Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
5ae96ec1 MK |
3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 |
4 | Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by Jiri Smid, SuSE Labs. | |
53e95fcf JS |
7 | |
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
22 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
23 | Boston, MA 02110-1301, USA. */ | |
53e95fcf JS |
24 | |
25 | #include "defs.h" | |
c4f35dd8 MK |
26 | #include "arch-utils.h" |
27 | #include "block.h" | |
28 | #include "dummy-frame.h" | |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
53e95fcf | 32 | #include "inferior.h" |
53e95fcf | 33 | #include "gdbcmd.h" |
c4f35dd8 MK |
34 | #include "gdbcore.h" |
35 | #include "objfiles.h" | |
53e95fcf | 36 | #include "regcache.h" |
2c261fae | 37 | #include "regset.h" |
53e95fcf | 38 | #include "symfile.h" |
c4f35dd8 | 39 | |
82dbc5f7 | 40 | #include "gdb_assert.h" |
c4f35dd8 | 41 | |
9c1488cb | 42 | #include "amd64-tdep.h" |
c4f35dd8 | 43 | #include "i387-tdep.h" |
53e95fcf | 44 | |
e53bef9f MK |
45 | /* Note that the AMD64 architecture was previously known as x86-64. |
46 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 47 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
48 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
49 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
50 | x86_64_-prefix since it's so much easier to type. */ | |
51 | ||
402ecd56 | 52 | /* Register information. */ |
c4f35dd8 | 53 | |
e53bef9f | 54 | struct amd64_register_info |
de220d0f | 55 | { |
de220d0f ML |
56 | char *name; |
57 | struct type **type; | |
58 | }; | |
53e95fcf | 59 | |
2f4535c7 | 60 | static struct amd64_register_info const amd64_register_info[] = |
c4f35dd8 MK |
61 | { |
62 | { "rax", &builtin_type_int64 }, | |
63 | { "rbx", &builtin_type_int64 }, | |
64 | { "rcx", &builtin_type_int64 }, | |
65 | { "rdx", &builtin_type_int64 }, | |
66 | { "rsi", &builtin_type_int64 }, | |
67 | { "rdi", &builtin_type_int64 }, | |
68 | { "rbp", &builtin_type_void_data_ptr }, | |
69 | { "rsp", &builtin_type_void_data_ptr }, | |
70 | ||
71 | /* %r8 is indeed register number 8. */ | |
72 | { "r8", &builtin_type_int64 }, | |
73 | { "r9", &builtin_type_int64 }, | |
74 | { "r10", &builtin_type_int64 }, | |
75 | { "r11", &builtin_type_int64 }, | |
76 | { "r12", &builtin_type_int64 }, | |
77 | { "r13", &builtin_type_int64 }, | |
78 | { "r14", &builtin_type_int64 }, | |
79 | { "r15", &builtin_type_int64 }, | |
80 | { "rip", &builtin_type_void_func_ptr }, | |
5ae96ec1 | 81 | { "eflags", &i386_eflags_type }, |
af233647 MK |
82 | { "cs", &builtin_type_int32 }, |
83 | { "ss", &builtin_type_int32 }, | |
c4f35dd8 MK |
84 | { "ds", &builtin_type_int32 }, |
85 | { "es", &builtin_type_int32 }, | |
86 | { "fs", &builtin_type_int32 }, | |
87 | { "gs", &builtin_type_int32 }, | |
88 | ||
af233647 | 89 | /* %st0 is register number 24. */ |
c4f35dd8 MK |
90 | { "st0", &builtin_type_i387_ext }, |
91 | { "st1", &builtin_type_i387_ext }, | |
92 | { "st2", &builtin_type_i387_ext }, | |
93 | { "st3", &builtin_type_i387_ext }, | |
94 | { "st4", &builtin_type_i387_ext }, | |
95 | { "st5", &builtin_type_i387_ext }, | |
96 | { "st6", &builtin_type_i387_ext }, | |
97 | { "st7", &builtin_type_i387_ext }, | |
98 | { "fctrl", &builtin_type_int32 }, | |
99 | { "fstat", &builtin_type_int32 }, | |
100 | { "ftag", &builtin_type_int32 }, | |
101 | { "fiseg", &builtin_type_int32 }, | |
102 | { "fioff", &builtin_type_int32 }, | |
103 | { "foseg", &builtin_type_int32 }, | |
104 | { "fooff", &builtin_type_int32 }, | |
105 | { "fop", &builtin_type_int32 }, | |
106 | ||
af233647 | 107 | /* %xmm0 is register number 40. */ |
5ae96ec1 MK |
108 | { "xmm0", &i386_sse_type }, |
109 | { "xmm1", &i386_sse_type }, | |
110 | { "xmm2", &i386_sse_type }, | |
111 | { "xmm3", &i386_sse_type }, | |
112 | { "xmm4", &i386_sse_type }, | |
113 | { "xmm5", &i386_sse_type }, | |
114 | { "xmm6", &i386_sse_type }, | |
115 | { "xmm7", &i386_sse_type }, | |
116 | { "xmm8", &i386_sse_type }, | |
117 | { "xmm9", &i386_sse_type }, | |
118 | { "xmm10", &i386_sse_type }, | |
119 | { "xmm11", &i386_sse_type }, | |
120 | { "xmm12", &i386_sse_type }, | |
121 | { "xmm13", &i386_sse_type }, | |
122 | { "xmm14", &i386_sse_type }, | |
123 | { "xmm15", &i386_sse_type }, | |
878d9193 | 124 | { "mxcsr", &i386_mxcsr_type } |
0e04a514 ML |
125 | }; |
126 | ||
c4f35dd8 | 127 | /* Total number of registers. */ |
5ae96ec1 | 128 | #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_info) |
de220d0f | 129 | |
c4f35dd8 | 130 | /* Return the name of register REGNUM. */ |
b6779aa2 | 131 | |
8695c747 | 132 | const char * |
e53bef9f | 133 | amd64_register_name (int regnum) |
53e95fcf | 134 | { |
e53bef9f MK |
135 | if (regnum >= 0 && regnum < AMD64_NUM_REGS) |
136 | return amd64_register_info[regnum].name; | |
53e95fcf | 137 | |
c4f35dd8 | 138 | return NULL; |
53e95fcf JS |
139 | } |
140 | ||
141 | /* Return the GDB type object for the "standard" data type of data in | |
c4f35dd8 | 142 | register REGNUM. */ |
53e95fcf | 143 | |
8695c747 | 144 | struct type * |
e53bef9f | 145 | amd64_register_type (struct gdbarch *gdbarch, int regnum) |
53e95fcf | 146 | { |
e53bef9f | 147 | gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS); |
4657573b | 148 | |
5ae96ec1 | 149 | return *amd64_register_info[regnum].type; |
53e95fcf JS |
150 | } |
151 | ||
c4f35dd8 MK |
152 | /* DWARF Register Number Mapping as defined in the System V psABI, |
153 | section 3.6. */ | |
53e95fcf | 154 | |
e53bef9f | 155 | static int amd64_dwarf_regmap[] = |
0e04a514 | 156 | { |
c4f35dd8 | 157 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
158 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
159 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
160 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
161 | |
162 | /* Frame Pointer Register RBP. */ | |
90f90721 | 163 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
164 | |
165 | /* Stack Pointer Register RSP. */ | |
90f90721 | 166 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
167 | |
168 | /* Extended Integer Registers 8 - 15. */ | |
169 | 8, 9, 10, 11, 12, 13, 14, 15, | |
170 | ||
59207364 | 171 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 172 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
173 | |
174 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
175 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
176 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
177 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
178 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
179 | |
180 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
181 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
182 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
183 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
184 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
185 | |
186 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
187 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
188 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
189 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
c6f4c129 JB |
190 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
191 | ||
192 | /* Control and Status Flags Register. */ | |
193 | AMD64_EFLAGS_REGNUM, | |
194 | ||
195 | /* Selector Registers. */ | |
196 | AMD64_ES_REGNUM, | |
197 | AMD64_CS_REGNUM, | |
198 | AMD64_SS_REGNUM, | |
199 | AMD64_DS_REGNUM, | |
200 | AMD64_FS_REGNUM, | |
201 | AMD64_GS_REGNUM, | |
202 | -1, | |
203 | -1, | |
204 | ||
205 | /* Segment Base Address Registers. */ | |
206 | -1, | |
207 | -1, | |
208 | -1, | |
209 | -1, | |
210 | ||
211 | /* Special Selector Registers. */ | |
212 | -1, | |
213 | -1, | |
214 | ||
215 | /* Floating Point Control Registers. */ | |
216 | AMD64_MXCSR_REGNUM, | |
217 | AMD64_FCTRL_REGNUM, | |
218 | AMD64_FSTAT_REGNUM | |
c4f35dd8 | 219 | }; |
0e04a514 | 220 | |
e53bef9f MK |
221 | static const int amd64_dwarf_regmap_len = |
222 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 223 | |
c4f35dd8 MK |
224 | /* Convert DWARF register number REG to the appropriate register |
225 | number used by GDB. */ | |
26abbdc4 | 226 | |
c4f35dd8 | 227 | static int |
e53bef9f | 228 | amd64_dwarf_reg_to_regnum (int reg) |
53e95fcf | 229 | { |
c4f35dd8 | 230 | int regnum = -1; |
53e95fcf | 231 | |
16aff9a6 | 232 | if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
e53bef9f | 233 | regnum = amd64_dwarf_regmap[reg]; |
53e95fcf | 234 | |
c4f35dd8 | 235 | if (regnum == -1) |
8a3fe4f8 | 236 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
c4f35dd8 MK |
237 | |
238 | return regnum; | |
53e95fcf | 239 | } |
d532c08f MK |
240 | |
241 | /* Return nonzero if a value of type TYPE stored in register REGNUM | |
242 | needs any special handling. */ | |
243 | ||
244 | static int | |
e53bef9f | 245 | amd64_convert_register_p (int regnum, struct type *type) |
d532c08f MK |
246 | { |
247 | return i386_fp_regnum_p (regnum); | |
248 | } | |
53e95fcf JS |
249 | \f |
250 | ||
efb1c01c MK |
251 | /* Register classes as defined in the psABI. */ |
252 | ||
253 | enum amd64_reg_class | |
254 | { | |
255 | AMD64_INTEGER, | |
256 | AMD64_SSE, | |
257 | AMD64_SSEUP, | |
258 | AMD64_X87, | |
259 | AMD64_X87UP, | |
260 | AMD64_COMPLEX_X87, | |
261 | AMD64_NO_CLASS, | |
262 | AMD64_MEMORY | |
263 | }; | |
264 | ||
265 | /* Return the union class of CLASS1 and CLASS2. See the psABI for | |
266 | details. */ | |
267 | ||
268 | static enum amd64_reg_class | |
269 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
270 | { | |
271 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
272 | if (class1 == class2) | |
273 | return class1; | |
274 | ||
275 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
276 | is the other class. */ | |
277 | if (class1 == AMD64_NO_CLASS) | |
278 | return class2; | |
279 | if (class2 == AMD64_NO_CLASS) | |
280 | return class1; | |
281 | ||
282 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
283 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
284 | return AMD64_MEMORY; | |
285 | ||
286 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
287 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
288 | return AMD64_INTEGER; | |
289 | ||
290 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
291 | MEMORY is used as class. */ | |
292 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
293 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
294 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
295 | return AMD64_MEMORY; | |
296 | ||
297 | /* Rule (f): Otherwise class SSE is used. */ | |
298 | return AMD64_SSE; | |
299 | } | |
300 | ||
301 | static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); | |
302 | ||
79b1ab3d MK |
303 | /* Return non-zero if TYPE is a non-POD structure or union type. */ |
304 | ||
305 | static int | |
306 | amd64_non_pod_p (struct type *type) | |
307 | { | |
308 | /* ??? A class with a base class certainly isn't POD, but does this | |
309 | catch all non-POD structure types? */ | |
310 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | |
311 | return 1; | |
312 | ||
313 | return 0; | |
314 | } | |
315 | ||
efb1c01c MK |
316 | /* Classify TYPE according to the rules for aggregate (structures and |
317 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
318 | |
319 | static void | |
efb1c01c | 320 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) |
53e95fcf JS |
321 | { |
322 | int len = TYPE_LENGTH (type); | |
323 | ||
efb1c01c MK |
324 | /* 1. If the size of an object is larger than two eightbytes, or in |
325 | C++, is a non-POD structure or union type, or contains | |
326 | unaligned fields, it has class memory. */ | |
79b1ab3d | 327 | if (len > 16 || amd64_non_pod_p (type)) |
53e95fcf | 328 | { |
efb1c01c MK |
329 | class[0] = class[1] = AMD64_MEMORY; |
330 | return; | |
53e95fcf | 331 | } |
efb1c01c MK |
332 | |
333 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
334 | class[0] = class[1] = AMD64_NO_CLASS; | |
335 | ||
336 | /* 3. Each field of an object is classified recursively so that | |
337 | always two fields are considered. The resulting class is | |
338 | calculated according to the classes of the fields in the | |
339 | eightbyte: */ | |
340 | ||
341 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 342 | { |
efb1c01c MK |
343 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
344 | ||
345 | /* All fields in an array have the same type. */ | |
346 | amd64_classify (subtype, class); | |
347 | if (len > 8 && class[1] == AMD64_NO_CLASS) | |
348 | class[1] = class[0]; | |
8ffd9b1b | 349 | } |
53e95fcf JS |
350 | else |
351 | { | |
efb1c01c | 352 | int i; |
53e95fcf | 353 | |
efb1c01c MK |
354 | /* Structure or union. */ |
355 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
356 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
357 | ||
358 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 359 | { |
efb1c01c MK |
360 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
361 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
362 | enum amd64_reg_class subclass[2]; | |
363 | ||
562c50c2 MK |
364 | /* Ignore static fields. */ |
365 | if (TYPE_FIELD_STATIC (type, i)) | |
366 | continue; | |
367 | ||
efb1c01c MK |
368 | gdb_assert (pos == 0 || pos == 1); |
369 | ||
370 | amd64_classify (subtype, subclass); | |
371 | class[pos] = amd64_merge_classes (class[pos], subclass[0]); | |
372 | if (pos == 0) | |
373 | class[1] = amd64_merge_classes (class[1], subclass[1]); | |
53e95fcf | 374 | } |
53e95fcf | 375 | } |
efb1c01c MK |
376 | |
377 | /* 4. Then a post merger cleanup is done: */ | |
378 | ||
379 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
380 | passed in memory. */ | |
381 | if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | |
382 | class[0] = class[1] = AMD64_MEMORY; | |
383 | ||
384 | /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | |
385 | SSE. */ | |
386 | if (class[0] == AMD64_SSEUP) | |
387 | class[0] = AMD64_SSE; | |
388 | if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | |
389 | class[1] = AMD64_SSE; | |
390 | } | |
391 | ||
392 | /* Classify TYPE, and store the result in CLASS. */ | |
393 | ||
394 | static void | |
395 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | |
396 | { | |
397 | enum type_code code = TYPE_CODE (type); | |
398 | int len = TYPE_LENGTH (type); | |
399 | ||
400 | class[0] = class[1] = AMD64_NO_CLASS; | |
401 | ||
402 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
403 | long, long long, and pointers are in the INTEGER class. Similarly, |
404 | range types, used by languages such as Ada, are also in the INTEGER | |
405 | class. */ | |
efb1c01c | 406 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
b929c77f | 407 | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
efb1c01c MK |
408 | || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) |
409 | && (len == 1 || len == 2 || len == 4 || len == 8)) | |
410 | class[0] = AMD64_INTEGER; | |
411 | ||
412 | /* Arguments of types float, double and __m64 are in class SSE. */ | |
413 | else if (code == TYPE_CODE_FLT && (len == 4 || len == 8)) | |
414 | /* FIXME: __m64 . */ | |
415 | class[0] = AMD64_SSE; | |
416 | ||
417 | /* Arguments of types __float128 and __m128 are split into two | |
418 | halves. The least significant ones belong to class SSE, the most | |
419 | significant one to class SSEUP. */ | |
420 | /* FIXME: __float128, __m128. */ | |
421 | ||
422 | /* The 64-bit mantissa of arguments of type long double belongs to | |
423 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
424 | class X87UP. */ | |
425 | else if (code == TYPE_CODE_FLT && len == 16) | |
426 | /* Class X87 and X87UP. */ | |
427 | class[0] = AMD64_X87, class[1] = AMD64_X87UP; | |
428 | ||
429 | /* Aggregates. */ | |
430 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
431 | || code == TYPE_CODE_UNION) | |
432 | amd64_classify_aggregate (type, class); | |
433 | } | |
434 | ||
435 | static enum return_value_convention | |
436 | amd64_return_value (struct gdbarch *gdbarch, struct type *type, | |
437 | struct regcache *regcache, | |
42835c2b | 438 | gdb_byte *readbuf, const gdb_byte *writebuf) |
efb1c01c MK |
439 | { |
440 | enum amd64_reg_class class[2]; | |
441 | int len = TYPE_LENGTH (type); | |
90f90721 MK |
442 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
443 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
444 | int integer_reg = 0; |
445 | int sse_reg = 0; | |
446 | int i; | |
447 | ||
448 | gdb_assert (!(readbuf && writebuf)); | |
449 | ||
450 | /* 1. Classify the return type with the classification algorithm. */ | |
451 | amd64_classify (type, class); | |
452 | ||
453 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d MK |
454 | for the return value and passes the address of this storage in |
455 | %rdi as if it were the first argument to the function. In effect, | |
456 | this address becomes a hidden first argument. | |
457 | ||
458 | On return %rax will contain the address that has been passed in | |
459 | by the caller in %rdi. */ | |
efb1c01c | 460 | if (class[0] == AMD64_MEMORY) |
6fa57a7d MK |
461 | { |
462 | /* As indicated by the comment above, the ABI guarantees that we | |
463 | can always find the return value just after the function has | |
464 | returned. */ | |
465 | ||
466 | if (readbuf) | |
467 | { | |
468 | ULONGEST addr; | |
469 | ||
470 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
471 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
472 | } | |
473 | ||
474 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
475 | } | |
efb1c01c MK |
476 | |
477 | gdb_assert (class[1] != AMD64_MEMORY); | |
478 | gdb_assert (len <= 16); | |
479 | ||
480 | for (i = 0; len > 0; i++, len -= 8) | |
481 | { | |
482 | int regnum = -1; | |
483 | int offset = 0; | |
484 | ||
485 | switch (class[i]) | |
486 | { | |
487 | case AMD64_INTEGER: | |
488 | /* 3. If the class is INTEGER, the next available register | |
489 | of the sequence %rax, %rdx is used. */ | |
490 | regnum = integer_regnum[integer_reg++]; | |
491 | break; | |
492 | ||
493 | case AMD64_SSE: | |
494 | /* 4. If the class is SSE, the next available SSE register | |
495 | of the sequence %xmm0, %xmm1 is used. */ | |
496 | regnum = sse_regnum[sse_reg++]; | |
497 | break; | |
498 | ||
499 | case AMD64_SSEUP: | |
500 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
501 | upper half of the last used SSE register. */ | |
502 | gdb_assert (sse_reg > 0); | |
503 | regnum = sse_regnum[sse_reg - 1]; | |
504 | offset = 8; | |
505 | break; | |
506 | ||
507 | case AMD64_X87: | |
508 | /* 6. If the class is X87, the value is returned on the X87 | |
509 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 510 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
511 | if (writebuf) |
512 | i387_return_value (gdbarch, regcache); | |
513 | break; | |
514 | ||
515 | case AMD64_X87UP: | |
516 | /* 7. If the class is X87UP, the value is returned together | |
517 | with the previous X87 value in %st0. */ | |
518 | gdb_assert (i > 0 && class[0] == AMD64_X87); | |
90f90721 | 519 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
520 | offset = 8; |
521 | len = 2; | |
522 | break; | |
523 | ||
524 | case AMD64_NO_CLASS: | |
525 | continue; | |
526 | ||
527 | default: | |
528 | gdb_assert (!"Unexpected register class."); | |
529 | } | |
530 | ||
531 | gdb_assert (regnum != -1); | |
532 | ||
533 | if (readbuf) | |
534 | regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 535 | readbuf + i * 8); |
efb1c01c MK |
536 | if (writebuf) |
537 | regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | |
42835c2b | 538 | writebuf + i * 8); |
efb1c01c MK |
539 | } |
540 | ||
541 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
542 | } |
543 | \f | |
544 | ||
720aa428 MK |
545 | static CORE_ADDR |
546 | amd64_push_arguments (struct regcache *regcache, int nargs, | |
6470d250 | 547 | struct value **args, CORE_ADDR sp, int struct_return) |
720aa428 MK |
548 | { |
549 | static int integer_regnum[] = | |
550 | { | |
90f90721 MK |
551 | AMD64_RDI_REGNUM, /* %rdi */ |
552 | AMD64_RSI_REGNUM, /* %rsi */ | |
553 | AMD64_RDX_REGNUM, /* %rdx */ | |
554 | AMD64_RCX_REGNUM, /* %rcx */ | |
555 | 8, /* %r8 */ | |
556 | 9 /* %r9 */ | |
720aa428 MK |
557 | }; |
558 | static int sse_regnum[] = | |
559 | { | |
560 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
561 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
562 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
563 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
564 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 MK |
565 | }; |
566 | struct value **stack_args = alloca (nargs * sizeof (struct value *)); | |
567 | int num_stack_args = 0; | |
568 | int num_elements = 0; | |
569 | int element = 0; | |
570 | int integer_reg = 0; | |
571 | int sse_reg = 0; | |
572 | int i; | |
573 | ||
6470d250 MK |
574 | /* Reserve a register for the "hidden" argument. */ |
575 | if (struct_return) | |
576 | integer_reg++; | |
577 | ||
720aa428 MK |
578 | for (i = 0; i < nargs; i++) |
579 | { | |
4991999e | 580 | struct type *type = value_type (args[i]); |
720aa428 MK |
581 | int len = TYPE_LENGTH (type); |
582 | enum amd64_reg_class class[2]; | |
583 | int needed_integer_regs = 0; | |
584 | int needed_sse_regs = 0; | |
585 | int j; | |
586 | ||
587 | /* Classify argument. */ | |
588 | amd64_classify (type, class); | |
589 | ||
590 | /* Calculate the number of integer and SSE registers needed for | |
591 | this argument. */ | |
592 | for (j = 0; j < 2; j++) | |
593 | { | |
594 | if (class[j] == AMD64_INTEGER) | |
595 | needed_integer_regs++; | |
596 | else if (class[j] == AMD64_SSE) | |
597 | needed_sse_regs++; | |
598 | } | |
599 | ||
600 | /* Check whether enough registers are available, and if the | |
601 | argument should be passed in registers at all. */ | |
602 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | |
603 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | |
604 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
605 | { | |
606 | /* The argument will be passed on the stack. */ | |
607 | num_elements += ((len + 7) / 8); | |
608 | stack_args[num_stack_args++] = args[i]; | |
609 | } | |
610 | else | |
611 | { | |
612 | /* The argument will be passed in registers. */ | |
d8de1ef7 MK |
613 | const gdb_byte *valbuf = value_contents (args[i]); |
614 | gdb_byte buf[8]; | |
720aa428 MK |
615 | |
616 | gdb_assert (len <= 16); | |
617 | ||
618 | for (j = 0; len > 0; j++, len -= 8) | |
619 | { | |
620 | int regnum = -1; | |
621 | int offset = 0; | |
622 | ||
623 | switch (class[j]) | |
624 | { | |
625 | case AMD64_INTEGER: | |
626 | regnum = integer_regnum[integer_reg++]; | |
627 | break; | |
628 | ||
629 | case AMD64_SSE: | |
630 | regnum = sse_regnum[sse_reg++]; | |
631 | break; | |
632 | ||
633 | case AMD64_SSEUP: | |
634 | gdb_assert (sse_reg > 0); | |
635 | regnum = sse_regnum[sse_reg - 1]; | |
636 | offset = 8; | |
637 | break; | |
638 | ||
639 | default: | |
640 | gdb_assert (!"Unexpected register class."); | |
641 | } | |
642 | ||
643 | gdb_assert (regnum != -1); | |
644 | memset (buf, 0, sizeof buf); | |
645 | memcpy (buf, valbuf + j * 8, min (len, 8)); | |
646 | regcache_raw_write_part (regcache, regnum, offset, 8, buf); | |
647 | } | |
648 | } | |
649 | } | |
650 | ||
651 | /* Allocate space for the arguments on the stack. */ | |
652 | sp -= num_elements * 8; | |
653 | ||
654 | /* The psABI says that "The end of the input argument area shall be | |
655 | aligned on a 16 byte boundary." */ | |
656 | sp &= ~0xf; | |
657 | ||
658 | /* Write out the arguments to the stack. */ | |
659 | for (i = 0; i < num_stack_args; i++) | |
660 | { | |
4991999e | 661 | struct type *type = value_type (stack_args[i]); |
d8de1ef7 | 662 | const gdb_byte *valbuf = value_contents (stack_args[i]); |
720aa428 MK |
663 | int len = TYPE_LENGTH (type); |
664 | ||
665 | write_memory (sp + element * 8, valbuf, len); | |
666 | element += ((len + 7) / 8); | |
667 | } | |
668 | ||
669 | /* The psABI says that "For calls that may call functions that use | |
670 | varargs or stdargs (prototype-less calls or calls to functions | |
671 | containing ellipsis (...) in the declaration) %al is used as | |
672 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 673 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
674 | return sp; |
675 | } | |
676 | ||
c4f35dd8 | 677 | static CORE_ADDR |
7d9b040b | 678 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
e53bef9f MK |
679 | struct regcache *regcache, CORE_ADDR bp_addr, |
680 | int nargs, struct value **args, CORE_ADDR sp, | |
681 | int struct_return, CORE_ADDR struct_addr) | |
53e95fcf | 682 | { |
d8de1ef7 | 683 | gdb_byte buf[8]; |
c4f35dd8 MK |
684 | |
685 | /* Pass arguments. */ | |
6470d250 | 686 | sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); |
c4f35dd8 MK |
687 | |
688 | /* Pass "hidden" argument". */ | |
689 | if (struct_return) | |
690 | { | |
691 | store_unsigned_integer (buf, 8, struct_addr); | |
90f90721 | 692 | regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf); |
c4f35dd8 MK |
693 | } |
694 | ||
695 | /* Store return address. */ | |
696 | sp -= 8; | |
10f93086 | 697 | store_unsigned_integer (buf, 8, bp_addr); |
c4f35dd8 MK |
698 | write_memory (sp, buf, 8); |
699 | ||
700 | /* Finally, update the stack pointer... */ | |
701 | store_unsigned_integer (buf, 8, sp); | |
90f90721 | 702 | regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
703 | |
704 | /* ...and fake a frame pointer. */ | |
90f90721 | 705 | regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 706 | |
3e210248 | 707 | return sp + 16; |
53e95fcf | 708 | } |
c4f35dd8 MK |
709 | \f |
710 | ||
711 | /* The maximum number of saved registers. This should include %rip. */ | |
90f90721 | 712 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 713 | |
e53bef9f | 714 | struct amd64_frame_cache |
c4f35dd8 MK |
715 | { |
716 | /* Base address. */ | |
717 | CORE_ADDR base; | |
718 | CORE_ADDR sp_offset; | |
719 | CORE_ADDR pc; | |
720 | ||
721 | /* Saved registers. */ | |
e53bef9f | 722 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 MK |
723 | CORE_ADDR saved_sp; |
724 | ||
725 | /* Do we have a frame? */ | |
726 | int frameless_p; | |
727 | }; | |
8dda9770 | 728 | |
c4f35dd8 MK |
729 | /* Allocate and initialize a frame cache. */ |
730 | ||
e53bef9f MK |
731 | static struct amd64_frame_cache * |
732 | amd64_alloc_frame_cache (void) | |
8dda9770 | 733 | { |
e53bef9f | 734 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
735 | int i; |
736 | ||
e53bef9f | 737 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); |
8dda9770 | 738 | |
c4f35dd8 MK |
739 | /* Base address. */ |
740 | cache->base = 0; | |
741 | cache->sp_offset = -8; | |
742 | cache->pc = 0; | |
743 | ||
744 | /* Saved registers. We initialize these to -1 since zero is a valid | |
745 | offset (that's where %rbp is supposed to be stored). */ | |
e53bef9f | 746 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
747 | cache->saved_regs[i] = -1; |
748 | cache->saved_sp = 0; | |
749 | ||
750 | /* Frameless until proven otherwise. */ | |
751 | cache->frameless_p = 1; | |
752 | ||
753 | return cache; | |
8dda9770 | 754 | } |
53e95fcf | 755 | |
c4f35dd8 MK |
756 | /* Do a limited analysis of the prologue at PC and update CACHE |
757 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
758 | address where the analysis stopped. | |
759 | ||
760 | We will handle only functions beginning with: | |
761 | ||
762 | pushq %rbp 0x55 | |
763 | movq %rsp, %rbp 0x48 0x89 0xe5 | |
764 | ||
765 | Any function that doesn't start with this sequence will be assumed | |
766 | to have no prologue and thus no valid frame pointer in %rbp. */ | |
767 | ||
768 | static CORE_ADDR | |
e53bef9f MK |
769 | amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, |
770 | struct amd64_frame_cache *cache) | |
53e95fcf | 771 | { |
d8de1ef7 MK |
772 | static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ |
773 | gdb_byte buf[3]; | |
774 | gdb_byte op; | |
c4f35dd8 MK |
775 | |
776 | if (current_pc <= pc) | |
777 | return current_pc; | |
778 | ||
779 | op = read_memory_unsigned_integer (pc, 1); | |
780 | ||
781 | if (op == 0x55) /* pushq %rbp */ | |
782 | { | |
783 | /* Take into account that we've executed the `pushq %rbp' that | |
784 | starts this instruction sequence. */ | |
90f90721 | 785 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
786 | cache->sp_offset += 8; |
787 | ||
788 | /* If that's all, return now. */ | |
789 | if (current_pc <= pc + 1) | |
790 | return current_pc; | |
791 | ||
792 | /* Check for `movq %rsp, %rbp'. */ | |
793 | read_memory (pc + 1, buf, 3); | |
794 | if (memcmp (buf, proto, 3) != 0) | |
795 | return pc + 1; | |
796 | ||
797 | /* OK, we actually have a frame. */ | |
798 | cache->frameless_p = 0; | |
799 | return pc + 4; | |
800 | } | |
801 | ||
802 | return pc; | |
53e95fcf JS |
803 | } |
804 | ||
c4f35dd8 MK |
805 | /* Return PC of first real instruction. */ |
806 | ||
807 | static CORE_ADDR | |
e53bef9f | 808 | amd64_skip_prologue (CORE_ADDR start_pc) |
53e95fcf | 809 | { |
e53bef9f | 810 | struct amd64_frame_cache cache; |
c4f35dd8 MK |
811 | CORE_ADDR pc; |
812 | ||
594706e6 | 813 | pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache); |
c4f35dd8 MK |
814 | if (cache.frameless_p) |
815 | return start_pc; | |
816 | ||
817 | return pc; | |
53e95fcf | 818 | } |
c4f35dd8 | 819 | \f |
53e95fcf | 820 | |
c4f35dd8 MK |
821 | /* Normal frames. */ |
822 | ||
e53bef9f MK |
823 | static struct amd64_frame_cache * |
824 | amd64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
6d686a84 | 825 | { |
e53bef9f | 826 | struct amd64_frame_cache *cache; |
d8de1ef7 | 827 | gdb_byte buf[8]; |
6d686a84 | 828 | int i; |
6d686a84 | 829 | |
c4f35dd8 MK |
830 | if (*this_cache) |
831 | return *this_cache; | |
6d686a84 | 832 | |
e53bef9f | 833 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 MK |
834 | *this_cache = cache; |
835 | ||
c4f35dd8 MK |
836 | cache->pc = frame_func_unwind (next_frame); |
837 | if (cache->pc != 0) | |
e53bef9f | 838 | amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache); |
c4f35dd8 MK |
839 | |
840 | if (cache->frameless_p) | |
841 | { | |
4a28816e MK |
842 | /* We didn't find a valid frame. If we're at the start of a |
843 | function, or somewhere half-way its prologue, the function's | |
844 | frame probably hasn't been fully setup yet. Try to | |
845 | reconstruct the base address for the stack frame by looking | |
846 | at the stack pointer. For truly "frameless" functions this | |
847 | might work too. */ | |
c4f35dd8 | 848 | |
90f90721 | 849 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
850 | cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset; |
851 | } | |
35883a3f MK |
852 | else |
853 | { | |
90f90721 | 854 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
35883a3f MK |
855 | cache->base = extract_unsigned_integer (buf, 8); |
856 | } | |
c4f35dd8 MK |
857 | |
858 | /* Now that we have the base address for the stack frame we can | |
859 | calculate the value of %rsp in the calling frame. */ | |
860 | cache->saved_sp = cache->base + 16; | |
861 | ||
35883a3f MK |
862 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
863 | frame we find it at the same offset from the reconstructed base | |
864 | address. */ | |
90f90721 | 865 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; |
35883a3f | 866 | |
c4f35dd8 MK |
867 | /* Adjust all the saved registers such that they contain addresses |
868 | instead of offsets. */ | |
e53bef9f | 869 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
870 | if (cache->saved_regs[i] != -1) |
871 | cache->saved_regs[i] += cache->base; | |
872 | ||
873 | return cache; | |
6d686a84 ML |
874 | } |
875 | ||
c4f35dd8 | 876 | static void |
e53bef9f MK |
877 | amd64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
878 | struct frame_id *this_id) | |
c4f35dd8 | 879 | { |
e53bef9f MK |
880 | struct amd64_frame_cache *cache = |
881 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
882 | |
883 | /* This marks the outermost frame. */ | |
884 | if (cache->base == 0) | |
885 | return; | |
886 | ||
887 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
888 | } | |
e76e1718 | 889 | |
c4f35dd8 | 890 | static void |
e53bef9f MK |
891 | amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache, |
892 | int regnum, int *optimizedp, | |
893 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
5323dd1d | 894 | int *realnump, gdb_byte *valuep) |
53e95fcf | 895 | { |
e53bef9f MK |
896 | struct amd64_frame_cache *cache = |
897 | amd64_frame_cache (next_frame, this_cache); | |
e76e1718 | 898 | |
c4f35dd8 | 899 | gdb_assert (regnum >= 0); |
b1ab997b | 900 | |
c4f35dd8 MK |
901 | if (regnum == SP_REGNUM && cache->saved_sp) |
902 | { | |
903 | *optimizedp = 0; | |
904 | *lvalp = not_lval; | |
905 | *addrp = 0; | |
906 | *realnump = -1; | |
907 | if (valuep) | |
908 | { | |
909 | /* Store the value. */ | |
910 | store_unsigned_integer (valuep, 8, cache->saved_sp); | |
911 | } | |
912 | return; | |
913 | } | |
e76e1718 | 914 | |
e53bef9f | 915 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
c4f35dd8 MK |
916 | { |
917 | *optimizedp = 0; | |
918 | *lvalp = lval_memory; | |
919 | *addrp = cache->saved_regs[regnum]; | |
920 | *realnump = -1; | |
921 | if (valuep) | |
922 | { | |
923 | /* Read the value in from memory. */ | |
924 | read_memory (*addrp, valuep, | |
925 | register_size (current_gdbarch, regnum)); | |
926 | } | |
927 | return; | |
928 | } | |
e76e1718 | 929 | |
00b25ff3 AC |
930 | *optimizedp = 0; |
931 | *lvalp = lval_register; | |
932 | *addrp = 0; | |
933 | *realnump = regnum; | |
934 | if (valuep) | |
935 | frame_unwind_register (next_frame, (*realnump), valuep); | |
c4f35dd8 | 936 | } |
e76e1718 | 937 | |
e53bef9f | 938 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
939 | { |
940 | NORMAL_FRAME, | |
e53bef9f MK |
941 | amd64_frame_this_id, |
942 | amd64_frame_prev_register | |
c4f35dd8 | 943 | }; |
e76e1718 | 944 | |
c4f35dd8 | 945 | static const struct frame_unwind * |
e53bef9f | 946 | amd64_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 947 | { |
e53bef9f | 948 | return &amd64_frame_unwind; |
c4f35dd8 MK |
949 | } |
950 | \f | |
e76e1718 | 951 | |
c4f35dd8 MK |
952 | /* Signal trampolines. */ |
953 | ||
954 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
955 | 64-bit variants. This would require using identical frame caches | |
956 | on both platforms. */ | |
957 | ||
e53bef9f MK |
958 | static struct amd64_frame_cache * |
959 | amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
c4f35dd8 | 960 | { |
e53bef9f | 961 | struct amd64_frame_cache *cache; |
c4f35dd8 MK |
962 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
963 | CORE_ADDR addr; | |
d8de1ef7 | 964 | gdb_byte buf[8]; |
2b5e0749 | 965 | int i; |
c4f35dd8 MK |
966 | |
967 | if (*this_cache) | |
968 | return *this_cache; | |
969 | ||
e53bef9f | 970 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 971 | |
90f90721 | 972 | frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
973 | cache->base = extract_unsigned_integer (buf, 8) - 8; |
974 | ||
975 | addr = tdep->sigcontext_addr (next_frame); | |
2b5e0749 | 976 | gdb_assert (tdep->sc_reg_offset); |
e53bef9f | 977 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
2b5e0749 MK |
978 | for (i = 0; i < tdep->sc_num_regs; i++) |
979 | if (tdep->sc_reg_offset[i] != -1) | |
980 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 MK |
981 | |
982 | *this_cache = cache; | |
983 | return cache; | |
53e95fcf JS |
984 | } |
985 | ||
c4f35dd8 | 986 | static void |
e53bef9f MK |
987 | amd64_sigtramp_frame_this_id (struct frame_info *next_frame, |
988 | void **this_cache, struct frame_id *this_id) | |
c4f35dd8 | 989 | { |
e53bef9f MK |
990 | struct amd64_frame_cache *cache = |
991 | amd64_sigtramp_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
992 | |
993 | (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame)); | |
994 | } | |
995 | ||
996 | static void | |
e53bef9f MK |
997 | amd64_sigtramp_frame_prev_register (struct frame_info *next_frame, |
998 | void **this_cache, | |
999 | int regnum, int *optimizedp, | |
1000 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
5323dd1d | 1001 | int *realnump, gdb_byte *valuep) |
c4f35dd8 MK |
1002 | { |
1003 | /* Make sure we've initialized the cache. */ | |
e53bef9f | 1004 | amd64_sigtramp_frame_cache (next_frame, this_cache); |
c4f35dd8 | 1005 | |
e53bef9f MK |
1006 | amd64_frame_prev_register (next_frame, this_cache, regnum, |
1007 | optimizedp, lvalp, addrp, realnump, valuep); | |
c4f35dd8 MK |
1008 | } |
1009 | ||
e53bef9f | 1010 | static const struct frame_unwind amd64_sigtramp_frame_unwind = |
c4f35dd8 MK |
1011 | { |
1012 | SIGTRAMP_FRAME, | |
e53bef9f MK |
1013 | amd64_sigtramp_frame_this_id, |
1014 | amd64_sigtramp_frame_prev_register | |
c4f35dd8 MK |
1015 | }; |
1016 | ||
1017 | static const struct frame_unwind * | |
e53bef9f | 1018 | amd64_sigtramp_frame_sniffer (struct frame_info *next_frame) |
c4f35dd8 | 1019 | { |
911bc6ee MK |
1020 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
1021 | ||
1022 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
1023 | handler. */ | |
1024 | if (tdep->sigcontext_addr == NULL) | |
1025 | return NULL; | |
1026 | ||
1027 | if (tdep->sigtramp_p != NULL) | |
1028 | { | |
1029 | if (tdep->sigtramp_p (next_frame)) | |
1030 | return &amd64_sigtramp_frame_unwind; | |
1031 | } | |
c4f35dd8 | 1032 | |
911bc6ee | 1033 | if (tdep->sigtramp_start != 0) |
1c3545ae | 1034 | { |
911bc6ee | 1035 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1c3545ae | 1036 | |
911bc6ee MK |
1037 | gdb_assert (tdep->sigtramp_end != 0); |
1038 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
1039 | return &amd64_sigtramp_frame_unwind; | |
1c3545ae | 1040 | } |
c4f35dd8 MK |
1041 | |
1042 | return NULL; | |
1043 | } | |
1044 | \f | |
1045 | ||
1046 | static CORE_ADDR | |
e53bef9f | 1047 | amd64_frame_base_address (struct frame_info *next_frame, void **this_cache) |
c4f35dd8 | 1048 | { |
e53bef9f MK |
1049 | struct amd64_frame_cache *cache = |
1050 | amd64_frame_cache (next_frame, this_cache); | |
c4f35dd8 MK |
1051 | |
1052 | return cache->base; | |
1053 | } | |
1054 | ||
e53bef9f | 1055 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 1056 | { |
e53bef9f MK |
1057 | &amd64_frame_unwind, |
1058 | amd64_frame_base_address, | |
1059 | amd64_frame_base_address, | |
1060 | amd64_frame_base_address | |
c4f35dd8 MK |
1061 | }; |
1062 | ||
166f4c7b | 1063 | static struct frame_id |
e53bef9f | 1064 | amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) |
166f4c7b | 1065 | { |
d8de1ef7 | 1066 | gdb_byte buf[8]; |
c4f35dd8 MK |
1067 | CORE_ADDR fp; |
1068 | ||
90f90721 | 1069 | frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf); |
c4f35dd8 MK |
1070 | fp = extract_unsigned_integer (buf, 8); |
1071 | ||
1072 | return frame_id_build (fp + 16, frame_pc_unwind (next_frame)); | |
166f4c7b ML |
1073 | } |
1074 | ||
8b148df9 AC |
1075 | /* 16 byte align the SP per frame requirements. */ |
1076 | ||
1077 | static CORE_ADDR | |
e53bef9f | 1078 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
1079 | { |
1080 | return sp & -(CORE_ADDR)16; | |
1081 | } | |
473f17b0 MK |
1082 | \f |
1083 | ||
593adc23 MK |
1084 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
1085 | in the floating-point register set REGSET to register cache | |
1086 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
473f17b0 MK |
1087 | |
1088 | static void | |
e53bef9f MK |
1089 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
1090 | int regnum, const void *fpregs, size_t len) | |
473f17b0 | 1091 | { |
9ea75c57 | 1092 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); |
473f17b0 MK |
1093 | |
1094 | gdb_assert (len == tdep->sizeof_fpregset); | |
90f90721 | 1095 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 1096 | } |
8b148df9 | 1097 | |
593adc23 MK |
1098 | /* Collect register REGNUM from the register cache REGCACHE and store |
1099 | it in the buffer specified by FPREGS and LEN as described by the | |
1100 | floating-point register set REGSET. If REGNUM is -1, do this for | |
1101 | all registers in REGSET. */ | |
1102 | ||
1103 | static void | |
1104 | amd64_collect_fpregset (const struct regset *regset, | |
1105 | const struct regcache *regcache, | |
1106 | int regnum, void *fpregs, size_t len) | |
1107 | { | |
1108 | const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | |
1109 | ||
1110 | gdb_assert (len == tdep->sizeof_fpregset); | |
1111 | amd64_collect_fxsave (regcache, regnum, fpregs); | |
1112 | } | |
1113 | ||
c6b33596 MK |
1114 | /* Return the appropriate register set for the core section identified |
1115 | by SECT_NAME and SECT_SIZE. */ | |
1116 | ||
1117 | static const struct regset * | |
e53bef9f MK |
1118 | amd64_regset_from_core_section (struct gdbarch *gdbarch, |
1119 | const char *sect_name, size_t sect_size) | |
c6b33596 MK |
1120 | { |
1121 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1122 | ||
1123 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
1124 | { | |
1125 | if (tdep->fpregset == NULL) | |
593adc23 MK |
1126 | tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, |
1127 | amd64_collect_fpregset); | |
c6b33596 MK |
1128 | |
1129 | return tdep->fpregset; | |
1130 | } | |
1131 | ||
1132 | return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | |
1133 | } | |
1134 | \f | |
1135 | ||
2213a65d | 1136 | void |
90f90721 | 1137 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
53e95fcf | 1138 | { |
0c1a73d6 | 1139 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
53e95fcf | 1140 | |
473f17b0 MK |
1141 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
1142 | floating-point registers. */ | |
1143 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
1144 | ||
5716833c | 1145 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 1146 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 1147 | tdep->num_xmm_regs = 16; |
53e95fcf | 1148 | |
0c1a73d6 | 1149 | /* This is what all the fuss is about. */ |
53e95fcf JS |
1150 | set_gdbarch_long_bit (gdbarch, 64); |
1151 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1152 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1153 | ||
e53bef9f MK |
1154 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
1155 | up 128 bits, even though it's still based on the i387 extended | |
1156 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
1157 | set_gdbarch_long_double_bit (gdbarch, 128); |
1158 | ||
e53bef9f MK |
1159 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
1160 | set_gdbarch_register_name (gdbarch, amd64_register_name); | |
1161 | set_gdbarch_register_type (gdbarch, amd64_register_type); | |
b83b026c MK |
1162 | |
1163 | /* Register numbers of various important registers. */ | |
90f90721 MK |
1164 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
1165 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
1166 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
1167 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 1168 | |
e53bef9f MK |
1169 | /* The "default" register numbering scheme for AMD64 is referred to |
1170 | as the "DWARF Register Number Mapping" in the System V psABI. | |
1171 | The preferred debugging format for all known AMD64 targets is | |
1172 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
1173 | DWARF-1), but we provide the same mapping just in case. This | |
1174 | mapping is also used for stabs, which GCC does support. */ | |
1175 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1176 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
1177 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
de220d0f | 1178 | |
c4f35dd8 | 1179 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 1180 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 1181 | |
c4f35dd8 | 1182 | /* Call dummy code. */ |
e53bef9f MK |
1183 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
1184 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 1185 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 1186 | |
e53bef9f | 1187 | set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p); |
d532c08f MK |
1188 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
1189 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
1190 | ||
efb1c01c | 1191 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 1192 | |
e53bef9f | 1193 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 1194 | |
c4f35dd8 | 1195 | /* Avoid wiring in the MMX registers for now. */ |
2213a65d | 1196 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
5716833c | 1197 | tdep->mm0_regnum = -1; |
2213a65d | 1198 | |
e53bef9f | 1199 | set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id); |
53e95fcf | 1200 | |
e53bef9f MK |
1201 | frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer); |
1202 | frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer); | |
1203 | frame_base_set_default (gdbarch, &amd64_frame_base); | |
c6b33596 MK |
1204 | |
1205 | /* If we have a register mapping, enable the generic core file support. */ | |
1206 | if (tdep->gregset_reg_offset) | |
1207 | set_gdbarch_regset_from_core_section (gdbarch, | |
e53bef9f | 1208 | amd64_regset_from_core_section); |
c4f35dd8 MK |
1209 | } |
1210 | \f | |
1211 | ||
90f90721 | 1212 | #define I387_ST0_REGNUM AMD64_ST0_REGNUM |
c4f35dd8 | 1213 | |
41d041d6 MK |
1214 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
1215 | sense that the instruction pointer and data pointer are simply | |
1216 | 64-bit offsets into the code segment and the data segment instead | |
1217 | of a selector offset pair. The functions below store the upper 32 | |
1218 | bits of these pointers (instead of just the 16-bits of the segment | |
1219 | selector). */ | |
1220 | ||
1221 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
1222 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
1223 | -1, do this for all registers. This function masks off any of the | |
1224 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
1225 | |
1226 | void | |
90f90721 | 1227 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
41d041d6 | 1228 | const void *fxsave) |
c4f35dd8 | 1229 | { |
41d041d6 | 1230 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 1231 | |
f0ef85a5 | 1232 | if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
c4f35dd8 | 1233 | { |
d8de1ef7 | 1234 | const gdb_byte *regs = fxsave; |
41d041d6 | 1235 | |
0485f6ad | 1236 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) |
41d041d6 | 1237 | regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12); |
0485f6ad | 1238 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) |
41d041d6 | 1239 | regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20); |
c4f35dd8 | 1240 | } |
0c1a73d6 MK |
1241 | } |
1242 | ||
3c017e40 MK |
1243 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
1244 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
1245 | all registers. This function doesn't touch any of the reserved | |
1246 | bits in *FXSAVE. */ | |
1247 | ||
1248 | void | |
1249 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
1250 | void *fxsave) | |
1251 | { | |
d8de1ef7 | 1252 | gdb_byte *regs = fxsave; |
3c017e40 MK |
1253 | |
1254 | i387_collect_fxsave (regcache, regnum, fxsave); | |
1255 | ||
f0ef85a5 MK |
1256 | if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64) |
1257 | { | |
1258 | if (regnum == -1 || regnum == I387_FISEG_REGNUM) | |
1259 | regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12); | |
1260 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM) | |
1261 | regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20); | |
1262 | } | |
3c017e40 | 1263 | } |