* trad-frame.c (struct trad_frame_cache): Rename next_frame to this_frame.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
9b254dd1 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1
MK
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
22
23#include "defs.h"
c4f35dd8
MK
24#include "arch-utils.h"
25#include "block.h"
26#include "dummy-frame.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
53e95fcf 30#include "inferior.h"
53e95fcf 31#include "gdbcmd.h"
c4f35dd8
MK
32#include "gdbcore.h"
33#include "objfiles.h"
53e95fcf 34#include "regcache.h"
2c261fae 35#include "regset.h"
53e95fcf 36#include "symfile.h"
c4f35dd8 37
82dbc5f7 38#include "gdb_assert.h"
c4f35dd8 39
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
53e95fcf 42
e53bef9f
MK
43/* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
90f90721 45 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
402ecd56 50/* Register information. */
c4f35dd8 51
6707b003 52static const char *amd64_register_names[] =
de220d0f 53{
6707b003 54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
55
56 /* %r8 is indeed register number 8. */
6707b003
UW
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 59
af233647 60 /* %st0 is register number 24. */
6707b003
UW
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 63
af233647 64 /* %xmm0 is register number 40. */
6707b003
UW
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
67 "mxcsr",
0e04a514
ML
68};
69
c4f35dd8 70/* Total number of registers. */
6707b003 71#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
de220d0f 72
c4f35dd8 73/* Return the name of register REGNUM. */
b6779aa2 74
8695c747 75const char *
d93859e2 76amd64_register_name (struct gdbarch *gdbarch, int regnum)
53e95fcf 77{
e53bef9f 78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
6707b003 79 return amd64_register_names[regnum];
53e95fcf 80
c4f35dd8 81 return NULL;
53e95fcf
JS
82}
83
84/* Return the GDB type object for the "standard" data type of data in
c4f35dd8 85 register REGNUM. */
53e95fcf 86
8695c747 87struct type *
e53bef9f 88amd64_register_type (struct gdbarch *gdbarch, int regnum)
53e95fcf 89{
6707b003
UW
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
794ac428 107 return i386_sse_type (gdbarch);
6707b003
UW
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
110
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
53e95fcf
JS
112}
113
c4f35dd8
MK
114/* DWARF Register Number Mapping as defined in the System V psABI,
115 section 3.6. */
53e95fcf 116
e53bef9f 117static int amd64_dwarf_regmap[] =
0e04a514 118{
c4f35dd8 119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
123
124 /* Frame Pointer Register RBP. */
90f90721 125 AMD64_RBP_REGNUM,
c4f35dd8
MK
126
127 /* Stack Pointer Register RSP. */
90f90721 128 AMD64_RSP_REGNUM,
c4f35dd8
MK
129
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
132
59207364 133 /* Return Address RA. Mapped to RIP. */
90f90721 134 AMD64_RIP_REGNUM,
c4f35dd8
MK
135
136 /* SSE Registers 0 - 7. */
90f90721
MK
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
141
142 /* Extended SSE Registers 8 - 15. */
90f90721
MK
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
147
148 /* Floating Point Registers 0-7. */
90f90721
MK
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129
JB
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
153
154 /* Control and Status Flags Register. */
155 AMD64_EFLAGS_REGNUM,
156
157 /* Selector Registers. */
158 AMD64_ES_REGNUM,
159 AMD64_CS_REGNUM,
160 AMD64_SS_REGNUM,
161 AMD64_DS_REGNUM,
162 AMD64_FS_REGNUM,
163 AMD64_GS_REGNUM,
164 -1,
165 -1,
166
167 /* Segment Base Address Registers. */
168 -1,
169 -1,
170 -1,
171 -1,
172
173 /* Special Selector Registers. */
174 -1,
175 -1,
176
177 /* Floating Point Control Registers. */
178 AMD64_MXCSR_REGNUM,
179 AMD64_FCTRL_REGNUM,
180 AMD64_FSTAT_REGNUM
c4f35dd8 181};
0e04a514 182
e53bef9f
MK
183static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 185
c4f35dd8
MK
186/* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
26abbdc4 188
c4f35dd8 189static int
d3f73121 190amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 191{
c4f35dd8 192 int regnum = -1;
53e95fcf 193
16aff9a6 194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 195 regnum = amd64_dwarf_regmap[reg];
53e95fcf 196
c4f35dd8 197 if (regnum == -1)
8a3fe4f8 198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
c4f35dd8
MK
199
200 return regnum;
53e95fcf 201}
d532c08f 202
53e95fcf
JS
203\f
204
efb1c01c
MK
205/* Register classes as defined in the psABI. */
206
207enum amd64_reg_class
208{
209 AMD64_INTEGER,
210 AMD64_SSE,
211 AMD64_SSEUP,
212 AMD64_X87,
213 AMD64_X87UP,
214 AMD64_COMPLEX_X87,
215 AMD64_NO_CLASS,
216 AMD64_MEMORY
217};
218
219/* Return the union class of CLASS1 and CLASS2. See the psABI for
220 details. */
221
222static enum amd64_reg_class
223amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
224{
225 /* Rule (a): If both classes are equal, this is the resulting class. */
226 if (class1 == class2)
227 return class1;
228
229 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
230 is the other class. */
231 if (class1 == AMD64_NO_CLASS)
232 return class2;
233 if (class2 == AMD64_NO_CLASS)
234 return class1;
235
236 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
237 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
238 return AMD64_MEMORY;
239
240 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
241 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
242 return AMD64_INTEGER;
243
244 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
245 MEMORY is used as class. */
246 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
247 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
248 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
249 return AMD64_MEMORY;
250
251 /* Rule (f): Otherwise class SSE is used. */
252 return AMD64_SSE;
253}
254
255static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
256
79b1ab3d
MK
257/* Return non-zero if TYPE is a non-POD structure or union type. */
258
259static int
260amd64_non_pod_p (struct type *type)
261{
262 /* ??? A class with a base class certainly isn't POD, but does this
263 catch all non-POD structure types? */
264 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
265 return 1;
266
267 return 0;
268}
269
efb1c01c
MK
270/* Classify TYPE according to the rules for aggregate (structures and
271 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
272
273static void
efb1c01c 274amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
53e95fcf
JS
275{
276 int len = TYPE_LENGTH (type);
277
efb1c01c
MK
278 /* 1. If the size of an object is larger than two eightbytes, or in
279 C++, is a non-POD structure or union type, or contains
280 unaligned fields, it has class memory. */
79b1ab3d 281 if (len > 16 || amd64_non_pod_p (type))
53e95fcf 282 {
efb1c01c
MK
283 class[0] = class[1] = AMD64_MEMORY;
284 return;
53e95fcf 285 }
efb1c01c
MK
286
287 /* 2. Both eightbytes get initialized to class NO_CLASS. */
288 class[0] = class[1] = AMD64_NO_CLASS;
289
290 /* 3. Each field of an object is classified recursively so that
291 always two fields are considered. The resulting class is
292 calculated according to the classes of the fields in the
293 eightbyte: */
294
295 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 296 {
efb1c01c
MK
297 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
298
299 /* All fields in an array have the same type. */
300 amd64_classify (subtype, class);
301 if (len > 8 && class[1] == AMD64_NO_CLASS)
302 class[1] = class[0];
8ffd9b1b 303 }
53e95fcf
JS
304 else
305 {
efb1c01c 306 int i;
53e95fcf 307
efb1c01c
MK
308 /* Structure or union. */
309 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type) == TYPE_CODE_UNION);
311
312 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 313 {
efb1c01c
MK
314 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
315 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
316 enum amd64_reg_class subclass[2];
317
562c50c2
MK
318 /* Ignore static fields. */
319 if (TYPE_FIELD_STATIC (type, i))
320 continue;
321
efb1c01c
MK
322 gdb_assert (pos == 0 || pos == 1);
323
324 amd64_classify (subtype, subclass);
325 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
326 if (pos == 0)
327 class[1] = amd64_merge_classes (class[1], subclass[1]);
53e95fcf 328 }
53e95fcf 329 }
efb1c01c
MK
330
331 /* 4. Then a post merger cleanup is done: */
332
333 /* Rule (a): If one of the classes is MEMORY, the whole argument is
334 passed in memory. */
335 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
336 class[0] = class[1] = AMD64_MEMORY;
337
338 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
339 SSE. */
340 if (class[0] == AMD64_SSEUP)
341 class[0] = AMD64_SSE;
342 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
343 class[1] = AMD64_SSE;
344}
345
346/* Classify TYPE, and store the result in CLASS. */
347
348static void
349amd64_classify (struct type *type, enum amd64_reg_class class[2])
350{
351 enum type_code code = TYPE_CODE (type);
352 int len = TYPE_LENGTH (type);
353
354 class[0] = class[1] = AMD64_NO_CLASS;
355
356 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
357 long, long long, and pointers are in the INTEGER class. Similarly,
358 range types, used by languages such as Ada, are also in the INTEGER
359 class. */
efb1c01c 360 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 361 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 362 || code == TYPE_CODE_CHAR
efb1c01c
MK
363 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
364 && (len == 1 || len == 2 || len == 4 || len == 8))
365 class[0] = AMD64_INTEGER;
366
5daa78cc
TJB
367 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
368 are in class SSE. */
369 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
370 && (len == 4 || len == 8))
efb1c01c
MK
371 /* FIXME: __m64 . */
372 class[0] = AMD64_SSE;
373
5daa78cc
TJB
374 /* Arguments of types __float128, _Decimal128 and __m128 are split into
375 two halves. The least significant ones belong to class SSE, the most
efb1c01c 376 significant one to class SSEUP. */
5daa78cc
TJB
377 else if (code == TYPE_CODE_DECFLOAT && len == 16)
378 /* FIXME: __float128, __m128. */
379 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
efb1c01c
MK
380
381 /* The 64-bit mantissa of arguments of type long double belongs to
382 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
383 class X87UP. */
384 else if (code == TYPE_CODE_FLT && len == 16)
385 /* Class X87 and X87UP. */
386 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
387
388 /* Aggregates. */
389 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
390 || code == TYPE_CODE_UNION)
391 amd64_classify_aggregate (type, class);
392}
393
394static enum return_value_convention
c055b101
CV
395amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
396 struct type *type, struct regcache *regcache,
42835c2b 397 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c
MK
398{
399 enum amd64_reg_class class[2];
400 int len = TYPE_LENGTH (type);
90f90721
MK
401 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
402 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
403 int integer_reg = 0;
404 int sse_reg = 0;
405 int i;
406
407 gdb_assert (!(readbuf && writebuf));
408
409 /* 1. Classify the return type with the classification algorithm. */
410 amd64_classify (type, class);
411
412 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d
MK
413 for the return value and passes the address of this storage in
414 %rdi as if it were the first argument to the function. In effect,
415 this address becomes a hidden first argument.
416
417 On return %rax will contain the address that has been passed in
418 by the caller in %rdi. */
efb1c01c 419 if (class[0] == AMD64_MEMORY)
6fa57a7d
MK
420 {
421 /* As indicated by the comment above, the ABI guarantees that we
422 can always find the return value just after the function has
423 returned. */
424
425 if (readbuf)
426 {
427 ULONGEST addr;
428
429 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
430 read_memory (addr, readbuf, TYPE_LENGTH (type));
431 }
432
433 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
434 }
efb1c01c
MK
435
436 gdb_assert (class[1] != AMD64_MEMORY);
437 gdb_assert (len <= 16);
438
439 for (i = 0; len > 0; i++, len -= 8)
440 {
441 int regnum = -1;
442 int offset = 0;
443
444 switch (class[i])
445 {
446 case AMD64_INTEGER:
447 /* 3. If the class is INTEGER, the next available register
448 of the sequence %rax, %rdx is used. */
449 regnum = integer_regnum[integer_reg++];
450 break;
451
452 case AMD64_SSE:
453 /* 4. If the class is SSE, the next available SSE register
454 of the sequence %xmm0, %xmm1 is used. */
455 regnum = sse_regnum[sse_reg++];
456 break;
457
458 case AMD64_SSEUP:
459 /* 5. If the class is SSEUP, the eightbyte is passed in the
460 upper half of the last used SSE register. */
461 gdb_assert (sse_reg > 0);
462 regnum = sse_regnum[sse_reg - 1];
463 offset = 8;
464 break;
465
466 case AMD64_X87:
467 /* 6. If the class is X87, the value is returned on the X87
468 stack in %st0 as 80-bit x87 number. */
90f90721 469 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
470 if (writebuf)
471 i387_return_value (gdbarch, regcache);
472 break;
473
474 case AMD64_X87UP:
475 /* 7. If the class is X87UP, the value is returned together
476 with the previous X87 value in %st0. */
477 gdb_assert (i > 0 && class[0] == AMD64_X87);
90f90721 478 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
479 offset = 8;
480 len = 2;
481 break;
482
483 case AMD64_NO_CLASS:
484 continue;
485
486 default:
487 gdb_assert (!"Unexpected register class.");
488 }
489
490 gdb_assert (regnum != -1);
491
492 if (readbuf)
493 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
42835c2b 494 readbuf + i * 8);
efb1c01c
MK
495 if (writebuf)
496 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
42835c2b 497 writebuf + i * 8);
efb1c01c
MK
498 }
499
500 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
501}
502\f
503
720aa428
MK
504static CORE_ADDR
505amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 506 struct value **args, CORE_ADDR sp, int struct_return)
720aa428
MK
507{
508 static int integer_regnum[] =
509 {
90f90721
MK
510 AMD64_RDI_REGNUM, /* %rdi */
511 AMD64_RSI_REGNUM, /* %rsi */
512 AMD64_RDX_REGNUM, /* %rdx */
513 AMD64_RCX_REGNUM, /* %rcx */
514 8, /* %r8 */
515 9 /* %r9 */
720aa428
MK
516 };
517 static int sse_regnum[] =
518 {
519 /* %xmm0 ... %xmm7 */
90f90721
MK
520 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
521 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
522 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
523 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428
MK
524 };
525 struct value **stack_args = alloca (nargs * sizeof (struct value *));
526 int num_stack_args = 0;
527 int num_elements = 0;
528 int element = 0;
529 int integer_reg = 0;
530 int sse_reg = 0;
531 int i;
532
6470d250
MK
533 /* Reserve a register for the "hidden" argument. */
534 if (struct_return)
535 integer_reg++;
536
720aa428
MK
537 for (i = 0; i < nargs; i++)
538 {
4991999e 539 struct type *type = value_type (args[i]);
720aa428
MK
540 int len = TYPE_LENGTH (type);
541 enum amd64_reg_class class[2];
542 int needed_integer_regs = 0;
543 int needed_sse_regs = 0;
544 int j;
545
546 /* Classify argument. */
547 amd64_classify (type, class);
548
549 /* Calculate the number of integer and SSE registers needed for
550 this argument. */
551 for (j = 0; j < 2; j++)
552 {
553 if (class[j] == AMD64_INTEGER)
554 needed_integer_regs++;
555 else if (class[j] == AMD64_SSE)
556 needed_sse_regs++;
557 }
558
559 /* Check whether enough registers are available, and if the
560 argument should be passed in registers at all. */
561 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
562 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
563 || (needed_integer_regs == 0 && needed_sse_regs == 0))
564 {
565 /* The argument will be passed on the stack. */
566 num_elements += ((len + 7) / 8);
567 stack_args[num_stack_args++] = args[i];
568 }
569 else
570 {
571 /* The argument will be passed in registers. */
d8de1ef7
MK
572 const gdb_byte *valbuf = value_contents (args[i]);
573 gdb_byte buf[8];
720aa428
MK
574
575 gdb_assert (len <= 16);
576
577 for (j = 0; len > 0; j++, len -= 8)
578 {
579 int regnum = -1;
580 int offset = 0;
581
582 switch (class[j])
583 {
584 case AMD64_INTEGER:
585 regnum = integer_regnum[integer_reg++];
586 break;
587
588 case AMD64_SSE:
589 regnum = sse_regnum[sse_reg++];
590 break;
591
592 case AMD64_SSEUP:
593 gdb_assert (sse_reg > 0);
594 regnum = sse_regnum[sse_reg - 1];
595 offset = 8;
596 break;
597
598 default:
599 gdb_assert (!"Unexpected register class.");
600 }
601
602 gdb_assert (regnum != -1);
603 memset (buf, 0, sizeof buf);
604 memcpy (buf, valbuf + j * 8, min (len, 8));
605 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
606 }
607 }
608 }
609
610 /* Allocate space for the arguments on the stack. */
611 sp -= num_elements * 8;
612
613 /* The psABI says that "The end of the input argument area shall be
614 aligned on a 16 byte boundary." */
615 sp &= ~0xf;
616
617 /* Write out the arguments to the stack. */
618 for (i = 0; i < num_stack_args; i++)
619 {
4991999e 620 struct type *type = value_type (stack_args[i]);
d8de1ef7 621 const gdb_byte *valbuf = value_contents (stack_args[i]);
720aa428
MK
622 int len = TYPE_LENGTH (type);
623
624 write_memory (sp + element * 8, valbuf, len);
625 element += ((len + 7) / 8);
626 }
627
628 /* The psABI says that "For calls that may call functions that use
629 varargs or stdargs (prototype-less calls or calls to functions
630 containing ellipsis (...) in the declaration) %al is used as
631 hidden argument to specify the number of SSE registers used. */
90f90721 632 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
633 return sp;
634}
635
c4f35dd8 636static CORE_ADDR
7d9b040b 637amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
638 struct regcache *regcache, CORE_ADDR bp_addr,
639 int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
53e95fcf 641{
d8de1ef7 642 gdb_byte buf[8];
c4f35dd8
MK
643
644 /* Pass arguments. */
6470d250 645 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
646
647 /* Pass "hidden" argument". */
648 if (struct_return)
649 {
650 store_unsigned_integer (buf, 8, struct_addr);
90f90721 651 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
652 }
653
654 /* Store return address. */
655 sp -= 8;
10f93086 656 store_unsigned_integer (buf, 8, bp_addr);
c4f35dd8
MK
657 write_memory (sp, buf, 8);
658
659 /* Finally, update the stack pointer... */
660 store_unsigned_integer (buf, 8, sp);
90f90721 661 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
662
663 /* ...and fake a frame pointer. */
90f90721 664 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 665
3e210248 666 return sp + 16;
53e95fcf 667}
c4f35dd8
MK
668\f
669
670/* The maximum number of saved registers. This should include %rip. */
90f90721 671#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 672
e53bef9f 673struct amd64_frame_cache
c4f35dd8
MK
674{
675 /* Base address. */
676 CORE_ADDR base;
677 CORE_ADDR sp_offset;
678 CORE_ADDR pc;
679
680 /* Saved registers. */
e53bef9f 681 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8
MK
682 CORE_ADDR saved_sp;
683
684 /* Do we have a frame? */
685 int frameless_p;
686};
8dda9770 687
d2449ee8 688/* Initialize a frame cache. */
c4f35dd8 689
d2449ee8
DJ
690static void
691amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 692{
c4f35dd8
MK
693 int i;
694
c4f35dd8
MK
695 /* Base address. */
696 cache->base = 0;
697 cache->sp_offset = -8;
698 cache->pc = 0;
699
700 /* Saved registers. We initialize these to -1 since zero is a valid
701 offset (that's where %rbp is supposed to be stored). */
e53bef9f 702 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
703 cache->saved_regs[i] = -1;
704 cache->saved_sp = 0;
705
706 /* Frameless until proven otherwise. */
707 cache->frameless_p = 1;
d2449ee8 708}
c4f35dd8 709
d2449ee8
DJ
710/* Allocate and initialize a frame cache. */
711
712static struct amd64_frame_cache *
713amd64_alloc_frame_cache (void)
714{
715 struct amd64_frame_cache *cache;
716
717 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
718 amd64_init_frame_cache (cache);
c4f35dd8 719 return cache;
8dda9770 720}
53e95fcf 721
c4f35dd8
MK
722/* Do a limited analysis of the prologue at PC and update CACHE
723 accordingly. Bail out early if CURRENT_PC is reached. Return the
724 address where the analysis stopped.
725
726 We will handle only functions beginning with:
727
728 pushq %rbp 0x55
729 movq %rsp, %rbp 0x48 0x89 0xe5
730
731 Any function that doesn't start with this sequence will be assumed
732 to have no prologue and thus no valid frame pointer in %rbp. */
733
734static CORE_ADDR
e53bef9f
MK
735amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
736 struct amd64_frame_cache *cache)
53e95fcf 737{
d8de1ef7
MK
738 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
739 gdb_byte buf[3];
740 gdb_byte op;
c4f35dd8
MK
741
742 if (current_pc <= pc)
743 return current_pc;
744
745 op = read_memory_unsigned_integer (pc, 1);
746
747 if (op == 0x55) /* pushq %rbp */
748 {
749 /* Take into account that we've executed the `pushq %rbp' that
750 starts this instruction sequence. */
90f90721 751 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
752 cache->sp_offset += 8;
753
754 /* If that's all, return now. */
755 if (current_pc <= pc + 1)
756 return current_pc;
757
758 /* Check for `movq %rsp, %rbp'. */
759 read_memory (pc + 1, buf, 3);
760 if (memcmp (buf, proto, 3) != 0)
761 return pc + 1;
762
763 /* OK, we actually have a frame. */
764 cache->frameless_p = 0;
765 return pc + 4;
766 }
767
768 return pc;
53e95fcf
JS
769}
770
c4f35dd8
MK
771/* Return PC of first real instruction. */
772
773static CORE_ADDR
6093d2eb 774amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
53e95fcf 775{
e53bef9f 776 struct amd64_frame_cache cache;
c4f35dd8
MK
777 CORE_ADDR pc;
778
d2449ee8 779 amd64_init_frame_cache (&cache);
594706e6 780 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
c4f35dd8
MK
781 if (cache.frameless_p)
782 return start_pc;
783
784 return pc;
53e95fcf 785}
c4f35dd8 786\f
53e95fcf 787
c4f35dd8
MK
788/* Normal frames. */
789
e53bef9f
MK
790static struct amd64_frame_cache *
791amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
6d686a84 792{
e53bef9f 793 struct amd64_frame_cache *cache;
d8de1ef7 794 gdb_byte buf[8];
6d686a84 795 int i;
6d686a84 796
c4f35dd8
MK
797 if (*this_cache)
798 return *this_cache;
6d686a84 799
e53bef9f 800 cache = amd64_alloc_frame_cache ();
c4f35dd8
MK
801 *this_cache = cache;
802
93d42b30 803 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
c4f35dd8 804 if (cache->pc != 0)
e53bef9f 805 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
c4f35dd8
MK
806
807 if (cache->frameless_p)
808 {
4a28816e
MK
809 /* We didn't find a valid frame. If we're at the start of a
810 function, or somewhere half-way its prologue, the function's
811 frame probably hasn't been fully setup yet. Try to
812 reconstruct the base address for the stack frame by looking
813 at the stack pointer. For truly "frameless" functions this
814 might work too. */
c4f35dd8 815
90f90721 816 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
817 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
818 }
35883a3f
MK
819 else
820 {
90f90721 821 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
35883a3f
MK
822 cache->base = extract_unsigned_integer (buf, 8);
823 }
c4f35dd8
MK
824
825 /* Now that we have the base address for the stack frame we can
826 calculate the value of %rsp in the calling frame. */
827 cache->saved_sp = cache->base + 16;
828
35883a3f
MK
829 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
830 frame we find it at the same offset from the reconstructed base
831 address. */
90f90721 832 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 833
c4f35dd8
MK
834 /* Adjust all the saved registers such that they contain addresses
835 instead of offsets. */
e53bef9f 836 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
837 if (cache->saved_regs[i] != -1)
838 cache->saved_regs[i] += cache->base;
839
840 return cache;
6d686a84
ML
841}
842
c4f35dd8 843static void
e53bef9f
MK
844amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
845 struct frame_id *this_id)
c4f35dd8 846{
e53bef9f
MK
847 struct amd64_frame_cache *cache =
848 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
849
850 /* This marks the outermost frame. */
851 if (cache->base == 0)
852 return;
853
854 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
855}
e76e1718 856
c4f35dd8 857static void
e53bef9f
MK
858amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
859 int regnum, int *optimizedp,
860 enum lval_type *lvalp, CORE_ADDR *addrp,
5323dd1d 861 int *realnump, gdb_byte *valuep)
53e95fcf 862{
2ae02b47 863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
e53bef9f
MK
864 struct amd64_frame_cache *cache =
865 amd64_frame_cache (next_frame, this_cache);
e76e1718 866
c4f35dd8 867 gdb_assert (regnum >= 0);
b1ab997b 868
2ae02b47 869 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
c4f35dd8
MK
870 {
871 *optimizedp = 0;
872 *lvalp = not_lval;
873 *addrp = 0;
874 *realnump = -1;
875 if (valuep)
876 {
877 /* Store the value. */
878 store_unsigned_integer (valuep, 8, cache->saved_sp);
879 }
880 return;
881 }
e76e1718 882
e53bef9f 883 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
c4f35dd8
MK
884 {
885 *optimizedp = 0;
886 *lvalp = lval_memory;
887 *addrp = cache->saved_regs[regnum];
888 *realnump = -1;
889 if (valuep)
890 {
891 /* Read the value in from memory. */
892 read_memory (*addrp, valuep,
2ae02b47 893 register_size (gdbarch, regnum));
c4f35dd8
MK
894 }
895 return;
896 }
e76e1718 897
00b25ff3
AC
898 *optimizedp = 0;
899 *lvalp = lval_register;
900 *addrp = 0;
901 *realnump = regnum;
902 if (valuep)
903 frame_unwind_register (next_frame, (*realnump), valuep);
c4f35dd8 904}
e76e1718 905
e53bef9f 906static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
907{
908 NORMAL_FRAME,
e53bef9f
MK
909 amd64_frame_this_id,
910 amd64_frame_prev_register
c4f35dd8 911};
e76e1718 912
c4f35dd8 913static const struct frame_unwind *
e53bef9f 914amd64_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 915{
e53bef9f 916 return &amd64_frame_unwind;
c4f35dd8
MK
917}
918\f
e76e1718 919
c4f35dd8
MK
920/* Signal trampolines. */
921
922/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
923 64-bit variants. This would require using identical frame caches
924 on both platforms. */
925
e53bef9f
MK
926static struct amd64_frame_cache *
927amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
c4f35dd8 928{
e53bef9f 929 struct amd64_frame_cache *cache;
2ae02b47 930 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
c4f35dd8 931 CORE_ADDR addr;
d8de1ef7 932 gdb_byte buf[8];
2b5e0749 933 int i;
c4f35dd8
MK
934
935 if (*this_cache)
936 return *this_cache;
937
e53bef9f 938 cache = amd64_alloc_frame_cache ();
c4f35dd8 939
90f90721 940 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
941 cache->base = extract_unsigned_integer (buf, 8) - 8;
942
943 addr = tdep->sigcontext_addr (next_frame);
2b5e0749 944 gdb_assert (tdep->sc_reg_offset);
e53bef9f 945 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2b5e0749
MK
946 for (i = 0; i < tdep->sc_num_regs; i++)
947 if (tdep->sc_reg_offset[i] != -1)
948 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8
MK
949
950 *this_cache = cache;
951 return cache;
53e95fcf
JS
952}
953
c4f35dd8 954static void
e53bef9f
MK
955amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
956 void **this_cache, struct frame_id *this_id)
c4f35dd8 957{
e53bef9f
MK
958 struct amd64_frame_cache *cache =
959 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8
MK
960
961 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
962}
963
964static void
e53bef9f
MK
965amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
966 void **this_cache,
967 int regnum, int *optimizedp,
968 enum lval_type *lvalp, CORE_ADDR *addrp,
5323dd1d 969 int *realnump, gdb_byte *valuep)
c4f35dd8
MK
970{
971 /* Make sure we've initialized the cache. */
e53bef9f 972 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8 973
e53bef9f
MK
974 amd64_frame_prev_register (next_frame, this_cache, regnum,
975 optimizedp, lvalp, addrp, realnump, valuep);
c4f35dd8
MK
976}
977
e53bef9f 978static const struct frame_unwind amd64_sigtramp_frame_unwind =
c4f35dd8
MK
979{
980 SIGTRAMP_FRAME,
e53bef9f
MK
981 amd64_sigtramp_frame_this_id,
982 amd64_sigtramp_frame_prev_register
c4f35dd8
MK
983};
984
985static const struct frame_unwind *
e53bef9f 986amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 987{
911bc6ee
MK
988 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
989
990 /* We shouldn't even bother if we don't have a sigcontext_addr
991 handler. */
992 if (tdep->sigcontext_addr == NULL)
993 return NULL;
994
995 if (tdep->sigtramp_p != NULL)
996 {
997 if (tdep->sigtramp_p (next_frame))
998 return &amd64_sigtramp_frame_unwind;
999 }
c4f35dd8 1000
911bc6ee 1001 if (tdep->sigtramp_start != 0)
1c3545ae 1002 {
911bc6ee 1003 CORE_ADDR pc = frame_pc_unwind (next_frame);
1c3545ae 1004
911bc6ee
MK
1005 gdb_assert (tdep->sigtramp_end != 0);
1006 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1007 return &amd64_sigtramp_frame_unwind;
1c3545ae 1008 }
c4f35dd8
MK
1009
1010 return NULL;
1011}
1012\f
1013
1014static CORE_ADDR
e53bef9f 1015amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
c4f35dd8 1016{
e53bef9f
MK
1017 struct amd64_frame_cache *cache =
1018 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
1019
1020 return cache->base;
1021}
1022
e53bef9f 1023static const struct frame_base amd64_frame_base =
c4f35dd8 1024{
e53bef9f
MK
1025 &amd64_frame_unwind,
1026 amd64_frame_base_address,
1027 amd64_frame_base_address,
1028 amd64_frame_base_address
c4f35dd8
MK
1029};
1030
166f4c7b 1031static struct frame_id
e53bef9f 1032amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
166f4c7b 1033{
d8de1ef7 1034 gdb_byte buf[8];
c4f35dd8
MK
1035 CORE_ADDR fp;
1036
90f90721 1037 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
c4f35dd8
MK
1038 fp = extract_unsigned_integer (buf, 8);
1039
1040 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
166f4c7b
ML
1041}
1042
8b148df9
AC
1043/* 16 byte align the SP per frame requirements. */
1044
1045static CORE_ADDR
e53bef9f 1046amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
1047{
1048 return sp & -(CORE_ADDR)16;
1049}
473f17b0
MK
1050\f
1051
593adc23
MK
1052/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1053 in the floating-point register set REGSET to register cache
1054 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1055
1056static void
e53bef9f
MK
1057amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1058 int regnum, const void *fpregs, size_t len)
473f17b0 1059{
9ea75c57 1060 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1061
1062 gdb_assert (len == tdep->sizeof_fpregset);
90f90721 1063 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 1064}
8b148df9 1065
593adc23
MK
1066/* Collect register REGNUM from the register cache REGCACHE and store
1067 it in the buffer specified by FPREGS and LEN as described by the
1068 floating-point register set REGSET. If REGNUM is -1, do this for
1069 all registers in REGSET. */
1070
1071static void
1072amd64_collect_fpregset (const struct regset *regset,
1073 const struct regcache *regcache,
1074 int regnum, void *fpregs, size_t len)
1075{
1076 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1077
1078 gdb_assert (len == tdep->sizeof_fpregset);
1079 amd64_collect_fxsave (regcache, regnum, fpregs);
1080}
1081
c6b33596
MK
1082/* Return the appropriate register set for the core section identified
1083 by SECT_NAME and SECT_SIZE. */
1084
1085static const struct regset *
e53bef9f
MK
1086amd64_regset_from_core_section (struct gdbarch *gdbarch,
1087 const char *sect_name, size_t sect_size)
c6b33596
MK
1088{
1089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1090
1091 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1092 {
1093 if (tdep->fpregset == NULL)
593adc23
MK
1094 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1095 amd64_collect_fpregset);
c6b33596
MK
1096
1097 return tdep->fpregset;
1098 }
1099
1100 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1101}
1102\f
1103
436675d3
PA
1104/* Figure out where the longjmp will land. Slurp the jmp_buf out of
1105 %rdi. We expect its value to be a pointer to the jmp_buf structure
1106 from which we extract the address that we will land at. This
1107 address is copied into PC. This routine returns non-zero on
1108 success. */
1109
1110static int
1111amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1112{
1113 gdb_byte buf[8];
1114 CORE_ADDR jb_addr;
1115 struct gdbarch *gdbarch = get_frame_arch (frame);
1116 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1117 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1118
1119 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1120 longjmp will land. */
1121 if (jb_pc_offset == -1)
1122 return 0;
1123
1124 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
1125 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1126 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1127 return 0;
1128
1129 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1130
1131 return 1;
1132}
1133
2213a65d 1134void
90f90721 1135amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 1136{
0c1a73d6 1137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
53e95fcf 1138
473f17b0
MK
1139 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1140 floating-point registers. */
1141 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1142
5716833c 1143 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 1144 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 1145 tdep->num_xmm_regs = 16;
53e95fcf 1146
0c1a73d6 1147 /* This is what all the fuss is about. */
53e95fcf
JS
1148 set_gdbarch_long_bit (gdbarch, 64);
1149 set_gdbarch_long_long_bit (gdbarch, 64);
1150 set_gdbarch_ptr_bit (gdbarch, 64);
1151
e53bef9f
MK
1152 /* In contrast to the i386, on AMD64 a `long double' actually takes
1153 up 128 bits, even though it's still based on the i387 extended
1154 floating-point format which has only 80 significant bits. */
b83b026c
MK
1155 set_gdbarch_long_double_bit (gdbarch, 128);
1156
e53bef9f
MK
1157 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1158 set_gdbarch_register_name (gdbarch, amd64_register_name);
1159 set_gdbarch_register_type (gdbarch, amd64_register_type);
b83b026c
MK
1160
1161 /* Register numbers of various important registers. */
90f90721
MK
1162 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1163 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1164 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1165 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 1166
e53bef9f
MK
1167 /* The "default" register numbering scheme for AMD64 is referred to
1168 as the "DWARF Register Number Mapping" in the System V psABI.
1169 The preferred debugging format for all known AMD64 targets is
1170 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1171 DWARF-1), but we provide the same mapping just in case. This
1172 mapping is also used for stabs, which GCC does support. */
1173 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1174 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1175 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 1176
c4f35dd8 1177 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 1178 be in use on any of the supported AMD64 targets. */
53e95fcf 1179
c4f35dd8 1180 /* Call dummy code. */
e53bef9f
MK
1181 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1182 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 1183 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 1184
83acabca 1185 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
1186 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1187 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1188
efb1c01c 1189 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 1190
e53bef9f 1191 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 1192
c4f35dd8 1193 /* Avoid wiring in the MMX registers for now. */
2213a65d 1194 set_gdbarch_num_pseudo_regs (gdbarch, 0);
5716833c 1195 tdep->mm0_regnum = -1;
2213a65d 1196
e53bef9f 1197 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
53e95fcf 1198
e53bef9f
MK
1199 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1200 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1201 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596
MK
1202
1203 /* If we have a register mapping, enable the generic core file support. */
1204 if (tdep->gregset_reg_offset)
1205 set_gdbarch_regset_from_core_section (gdbarch,
e53bef9f 1206 amd64_regset_from_core_section);
436675d3
PA
1207
1208 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
c4f35dd8
MK
1209}
1210\f
1211
41d041d6
MK
1212/* The 64-bit FXSAVE format differs from the 32-bit format in the
1213 sense that the instruction pointer and data pointer are simply
1214 64-bit offsets into the code segment and the data segment instead
1215 of a selector offset pair. The functions below store the upper 32
1216 bits of these pointers (instead of just the 16-bits of the segment
1217 selector). */
1218
1219/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
1220 floating-point or SSE register value from *FXSAVE. If REGNUM is
1221 -1, do this for all registers. This function masks off any of the
1222 reserved bits in *FXSAVE. */
c4f35dd8
MK
1223
1224void
90f90721 1225amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 1226 const void *fxsave)
c4f35dd8 1227{
20a6ec49
MD
1228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1230
41d041d6 1231 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 1232
20a6ec49 1233 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
c4f35dd8 1234 {
d8de1ef7 1235 const gdb_byte *regs = fxsave;
41d041d6 1236
20a6ec49
MD
1237 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1238 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1239 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1240 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 1241 }
0c1a73d6
MK
1242}
1243
3c017e40
MK
1244/* Fill register REGNUM (if it is a floating-point or SSE register) in
1245 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1246 all registers. This function doesn't touch any of the reserved
1247 bits in *FXSAVE. */
1248
1249void
1250amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1251 void *fxsave)
1252{
20a6ec49
MD
1253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d8de1ef7 1255 gdb_byte *regs = fxsave;
3c017e40
MK
1256
1257 i387_collect_fxsave (regcache, regnum, fxsave);
1258
20a6ec49 1259 if (gdbarch_ptr_bit (gdbarch) == 64)
f0ef85a5 1260 {
20a6ec49
MD
1261 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1262 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1263 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1264 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 1265 }
3c017e40 1266}
This page took 0.588965 seconds and 4 git commands to generate.