == 1 && details->modrm_offset == -1) | |
917 | used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); | |
918 | ||
919 | /* Mark used regs in the modrm/sib bytes. */ | |
920 | if (details->modrm_offset != -1) | |
921 | { | |
922 | int modrm = details->raw_insn[details->modrm_offset]; | |
923 | int mod = MODRM_MOD_FIELD (modrm); | |
924 | int reg = MODRM_REG_FIELD (modrm); | |
925 | int rm = MODRM_RM_FIELD (modrm); | |
926 | int have_sib = mod != 3 && rm == 4; | |
927 | ||
928 | /* Assume the reg field of the modrm byte specifies a register. */ | |
929 | used_regs_mask |= 1 << reg; | |
930 | ||
931 | if (have_sib) | |
932 | { | |
933 | int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); | |
934 | int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); | |
935 | used_regs_mask |= 1 << base; | |
936 | used_regs_mask |= 1 << index; | |
937 | } | |
938 | else | |
939 | { | |
940 | used_regs_mask |= 1 << rm; | |
941 | } | |
942 | } | |
943 | ||
944 | gdb_assert (used_regs_mask < 256); | |
945 | gdb_assert (used_regs_mask != 255); | |
946 | ||
947 | /* Finally, find a free reg. */ | |
948 | { | |
949 | int i; | |
950 | ||
951 | for (i = 0; i < 8; ++i) | |
952 | { | |
953 | if (! (used_regs_mask & (1 << i))) | |
954 | return i; | |
955 | } | |
956 | ||
957 | /* We shouldn't get here. */ | |
958 | internal_error (__FILE__, __LINE__, _("unable to find free reg")); | |
959 | } | |
960 | } | |
961 | ||
962 | /* Extract the details of INSN that we need. */ | |
963 | ||
964 | static void | |
965 | amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) | |
966 | { | |
967 | gdb_byte *start = insn; | |
968 | int need_modrm; | |
969 | ||
970 | details->raw_insn = insn; | |
971 | ||
972 | details->opcode_len = -1; | |
973 | details->rex_offset = -1; | |
974 | details->opcode_offset = -1; | |
975 | details->modrm_offset = -1; | |
976 | ||
977 | /* Skip legacy instruction prefixes. */ | |
1903f0e6 | 978 | insn = amd64_skip_prefixes (insn); |
35669430 DE |
979 | |
980 | /* Skip REX instruction prefix. */ | |
981 | if (rex_prefix_p (*insn)) | |
982 | { | |
983 | details->rex_offset = insn - start; | |
984 | ++insn; | |
985 | } | |
986 | ||
987 | details->opcode_offset = insn - start; | |
988 | ||
989 | if (*insn == TWO_BYTE_OPCODE_ESCAPE) | |
990 | { | |
991 | /* Two or three-byte opcode. */ | |
992 | ++insn; | |
993 | need_modrm = twobyte_has_modrm[*insn]; | |
994 | ||
995 | /* Check for three-byte opcode. */ | |
1903f0e6 | 996 | switch (*insn) |
35669430 | 997 | { |
1903f0e6 DE |
998 | case 0x24: |
999 | case 0x25: | |
1000 | case 0x38: | |
1001 | case 0x3a: | |
1002 | case 0x7a: | |
1003 | case 0x7b: | |
35669430 DE |
1004 | ++insn; |
1005 | details->opcode_len = 3; | |
1903f0e6 DE |
1006 | break; |
1007 | default: | |
1008 | details->opcode_len = 2; | |
1009 | break; | |
35669430 | 1010 | } |
35669430 DE |
1011 | } |
1012 | else | |
1013 | { | |
1014 | /* One-byte opcode. */ | |
1015 | need_modrm = onebyte_has_modrm[*insn]; | |
1016 | details->opcode_len = 1; | |
1017 | } | |
1018 | ||
1019 | if (need_modrm) | |
1020 | { | |
1021 | ++insn; | |
1022 | details->modrm_offset = insn - start; | |
1023 | } | |
1024 | } | |
1025 | ||
1026 | /* Update %rip-relative addressing in INSN. | |
1027 | ||
1028 | %rip-relative addressing only uses a 32-bit displacement. | |
1029 | 32 bits is not enough to be guaranteed to cover the distance between where | |
1030 | the real instruction is and where its copy is. | |
1031 | Convert the insn to use base+disp addressing. | |
1032 | We set base = pc + insn_length so we can leave disp unchanged. */ | |
c4f35dd8 | 1033 | |
35669430 DE |
1034 | static void |
1035 | fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, | |
1036 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | |
1037 | { | |
e17a4113 | 1038 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
35669430 DE |
1039 | const struct amd64_insn *insn_details = &dsc->insn_details; |
1040 | int modrm_offset = insn_details->modrm_offset; | |
1041 | gdb_byte *insn = insn_details->raw_insn + modrm_offset; | |
1042 | CORE_ADDR rip_base; | |
1043 | int32_t disp; | |
1044 | int insn_length; | |
1045 | int arch_tmp_regno, tmp_regno; | |
1046 | ULONGEST orig_value; | |
1047 | ||
1048 | /* %rip+disp32 addressing mode, displacement follows ModRM byte. */ | |
1049 | ++insn; | |
1050 | ||
1051 | /* Compute the rip-relative address. */ | |
e17a4113 | 1052 | disp = extract_signed_integer (insn, sizeof (int32_t), byte_order); |
35669430 DE |
1053 | insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from); |
1054 | rip_base = from + insn_length; | |
1055 | ||
1056 | /* We need a register to hold the address. | |
1057 | Pick one not used in the insn. | |
1058 | NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */ | |
1059 | arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); | |
1060 | tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); | |
1061 | ||
1062 | /* REX.B should be unset as we were using rip-relative addressing, | |
1063 | but ensure it's unset anyway, tmp_regno is not r8-r15. */ | |
1064 | if (insn_details->rex_offset != -1) | |
1065 | dsc->insn_buf[insn_details->rex_offset] &= ~REX_B; | |
1066 | ||
1067 | regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); | |
1068 | dsc->tmp_regno = tmp_regno; | |
1069 | dsc->tmp_save = orig_value; | |
1070 | dsc->tmp_used = 1; | |
1071 | ||
1072 | /* Convert the ModRM field to be base+disp. */ | |
1073 | dsc->insn_buf[modrm_offset] &= ~0xc7; | |
1074 | dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; | |
1075 | ||
1076 | regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); | |
1077 | ||
1078 | if (debug_displaced) | |
1079 | fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n" | |
5af949e3 UW |
1080 | "displaced: using temp reg %d, old value %s, new value %s\n", |
1081 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), | |
1082 | paddress (gdbarch, rip_base)); | |
35669430 DE |
1083 | } |
1084 | ||
1085 | static void | |
1086 | fixup_displaced_copy (struct gdbarch *gdbarch, | |
1087 | struct displaced_step_closure *dsc, | |
1088 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | |
1089 | { | |
1090 | const struct amd64_insn *details = &dsc->insn_details; | |
1091 | ||
1092 | if (details->modrm_offset != -1) | |
1093 | { | |
1094 | gdb_byte modrm = details->raw_insn[details->modrm_offset]; | |
1095 | ||
1096 | if ((modrm & 0xc7) == 0x05) | |
1097 | { | |
1098 | /* The insn uses rip-relative addressing. | |
1099 | Deal with it. */ | |
1100 | fixup_riprel (gdbarch, dsc, from, to, regs); | |
1101 | } | |
1102 | } | |
1103 | } | |
1104 | ||
1105 | struct displaced_step_closure * | |
1106 | amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
1107 | CORE_ADDR from, CORE_ADDR to, | |
1108 | struct regcache *regs) | |
1109 | { | |
1110 | int len = gdbarch_max_insn_length (gdbarch); | |
1111 | /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to | |
1112 | continually watch for running off the end of the buffer. */ | |
1113 | int fixup_sentinel_space = len; | |
1114 | struct displaced_step_closure *dsc = | |
1115 | xmalloc (sizeof (*dsc) + len + fixup_sentinel_space); | |
1116 | gdb_byte *buf = &dsc->insn_buf[0]; | |
1117 | struct amd64_insn *details = &dsc->insn_details; | |
1118 | ||
1119 | dsc->tmp_used = 0; | |
1120 | dsc->max_len = len + fixup_sentinel_space; | |
1121 | ||
1122 | read_memory (from, buf, len); | |
1123 | ||
1124 | /* Set up the sentinel space so we don't have to worry about running | |
1125 | off the end of the buffer. An excessive number of leading prefixes | |
1126 | could otherwise cause this. */ | |
1127 | memset (buf + len, 0, fixup_sentinel_space); | |
1128 | ||
1129 | amd64_get_insn_details (buf, details); | |
1130 | ||
1131 | /* GDB may get control back after the insn after the syscall. | |
1132 | Presumably this is a kernel bug. | |
1133 | If this is a syscall, make sure there's a nop afterwards. */ | |
1134 | { | |
1135 | int syscall_length; | |
1136 | ||
1137 | if (amd64_syscall_p (details, &syscall_length)) | |
1138 | buf[details->opcode_offset + syscall_length] = NOP_OPCODE; | |
1139 | } | |
1140 | ||
1141 | /* Modify the insn to cope with the address where it will be executed from. | |
1142 | In particular, handle any rip-relative addressing. */ | |
1143 | fixup_displaced_copy (gdbarch, dsc, from, to, regs); | |
1144 | ||
1145 | write_memory (to, buf, len); | |
1146 | ||
1147 | if (debug_displaced) | |
1148 | { | |
5af949e3 UW |
1149 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", |
1150 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
35669430 DE |
1151 | displaced_step_dump_bytes (gdb_stdlog, buf, len); |
1152 | } | |
1153 | ||
1154 | return dsc; | |
1155 | } | |
1156 | ||
1157 | static int | |
1158 | amd64_absolute_jmp_p (const struct amd64_insn *details) | |
1159 | { | |
1160 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1161 | ||
1162 | if (insn[0] == 0xff) | |
1163 | { | |
1164 | /* jump near, absolute indirect (/4) */ | |
1165 | if ((insn[1] & 0x38) == 0x20) | |
1166 | return 1; | |
1167 | ||
1168 | /* jump far, absolute indirect (/5) */ | |
1169 | if ((insn[1] & 0x38) == 0x28) | |
1170 | return 1; | |
1171 | } | |
1172 | ||
1173 | return 0; | |
1174 | } | |
1175 | ||
1176 | static int | |
1177 | amd64_absolute_call_p (const struct amd64_insn *details) | |
1178 | { | |
1179 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1180 | ||
1181 | if (insn[0] == 0xff) | |
1182 | { | |
1183 | /* Call near, absolute indirect (/2) */ | |
1184 | if ((insn[1] & 0x38) == 0x10) | |
1185 | return 1; | |
1186 | ||
1187 | /* Call far, absolute indirect (/3) */ | |
1188 | if ((insn[1] & 0x38) == 0x18) | |
1189 | return 1; | |
1190 | } | |
1191 | ||
1192 | return 0; | |
1193 | } | |
1194 | ||
1195 | static int | |
1196 | amd64_ret_p (const struct amd64_insn *details) | |
1197 | { | |
1198 | /* NOTE: gcc can emit "repz ; ret". */ | |
1199 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1200 | ||
1201 | switch (insn[0]) | |
1202 | { | |
1203 | case 0xc2: /* ret near, pop N bytes */ | |
1204 | case 0xc3: /* ret near */ | |
1205 | case 0xca: /* ret far, pop N bytes */ | |
1206 | case 0xcb: /* ret far */ | |
1207 | case 0xcf: /* iret */ | |
1208 | return 1; | |
1209 | ||
1210 | default: | |
1211 | return 0; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | static int | |
1216 | amd64_call_p (const struct amd64_insn *details) | |
1217 | { | |
1218 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1219 | ||
1220 | if (amd64_absolute_call_p (details)) | |
1221 | return 1; | |
1222 | ||
1223 | /* call near, relative */ | |
1224 | if (insn[0] == 0xe8) | |
1225 | return 1; | |
1226 | ||
1227 | return 0; | |
1228 | } | |
1229 | ||
35669430 DE |
1230 | /* Return non-zero if INSN is a system call, and set *LENGTHP to its |
1231 | length in bytes. Otherwise, return zero. */ | |
1232 | ||
1233 | static int | |
1234 | amd64_syscall_p (const struct amd64_insn *details, int *lengthp) | |
1235 | { | |
1236 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1237 | ||
1238 | if (insn[0] == 0x0f && insn[1] == 0x05) | |
1239 | { | |
1240 | *lengthp = 2; | |
1241 | return 1; | |
1242 | } | |
1243 | ||
1244 | return 0; | |
1245 | } | |
1246 | ||
1247 | /* Fix up the state of registers and memory after having single-stepped | |
1248 | a displaced instruction. */ | |
1249 | ||
1250 | void | |
1251 | amd64_displaced_step_fixup (struct gdbarch *gdbarch, | |
1252 | struct displaced_step_closure *dsc, | |
1253 | CORE_ADDR from, CORE_ADDR to, | |
1254 | struct regcache *regs) | |
1255 | { | |
e17a4113 | 1256 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
35669430 DE |
1257 | /* The offset we applied to the instruction's address. */ |
1258 | ULONGEST insn_offset = to - from; | |
1259 | gdb_byte *insn = dsc->insn_buf; | |
1260 | const struct amd64_insn *insn_details = &dsc->insn_details; | |
1261 | ||
1262 | if (debug_displaced) | |
1263 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 | 1264 | "displaced: fixup (%s, %s), " |
35669430 | 1265 | "insn = 0x%02x 0x%02x ...\n", |
5af949e3 UW |
1266 | paddress (gdbarch, from), paddress (gdbarch, to), |
1267 | insn[0], insn[1]); | |
35669430 DE |
1268 | |
1269 | /* If we used a tmp reg, restore it. */ | |
1270 | ||
1271 | if (dsc->tmp_used) | |
1272 | { | |
1273 | if (debug_displaced) | |
5af949e3 UW |
1274 | fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n", |
1275 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); | |
35669430 DE |
1276 | regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); |
1277 | } | |
1278 | ||
1279 | /* The list of issues to contend with here is taken from | |
1280 | resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. | |
1281 | Yay for Free Software! */ | |
1282 | ||
1283 | /* Relocate the %rip back to the program's instruction stream, | |
1284 | if necessary. */ | |
1285 | ||
1286 | /* Except in the case of absolute or indirect jump or call | |
1287 | instructions, or a return instruction, the new rip is relative to | |
1288 | the displaced instruction; make it relative to the original insn. | |
1289 | Well, signal handler returns don't need relocation either, but we use the | |
1290 | value of %rip to recognize those; see below. */ | |
1291 | if (! amd64_absolute_jmp_p (insn_details) | |
1292 | && ! amd64_absolute_call_p (insn_details) | |
1293 | && ! amd64_ret_p (insn_details)) | |
1294 | { | |
1295 | ULONGEST orig_rip; | |
1296 | int insn_len; | |
1297 | ||
1298 | regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip); | |
1299 | ||
1300 | /* A signal trampoline system call changes the %rip, resuming | |
1301 | execution of the main program after the signal handler has | |
1302 | returned. That makes them like 'return' instructions; we | |
1303 | shouldn't relocate %rip. | |
1304 | ||
1305 | But most system calls don't, and we do need to relocate %rip. | |
1306 | ||
1307 | Our heuristic for distinguishing these cases: if stepping | |
1308 | over the system call instruction left control directly after | |
1309 | the instruction, the we relocate --- control almost certainly | |
1310 | doesn't belong in the displaced copy. Otherwise, we assume | |
1311 | the instruction has put control where it belongs, and leave | |
1312 | it unrelocated. Goodness help us if there are PC-relative | |
1313 | system calls. */ | |
1314 | if (amd64_syscall_p (insn_details, &insn_len) | |
1315 | && orig_rip != to + insn_len | |
1316 | /* GDB can get control back after the insn after the syscall. | |
1317 | Presumably this is a kernel bug. | |
1318 | Fixup ensures its a nop, we add one to the length for it. */ | |
1319 | && orig_rip != to + insn_len + 1) | |
1320 | { | |
1321 | if (debug_displaced) | |
1322 | fprintf_unfiltered (gdb_stdlog, | |
1323 | "displaced: syscall changed %%rip; " | |
1324 | "not relocating\n"); | |
1325 | } | |
1326 | else | |
1327 | { | |
1328 | ULONGEST rip = orig_rip - insn_offset; | |
1329 | ||
1903f0e6 DE |
1330 | /* If we just stepped over a breakpoint insn, we don't backup |
1331 | the pc on purpose; this is to match behaviour without | |
1332 | stepping. */ | |
35669430 DE |
1333 | |
1334 | regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip); | |
1335 | ||
1336 | if (debug_displaced) | |
1337 | fprintf_unfiltered (gdb_stdlog, | |
1338 | "displaced: " | |
5af949e3 UW |
1339 | "relocated %%rip from %s to %s\n", |
1340 | paddress (gdbarch, orig_rip), | |
1341 | paddress (gdbarch, rip)); | |
35669430 DE |
1342 | } |
1343 | } | |
1344 | ||
1345 | /* If the instruction was PUSHFL, then the TF bit will be set in the | |
1346 | pushed value, and should be cleared. We'll leave this for later, | |
1347 | since GDB already messes up the TF flag when stepping over a | |
1348 | pushfl. */ | |
1349 | ||
1350 | /* If the instruction was a call, the return address now atop the | |
1351 | stack is the address following the copied instruction. We need | |
1352 | to make it the address following the original instruction. */ | |
1353 | if (amd64_call_p (insn_details)) | |
1354 | { | |
1355 | ULONGEST rsp; | |
1356 | ULONGEST retaddr; | |
1357 | const ULONGEST retaddr_len = 8; | |
1358 | ||
1359 | regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); | |
e17a4113 | 1360 | retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); |
35669430 | 1361 | retaddr = (retaddr - insn_offset) & 0xffffffffUL; |
e17a4113 | 1362 | write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); |
35669430 DE |
1363 | |
1364 | if (debug_displaced) | |
1365 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
1366 | "displaced: relocated return addr at %s " |
1367 | "to %s\n", | |
1368 | paddress (gdbarch, rsp), | |
1369 | paddress (gdbarch, retaddr)); | |
35669430 DE |
1370 | } |
1371 | } | |
1372 | \f | |
c4f35dd8 | 1373 | /* The maximum number of saved registers. This should include %rip. */ |
90f90721 | 1374 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 1375 | |
e53bef9f | 1376 | struct amd64_frame_cache |
c4f35dd8 MK |
1377 | { |
1378 | /* Base address. */ | |
1379 | CORE_ADDR base; | |
1380 | CORE_ADDR sp_offset; | |
1381 | CORE_ADDR pc; | |
1382 | ||
1383 | /* Saved registers. */ | |
e53bef9f | 1384 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 | 1385 | CORE_ADDR saved_sp; |
e0c62198 | 1386 | int saved_sp_reg; |
c4f35dd8 MK |
1387 | |
1388 | /* Do we have a frame? */ | |
1389 | int frameless_p; | |
1390 | }; | |
8dda9770 | 1391 | |
d2449ee8 | 1392 | /* Initialize a frame cache. */ |
c4f35dd8 | 1393 | |
d2449ee8 DJ |
1394 | static void |
1395 | amd64_init_frame_cache (struct amd64_frame_cache *cache) | |
8dda9770 | 1396 | { |
c4f35dd8 MK |
1397 | int i; |
1398 | ||
c4f35dd8 MK |
1399 | /* Base address. */ |
1400 | cache->base = 0; | |
1401 | cache->sp_offset = -8; | |
1402 | cache->pc = 0; | |
1403 | ||
1404 | /* Saved registers. We initialize these to -1 since zero is a valid | |
1405 | offset (that's where %rbp is supposed to be stored). */ | |
e53bef9f | 1406 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
1407 | cache->saved_regs[i] = -1; |
1408 | cache->saved_sp = 0; | |
e0c62198 | 1409 | cache->saved_sp_reg = -1; |
c4f35dd8 MK |
1410 | |
1411 | /* Frameless until proven otherwise. */ | |
1412 | cache->frameless_p = 1; | |
d2449ee8 | 1413 | } |
c4f35dd8 | 1414 | |
d2449ee8 DJ |
1415 | /* Allocate and initialize a frame cache. */ |
1416 | ||
1417 | static struct amd64_frame_cache * | |
1418 | amd64_alloc_frame_cache (void) | |
1419 | { | |
1420 | struct amd64_frame_cache *cache; | |
1421 | ||
1422 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | |
1423 | amd64_init_frame_cache (cache); | |
c4f35dd8 | 1424 | return cache; |
8dda9770 | 1425 | } |
53e95fcf | 1426 | |
e0c62198 L |
1427 | /* GCC 4.4 and later, can put code in the prologue to realign the |
1428 | stack pointer. Check whether PC points to such code, and update | |
1429 | CACHE accordingly. Return the first instruction after the code | |
1430 | sequence or CURRENT_PC, whichever is smaller. If we don't | |
1431 | recognize the code, return PC. */ | |
1432 | ||
1433 | static CORE_ADDR | |
1434 | amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | |
1435 | struct amd64_frame_cache *cache) | |
1436 | { | |
1437 | /* There are 2 code sequences to re-align stack before the frame | |
1438 | gets set up: | |
1439 | ||
1440 | 1. Use a caller-saved saved register: | |
1441 | ||
1442 | leaq 8(%rsp), %reg | |
1443 | andq $-XXX, %rsp | |
1444 | pushq -8(%reg) | |
1445 | ||
1446 | 2. Use a callee-saved saved register: | |
1447 | ||
1448 | pushq %reg | |
1449 | leaq 16(%rsp), %reg | |
1450 | andq $-XXX, %rsp | |
1451 | pushq -8(%reg) | |
1452 | ||
1453 | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | |
1454 | ||
1455 | 0x48 0x83 0xe4 0xf0 andq $-16, %rsp | |
1456 | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp | |
1457 | */ | |
1458 | ||
1459 | gdb_byte buf[18]; | |
1460 | int reg, r; | |
1461 | int offset, offset_and; | |
e0c62198 L |
1462 | |
1463 | if (target_read_memory (pc, buf, sizeof buf)) | |
1464 | return pc; | |
1465 | ||
1466 | /* Check caller-saved saved register. The first instruction has | |
1467 | to be "leaq 8(%rsp), %reg". */ | |
1468 | if ((buf[0] & 0xfb) == 0x48 | |
1469 | && buf[1] == 0x8d | |
1470 | && buf[3] == 0x24 | |
1471 | && buf[4] == 0x8) | |
1472 | { | |
1473 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
1474 | if ((buf[2] & 0xc7) != 0x44) | |
1475 | return pc; | |
1476 | ||
1477 | /* REG has register number. */ | |
1478 | reg = (buf[2] >> 3) & 7; | |
1479 | ||
1480 | /* Check the REX.R bit. */ | |
1481 | if (buf[0] == 0x4c) | |
1482 | reg += 8; | |
1483 | ||
1484 | offset = 5; | |
1485 | } | |
1486 | else | |
1487 | { | |
1488 | /* Check callee-saved saved register. The first instruction | |
1489 | has to be "pushq %reg". */ | |
1490 | reg = 0; | |
1491 | if ((buf[0] & 0xf8) == 0x50) | |
1492 | offset = 0; | |
1493 | else if ((buf[0] & 0xf6) == 0x40 | |
1494 | && (buf[1] & 0xf8) == 0x50) | |
1495 | { | |
1496 | /* Check the REX.B bit. */ | |
1497 | if ((buf[0] & 1) != 0) | |
1498 | reg = 8; | |
1499 | ||
1500 | offset = 1; | |
1501 | } | |
1502 | else | |
1503 | return pc; | |
1504 | ||
1505 | /* Get register. */ | |
1506 | reg += buf[offset] & 0x7; | |
1507 | ||
1508 | offset++; | |
1509 | ||
1510 | /* The next instruction has to be "leaq 16(%rsp), %reg". */ | |
1511 | if ((buf[offset] & 0xfb) != 0x48 | |
1512 | || buf[offset + 1] != 0x8d | |
1513 | || buf[offset + 3] != 0x24 | |
1514 | || buf[offset + 4] != 0x10) | |
1515 | return pc; | |
1516 | ||
1517 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
1518 | if ((buf[offset + 2] & 0xc7) != 0x44) | |
1519 | return pc; | |
1520 | ||
1521 | /* REG has register number. */ | |
1522 | r = (buf[offset + 2] >> 3) & 7; | |
1523 | ||
1524 | /* Check the REX.R bit. */ | |
1525 | if (buf[offset] == 0x4c) | |
1526 | r += 8; | |
1527 | ||
1528 | /* Registers in pushq and leaq have to be the same. */ | |
1529 | if (reg != r) | |
1530 | return pc; | |
1531 | ||
1532 | offset += 5; | |
1533 | } | |
1534 | ||
1535 | /* Rigister can't be %rsp nor %rbp. */ | |
1536 | if (reg == 4 || reg == 5) | |
1537 | return pc; | |
1538 | ||
1539 | /* The next instruction has to be "andq $-XXX, %rsp". */ | |
1540 | if (buf[offset] != 0x48 | |
1541 | || buf[offset + 2] != 0xe4 | |
1542 | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | |
1543 | return pc; | |
1544 | ||
1545 | offset_and = offset; | |
1546 | offset += buf[offset + 1] == 0x81 ? 7 : 4; | |
1547 | ||
1548 | /* The next instruction has to be "pushq -8(%reg)". */ | |
1549 | r = 0; | |
1550 | if (buf[offset] == 0xff) | |
1551 | offset++; | |
1552 | else if ((buf[offset] & 0xf6) == 0x40 | |
1553 | && buf[offset + 1] == 0xff) | |
1554 | { | |
1555 | /* Check the REX.B bit. */ | |
1556 | if ((buf[offset] & 0x1) != 0) | |
1557 | r = 8; | |
1558 | offset += 2; | |
1559 | } | |
1560 | else | |
1561 | return pc; | |
1562 | ||
1563 | /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary | |
1564 | 01. */ | |
1565 | if (buf[offset + 1] != 0xf8 | |
1566 | || (buf[offset] & 0xf8) != 0x70) | |
1567 | return pc; | |
1568 | ||
1569 | /* R/M has register. */ | |
1570 | r += buf[offset] & 7; | |
1571 | ||
1572 | /* Registers in leaq and pushq have to be the same. */ | |
1573 | if (reg != r) | |
1574 | return pc; | |
1575 | ||
1576 | if (current_pc > pc + offset_and) | |
35669430 | 1577 | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); |
e0c62198 L |
1578 | |
1579 | return min (pc + offset + 2, current_pc); | |
1580 | } | |
1581 | ||
c4f35dd8 MK |
1582 | /* Do a limited analysis of the prologue at PC and update CACHE |
1583 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
1584 | address where the analysis stopped. | |
1585 | ||
1586 | We will handle only functions beginning with: | |
1587 | ||
1588 | pushq %rbp 0x55 | |
1589 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
1590 | ||
1591 | Any function that doesn't start with this sequence will be assumed | |
1592 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
1593 | ||
1594 | static CORE_ADDR | |
e17a4113 UW |
1595 | amd64_analyze_prologue (struct gdbarch *gdbarch, |
1596 | CORE_ADDR pc, CORE_ADDR current_pc, | |
e53bef9f | 1597 | struct amd64_frame_cache *cache) |
53e95fcf | 1598 | { |
e17a4113 | 1599 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d8de1ef7 MK |
1600 | static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ |
1601 | gdb_byte buf[3]; | |
1602 | gdb_byte op; | |
c4f35dd8 MK |
1603 | |
1604 | if (current_pc <= pc) | |
1605 | return current_pc; | |
1606 | ||
e0c62198 L |
1607 | pc = amd64_analyze_stack_align (pc, current_pc, cache); |
1608 | ||
e17a4113 | 1609 | op = read_memory_unsigned_integer (pc, 1, byte_order); |
c4f35dd8 MK |
1610 | |
1611 | if (op == 0x55) /* pushq %rbp */ | |
1612 | { | |
1613 | /* Take into account that we've executed the `pushq %rbp' that | |
1614 | starts this instruction sequence. */ | |
90f90721 | 1615 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
1616 | cache->sp_offset += 8; |
1617 | ||
1618 | /* If that's all, return now. */ | |
1619 | if (current_pc <= pc + 1) | |
1620 | return current_pc; | |
1621 | ||
1622 | /* Check for `movq %rsp, %rbp'. */ | |
1623 | read_memory (pc + 1, buf, 3); | |
1624 | if (memcmp (buf, proto, 3) != 0) | |
1625 | return pc + 1; | |
1626 | ||
1627 | /* OK, we actually have a frame. */ | |
1628 | cache->frameless_p = 0; | |
1629 | return pc + 4; | |
1630 | } | |
1631 | ||
1632 | return pc; | |
53e95fcf JS |
1633 | } |
1634 | ||
c4f35dd8 MK |
1635 | /* Return PC of first real instruction. */ |
1636 | ||
1637 | static CORE_ADDR | |
6093d2eb | 1638 | amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
53e95fcf | 1639 | { |
e53bef9f | 1640 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
1641 | CORE_ADDR pc; |
1642 | ||
d2449ee8 | 1643 | amd64_init_frame_cache (&cache); |
e17a4113 UW |
1644 | pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, |
1645 | &cache); | |
c4f35dd8 MK |
1646 | if (cache.frameless_p) |
1647 | return start_pc; | |
1648 | ||
1649 | return pc; | |
53e95fcf | 1650 | } |
c4f35dd8 | 1651 | \f |
53e95fcf | 1652 | |
c4f35dd8 MK |
1653 | /* Normal frames. */ |
1654 | ||
e53bef9f | 1655 | static struct amd64_frame_cache * |
10458914 | 1656 | amd64_frame_cache (struct frame_info *this_frame, void **this_cache) |
6d686a84 | 1657 | { |
e17a4113 UW |
1658 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1659 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
e53bef9f | 1660 | struct amd64_frame_cache *cache; |
d8de1ef7 | 1661 | gdb_byte buf[8]; |
6d686a84 | 1662 | int i; |
6d686a84 | 1663 | |
c4f35dd8 MK |
1664 | if (*this_cache) |
1665 | return *this_cache; | |
6d686a84 | 1666 | |
e53bef9f | 1667 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
1668 | *this_cache = cache; |
1669 | ||
10458914 | 1670 | cache->pc = get_frame_func (this_frame); |
c4f35dd8 | 1671 | if (cache->pc != 0) |
e17a4113 UW |
1672 | amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), |
1673 | cache); | |
c4f35dd8 | 1674 | |
e0c62198 L |
1675 | if (cache->saved_sp_reg != -1) |
1676 | { | |
1677 | /* Stack pointer has been saved. */ | |
1678 | get_frame_register (this_frame, cache->saved_sp_reg, buf); | |
e17a4113 | 1679 | cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order); |
e0c62198 L |
1680 | } |
1681 | ||
c4f35dd8 MK |
1682 | if (cache->frameless_p) |
1683 | { | |
4a28816e MK |
1684 | /* We didn't find a valid frame. If we're at the start of a |
1685 | function, or somewhere half-way its prologue, the function's | |
1686 | frame probably hasn't been fully setup yet. Try to | |
1687 | reconstruct the base address for the stack frame by looking | |
1688 | at the stack pointer. For truly "frameless" functions this | |
1689 | might work too. */ | |
c4f35dd8 | 1690 | |
e0c62198 L |
1691 | if (cache->saved_sp_reg != -1) |
1692 | { | |
1693 | /* We're halfway aligning the stack. */ | |
1694 | cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; | |
1695 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; | |
1696 | ||
1697 | /* This will be added back below. */ | |
1698 | cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; | |
1699 | } | |
1700 | else | |
1701 | { | |
1702 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
e17a4113 UW |
1703 | cache->base = extract_unsigned_integer (buf, 8, byte_order) |
1704 | + cache->sp_offset; | |
e0c62198 | 1705 | } |
c4f35dd8 | 1706 | } |
35883a3f MK |
1707 | else |
1708 | { | |
10458914 | 1709 | get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); |
e17a4113 | 1710 | cache->base = extract_unsigned_integer (buf, 8, byte_order); |
35883a3f | 1711 | } |
c4f35dd8 MK |
1712 | |
1713 | /* Now that we have the base address for the stack frame we can | |
1714 | calculate the value of %rsp in the calling frame. */ | |
1715 | cache->saved_sp = cache->base + 16; | |
1716 | ||
35883a3f MK |
1717 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
1718 | frame we find it at the same offset from the reconstructed base | |
e0c62198 L |
1719 | address. If we're halfway aligning the stack, %rip is handled |
1720 | differently (see above). */ | |
1721 | if (!cache->frameless_p || cache->saved_sp_reg == -1) | |
1722 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; | |
35883a3f | 1723 | |
c4f35dd8 MK |
1724 | /* Adjust all the saved registers such that they contain addresses |
1725 | instead of offsets. */ | |
e53bef9f | 1726 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
1727 | if (cache->saved_regs[i] != -1) |
1728 | cache->saved_regs[i] += cache->base; | |
1729 | ||
1730 | return cache; | |
6d686a84 ML |
1731 | } |
1732 | ||
c4f35dd8 | 1733 | static void |
10458914 | 1734 | amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, |
e53bef9f | 1735 | struct frame_id *this_id) |
c4f35dd8 | 1736 | { |
e53bef9f | 1737 | struct amd64_frame_cache *cache = |
10458914 | 1738 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 MK |
1739 | |
1740 | /* This marks the outermost frame. */ | |
1741 | if (cache->base == 0) | |
1742 | return; | |
1743 | ||
1744 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
1745 | } | |
e76e1718 | 1746 | |
10458914 DJ |
1747 | static struct value * |
1748 | amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1749 | int regnum) | |
53e95fcf | 1750 | { |
10458914 | 1751 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e53bef9f | 1752 | struct amd64_frame_cache *cache = |
10458914 | 1753 | amd64_frame_cache (this_frame, this_cache); |
e76e1718 | 1754 | |
c4f35dd8 | 1755 | gdb_assert (regnum >= 0); |
b1ab997b | 1756 | |
2ae02b47 | 1757 | if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) |
10458914 | 1758 | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); |
e76e1718 | 1759 | |
e53bef9f | 1760 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
10458914 DJ |
1761 | return frame_unwind_got_memory (this_frame, regnum, |
1762 | cache->saved_regs[regnum]); | |
e76e1718 | 1763 | |
10458914 | 1764 | return frame_unwind_got_register (this_frame, regnum, regnum); |
c4f35dd8 | 1765 | } |
e76e1718 | 1766 | |
e53bef9f | 1767 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
1768 | { |
1769 | NORMAL_FRAME, | |
e53bef9f | 1770 | amd64_frame_this_id, |
10458914 DJ |
1771 | amd64_frame_prev_register, |
1772 | NULL, | |
1773 | default_frame_sniffer | |
c4f35dd8 | 1774 | }; |
c4f35dd8 | 1775 | \f |
e76e1718 | 1776 | |
c4f35dd8 MK |
1777 | /* Signal trampolines. */ |
1778 | ||
1779 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
1780 | 64-bit variants. This would require using identical frame caches | |
1781 | on both platforms. */ | |
1782 | ||
e53bef9f | 1783 | static struct amd64_frame_cache * |
10458914 | 1784 | amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 1785 | { |
e17a4113 UW |
1786 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1787 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1788 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
e53bef9f | 1789 | struct amd64_frame_cache *cache; |
c4f35dd8 | 1790 | CORE_ADDR addr; |
d8de1ef7 | 1791 | gdb_byte buf[8]; |
2b5e0749 | 1792 | int i; |
c4f35dd8 MK |
1793 | |
1794 | if (*this_cache) | |
1795 | return *this_cache; | |
1796 | ||
e53bef9f | 1797 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 1798 | |
10458914 | 1799 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
e17a4113 | 1800 | cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; |
c4f35dd8 | 1801 | |
10458914 | 1802 | addr = tdep->sigcontext_addr (this_frame); |
2b5e0749 | 1803 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 1804 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
1805 | for (i = 0; i < tdep->sc_num_regs; i++) |
1806 | if (tdep->sc_reg_offset[i] != -1) | |
1807 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
1808 | |
1809 | *this_cache = cache; | |
1810 | return cache; | |
53e95fcf JS |
1811 | } |
1812 | ||
c4f35dd8 | 1813 | static void |
10458914 | 1814 | amd64_sigtramp_frame_this_id (struct frame_info *this_frame, |
e53bef9f | 1815 | void **this_cache, struct frame_id *this_id) |
c4f35dd8 | 1816 | { |
e53bef9f | 1817 | struct amd64_frame_cache *cache = |
10458914 | 1818 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 1819 | |
10458914 | 1820 | (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); |
c4f35dd8 MK |
1821 | } |
1822 | ||
10458914 DJ |
1823 | static struct value * |
1824 | amd64_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
1825 | void **this_cache, int regnum) | |
c4f35dd8 MK |
1826 | { |
1827 | /* Make sure we've initialized the cache. */ | |
10458914 | 1828 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 1829 | |
10458914 | 1830 | return amd64_frame_prev_register (this_frame, this_cache, regnum); |
c4f35dd8 MK |
1831 | } |
1832 | ||
10458914 DJ |
1833 | static int |
1834 | amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
1835 | struct frame_info *this_frame, | |
1836 | void **this_cache) | |
c4f35dd8 | 1837 | { |
10458914 | 1838 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
911bc6ee MK |
1839 | |
1840 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
1841 | handler. */ | |
1842 | if (tdep->sigcontext_addr == NULL) | |
10458914 | 1843 | return 0; |
911bc6ee MK |
1844 | |
1845 | if (tdep->sigtramp_p != NULL) | |
1846 | { | |
10458914 DJ |
1847 | if (tdep->sigtramp_p (this_frame)) |
1848 | return 1; | |
911bc6ee | 1849 | } |
c4f35dd8 | 1850 | |
911bc6ee | 1851 | if (tdep->sigtramp_start != 0) |
1c3545ae | 1852 | { |
10458914 | 1853 | CORE_ADDR pc = get_frame_pc (this_frame); |
1c3545ae | 1854 | |
911bc6ee MK |
1855 | gdb_assert (tdep->sigtramp_end != 0); |
1856 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
10458914 | 1857 | return 1; |
1c3545ae | 1858 | } |
c4f35dd8 | 1859 | |
10458914 | 1860 | return 0; |
c4f35dd8 | 1861 | } |
10458914 DJ |
1862 | |
1863 | static const struct frame_unwind amd64_sigtramp_frame_unwind = | |
1864 | { | |
1865 | SIGTRAMP_FRAME, | |
1866 | amd64_sigtramp_frame_this_id, | |
1867 | amd64_sigtramp_frame_prev_register, | |
1868 | NULL, | |
1869 | amd64_sigtramp_frame_sniffer | |
1870 | }; | |
c4f35dd8 MK |
1871 | \f |
1872 | ||
1873 | static CORE_ADDR | |
10458914 | 1874 | amd64_frame_base_address (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 1875 | { |
e53bef9f | 1876 | struct amd64_frame_cache *cache = |
10458914 | 1877 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 MK |
1878 | |
1879 | return cache->base; | |
1880 | } | |
1881 | ||
e53bef9f | 1882 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 1883 | { |
e53bef9f MK |
1884 | &amd64_frame_unwind, |
1885 | amd64_frame_base_address, | |
1886 | amd64_frame_base_address, | |
1887 | amd64_frame_base_address | |
c4f35dd8 MK |
1888 | }; |
1889 | ||
872761f4 MS |
1890 | /* Normal frames, but in a function epilogue. */ |
1891 | ||
1892 | /* The epilogue is defined here as the 'ret' instruction, which will | |
1893 | follow any instruction such as 'leave' or 'pop %ebp' that destroys | |
1894 | the function's stack frame. */ | |
1895 | ||
1896 | static int | |
1897 | amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1898 | { | |
1899 | gdb_byte insn; | |
1900 | ||
1901 | if (target_read_memory (pc, &insn, 1)) | |
1902 | return 0; /* Can't read memory at pc. */ | |
1903 | ||
1904 | if (insn != 0xc3) /* 'ret' instruction. */ | |
1905 | return 0; | |
1906 | ||
1907 | return 1; | |
1908 | } | |
1909 | ||
1910 | static int | |
1911 | amd64_epilogue_frame_sniffer (const struct frame_unwind *self, | |
1912 | struct frame_info *this_frame, | |
1913 | void **this_prologue_cache) | |
1914 | { | |
1915 | if (frame_relative_level (this_frame) == 0) | |
1916 | return amd64_in_function_epilogue_p (get_frame_arch (this_frame), | |
1917 | get_frame_pc (this_frame)); | |
1918 | else | |
1919 | return 0; | |
1920 | } | |
1921 | ||
1922 | static struct amd64_frame_cache * | |
1923 | amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | |
1924 | { | |
1925 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1926 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1927 | struct amd64_frame_cache *cache; | |
1928 | gdb_byte buf[4]; | |
1929 | ||
1930 | if (*this_cache) | |
1931 | return *this_cache; | |
1932 | ||
1933 | cache = amd64_alloc_frame_cache (); | |
1934 | *this_cache = cache; | |
1935 | ||
1936 | /* Cache base will be %esp plus cache->sp_offset (-8). */ | |
1937 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
1938 | cache->base = extract_unsigned_integer (buf, 8, | |
1939 | byte_order) + cache->sp_offset; | |
1940 | ||
1941 | /* Cache pc will be the frame func. */ | |
1942 | cache->pc = get_frame_pc (this_frame); | |
1943 | ||
1944 | /* The saved %esp will be at cache->base plus 16. */ | |
1945 | cache->saved_sp = cache->base + 16; | |
1946 | ||
1947 | /* The saved %eip will be at cache->base plus 8. */ | |
1948 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; | |
1949 | ||
1950 | return cache; | |
1951 | } | |
1952 | ||
1953 | static void | |
1954 | amd64_epilogue_frame_this_id (struct frame_info *this_frame, | |
1955 | void **this_cache, | |
1956 | struct frame_id *this_id) | |
1957 | { | |
1958 | struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, | |
1959 | this_cache); | |
1960 | ||
1961 | (*this_id) = frame_id_build (cache->base + 8, cache->pc); | |
1962 | } | |
1963 | ||
1964 | static const struct frame_unwind amd64_epilogue_frame_unwind = | |
1965 | { | |
1966 | NORMAL_FRAME, | |
1967 | amd64_epilogue_frame_this_id, | |
1968 | amd64_frame_prev_register, | |
1969 | NULL, | |
1970 | amd64_epilogue_frame_sniffer | |
1971 | }; | |
1972 | ||
166f4c7b | 1973 | static struct frame_id |
10458914 | 1974 | amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
166f4c7b | 1975 | { |
c4f35dd8 MK |
1976 | CORE_ADDR fp; |
1977 | ||
10458914 | 1978 | fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); |
c4f35dd8 | 1979 | |
10458914 | 1980 | return frame_id_build (fp + 16, get_frame_pc (this_frame)); |
166f4c7b ML |
1981 | } |
1982 | ||
8b148df9 AC |
1983 | /* 16 byte align the SP per frame requirements. */ |
1984 | ||
1985 | static CORE_ADDR | |
e53bef9f | 1986 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
1987 | { |
1988 | return sp & -(CORE_ADDR)16; | |
1989 | } | |
473f17b0 MK |
1990 | \f |
1991 | ||
593adc23 MK |
1992 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
1993 | in the floating-point register set REGSET to register cache | |
1994 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
473f17b0 MK |
1995 | |
1996 | static void | |
e53bef9f MK |
1997 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
1998 | int regnum, const void *fpregs, size_t len) | |
473f17b0 | 1999 | { |
9ea75c57 | 2000 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); |
473f17b0 MK |
2001 | |
2002 | gdb_assert (len == tdep->sizeof_fpregset); | |
90f90721 | 2003 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 2004 | } |
8b148df9 | 2005 | |
593adc23 MK |
2006 | /* Collect register REGNUM from the register cache REGCACHE and store |
2007 | it in the buffer specified by FPREGS and LEN as described by the | |
2008 | floating-point register set REGSET. If REGNUM is -1, do this for | |
2009 | all registers in REGSET. */ | |
2010 | ||
2011 | static void | |
2012 | amd64_collect_fpregset (const struct regset *regset, | |
2013 | const struct regcache *regcache, | |
2014 | int regnum, void *fpregs, size_t len) | |
2015 | { | |
2016 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | |
2017 | ||
2018 | gdb_assert (len == tdep->sizeof_fpregset); | |
2019 | amd64_collect_fxsave (regcache, regnum, fpregs); | |
2020 | } | |
2021 | ||
c6b33596 MK |
2022 | /* Return the appropriate register set for the core section identified |
2023 | by SECT_NAME and SECT_SIZE. */ | |
2024 | ||
2025 | static const struct regset * | |
e53bef9f MK |
2026 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
2027 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
2028 | { |
2029 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2030 | ||
2031 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
2032 | { | |
2033 | if (tdep->fpregset == NULL) | |
593adc23 MK |
2034 | tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, |
2035 | amd64_collect_fpregset); | |
c6b33596 MK |
2036 | |
2037 | return tdep->fpregset; | |
2038 | } | |
2039 | ||
2040 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
2041 | } | |
2042 | \f | |
2043 | ||
436675d3 PA |
2044 | /* Figure out where the longjmp will land. Slurp the jmp_buf out of |
2045 | %rdi. We expect its value to be a pointer to the jmp_buf structure | |
2046 | from which we extract the address that we will land at. This | |
2047 | address is copied into PC. This routine returns non-zero on | |
2048 | success. */ | |
2049 | ||
2050 | static int | |
2051 | amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
2052 | { | |
2053 | gdb_byte buf[8]; | |
2054 | CORE_ADDR jb_addr; | |
2055 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2056 | int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset; | |
0dfff4cb | 2057 | int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
2058 | |
2059 | /* If JB_PC_OFFSET is -1, we have no way to find out where the | |
2060 | longjmp will land. */ | |
2061 | if (jb_pc_offset == -1) | |
2062 | return 0; | |
2063 | ||
2064 | get_frame_register (frame, AMD64_RDI_REGNUM, buf); | |
0dfff4cb UW |
2065 | jb_addr= extract_typed_address |
2066 | (buf, builtin_type (gdbarch)->builtin_data_ptr); | |
436675d3 PA |
2067 | if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) |
2068 | return 0; | |
2069 | ||
0dfff4cb | 2070 | *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
2071 | |
2072 | return 1; | |
2073 | } | |
2074 | ||
cf648174 HZ |
2075 | static const int amd64_record_regmap[] = |
2076 | { | |
2077 | AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, | |
2078 | AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
2079 | AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, | |
2080 | AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, | |
2081 | AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, | |
2082 | AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM | |
2083 | }; | |
2084 | ||
2213a65d | 2085 | void |
90f90721 | 2086 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 2087 | { |
0c1a73d6 | 2088 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 2089 | |
473f17b0 MK |
2090 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
2091 | floating-point registers. */ | |
2092 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
2093 | ||
5716833c | 2094 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 2095 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 2096 | tdep->num_xmm_regs = 16; |
53e95fcf | 2097 | |
0c1a73d6 | 2098 | /* This is what all the fuss is about. */ |
53e95fcf JS |
2099 | set_gdbarch_long_bit (gdbarch, 64); |
2100 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2101 | set_gdbarch_ptr_bit (gdbarch, 64); | |
2102 | ||
e53bef9f MK |
2103 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
2104 | up 128 bits, even though it's still based on the i387 extended | |
2105 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
2106 | set_gdbarch_long_double_bit (gdbarch, 128); |
2107 | ||
e53bef9f MK |
2108 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
2109 | set_gdbarch_register_name (gdbarch, amd64_register_name); | |
2110 | set_gdbarch_register_type (gdbarch, amd64_register_type); | |
b83b026c MK |
2111 | |
2112 | /* Register numbers of various important registers. */ | |
90f90721 MK |
2113 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
2114 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
2115 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
2116 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 2117 | |
e53bef9f MK |
2118 | /* The "default" register numbering scheme for AMD64 is referred to |
2119 | as the "DWARF Register Number Mapping" in the System V psABI. | |
2120 | The preferred debugging format for all known AMD64 targets is | |
2121 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
2122 | DWARF-1), but we provide the same mapping just in case. This | |
2123 | mapping is also used for stabs, which GCC does support. */ | |
2124 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
e53bef9f | 2125 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); |
de220d0f | 2126 | |
c4f35dd8 | 2127 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 2128 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 2129 | |
c4f35dd8 | 2130 | /* Call dummy code. */ |
e53bef9f MK |
2131 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
2132 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 2133 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 2134 | |
83acabca | 2135 | set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); |
d532c08f MK |
2136 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
2137 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
2138 | ||
efb1c01c | 2139 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 2140 | |
e53bef9f | 2141 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 2142 | |
c4f35dd8 | 2143 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 2144 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 2145 | tdep->mm0_regnum = -1; |
2213a65d | 2146 | |
cf648174 HZ |
2147 | tdep->record_regmap = amd64_record_regmap; |
2148 | ||
10458914 | 2149 | set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); |
53e95fcf | 2150 | |
872761f4 MS |
2151 | /* Hook the function epilogue frame unwinder. This unwinder is |
2152 | appended to the list first, so that it supercedes the other | |
2153 | unwinders in function epilogues. */ | |
2154 | frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind); | |
2155 | ||
2156 | /* Hook the prologue-based frame unwinders. */ | |
10458914 DJ |
2157 | frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); |
2158 | frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); | |
e53bef9f | 2159 | frame_base_set_default (gdbarch, &amd64_frame_base); |
c6b33596 MK |
2160 | |
2161 | /* If we have a register mapping, enable the generic core file support. */ | |
2162 | if (tdep->gregset_reg_offset) | |
2163 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 2164 | amd64_regset_from_core_section); |
436675d3 PA |
2165 | |
2166 | set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); | |
c4f35dd8 MK |
2167 | } |
2168 | \f | |
2169 | ||
41d041d6 MK |
2170 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
2171 | sense that the instruction pointer and data pointer are simply | |
2172 | 64-bit offsets into the code segment and the data segment instead | |
2173 | of a selector offset pair. The functions below store the upper 32 | |
2174 | bits of these pointers (instead of just the 16-bits of the segment | |
2175 | selector). */ | |
2176 | ||
2177 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
2178 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
2179 | -1, do this for all registers. This function masks off any of the | |
2180 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
2181 | |
2182 | void | |
90f90721 | 2183 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
20a6ec49 | 2184 | const void *fxsave) |
c4f35dd8 | 2185 | { |
20a6ec49 MD |
2186 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2187 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2188 | ||
41d041d6 | 2189 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 2190 | |
20a6ec49 | 2191 | if (fxsave && gdbarch_ptr_bit (gdbarch) == 64) |
c4f35dd8 | 2192 | { |
d8de1ef7 | 2193 | const gdb_byte *regs = fxsave; |
41d041d6 | 2194 | |
20a6ec49 MD |
2195 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
2196 | regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | |
2197 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2198 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | |
c4f35dd8 | 2199 | } |
0c1a73d6 MK |
2200 | } |
2201 | ||
3c017e40 MK |
2202 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
2203 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
2204 | all registers. This function doesn't touch any of the reserved | |
2205 | bits in *FXSAVE. */ | |
2206 | ||
2207 | void | |
2208 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
2209 | void *fxsave) | |
2210 | { | |
20a6ec49 MD |
2211 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2212 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
d8de1ef7 | 2213 | gdb_byte *regs = fxsave; |
3c017e40 MK |
2214 | |
2215 | i387_collect_fxsave (regcache, regnum, fxsave); | |
2216 | ||
20a6ec49 | 2217 | if (gdbarch_ptr_bit (gdbarch) == 64) |
f0ef85a5 | 2218 | { |
20a6ec49 MD |
2219 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
2220 | regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | |
2221 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2222 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | |
f0ef85a5 | 2223 | } |
3c017e40 | 2224 | } |