http://sourceware.org/ml/gdb-patches/2012-09/msg00568.html
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
0b302171 3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
35669430
DE
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
28#include "frame.h"
29#include "frame-base.h"
30#include "frame-unwind.h"
53e95fcf 31#include "inferior.h"
53e95fcf 32#include "gdbcmd.h"
c4f35dd8
MK
33#include "gdbcore.h"
34#include "objfiles.h"
53e95fcf 35#include "regcache.h"
2c261fae 36#include "regset.h"
53e95fcf 37#include "symfile.h"
eda5a4d7 38#include "disasm.h"
82dbc5f7 39#include "gdb_assert.h"
8fbca658 40#include "exceptions.h"
9c1488cb 41#include "amd64-tdep.h"
c4f35dd8 42#include "i387-tdep.h"
53e95fcf 43
90884b2b 44#include "features/i386/amd64.c"
a055a187 45#include "features/i386/amd64-avx.c"
ac1438b5
L
46#include "features/i386/x32.c"
47#include "features/i386/x32-avx.c"
90884b2b 48
6710bf39
SS
49#include "ax.h"
50#include "ax-gdb.h"
51
e53bef9f
MK
52/* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
90f90721 54 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
402ecd56 59/* Register information. */
c4f35dd8 60
6707b003 61static const char *amd64_register_names[] =
de220d0f 62{
6707b003 63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
64
65 /* %r8 is indeed register number 8. */
6707b003
UW
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 68
af233647 69 /* %st0 is register number 24. */
6707b003
UW
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 72
af233647 73 /* %xmm0 is register number 40. */
6707b003
UW
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
0e04a514
ML
77};
78
a055a187
L
79static const char *amd64_ymm_names[] =
80{
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85};
86
87static const char *amd64_ymmh_names[] =
88{
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93};
de220d0f 94
ba581dc1
JB
95/* The registers used to pass integer arguments during a function call. */
96static int amd64_dummy_call_integer_regs[] =
97{
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104};
105
c4f35dd8
MK
106/* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
53e95fcf 108
e53bef9f 109static int amd64_dwarf_regmap[] =
0e04a514 110{
c4f35dd8 111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
115
116 /* Frame Pointer Register RBP. */
90f90721 117 AMD64_RBP_REGNUM,
c4f35dd8
MK
118
119 /* Stack Pointer Register RSP. */
90f90721 120 AMD64_RSP_REGNUM,
c4f35dd8
MK
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
59207364 125 /* Return Address RA. Mapped to RIP. */
90f90721 126 AMD64_RIP_REGNUM,
c4f35dd8
MK
127
128 /* SSE Registers 0 - 7. */
90f90721
MK
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
133
134 /* Extended SSE Registers 8 - 15. */
90f90721
MK
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
139
140 /* Floating Point Registers 0-7. */
90f90721
MK
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129
JB
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
c4f35dd8 173};
0e04a514 174
e53bef9f
MK
175static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 177
c4f35dd8
MK
178/* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
26abbdc4 180
c4f35dd8 181static int
d3f73121 182amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 183{
a055a187
L
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 186 int regnum = -1;
53e95fcf 187
16aff9a6 188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 189 regnum = amd64_dwarf_regmap[reg];
53e95fcf 190
c4f35dd8 191 if (regnum == -1)
8a3fe4f8 192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a055a187
L
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
196
197 return regnum;
53e95fcf 198}
d532c08f 199
35669430
DE
200/* Map architectural register numbers to gdb register numbers. */
201
202static const int amd64_arch_regmap[16] =
203{
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220};
221
222static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225/* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228static int
229amd64_arch_reg_to_regnum (int reg)
230{
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234}
235
1ba53b71
L
236/* Register names for byte pseudo-registers. */
237
238static const char *amd64_byte_names[] =
239{
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
1ba53b71
L
243};
244
fe01d668
L
245/* Number of lower byte registers. */
246#define AMD64_NUM_LOWER_BYTE_REGS 16
247
1ba53b71
L
248/* Register names for word pseudo-registers. */
249
250static const char *amd64_word_names[] =
251{
9cad29ac 252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254};
255
256/* Register names for dword pseudo-registers. */
257
258static const char *amd64_dword_names[] =
259{
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
262 "eip"
1ba53b71
L
263};
264
265/* Return the name of register REGNUM. */
266
267static const char *
268amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
269{
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (i386_byte_regnum_p (gdbarch, regnum))
272 return amd64_byte_names[regnum - tdep->al_regnum];
a055a187
L
273 else if (i386_ymm_regnum_p (gdbarch, regnum))
274 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
275 else if (i386_word_regnum_p (gdbarch, regnum))
276 return amd64_word_names[regnum - tdep->ax_regnum];
277 else if (i386_dword_regnum_p (gdbarch, regnum))
278 return amd64_dword_names[regnum - tdep->eax_regnum];
279 else
280 return i386_pseudo_register_name (gdbarch, regnum);
281}
282
3543a589
TT
283static struct value *
284amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regnum)
1ba53b71
L
287{
288 gdb_byte raw_buf[MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
05d1431c 290 enum register_status status;
3543a589
TT
291 struct value *result_value;
292 gdb_byte *buf;
293
294 result_value = allocate_value (register_type (gdbarch, regnum));
295 VALUE_LVAL (result_value) = lval_register;
296 VALUE_REGNUM (result_value) = regnum;
297 buf = value_contents_raw (result_value);
1ba53b71
L
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
fe01d668
L
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
05d1431c
PA
307 status = regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
309 raw_buf);
310 if (status == REG_VALID)
311 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
312 else
313 mark_value_bytes_unavailable (result_value, 0,
314 TYPE_LENGTH (value_type (result_value)));
fe01d668
L
315 }
316 else
317 {
05d1431c
PA
318 status = regcache_raw_read (regcache, gpnum, raw_buf);
319 if (status == REG_VALID)
320 memcpy (buf, raw_buf, 1);
3543a589
TT
321 else
322 mark_value_bytes_unavailable (result_value, 0,
323 TYPE_LENGTH (value_type (result_value)));
fe01d668 324 }
1ba53b71
L
325 }
326 else if (i386_dword_regnum_p (gdbarch, regnum))
327 {
328 int gpnum = regnum - tdep->eax_regnum;
329 /* Extract (always little endian). */
05d1431c
PA
330 status = regcache_raw_read (regcache, gpnum, raw_buf);
331 if (status == REG_VALID)
332 memcpy (buf, raw_buf, 4);
3543a589
TT
333 else
334 mark_value_bytes_unavailable (result_value, 0,
335 TYPE_LENGTH (value_type (result_value)));
1ba53b71
L
336 }
337 else
3543a589
TT
338 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
339 result_value);
340
341 return result_value;
1ba53b71
L
342}
343
344static void
345amd64_pseudo_register_write (struct gdbarch *gdbarch,
346 struct regcache *regcache,
347 int regnum, const gdb_byte *buf)
348{
349 gdb_byte raw_buf[MAX_REGISTER_SIZE];
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (i386_byte_regnum_p (gdbarch, regnum))
353 {
354 int gpnum = regnum - tdep->al_regnum;
355
fe01d668
L
356 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
357 {
358 /* Read ... AH, BH, CH, DH. */
359 regcache_raw_read (regcache,
360 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
361 /* ... Modify ... (always little endian). */
362 memcpy (raw_buf + 1, buf, 1);
363 /* ... Write. */
364 regcache_raw_write (regcache,
365 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
366 }
367 else
368 {
369 /* Read ... */
370 regcache_raw_read (regcache, gpnum, raw_buf);
371 /* ... Modify ... (always little endian). */
372 memcpy (raw_buf, buf, 1);
373 /* ... Write. */
374 regcache_raw_write (regcache, gpnum, raw_buf);
375 }
1ba53b71
L
376 }
377 else if (i386_dword_regnum_p (gdbarch, regnum))
378 {
379 int gpnum = regnum - tdep->eax_regnum;
380
381 /* Read ... */
382 regcache_raw_read (regcache, gpnum, raw_buf);
383 /* ... Modify ... (always little endian). */
384 memcpy (raw_buf, buf, 4);
385 /* ... Write. */
386 regcache_raw_write (regcache, gpnum, raw_buf);
387 }
388 else
389 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390}
391
53e95fcf
JS
392\f
393
efb1c01c
MK
394/* Return the union class of CLASS1 and CLASS2. See the psABI for
395 details. */
396
397static enum amd64_reg_class
398amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
399{
400 /* Rule (a): If both classes are equal, this is the resulting class. */
401 if (class1 == class2)
402 return class1;
403
404 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
405 is the other class. */
406 if (class1 == AMD64_NO_CLASS)
407 return class2;
408 if (class2 == AMD64_NO_CLASS)
409 return class1;
410
411 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
412 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 return AMD64_MEMORY;
414
415 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
416 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
417 return AMD64_INTEGER;
418
419 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
420 MEMORY is used as class. */
421 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
422 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
423 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 return AMD64_MEMORY;
425
426 /* Rule (f): Otherwise class SSE is used. */
427 return AMD64_SSE;
428}
429
79b1ab3d
MK
430/* Return non-zero if TYPE is a non-POD structure or union type. */
431
432static int
433amd64_non_pod_p (struct type *type)
434{
435 /* ??? A class with a base class certainly isn't POD, but does this
436 catch all non-POD structure types? */
437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
438 return 1;
439
440 return 0;
441}
442
efb1c01c
MK
443/* Classify TYPE according to the rules for aggregate (structures and
444 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
445
446static void
efb1c01c 447amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
53e95fcf 448{
efb1c01c
MK
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
744a8059 452 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
53e95fcf 453 {
efb1c01c
MK
454 class[0] = class[1] = AMD64_MEMORY;
455 return;
53e95fcf 456 }
efb1c01c
MK
457
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
460
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
464 eightbyte: */
465
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 467 {
efb1c01c
MK
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
744a8059 472 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
efb1c01c 473 class[1] = class[0];
8ffd9b1b 474 }
53e95fcf
JS
475 else
476 {
efb1c01c 477 int i;
53e95fcf 478
efb1c01c
MK
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
482
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 484 {
efb1c01c
MK
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
e4e2711a
JB
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
489 int endpos;
490
491 if (bitsize == 0)
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
efb1c01c 494
562c50c2 495 /* Ignore static fields. */
d6a843b5 496 if (field_is_static (&TYPE_FIELD (type, i)))
562c50c2
MK
497 continue;
498
efb1c01c
MK
499 gdb_assert (pos == 0 || pos == 1);
500
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
e4e2711a
JB
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
508
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
514
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
525 8-byte). */
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
efb1c01c
MK
527 if (pos == 0)
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
53e95fcf 529 }
53e95fcf 530 }
efb1c01c
MK
531
532 /* 4. Then a post merger cleanup is done: */
533
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 passed in memory. */
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
538
177b42fe 539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c
MK
540 SSE. */
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
545}
546
547/* Classify TYPE, and store the result in CLASS. */
548
ba581dc1 549void
efb1c01c
MK
550amd64_classify (struct type *type, enum amd64_reg_class class[2])
551{
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
554
555 class[0] = class[1] = AMD64_NO_CLASS;
556
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
560 class. */
efb1c01c 561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 563 || code == TYPE_CODE_CHAR
efb1c01c
MK
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
567
5daa78cc
TJB
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 are in class SSE. */
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
efb1c01c
MK
572 /* FIXME: __m64 . */
573 class[0] = AMD64_SSE;
574
5daa78cc
TJB
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
efb1c01c 577 significant one to class SSEUP. */
5daa78cc
TJB
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
efb1c01c
MK
581
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 class X87UP. */
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
588
589 /* Aggregates. */
590 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
591 || code == TYPE_CODE_UNION)
592 amd64_classify_aggregate (type, class);
593}
594
595static enum return_value_convention
6a3a010b 596amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 597 struct type *type, struct regcache *regcache,
42835c2b 598 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c 599{
ba581dc1 600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
efb1c01c
MK
601 enum amd64_reg_class class[2];
602 int len = TYPE_LENGTH (type);
90f90721
MK
603 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
604 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
605 int integer_reg = 0;
606 int sse_reg = 0;
607 int i;
608
609 gdb_assert (!(readbuf && writebuf));
ba581dc1 610 gdb_assert (tdep->classify);
efb1c01c
MK
611
612 /* 1. Classify the return type with the classification algorithm. */
ba581dc1 613 tdep->classify (type, class);
efb1c01c
MK
614
615 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 616 for the return value and passes the address of this storage in
0963b4bd 617 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
618 this address becomes a hidden first argument.
619
620 On return %rax will contain the address that has been passed in
621 by the caller in %rdi. */
efb1c01c 622 if (class[0] == AMD64_MEMORY)
6fa57a7d
MK
623 {
624 /* As indicated by the comment above, the ABI guarantees that we
625 can always find the return value just after the function has
626 returned. */
627
628 if (readbuf)
629 {
630 ULONGEST addr;
631
632 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
633 read_memory (addr, readbuf, TYPE_LENGTH (type));
634 }
635
636 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
637 }
efb1c01c
MK
638
639 gdb_assert (class[1] != AMD64_MEMORY);
bad43aa5 640 gdb_assert (len <= 16);
efb1c01c
MK
641
642 for (i = 0; len > 0; i++, len -= 8)
643 {
644 int regnum = -1;
645 int offset = 0;
646
647 switch (class[i])
648 {
649 case AMD64_INTEGER:
650 /* 3. If the class is INTEGER, the next available register
651 of the sequence %rax, %rdx is used. */
652 regnum = integer_regnum[integer_reg++];
653 break;
654
655 case AMD64_SSE:
656 /* 4. If the class is SSE, the next available SSE register
657 of the sequence %xmm0, %xmm1 is used. */
658 regnum = sse_regnum[sse_reg++];
659 break;
660
661 case AMD64_SSEUP:
662 /* 5. If the class is SSEUP, the eightbyte is passed in the
663 upper half of the last used SSE register. */
664 gdb_assert (sse_reg > 0);
665 regnum = sse_regnum[sse_reg - 1];
666 offset = 8;
667 break;
668
669 case AMD64_X87:
670 /* 6. If the class is X87, the value is returned on the X87
671 stack in %st0 as 80-bit x87 number. */
90f90721 672 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
673 if (writebuf)
674 i387_return_value (gdbarch, regcache);
675 break;
676
677 case AMD64_X87UP:
678 /* 7. If the class is X87UP, the value is returned together
679 with the previous X87 value in %st0. */
680 gdb_assert (i > 0 && class[0] == AMD64_X87);
90f90721 681 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
682 offset = 8;
683 len = 2;
684 break;
685
686 case AMD64_NO_CLASS:
687 continue;
688
689 default:
690 gdb_assert (!"Unexpected register class.");
691 }
692
693 gdb_assert (regnum != -1);
694
695 if (readbuf)
696 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
42835c2b 697 readbuf + i * 8);
efb1c01c
MK
698 if (writebuf)
699 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
42835c2b 700 writebuf + i * 8);
efb1c01c
MK
701 }
702
703 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
704}
705\f
706
720aa428
MK
707static CORE_ADDR
708amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 709 struct value **args, CORE_ADDR sp, int struct_return)
720aa428 710{
80d19a06
JB
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ba581dc1
JB
713 int *integer_regs = tdep->call_dummy_integer_regs;
714 int num_integer_regs = tdep->call_dummy_num_integer_regs;
715
720aa428
MK
716 static int sse_regnum[] =
717 {
718 /* %xmm0 ... %xmm7 */
90f90721
MK
719 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
720 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
721 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
722 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428
MK
723 };
724 struct value **stack_args = alloca (nargs * sizeof (struct value *));
80d19a06
JB
725 /* An array that mirrors the stack_args array. For all arguments
726 that are passed by MEMORY, if that argument's address also needs
727 to be stored in a register, the ARG_ADDR_REGNO array will contain
728 that register number (or a negative value otherwise). */
729 int *arg_addr_regno = alloca (nargs * sizeof (int));
720aa428
MK
730 int num_stack_args = 0;
731 int num_elements = 0;
732 int element = 0;
733 int integer_reg = 0;
734 int sse_reg = 0;
735 int i;
736
ba581dc1
JB
737 gdb_assert (tdep->classify);
738
6470d250
MK
739 /* Reserve a register for the "hidden" argument. */
740 if (struct_return)
741 integer_reg++;
742
720aa428
MK
743 for (i = 0; i < nargs; i++)
744 {
4991999e 745 struct type *type = value_type (args[i]);
720aa428
MK
746 int len = TYPE_LENGTH (type);
747 enum amd64_reg_class class[2];
748 int needed_integer_regs = 0;
749 int needed_sse_regs = 0;
750 int j;
751
752 /* Classify argument. */
ba581dc1 753 tdep->classify (type, class);
720aa428
MK
754
755 /* Calculate the number of integer and SSE registers needed for
756 this argument. */
757 for (j = 0; j < 2; j++)
758 {
759 if (class[j] == AMD64_INTEGER)
760 needed_integer_regs++;
761 else if (class[j] == AMD64_SSE)
762 needed_sse_regs++;
763 }
764
765 /* Check whether enough registers are available, and if the
766 argument should be passed in registers at all. */
ba581dc1 767 if (integer_reg + needed_integer_regs > num_integer_regs
720aa428
MK
768 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
769 || (needed_integer_regs == 0 && needed_sse_regs == 0))
770 {
771 /* The argument will be passed on the stack. */
772 num_elements += ((len + 7) / 8);
80d19a06
JB
773 stack_args[num_stack_args] = args[i];
774 /* If this is an AMD64_MEMORY argument whose address must also
775 be passed in one of the integer registers, reserve that
776 register and associate this value to that register so that
777 we can store the argument address as soon as we know it. */
778 if (class[0] == AMD64_MEMORY
779 && tdep->memory_args_by_pointer
780 && integer_reg < tdep->call_dummy_num_integer_regs)
781 arg_addr_regno[num_stack_args] =
782 tdep->call_dummy_integer_regs[integer_reg++];
783 else
784 arg_addr_regno[num_stack_args] = -1;
785 num_stack_args++;
720aa428
MK
786 }
787 else
788 {
789 /* The argument will be passed in registers. */
d8de1ef7
MK
790 const gdb_byte *valbuf = value_contents (args[i]);
791 gdb_byte buf[8];
720aa428
MK
792
793 gdb_assert (len <= 16);
794
795 for (j = 0; len > 0; j++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
800 switch (class[j])
801 {
802 case AMD64_INTEGER:
ba581dc1 803 regnum = integer_regs[integer_reg++];
720aa428
MK
804 break;
805
806 case AMD64_SSE:
807 regnum = sse_regnum[sse_reg++];
808 break;
809
810 case AMD64_SSEUP:
811 gdb_assert (sse_reg > 0);
812 regnum = sse_regnum[sse_reg - 1];
813 offset = 8;
814 break;
815
816 default:
817 gdb_assert (!"Unexpected register class.");
818 }
819
820 gdb_assert (regnum != -1);
821 memset (buf, 0, sizeof buf);
822 memcpy (buf, valbuf + j * 8, min (len, 8));
823 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
824 }
825 }
826 }
827
828 /* Allocate space for the arguments on the stack. */
829 sp -= num_elements * 8;
830
831 /* The psABI says that "The end of the input argument area shall be
832 aligned on a 16 byte boundary." */
833 sp &= ~0xf;
834
835 /* Write out the arguments to the stack. */
836 for (i = 0; i < num_stack_args; i++)
837 {
4991999e 838 struct type *type = value_type (stack_args[i]);
d8de1ef7 839 const gdb_byte *valbuf = value_contents (stack_args[i]);
80d19a06
JB
840 CORE_ADDR arg_addr = sp + element * 8;
841
744a8059 842 write_memory (arg_addr, valbuf, TYPE_LENGTH (type));
80d19a06
JB
843 if (arg_addr_regno[i] >= 0)
844 {
845 /* We also need to store the address of that argument in
846 the given register. */
847 gdb_byte buf[8];
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 store_unsigned_integer (buf, 8, byte_order, arg_addr);
851 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
852 }
744a8059 853 element += ((TYPE_LENGTH (type) + 7) / 8);
720aa428
MK
854 }
855
856 /* The psABI says that "For calls that may call functions that use
857 varargs or stdargs (prototype-less calls or calls to functions
858 containing ellipsis (...) in the declaration) %al is used as
859 hidden argument to specify the number of SSE registers used. */
90f90721 860 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
861 return sp;
862}
863
c4f35dd8 864static CORE_ADDR
7d9b040b 865amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
866 struct regcache *regcache, CORE_ADDR bp_addr,
867 int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
53e95fcf 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3af6ddfe 871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d8de1ef7 872 gdb_byte buf[8];
c4f35dd8
MK
873
874 /* Pass arguments. */
6470d250 875 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
876
877 /* Pass "hidden" argument". */
878 if (struct_return)
879 {
ba581dc1
JB
880 /* The "hidden" argument is passed throught the first argument
881 register. */
882 const int arg_regnum = tdep->call_dummy_integer_regs[0];
883
e17a4113 884 store_unsigned_integer (buf, 8, byte_order, struct_addr);
ba581dc1 885 regcache_cooked_write (regcache, arg_regnum, buf);
c4f35dd8
MK
886 }
887
3af6ddfe
JB
888 /* Reserve some memory on the stack for the integer-parameter registers,
889 if required by the ABI. */
890 if (tdep->integer_param_regs_saved_in_caller_frame)
891 sp -= tdep->call_dummy_num_integer_regs * 8;
892
c4f35dd8
MK
893 /* Store return address. */
894 sp -= 8;
e17a4113 895 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
896 write_memory (sp, buf, 8);
897
898 /* Finally, update the stack pointer... */
e17a4113 899 store_unsigned_integer (buf, 8, byte_order, sp);
90f90721 900 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
901
902 /* ...and fake a frame pointer. */
90f90721 903 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 904
3e210248 905 return sp + 16;
53e95fcf 906}
c4f35dd8 907\f
35669430
DE
908/* Displaced instruction handling. */
909
910/* A partially decoded instruction.
911 This contains enough details for displaced stepping purposes. */
912
913struct amd64_insn
914{
915 /* The number of opcode bytes. */
916 int opcode_len;
917 /* The offset of the rex prefix or -1 if not present. */
918 int rex_offset;
919 /* The offset to the first opcode byte. */
920 int opcode_offset;
921 /* The offset to the modrm byte or -1 if not present. */
922 int modrm_offset;
923
924 /* The raw instruction. */
925 gdb_byte *raw_insn;
926};
927
928struct displaced_step_closure
929{
930 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
931 int tmp_used;
932 int tmp_regno;
933 ULONGEST tmp_save;
934
935 /* Details of the instruction. */
936 struct amd64_insn insn_details;
937
938 /* Amount of space allocated to insn_buf. */
939 int max_len;
940
941 /* The possibly modified insn.
942 This is a variable-length field. */
943 gdb_byte insn_buf[1];
944};
945
946/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
947 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
948 at which point delete these in favor of libopcodes' versions). */
949
950static const unsigned char onebyte_has_modrm[256] = {
951 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
952 /* ------------------------------- */
953 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
954 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
955 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
956 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
957 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
958 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
959 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
960 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
961 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
962 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
963 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
964 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
965 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
966 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
967 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
968 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
969 /* ------------------------------- */
970 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
971};
972
973static const unsigned char twobyte_has_modrm[256] = {
974 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
975 /* ------------------------------- */
976 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
977 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
978 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
979 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
980 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
981 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
982 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
983 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
984 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
985 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
986 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
987 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
988 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
989 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
990 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
991 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
992 /* ------------------------------- */
993 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
994};
995
996static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
997
998static int
999rex_prefix_p (gdb_byte pfx)
1000{
1001 return REX_PREFIX_P (pfx);
1002}
1003
1004/* Skip the legacy instruction prefixes in INSN.
1005 We assume INSN is properly sentineled so we don't have to worry
1006 about falling off the end of the buffer. */
1007
1008static gdb_byte *
1903f0e6 1009amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1010{
1011 while (1)
1012 {
1013 switch (*insn)
1014 {
1015 case DATA_PREFIX_OPCODE:
1016 case ADDR_PREFIX_OPCODE:
1017 case CS_PREFIX_OPCODE:
1018 case DS_PREFIX_OPCODE:
1019 case ES_PREFIX_OPCODE:
1020 case FS_PREFIX_OPCODE:
1021 case GS_PREFIX_OPCODE:
1022 case SS_PREFIX_OPCODE:
1023 case LOCK_PREFIX_OPCODE:
1024 case REPE_PREFIX_OPCODE:
1025 case REPNE_PREFIX_OPCODE:
1026 ++insn;
1027 continue;
1028 default:
1029 break;
1030 }
1031 break;
1032 }
1033
1034 return insn;
1035}
1036
35669430
DE
1037/* Return an integer register (other than RSP) that is unused as an input
1038 operand in INSN.
1039 In order to not require adding a rex prefix if the insn doesn't already
1040 have one, the result is restricted to RAX ... RDI, sans RSP.
1041 The register numbering of the result follows architecture ordering,
1042 e.g. RDI = 7. */
1043
1044static int
1045amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1046{
1047 /* 1 bit for each reg */
1048 int used_regs_mask = 0;
1049
1050 /* There can be at most 3 int regs used as inputs in an insn, and we have
1051 7 to choose from (RAX ... RDI, sans RSP).
1052 This allows us to take a conservative approach and keep things simple.
1053 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1054 that implicitly specify RAX. */
1055
1056 /* Avoid RAX. */
1057 used_regs_mask |= 1 << EAX_REG_NUM;
1058 /* Similarily avoid RDX, implicit operand in divides. */
1059 used_regs_mask |= 1 << EDX_REG_NUM;
1060 /* Avoid RSP. */
1061 used_regs_mask |= 1 << ESP_REG_NUM;
1062
1063 /* If the opcode is one byte long and there's no ModRM byte,
1064 assume the opcode specifies a register. */
1065 if (details->opcode_len == 1 && details->modrm_offset == -1)
1066 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1067
1068 /* Mark used regs in the modrm/sib bytes. */
1069 if (details->modrm_offset != -1)
1070 {
1071 int modrm = details->raw_insn[details->modrm_offset];
1072 int mod = MODRM_MOD_FIELD (modrm);
1073 int reg = MODRM_REG_FIELD (modrm);
1074 int rm = MODRM_RM_FIELD (modrm);
1075 int have_sib = mod != 3 && rm == 4;
1076
1077 /* Assume the reg field of the modrm byte specifies a register. */
1078 used_regs_mask |= 1 << reg;
1079
1080 if (have_sib)
1081 {
1082 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1083 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1084 used_regs_mask |= 1 << base;
d48ebb5b 1085 used_regs_mask |= 1 << idx;
35669430
DE
1086 }
1087 else
1088 {
1089 used_regs_mask |= 1 << rm;
1090 }
1091 }
1092
1093 gdb_assert (used_regs_mask < 256);
1094 gdb_assert (used_regs_mask != 255);
1095
1096 /* Finally, find a free reg. */
1097 {
1098 int i;
1099
1100 for (i = 0; i < 8; ++i)
1101 {
1102 if (! (used_regs_mask & (1 << i)))
1103 return i;
1104 }
1105
1106 /* We shouldn't get here. */
1107 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1108 }
1109}
1110
1111/* Extract the details of INSN that we need. */
1112
1113static void
1114amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1115{
1116 gdb_byte *start = insn;
1117 int need_modrm;
1118
1119 details->raw_insn = insn;
1120
1121 details->opcode_len = -1;
1122 details->rex_offset = -1;
1123 details->opcode_offset = -1;
1124 details->modrm_offset = -1;
1125
1126 /* Skip legacy instruction prefixes. */
1903f0e6 1127 insn = amd64_skip_prefixes (insn);
35669430
DE
1128
1129 /* Skip REX instruction prefix. */
1130 if (rex_prefix_p (*insn))
1131 {
1132 details->rex_offset = insn - start;
1133 ++insn;
1134 }
1135
1136 details->opcode_offset = insn - start;
1137
1138 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1139 {
1140 /* Two or three-byte opcode. */
1141 ++insn;
1142 need_modrm = twobyte_has_modrm[*insn];
1143
1144 /* Check for three-byte opcode. */
1903f0e6 1145 switch (*insn)
35669430 1146 {
1903f0e6
DE
1147 case 0x24:
1148 case 0x25:
1149 case 0x38:
1150 case 0x3a:
1151 case 0x7a:
1152 case 0x7b:
35669430
DE
1153 ++insn;
1154 details->opcode_len = 3;
1903f0e6
DE
1155 break;
1156 default:
1157 details->opcode_len = 2;
1158 break;
35669430 1159 }
35669430
DE
1160 }
1161 else
1162 {
1163 /* One-byte opcode. */
1164 need_modrm = onebyte_has_modrm[*insn];
1165 details->opcode_len = 1;
1166 }
1167
1168 if (need_modrm)
1169 {
1170 ++insn;
1171 details->modrm_offset = insn - start;
1172 }
1173}
1174
1175/* Update %rip-relative addressing in INSN.
1176
1177 %rip-relative addressing only uses a 32-bit displacement.
1178 32 bits is not enough to be guaranteed to cover the distance between where
1179 the real instruction is and where its copy is.
1180 Convert the insn to use base+disp addressing.
1181 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1182
35669430
DE
1183static void
1184fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1185 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1186{
e17a4113 1187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1188 const struct amd64_insn *insn_details = &dsc->insn_details;
1189 int modrm_offset = insn_details->modrm_offset;
1190 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1191 CORE_ADDR rip_base;
1192 int32_t disp;
1193 int insn_length;
1194 int arch_tmp_regno, tmp_regno;
1195 ULONGEST orig_value;
1196
1197 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1198 ++insn;
1199
1200 /* Compute the rip-relative address. */
e17a4113 1201 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
eda5a4d7
PA
1202 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1203 dsc->max_len, from);
35669430
DE
1204 rip_base = from + insn_length;
1205
1206 /* We need a register to hold the address.
1207 Pick one not used in the insn.
1208 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1209 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1210 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1211
1212 /* REX.B should be unset as we were using rip-relative addressing,
1213 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1214 if (insn_details->rex_offset != -1)
1215 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1216
1217 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1218 dsc->tmp_regno = tmp_regno;
1219 dsc->tmp_save = orig_value;
1220 dsc->tmp_used = 1;
1221
1222 /* Convert the ModRM field to be base+disp. */
1223 dsc->insn_buf[modrm_offset] &= ~0xc7;
1224 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1225
1226 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1227
1228 if (debug_displaced)
1229 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
5af949e3
UW
1230 "displaced: using temp reg %d, old value %s, new value %s\n",
1231 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1232 paddress (gdbarch, rip_base));
35669430
DE
1233}
1234
1235static void
1236fixup_displaced_copy (struct gdbarch *gdbarch,
1237 struct displaced_step_closure *dsc,
1238 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1239{
1240 const struct amd64_insn *details = &dsc->insn_details;
1241
1242 if (details->modrm_offset != -1)
1243 {
1244 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1245
1246 if ((modrm & 0xc7) == 0x05)
1247 {
1248 /* The insn uses rip-relative addressing.
1249 Deal with it. */
1250 fixup_riprel (gdbarch, dsc, from, to, regs);
1251 }
1252 }
1253}
1254
1255struct displaced_step_closure *
1256amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1257 CORE_ADDR from, CORE_ADDR to,
1258 struct regcache *regs)
1259{
1260 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1261 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1262 continually watch for running off the end of the buffer. */
1263 int fixup_sentinel_space = len;
1264 struct displaced_step_closure *dsc =
1265 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1266 gdb_byte *buf = &dsc->insn_buf[0];
1267 struct amd64_insn *details = &dsc->insn_details;
1268
1269 dsc->tmp_used = 0;
1270 dsc->max_len = len + fixup_sentinel_space;
1271
1272 read_memory (from, buf, len);
1273
1274 /* Set up the sentinel space so we don't have to worry about running
1275 off the end of the buffer. An excessive number of leading prefixes
1276 could otherwise cause this. */
1277 memset (buf + len, 0, fixup_sentinel_space);
1278
1279 amd64_get_insn_details (buf, details);
1280
1281 /* GDB may get control back after the insn after the syscall.
1282 Presumably this is a kernel bug.
1283 If this is a syscall, make sure there's a nop afterwards. */
1284 {
1285 int syscall_length;
1286
1287 if (amd64_syscall_p (details, &syscall_length))
1288 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1289 }
1290
1291 /* Modify the insn to cope with the address where it will be executed from.
1292 In particular, handle any rip-relative addressing. */
1293 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1294
1295 write_memory (to, buf, len);
1296
1297 if (debug_displaced)
1298 {
5af949e3
UW
1299 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1300 paddress (gdbarch, from), paddress (gdbarch, to));
35669430
DE
1301 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1302 }
1303
1304 return dsc;
1305}
1306
1307static int
1308amd64_absolute_jmp_p (const struct amd64_insn *details)
1309{
1310 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1311
1312 if (insn[0] == 0xff)
1313 {
1314 /* jump near, absolute indirect (/4) */
1315 if ((insn[1] & 0x38) == 0x20)
1316 return 1;
1317
1318 /* jump far, absolute indirect (/5) */
1319 if ((insn[1] & 0x38) == 0x28)
1320 return 1;
1321 }
1322
1323 return 0;
1324}
1325
1326static int
1327amd64_absolute_call_p (const struct amd64_insn *details)
1328{
1329 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1330
1331 if (insn[0] == 0xff)
1332 {
1333 /* Call near, absolute indirect (/2) */
1334 if ((insn[1] & 0x38) == 0x10)
1335 return 1;
1336
1337 /* Call far, absolute indirect (/3) */
1338 if ((insn[1] & 0x38) == 0x18)
1339 return 1;
1340 }
1341
1342 return 0;
1343}
1344
1345static int
1346amd64_ret_p (const struct amd64_insn *details)
1347{
1348 /* NOTE: gcc can emit "repz ; ret". */
1349 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1350
1351 switch (insn[0])
1352 {
1353 case 0xc2: /* ret near, pop N bytes */
1354 case 0xc3: /* ret near */
1355 case 0xca: /* ret far, pop N bytes */
1356 case 0xcb: /* ret far */
1357 case 0xcf: /* iret */
1358 return 1;
1359
1360 default:
1361 return 0;
1362 }
1363}
1364
1365static int
1366amd64_call_p (const struct amd64_insn *details)
1367{
1368 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1369
1370 if (amd64_absolute_call_p (details))
1371 return 1;
1372
1373 /* call near, relative */
1374 if (insn[0] == 0xe8)
1375 return 1;
1376
1377 return 0;
1378}
1379
35669430
DE
1380/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1381 length in bytes. Otherwise, return zero. */
1382
1383static int
1384amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1385{
1386 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1387
1388 if (insn[0] == 0x0f && insn[1] == 0x05)
1389 {
1390 *lengthp = 2;
1391 return 1;
1392 }
1393
1394 return 0;
1395}
1396
1397/* Fix up the state of registers and memory after having single-stepped
1398 a displaced instruction. */
1399
1400void
1401amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1402 struct displaced_step_closure *dsc,
1403 CORE_ADDR from, CORE_ADDR to,
1404 struct regcache *regs)
1405{
e17a4113 1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1407 /* The offset we applied to the instruction's address. */
1408 ULONGEST insn_offset = to - from;
1409 gdb_byte *insn = dsc->insn_buf;
1410 const struct amd64_insn *insn_details = &dsc->insn_details;
1411
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog,
5af949e3 1414 "displaced: fixup (%s, %s), "
35669430 1415 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
1416 paddress (gdbarch, from), paddress (gdbarch, to),
1417 insn[0], insn[1]);
35669430
DE
1418
1419 /* If we used a tmp reg, restore it. */
1420
1421 if (dsc->tmp_used)
1422 {
1423 if (debug_displaced)
5af949e3
UW
1424 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1425 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1426 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1427 }
1428
1429 /* The list of issues to contend with here is taken from
1430 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1431 Yay for Free Software! */
1432
1433 /* Relocate the %rip back to the program's instruction stream,
1434 if necessary. */
1435
1436 /* Except in the case of absolute or indirect jump or call
1437 instructions, or a return instruction, the new rip is relative to
1438 the displaced instruction; make it relative to the original insn.
1439 Well, signal handler returns don't need relocation either, but we use the
1440 value of %rip to recognize those; see below. */
1441 if (! amd64_absolute_jmp_p (insn_details)
1442 && ! amd64_absolute_call_p (insn_details)
1443 && ! amd64_ret_p (insn_details))
1444 {
1445 ULONGEST orig_rip;
1446 int insn_len;
1447
1448 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1449
1450 /* A signal trampoline system call changes the %rip, resuming
1451 execution of the main program after the signal handler has
1452 returned. That makes them like 'return' instructions; we
1453 shouldn't relocate %rip.
1454
1455 But most system calls don't, and we do need to relocate %rip.
1456
1457 Our heuristic for distinguishing these cases: if stepping
1458 over the system call instruction left control directly after
1459 the instruction, the we relocate --- control almost certainly
1460 doesn't belong in the displaced copy. Otherwise, we assume
1461 the instruction has put control where it belongs, and leave
1462 it unrelocated. Goodness help us if there are PC-relative
1463 system calls. */
1464 if (amd64_syscall_p (insn_details, &insn_len)
1465 && orig_rip != to + insn_len
1466 /* GDB can get control back after the insn after the syscall.
1467 Presumably this is a kernel bug.
1468 Fixup ensures its a nop, we add one to the length for it. */
1469 && orig_rip != to + insn_len + 1)
1470 {
1471 if (debug_displaced)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "displaced: syscall changed %%rip; "
1474 "not relocating\n");
1475 }
1476 else
1477 {
1478 ULONGEST rip = orig_rip - insn_offset;
1479
1903f0e6
DE
1480 /* If we just stepped over a breakpoint insn, we don't backup
1481 the pc on purpose; this is to match behaviour without
1482 stepping. */
35669430
DE
1483
1484 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1485
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1488 "displaced: "
5af949e3
UW
1489 "relocated %%rip from %s to %s\n",
1490 paddress (gdbarch, orig_rip),
1491 paddress (gdbarch, rip));
35669430
DE
1492 }
1493 }
1494
1495 /* If the instruction was PUSHFL, then the TF bit will be set in the
1496 pushed value, and should be cleared. We'll leave this for later,
1497 since GDB already messes up the TF flag when stepping over a
1498 pushfl. */
1499
1500 /* If the instruction was a call, the return address now atop the
1501 stack is the address following the copied instruction. We need
1502 to make it the address following the original instruction. */
1503 if (amd64_call_p (insn_details))
1504 {
1505 ULONGEST rsp;
1506 ULONGEST retaddr;
1507 const ULONGEST retaddr_len = 8;
1508
1509 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1510 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
35669430 1511 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 1512 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430
DE
1513
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1516 "displaced: relocated return addr at %s "
1517 "to %s\n",
1518 paddress (gdbarch, rsp),
1519 paddress (gdbarch, retaddr));
35669430
DE
1520 }
1521}
dde08ee1
PA
1522
1523/* If the instruction INSN uses RIP-relative addressing, return the
1524 offset into the raw INSN where the displacement to be adjusted is
1525 found. Returns 0 if the instruction doesn't use RIP-relative
1526 addressing. */
1527
1528static int
1529rip_relative_offset (struct amd64_insn *insn)
1530{
1531 if (insn->modrm_offset != -1)
1532 {
1533 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1534
1535 if ((modrm & 0xc7) == 0x05)
1536 {
1537 /* The displacement is found right after the ModRM byte. */
1538 return insn->modrm_offset + 1;
1539 }
1540 }
1541
1542 return 0;
1543}
1544
1545static void
1546append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1547{
1548 target_write_memory (*to, buf, len);
1549 *to += len;
1550}
1551
60965737 1552static void
dde08ee1
PA
1553amd64_relocate_instruction (struct gdbarch *gdbarch,
1554 CORE_ADDR *to, CORE_ADDR oldloc)
1555{
1556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1557 int len = gdbarch_max_insn_length (gdbarch);
1558 /* Extra space for sentinels. */
1559 int fixup_sentinel_space = len;
1560 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1561 struct amd64_insn insn_details;
1562 int offset = 0;
1563 LONGEST rel32, newrel;
1564 gdb_byte *insn;
1565 int insn_length;
1566
1567 read_memory (oldloc, buf, len);
1568
1569 /* Set up the sentinel space so we don't have to worry about running
1570 off the end of the buffer. An excessive number of leading prefixes
1571 could otherwise cause this. */
1572 memset (buf + len, 0, fixup_sentinel_space);
1573
1574 insn = buf;
1575 amd64_get_insn_details (insn, &insn_details);
1576
1577 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1578
1579 /* Skip legacy instruction prefixes. */
1580 insn = amd64_skip_prefixes (insn);
1581
1582 /* Adjust calls with 32-bit relative addresses as push/jump, with
1583 the address pushed being the location where the original call in
1584 the user program would return to. */
1585 if (insn[0] == 0xe8)
1586 {
1587 gdb_byte push_buf[16];
1588 unsigned int ret_addr;
1589
1590 /* Where "ret" in the original code will return to. */
1591 ret_addr = oldloc + insn_length;
0963b4bd 1592 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
1593 memcpy (&push_buf[1], &ret_addr, 4);
1594 /* Push the push. */
1595 append_insns (to, 5, push_buf);
1596
1597 /* Convert the relative call to a relative jump. */
1598 insn[0] = 0xe9;
1599
1600 /* Adjust the destination offset. */
1601 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1602 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1603 store_signed_integer (insn + 1, 4, byte_order, newrel);
1604
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "Adjusted insn rel32=%s at %s to"
1608 " rel32=%s at %s\n",
1609 hex_string (rel32), paddress (gdbarch, oldloc),
1610 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1611
1612 /* Write the adjusted jump into its displaced location. */
1613 append_insns (to, 5, insn);
1614 return;
1615 }
1616
1617 offset = rip_relative_offset (&insn_details);
1618 if (!offset)
1619 {
1620 /* Adjust jumps with 32-bit relative addresses. Calls are
1621 already handled above. */
1622 if (insn[0] == 0xe9)
1623 offset = 1;
1624 /* Adjust conditional jumps. */
1625 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1626 offset = 2;
1627 }
1628
1629 if (offset)
1630 {
1631 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1632 newrel = (oldloc - *to) + rel32;
f4a1794a 1633 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1634 if (debug_displaced)
1635 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1636 "Adjusted insn rel32=%s at %s to"
1637 " rel32=%s at %s\n",
dde08ee1
PA
1638 hex_string (rel32), paddress (gdbarch, oldloc),
1639 hex_string (newrel), paddress (gdbarch, *to));
1640 }
1641
1642 /* Write the adjusted instruction into its displaced location. */
1643 append_insns (to, insn_length, buf);
1644}
1645
35669430 1646\f
c4f35dd8 1647/* The maximum number of saved registers. This should include %rip. */
90f90721 1648#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1649
e53bef9f 1650struct amd64_frame_cache
c4f35dd8
MK
1651{
1652 /* Base address. */
1653 CORE_ADDR base;
8fbca658 1654 int base_p;
c4f35dd8
MK
1655 CORE_ADDR sp_offset;
1656 CORE_ADDR pc;
1657
1658 /* Saved registers. */
e53bef9f 1659 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1660 CORE_ADDR saved_sp;
e0c62198 1661 int saved_sp_reg;
c4f35dd8
MK
1662
1663 /* Do we have a frame? */
1664 int frameless_p;
1665};
8dda9770 1666
d2449ee8 1667/* Initialize a frame cache. */
c4f35dd8 1668
d2449ee8
DJ
1669static void
1670amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1671{
c4f35dd8
MK
1672 int i;
1673
c4f35dd8
MK
1674 /* Base address. */
1675 cache->base = 0;
8fbca658 1676 cache->base_p = 0;
c4f35dd8
MK
1677 cache->sp_offset = -8;
1678 cache->pc = 0;
1679
1680 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1681 offset (that's where %rbp is supposed to be stored).
1682 The values start out as being offsets, and are later converted to
1683 addresses (at which point -1 is interpreted as an address, still meaning
1684 "invalid"). */
e53bef9f 1685 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1686 cache->saved_regs[i] = -1;
1687 cache->saved_sp = 0;
e0c62198 1688 cache->saved_sp_reg = -1;
c4f35dd8
MK
1689
1690 /* Frameless until proven otherwise. */
1691 cache->frameless_p = 1;
d2449ee8 1692}
c4f35dd8 1693
d2449ee8
DJ
1694/* Allocate and initialize a frame cache. */
1695
1696static struct amd64_frame_cache *
1697amd64_alloc_frame_cache (void)
1698{
1699 struct amd64_frame_cache *cache;
1700
1701 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1702 amd64_init_frame_cache (cache);
c4f35dd8 1703 return cache;
8dda9770 1704}
53e95fcf 1705
e0c62198
L
1706/* GCC 4.4 and later, can put code in the prologue to realign the
1707 stack pointer. Check whether PC points to such code, and update
1708 CACHE accordingly. Return the first instruction after the code
1709 sequence or CURRENT_PC, whichever is smaller. If we don't
1710 recognize the code, return PC. */
1711
1712static CORE_ADDR
1713amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1714 struct amd64_frame_cache *cache)
1715{
1716 /* There are 2 code sequences to re-align stack before the frame
1717 gets set up:
1718
1719 1. Use a caller-saved saved register:
1720
1721 leaq 8(%rsp), %reg
1722 andq $-XXX, %rsp
1723 pushq -8(%reg)
1724
1725 2. Use a callee-saved saved register:
1726
1727 pushq %reg
1728 leaq 16(%rsp), %reg
1729 andq $-XXX, %rsp
1730 pushq -8(%reg)
1731
1732 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1733
1734 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1735 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1736 */
1737
1738 gdb_byte buf[18];
1739 int reg, r;
1740 int offset, offset_and;
e0c62198
L
1741
1742 if (target_read_memory (pc, buf, sizeof buf))
1743 return pc;
1744
1745 /* Check caller-saved saved register. The first instruction has
1746 to be "leaq 8(%rsp), %reg". */
1747 if ((buf[0] & 0xfb) == 0x48
1748 && buf[1] == 0x8d
1749 && buf[3] == 0x24
1750 && buf[4] == 0x8)
1751 {
1752 /* MOD must be binary 10 and R/M must be binary 100. */
1753 if ((buf[2] & 0xc7) != 0x44)
1754 return pc;
1755
1756 /* REG has register number. */
1757 reg = (buf[2] >> 3) & 7;
1758
1759 /* Check the REX.R bit. */
1760 if (buf[0] == 0x4c)
1761 reg += 8;
1762
1763 offset = 5;
1764 }
1765 else
1766 {
1767 /* Check callee-saved saved register. The first instruction
1768 has to be "pushq %reg". */
1769 reg = 0;
1770 if ((buf[0] & 0xf8) == 0x50)
1771 offset = 0;
1772 else if ((buf[0] & 0xf6) == 0x40
1773 && (buf[1] & 0xf8) == 0x50)
1774 {
1775 /* Check the REX.B bit. */
1776 if ((buf[0] & 1) != 0)
1777 reg = 8;
1778
1779 offset = 1;
1780 }
1781 else
1782 return pc;
1783
1784 /* Get register. */
1785 reg += buf[offset] & 0x7;
1786
1787 offset++;
1788
1789 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1790 if ((buf[offset] & 0xfb) != 0x48
1791 || buf[offset + 1] != 0x8d
1792 || buf[offset + 3] != 0x24
1793 || buf[offset + 4] != 0x10)
1794 return pc;
1795
1796 /* MOD must be binary 10 and R/M must be binary 100. */
1797 if ((buf[offset + 2] & 0xc7) != 0x44)
1798 return pc;
1799
1800 /* REG has register number. */
1801 r = (buf[offset + 2] >> 3) & 7;
1802
1803 /* Check the REX.R bit. */
1804 if (buf[offset] == 0x4c)
1805 r += 8;
1806
1807 /* Registers in pushq and leaq have to be the same. */
1808 if (reg != r)
1809 return pc;
1810
1811 offset += 5;
1812 }
1813
1814 /* Rigister can't be %rsp nor %rbp. */
1815 if (reg == 4 || reg == 5)
1816 return pc;
1817
1818 /* The next instruction has to be "andq $-XXX, %rsp". */
1819 if (buf[offset] != 0x48
1820 || buf[offset + 2] != 0xe4
1821 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1822 return pc;
1823
1824 offset_and = offset;
1825 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1826
1827 /* The next instruction has to be "pushq -8(%reg)". */
1828 r = 0;
1829 if (buf[offset] == 0xff)
1830 offset++;
1831 else if ((buf[offset] & 0xf6) == 0x40
1832 && buf[offset + 1] == 0xff)
1833 {
1834 /* Check the REX.B bit. */
1835 if ((buf[offset] & 0x1) != 0)
1836 r = 8;
1837 offset += 2;
1838 }
1839 else
1840 return pc;
1841
1842 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1843 01. */
1844 if (buf[offset + 1] != 0xf8
1845 || (buf[offset] & 0xf8) != 0x70)
1846 return pc;
1847
1848 /* R/M has register. */
1849 r += buf[offset] & 7;
1850
1851 /* Registers in leaq and pushq have to be the same. */
1852 if (reg != r)
1853 return pc;
1854
1855 if (current_pc > pc + offset_and)
35669430 1856 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198
L
1857
1858 return min (pc + offset + 2, current_pc);
1859}
1860
ac142d96
L
1861/* Similar to amd64_analyze_stack_align for x32. */
1862
1863static CORE_ADDR
1864amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1865 struct amd64_frame_cache *cache)
1866{
1867 /* There are 2 code sequences to re-align stack before the frame
1868 gets set up:
1869
1870 1. Use a caller-saved saved register:
1871
1872 leaq 8(%rsp), %reg
1873 andq $-XXX, %rsp
1874 pushq -8(%reg)
1875
1876 or
1877
1878 [addr32] leal 8(%rsp), %reg
1879 andl $-XXX, %esp
1880 [addr32] pushq -8(%reg)
1881
1882 2. Use a callee-saved saved register:
1883
1884 pushq %reg
1885 leaq 16(%rsp), %reg
1886 andq $-XXX, %rsp
1887 pushq -8(%reg)
1888
1889 or
1890
1891 pushq %reg
1892 [addr32] leal 16(%rsp), %reg
1893 andl $-XXX, %esp
1894 [addr32] pushq -8(%reg)
1895
1896 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1897
1898 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1899 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1900
1901 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1902
1903 0x83 0xe4 0xf0 andl $-16, %esp
1904 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1905 */
1906
1907 gdb_byte buf[19];
1908 int reg, r;
1909 int offset, offset_and;
1910
1911 if (target_read_memory (pc, buf, sizeof buf))
1912 return pc;
1913
1914 /* Skip optional addr32 prefix. */
1915 offset = buf[0] == 0x67 ? 1 : 0;
1916
1917 /* Check caller-saved saved register. The first instruction has
1918 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1919 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1920 && buf[offset + 1] == 0x8d
1921 && buf[offset + 3] == 0x24
1922 && buf[offset + 4] == 0x8)
1923 {
1924 /* MOD must be binary 10 and R/M must be binary 100. */
1925 if ((buf[offset + 2] & 0xc7) != 0x44)
1926 return pc;
1927
1928 /* REG has register number. */
1929 reg = (buf[offset + 2] >> 3) & 7;
1930
1931 /* Check the REX.R bit. */
1932 if ((buf[offset] & 0x4) != 0)
1933 reg += 8;
1934
1935 offset += 5;
1936 }
1937 else
1938 {
1939 /* Check callee-saved saved register. The first instruction
1940 has to be "pushq %reg". */
1941 reg = 0;
1942 if ((buf[offset] & 0xf6) == 0x40
1943 && (buf[offset + 1] & 0xf8) == 0x50)
1944 {
1945 /* Check the REX.B bit. */
1946 if ((buf[offset] & 1) != 0)
1947 reg = 8;
1948
1949 offset += 1;
1950 }
1951 else if ((buf[offset] & 0xf8) != 0x50)
1952 return pc;
1953
1954 /* Get register. */
1955 reg += buf[offset] & 0x7;
1956
1957 offset++;
1958
1959 /* Skip optional addr32 prefix. */
1960 if (buf[offset] == 0x67)
1961 offset++;
1962
1963 /* The next instruction has to be "leaq 16(%rsp), %reg" or
1964 "leal 16(%rsp), %reg". */
1965 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
1966 || buf[offset + 1] != 0x8d
1967 || buf[offset + 3] != 0x24
1968 || buf[offset + 4] != 0x10)
1969 return pc;
1970
1971 /* MOD must be binary 10 and R/M must be binary 100. */
1972 if ((buf[offset + 2] & 0xc7) != 0x44)
1973 return pc;
1974
1975 /* REG has register number. */
1976 r = (buf[offset + 2] >> 3) & 7;
1977
1978 /* Check the REX.R bit. */
1979 if ((buf[offset] & 0x4) != 0)
1980 r += 8;
1981
1982 /* Registers in pushq and leaq have to be the same. */
1983 if (reg != r)
1984 return pc;
1985
1986 offset += 5;
1987 }
1988
1989 /* Rigister can't be %rsp nor %rbp. */
1990 if (reg == 4 || reg == 5)
1991 return pc;
1992
1993 /* The next instruction may be "andq $-XXX, %rsp" or
1994 "andl $-XXX, %esp". */
1995 if (buf[offset] != 0x48)
1996 offset--;
1997
1998 if (buf[offset + 2] != 0xe4
1999 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2000 return pc;
2001
2002 offset_and = offset;
2003 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2004
2005 /* Skip optional addr32 prefix. */
2006 if (buf[offset] == 0x67)
2007 offset++;
2008
2009 /* The next instruction has to be "pushq -8(%reg)". */
2010 r = 0;
2011 if (buf[offset] == 0xff)
2012 offset++;
2013 else if ((buf[offset] & 0xf6) == 0x40
2014 && buf[offset + 1] == 0xff)
2015 {
2016 /* Check the REX.B bit. */
2017 if ((buf[offset] & 0x1) != 0)
2018 r = 8;
2019 offset += 2;
2020 }
2021 else
2022 return pc;
2023
2024 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2025 01. */
2026 if (buf[offset + 1] != 0xf8
2027 || (buf[offset] & 0xf8) != 0x70)
2028 return pc;
2029
2030 /* R/M has register. */
2031 r += buf[offset] & 7;
2032
2033 /* Registers in leaq and pushq have to be the same. */
2034 if (reg != r)
2035 return pc;
2036
2037 if (current_pc > pc + offset_and)
2038 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2039
2040 return min (pc + offset + 2, current_pc);
2041}
2042
c4f35dd8
MK
2043/* Do a limited analysis of the prologue at PC and update CACHE
2044 accordingly. Bail out early if CURRENT_PC is reached. Return the
2045 address where the analysis stopped.
2046
2047 We will handle only functions beginning with:
2048
2049 pushq %rbp 0x55
50f1ae7b 2050 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2051
649e6d92
MK
2052 or (for the X32 ABI):
2053
2054 pushq %rbp 0x55
2055 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2056
2057 Any function that doesn't start with one of these sequences will be
2058 assumed to have no prologue and thus no valid frame pointer in
2059 %rbp. */
c4f35dd8
MK
2060
2061static CORE_ADDR
e17a4113
UW
2062amd64_analyze_prologue (struct gdbarch *gdbarch,
2063 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2064 struct amd64_frame_cache *cache)
53e95fcf 2065{
e17a4113 2066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
50f1ae7b
DE
2067 /* There are two variations of movq %rsp, %rbp. */
2068 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2069 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2070 /* Ditto for movl %esp, %ebp. */
2071 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2072 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2073
d8de1ef7
MK
2074 gdb_byte buf[3];
2075 gdb_byte op;
c4f35dd8
MK
2076
2077 if (current_pc <= pc)
2078 return current_pc;
2079
ac142d96
L
2080 if (gdbarch_ptr_bit (gdbarch) == 32)
2081 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2082 else
2083 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2084
e17a4113 2085 op = read_memory_unsigned_integer (pc, 1, byte_order);
c4f35dd8
MK
2086
2087 if (op == 0x55) /* pushq %rbp */
2088 {
2089 /* Take into account that we've executed the `pushq %rbp' that
2090 starts this instruction sequence. */
90f90721 2091 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2092 cache->sp_offset += 8;
2093
2094 /* If that's all, return now. */
2095 if (current_pc <= pc + 1)
2096 return current_pc;
2097
c4f35dd8 2098 read_memory (pc + 1, buf, 3);
c4f35dd8 2099
649e6d92
MK
2100 /* Check for `movq %rsp, %rbp'. */
2101 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2102 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2103 {
2104 /* OK, we actually have a frame. */
2105 cache->frameless_p = 0;
2106 return pc + 4;
2107 }
2108
2109 /* For X32, also check for `movq %esp, %ebp'. */
2110 if (gdbarch_ptr_bit (gdbarch) == 32)
2111 {
2112 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2113 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2114 {
2115 /* OK, we actually have a frame. */
2116 cache->frameless_p = 0;
2117 return pc + 3;
2118 }
2119 }
2120
2121 return pc + 1;
c4f35dd8
MK
2122 }
2123
2124 return pc;
53e95fcf
JS
2125}
2126
df15bd07
JK
2127/* Work around false termination of prologue - GCC PR debug/48827.
2128
2129 START_PC is the first instruction of a function, PC is its minimal already
2130 determined advanced address. Function returns PC if it has nothing to do.
2131
2132 84 c0 test %al,%al
2133 74 23 je after
2134 <-- here is 0 lines advance - the false prologue end marker.
2135 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2136 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2137 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2138 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2139 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2140 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2141 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2142 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2143 after: */
c4f35dd8
MK
2144
2145static CORE_ADDR
df15bd07 2146amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2147{
08711b9a
JK
2148 struct symtab_and_line start_pc_sal, next_sal;
2149 gdb_byte buf[4 + 8 * 7];
2150 int offset, xmmreg;
c4f35dd8 2151
08711b9a
JK
2152 if (pc == start_pc)
2153 return pc;
2154
2155 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2156 if (start_pc_sal.symtab == NULL
df15bd07 2157 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
08711b9a
JK
2158 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2159 return pc;
2160
2161 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2162 if (next_sal.line != start_pc_sal.line)
2163 return pc;
2164
2165 /* START_PC can be from overlayed memory, ignored here. */
2166 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2167 return pc;
2168
2169 /* test %al,%al */
2170 if (buf[0] != 0x84 || buf[1] != 0xc0)
2171 return pc;
2172 /* je AFTER */
2173 if (buf[2] != 0x74)
2174 return pc;
2175
2176 offset = 4;
2177 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2178 {
bede5f5f 2179 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2180 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
bede5f5f 2181 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2182 return pc;
2183
bede5f5f
JK
2184 /* 0b01?????? */
2185 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2186 {
2187 /* 8-bit displacement. */
2188 offset += 4;
2189 }
bede5f5f
JK
2190 /* 0b10?????? */
2191 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2192 {
2193 /* 32-bit displacement. */
2194 offset += 7;
2195 }
2196 else
2197 return pc;
2198 }
2199
2200 /* je AFTER */
2201 if (offset - 4 != buf[3])
2202 return pc;
2203
2204 return next_sal.end;
53e95fcf 2205}
df15bd07
JK
2206
2207/* Return PC of first real instruction. */
2208
2209static CORE_ADDR
2210amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2211{
2212 struct amd64_frame_cache cache;
2213 CORE_ADDR pc;
2214
2215 amd64_init_frame_cache (&cache);
2216 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2217 &cache);
2218 if (cache.frameless_p)
2219 return start_pc;
2220
2221 return amd64_skip_xmm_prologue (pc, start_pc);
2222}
c4f35dd8 2223\f
53e95fcf 2224
c4f35dd8
MK
2225/* Normal frames. */
2226
8fbca658
PA
2227static void
2228amd64_frame_cache_1 (struct frame_info *this_frame,
2229 struct amd64_frame_cache *cache)
6d686a84 2230{
e17a4113
UW
2231 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2233 gdb_byte buf[8];
6d686a84 2234 int i;
6d686a84 2235
10458914 2236 cache->pc = get_frame_func (this_frame);
c4f35dd8 2237 if (cache->pc != 0)
e17a4113
UW
2238 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2239 cache);
c4f35dd8
MK
2240
2241 if (cache->frameless_p)
2242 {
4a28816e
MK
2243 /* We didn't find a valid frame. If we're at the start of a
2244 function, or somewhere half-way its prologue, the function's
2245 frame probably hasn't been fully setup yet. Try to
2246 reconstruct the base address for the stack frame by looking
2247 at the stack pointer. For truly "frameless" functions this
2248 might work too. */
c4f35dd8 2249
e0c62198
L
2250 if (cache->saved_sp_reg != -1)
2251 {
8fbca658
PA
2252 /* Stack pointer has been saved. */
2253 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2254 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2255
e0c62198
L
2256 /* We're halfway aligning the stack. */
2257 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2258 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2259
2260 /* This will be added back below. */
2261 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2262 }
2263 else
2264 {
2265 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2266 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2267 + cache->sp_offset;
e0c62198 2268 }
c4f35dd8 2269 }
35883a3f
MK
2270 else
2271 {
10458914 2272 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2273 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2274 }
c4f35dd8
MK
2275
2276 /* Now that we have the base address for the stack frame we can
2277 calculate the value of %rsp in the calling frame. */
2278 cache->saved_sp = cache->base + 16;
2279
35883a3f
MK
2280 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2281 frame we find it at the same offset from the reconstructed base
e0c62198
L
2282 address. If we're halfway aligning the stack, %rip is handled
2283 differently (see above). */
2284 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2285 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2286
c4f35dd8
MK
2287 /* Adjust all the saved registers such that they contain addresses
2288 instead of offsets. */
e53bef9f 2289 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2290 if (cache->saved_regs[i] != -1)
2291 cache->saved_regs[i] += cache->base;
2292
8fbca658
PA
2293 cache->base_p = 1;
2294}
2295
2296static struct amd64_frame_cache *
2297amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2298{
2299 volatile struct gdb_exception ex;
2300 struct amd64_frame_cache *cache;
2301
2302 if (*this_cache)
2303 return *this_cache;
2304
2305 cache = amd64_alloc_frame_cache ();
2306 *this_cache = cache;
2307
2308 TRY_CATCH (ex, RETURN_MASK_ERROR)
2309 {
2310 amd64_frame_cache_1 (this_frame, cache);
2311 }
2312 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2313 throw_exception (ex);
2314
c4f35dd8 2315 return cache;
6d686a84
ML
2316}
2317
8fbca658
PA
2318static enum unwind_stop_reason
2319amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2320 void **this_cache)
2321{
2322 struct amd64_frame_cache *cache =
2323 amd64_frame_cache (this_frame, this_cache);
2324
2325 if (!cache->base_p)
2326 return UNWIND_UNAVAILABLE;
2327
2328 /* This marks the outermost frame. */
2329 if (cache->base == 0)
2330 return UNWIND_OUTERMOST;
2331
2332 return UNWIND_NO_REASON;
2333}
2334
c4f35dd8 2335static void
10458914 2336amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
e53bef9f 2337 struct frame_id *this_id)
c4f35dd8 2338{
e53bef9f 2339 struct amd64_frame_cache *cache =
10458914 2340 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2341
8fbca658
PA
2342 if (!cache->base_p)
2343 return;
2344
c4f35dd8
MK
2345 /* This marks the outermost frame. */
2346 if (cache->base == 0)
2347 return;
2348
2349 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2350}
e76e1718 2351
10458914
DJ
2352static struct value *
2353amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2354 int regnum)
53e95fcf 2355{
10458914 2356 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2357 struct amd64_frame_cache *cache =
10458914 2358 amd64_frame_cache (this_frame, this_cache);
e76e1718 2359
c4f35dd8 2360 gdb_assert (regnum >= 0);
b1ab997b 2361
2ae02b47 2362 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2363 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2364
e53bef9f 2365 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2366 return frame_unwind_got_memory (this_frame, regnum,
2367 cache->saved_regs[regnum]);
e76e1718 2368
10458914 2369 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2370}
e76e1718 2371
e53bef9f 2372static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
2373{
2374 NORMAL_FRAME,
8fbca658 2375 amd64_frame_unwind_stop_reason,
e53bef9f 2376 amd64_frame_this_id,
10458914
DJ
2377 amd64_frame_prev_register,
2378 NULL,
2379 default_frame_sniffer
c4f35dd8 2380};
c4f35dd8 2381\f
6710bf39
SS
2382/* Generate a bytecode expression to get the value of the saved PC. */
2383
2384static void
2385amd64_gen_return_address (struct gdbarch *gdbarch,
2386 struct agent_expr *ax, struct axs_value *value,
2387 CORE_ADDR scope)
2388{
2389 /* The following sequence assumes the traditional use of the base
2390 register. */
2391 ax_reg (ax, AMD64_RBP_REGNUM);
2392 ax_const_l (ax, 8);
2393 ax_simple (ax, aop_add);
2394 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2395 value->kind = axs_lvalue_memory;
2396}
2397\f
e76e1718 2398
c4f35dd8
MK
2399/* Signal trampolines. */
2400
2401/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2402 64-bit variants. This would require using identical frame caches
2403 on both platforms. */
2404
e53bef9f 2405static struct amd64_frame_cache *
10458914 2406amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2407{
e17a4113
UW
2408 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2411 volatile struct gdb_exception ex;
e53bef9f 2412 struct amd64_frame_cache *cache;
c4f35dd8 2413 CORE_ADDR addr;
d8de1ef7 2414 gdb_byte buf[8];
2b5e0749 2415 int i;
c4f35dd8
MK
2416
2417 if (*this_cache)
2418 return *this_cache;
2419
e53bef9f 2420 cache = amd64_alloc_frame_cache ();
c4f35dd8 2421
8fbca658
PA
2422 TRY_CATCH (ex, RETURN_MASK_ERROR)
2423 {
2424 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2425 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2426
2427 addr = tdep->sigcontext_addr (this_frame);
2428 gdb_assert (tdep->sc_reg_offset);
2429 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2430 for (i = 0; i < tdep->sc_num_regs; i++)
2431 if (tdep->sc_reg_offset[i] != -1)
2432 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2433
8fbca658
PA
2434 cache->base_p = 1;
2435 }
2436 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2437 throw_exception (ex);
c4f35dd8
MK
2438
2439 *this_cache = cache;
2440 return cache;
53e95fcf
JS
2441}
2442
8fbca658
PA
2443static enum unwind_stop_reason
2444amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2445 void **this_cache)
2446{
2447 struct amd64_frame_cache *cache =
2448 amd64_sigtramp_frame_cache (this_frame, this_cache);
2449
2450 if (!cache->base_p)
2451 return UNWIND_UNAVAILABLE;
2452
2453 return UNWIND_NO_REASON;
2454}
2455
c4f35dd8 2456static void
10458914 2457amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
e53bef9f 2458 void **this_cache, struct frame_id *this_id)
c4f35dd8 2459{
e53bef9f 2460 struct amd64_frame_cache *cache =
10458914 2461 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2462
8fbca658
PA
2463 if (!cache->base_p)
2464 return;
2465
10458914 2466 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2467}
2468
10458914
DJ
2469static struct value *
2470amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2471 void **this_cache, int regnum)
c4f35dd8
MK
2472{
2473 /* Make sure we've initialized the cache. */
10458914 2474 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2475
10458914 2476 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2477}
2478
10458914
DJ
2479static int
2480amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2481 struct frame_info *this_frame,
2482 void **this_cache)
c4f35dd8 2483{
10458914 2484 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
911bc6ee
MK
2485
2486 /* We shouldn't even bother if we don't have a sigcontext_addr
2487 handler. */
2488 if (tdep->sigcontext_addr == NULL)
10458914 2489 return 0;
911bc6ee
MK
2490
2491 if (tdep->sigtramp_p != NULL)
2492 {
10458914
DJ
2493 if (tdep->sigtramp_p (this_frame))
2494 return 1;
911bc6ee 2495 }
c4f35dd8 2496
911bc6ee 2497 if (tdep->sigtramp_start != 0)
1c3545ae 2498 {
10458914 2499 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2500
911bc6ee
MK
2501 gdb_assert (tdep->sigtramp_end != 0);
2502 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2503 return 1;
1c3545ae 2504 }
c4f35dd8 2505
10458914 2506 return 0;
c4f35dd8 2507}
10458914
DJ
2508
2509static const struct frame_unwind amd64_sigtramp_frame_unwind =
2510{
2511 SIGTRAMP_FRAME,
8fbca658 2512 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2513 amd64_sigtramp_frame_this_id,
2514 amd64_sigtramp_frame_prev_register,
2515 NULL,
2516 amd64_sigtramp_frame_sniffer
2517};
c4f35dd8
MK
2518\f
2519
2520static CORE_ADDR
10458914 2521amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2522{
e53bef9f 2523 struct amd64_frame_cache *cache =
10458914 2524 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2525
2526 return cache->base;
2527}
2528
e53bef9f 2529static const struct frame_base amd64_frame_base =
c4f35dd8 2530{
e53bef9f
MK
2531 &amd64_frame_unwind,
2532 amd64_frame_base_address,
2533 amd64_frame_base_address,
2534 amd64_frame_base_address
c4f35dd8
MK
2535};
2536
872761f4
MS
2537/* Normal frames, but in a function epilogue. */
2538
2539/* The epilogue is defined here as the 'ret' instruction, which will
2540 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2541 the function's stack frame. */
2542
2543static int
2544amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2545{
2546 gdb_byte insn;
e0d00bc7
JK
2547 struct symtab *symtab;
2548
2549 symtab = find_pc_symtab (pc);
2550 if (symtab && symtab->epilogue_unwind_valid)
2551 return 0;
872761f4
MS
2552
2553 if (target_read_memory (pc, &insn, 1))
2554 return 0; /* Can't read memory at pc. */
2555
2556 if (insn != 0xc3) /* 'ret' instruction. */
2557 return 0;
2558
2559 return 1;
2560}
2561
2562static int
2563amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2564 struct frame_info *this_frame,
2565 void **this_prologue_cache)
2566{
2567 if (frame_relative_level (this_frame) == 0)
2568 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2569 get_frame_pc (this_frame));
2570 else
2571 return 0;
2572}
2573
2574static struct amd64_frame_cache *
2575amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2576{
2577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2579 volatile struct gdb_exception ex;
872761f4 2580 struct amd64_frame_cache *cache;
6c10c06b 2581 gdb_byte buf[8];
872761f4
MS
2582
2583 if (*this_cache)
2584 return *this_cache;
2585
2586 cache = amd64_alloc_frame_cache ();
2587 *this_cache = cache;
2588
8fbca658
PA
2589 TRY_CATCH (ex, RETURN_MASK_ERROR)
2590 {
2591 /* Cache base will be %esp plus cache->sp_offset (-8). */
2592 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2593 cache->base = extract_unsigned_integer (buf, 8,
2594 byte_order) + cache->sp_offset;
2595
2596 /* Cache pc will be the frame func. */
2597 cache->pc = get_frame_pc (this_frame);
872761f4 2598
8fbca658
PA
2599 /* The saved %esp will be at cache->base plus 16. */
2600 cache->saved_sp = cache->base + 16;
872761f4 2601
8fbca658
PA
2602 /* The saved %eip will be at cache->base plus 8. */
2603 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2604
8fbca658
PA
2605 cache->base_p = 1;
2606 }
2607 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2608 throw_exception (ex);
872761f4
MS
2609
2610 return cache;
2611}
2612
8fbca658
PA
2613static enum unwind_stop_reason
2614amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2615 void **this_cache)
2616{
2617 struct amd64_frame_cache *cache
2618 = amd64_epilogue_frame_cache (this_frame, this_cache);
2619
2620 if (!cache->base_p)
2621 return UNWIND_UNAVAILABLE;
2622
2623 return UNWIND_NO_REASON;
2624}
2625
872761f4
MS
2626static void
2627amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2628 void **this_cache,
2629 struct frame_id *this_id)
2630{
2631 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2632 this_cache);
2633
8fbca658
PA
2634 if (!cache->base_p)
2635 return;
2636
872761f4
MS
2637 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2638}
2639
2640static const struct frame_unwind amd64_epilogue_frame_unwind =
2641{
2642 NORMAL_FRAME,
8fbca658 2643 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
2644 amd64_epilogue_frame_this_id,
2645 amd64_frame_prev_register,
2646 NULL,
2647 amd64_epilogue_frame_sniffer
2648};
2649
166f4c7b 2650static struct frame_id
10458914 2651amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
166f4c7b 2652{
c4f35dd8
MK
2653 CORE_ADDR fp;
2654
10458914 2655 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 2656
10458914 2657 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
2658}
2659
8b148df9
AC
2660/* 16 byte align the SP per frame requirements. */
2661
2662static CORE_ADDR
e53bef9f 2663amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
2664{
2665 return sp & -(CORE_ADDR)16;
2666}
473f17b0
MK
2667\f
2668
593adc23
MK
2669/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2670 in the floating-point register set REGSET to register cache
2671 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2672
2673static void
e53bef9f
MK
2674amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2675 int regnum, const void *fpregs, size_t len)
473f17b0 2676{
9ea75c57 2677 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
2678
2679 gdb_assert (len == tdep->sizeof_fpregset);
90f90721 2680 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 2681}
8b148df9 2682
593adc23
MK
2683/* Collect register REGNUM from the register cache REGCACHE and store
2684 it in the buffer specified by FPREGS and LEN as described by the
2685 floating-point register set REGSET. If REGNUM is -1, do this for
2686 all registers in REGSET. */
2687
2688static void
2689amd64_collect_fpregset (const struct regset *regset,
2690 const struct regcache *regcache,
2691 int regnum, void *fpregs, size_t len)
2692{
2693 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2694
2695 gdb_assert (len == tdep->sizeof_fpregset);
2696 amd64_collect_fxsave (regcache, regnum, fpregs);
2697}
2698
a055a187
L
2699/* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2700
2701static void
2702amd64_supply_xstateregset (const struct regset *regset,
2703 struct regcache *regcache, int regnum,
2704 const void *xstateregs, size_t len)
2705{
a055a187
L
2706 amd64_supply_xsave (regcache, regnum, xstateregs);
2707}
2708
2709/* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2710
2711static void
2712amd64_collect_xstateregset (const struct regset *regset,
2713 const struct regcache *regcache,
2714 int regnum, void *xstateregs, size_t len)
2715{
a055a187
L
2716 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2717}
2718
c6b33596
MK
2719/* Return the appropriate register set for the core section identified
2720 by SECT_NAME and SECT_SIZE. */
2721
2722static const struct regset *
e53bef9f
MK
2723amd64_regset_from_core_section (struct gdbarch *gdbarch,
2724 const char *sect_name, size_t sect_size)
c6b33596
MK
2725{
2726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2727
2728 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2729 {
2730 if (tdep->fpregset == NULL)
593adc23
MK
2731 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2732 amd64_collect_fpregset);
c6b33596
MK
2733
2734 return tdep->fpregset;
2735 }
2736
a055a187
L
2737 if (strcmp (sect_name, ".reg-xstate") == 0)
2738 {
2739 if (tdep->xstateregset == NULL)
2740 tdep->xstateregset = regset_alloc (gdbarch,
2741 amd64_supply_xstateregset,
2742 amd64_collect_xstateregset);
2743
2744 return tdep->xstateregset;
2745 }
2746
c6b33596
MK
2747 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2748}
2749\f
2750
436675d3
PA
2751/* Figure out where the longjmp will land. Slurp the jmp_buf out of
2752 %rdi. We expect its value to be a pointer to the jmp_buf structure
2753 from which we extract the address that we will land at. This
2754 address is copied into PC. This routine returns non-zero on
2755 success. */
2756
2757static int
2758amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2759{
2760 gdb_byte buf[8];
2761 CORE_ADDR jb_addr;
2762 struct gdbarch *gdbarch = get_frame_arch (frame);
2763 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
0dfff4cb 2764 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2765
2766 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2767 longjmp will land. */
2768 if (jb_pc_offset == -1)
2769 return 0;
2770
2771 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
2772 jb_addr= extract_typed_address
2773 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
2774 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2775 return 0;
2776
0dfff4cb 2777 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2778
2779 return 1;
2780}
2781
cf648174
HZ
2782static const int amd64_record_regmap[] =
2783{
2784 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2785 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2786 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2787 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2788 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2789 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2790};
2791
2213a65d 2792void
90f90721 2793amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 2794{
0c1a73d6 2795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 2796 const struct target_desc *tdesc = info.target_desc;
53e95fcf 2797
473f17b0
MK
2798 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2799 floating-point registers. */
2800 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2801
90884b2b
L
2802 if (! tdesc_has_registers (tdesc))
2803 tdesc = tdesc_amd64;
2804 tdep->tdesc = tdesc;
2805
2806 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2807 tdep->register_names = amd64_register_names;
2808
a055a187
L
2809 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2810 {
2811 tdep->ymmh_register_names = amd64_ymmh_names;
2812 tdep->num_ymm_regs = 16;
2813 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2814 }
2815
fe01d668 2816 tdep->num_byte_regs = 20;
1ba53b71
L
2817 tdep->num_word_regs = 16;
2818 tdep->num_dword_regs = 16;
2819 /* Avoid wiring in the MMX registers for now. */
2820 tdep->num_mmx_regs = 0;
2821
3543a589
TT
2822 set_gdbarch_pseudo_register_read_value (gdbarch,
2823 amd64_pseudo_register_read_value);
1ba53b71
L
2824 set_gdbarch_pseudo_register_write (gdbarch,
2825 amd64_pseudo_register_write);
2826
2827 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2828
5716833c 2829 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 2830 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 2831 tdep->num_xmm_regs = 16;
53e95fcf 2832
0c1a73d6 2833 /* This is what all the fuss is about. */
53e95fcf
JS
2834 set_gdbarch_long_bit (gdbarch, 64);
2835 set_gdbarch_long_long_bit (gdbarch, 64);
2836 set_gdbarch_ptr_bit (gdbarch, 64);
2837
e53bef9f
MK
2838 /* In contrast to the i386, on AMD64 a `long double' actually takes
2839 up 128 bits, even though it's still based on the i387 extended
2840 floating-point format which has only 80 significant bits. */
b83b026c
MK
2841 set_gdbarch_long_double_bit (gdbarch, 128);
2842
e53bef9f 2843 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
2844
2845 /* Register numbers of various important registers. */
90f90721
MK
2846 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2847 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2848 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2849 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 2850
e53bef9f
MK
2851 /* The "default" register numbering scheme for AMD64 is referred to
2852 as the "DWARF Register Number Mapping" in the System V psABI.
2853 The preferred debugging format for all known AMD64 targets is
2854 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2855 DWARF-1), but we provide the same mapping just in case. This
2856 mapping is also used for stabs, which GCC does support. */
2857 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 2858 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 2859
c4f35dd8 2860 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 2861 be in use on any of the supported AMD64 targets. */
53e95fcf 2862
c4f35dd8 2863 /* Call dummy code. */
e53bef9f
MK
2864 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2865 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 2866 set_gdbarch_frame_red_zone_size (gdbarch, 128);
ba581dc1
JB
2867 tdep->call_dummy_num_integer_regs =
2868 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2869 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2870 tdep->classify = amd64_classify;
53e95fcf 2871
83acabca 2872 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
2873 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2874 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2875
efb1c01c 2876 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 2877
e53bef9f 2878 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 2879
cf648174
HZ
2880 tdep->record_regmap = amd64_record_regmap;
2881
10458914 2882 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 2883
872761f4
MS
2884 /* Hook the function epilogue frame unwinder. This unwinder is
2885 appended to the list first, so that it supercedes the other
2886 unwinders in function epilogues. */
2887 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2888
2889 /* Hook the prologue-based frame unwinders. */
10458914
DJ
2890 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2891 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 2892 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596
MK
2893
2894 /* If we have a register mapping, enable the generic core file support. */
2895 if (tdep->gregset_reg_offset)
2896 set_gdbarch_regset_from_core_section (gdbarch,
e53bef9f 2897 amd64_regset_from_core_section);
436675d3
PA
2898
2899 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
2900
2901 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
2902
2903 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
2904
2905 /* SystemTap variables and functions. */
2906 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2907 set_gdbarch_stap_register_prefix (gdbarch, "%");
2908 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2909 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2910 set_gdbarch_stap_is_single_operand (gdbarch,
2911 i386_stap_is_single_operand);
2912 set_gdbarch_stap_parse_special_token (gdbarch,
2913 i386_stap_parse_special_token);
c4f35dd8 2914}
fff4548b
MK
2915\f
2916
2917static struct type *
2918amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2919{
2920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921
2922 switch (regnum - tdep->eax_regnum)
2923 {
2924 case AMD64_RBP_REGNUM: /* %ebp */
2925 case AMD64_RSP_REGNUM: /* %esp */
2926 return builtin_type (gdbarch)->builtin_data_ptr;
2927 case AMD64_RIP_REGNUM: /* %eip */
2928 return builtin_type (gdbarch)->builtin_func_ptr;
2929 }
2930
2931 return i386_pseudo_register_type (gdbarch, regnum);
2932}
2933
2934void
2935amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2936{
2937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2938 const struct target_desc *tdesc = info.target_desc;
2939
2940 amd64_init_abi (info, gdbarch);
2941
2942 if (! tdesc_has_registers (tdesc))
2943 tdesc = tdesc_x32;
2944 tdep->tdesc = tdesc;
2945
23e2d720
L
2946 tdep->sp_regnum_from_eax = AMD64_RSP_REGNUM;
2947 tdep->pc_regnum_from_eax = AMD64_RIP_REGNUM;
2948
fff4548b
MK
2949 tdep->num_dword_regs = 17;
2950 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2951
2952 set_gdbarch_long_bit (gdbarch, 32);
2953 set_gdbarch_ptr_bit (gdbarch, 32);
2954}
90884b2b
L
2955
2956/* Provide a prototype to silence -Wmissing-prototypes. */
2957void _initialize_amd64_tdep (void);
2958
2959void
2960_initialize_amd64_tdep (void)
2961{
2962 initialize_tdesc_amd64 ();
a055a187 2963 initialize_tdesc_amd64_avx ();
ac1438b5
L
2964 initialize_tdesc_x32 ();
2965 initialize_tdesc_x32_avx ();
90884b2b 2966}
c4f35dd8
MK
2967\f
2968
41d041d6
MK
2969/* The 64-bit FXSAVE format differs from the 32-bit format in the
2970 sense that the instruction pointer and data pointer are simply
2971 64-bit offsets into the code segment and the data segment instead
2972 of a selector offset pair. The functions below store the upper 32
2973 bits of these pointers (instead of just the 16-bits of the segment
2974 selector). */
2975
2976/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
2977 floating-point or SSE register value from *FXSAVE. If REGNUM is
2978 -1, do this for all registers. This function masks off any of the
2979 reserved bits in *FXSAVE. */
c4f35dd8
MK
2980
2981void
90f90721 2982amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 2983 const void *fxsave)
c4f35dd8 2984{
20a6ec49
MD
2985 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2987
41d041d6 2988 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 2989
233dfcf0
L
2990 if (fxsave
2991 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 2992 {
d8de1ef7 2993 const gdb_byte *regs = fxsave;
41d041d6 2994
20a6ec49
MD
2995 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2996 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2997 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2998 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 2999 }
0c1a73d6
MK
3000}
3001
a055a187
L
3002/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3003
3004void
3005amd64_supply_xsave (struct regcache *regcache, int regnum,
3006 const void *xsave)
3007{
3008 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3009 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3010
3011 i387_supply_xsave (regcache, regnum, xsave);
3012
233dfcf0
L
3013 if (xsave
3014 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3015 {
3016 const gdb_byte *regs = xsave;
3017
3018 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3019 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3020 regs + 12);
3021 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3022 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3023 regs + 20);
3024 }
3025}
3026
3c017e40
MK
3027/* Fill register REGNUM (if it is a floating-point or SSE register) in
3028 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3029 all registers. This function doesn't touch any of the reserved
3030 bits in *FXSAVE. */
3031
3032void
3033amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3034 void *fxsave)
3035{
20a6ec49
MD
3036 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d8de1ef7 3038 gdb_byte *regs = fxsave;
3c017e40
MK
3039
3040 i387_collect_fxsave (regcache, regnum, fxsave);
3041
233dfcf0 3042 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3043 {
20a6ec49
MD
3044 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3045 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3046 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3047 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3048 }
3c017e40 3049}
a055a187 3050
7a9dd1b2 3051/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3052
3053void
3054amd64_collect_xsave (const struct regcache *regcache, int regnum,
3055 void *xsave, int gcore)
3056{
3057 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3059 gdb_byte *regs = xsave;
3060
3061 i387_collect_xsave (regcache, regnum, xsave, gcore);
3062
233dfcf0 3063 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3064 {
3065 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3066 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3067 regs + 12);
3068 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3069 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3070 regs + 20);
3071 }
3072}
This page took 0.966635 seconds and 4 git commands to generate.