Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
4c38e0a4 | 3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 |
5ae96ec1 MK |
4 | Free Software Foundation, Inc. |
5 | ||
6 | Contributed by Jiri Smid, SuSE Labs. | |
53e95fcf JS |
7 | |
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
53e95fcf JS |
13 | (at your option) any later version. |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
53e95fcf JS |
22 | |
23 | #include "defs.h" | |
35669430 DE |
24 | #include "opcode/i386.h" |
25 | #include "dis-asm.h" | |
c4f35dd8 MK |
26 | #include "arch-utils.h" |
27 | #include "block.h" | |
28 | #include "dummy-frame.h" | |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
53e95fcf | 32 | #include "inferior.h" |
53e95fcf | 33 | #include "gdbcmd.h" |
c4f35dd8 MK |
34 | #include "gdbcore.h" |
35 | #include "objfiles.h" | |
53e95fcf | 36 | #include "regcache.h" |
2c261fae | 37 | #include "regset.h" |
53e95fcf | 38 | #include "symfile.h" |
eda5a4d7 | 39 | #include "disasm.h" |
82dbc5f7 | 40 | #include "gdb_assert.h" |
c4f35dd8 | 41 | |
9c1488cb | 42 | #include "amd64-tdep.h" |
c4f35dd8 | 43 | #include "i387-tdep.h" |
53e95fcf | 44 | |
90884b2b | 45 | #include "features/i386/amd64.c" |
a055a187 | 46 | #include "features/i386/amd64-avx.c" |
90884b2b | 47 | |
e53bef9f MK |
48 | /* Note that the AMD64 architecture was previously known as x86-64. |
49 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 50 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
51 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
52 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
53 | x86_64_-prefix since it's so much easier to type. */ | |
54 | ||
402ecd56 | 55 | /* Register information. */ |
c4f35dd8 | 56 | |
6707b003 | 57 | static const char *amd64_register_names[] = |
de220d0f | 58 | { |
6707b003 | 59 | "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", |
c4f35dd8 MK |
60 | |
61 | /* %r8 is indeed register number 8. */ | |
6707b003 UW |
62 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
63 | "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | |
c4f35dd8 | 64 | |
af233647 | 65 | /* %st0 is register number 24. */ |
6707b003 UW |
66 | "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", |
67 | "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | |
c4f35dd8 | 68 | |
af233647 | 69 | /* %xmm0 is register number 40. */ |
6707b003 UW |
70 | "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
71 | "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | |
72 | "mxcsr", | |
0e04a514 ML |
73 | }; |
74 | ||
a055a187 L |
75 | static const char *amd64_ymm_names[] = |
76 | { | |
77 | "ymm0", "ymm1", "ymm2", "ymm3", | |
78 | "ymm4", "ymm5", "ymm6", "ymm7", | |
79 | "ymm8", "ymm9", "ymm10", "ymm11", | |
80 | "ymm12", "ymm13", "ymm14", "ymm15" | |
81 | }; | |
82 | ||
83 | static const char *amd64_ymmh_names[] = | |
84 | { | |
85 | "ymm0h", "ymm1h", "ymm2h", "ymm3h", | |
86 | "ymm4h", "ymm5h", "ymm6h", "ymm7h", | |
87 | "ymm8h", "ymm9h", "ymm10h", "ymm11h", | |
88 | "ymm12h", "ymm13h", "ymm14h", "ymm15h" | |
89 | }; | |
de220d0f | 90 | |
ba581dc1 JB |
91 | /* The registers used to pass integer arguments during a function call. */ |
92 | static int amd64_dummy_call_integer_regs[] = | |
93 | { | |
94 | AMD64_RDI_REGNUM, /* %rdi */ | |
95 | AMD64_RSI_REGNUM, /* %rsi */ | |
96 | AMD64_RDX_REGNUM, /* %rdx */ | |
97 | AMD64_RCX_REGNUM, /* %rcx */ | |
98 | 8, /* %r8 */ | |
99 | 9 /* %r9 */ | |
100 | }; | |
101 | ||
c4f35dd8 MK |
102 | /* DWARF Register Number Mapping as defined in the System V psABI, |
103 | section 3.6. */ | |
53e95fcf | 104 | |
e53bef9f | 105 | static int amd64_dwarf_regmap[] = |
0e04a514 | 106 | { |
c4f35dd8 | 107 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
108 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
109 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
110 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
111 | |
112 | /* Frame Pointer Register RBP. */ | |
90f90721 | 113 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
114 | |
115 | /* Stack Pointer Register RSP. */ | |
90f90721 | 116 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
117 | |
118 | /* Extended Integer Registers 8 - 15. */ | |
119 | 8, 9, 10, 11, 12, 13, 14, 15, | |
120 | ||
59207364 | 121 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 122 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
123 | |
124 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
125 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
126 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
127 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
128 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
129 | |
130 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
131 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
132 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
133 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
134 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
135 | |
136 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
137 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
138 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
139 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
c6f4c129 JB |
140 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
141 | ||
142 | /* Control and Status Flags Register. */ | |
143 | AMD64_EFLAGS_REGNUM, | |
144 | ||
145 | /* Selector Registers. */ | |
146 | AMD64_ES_REGNUM, | |
147 | AMD64_CS_REGNUM, | |
148 | AMD64_SS_REGNUM, | |
149 | AMD64_DS_REGNUM, | |
150 | AMD64_FS_REGNUM, | |
151 | AMD64_GS_REGNUM, | |
152 | -1, | |
153 | -1, | |
154 | ||
155 | /* Segment Base Address Registers. */ | |
156 | -1, | |
157 | -1, | |
158 | -1, | |
159 | -1, | |
160 | ||
161 | /* Special Selector Registers. */ | |
162 | -1, | |
163 | -1, | |
164 | ||
165 | /* Floating Point Control Registers. */ | |
166 | AMD64_MXCSR_REGNUM, | |
167 | AMD64_FCTRL_REGNUM, | |
168 | AMD64_FSTAT_REGNUM | |
c4f35dd8 | 169 | }; |
0e04a514 | 170 | |
e53bef9f MK |
171 | static const int amd64_dwarf_regmap_len = |
172 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 173 | |
c4f35dd8 MK |
174 | /* Convert DWARF register number REG to the appropriate register |
175 | number used by GDB. */ | |
26abbdc4 | 176 | |
c4f35dd8 | 177 | static int |
d3f73121 | 178 | amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
53e95fcf | 179 | { |
a055a187 L |
180 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
181 | int ymm0_regnum = tdep->ymm0_regnum; | |
c4f35dd8 | 182 | int regnum = -1; |
53e95fcf | 183 | |
16aff9a6 | 184 | if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
e53bef9f | 185 | regnum = amd64_dwarf_regmap[reg]; |
53e95fcf | 186 | |
c4f35dd8 | 187 | if (regnum == -1) |
8a3fe4f8 | 188 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
a055a187 L |
189 | else if (ymm0_regnum >= 0 |
190 | && i386_xmm_regnum_p (gdbarch, regnum)) | |
191 | regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); | |
c4f35dd8 MK |
192 | |
193 | return regnum; | |
53e95fcf | 194 | } |
d532c08f | 195 | |
35669430 DE |
196 | /* Map architectural register numbers to gdb register numbers. */ |
197 | ||
198 | static const int amd64_arch_regmap[16] = | |
199 | { | |
200 | AMD64_RAX_REGNUM, /* %rax */ | |
201 | AMD64_RCX_REGNUM, /* %rcx */ | |
202 | AMD64_RDX_REGNUM, /* %rdx */ | |
203 | AMD64_RBX_REGNUM, /* %rbx */ | |
204 | AMD64_RSP_REGNUM, /* %rsp */ | |
205 | AMD64_RBP_REGNUM, /* %rbp */ | |
206 | AMD64_RSI_REGNUM, /* %rsi */ | |
207 | AMD64_RDI_REGNUM, /* %rdi */ | |
208 | AMD64_R8_REGNUM, /* %r8 */ | |
209 | AMD64_R9_REGNUM, /* %r9 */ | |
210 | AMD64_R10_REGNUM, /* %r10 */ | |
211 | AMD64_R11_REGNUM, /* %r11 */ | |
212 | AMD64_R12_REGNUM, /* %r12 */ | |
213 | AMD64_R13_REGNUM, /* %r13 */ | |
214 | AMD64_R14_REGNUM, /* %r14 */ | |
215 | AMD64_R15_REGNUM /* %r15 */ | |
216 | }; | |
217 | ||
218 | static const int amd64_arch_regmap_len = | |
219 | (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); | |
220 | ||
221 | /* Convert architectural register number REG to the appropriate register | |
222 | number used by GDB. */ | |
223 | ||
224 | static int | |
225 | amd64_arch_reg_to_regnum (int reg) | |
226 | { | |
227 | gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); | |
228 | ||
229 | return amd64_arch_regmap[reg]; | |
230 | } | |
231 | ||
1ba53b71 L |
232 | /* Register names for byte pseudo-registers. */ |
233 | ||
234 | static const char *amd64_byte_names[] = | |
235 | { | |
236 | "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", | |
fe01d668 L |
237 | "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", |
238 | "ah", "bh", "ch", "dh" | |
1ba53b71 L |
239 | }; |
240 | ||
fe01d668 L |
241 | /* Number of lower byte registers. */ |
242 | #define AMD64_NUM_LOWER_BYTE_REGS 16 | |
243 | ||
1ba53b71 L |
244 | /* Register names for word pseudo-registers. */ |
245 | ||
246 | static const char *amd64_word_names[] = | |
247 | { | |
9cad29ac | 248 | "ax", "bx", "cx", "dx", "si", "di", "bp", "", |
1ba53b71 L |
249 | "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" |
250 | }; | |
251 | ||
252 | /* Register names for dword pseudo-registers. */ | |
253 | ||
254 | static const char *amd64_dword_names[] = | |
255 | { | |
256 | "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", | |
257 | "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" | |
258 | }; | |
259 | ||
260 | /* Return the name of register REGNUM. */ | |
261 | ||
262 | static const char * | |
263 | amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) | |
264 | { | |
265 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
266 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
267 | return amd64_byte_names[regnum - tdep->al_regnum]; | |
a055a187 L |
268 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
269 | return amd64_ymm_names[regnum - tdep->ymm0_regnum]; | |
1ba53b71 L |
270 | else if (i386_word_regnum_p (gdbarch, regnum)) |
271 | return amd64_word_names[regnum - tdep->ax_regnum]; | |
272 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
273 | return amd64_dword_names[regnum - tdep->eax_regnum]; | |
274 | else | |
275 | return i386_pseudo_register_name (gdbarch, regnum); | |
276 | } | |
277 | ||
278 | static void | |
279 | amd64_pseudo_register_read (struct gdbarch *gdbarch, | |
280 | struct regcache *regcache, | |
281 | int regnum, gdb_byte *buf) | |
282 | { | |
283 | gdb_byte raw_buf[MAX_REGISTER_SIZE]; | |
284 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
285 | ||
286 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
287 | { | |
288 | int gpnum = regnum - tdep->al_regnum; | |
289 | ||
290 | /* Extract (always little endian). */ | |
fe01d668 L |
291 | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
292 | { | |
293 | /* Special handling for AH, BH, CH, DH. */ | |
294 | regcache_raw_read (regcache, | |
295 | gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf); | |
296 | memcpy (buf, raw_buf + 1, 1); | |
297 | } | |
298 | else | |
299 | { | |
300 | regcache_raw_read (regcache, gpnum, raw_buf); | |
301 | memcpy (buf, raw_buf, 1); | |
302 | } | |
1ba53b71 L |
303 | } |
304 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
305 | { | |
306 | int gpnum = regnum - tdep->eax_regnum; | |
307 | /* Extract (always little endian). */ | |
308 | regcache_raw_read (regcache, gpnum, raw_buf); | |
309 | memcpy (buf, raw_buf, 4); | |
310 | } | |
311 | else | |
312 | i386_pseudo_register_read (gdbarch, regcache, regnum, buf); | |
313 | } | |
314 | ||
315 | static void | |
316 | amd64_pseudo_register_write (struct gdbarch *gdbarch, | |
317 | struct regcache *regcache, | |
318 | int regnum, const gdb_byte *buf) | |
319 | { | |
320 | gdb_byte raw_buf[MAX_REGISTER_SIZE]; | |
321 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
322 | ||
323 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
324 | { | |
325 | int gpnum = regnum - tdep->al_regnum; | |
326 | ||
fe01d668 L |
327 | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
328 | { | |
329 | /* Read ... AH, BH, CH, DH. */ | |
330 | regcache_raw_read (regcache, | |
331 | gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf); | |
332 | /* ... Modify ... (always little endian). */ | |
333 | memcpy (raw_buf + 1, buf, 1); | |
334 | /* ... Write. */ | |
335 | regcache_raw_write (regcache, | |
336 | gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf); | |
337 | } | |
338 | else | |
339 | { | |
340 | /* Read ... */ | |
341 | regcache_raw_read (regcache, gpnum, raw_buf); | |
342 | /* ... Modify ... (always little endian). */ | |
343 | memcpy (raw_buf, buf, 1); | |
344 | /* ... Write. */ | |
345 | regcache_raw_write (regcache, gpnum, raw_buf); | |
346 | } | |
1ba53b71 L |
347 | } |
348 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
349 | { | |
350 | int gpnum = regnum - tdep->eax_regnum; | |
351 | ||
352 | /* Read ... */ | |
353 | regcache_raw_read (regcache, gpnum, raw_buf); | |
354 | /* ... Modify ... (always little endian). */ | |
355 | memcpy (raw_buf, buf, 4); | |
356 | /* ... Write. */ | |
357 | regcache_raw_write (regcache, gpnum, raw_buf); | |
358 | } | |
359 | else | |
360 | i386_pseudo_register_write (gdbarch, regcache, regnum, buf); | |
361 | } | |
362 | ||
53e95fcf JS |
363 | \f |
364 | ||
efb1c01c MK |
365 | /* Return the union class of CLASS1 and CLASS2. See the psABI for |
366 | details. */ | |
367 | ||
368 | static enum amd64_reg_class | |
369 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
370 | { | |
371 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
372 | if (class1 == class2) | |
373 | return class1; | |
374 | ||
375 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
376 | is the other class. */ | |
377 | if (class1 == AMD64_NO_CLASS) | |
378 | return class2; | |
379 | if (class2 == AMD64_NO_CLASS) | |
380 | return class1; | |
381 | ||
382 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
383 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
384 | return AMD64_MEMORY; | |
385 | ||
386 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
387 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
388 | return AMD64_INTEGER; | |
389 | ||
390 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
391 | MEMORY is used as class. */ | |
392 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
393 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
394 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
395 | return AMD64_MEMORY; | |
396 | ||
397 | /* Rule (f): Otherwise class SSE is used. */ | |
398 | return AMD64_SSE; | |
399 | } | |
400 | ||
79b1ab3d MK |
401 | /* Return non-zero if TYPE is a non-POD structure or union type. */ |
402 | ||
403 | static int | |
404 | amd64_non_pod_p (struct type *type) | |
405 | { | |
406 | /* ??? A class with a base class certainly isn't POD, but does this | |
407 | catch all non-POD structure types? */ | |
408 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | |
409 | return 1; | |
410 | ||
411 | return 0; | |
412 | } | |
413 | ||
efb1c01c MK |
414 | /* Classify TYPE according to the rules for aggregate (structures and |
415 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
416 | |
417 | static void | |
efb1c01c | 418 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
419 | { |
420 | int len = TYPE_LENGTH (type); | |
421 | ||
efb1c01c MK |
422 | /* 1. If the size of an object is larger than two eightbytes, or in |
423 | C++, is a non-POD structure or union type, or contains | |
424 | unaligned fields, it has class memory. */ | |
79b1ab3d | 425 | if (len > 16 || amd64_non_pod_p (type)) |
53e95fcf | 426 | { |
efb1c01c MK |
427 | class[0] = class[1] = AMD64_MEMORY; |
428 | return; | |
53e95fcf | 429 | } |
efb1c01c MK |
430 | |
431 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
432 | class[0] = class[1] = AMD64_NO_CLASS; | |
433 | ||
434 | /* 3. Each field of an object is classified recursively so that | |
435 | always two fields are considered. The resulting class is | |
436 | calculated according to the classes of the fields in the | |
437 | eightbyte: */ | |
438 | ||
439 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 440 | { |
efb1c01c MK |
441 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
442 | ||
443 | /* All fields in an array have the same type. */ | |
444 | amd64_classify (subtype, class); | |
445 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
446 | class[1] = class[0]; | |
8ffd9b1b | 447 | } |
53e95fcf JS |
448 | else |
449 | { | |
efb1c01c | 450 | int i; |
53e95fcf | 451 | |
efb1c01c MK |
452 | /* Structure or union. */ |
453 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
454 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
455 | ||
456 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 457 | { |
efb1c01c MK |
458 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
459 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
460 | enum amd64_reg_class subclass[2]; | |
e4e2711a JB |
461 | int bitsize = TYPE_FIELD_BITSIZE (type, i); |
462 | int endpos; | |
463 | ||
464 | if (bitsize == 0) | |
465 | bitsize = TYPE_LENGTH (subtype) * 8; | |
466 | endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64; | |
efb1c01c | 467 | |
562c50c2 | 468 | /* Ignore static fields. */ |
d6a843b5 | 469 | if (field_is_static (&TYPE_FIELD (type, i))) |
562c50c2 MK |
470 | continue; |
471 | ||
efb1c01c MK |
472 | gdb_assert (pos == 0 || pos == 1); |
473 | ||
474 | amd64_classify (subtype, subclass); | |
475 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
e4e2711a JB |
476 | if (bitsize <= 64 && pos == 0 && endpos == 1) |
477 | /* This is a bit of an odd case: We have a field that would | |
478 | normally fit in one of the two eightbytes, except that | |
479 | it is placed in a way that this field straddles them. | |
480 | This has been seen with a structure containing an array. | |
481 | ||
482 | The ABI is a bit unclear in this case, but we assume that | |
483 | this field's class (stored in subclass[0]) must also be merged | |
484 | into class[1]. In other words, our field has a piece stored | |
485 | in the second eight-byte, and thus its class applies to | |
486 | the second eight-byte as well. | |
487 | ||
488 | In the case where the field length exceeds 8 bytes, | |
489 | it should not be necessary to merge the field class | |
490 | into class[1]. As LEN > 8, subclass[1] is necessarily | |
491 | different from AMD64_NO_CLASS. If subclass[1] is equal | |
492 | to subclass[0], then the normal class[1]/subclass[1] | |
493 | merging will take care of everything. For subclass[1] | |
494 | to be different from subclass[0], I can only see the case | |
495 | where we have a SSE/SSEUP or X87/X87UP pair, which both | |
496 | use up all 16 bytes of the aggregate, and are already | |
497 | handled just fine (because each portion sits on its own | |
498 | 8-byte). */ | |
499 | class[1] = amd64_merge_classes (class[1], subclass[0]); | |
efb1c01c MK |
500 | if (pos == 0) |
501 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 502 | } |
53e95fcf | 503 | } |
efb1c01c MK |
504 | |
505 | /* 4. Then a post merger cleanup is done: */ | |
506 | ||
507 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
508 | passed in memory. */ | |
509 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
510 | class[0] = class[1] = AMD64_MEMORY; | |
511 | ||
512 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
513 | SSE. */ | |
514 | if (class[0] == AMD64_SSEUP) | |
515 | class[0] = AMD64_SSE; | |
516 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
517 | class[1] = AMD64_SSE; | |
518 | } | |
519 | ||
520 | /* Classify TYPE, and store the result in CLASS. */ | |
521 | ||
ba581dc1 | 522 | void |
efb1c01c MK |
523 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) |
524 | { | |
525 | enum type_code code = TYPE_CODE (type); | |
526 | int len = TYPE_LENGTH (type); | |
527 | ||
528 | class[0] = class[1] = AMD64_NO_CLASS; | |
529 | ||
530 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
531 | long, long long, and pointers are in the INTEGER class. Similarly, |
532 | range types, used by languages such as Ada, are also in the INTEGER | |
533 | class. */ | |
efb1c01c | 534 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
b929c77f | 535 | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
9db13498 | 536 | || code == TYPE_CODE_CHAR |
efb1c01c MK |
537 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
538 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
539 | class[0] = AMD64_INTEGER; | |
540 | ||
5daa78cc TJB |
541 | /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64 |
542 | are in class SSE. */ | |
543 | else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) | |
544 | && (len == 4 || len == 8)) | |
efb1c01c MK |
545 | /* FIXME: __m64 . */ |
546 | class[0] = AMD64_SSE; | |
547 | ||
5daa78cc TJB |
548 | /* Arguments of types __float128, _Decimal128 and __m128 are split into |
549 | two halves. The least significant ones belong to class SSE, the most | |
efb1c01c | 550 | significant one to class SSEUP. */ |
5daa78cc TJB |
551 | else if (code == TYPE_CODE_DECFLOAT && len == 16) |
552 | /* FIXME: __float128, __m128. */ | |
553 | class[0] = AMD64_SSE, class[1] = AMD64_SSEUP; | |
efb1c01c MK |
554 | |
555 | /* The 64-bit mantissa of arguments of type long double belongs to | |
556 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
557 | class X87UP. */ | |
558 | else if (code == TYPE_CODE_FLT && len == 16) | |
559 | /* Class X87 and X87UP. */ | |
560 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
561 | ||
562 | /* Aggregates. */ | |
563 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
564 | || code == TYPE_CODE_UNION) | |
565 | amd64_classify_aggregate (type, class); | |
566 | } | |
567 | ||
568 | static enum return_value_convention | |
c055b101 CV |
569 | amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, |
570 | struct type *type, struct regcache *regcache, | |
42835c2b | 571 | gdb_byte *readbuf, const gdb_byte *writebuf) |
efb1c01c | 572 | { |
ba581dc1 | 573 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
efb1c01c MK |
574 | enum amd64_reg_class class[2]; |
575 | int len = TYPE_LENGTH (type); | |
90f90721 MK |
576 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
577 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
578 | int integer_reg = 0; |
579 | int sse_reg = 0; | |
580 | int i; | |
581 | ||
582 | gdb_assert (!(readbuf && writebuf)); | |
ba581dc1 | 583 | gdb_assert (tdep->classify); |
efb1c01c MK |
584 | |
585 | /* 1. Classify the return type with the classification algorithm. */ | |
ba581dc1 | 586 | tdep->classify (type, class); |
efb1c01c MK |
587 | |
588 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d MK |
589 | for the return value and passes the address of this storage in |
590 | %rdi as if it were the first argument to the function. In effect, | |
591 | this address becomes a hidden first argument. | |
592 | ||
593 | On return %rax will contain the address that has been passed in | |
594 | by the caller in %rdi. */ | |
efb1c01c | 595 | if (class[0] == AMD64_MEMORY) |
6fa57a7d MK |
596 | { |
597 | /* As indicated by the comment above, the ABI guarantees that we | |
598 | can always find the return value just after the function has | |
599 | returned. */ | |
600 | ||
601 | if (readbuf) | |
602 | { | |
603 | ULONGEST addr; | |
604 | ||
605 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
606 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
607 | } | |
608 | ||
609 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
610 | } | |
efb1c01c MK |
611 | |
612 | gdb_assert (class[1] != AMD64_MEMORY); | |
613 | gdb_assert (len <= 16); | |
614 | ||
615 | for (i = 0; len > 0; i++, len -= 8) | |
616 | { | |
617 | int regnum = -1; | |
618 | int offset = 0; | |
619 | ||
620 | switch (class[i]) | |
621 | { | |
622 | case AMD64_INTEGER: | |
623 | /* 3. If the class is INTEGER, the next available register | |
624 | of the sequence %rax, %rdx is used. */ | |
625 | regnum = integer_regnum[integer_reg++]; | |
626 | break; | |
627 | ||
628 | case AMD64_SSE: | |
629 | /* 4. If the class is SSE, the next available SSE register | |
630 | of the sequence %xmm0, %xmm1 is used. */ | |
631 | regnum = sse_regnum[sse_reg++]; | |
632 | break; | |
633 | ||
634 | case AMD64_SSEUP: | |
635 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
636 | upper half of the last used SSE register. */ | |
637 | gdb_assert (sse_reg > 0); | |
638 | regnum = sse_regnum[sse_reg - 1]; | |
639 | offset = 8; | |
640 | break; | |
641 | ||
642 | case AMD64_X87: | |
643 | /* 6. If the class is X87, the value is returned on the X87 | |
644 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 645 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
646 | if (writebuf) |
647 | i387_return_value (gdbarch, regcache); | |
648 | break; | |
649 | ||
650 | case AMD64_X87UP: | |
651 | /* 7. If the class is X87UP, the value is returned together | |
652 | with the previous X87 value in %st0. */ | |
653 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
90f90721 | 654 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
655 | offset = 8; |
656 | len = 2; | |
657 | break; | |
658 | ||
659 | case AMD64_NO_CLASS: | |
660 | continue; | |
661 | ||
662 | default: | |
663 | gdb_assert (!"Unexpected register class."); | |
664 | } | |
665 | ||
666 | gdb_assert (regnum != -1); | |
667 | ||
668 | if (readbuf) | |
669 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 670 | readbuf + i * 8); |
efb1c01c MK |
671 | if (writebuf) |
672 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 673 | writebuf + i * 8); |
efb1c01c MK |
674 | } |
675 | ||
676 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
677 | } |
678 | \f | |
679 | ||
720aa428 MK |
680 | static CORE_ADDR |
681 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
6470d250 | 682 | struct value **args, CORE_ADDR sp, int struct_return) |
720aa428 | 683 | { |
80d19a06 JB |
684 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
685 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
ba581dc1 JB |
686 | int *integer_regs = tdep->call_dummy_integer_regs; |
687 | int num_integer_regs = tdep->call_dummy_num_integer_regs; | |
688 | ||
720aa428 MK |
689 | static int sse_regnum[] = |
690 | { | |
691 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
692 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
693 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
694 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
695 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 MK |
696 | }; |
697 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
80d19a06 JB |
698 | /* An array that mirrors the stack_args array. For all arguments |
699 | that are passed by MEMORY, if that argument's address also needs | |
700 | to be stored in a register, the ARG_ADDR_REGNO array will contain | |
701 | that register number (or a negative value otherwise). */ | |
702 | int *arg_addr_regno = alloca (nargs * sizeof (int)); | |
720aa428 MK |
703 | int num_stack_args = 0; |
704 | int num_elements = 0; | |
705 | int element = 0; | |
706 | int integer_reg = 0; | |
707 | int sse_reg = 0; | |
708 | int i; | |
709 | ||
ba581dc1 JB |
710 | gdb_assert (tdep->classify); |
711 | ||
6470d250 MK |
712 | /* Reserve a register for the "hidden" argument. */ |
713 | if (struct_return) | |
714 | integer_reg++; | |
715 | ||
720aa428 MK |
716 | for (i = 0; i < nargs; i++) |
717 | { | |
4991999e | 718 | struct type *type = value_type (args[i]); |
720aa428 MK |
719 | int len = TYPE_LENGTH (type); |
720 | enum amd64_reg_class class[2]; | |
721 | int needed_integer_regs = 0; | |
722 | int needed_sse_regs = 0; | |
723 | int j; | |
724 | ||
725 | /* Classify argument. */ | |
ba581dc1 | 726 | tdep->classify (type, class); |
720aa428 MK |
727 | |
728 | /* Calculate the number of integer and SSE registers needed for | |
729 | this argument. */ | |
730 | for (j = 0; j < 2; j++) | |
731 | { | |
732 | if (class[j] == AMD64_INTEGER) | |
733 | needed_integer_regs++; | |
734 | else if (class[j] == AMD64_SSE) | |
735 | needed_sse_regs++; | |
736 | } | |
737 | ||
738 | /* Check whether enough registers are available, and if the | |
739 | argument should be passed in registers at all. */ | |
ba581dc1 | 740 | if (integer_reg + needed_integer_regs > num_integer_regs |
720aa428 MK |
741 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) |
742 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
743 | { | |
744 | /* The argument will be passed on the stack. */ | |
745 | num_elements += ((len + 7) / 8); | |
80d19a06 JB |
746 | stack_args[num_stack_args] = args[i]; |
747 | /* If this is an AMD64_MEMORY argument whose address must also | |
748 | be passed in one of the integer registers, reserve that | |
749 | register and associate this value to that register so that | |
750 | we can store the argument address as soon as we know it. */ | |
751 | if (class[0] == AMD64_MEMORY | |
752 | && tdep->memory_args_by_pointer | |
753 | && integer_reg < tdep->call_dummy_num_integer_regs) | |
754 | arg_addr_regno[num_stack_args] = | |
755 | tdep->call_dummy_integer_regs[integer_reg++]; | |
756 | else | |
757 | arg_addr_regno[num_stack_args] = -1; | |
758 | num_stack_args++; | |
720aa428 MK |
759 | } |
760 | else | |
761 | { | |
762 | /* The argument will be passed in registers. */ | |
d8de1ef7 MK |
763 | const gdb_byte *valbuf = value_contents (args[i]); |
764 | gdb_byte buf[8]; | |
720aa428 MK |
765 | |
766 | gdb_assert (len <= 16); | |
767 | ||
768 | for (j = 0; len > 0; j++, len -= 8) | |
769 | { | |
770 | int regnum = -1; | |
771 | int offset = 0; | |
772 | ||
773 | switch (class[j]) | |
774 | { | |
775 | case AMD64_INTEGER: | |
ba581dc1 | 776 | regnum = integer_regs[integer_reg++]; |
720aa428 MK |
777 | break; |
778 | ||
779 | case AMD64_SSE: | |
780 | regnum = sse_regnum[sse_reg++]; | |
781 | break; | |
782 | ||
783 | case AMD64_SSEUP: | |
784 | gdb_assert (sse_reg > 0); | |
785 | regnum = sse_regnum[sse_reg - 1]; | |
786 | offset = 8; | |
787 | break; | |
788 | ||
789 | default: | |
790 | gdb_assert (!"Unexpected register class."); | |
791 | } | |
792 | ||
793 | gdb_assert (regnum != -1); | |
794 | memset (buf, 0, sizeof buf); | |
795 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
796 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
797 | } | |
798 | } | |
799 | } | |
800 | ||
801 | /* Allocate space for the arguments on the stack. */ | |
802 | sp -= num_elements * 8; | |
803 | ||
804 | /* The psABI says that "The end of the input argument area shall be | |
805 | aligned on a 16 byte boundary." */ | |
806 | sp &= ~0xf; | |
807 | ||
808 | /* Write out the arguments to the stack. */ | |
809 | for (i = 0; i < num_stack_args; i++) | |
810 | { | |
4991999e | 811 | struct type *type = value_type (stack_args[i]); |
d8de1ef7 | 812 | const gdb_byte *valbuf = value_contents (stack_args[i]); |
720aa428 | 813 | int len = TYPE_LENGTH (type); |
80d19a06 JB |
814 | CORE_ADDR arg_addr = sp + element * 8; |
815 | ||
816 | write_memory (arg_addr, valbuf, len); | |
817 | if (arg_addr_regno[i] >= 0) | |
818 | { | |
819 | /* We also need to store the address of that argument in | |
820 | the given register. */ | |
821 | gdb_byte buf[8]; | |
822 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
823 | ||
824 | store_unsigned_integer (buf, 8, byte_order, arg_addr); | |
825 | regcache_cooked_write (regcache, arg_addr_regno[i], buf); | |
826 | } | |
720aa428 MK |
827 | element += ((len + 7) / 8); |
828 | } | |
829 | ||
830 | /* The psABI says that "For calls that may call functions that use | |
831 | varargs or stdargs (prototype-less calls or calls to functions | |
832 | containing ellipsis (...) in the declaration) %al is used as | |
833 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 834 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
835 | return sp; |
836 | } | |
837 | ||
c4f35dd8 | 838 | static CORE_ADDR |
7d9b040b | 839 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
e53bef9f MK |
840 | struct regcache *regcache, CORE_ADDR bp_addr, |
841 | int nargs, struct value **args, CORE_ADDR sp, | |
842 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 843 | { |
e17a4113 | 844 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
3af6ddfe | 845 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d8de1ef7 | 846 | gdb_byte buf[8]; |
c4f35dd8 MK |
847 | |
848 | /* Pass arguments. */ | |
6470d250 | 849 | sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); |
c4f35dd8 MK |
850 | |
851 | /* Pass "hidden" argument". */ | |
852 | if (struct_return) | |
853 | { | |
ba581dc1 JB |
854 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
855 | /* The "hidden" argument is passed throught the first argument | |
856 | register. */ | |
857 | const int arg_regnum = tdep->call_dummy_integer_regs[0]; | |
858 | ||
e17a4113 | 859 | store_unsigned_integer (buf, 8, byte_order, struct_addr); |
ba581dc1 | 860 | regcache_cooked_write (regcache, arg_regnum, buf); |
c4f35dd8 MK |
861 | } |
862 | ||
3af6ddfe JB |
863 | /* Reserve some memory on the stack for the integer-parameter registers, |
864 | if required by the ABI. */ | |
865 | if (tdep->integer_param_regs_saved_in_caller_frame) | |
866 | sp -= tdep->call_dummy_num_integer_regs * 8; | |
867 | ||
c4f35dd8 MK |
868 | /* Store return address. */ |
869 | sp -= 8; | |
e17a4113 | 870 | store_unsigned_integer (buf, 8, byte_order, bp_addr); |
c4f35dd8 MK |
871 | write_memory (sp, buf, 8); |
872 | ||
873 | /* Finally, update the stack pointer... */ | |
e17a4113 | 874 | store_unsigned_integer (buf, 8, byte_order, sp); |
90f90721 | 875 | regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
876 | |
877 | /* ...and fake a frame pointer. */ | |
90f90721 | 878 | regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 879 | |
3e210248 | 880 | return sp + 16; |
53e95fcf | 881 | } |
c4f35dd8 | 882 | \f |
35669430 DE |
883 | /* Displaced instruction handling. */ |
884 | ||
885 | /* A partially decoded instruction. | |
886 | This contains enough details for displaced stepping purposes. */ | |
887 | ||
888 | struct amd64_insn | |
889 | { | |
890 | /* The number of opcode bytes. */ | |
891 | int opcode_len; | |
892 | /* The offset of the rex prefix or -1 if not present. */ | |
893 | int rex_offset; | |
894 | /* The offset to the first opcode byte. */ | |
895 | int opcode_offset; | |
896 | /* The offset to the modrm byte or -1 if not present. */ | |
897 | int modrm_offset; | |
898 | ||
899 | /* The raw instruction. */ | |
900 | gdb_byte *raw_insn; | |
901 | }; | |
902 | ||
903 | struct displaced_step_closure | |
904 | { | |
905 | /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ | |
906 | int tmp_used; | |
907 | int tmp_regno; | |
908 | ULONGEST tmp_save; | |
909 | ||
910 | /* Details of the instruction. */ | |
911 | struct amd64_insn insn_details; | |
912 | ||
913 | /* Amount of space allocated to insn_buf. */ | |
914 | int max_len; | |
915 | ||
916 | /* The possibly modified insn. | |
917 | This is a variable-length field. */ | |
918 | gdb_byte insn_buf[1]; | |
919 | }; | |
920 | ||
921 | /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with | |
922 | ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, | |
923 | at which point delete these in favor of libopcodes' versions). */ | |
924 | ||
925 | static const unsigned char onebyte_has_modrm[256] = { | |
926 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
927 | /* ------------------------------- */ | |
928 | /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ | |
929 | /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ | |
930 | /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ | |
931 | /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ | |
932 | /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ | |
933 | /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ | |
934 | /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ | |
935 | /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ | |
936 | /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ | |
937 | /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ | |
938 | /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ | |
939 | /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ | |
940 | /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ | |
941 | /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ | |
942 | /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ | |
943 | /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */ | |
944 | /* ------------------------------- */ | |
945 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
946 | }; | |
947 | ||
948 | static const unsigned char twobyte_has_modrm[256] = { | |
949 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
950 | /* ------------------------------- */ | |
951 | /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ | |
952 | /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ | |
953 | /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ | |
954 | /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ | |
955 | /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ | |
956 | /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ | |
957 | /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ | |
958 | /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ | |
959 | /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ | |
960 | /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ | |
961 | /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ | |
962 | /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ | |
963 | /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ | |
964 | /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ | |
965 | /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ | |
966 | /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */ | |
967 | /* ------------------------------- */ | |
968 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
969 | }; | |
970 | ||
971 | static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); | |
972 | ||
973 | static int | |
974 | rex_prefix_p (gdb_byte pfx) | |
975 | { | |
976 | return REX_PREFIX_P (pfx); | |
977 | } | |
978 | ||
979 | /* Skip the legacy instruction prefixes in INSN. | |
980 | We assume INSN is properly sentineled so we don't have to worry | |
981 | about falling off the end of the buffer. */ | |
982 | ||
983 | static gdb_byte * | |
1903f0e6 | 984 | amd64_skip_prefixes (gdb_byte *insn) |
35669430 DE |
985 | { |
986 | while (1) | |
987 | { | |
988 | switch (*insn) | |
989 | { | |
990 | case DATA_PREFIX_OPCODE: | |
991 | case ADDR_PREFIX_OPCODE: | |
992 | case CS_PREFIX_OPCODE: | |
993 | case DS_PREFIX_OPCODE: | |
994 | case ES_PREFIX_OPCODE: | |
995 | case FS_PREFIX_OPCODE: | |
996 | case GS_PREFIX_OPCODE: | |
997 | case SS_PREFIX_OPCODE: | |
998 | case LOCK_PREFIX_OPCODE: | |
999 | case REPE_PREFIX_OPCODE: | |
1000 | case REPNE_PREFIX_OPCODE: | |
1001 | ++insn; | |
1002 | continue; | |
1003 | default: | |
1004 | break; | |
1005 | } | |
1006 | break; | |
1007 | } | |
1008 | ||
1009 | return insn; | |
1010 | } | |
1011 | ||
35669430 DE |
1012 | /* Return an integer register (other than RSP) that is unused as an input |
1013 | operand in INSN. | |
1014 | In order to not require adding a rex prefix if the insn doesn't already | |
1015 | have one, the result is restricted to RAX ... RDI, sans RSP. | |
1016 | The register numbering of the result follows architecture ordering, | |
1017 | e.g. RDI = 7. */ | |
1018 | ||
1019 | static int | |
1020 | amd64_get_unused_input_int_reg (const struct amd64_insn *details) | |
1021 | { | |
1022 | /* 1 bit for each reg */ | |
1023 | int used_regs_mask = 0; | |
1024 | ||
1025 | /* There can be at most 3 int regs used as inputs in an insn, and we have | |
1026 | 7 to choose from (RAX ... RDI, sans RSP). | |
1027 | This allows us to take a conservative approach and keep things simple. | |
1028 | E.g. By avoiding RAX, we don't have to specifically watch for opcodes | |
1029 | that implicitly specify RAX. */ | |
1030 | ||
1031 | /* Avoid RAX. */ | |
1032 | used_regs_mask |= 1 << EAX_REG_NUM; | |
1033 | /* Similarily avoid RDX, implicit operand in divides. */ | |
1034 | used_regs_mask |= 1 << EDX_REG_NUM; | |
1035 | /* Avoid RSP. */ | |
1036 | used_regs_mask |= 1 << ESP_REG_NUM; | |
1037 | ||
1038 | /* If the opcode is one byte long and there's no ModRM byte, | |
1039 | assume the opcode specifies a register. */ | |
1040 | if (details->opcode_len == 1 && details->modrm_offset == -1) | |
1041 | used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); | |
1042 | ||
1043 | /* Mark used regs in the modrm/sib bytes. */ | |
1044 | if (details->modrm_offset != -1) | |
1045 | { | |
1046 | int modrm = details->raw_insn[details->modrm_offset]; | |
1047 | int mod = MODRM_MOD_FIELD (modrm); | |
1048 | int reg = MODRM_REG_FIELD (modrm); | |
1049 | int rm = MODRM_RM_FIELD (modrm); | |
1050 | int have_sib = mod != 3 && rm == 4; | |
1051 | ||
1052 | /* Assume the reg field of the modrm byte specifies a register. */ | |
1053 | used_regs_mask |= 1 << reg; | |
1054 | ||
1055 | if (have_sib) | |
1056 | { | |
1057 | int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); | |
1058 | int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); | |
1059 | used_regs_mask |= 1 << base; | |
1060 | used_regs_mask |= 1 << index; | |
1061 | } | |
1062 | else | |
1063 | { | |
1064 | used_regs_mask |= 1 << rm; | |
1065 | } | |
1066 | } | |
1067 | ||
1068 | gdb_assert (used_regs_mask < 256); | |
1069 | gdb_assert (used_regs_mask != 255); | |
1070 | ||
1071 | /* Finally, find a free reg. */ | |
1072 | { | |
1073 | int i; | |
1074 | ||
1075 | for (i = 0; i < 8; ++i) | |
1076 | { | |
1077 | if (! (used_regs_mask & (1 << i))) | |
1078 | return i; | |
1079 | } | |
1080 | ||
1081 | /* We shouldn't get here. */ | |
1082 | internal_error (__FILE__, __LINE__, _("unable to find free reg")); | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | /* Extract the details of INSN that we need. */ | |
1087 | ||
1088 | static void | |
1089 | amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) | |
1090 | { | |
1091 | gdb_byte *start = insn; | |
1092 | int need_modrm; | |
1093 | ||
1094 | details->raw_insn = insn; | |
1095 | ||
1096 | details->opcode_len = -1; | |
1097 | details->rex_offset = -1; | |
1098 | details->opcode_offset = -1; | |
1099 | details->modrm_offset = -1; | |
1100 | ||
1101 | /* Skip legacy instruction prefixes. */ | |
1903f0e6 | 1102 | insn = amd64_skip_prefixes (insn); |
35669430 DE |
1103 | |
1104 | /* Skip REX instruction prefix. */ | |
1105 | if (rex_prefix_p (*insn)) | |
1106 | { | |
1107 | details->rex_offset = insn - start; | |
1108 | ++insn; | |
1109 | } | |
1110 | ||
1111 | details->opcode_offset = insn - start; | |
1112 | ||
1113 | if (*insn == TWO_BYTE_OPCODE_ESCAPE) | |
1114 | { | |
1115 | /* Two or three-byte opcode. */ | |
1116 | ++insn; | |
1117 | need_modrm = twobyte_has_modrm[*insn]; | |
1118 | ||
1119 | /* Check for three-byte opcode. */ | |
1903f0e6 | 1120 | switch (*insn) |
35669430 | 1121 | { |
1903f0e6 DE |
1122 | case 0x24: |
1123 | case 0x25: | |
1124 | case 0x38: | |
1125 | case 0x3a: | |
1126 | case 0x7a: | |
1127 | case 0x7b: | |
35669430 DE |
1128 | ++insn; |
1129 | details->opcode_len = 3; | |
1903f0e6 DE |
1130 | break; |
1131 | default: | |
1132 | details->opcode_len = 2; | |
1133 | break; | |
35669430 | 1134 | } |
35669430 DE |
1135 | } |
1136 | else | |
1137 | { | |
1138 | /* One-byte opcode. */ | |
1139 | need_modrm = onebyte_has_modrm[*insn]; | |
1140 | details->opcode_len = 1; | |
1141 | } | |
1142 | ||
1143 | if (need_modrm) | |
1144 | { | |
1145 | ++insn; | |
1146 | details->modrm_offset = insn - start; | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | /* Update %rip-relative addressing in INSN. | |
1151 | ||
1152 | %rip-relative addressing only uses a 32-bit displacement. | |
1153 | 32 bits is not enough to be guaranteed to cover the distance between where | |
1154 | the real instruction is and where its copy is. | |
1155 | Convert the insn to use base+disp addressing. | |
1156 | We set base = pc + insn_length so we can leave disp unchanged. */ | |
c4f35dd8 | 1157 | |
35669430 DE |
1158 | static void |
1159 | fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, | |
1160 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | |
1161 | { | |
e17a4113 | 1162 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
35669430 DE |
1163 | const struct amd64_insn *insn_details = &dsc->insn_details; |
1164 | int modrm_offset = insn_details->modrm_offset; | |
1165 | gdb_byte *insn = insn_details->raw_insn + modrm_offset; | |
1166 | CORE_ADDR rip_base; | |
1167 | int32_t disp; | |
1168 | int insn_length; | |
1169 | int arch_tmp_regno, tmp_regno; | |
1170 | ULONGEST orig_value; | |
1171 | ||
1172 | /* %rip+disp32 addressing mode, displacement follows ModRM byte. */ | |
1173 | ++insn; | |
1174 | ||
1175 | /* Compute the rip-relative address. */ | |
e17a4113 | 1176 | disp = extract_signed_integer (insn, sizeof (int32_t), byte_order); |
eda5a4d7 PA |
1177 | insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf, |
1178 | dsc->max_len, from); | |
35669430 DE |
1179 | rip_base = from + insn_length; |
1180 | ||
1181 | /* We need a register to hold the address. | |
1182 | Pick one not used in the insn. | |
1183 | NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */ | |
1184 | arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); | |
1185 | tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); | |
1186 | ||
1187 | /* REX.B should be unset as we were using rip-relative addressing, | |
1188 | but ensure it's unset anyway, tmp_regno is not r8-r15. */ | |
1189 | if (insn_details->rex_offset != -1) | |
1190 | dsc->insn_buf[insn_details->rex_offset] &= ~REX_B; | |
1191 | ||
1192 | regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); | |
1193 | dsc->tmp_regno = tmp_regno; | |
1194 | dsc->tmp_save = orig_value; | |
1195 | dsc->tmp_used = 1; | |
1196 | ||
1197 | /* Convert the ModRM field to be base+disp. */ | |
1198 | dsc->insn_buf[modrm_offset] &= ~0xc7; | |
1199 | dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; | |
1200 | ||
1201 | regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); | |
1202 | ||
1203 | if (debug_displaced) | |
1204 | fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n" | |
5af949e3 UW |
1205 | "displaced: using temp reg %d, old value %s, new value %s\n", |
1206 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), | |
1207 | paddress (gdbarch, rip_base)); | |
35669430 DE |
1208 | } |
1209 | ||
1210 | static void | |
1211 | fixup_displaced_copy (struct gdbarch *gdbarch, | |
1212 | struct displaced_step_closure *dsc, | |
1213 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | |
1214 | { | |
1215 | const struct amd64_insn *details = &dsc->insn_details; | |
1216 | ||
1217 | if (details->modrm_offset != -1) | |
1218 | { | |
1219 | gdb_byte modrm = details->raw_insn[details->modrm_offset]; | |
1220 | ||
1221 | if ((modrm & 0xc7) == 0x05) | |
1222 | { | |
1223 | /* The insn uses rip-relative addressing. | |
1224 | Deal with it. */ | |
1225 | fixup_riprel (gdbarch, dsc, from, to, regs); | |
1226 | } | |
1227 | } | |
1228 | } | |
1229 | ||
1230 | struct displaced_step_closure * | |
1231 | amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
1232 | CORE_ADDR from, CORE_ADDR to, | |
1233 | struct regcache *regs) | |
1234 | { | |
1235 | int len = gdbarch_max_insn_length (gdbarch); | |
1236 | /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to | |
1237 | continually watch for running off the end of the buffer. */ | |
1238 | int fixup_sentinel_space = len; | |
1239 | struct displaced_step_closure *dsc = | |
1240 | xmalloc (sizeof (*dsc) + len + fixup_sentinel_space); | |
1241 | gdb_byte *buf = &dsc->insn_buf[0]; | |
1242 | struct amd64_insn *details = &dsc->insn_details; | |
1243 | ||
1244 | dsc->tmp_used = 0; | |
1245 | dsc->max_len = len + fixup_sentinel_space; | |
1246 | ||
1247 | read_memory (from, buf, len); | |
1248 | ||
1249 | /* Set up the sentinel space so we don't have to worry about running | |
1250 | off the end of the buffer. An excessive number of leading prefixes | |
1251 | could otherwise cause this. */ | |
1252 | memset (buf + len, 0, fixup_sentinel_space); | |
1253 | ||
1254 | amd64_get_insn_details (buf, details); | |
1255 | ||
1256 | /* GDB may get control back after the insn after the syscall. | |
1257 | Presumably this is a kernel bug. | |
1258 | If this is a syscall, make sure there's a nop afterwards. */ | |
1259 | { | |
1260 | int syscall_length; | |
1261 | ||
1262 | if (amd64_syscall_p (details, &syscall_length)) | |
1263 | buf[details->opcode_offset + syscall_length] = NOP_OPCODE; | |
1264 | } | |
1265 | ||
1266 | /* Modify the insn to cope with the address where it will be executed from. | |
1267 | In particular, handle any rip-relative addressing. */ | |
1268 | fixup_displaced_copy (gdbarch, dsc, from, to, regs); | |
1269 | ||
1270 | write_memory (to, buf, len); | |
1271 | ||
1272 | if (debug_displaced) | |
1273 | { | |
5af949e3 UW |
1274 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", |
1275 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
35669430 DE |
1276 | displaced_step_dump_bytes (gdb_stdlog, buf, len); |
1277 | } | |
1278 | ||
1279 | return dsc; | |
1280 | } | |
1281 | ||
1282 | static int | |
1283 | amd64_absolute_jmp_p (const struct amd64_insn *details) | |
1284 | { | |
1285 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1286 | ||
1287 | if (insn[0] == 0xff) | |
1288 | { | |
1289 | /* jump near, absolute indirect (/4) */ | |
1290 | if ((insn[1] & 0x38) == 0x20) | |
1291 | return 1; | |
1292 | ||
1293 | /* jump far, absolute indirect (/5) */ | |
1294 | if ((insn[1] & 0x38) == 0x28) | |
1295 | return 1; | |
1296 | } | |
1297 | ||
1298 | return 0; | |
1299 | } | |
1300 | ||
1301 | static int | |
1302 | amd64_absolute_call_p (const struct amd64_insn *details) | |
1303 | { | |
1304 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1305 | ||
1306 | if (insn[0] == 0xff) | |
1307 | { | |
1308 | /* Call near, absolute indirect (/2) */ | |
1309 | if ((insn[1] & 0x38) == 0x10) | |
1310 | return 1; | |
1311 | ||
1312 | /* Call far, absolute indirect (/3) */ | |
1313 | if ((insn[1] & 0x38) == 0x18) | |
1314 | return 1; | |
1315 | } | |
1316 | ||
1317 | return 0; | |
1318 | } | |
1319 | ||
1320 | static int | |
1321 | amd64_ret_p (const struct amd64_insn *details) | |
1322 | { | |
1323 | /* NOTE: gcc can emit "repz ; ret". */ | |
1324 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1325 | ||
1326 | switch (insn[0]) | |
1327 | { | |
1328 | case 0xc2: /* ret near, pop N bytes */ | |
1329 | case 0xc3: /* ret near */ | |
1330 | case 0xca: /* ret far, pop N bytes */ | |
1331 | case 0xcb: /* ret far */ | |
1332 | case 0xcf: /* iret */ | |
1333 | return 1; | |
1334 | ||
1335 | default: | |
1336 | return 0; | |
1337 | } | |
1338 | } | |
1339 | ||
1340 | static int | |
1341 | amd64_call_p (const struct amd64_insn *details) | |
1342 | { | |
1343 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1344 | ||
1345 | if (amd64_absolute_call_p (details)) | |
1346 | return 1; | |
1347 | ||
1348 | /* call near, relative */ | |
1349 | if (insn[0] == 0xe8) | |
1350 | return 1; | |
1351 | ||
1352 | return 0; | |
1353 | } | |
1354 | ||
35669430 DE |
1355 | /* Return non-zero if INSN is a system call, and set *LENGTHP to its |
1356 | length in bytes. Otherwise, return zero. */ | |
1357 | ||
1358 | static int | |
1359 | amd64_syscall_p (const struct amd64_insn *details, int *lengthp) | |
1360 | { | |
1361 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1362 | ||
1363 | if (insn[0] == 0x0f && insn[1] == 0x05) | |
1364 | { | |
1365 | *lengthp = 2; | |
1366 | return 1; | |
1367 | } | |
1368 | ||
1369 | return 0; | |
1370 | } | |
1371 | ||
1372 | /* Fix up the state of registers and memory after having single-stepped | |
1373 | a displaced instruction. */ | |
1374 | ||
1375 | void | |
1376 | amd64_displaced_step_fixup (struct gdbarch *gdbarch, | |
1377 | struct displaced_step_closure *dsc, | |
1378 | CORE_ADDR from, CORE_ADDR to, | |
1379 | struct regcache *regs) | |
1380 | { | |
e17a4113 | 1381 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
35669430 DE |
1382 | /* The offset we applied to the instruction's address. */ |
1383 | ULONGEST insn_offset = to - from; | |
1384 | gdb_byte *insn = dsc->insn_buf; | |
1385 | const struct amd64_insn *insn_details = &dsc->insn_details; | |
1386 | ||
1387 | if (debug_displaced) | |
1388 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 | 1389 | "displaced: fixup (%s, %s), " |
35669430 | 1390 | "insn = 0x%02x 0x%02x ...\n", |
5af949e3 UW |
1391 | paddress (gdbarch, from), paddress (gdbarch, to), |
1392 | insn[0], insn[1]); | |
35669430 DE |
1393 | |
1394 | /* If we used a tmp reg, restore it. */ | |
1395 | ||
1396 | if (dsc->tmp_used) | |
1397 | { | |
1398 | if (debug_displaced) | |
5af949e3 UW |
1399 | fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n", |
1400 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); | |
35669430 DE |
1401 | regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); |
1402 | } | |
1403 | ||
1404 | /* The list of issues to contend with here is taken from | |
1405 | resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. | |
1406 | Yay for Free Software! */ | |
1407 | ||
1408 | /* Relocate the %rip back to the program's instruction stream, | |
1409 | if necessary. */ | |
1410 | ||
1411 | /* Except in the case of absolute or indirect jump or call | |
1412 | instructions, or a return instruction, the new rip is relative to | |
1413 | the displaced instruction; make it relative to the original insn. | |
1414 | Well, signal handler returns don't need relocation either, but we use the | |
1415 | value of %rip to recognize those; see below. */ | |
1416 | if (! amd64_absolute_jmp_p (insn_details) | |
1417 | && ! amd64_absolute_call_p (insn_details) | |
1418 | && ! amd64_ret_p (insn_details)) | |
1419 | { | |
1420 | ULONGEST orig_rip; | |
1421 | int insn_len; | |
1422 | ||
1423 | regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip); | |
1424 | ||
1425 | /* A signal trampoline system call changes the %rip, resuming | |
1426 | execution of the main program after the signal handler has | |
1427 | returned. That makes them like 'return' instructions; we | |
1428 | shouldn't relocate %rip. | |
1429 | ||
1430 | But most system calls don't, and we do need to relocate %rip. | |
1431 | ||
1432 | Our heuristic for distinguishing these cases: if stepping | |
1433 | over the system call instruction left control directly after | |
1434 | the instruction, the we relocate --- control almost certainly | |
1435 | doesn't belong in the displaced copy. Otherwise, we assume | |
1436 | the instruction has put control where it belongs, and leave | |
1437 | it unrelocated. Goodness help us if there are PC-relative | |
1438 | system calls. */ | |
1439 | if (amd64_syscall_p (insn_details, &insn_len) | |
1440 | && orig_rip != to + insn_len | |
1441 | /* GDB can get control back after the insn after the syscall. | |
1442 | Presumably this is a kernel bug. | |
1443 | Fixup ensures its a nop, we add one to the length for it. */ | |
1444 | && orig_rip != to + insn_len + 1) | |
1445 | { | |
1446 | if (debug_displaced) | |
1447 | fprintf_unfiltered (gdb_stdlog, | |
1448 | "displaced: syscall changed %%rip; " | |
1449 | "not relocating\n"); | |
1450 | } | |
1451 | else | |
1452 | { | |
1453 | ULONGEST rip = orig_rip - insn_offset; | |
1454 | ||
1903f0e6 DE |
1455 | /* If we just stepped over a breakpoint insn, we don't backup |
1456 | the pc on purpose; this is to match behaviour without | |
1457 | stepping. */ | |
35669430 DE |
1458 | |
1459 | regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip); | |
1460 | ||
1461 | if (debug_displaced) | |
1462 | fprintf_unfiltered (gdb_stdlog, | |
1463 | "displaced: " | |
5af949e3 UW |
1464 | "relocated %%rip from %s to %s\n", |
1465 | paddress (gdbarch, orig_rip), | |
1466 | paddress (gdbarch, rip)); | |
35669430 DE |
1467 | } |
1468 | } | |
1469 | ||
1470 | /* If the instruction was PUSHFL, then the TF bit will be set in the | |
1471 | pushed value, and should be cleared. We'll leave this for later, | |
1472 | since GDB already messes up the TF flag when stepping over a | |
1473 | pushfl. */ | |
1474 | ||
1475 | /* If the instruction was a call, the return address now atop the | |
1476 | stack is the address following the copied instruction. We need | |
1477 | to make it the address following the original instruction. */ | |
1478 | if (amd64_call_p (insn_details)) | |
1479 | { | |
1480 | ULONGEST rsp; | |
1481 | ULONGEST retaddr; | |
1482 | const ULONGEST retaddr_len = 8; | |
1483 | ||
1484 | regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); | |
e17a4113 | 1485 | retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); |
35669430 | 1486 | retaddr = (retaddr - insn_offset) & 0xffffffffUL; |
e17a4113 | 1487 | write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); |
35669430 DE |
1488 | |
1489 | if (debug_displaced) | |
1490 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
1491 | "displaced: relocated return addr at %s " |
1492 | "to %s\n", | |
1493 | paddress (gdbarch, rsp), | |
1494 | paddress (gdbarch, retaddr)); | |
35669430 DE |
1495 | } |
1496 | } | |
dde08ee1 PA |
1497 | |
1498 | /* If the instruction INSN uses RIP-relative addressing, return the | |
1499 | offset into the raw INSN where the displacement to be adjusted is | |
1500 | found. Returns 0 if the instruction doesn't use RIP-relative | |
1501 | addressing. */ | |
1502 | ||
1503 | static int | |
1504 | rip_relative_offset (struct amd64_insn *insn) | |
1505 | { | |
1506 | if (insn->modrm_offset != -1) | |
1507 | { | |
1508 | gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; | |
1509 | ||
1510 | if ((modrm & 0xc7) == 0x05) | |
1511 | { | |
1512 | /* The displacement is found right after the ModRM byte. */ | |
1513 | return insn->modrm_offset + 1; | |
1514 | } | |
1515 | } | |
1516 | ||
1517 | return 0; | |
1518 | } | |
1519 | ||
1520 | static void | |
1521 | append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) | |
1522 | { | |
1523 | target_write_memory (*to, buf, len); | |
1524 | *to += len; | |
1525 | } | |
1526 | ||
1527 | void | |
1528 | amd64_relocate_instruction (struct gdbarch *gdbarch, | |
1529 | CORE_ADDR *to, CORE_ADDR oldloc) | |
1530 | { | |
1531 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1532 | int len = gdbarch_max_insn_length (gdbarch); | |
1533 | /* Extra space for sentinels. */ | |
1534 | int fixup_sentinel_space = len; | |
1535 | gdb_byte *buf = xmalloc (len + fixup_sentinel_space); | |
1536 | struct amd64_insn insn_details; | |
1537 | int offset = 0; | |
1538 | LONGEST rel32, newrel; | |
1539 | gdb_byte *insn; | |
1540 | int insn_length; | |
1541 | ||
1542 | read_memory (oldloc, buf, len); | |
1543 | ||
1544 | /* Set up the sentinel space so we don't have to worry about running | |
1545 | off the end of the buffer. An excessive number of leading prefixes | |
1546 | could otherwise cause this. */ | |
1547 | memset (buf + len, 0, fixup_sentinel_space); | |
1548 | ||
1549 | insn = buf; | |
1550 | amd64_get_insn_details (insn, &insn_details); | |
1551 | ||
1552 | insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); | |
1553 | ||
1554 | /* Skip legacy instruction prefixes. */ | |
1555 | insn = amd64_skip_prefixes (insn); | |
1556 | ||
1557 | /* Adjust calls with 32-bit relative addresses as push/jump, with | |
1558 | the address pushed being the location where the original call in | |
1559 | the user program would return to. */ | |
1560 | if (insn[0] == 0xe8) | |
1561 | { | |
1562 | gdb_byte push_buf[16]; | |
1563 | unsigned int ret_addr; | |
1564 | ||
1565 | /* Where "ret" in the original code will return to. */ | |
1566 | ret_addr = oldloc + insn_length; | |
1567 | push_buf[0] = 0x68; /* pushq $... */ | |
1568 | memcpy (&push_buf[1], &ret_addr, 4); | |
1569 | /* Push the push. */ | |
1570 | append_insns (to, 5, push_buf); | |
1571 | ||
1572 | /* Convert the relative call to a relative jump. */ | |
1573 | insn[0] = 0xe9; | |
1574 | ||
1575 | /* Adjust the destination offset. */ | |
1576 | rel32 = extract_signed_integer (insn + 1, 4, byte_order); | |
1577 | newrel = (oldloc - *to) + rel32; | |
1578 | store_signed_integer (insn + 1, 4, newrel, byte_order); | |
1579 | ||
1580 | /* Write the adjusted jump into its displaced location. */ | |
1581 | append_insns (to, 5, insn); | |
1582 | return; | |
1583 | } | |
1584 | ||
1585 | offset = rip_relative_offset (&insn_details); | |
1586 | if (!offset) | |
1587 | { | |
1588 | /* Adjust jumps with 32-bit relative addresses. Calls are | |
1589 | already handled above. */ | |
1590 | if (insn[0] == 0xe9) | |
1591 | offset = 1; | |
1592 | /* Adjust conditional jumps. */ | |
1593 | else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) | |
1594 | offset = 2; | |
1595 | } | |
1596 | ||
1597 | if (offset) | |
1598 | { | |
1599 | rel32 = extract_signed_integer (insn + offset, 4, byte_order); | |
1600 | newrel = (oldloc - *to) + rel32; | |
1601 | store_signed_integer (insn + offset, 4, newrel, byte_order); | |
1602 | if (debug_displaced) | |
1603 | fprintf_unfiltered (gdb_stdlog, | |
1604 | "Adjusted insn rel32=0x%s at 0x%s to" | |
1605 | " rel32=0x%s at 0x%s\n", | |
1606 | hex_string (rel32), paddress (gdbarch, oldloc), | |
1607 | hex_string (newrel), paddress (gdbarch, *to)); | |
1608 | } | |
1609 | ||
1610 | /* Write the adjusted instruction into its displaced location. */ | |
1611 | append_insns (to, insn_length, buf); | |
1612 | } | |
1613 | ||
35669430 | 1614 | \f |
c4f35dd8 | 1615 | /* The maximum number of saved registers. This should include %rip. */ |
90f90721 | 1616 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 1617 | |
e53bef9f | 1618 | struct amd64_frame_cache |
c4f35dd8 MK |
1619 | { |
1620 | /* Base address. */ | |
1621 | CORE_ADDR base; | |
1622 | CORE_ADDR sp_offset; | |
1623 | CORE_ADDR pc; | |
1624 | ||
1625 | /* Saved registers. */ | |
e53bef9f | 1626 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 | 1627 | CORE_ADDR saved_sp; |
e0c62198 | 1628 | int saved_sp_reg; |
c4f35dd8 MK |
1629 | |
1630 | /* Do we have a frame? */ | |
1631 | int frameless_p; | |
1632 | }; | |
8dda9770 | 1633 | |
d2449ee8 | 1634 | /* Initialize a frame cache. */ |
c4f35dd8 | 1635 | |
d2449ee8 DJ |
1636 | static void |
1637 | amd64_init_frame_cache (struct amd64_frame_cache *cache) | |
8dda9770 | 1638 | { |
c4f35dd8 MK |
1639 | int i; |
1640 | ||
c4f35dd8 MK |
1641 | /* Base address. */ |
1642 | cache->base = 0; | |
1643 | cache->sp_offset = -8; | |
1644 | cache->pc = 0; | |
1645 | ||
1646 | /* Saved registers. We initialize these to -1 since zero is a valid | |
bba66b87 DE |
1647 | offset (that's where %rbp is supposed to be stored). |
1648 | The values start out as being offsets, and are later converted to | |
1649 | addresses (at which point -1 is interpreted as an address, still meaning | |
1650 | "invalid"). */ | |
e53bef9f | 1651 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
1652 | cache->saved_regs[i] = -1; |
1653 | cache->saved_sp = 0; | |
e0c62198 | 1654 | cache->saved_sp_reg = -1; |
c4f35dd8 MK |
1655 | |
1656 | /* Frameless until proven otherwise. */ | |
1657 | cache->frameless_p = 1; | |
d2449ee8 | 1658 | } |
c4f35dd8 | 1659 | |
d2449ee8 DJ |
1660 | /* Allocate and initialize a frame cache. */ |
1661 | ||
1662 | static struct amd64_frame_cache * | |
1663 | amd64_alloc_frame_cache (void) | |
1664 | { | |
1665 | struct amd64_frame_cache *cache; | |
1666 | ||
1667 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | |
1668 | amd64_init_frame_cache (cache); | |
c4f35dd8 | 1669 | return cache; |
8dda9770 | 1670 | } |
53e95fcf | 1671 | |
e0c62198 L |
1672 | /* GCC 4.4 and later, can put code in the prologue to realign the |
1673 | stack pointer. Check whether PC points to such code, and update | |
1674 | CACHE accordingly. Return the first instruction after the code | |
1675 | sequence or CURRENT_PC, whichever is smaller. If we don't | |
1676 | recognize the code, return PC. */ | |
1677 | ||
1678 | static CORE_ADDR | |
1679 | amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | |
1680 | struct amd64_frame_cache *cache) | |
1681 | { | |
1682 | /* There are 2 code sequences to re-align stack before the frame | |
1683 | gets set up: | |
1684 | ||
1685 | 1. Use a caller-saved saved register: | |
1686 | ||
1687 | leaq 8(%rsp), %reg | |
1688 | andq $-XXX, %rsp | |
1689 | pushq -8(%reg) | |
1690 | ||
1691 | 2. Use a callee-saved saved register: | |
1692 | ||
1693 | pushq %reg | |
1694 | leaq 16(%rsp), %reg | |
1695 | andq $-XXX, %rsp | |
1696 | pushq -8(%reg) | |
1697 | ||
1698 | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | |
1699 | ||
1700 | 0x48 0x83 0xe4 0xf0 andq $-16, %rsp | |
1701 | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp | |
1702 | */ | |
1703 | ||
1704 | gdb_byte buf[18]; | |
1705 | int reg, r; | |
1706 | int offset, offset_and; | |
e0c62198 L |
1707 | |
1708 | if (target_read_memory (pc, buf, sizeof buf)) | |
1709 | return pc; | |
1710 | ||
1711 | /* Check caller-saved saved register. The first instruction has | |
1712 | to be "leaq 8(%rsp), %reg". */ | |
1713 | if ((buf[0] & 0xfb) == 0x48 | |
1714 | && buf[1] == 0x8d | |
1715 | && buf[3] == 0x24 | |
1716 | && buf[4] == 0x8) | |
1717 | { | |
1718 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
1719 | if ((buf[2] & 0xc7) != 0x44) | |
1720 | return pc; | |
1721 | ||
1722 | /* REG has register number. */ | |
1723 | reg = (buf[2] >> 3) & 7; | |
1724 | ||
1725 | /* Check the REX.R bit. */ | |
1726 | if (buf[0] == 0x4c) | |
1727 | reg += 8; | |
1728 | ||
1729 | offset = 5; | |
1730 | } | |
1731 | else | |
1732 | { | |
1733 | /* Check callee-saved saved register. The first instruction | |
1734 | has to be "pushq %reg". */ | |
1735 | reg = 0; | |
1736 | if ((buf[0] & 0xf8) == 0x50) | |
1737 | offset = 0; | |
1738 | else if ((buf[0] & 0xf6) == 0x40 | |
1739 | && (buf[1] & 0xf8) == 0x50) | |
1740 | { | |
1741 | /* Check the REX.B bit. */ | |
1742 | if ((buf[0] & 1) != 0) | |
1743 | reg = 8; | |
1744 | ||
1745 | offset = 1; | |
1746 | } | |
1747 | else | |
1748 | return pc; | |
1749 | ||
1750 | /* Get register. */ | |
1751 | reg += buf[offset] & 0x7; | |
1752 | ||
1753 | offset++; | |
1754 | ||
1755 | /* The next instruction has to be "leaq 16(%rsp), %reg". */ | |
1756 | if ((buf[offset] & 0xfb) != 0x48 | |
1757 | || buf[offset + 1] != 0x8d | |
1758 | || buf[offset + 3] != 0x24 | |
1759 | || buf[offset + 4] != 0x10) | |
1760 | return pc; | |
1761 | ||
1762 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
1763 | if ((buf[offset + 2] & 0xc7) != 0x44) | |
1764 | return pc; | |
1765 | ||
1766 | /* REG has register number. */ | |
1767 | r = (buf[offset + 2] >> 3) & 7; | |
1768 | ||
1769 | /* Check the REX.R bit. */ | |
1770 | if (buf[offset] == 0x4c) | |
1771 | r += 8; | |
1772 | ||
1773 | /* Registers in pushq and leaq have to be the same. */ | |
1774 | if (reg != r) | |
1775 | return pc; | |
1776 | ||
1777 | offset += 5; | |
1778 | } | |
1779 | ||
1780 | /* Rigister can't be %rsp nor %rbp. */ | |
1781 | if (reg == 4 || reg == 5) | |
1782 | return pc; | |
1783 | ||
1784 | /* The next instruction has to be "andq $-XXX, %rsp". */ | |
1785 | if (buf[offset] != 0x48 | |
1786 | || buf[offset + 2] != 0xe4 | |
1787 | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | |
1788 | return pc; | |
1789 | ||
1790 | offset_and = offset; | |
1791 | offset += buf[offset + 1] == 0x81 ? 7 : 4; | |
1792 | ||
1793 | /* The next instruction has to be "pushq -8(%reg)". */ | |
1794 | r = 0; | |
1795 | if (buf[offset] == 0xff) | |
1796 | offset++; | |
1797 | else if ((buf[offset] & 0xf6) == 0x40 | |
1798 | && buf[offset + 1] == 0xff) | |
1799 | { | |
1800 | /* Check the REX.B bit. */ | |
1801 | if ((buf[offset] & 0x1) != 0) | |
1802 | r = 8; | |
1803 | offset += 2; | |
1804 | } | |
1805 | else | |
1806 | return pc; | |
1807 | ||
1808 | /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary | |
1809 | 01. */ | |
1810 | if (buf[offset + 1] != 0xf8 | |
1811 | || (buf[offset] & 0xf8) != 0x70) | |
1812 | return pc; | |
1813 | ||
1814 | /* R/M has register. */ | |
1815 | r += buf[offset] & 7; | |
1816 | ||
1817 | /* Registers in leaq and pushq have to be the same. */ | |
1818 | if (reg != r) | |
1819 | return pc; | |
1820 | ||
1821 | if (current_pc > pc + offset_and) | |
35669430 | 1822 | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); |
e0c62198 L |
1823 | |
1824 | return min (pc + offset + 2, current_pc); | |
1825 | } | |
1826 | ||
c4f35dd8 MK |
1827 | /* Do a limited analysis of the prologue at PC and update CACHE |
1828 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
1829 | address where the analysis stopped. | |
1830 | ||
1831 | We will handle only functions beginning with: | |
1832 | ||
1833 | pushq %rbp 0x55 | |
1834 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
1835 | ||
1836 | Any function that doesn't start with this sequence will be assumed | |
1837 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
1838 | ||
1839 | static CORE_ADDR | |
e17a4113 UW |
1840 | amd64_analyze_prologue (struct gdbarch *gdbarch, |
1841 | CORE_ADDR pc, CORE_ADDR current_pc, | |
e53bef9f | 1842 | struct amd64_frame_cache *cache) |
53e95fcf | 1843 | { |
e17a4113 | 1844 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d8de1ef7 MK |
1845 | static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ |
1846 | gdb_byte buf[3]; | |
1847 | gdb_byte op; | |
c4f35dd8 MK |
1848 | |
1849 | if (current_pc <= pc) | |
1850 | return current_pc; | |
1851 | ||
e0c62198 L |
1852 | pc = amd64_analyze_stack_align (pc, current_pc, cache); |
1853 | ||
e17a4113 | 1854 | op = read_memory_unsigned_integer (pc, 1, byte_order); |
c4f35dd8 MK |
1855 | |
1856 | if (op == 0x55) /* pushq %rbp */ | |
1857 | { | |
1858 | /* Take into account that we've executed the `pushq %rbp' that | |
1859 | starts this instruction sequence. */ | |
90f90721 | 1860 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
1861 | cache->sp_offset += 8; |
1862 | ||
1863 | /* If that's all, return now. */ | |
1864 | if (current_pc <= pc + 1) | |
1865 | return current_pc; | |
1866 | ||
1867 | /* Check for `movq %rsp, %rbp'. */ | |
1868 | read_memory (pc + 1, buf, 3); | |
1869 | if (memcmp (buf, proto, 3) != 0) | |
1870 | return pc + 1; | |
1871 | ||
1872 | /* OK, we actually have a frame. */ | |
1873 | cache->frameless_p = 0; | |
1874 | return pc + 4; | |
1875 | } | |
1876 | ||
1877 | return pc; | |
53e95fcf JS |
1878 | } |
1879 | ||
c4f35dd8 MK |
1880 | /* Return PC of first real instruction. */ |
1881 | ||
1882 | static CORE_ADDR | |
6093d2eb | 1883 | amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
53e95fcf | 1884 | { |
e53bef9f | 1885 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
1886 | CORE_ADDR pc; |
1887 | ||
d2449ee8 | 1888 | amd64_init_frame_cache (&cache); |
e17a4113 UW |
1889 | pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, |
1890 | &cache); | |
c4f35dd8 MK |
1891 | if (cache.frameless_p) |
1892 | return start_pc; | |
1893 | ||
1894 | return pc; | |
53e95fcf | 1895 | } |
c4f35dd8 | 1896 | \f |
53e95fcf | 1897 | |
c4f35dd8 MK |
1898 | /* Normal frames. */ |
1899 | ||
e53bef9f | 1900 | static struct amd64_frame_cache * |
10458914 | 1901 | amd64_frame_cache (struct frame_info *this_frame, void **this_cache) |
6d686a84 | 1902 | { |
e17a4113 UW |
1903 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1904 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
e53bef9f | 1905 | struct amd64_frame_cache *cache; |
d8de1ef7 | 1906 | gdb_byte buf[8]; |
6d686a84 | 1907 | int i; |
6d686a84 | 1908 | |
c4f35dd8 MK |
1909 | if (*this_cache) |
1910 | return *this_cache; | |
6d686a84 | 1911 | |
e53bef9f | 1912 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
1913 | *this_cache = cache; |
1914 | ||
10458914 | 1915 | cache->pc = get_frame_func (this_frame); |
c4f35dd8 | 1916 | if (cache->pc != 0) |
e17a4113 UW |
1917 | amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), |
1918 | cache); | |
c4f35dd8 | 1919 | |
e0c62198 L |
1920 | if (cache->saved_sp_reg != -1) |
1921 | { | |
1922 | /* Stack pointer has been saved. */ | |
1923 | get_frame_register (this_frame, cache->saved_sp_reg, buf); | |
e17a4113 | 1924 | cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order); |
e0c62198 L |
1925 | } |
1926 | ||
c4f35dd8 MK |
1927 | if (cache->frameless_p) |
1928 | { | |
4a28816e MK |
1929 | /* We didn't find a valid frame. If we're at the start of a |
1930 | function, or somewhere half-way its prologue, the function's | |
1931 | frame probably hasn't been fully setup yet. Try to | |
1932 | reconstruct the base address for the stack frame by looking | |
1933 | at the stack pointer. For truly "frameless" functions this | |
1934 | might work too. */ | |
c4f35dd8 | 1935 | |
e0c62198 L |
1936 | if (cache->saved_sp_reg != -1) |
1937 | { | |
1938 | /* We're halfway aligning the stack. */ | |
1939 | cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; | |
1940 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; | |
1941 | ||
1942 | /* This will be added back below. */ | |
1943 | cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; | |
1944 | } | |
1945 | else | |
1946 | { | |
1947 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
e17a4113 UW |
1948 | cache->base = extract_unsigned_integer (buf, 8, byte_order) |
1949 | + cache->sp_offset; | |
e0c62198 | 1950 | } |
c4f35dd8 | 1951 | } |
35883a3f MK |
1952 | else |
1953 | { | |
10458914 | 1954 | get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); |
e17a4113 | 1955 | cache->base = extract_unsigned_integer (buf, 8, byte_order); |
35883a3f | 1956 | } |
c4f35dd8 MK |
1957 | |
1958 | /* Now that we have the base address for the stack frame we can | |
1959 | calculate the value of %rsp in the calling frame. */ | |
1960 | cache->saved_sp = cache->base + 16; | |
1961 | ||
35883a3f MK |
1962 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
1963 | frame we find it at the same offset from the reconstructed base | |
e0c62198 L |
1964 | address. If we're halfway aligning the stack, %rip is handled |
1965 | differently (see above). */ | |
1966 | if (!cache->frameless_p || cache->saved_sp_reg == -1) | |
1967 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; | |
35883a3f | 1968 | |
c4f35dd8 MK |
1969 | /* Adjust all the saved registers such that they contain addresses |
1970 | instead of offsets. */ | |
e53bef9f | 1971 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
1972 | if (cache->saved_regs[i] != -1) |
1973 | cache->saved_regs[i] += cache->base; | |
1974 | ||
1975 | return cache; | |
6d686a84 ML |
1976 | } |
1977 | ||
c4f35dd8 | 1978 | static void |
10458914 | 1979 | amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, |
e53bef9f | 1980 | struct frame_id *this_id) |
c4f35dd8 | 1981 | { |
e53bef9f | 1982 | struct amd64_frame_cache *cache = |
10458914 | 1983 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 MK |
1984 | |
1985 | /* This marks the outermost frame. */ | |
1986 | if (cache->base == 0) | |
1987 | return; | |
1988 | ||
1989 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
1990 | } | |
e76e1718 | 1991 | |
10458914 DJ |
1992 | static struct value * |
1993 | amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1994 | int regnum) | |
53e95fcf | 1995 | { |
10458914 | 1996 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e53bef9f | 1997 | struct amd64_frame_cache *cache = |
10458914 | 1998 | amd64_frame_cache (this_frame, this_cache); |
e76e1718 | 1999 | |
c4f35dd8 | 2000 | gdb_assert (regnum >= 0); |
b1ab997b | 2001 | |
2ae02b47 | 2002 | if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) |
10458914 | 2003 | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); |
e76e1718 | 2004 | |
e53bef9f | 2005 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
10458914 DJ |
2006 | return frame_unwind_got_memory (this_frame, regnum, |
2007 | cache->saved_regs[regnum]); | |
e76e1718 | 2008 | |
10458914 | 2009 | return frame_unwind_got_register (this_frame, regnum, regnum); |
c4f35dd8 | 2010 | } |
e76e1718 | 2011 | |
e53bef9f | 2012 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
2013 | { |
2014 | NORMAL_FRAME, | |
e53bef9f | 2015 | amd64_frame_this_id, |
10458914 DJ |
2016 | amd64_frame_prev_register, |
2017 | NULL, | |
2018 | default_frame_sniffer | |
c4f35dd8 | 2019 | }; |
c4f35dd8 | 2020 | \f |
e76e1718 | 2021 | |
c4f35dd8 MK |
2022 | /* Signal trampolines. */ |
2023 | ||
2024 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
2025 | 64-bit variants. This would require using identical frame caches | |
2026 | on both platforms. */ | |
2027 | ||
e53bef9f | 2028 | static struct amd64_frame_cache * |
10458914 | 2029 | amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 2030 | { |
e17a4113 UW |
2031 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2032 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2033 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
e53bef9f | 2034 | struct amd64_frame_cache *cache; |
c4f35dd8 | 2035 | CORE_ADDR addr; |
d8de1ef7 | 2036 | gdb_byte buf[8]; |
2b5e0749 | 2037 | int i; |
c4f35dd8 MK |
2038 | |
2039 | if (*this_cache) | |
2040 | return *this_cache; | |
2041 | ||
e53bef9f | 2042 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 2043 | |
10458914 | 2044 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
e17a4113 | 2045 | cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; |
c4f35dd8 | 2046 | |
10458914 | 2047 | addr = tdep->sigcontext_addr (this_frame); |
2b5e0749 | 2048 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 2049 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
2050 | for (i = 0; i < tdep->sc_num_regs; i++) |
2051 | if (tdep->sc_reg_offset[i] != -1) | |
2052 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
2053 | |
2054 | *this_cache = cache; | |
2055 | return cache; | |
53e95fcf JS |
2056 | } |
2057 | ||
c4f35dd8 | 2058 | static void |
10458914 | 2059 | amd64_sigtramp_frame_this_id (struct frame_info *this_frame, |
e53bef9f | 2060 | void **this_cache, struct frame_id *this_id) |
c4f35dd8 | 2061 | { |
e53bef9f | 2062 | struct amd64_frame_cache *cache = |
10458914 | 2063 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 2064 | |
10458914 | 2065 | (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); |
c4f35dd8 MK |
2066 | } |
2067 | ||
10458914 DJ |
2068 | static struct value * |
2069 | amd64_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
2070 | void **this_cache, int regnum) | |
c4f35dd8 MK |
2071 | { |
2072 | /* Make sure we've initialized the cache. */ | |
10458914 | 2073 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 2074 | |
10458914 | 2075 | return amd64_frame_prev_register (this_frame, this_cache, regnum); |
c4f35dd8 MK |
2076 | } |
2077 | ||
10458914 DJ |
2078 | static int |
2079 | amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
2080 | struct frame_info *this_frame, | |
2081 | void **this_cache) | |
c4f35dd8 | 2082 | { |
10458914 | 2083 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
911bc6ee MK |
2084 | |
2085 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
2086 | handler. */ | |
2087 | if (tdep->sigcontext_addr == NULL) | |
10458914 | 2088 | return 0; |
911bc6ee MK |
2089 | |
2090 | if (tdep->sigtramp_p != NULL) | |
2091 | { | |
10458914 DJ |
2092 | if (tdep->sigtramp_p (this_frame)) |
2093 | return 1; | |
911bc6ee | 2094 | } |
c4f35dd8 | 2095 | |
911bc6ee | 2096 | if (tdep->sigtramp_start != 0) |
1c3545ae | 2097 | { |
10458914 | 2098 | CORE_ADDR pc = get_frame_pc (this_frame); |
1c3545ae | 2099 | |
911bc6ee MK |
2100 | gdb_assert (tdep->sigtramp_end != 0); |
2101 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
10458914 | 2102 | return 1; |
1c3545ae | 2103 | } |
c4f35dd8 | 2104 | |
10458914 | 2105 | return 0; |
c4f35dd8 | 2106 | } |
10458914 DJ |
2107 | |
2108 | static const struct frame_unwind amd64_sigtramp_frame_unwind = | |
2109 | { | |
2110 | SIGTRAMP_FRAME, | |
2111 | amd64_sigtramp_frame_this_id, | |
2112 | amd64_sigtramp_frame_prev_register, | |
2113 | NULL, | |
2114 | amd64_sigtramp_frame_sniffer | |
2115 | }; | |
c4f35dd8 MK |
2116 | \f |
2117 | ||
2118 | static CORE_ADDR | |
10458914 | 2119 | amd64_frame_base_address (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 2120 | { |
e53bef9f | 2121 | struct amd64_frame_cache *cache = |
10458914 | 2122 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 MK |
2123 | |
2124 | return cache->base; | |
2125 | } | |
2126 | ||
e53bef9f | 2127 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 2128 | { |
e53bef9f MK |
2129 | &amd64_frame_unwind, |
2130 | amd64_frame_base_address, | |
2131 | amd64_frame_base_address, | |
2132 | amd64_frame_base_address | |
c4f35dd8 MK |
2133 | }; |
2134 | ||
872761f4 MS |
2135 | /* Normal frames, but in a function epilogue. */ |
2136 | ||
2137 | /* The epilogue is defined here as the 'ret' instruction, which will | |
2138 | follow any instruction such as 'leave' or 'pop %ebp' that destroys | |
2139 | the function's stack frame. */ | |
2140 | ||
2141 | static int | |
2142 | amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2143 | { | |
2144 | gdb_byte insn; | |
2145 | ||
2146 | if (target_read_memory (pc, &insn, 1)) | |
2147 | return 0; /* Can't read memory at pc. */ | |
2148 | ||
2149 | if (insn != 0xc3) /* 'ret' instruction. */ | |
2150 | return 0; | |
2151 | ||
2152 | return 1; | |
2153 | } | |
2154 | ||
2155 | static int | |
2156 | amd64_epilogue_frame_sniffer (const struct frame_unwind *self, | |
2157 | struct frame_info *this_frame, | |
2158 | void **this_prologue_cache) | |
2159 | { | |
2160 | if (frame_relative_level (this_frame) == 0) | |
2161 | return amd64_in_function_epilogue_p (get_frame_arch (this_frame), | |
2162 | get_frame_pc (this_frame)); | |
2163 | else | |
2164 | return 0; | |
2165 | } | |
2166 | ||
2167 | static struct amd64_frame_cache * | |
2168 | amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | |
2169 | { | |
2170 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2171 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2172 | struct amd64_frame_cache *cache; | |
6c10c06b | 2173 | gdb_byte buf[8]; |
872761f4 MS |
2174 | |
2175 | if (*this_cache) | |
2176 | return *this_cache; | |
2177 | ||
2178 | cache = amd64_alloc_frame_cache (); | |
2179 | *this_cache = cache; | |
2180 | ||
2181 | /* Cache base will be %esp plus cache->sp_offset (-8). */ | |
2182 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
2183 | cache->base = extract_unsigned_integer (buf, 8, | |
2184 | byte_order) + cache->sp_offset; | |
2185 | ||
2186 | /* Cache pc will be the frame func. */ | |
2187 | cache->pc = get_frame_pc (this_frame); | |
2188 | ||
2189 | /* The saved %esp will be at cache->base plus 16. */ | |
2190 | cache->saved_sp = cache->base + 16; | |
2191 | ||
2192 | /* The saved %eip will be at cache->base plus 8. */ | |
2193 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; | |
2194 | ||
2195 | return cache; | |
2196 | } | |
2197 | ||
2198 | static void | |
2199 | amd64_epilogue_frame_this_id (struct frame_info *this_frame, | |
2200 | void **this_cache, | |
2201 | struct frame_id *this_id) | |
2202 | { | |
2203 | struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, | |
2204 | this_cache); | |
2205 | ||
2206 | (*this_id) = frame_id_build (cache->base + 8, cache->pc); | |
2207 | } | |
2208 | ||
2209 | static const struct frame_unwind amd64_epilogue_frame_unwind = | |
2210 | { | |
2211 | NORMAL_FRAME, | |
2212 | amd64_epilogue_frame_this_id, | |
2213 | amd64_frame_prev_register, | |
2214 | NULL, | |
2215 | amd64_epilogue_frame_sniffer | |
2216 | }; | |
2217 | ||
166f4c7b | 2218 | static struct frame_id |
10458914 | 2219 | amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
166f4c7b | 2220 | { |
c4f35dd8 MK |
2221 | CORE_ADDR fp; |
2222 | ||
10458914 | 2223 | fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); |
c4f35dd8 | 2224 | |
10458914 | 2225 | return frame_id_build (fp + 16, get_frame_pc (this_frame)); |
166f4c7b ML |
2226 | } |
2227 | ||
8b148df9 AC |
2228 | /* 16 byte align the SP per frame requirements. */ |
2229 | ||
2230 | static CORE_ADDR | |
e53bef9f | 2231 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
2232 | { |
2233 | return sp & -(CORE_ADDR)16; | |
2234 | } | |
473f17b0 MK |
2235 | \f |
2236 | ||
593adc23 MK |
2237 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
2238 | in the floating-point register set REGSET to register cache | |
2239 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
473f17b0 MK |
2240 | |
2241 | static void | |
e53bef9f MK |
2242 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
2243 | int regnum, const void *fpregs, size_t len) | |
473f17b0 | 2244 | { |
9ea75c57 | 2245 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); |
473f17b0 MK |
2246 | |
2247 | gdb_assert (len == tdep->sizeof_fpregset); | |
90f90721 | 2248 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 2249 | } |
8b148df9 | 2250 | |
593adc23 MK |
2251 | /* Collect register REGNUM from the register cache REGCACHE and store |
2252 | it in the buffer specified by FPREGS and LEN as described by the | |
2253 | floating-point register set REGSET. If REGNUM is -1, do this for | |
2254 | all registers in REGSET. */ | |
2255 | ||
2256 | static void | |
2257 | amd64_collect_fpregset (const struct regset *regset, | |
2258 | const struct regcache *regcache, | |
2259 | int regnum, void *fpregs, size_t len) | |
2260 | { | |
2261 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | |
2262 | ||
2263 | gdb_assert (len == tdep->sizeof_fpregset); | |
2264 | amd64_collect_fxsave (regcache, regnum, fpregs); | |
2265 | } | |
2266 | ||
a055a187 L |
2267 | /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */ |
2268 | ||
2269 | static void | |
2270 | amd64_supply_xstateregset (const struct regset *regset, | |
2271 | struct regcache *regcache, int regnum, | |
2272 | const void *xstateregs, size_t len) | |
2273 | { | |
a055a187 L |
2274 | amd64_supply_xsave (regcache, regnum, xstateregs); |
2275 | } | |
2276 | ||
2277 | /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */ | |
2278 | ||
2279 | static void | |
2280 | amd64_collect_xstateregset (const struct regset *regset, | |
2281 | const struct regcache *regcache, | |
2282 | int regnum, void *xstateregs, size_t len) | |
2283 | { | |
a055a187 L |
2284 | amd64_collect_xsave (regcache, regnum, xstateregs, 1); |
2285 | } | |
2286 | ||
c6b33596 MK |
2287 | /* Return the appropriate register set for the core section identified |
2288 | by SECT_NAME and SECT_SIZE. */ | |
2289 | ||
2290 | static const struct regset * | |
e53bef9f MK |
2291 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
2292 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
2293 | { |
2294 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2295 | ||
2296 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
2297 | { | |
2298 | if (tdep->fpregset == NULL) | |
593adc23 MK |
2299 | tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, |
2300 | amd64_collect_fpregset); | |
c6b33596 MK |
2301 | |
2302 | return tdep->fpregset; | |
2303 | } | |
2304 | ||
a055a187 L |
2305 | if (strcmp (sect_name, ".reg-xstate") == 0) |
2306 | { | |
2307 | if (tdep->xstateregset == NULL) | |
2308 | tdep->xstateregset = regset_alloc (gdbarch, | |
2309 | amd64_supply_xstateregset, | |
2310 | amd64_collect_xstateregset); | |
2311 | ||
2312 | return tdep->xstateregset; | |
2313 | } | |
2314 | ||
c6b33596 MK |
2315 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); |
2316 | } | |
2317 | \f | |
2318 | ||
436675d3 PA |
2319 | /* Figure out where the longjmp will land. Slurp the jmp_buf out of |
2320 | %rdi. We expect its value to be a pointer to the jmp_buf structure | |
2321 | from which we extract the address that we will land at. This | |
2322 | address is copied into PC. This routine returns non-zero on | |
2323 | success. */ | |
2324 | ||
2325 | static int | |
2326 | amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
2327 | { | |
2328 | gdb_byte buf[8]; | |
2329 | CORE_ADDR jb_addr; | |
2330 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2331 | int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset; | |
0dfff4cb | 2332 | int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
2333 | |
2334 | /* If JB_PC_OFFSET is -1, we have no way to find out where the | |
2335 | longjmp will land. */ | |
2336 | if (jb_pc_offset == -1) | |
2337 | return 0; | |
2338 | ||
2339 | get_frame_register (frame, AMD64_RDI_REGNUM, buf); | |
0dfff4cb UW |
2340 | jb_addr= extract_typed_address |
2341 | (buf, builtin_type (gdbarch)->builtin_data_ptr); | |
436675d3 PA |
2342 | if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) |
2343 | return 0; | |
2344 | ||
0dfff4cb | 2345 | *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
2346 | |
2347 | return 1; | |
2348 | } | |
2349 | ||
cf648174 HZ |
2350 | static const int amd64_record_regmap[] = |
2351 | { | |
2352 | AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, | |
2353 | AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
2354 | AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, | |
2355 | AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, | |
2356 | AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, | |
2357 | AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM | |
2358 | }; | |
2359 | ||
2213a65d | 2360 | void |
90f90721 | 2361 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 2362 | { |
0c1a73d6 | 2363 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
90884b2b | 2364 | const struct target_desc *tdesc = info.target_desc; |
53e95fcf | 2365 | |
473f17b0 MK |
2366 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
2367 | floating-point registers. */ | |
2368 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
2369 | ||
90884b2b L |
2370 | if (! tdesc_has_registers (tdesc)) |
2371 | tdesc = tdesc_amd64; | |
2372 | tdep->tdesc = tdesc; | |
2373 | ||
2374 | tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; | |
2375 | tdep->register_names = amd64_register_names; | |
2376 | ||
a055a187 L |
2377 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL) |
2378 | { | |
2379 | tdep->ymmh_register_names = amd64_ymmh_names; | |
2380 | tdep->num_ymm_regs = 16; | |
2381 | tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM; | |
2382 | } | |
2383 | ||
fe01d668 | 2384 | tdep->num_byte_regs = 20; |
1ba53b71 L |
2385 | tdep->num_word_regs = 16; |
2386 | tdep->num_dword_regs = 16; | |
2387 | /* Avoid wiring in the MMX registers for now. */ | |
2388 | tdep->num_mmx_regs = 0; | |
2389 | ||
2390 | set_gdbarch_pseudo_register_read (gdbarch, | |
2391 | amd64_pseudo_register_read); | |
2392 | set_gdbarch_pseudo_register_write (gdbarch, | |
2393 | amd64_pseudo_register_write); | |
2394 | ||
2395 | set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); | |
2396 | ||
5716833c | 2397 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 2398 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 2399 | tdep->num_xmm_regs = 16; |
53e95fcf | 2400 | |
0c1a73d6 | 2401 | /* This is what all the fuss is about. */ |
53e95fcf JS |
2402 | set_gdbarch_long_bit (gdbarch, 64); |
2403 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2404 | set_gdbarch_ptr_bit (gdbarch, 64); | |
2405 | ||
e53bef9f MK |
2406 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
2407 | up 128 bits, even though it's still based on the i387 extended | |
2408 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
2409 | set_gdbarch_long_double_bit (gdbarch, 128); |
2410 | ||
e53bef9f | 2411 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
b83b026c MK |
2412 | |
2413 | /* Register numbers of various important registers. */ | |
90f90721 MK |
2414 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
2415 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
2416 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
2417 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 2418 | |
e53bef9f MK |
2419 | /* The "default" register numbering scheme for AMD64 is referred to |
2420 | as the "DWARF Register Number Mapping" in the System V psABI. | |
2421 | The preferred debugging format for all known AMD64 targets is | |
2422 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
2423 | DWARF-1), but we provide the same mapping just in case. This | |
2424 | mapping is also used for stabs, which GCC does support. */ | |
2425 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
e53bef9f | 2426 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); |
de220d0f | 2427 | |
c4f35dd8 | 2428 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 2429 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 2430 | |
c4f35dd8 | 2431 | /* Call dummy code. */ |
e53bef9f MK |
2432 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
2433 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 2434 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
ba581dc1 JB |
2435 | tdep->call_dummy_num_integer_regs = |
2436 | ARRAY_SIZE (amd64_dummy_call_integer_regs); | |
2437 | tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs; | |
2438 | tdep->classify = amd64_classify; | |
53e95fcf | 2439 | |
83acabca | 2440 | set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); |
d532c08f MK |
2441 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
2442 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
2443 | ||
efb1c01c | 2444 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 2445 | |
e53bef9f | 2446 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 2447 | |
cf648174 HZ |
2448 | tdep->record_regmap = amd64_record_regmap; |
2449 | ||
10458914 | 2450 | set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); |
53e95fcf | 2451 | |
872761f4 MS |
2452 | /* Hook the function epilogue frame unwinder. This unwinder is |
2453 | appended to the list first, so that it supercedes the other | |
2454 | unwinders in function epilogues. */ | |
2455 | frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind); | |
2456 | ||
2457 | /* Hook the prologue-based frame unwinders. */ | |
10458914 DJ |
2458 | frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); |
2459 | frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); | |
e53bef9f | 2460 | frame_base_set_default (gdbarch, &amd64_frame_base); |
c6b33596 MK |
2461 | |
2462 | /* If we have a register mapping, enable the generic core file support. */ | |
2463 | if (tdep->gregset_reg_offset) | |
2464 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 2465 | amd64_regset_from_core_section); |
436675d3 PA |
2466 | |
2467 | set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); | |
dde08ee1 PA |
2468 | |
2469 | set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); | |
c4f35dd8 | 2470 | } |
90884b2b L |
2471 | |
2472 | /* Provide a prototype to silence -Wmissing-prototypes. */ | |
2473 | void _initialize_amd64_tdep (void); | |
2474 | ||
2475 | void | |
2476 | _initialize_amd64_tdep (void) | |
2477 | { | |
2478 | initialize_tdesc_amd64 (); | |
a055a187 | 2479 | initialize_tdesc_amd64_avx (); |
90884b2b | 2480 | } |
c4f35dd8 MK |
2481 | \f |
2482 | ||
41d041d6 MK |
2483 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
2484 | sense that the instruction pointer and data pointer are simply | |
2485 | 64-bit offsets into the code segment and the data segment instead | |
2486 | of a selector offset pair. The functions below store the upper 32 | |
2487 | bits of these pointers (instead of just the 16-bits of the segment | |
2488 | selector). */ | |
2489 | ||
2490 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
2491 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
2492 | -1, do this for all registers. This function masks off any of the | |
2493 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
2494 | |
2495 | void | |
90f90721 | 2496 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
20a6ec49 | 2497 | const void *fxsave) |
c4f35dd8 | 2498 | { |
20a6ec49 MD |
2499 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2500 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2501 | ||
41d041d6 | 2502 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 2503 | |
20a6ec49 | 2504 | if (fxsave && gdbarch_ptr_bit (gdbarch) == 64) |
c4f35dd8 | 2505 | { |
d8de1ef7 | 2506 | const gdb_byte *regs = fxsave; |
41d041d6 | 2507 | |
20a6ec49 MD |
2508 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
2509 | regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | |
2510 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2511 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | |
c4f35dd8 | 2512 | } |
0c1a73d6 MK |
2513 | } |
2514 | ||
a055a187 L |
2515 | /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */ |
2516 | ||
2517 | void | |
2518 | amd64_supply_xsave (struct regcache *regcache, int regnum, | |
2519 | const void *xsave) | |
2520 | { | |
2521 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
2522 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2523 | ||
2524 | i387_supply_xsave (regcache, regnum, xsave); | |
2525 | ||
2526 | if (xsave && gdbarch_ptr_bit (gdbarch) == 64) | |
2527 | { | |
2528 | const gdb_byte *regs = xsave; | |
2529 | ||
2530 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | |
2531 | regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), | |
2532 | regs + 12); | |
2533 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2534 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), | |
2535 | regs + 20); | |
2536 | } | |
2537 | } | |
2538 | ||
3c017e40 MK |
2539 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
2540 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
2541 | all registers. This function doesn't touch any of the reserved | |
2542 | bits in *FXSAVE. */ | |
2543 | ||
2544 | void | |
2545 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
2546 | void *fxsave) | |
2547 | { | |
20a6ec49 MD |
2548 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2549 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
d8de1ef7 | 2550 | gdb_byte *regs = fxsave; |
3c017e40 MK |
2551 | |
2552 | i387_collect_fxsave (regcache, regnum, fxsave); | |
2553 | ||
20a6ec49 | 2554 | if (gdbarch_ptr_bit (gdbarch) == 64) |
f0ef85a5 | 2555 | { |
20a6ec49 MD |
2556 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
2557 | regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | |
2558 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2559 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | |
f0ef85a5 | 2560 | } |
3c017e40 | 2561 | } |
a055a187 L |
2562 | |
2563 | /* Similar to amd64_collect_fxsave, but but use XSAVE extended state. */ | |
2564 | ||
2565 | void | |
2566 | amd64_collect_xsave (const struct regcache *regcache, int regnum, | |
2567 | void *xsave, int gcore) | |
2568 | { | |
2569 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
2570 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2571 | gdb_byte *regs = xsave; | |
2572 | ||
2573 | i387_collect_xsave (regcache, regnum, xsave, gcore); | |
2574 | ||
2575 | if (gdbarch_ptr_bit (gdbarch) == 64) | |
2576 | { | |
2577 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | |
2578 | regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), | |
2579 | regs + 12); | |
2580 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
2581 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), | |
2582 | regs + 20); | |
2583 | } | |
2584 | } |