[PATCH] Add micromips support to the MIPS simulator
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
32d0add0 3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
35669430
DE
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
28#include "frame.h"
29#include "frame-base.h"
30#include "frame-unwind.h"
53e95fcf 31#include "inferior.h"
45741a9c 32#include "infrun.h"
53e95fcf 33#include "gdbcmd.h"
c4f35dd8
MK
34#include "gdbcore.h"
35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
eda5a4d7 39#include "disasm.h"
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
97de3545 42#include "x86-xstate.h"
53e95fcf 43
90884b2b 44#include "features/i386/amd64.c"
a055a187 45#include "features/i386/amd64-avx.c"
e43e105e 46#include "features/i386/amd64-mpx.c"
01f9f808
MS
47#include "features/i386/amd64-avx512.c"
48
ac1438b5
L
49#include "features/i386/x32.c"
50#include "features/i386/x32-avx.c"
01f9f808 51#include "features/i386/x32-avx512.c"
90884b2b 52
6710bf39
SS
53#include "ax.h"
54#include "ax-gdb.h"
55
e53bef9f
MK
56/* Note that the AMD64 architecture was previously known as x86-64.
57 The latter is (forever) engraved into the canonical system name as
90f90721 58 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
59 of GNU/Linux. The BSD's have renamed their ports to amd64; they
60 don't like to shout. For GDB we prefer the amd64_-prefix over the
61 x86_64_-prefix since it's so much easier to type. */
62
402ecd56 63/* Register information. */
c4f35dd8 64
6707b003 65static const char *amd64_register_names[] =
de220d0f 66{
6707b003 67 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
68
69 /* %r8 is indeed register number 8. */
6707b003
UW
70 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
71 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 72
af233647 73 /* %st0 is register number 24. */
6707b003
UW
74 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
75 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 76
af233647 77 /* %xmm0 is register number 40. */
6707b003
UW
78 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
79 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
80 "mxcsr",
0e04a514
ML
81};
82
a055a187
L
83static const char *amd64_ymm_names[] =
84{
85 "ymm0", "ymm1", "ymm2", "ymm3",
86 "ymm4", "ymm5", "ymm6", "ymm7",
87 "ymm8", "ymm9", "ymm10", "ymm11",
88 "ymm12", "ymm13", "ymm14", "ymm15"
89};
90
01f9f808
MS
91static const char *amd64_ymm_avx512_names[] =
92{
93 "ymm16", "ymm17", "ymm18", "ymm19",
94 "ymm20", "ymm21", "ymm22", "ymm23",
95 "ymm24", "ymm25", "ymm26", "ymm27",
96 "ymm28", "ymm29", "ymm30", "ymm31"
97};
98
a055a187
L
99static const char *amd64_ymmh_names[] =
100{
101 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
102 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
103 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
104 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
105};
de220d0f 106
01f9f808
MS
107static const char *amd64_ymmh_avx512_names[] =
108{
109 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
110 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
111 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
112 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
113};
114
e43e105e
WT
115static const char *amd64_mpx_names[] =
116{
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118};
119
01f9f808
MS
120static const char *amd64_k_names[] =
121{
122 "k0", "k1", "k2", "k3",
123 "k4", "k5", "k6", "k7"
124};
125
126static const char *amd64_zmmh_names[] =
127{
128 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
129 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
130 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
131 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
132 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
133 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
134 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
135 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
136};
137
138static const char *amd64_zmm_names[] =
139{
140 "zmm0", "zmm1", "zmm2", "zmm3",
141 "zmm4", "zmm5", "zmm6", "zmm7",
142 "zmm8", "zmm9", "zmm10", "zmm11",
143 "zmm12", "zmm13", "zmm14", "zmm15",
144 "zmm16", "zmm17", "zmm18", "zmm19",
145 "zmm20", "zmm21", "zmm22", "zmm23",
146 "zmm24", "zmm25", "zmm26", "zmm27",
147 "zmm28", "zmm29", "zmm30", "zmm31"
148};
149
150static const char *amd64_xmm_avx512_names[] = {
151 "xmm16", "xmm17", "xmm18", "xmm19",
152 "xmm20", "xmm21", "xmm22", "xmm23",
153 "xmm24", "xmm25", "xmm26", "xmm27",
154 "xmm28", "xmm29", "xmm30", "xmm31"
155};
156
c4f35dd8
MK
157/* DWARF Register Number Mapping as defined in the System V psABI,
158 section 3.6. */
53e95fcf 159
e53bef9f 160static int amd64_dwarf_regmap[] =
0e04a514 161{
c4f35dd8 162 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
163 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
164 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
165 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
166
167 /* Frame Pointer Register RBP. */
90f90721 168 AMD64_RBP_REGNUM,
c4f35dd8
MK
169
170 /* Stack Pointer Register RSP. */
90f90721 171 AMD64_RSP_REGNUM,
c4f35dd8
MK
172
173 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
174 AMD64_R8_REGNUM, /* %r8 */
175 AMD64_R9_REGNUM, /* %r9 */
176 AMD64_R10_REGNUM, /* %r10 */
177 AMD64_R11_REGNUM, /* %r11 */
178 AMD64_R12_REGNUM, /* %r12 */
179 AMD64_R13_REGNUM, /* %r13 */
180 AMD64_R14_REGNUM, /* %r14 */
181 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 182
59207364 183 /* Return Address RA. Mapped to RIP. */
90f90721 184 AMD64_RIP_REGNUM,
c4f35dd8
MK
185
186 /* SSE Registers 0 - 7. */
90f90721
MK
187 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
188 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
189 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
190 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
191
192 /* Extended SSE Registers 8 - 15. */
90f90721
MK
193 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
194 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
195 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
196 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
197
198 /* Floating Point Registers 0-7. */
90f90721
MK
199 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
200 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
201 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 202 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
203
204 /* MMX Registers 0 - 7.
205 We have to handle those registers specifically, as their register
206 number within GDB depends on the target (or they may even not be
207 available at all). */
208 -1, -1, -1, -1, -1, -1, -1, -1,
209
c6f4c129
JB
210 /* Control and Status Flags Register. */
211 AMD64_EFLAGS_REGNUM,
212
213 /* Selector Registers. */
214 AMD64_ES_REGNUM,
215 AMD64_CS_REGNUM,
216 AMD64_SS_REGNUM,
217 AMD64_DS_REGNUM,
218 AMD64_FS_REGNUM,
219 AMD64_GS_REGNUM,
220 -1,
221 -1,
222
223 /* Segment Base Address Registers. */
224 -1,
225 -1,
226 -1,
227 -1,
228
229 /* Special Selector Registers. */
230 -1,
231 -1,
232
233 /* Floating Point Control Registers. */
234 AMD64_MXCSR_REGNUM,
235 AMD64_FCTRL_REGNUM,
236 AMD64_FSTAT_REGNUM
c4f35dd8 237};
0e04a514 238
e53bef9f
MK
239static const int amd64_dwarf_regmap_len =
240 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 241
c4f35dd8
MK
242/* Convert DWARF register number REG to the appropriate register
243 number used by GDB. */
26abbdc4 244
c4f35dd8 245static int
d3f73121 246amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 247{
a055a187
L
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 250 int regnum = -1;
53e95fcf 251
16aff9a6 252 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 253 regnum = amd64_dwarf_regmap[reg];
53e95fcf 254
c4f35dd8 255 if (regnum == -1)
8a3fe4f8 256 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a055a187
L
257 else if (ymm0_regnum >= 0
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
260
261 return regnum;
53e95fcf 262}
d532c08f 263
35669430
DE
264/* Map architectural register numbers to gdb register numbers. */
265
266static const int amd64_arch_regmap[16] =
267{
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284};
285
286static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289/* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292static int
293amd64_arch_reg_to_regnum (int reg)
294{
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298}
299
1ba53b71
L
300/* Register names for byte pseudo-registers. */
301
302static const char *amd64_byte_names[] =
303{
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
1ba53b71
L
307};
308
fe01d668
L
309/* Number of lower byte registers. */
310#define AMD64_NUM_LOWER_BYTE_REGS 16
311
1ba53b71
L
312/* Register names for word pseudo-registers. */
313
314static const char *amd64_word_names[] =
315{
9cad29ac 316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318};
319
320/* Register names for dword pseudo-registers. */
321
322static const char *amd64_dword_names[] =
323{
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
1ba53b71
L
327};
328
329/* Return the name of register REGNUM. */
330
331static const char *
332amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333{
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349}
350
3543a589
TT
351static struct value *
352amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
353 struct regcache *regcache,
354 int regnum)
1ba53b71
L
355{
356 gdb_byte raw_buf[MAX_REGISTER_SIZE];
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
05d1431c 358 enum register_status status;
3543a589
TT
359 struct value *result_value;
360 gdb_byte *buf;
361
362 result_value = allocate_value (register_type (gdbarch, regnum));
363 VALUE_LVAL (result_value) = lval_register;
364 VALUE_REGNUM (result_value) = regnum;
365 buf = value_contents_raw (result_value);
1ba53b71
L
366
367 if (i386_byte_regnum_p (gdbarch, regnum))
368 {
369 int gpnum = regnum - tdep->al_regnum;
370
371 /* Extract (always little endian). */
fe01d668
L
372 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
373 {
374 /* Special handling for AH, BH, CH, DH. */
05d1431c
PA
375 status = regcache_raw_read (regcache,
376 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
377 raw_buf);
378 if (status == REG_VALID)
379 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
380 else
381 mark_value_bytes_unavailable (result_value, 0,
382 TYPE_LENGTH (value_type (result_value)));
fe01d668
L
383 }
384 else
385 {
05d1431c
PA
386 status = regcache_raw_read (regcache, gpnum, raw_buf);
387 if (status == REG_VALID)
388 memcpy (buf, raw_buf, 1);
3543a589
TT
389 else
390 mark_value_bytes_unavailable (result_value, 0,
391 TYPE_LENGTH (value_type (result_value)));
fe01d668 392 }
1ba53b71
L
393 }
394 else if (i386_dword_regnum_p (gdbarch, regnum))
395 {
396 int gpnum = regnum - tdep->eax_regnum;
397 /* Extract (always little endian). */
05d1431c
PA
398 status = regcache_raw_read (regcache, gpnum, raw_buf);
399 if (status == REG_VALID)
400 memcpy (buf, raw_buf, 4);
3543a589
TT
401 else
402 mark_value_bytes_unavailable (result_value, 0,
403 TYPE_LENGTH (value_type (result_value)));
1ba53b71
L
404 }
405 else
3543a589
TT
406 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
407 result_value);
408
409 return result_value;
1ba53b71
L
410}
411
412static void
413amd64_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
415 int regnum, const gdb_byte *buf)
416{
417 gdb_byte raw_buf[MAX_REGISTER_SIZE];
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (i386_byte_regnum_p (gdbarch, regnum))
421 {
422 int gpnum = regnum - tdep->al_regnum;
423
fe01d668
L
424 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
425 {
426 /* Read ... AH, BH, CH, DH. */
427 regcache_raw_read (regcache,
428 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
432 regcache_raw_write (regcache,
433 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
434 }
435 else
436 {
437 /* Read ... */
438 regcache_raw_read (regcache, gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache_raw_write (regcache, gpnum, raw_buf);
443 }
1ba53b71
L
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448
449 /* Read ... */
450 regcache_raw_read (regcache, gpnum, raw_buf);
451 /* ... Modify ... (always little endian). */
452 memcpy (raw_buf, buf, 4);
453 /* ... Write. */
454 regcache_raw_write (regcache, gpnum, raw_buf);
455 }
456 else
457 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
458}
459
53e95fcf
JS
460\f
461
bf4d6c1c
JB
462/* Register classes as defined in the psABI. */
463
464enum amd64_reg_class
465{
466 AMD64_INTEGER,
467 AMD64_SSE,
468 AMD64_SSEUP,
469 AMD64_X87,
470 AMD64_X87UP,
471 AMD64_COMPLEX_X87,
472 AMD64_NO_CLASS,
473 AMD64_MEMORY
474};
475
efb1c01c
MK
476/* Return the union class of CLASS1 and CLASS2. See the psABI for
477 details. */
478
479static enum amd64_reg_class
480amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
481{
482 /* Rule (a): If both classes are equal, this is the resulting class. */
483 if (class1 == class2)
484 return class1;
485
486 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
487 is the other class. */
488 if (class1 == AMD64_NO_CLASS)
489 return class2;
490 if (class2 == AMD64_NO_CLASS)
491 return class1;
492
493 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
494 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
495 return AMD64_MEMORY;
496
497 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
498 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
499 return AMD64_INTEGER;
500
501 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
502 MEMORY is used as class. */
503 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
504 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
505 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
506 return AMD64_MEMORY;
507
508 /* Rule (f): Otherwise class SSE is used. */
509 return AMD64_SSE;
510}
511
fe978cb0 512static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 513
79b1ab3d
MK
514/* Return non-zero if TYPE is a non-POD structure or union type. */
515
516static int
517amd64_non_pod_p (struct type *type)
518{
519 /* ??? A class with a base class certainly isn't POD, but does this
520 catch all non-POD structure types? */
521 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
522 return 1;
523
524 return 0;
525}
526
efb1c01c
MK
527/* Classify TYPE according to the rules for aggregate (structures and
528 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
529
530static void
fe978cb0 531amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 532{
efb1c01c
MK
533 /* 1. If the size of an object is larger than two eightbytes, or in
534 C++, is a non-POD structure or union type, or contains
535 unaligned fields, it has class memory. */
744a8059 536 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
53e95fcf 537 {
fe978cb0 538 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 539 return;
53e95fcf 540 }
efb1c01c
MK
541
542 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 543 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
544
545 /* 3. Each field of an object is classified recursively so that
546 always two fields are considered. The resulting class is
547 calculated according to the classes of the fields in the
548 eightbyte: */
549
550 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 551 {
efb1c01c
MK
552 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
553
554 /* All fields in an array have the same type. */
fe978cb0
PA
555 amd64_classify (subtype, theclass);
556 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
557 theclass[1] = theclass[0];
8ffd9b1b 558 }
53e95fcf
JS
559 else
560 {
efb1c01c 561 int i;
53e95fcf 562
efb1c01c
MK
563 /* Structure or union. */
564 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
565 || TYPE_CODE (type) == TYPE_CODE_UNION);
566
567 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 568 {
efb1c01c
MK
569 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
570 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
571 enum amd64_reg_class subclass[2];
e4e2711a
JB
572 int bitsize = TYPE_FIELD_BITSIZE (type, i);
573 int endpos;
574
575 if (bitsize == 0)
576 bitsize = TYPE_LENGTH (subtype) * 8;
577 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
efb1c01c 578
562c50c2 579 /* Ignore static fields. */
d6a843b5 580 if (field_is_static (&TYPE_FIELD (type, i)))
562c50c2
MK
581 continue;
582
efb1c01c
MK
583 gdb_assert (pos == 0 || pos == 1);
584
585 amd64_classify (subtype, subclass);
fe978cb0 586 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
e4e2711a
JB
587 if (bitsize <= 64 && pos == 0 && endpos == 1)
588 /* This is a bit of an odd case: We have a field that would
589 normally fit in one of the two eightbytes, except that
590 it is placed in a way that this field straddles them.
591 This has been seen with a structure containing an array.
592
593 The ABI is a bit unclear in this case, but we assume that
594 this field's class (stored in subclass[0]) must also be merged
595 into class[1]. In other words, our field has a piece stored
596 in the second eight-byte, and thus its class applies to
597 the second eight-byte as well.
598
599 In the case where the field length exceeds 8 bytes,
600 it should not be necessary to merge the field class
601 into class[1]. As LEN > 8, subclass[1] is necessarily
602 different from AMD64_NO_CLASS. If subclass[1] is equal
603 to subclass[0], then the normal class[1]/subclass[1]
604 merging will take care of everything. For subclass[1]
605 to be different from subclass[0], I can only see the case
606 where we have a SSE/SSEUP or X87/X87UP pair, which both
607 use up all 16 bytes of the aggregate, and are already
608 handled just fine (because each portion sits on its own
609 8-byte). */
fe978cb0 610 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
efb1c01c 611 if (pos == 0)
fe978cb0 612 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
53e95fcf 613 }
53e95fcf 614 }
efb1c01c
MK
615
616 /* 4. Then a post merger cleanup is done: */
617
618 /* Rule (a): If one of the classes is MEMORY, the whole argument is
619 passed in memory. */
fe978cb0
PA
620 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
621 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 622
177b42fe 623 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 624 SSE. */
fe978cb0
PA
625 if (theclass[0] == AMD64_SSEUP)
626 theclass[0] = AMD64_SSE;
627 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
628 theclass[1] = AMD64_SSE;
efb1c01c
MK
629}
630
631/* Classify TYPE, and store the result in CLASS. */
632
bf4d6c1c 633static void
fe978cb0 634amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c
MK
635{
636 enum type_code code = TYPE_CODE (type);
637 int len = TYPE_LENGTH (type);
638
fe978cb0 639 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
640
641 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
642 long, long long, and pointers are in the INTEGER class. Similarly,
643 range types, used by languages such as Ada, are also in the INTEGER
644 class. */
efb1c01c 645 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 646 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 647 || code == TYPE_CODE_CHAR
efb1c01c
MK
648 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
649 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 650 theclass[0] = AMD64_INTEGER;
efb1c01c 651
5daa78cc
TJB
652 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
653 are in class SSE. */
654 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
655 && (len == 4 || len == 8))
efb1c01c 656 /* FIXME: __m64 . */
fe978cb0 657 theclass[0] = AMD64_SSE;
efb1c01c 658
5daa78cc
TJB
659 /* Arguments of types __float128, _Decimal128 and __m128 are split into
660 two halves. The least significant ones belong to class SSE, the most
efb1c01c 661 significant one to class SSEUP. */
5daa78cc
TJB
662 else if (code == TYPE_CODE_DECFLOAT && len == 16)
663 /* FIXME: __float128, __m128. */
fe978cb0 664 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
665
666 /* The 64-bit mantissa of arguments of type long double belongs to
667 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
668 class X87UP. */
669 else if (code == TYPE_CODE_FLT && len == 16)
670 /* Class X87 and X87UP. */
fe978cb0 671 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 672
7f7930dd
MK
673 /* Arguments of complex T where T is one of the types float or
674 double get treated as if they are implemented as:
675
676 struct complexT {
677 T real;
678 T imag;
5f52445b
YQ
679 };
680
681 */
7f7930dd 682 else if (code == TYPE_CODE_COMPLEX && len == 8)
fe978cb0 683 theclass[0] = AMD64_SSE;
7f7930dd 684 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 685 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
686
687 /* A variable of type complex long double is classified as type
688 COMPLEX_X87. */
689 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 690 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 691
efb1c01c
MK
692 /* Aggregates. */
693 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
694 || code == TYPE_CODE_UNION)
fe978cb0 695 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
696}
697
698static enum return_value_convention
6a3a010b 699amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 700 struct type *type, struct regcache *regcache,
42835c2b 701 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c 702{
fe978cb0 703 enum amd64_reg_class theclass[2];
efb1c01c 704 int len = TYPE_LENGTH (type);
90f90721
MK
705 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
706 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
707 int integer_reg = 0;
708 int sse_reg = 0;
709 int i;
710
711 gdb_assert (!(readbuf && writebuf));
712
713 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 714 amd64_classify (type, theclass);
efb1c01c
MK
715
716 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 717 for the return value and passes the address of this storage in
0963b4bd 718 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
719 this address becomes a hidden first argument.
720
721 On return %rax will contain the address that has been passed in
722 by the caller in %rdi. */
fe978cb0 723 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
724 {
725 /* As indicated by the comment above, the ABI guarantees that we
726 can always find the return value just after the function has
727 returned. */
728
729 if (readbuf)
730 {
731 ULONGEST addr;
732
733 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
734 read_memory (addr, readbuf, TYPE_LENGTH (type));
735 }
736
737 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
738 }
efb1c01c 739
7f7930dd
MK
740 /* 8. If the class is COMPLEX_X87, the real part of the value is
741 returned in %st0 and the imaginary part in %st1. */
fe978cb0 742 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
743 {
744 if (readbuf)
745 {
746 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
747 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
748 }
749
750 if (writebuf)
751 {
752 i387_return_value (gdbarch, regcache);
753 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
754 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
755
756 /* Fix up the tag word such that both %st(0) and %st(1) are
757 marked as valid. */
758 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
759 }
760
761 return RETURN_VALUE_REGISTER_CONVENTION;
762 }
763
fe978cb0 764 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 765 gdb_assert (len <= 16);
efb1c01c
MK
766
767 for (i = 0; len > 0; i++, len -= 8)
768 {
769 int regnum = -1;
770 int offset = 0;
771
fe978cb0 772 switch (theclass[i])
efb1c01c
MK
773 {
774 case AMD64_INTEGER:
775 /* 3. If the class is INTEGER, the next available register
776 of the sequence %rax, %rdx is used. */
777 regnum = integer_regnum[integer_reg++];
778 break;
779
780 case AMD64_SSE:
781 /* 4. If the class is SSE, the next available SSE register
782 of the sequence %xmm0, %xmm1 is used. */
783 regnum = sse_regnum[sse_reg++];
784 break;
785
786 case AMD64_SSEUP:
787 /* 5. If the class is SSEUP, the eightbyte is passed in the
788 upper half of the last used SSE register. */
789 gdb_assert (sse_reg > 0);
790 regnum = sse_regnum[sse_reg - 1];
791 offset = 8;
792 break;
793
794 case AMD64_X87:
795 /* 6. If the class is X87, the value is returned on the X87
796 stack in %st0 as 80-bit x87 number. */
90f90721 797 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
798 if (writebuf)
799 i387_return_value (gdbarch, regcache);
800 break;
801
802 case AMD64_X87UP:
803 /* 7. If the class is X87UP, the value is returned together
804 with the previous X87 value in %st0. */
fe978cb0 805 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 806 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
807 offset = 8;
808 len = 2;
809 break;
810
811 case AMD64_NO_CLASS:
812 continue;
813
814 default:
815 gdb_assert (!"Unexpected register class.");
816 }
817
818 gdb_assert (regnum != -1);
819
820 if (readbuf)
821 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
42835c2b 822 readbuf + i * 8);
efb1c01c
MK
823 if (writebuf)
824 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
42835c2b 825 writebuf + i * 8);
efb1c01c
MK
826 }
827
828 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
829}
830\f
831
720aa428
MK
832static CORE_ADDR
833amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 834 struct value **args, CORE_ADDR sp, int struct_return)
720aa428 835{
bf4d6c1c
JB
836 static int integer_regnum[] =
837 {
838 AMD64_RDI_REGNUM, /* %rdi */
839 AMD64_RSI_REGNUM, /* %rsi */
840 AMD64_RDX_REGNUM, /* %rdx */
841 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
842 AMD64_R8_REGNUM, /* %r8 */
843 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 844 };
720aa428
MK
845 static int sse_regnum[] =
846 {
847 /* %xmm0 ... %xmm7 */
90f90721
MK
848 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
849 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
850 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
851 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428
MK
852 };
853 struct value **stack_args = alloca (nargs * sizeof (struct value *));
854 int num_stack_args = 0;
855 int num_elements = 0;
856 int element = 0;
857 int integer_reg = 0;
858 int sse_reg = 0;
859 int i;
860
6470d250
MK
861 /* Reserve a register for the "hidden" argument. */
862 if (struct_return)
863 integer_reg++;
864
720aa428
MK
865 for (i = 0; i < nargs; i++)
866 {
4991999e 867 struct type *type = value_type (args[i]);
720aa428 868 int len = TYPE_LENGTH (type);
fe978cb0 869 enum amd64_reg_class theclass[2];
720aa428
MK
870 int needed_integer_regs = 0;
871 int needed_sse_regs = 0;
872 int j;
873
874 /* Classify argument. */
fe978cb0 875 amd64_classify (type, theclass);
720aa428
MK
876
877 /* Calculate the number of integer and SSE registers needed for
878 this argument. */
879 for (j = 0; j < 2; j++)
880 {
fe978cb0 881 if (theclass[j] == AMD64_INTEGER)
720aa428 882 needed_integer_regs++;
fe978cb0 883 else if (theclass[j] == AMD64_SSE)
720aa428
MK
884 needed_sse_regs++;
885 }
886
887 /* Check whether enough registers are available, and if the
888 argument should be passed in registers at all. */
bf4d6c1c 889 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
890 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
891 || (needed_integer_regs == 0 && needed_sse_regs == 0))
892 {
893 /* The argument will be passed on the stack. */
894 num_elements += ((len + 7) / 8);
849e9755 895 stack_args[num_stack_args++] = args[i];
720aa428
MK
896 }
897 else
898 {
899 /* The argument will be passed in registers. */
d8de1ef7
MK
900 const gdb_byte *valbuf = value_contents (args[i]);
901 gdb_byte buf[8];
720aa428
MK
902
903 gdb_assert (len <= 16);
904
905 for (j = 0; len > 0; j++, len -= 8)
906 {
907 int regnum = -1;
908 int offset = 0;
909
fe978cb0 910 switch (theclass[j])
720aa428
MK
911 {
912 case AMD64_INTEGER:
bf4d6c1c 913 regnum = integer_regnum[integer_reg++];
720aa428
MK
914 break;
915
916 case AMD64_SSE:
917 regnum = sse_regnum[sse_reg++];
918 break;
919
920 case AMD64_SSEUP:
921 gdb_assert (sse_reg > 0);
922 regnum = sse_regnum[sse_reg - 1];
923 offset = 8;
924 break;
925
926 default:
927 gdb_assert (!"Unexpected register class.");
928 }
929
930 gdb_assert (regnum != -1);
931 memset (buf, 0, sizeof buf);
932 memcpy (buf, valbuf + j * 8, min (len, 8));
933 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
934 }
935 }
936 }
937
938 /* Allocate space for the arguments on the stack. */
939 sp -= num_elements * 8;
940
941 /* The psABI says that "The end of the input argument area shall be
942 aligned on a 16 byte boundary." */
943 sp &= ~0xf;
944
945 /* Write out the arguments to the stack. */
946 for (i = 0; i < num_stack_args; i++)
947 {
4991999e 948 struct type *type = value_type (stack_args[i]);
d8de1ef7 949 const gdb_byte *valbuf = value_contents (stack_args[i]);
849e9755
JB
950 int len = TYPE_LENGTH (type);
951
952 write_memory (sp + element * 8, valbuf, len);
953 element += ((len + 7) / 8);
720aa428
MK
954 }
955
956 /* The psABI says that "For calls that may call functions that use
957 varargs or stdargs (prototype-less calls or calls to functions
958 containing ellipsis (...) in the declaration) %al is used as
959 hidden argument to specify the number of SSE registers used. */
90f90721 960 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
961 return sp;
962}
963
c4f35dd8 964static CORE_ADDR
7d9b040b 965amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
966 struct regcache *regcache, CORE_ADDR bp_addr,
967 int nargs, struct value **args, CORE_ADDR sp,
968 int struct_return, CORE_ADDR struct_addr)
53e95fcf 969{
e17a4113 970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 971 gdb_byte buf[8];
c4f35dd8
MK
972
973 /* Pass arguments. */
6470d250 974 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
975
976 /* Pass "hidden" argument". */
977 if (struct_return)
978 {
e17a4113 979 store_unsigned_integer (buf, 8, byte_order, struct_addr);
bf4d6c1c 980 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
981 }
982
983 /* Store return address. */
984 sp -= 8;
e17a4113 985 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
986 write_memory (sp, buf, 8);
987
988 /* Finally, update the stack pointer... */
e17a4113 989 store_unsigned_integer (buf, 8, byte_order, sp);
90f90721 990 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
991
992 /* ...and fake a frame pointer. */
90f90721 993 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 994
3e210248 995 return sp + 16;
53e95fcf 996}
c4f35dd8 997\f
35669430
DE
998/* Displaced instruction handling. */
999
1000/* A partially decoded instruction.
1001 This contains enough details for displaced stepping purposes. */
1002
1003struct amd64_insn
1004{
1005 /* The number of opcode bytes. */
1006 int opcode_len;
1007 /* The offset of the rex prefix or -1 if not present. */
1008 int rex_offset;
1009 /* The offset to the first opcode byte. */
1010 int opcode_offset;
1011 /* The offset to the modrm byte or -1 if not present. */
1012 int modrm_offset;
1013
1014 /* The raw instruction. */
1015 gdb_byte *raw_insn;
1016};
1017
1018struct displaced_step_closure
1019{
1020 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1021 int tmp_used;
1022 int tmp_regno;
1023 ULONGEST tmp_save;
1024
1025 /* Details of the instruction. */
1026 struct amd64_insn insn_details;
1027
1028 /* Amount of space allocated to insn_buf. */
1029 int max_len;
1030
1031 /* The possibly modified insn.
1032 This is a variable-length field. */
1033 gdb_byte insn_buf[1];
1034};
1035
1036/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1037 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1038 at which point delete these in favor of libopcodes' versions). */
1039
1040static const unsigned char onebyte_has_modrm[256] = {
1041 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1042 /* ------------------------------- */
1043 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1044 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1045 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1046 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1047 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1048 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1049 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1050 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1051 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1052 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1053 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1054 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1055 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1056 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1057 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1058 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1059 /* ------------------------------- */
1060 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1061};
1062
1063static const unsigned char twobyte_has_modrm[256] = {
1064 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1065 /* ------------------------------- */
1066 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1067 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1068 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1069 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1070 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1071 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1072 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1073 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1074 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1075 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1076 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1077 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1078 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1079 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1080 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1081 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1082 /* ------------------------------- */
1083 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1084};
1085
1086static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1087
1088static int
1089rex_prefix_p (gdb_byte pfx)
1090{
1091 return REX_PREFIX_P (pfx);
1092}
1093
1094/* Skip the legacy instruction prefixes in INSN.
1095 We assume INSN is properly sentineled so we don't have to worry
1096 about falling off the end of the buffer. */
1097
1098static gdb_byte *
1903f0e6 1099amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1100{
1101 while (1)
1102 {
1103 switch (*insn)
1104 {
1105 case DATA_PREFIX_OPCODE:
1106 case ADDR_PREFIX_OPCODE:
1107 case CS_PREFIX_OPCODE:
1108 case DS_PREFIX_OPCODE:
1109 case ES_PREFIX_OPCODE:
1110 case FS_PREFIX_OPCODE:
1111 case GS_PREFIX_OPCODE:
1112 case SS_PREFIX_OPCODE:
1113 case LOCK_PREFIX_OPCODE:
1114 case REPE_PREFIX_OPCODE:
1115 case REPNE_PREFIX_OPCODE:
1116 ++insn;
1117 continue;
1118 default:
1119 break;
1120 }
1121 break;
1122 }
1123
1124 return insn;
1125}
1126
35669430
DE
1127/* Return an integer register (other than RSP) that is unused as an input
1128 operand in INSN.
1129 In order to not require adding a rex prefix if the insn doesn't already
1130 have one, the result is restricted to RAX ... RDI, sans RSP.
1131 The register numbering of the result follows architecture ordering,
1132 e.g. RDI = 7. */
1133
1134static int
1135amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1136{
1137 /* 1 bit for each reg */
1138 int used_regs_mask = 0;
1139
1140 /* There can be at most 3 int regs used as inputs in an insn, and we have
1141 7 to choose from (RAX ... RDI, sans RSP).
1142 This allows us to take a conservative approach and keep things simple.
1143 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1144 that implicitly specify RAX. */
1145
1146 /* Avoid RAX. */
1147 used_regs_mask |= 1 << EAX_REG_NUM;
1148 /* Similarily avoid RDX, implicit operand in divides. */
1149 used_regs_mask |= 1 << EDX_REG_NUM;
1150 /* Avoid RSP. */
1151 used_regs_mask |= 1 << ESP_REG_NUM;
1152
1153 /* If the opcode is one byte long and there's no ModRM byte,
1154 assume the opcode specifies a register. */
1155 if (details->opcode_len == 1 && details->modrm_offset == -1)
1156 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1157
1158 /* Mark used regs in the modrm/sib bytes. */
1159 if (details->modrm_offset != -1)
1160 {
1161 int modrm = details->raw_insn[details->modrm_offset];
1162 int mod = MODRM_MOD_FIELD (modrm);
1163 int reg = MODRM_REG_FIELD (modrm);
1164 int rm = MODRM_RM_FIELD (modrm);
1165 int have_sib = mod != 3 && rm == 4;
1166
1167 /* Assume the reg field of the modrm byte specifies a register. */
1168 used_regs_mask |= 1 << reg;
1169
1170 if (have_sib)
1171 {
1172 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1173 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1174 used_regs_mask |= 1 << base;
d48ebb5b 1175 used_regs_mask |= 1 << idx;
35669430
DE
1176 }
1177 else
1178 {
1179 used_regs_mask |= 1 << rm;
1180 }
1181 }
1182
1183 gdb_assert (used_regs_mask < 256);
1184 gdb_assert (used_regs_mask != 255);
1185
1186 /* Finally, find a free reg. */
1187 {
1188 int i;
1189
1190 for (i = 0; i < 8; ++i)
1191 {
1192 if (! (used_regs_mask & (1 << i)))
1193 return i;
1194 }
1195
1196 /* We shouldn't get here. */
1197 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1198 }
1199}
1200
1201/* Extract the details of INSN that we need. */
1202
1203static void
1204amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1205{
1206 gdb_byte *start = insn;
1207 int need_modrm;
1208
1209 details->raw_insn = insn;
1210
1211 details->opcode_len = -1;
1212 details->rex_offset = -1;
1213 details->opcode_offset = -1;
1214 details->modrm_offset = -1;
1215
1216 /* Skip legacy instruction prefixes. */
1903f0e6 1217 insn = amd64_skip_prefixes (insn);
35669430
DE
1218
1219 /* Skip REX instruction prefix. */
1220 if (rex_prefix_p (*insn))
1221 {
1222 details->rex_offset = insn - start;
1223 ++insn;
1224 }
1225
1226 details->opcode_offset = insn - start;
1227
1228 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1229 {
1230 /* Two or three-byte opcode. */
1231 ++insn;
1232 need_modrm = twobyte_has_modrm[*insn];
1233
1234 /* Check for three-byte opcode. */
1903f0e6 1235 switch (*insn)
35669430 1236 {
1903f0e6
DE
1237 case 0x24:
1238 case 0x25:
1239 case 0x38:
1240 case 0x3a:
1241 case 0x7a:
1242 case 0x7b:
35669430
DE
1243 ++insn;
1244 details->opcode_len = 3;
1903f0e6
DE
1245 break;
1246 default:
1247 details->opcode_len = 2;
1248 break;
35669430 1249 }
35669430
DE
1250 }
1251 else
1252 {
1253 /* One-byte opcode. */
1254 need_modrm = onebyte_has_modrm[*insn];
1255 details->opcode_len = 1;
1256 }
1257
1258 if (need_modrm)
1259 {
1260 ++insn;
1261 details->modrm_offset = insn - start;
1262 }
1263}
1264
1265/* Update %rip-relative addressing in INSN.
1266
1267 %rip-relative addressing only uses a 32-bit displacement.
1268 32 bits is not enough to be guaranteed to cover the distance between where
1269 the real instruction is and where its copy is.
1270 Convert the insn to use base+disp addressing.
1271 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1272
35669430
DE
1273static void
1274fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1275 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1276{
e17a4113 1277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1278 const struct amd64_insn *insn_details = &dsc->insn_details;
1279 int modrm_offset = insn_details->modrm_offset;
1280 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1281 CORE_ADDR rip_base;
1282 int32_t disp;
1283 int insn_length;
1284 int arch_tmp_regno, tmp_regno;
1285 ULONGEST orig_value;
1286
1287 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1288 ++insn;
1289
1290 /* Compute the rip-relative address. */
e17a4113 1291 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
eda5a4d7
PA
1292 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1293 dsc->max_len, from);
35669430
DE
1294 rip_base = from + insn_length;
1295
1296 /* We need a register to hold the address.
1297 Pick one not used in the insn.
1298 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1299 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1300 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1301
1302 /* REX.B should be unset as we were using rip-relative addressing,
1303 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1304 if (insn_details->rex_offset != -1)
1305 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1306
1307 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1308 dsc->tmp_regno = tmp_regno;
1309 dsc->tmp_save = orig_value;
1310 dsc->tmp_used = 1;
1311
1312 /* Convert the ModRM field to be base+disp. */
1313 dsc->insn_buf[modrm_offset] &= ~0xc7;
1314 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1315
1316 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1317
1318 if (debug_displaced)
1319 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
5af949e3
UW
1320 "displaced: using temp reg %d, old value %s, new value %s\n",
1321 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1322 paddress (gdbarch, rip_base));
35669430
DE
1323}
1324
1325static void
1326fixup_displaced_copy (struct gdbarch *gdbarch,
1327 struct displaced_step_closure *dsc,
1328 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1329{
1330 const struct amd64_insn *details = &dsc->insn_details;
1331
1332 if (details->modrm_offset != -1)
1333 {
1334 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1335
1336 if ((modrm & 0xc7) == 0x05)
1337 {
1338 /* The insn uses rip-relative addressing.
1339 Deal with it. */
1340 fixup_riprel (gdbarch, dsc, from, to, regs);
1341 }
1342 }
1343}
1344
1345struct displaced_step_closure *
1346amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1347 CORE_ADDR from, CORE_ADDR to,
1348 struct regcache *regs)
1349{
1350 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1351 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1352 continually watch for running off the end of the buffer. */
1353 int fixup_sentinel_space = len;
1354 struct displaced_step_closure *dsc =
1355 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1356 gdb_byte *buf = &dsc->insn_buf[0];
1357 struct amd64_insn *details = &dsc->insn_details;
1358
1359 dsc->tmp_used = 0;
1360 dsc->max_len = len + fixup_sentinel_space;
1361
1362 read_memory (from, buf, len);
1363
1364 /* Set up the sentinel space so we don't have to worry about running
1365 off the end of the buffer. An excessive number of leading prefixes
1366 could otherwise cause this. */
1367 memset (buf + len, 0, fixup_sentinel_space);
1368
1369 amd64_get_insn_details (buf, details);
1370
1371 /* GDB may get control back after the insn after the syscall.
1372 Presumably this is a kernel bug.
1373 If this is a syscall, make sure there's a nop afterwards. */
1374 {
1375 int syscall_length;
1376
1377 if (amd64_syscall_p (details, &syscall_length))
1378 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1379 }
1380
1381 /* Modify the insn to cope with the address where it will be executed from.
1382 In particular, handle any rip-relative addressing. */
1383 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1384
1385 write_memory (to, buf, len);
1386
1387 if (debug_displaced)
1388 {
5af949e3
UW
1389 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1390 paddress (gdbarch, from), paddress (gdbarch, to));
35669430
DE
1391 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1392 }
1393
1394 return dsc;
1395}
1396
1397static int
1398amd64_absolute_jmp_p (const struct amd64_insn *details)
1399{
1400 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1401
1402 if (insn[0] == 0xff)
1403 {
1404 /* jump near, absolute indirect (/4) */
1405 if ((insn[1] & 0x38) == 0x20)
1406 return 1;
1407
1408 /* jump far, absolute indirect (/5) */
1409 if ((insn[1] & 0x38) == 0x28)
1410 return 1;
1411 }
1412
1413 return 0;
1414}
1415
c2170eef
MM
1416/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1417
1418static int
1419amd64_jmp_p (const struct amd64_insn *details)
1420{
1421 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1422
1423 /* jump short, relative. */
1424 if (insn[0] == 0xeb)
1425 return 1;
1426
1427 /* jump near, relative. */
1428 if (insn[0] == 0xe9)
1429 return 1;
1430
1431 return amd64_absolute_jmp_p (details);
1432}
1433
35669430
DE
1434static int
1435amd64_absolute_call_p (const struct amd64_insn *details)
1436{
1437 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1438
1439 if (insn[0] == 0xff)
1440 {
1441 /* Call near, absolute indirect (/2) */
1442 if ((insn[1] & 0x38) == 0x10)
1443 return 1;
1444
1445 /* Call far, absolute indirect (/3) */
1446 if ((insn[1] & 0x38) == 0x18)
1447 return 1;
1448 }
1449
1450 return 0;
1451}
1452
1453static int
1454amd64_ret_p (const struct amd64_insn *details)
1455{
1456 /* NOTE: gcc can emit "repz ; ret". */
1457 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1458
1459 switch (insn[0])
1460 {
1461 case 0xc2: /* ret near, pop N bytes */
1462 case 0xc3: /* ret near */
1463 case 0xca: /* ret far, pop N bytes */
1464 case 0xcb: /* ret far */
1465 case 0xcf: /* iret */
1466 return 1;
1467
1468 default:
1469 return 0;
1470 }
1471}
1472
1473static int
1474amd64_call_p (const struct amd64_insn *details)
1475{
1476 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1477
1478 if (amd64_absolute_call_p (details))
1479 return 1;
1480
1481 /* call near, relative */
1482 if (insn[0] == 0xe8)
1483 return 1;
1484
1485 return 0;
1486}
1487
35669430
DE
1488/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1489 length in bytes. Otherwise, return zero. */
1490
1491static int
1492amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1493{
1494 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1495
1496 if (insn[0] == 0x0f && insn[1] == 0x05)
1497 {
1498 *lengthp = 2;
1499 return 1;
1500 }
1501
1502 return 0;
1503}
1504
c2170eef
MM
1505/* Classify the instruction at ADDR using PRED.
1506 Throw an error if the memory can't be read. */
1507
1508static int
1509amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1510 int (*pred) (const struct amd64_insn *))
1511{
1512 struct amd64_insn details;
1513 gdb_byte *buf;
1514 int len, classification;
1515
1516 len = gdbarch_max_insn_length (gdbarch);
1517 buf = alloca (len);
1518
1519 read_code (addr, buf, len);
1520 amd64_get_insn_details (buf, &details);
1521
1522 classification = pred (&details);
1523
1524 return classification;
1525}
1526
1527/* The gdbarch insn_is_call method. */
1528
1529static int
1530amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1531{
1532 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1533}
1534
1535/* The gdbarch insn_is_ret method. */
1536
1537static int
1538amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1539{
1540 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1541}
1542
1543/* The gdbarch insn_is_jump method. */
1544
1545static int
1546amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1547{
1548 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1549}
1550
35669430
DE
1551/* Fix up the state of registers and memory after having single-stepped
1552 a displaced instruction. */
1553
1554void
1555amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1556 struct displaced_step_closure *dsc,
1557 CORE_ADDR from, CORE_ADDR to,
1558 struct regcache *regs)
1559{
e17a4113 1560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1561 /* The offset we applied to the instruction's address. */
1562 ULONGEST insn_offset = to - from;
1563 gdb_byte *insn = dsc->insn_buf;
1564 const struct amd64_insn *insn_details = &dsc->insn_details;
1565
1566 if (debug_displaced)
1567 fprintf_unfiltered (gdb_stdlog,
5af949e3 1568 "displaced: fixup (%s, %s), "
35669430 1569 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
1570 paddress (gdbarch, from), paddress (gdbarch, to),
1571 insn[0], insn[1]);
35669430
DE
1572
1573 /* If we used a tmp reg, restore it. */
1574
1575 if (dsc->tmp_used)
1576 {
1577 if (debug_displaced)
5af949e3
UW
1578 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1579 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1580 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1581 }
1582
1583 /* The list of issues to contend with here is taken from
1584 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1585 Yay for Free Software! */
1586
1587 /* Relocate the %rip back to the program's instruction stream,
1588 if necessary. */
1589
1590 /* Except in the case of absolute or indirect jump or call
1591 instructions, or a return instruction, the new rip is relative to
1592 the displaced instruction; make it relative to the original insn.
1593 Well, signal handler returns don't need relocation either, but we use the
1594 value of %rip to recognize those; see below. */
1595 if (! amd64_absolute_jmp_p (insn_details)
1596 && ! amd64_absolute_call_p (insn_details)
1597 && ! amd64_ret_p (insn_details))
1598 {
1599 ULONGEST orig_rip;
1600 int insn_len;
1601
1602 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1603
1604 /* A signal trampoline system call changes the %rip, resuming
1605 execution of the main program after the signal handler has
1606 returned. That makes them like 'return' instructions; we
1607 shouldn't relocate %rip.
1608
1609 But most system calls don't, and we do need to relocate %rip.
1610
1611 Our heuristic for distinguishing these cases: if stepping
1612 over the system call instruction left control directly after
1613 the instruction, the we relocate --- control almost certainly
1614 doesn't belong in the displaced copy. Otherwise, we assume
1615 the instruction has put control where it belongs, and leave
1616 it unrelocated. Goodness help us if there are PC-relative
1617 system calls. */
1618 if (amd64_syscall_p (insn_details, &insn_len)
1619 && orig_rip != to + insn_len
1620 /* GDB can get control back after the insn after the syscall.
1621 Presumably this is a kernel bug.
1622 Fixup ensures its a nop, we add one to the length for it. */
1623 && orig_rip != to + insn_len + 1)
1624 {
1625 if (debug_displaced)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "displaced: syscall changed %%rip; "
1628 "not relocating\n");
1629 }
1630 else
1631 {
1632 ULONGEST rip = orig_rip - insn_offset;
1633
1903f0e6
DE
1634 /* If we just stepped over a breakpoint insn, we don't backup
1635 the pc on purpose; this is to match behaviour without
1636 stepping. */
35669430
DE
1637
1638 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1639
1640 if (debug_displaced)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "displaced: "
5af949e3
UW
1643 "relocated %%rip from %s to %s\n",
1644 paddress (gdbarch, orig_rip),
1645 paddress (gdbarch, rip));
35669430
DE
1646 }
1647 }
1648
1649 /* If the instruction was PUSHFL, then the TF bit will be set in the
1650 pushed value, and should be cleared. We'll leave this for later,
1651 since GDB already messes up the TF flag when stepping over a
1652 pushfl. */
1653
1654 /* If the instruction was a call, the return address now atop the
1655 stack is the address following the copied instruction. We need
1656 to make it the address following the original instruction. */
1657 if (amd64_call_p (insn_details))
1658 {
1659 ULONGEST rsp;
1660 ULONGEST retaddr;
1661 const ULONGEST retaddr_len = 8;
1662
1663 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1664 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1665 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1666 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430
DE
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1670 "displaced: relocated return addr at %s "
1671 "to %s\n",
1672 paddress (gdbarch, rsp),
1673 paddress (gdbarch, retaddr));
35669430
DE
1674 }
1675}
dde08ee1
PA
1676
1677/* If the instruction INSN uses RIP-relative addressing, return the
1678 offset into the raw INSN where the displacement to be adjusted is
1679 found. Returns 0 if the instruction doesn't use RIP-relative
1680 addressing. */
1681
1682static int
1683rip_relative_offset (struct amd64_insn *insn)
1684{
1685 if (insn->modrm_offset != -1)
1686 {
1687 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1688
1689 if ((modrm & 0xc7) == 0x05)
1690 {
1691 /* The displacement is found right after the ModRM byte. */
1692 return insn->modrm_offset + 1;
1693 }
1694 }
1695
1696 return 0;
1697}
1698
1699static void
1700append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1701{
1702 target_write_memory (*to, buf, len);
1703 *to += len;
1704}
1705
60965737 1706static void
dde08ee1
PA
1707amd64_relocate_instruction (struct gdbarch *gdbarch,
1708 CORE_ADDR *to, CORE_ADDR oldloc)
1709{
1710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1711 int len = gdbarch_max_insn_length (gdbarch);
1712 /* Extra space for sentinels. */
1713 int fixup_sentinel_space = len;
1714 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1715 struct amd64_insn insn_details;
1716 int offset = 0;
1717 LONGEST rel32, newrel;
1718 gdb_byte *insn;
1719 int insn_length;
1720
1721 read_memory (oldloc, buf, len);
1722
1723 /* Set up the sentinel space so we don't have to worry about running
1724 off the end of the buffer. An excessive number of leading prefixes
1725 could otherwise cause this. */
1726 memset (buf + len, 0, fixup_sentinel_space);
1727
1728 insn = buf;
1729 amd64_get_insn_details (insn, &insn_details);
1730
1731 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1732
1733 /* Skip legacy instruction prefixes. */
1734 insn = amd64_skip_prefixes (insn);
1735
1736 /* Adjust calls with 32-bit relative addresses as push/jump, with
1737 the address pushed being the location where the original call in
1738 the user program would return to. */
1739 if (insn[0] == 0xe8)
1740 {
1741 gdb_byte push_buf[16];
1742 unsigned int ret_addr;
1743
1744 /* Where "ret" in the original code will return to. */
1745 ret_addr = oldloc + insn_length;
0963b4bd 1746 push_buf[0] = 0x68; /* pushq $... */
144db827 1747 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1748 /* Push the push. */
1749 append_insns (to, 5, push_buf);
1750
1751 /* Convert the relative call to a relative jump. */
1752 insn[0] = 0xe9;
1753
1754 /* Adjust the destination offset. */
1755 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1756 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1757 store_signed_integer (insn + 1, 4, byte_order, newrel);
1758
1759 if (debug_displaced)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "Adjusted insn rel32=%s at %s to"
1762 " rel32=%s at %s\n",
1763 hex_string (rel32), paddress (gdbarch, oldloc),
1764 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1765
1766 /* Write the adjusted jump into its displaced location. */
1767 append_insns (to, 5, insn);
1768 return;
1769 }
1770
1771 offset = rip_relative_offset (&insn_details);
1772 if (!offset)
1773 {
1774 /* Adjust jumps with 32-bit relative addresses. Calls are
1775 already handled above. */
1776 if (insn[0] == 0xe9)
1777 offset = 1;
1778 /* Adjust conditional jumps. */
1779 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1780 offset = 2;
1781 }
1782
1783 if (offset)
1784 {
1785 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1786 newrel = (oldloc - *to) + rel32;
f4a1794a 1787 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1790 "Adjusted insn rel32=%s at %s to"
1791 " rel32=%s at %s\n",
dde08ee1
PA
1792 hex_string (rel32), paddress (gdbarch, oldloc),
1793 hex_string (newrel), paddress (gdbarch, *to));
1794 }
1795
1796 /* Write the adjusted instruction into its displaced location. */
1797 append_insns (to, insn_length, buf);
1798}
1799
35669430 1800\f
c4f35dd8 1801/* The maximum number of saved registers. This should include %rip. */
90f90721 1802#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1803
e53bef9f 1804struct amd64_frame_cache
c4f35dd8
MK
1805{
1806 /* Base address. */
1807 CORE_ADDR base;
8fbca658 1808 int base_p;
c4f35dd8
MK
1809 CORE_ADDR sp_offset;
1810 CORE_ADDR pc;
1811
1812 /* Saved registers. */
e53bef9f 1813 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1814 CORE_ADDR saved_sp;
e0c62198 1815 int saved_sp_reg;
c4f35dd8
MK
1816
1817 /* Do we have a frame? */
1818 int frameless_p;
1819};
8dda9770 1820
d2449ee8 1821/* Initialize a frame cache. */
c4f35dd8 1822
d2449ee8
DJ
1823static void
1824amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1825{
c4f35dd8
MK
1826 int i;
1827
c4f35dd8
MK
1828 /* Base address. */
1829 cache->base = 0;
8fbca658 1830 cache->base_p = 0;
c4f35dd8
MK
1831 cache->sp_offset = -8;
1832 cache->pc = 0;
1833
1834 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1835 offset (that's where %rbp is supposed to be stored).
1836 The values start out as being offsets, and are later converted to
1837 addresses (at which point -1 is interpreted as an address, still meaning
1838 "invalid"). */
e53bef9f 1839 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1840 cache->saved_regs[i] = -1;
1841 cache->saved_sp = 0;
e0c62198 1842 cache->saved_sp_reg = -1;
c4f35dd8
MK
1843
1844 /* Frameless until proven otherwise. */
1845 cache->frameless_p = 1;
d2449ee8 1846}
c4f35dd8 1847
d2449ee8
DJ
1848/* Allocate and initialize a frame cache. */
1849
1850static struct amd64_frame_cache *
1851amd64_alloc_frame_cache (void)
1852{
1853 struct amd64_frame_cache *cache;
1854
1855 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1856 amd64_init_frame_cache (cache);
c4f35dd8 1857 return cache;
8dda9770 1858}
53e95fcf 1859
e0c62198
L
1860/* GCC 4.4 and later, can put code in the prologue to realign the
1861 stack pointer. Check whether PC points to such code, and update
1862 CACHE accordingly. Return the first instruction after the code
1863 sequence or CURRENT_PC, whichever is smaller. If we don't
1864 recognize the code, return PC. */
1865
1866static CORE_ADDR
1867amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1868 struct amd64_frame_cache *cache)
1869{
1870 /* There are 2 code sequences to re-align stack before the frame
1871 gets set up:
1872
1873 1. Use a caller-saved saved register:
1874
1875 leaq 8(%rsp), %reg
1876 andq $-XXX, %rsp
1877 pushq -8(%reg)
1878
1879 2. Use a callee-saved saved register:
1880
1881 pushq %reg
1882 leaq 16(%rsp), %reg
1883 andq $-XXX, %rsp
1884 pushq -8(%reg)
1885
1886 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1887
1888 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1889 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1890 */
1891
1892 gdb_byte buf[18];
1893 int reg, r;
1894 int offset, offset_and;
e0c62198 1895
bae8a07a 1896 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1897 return pc;
1898
1899 /* Check caller-saved saved register. The first instruction has
1900 to be "leaq 8(%rsp), %reg". */
1901 if ((buf[0] & 0xfb) == 0x48
1902 && buf[1] == 0x8d
1903 && buf[3] == 0x24
1904 && buf[4] == 0x8)
1905 {
1906 /* MOD must be binary 10 and R/M must be binary 100. */
1907 if ((buf[2] & 0xc7) != 0x44)
1908 return pc;
1909
1910 /* REG has register number. */
1911 reg = (buf[2] >> 3) & 7;
1912
1913 /* Check the REX.R bit. */
1914 if (buf[0] == 0x4c)
1915 reg += 8;
1916
1917 offset = 5;
1918 }
1919 else
1920 {
1921 /* Check callee-saved saved register. The first instruction
1922 has to be "pushq %reg". */
1923 reg = 0;
1924 if ((buf[0] & 0xf8) == 0x50)
1925 offset = 0;
1926 else if ((buf[0] & 0xf6) == 0x40
1927 && (buf[1] & 0xf8) == 0x50)
1928 {
1929 /* Check the REX.B bit. */
1930 if ((buf[0] & 1) != 0)
1931 reg = 8;
1932
1933 offset = 1;
1934 }
1935 else
1936 return pc;
1937
1938 /* Get register. */
1939 reg += buf[offset] & 0x7;
1940
1941 offset++;
1942
1943 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1944 if ((buf[offset] & 0xfb) != 0x48
1945 || buf[offset + 1] != 0x8d
1946 || buf[offset + 3] != 0x24
1947 || buf[offset + 4] != 0x10)
1948 return pc;
1949
1950 /* MOD must be binary 10 and R/M must be binary 100. */
1951 if ((buf[offset + 2] & 0xc7) != 0x44)
1952 return pc;
1953
1954 /* REG has register number. */
1955 r = (buf[offset + 2] >> 3) & 7;
1956
1957 /* Check the REX.R bit. */
1958 if (buf[offset] == 0x4c)
1959 r += 8;
1960
1961 /* Registers in pushq and leaq have to be the same. */
1962 if (reg != r)
1963 return pc;
1964
1965 offset += 5;
1966 }
1967
1968 /* Rigister can't be %rsp nor %rbp. */
1969 if (reg == 4 || reg == 5)
1970 return pc;
1971
1972 /* The next instruction has to be "andq $-XXX, %rsp". */
1973 if (buf[offset] != 0x48
1974 || buf[offset + 2] != 0xe4
1975 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1976 return pc;
1977
1978 offset_and = offset;
1979 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1980
1981 /* The next instruction has to be "pushq -8(%reg)". */
1982 r = 0;
1983 if (buf[offset] == 0xff)
1984 offset++;
1985 else if ((buf[offset] & 0xf6) == 0x40
1986 && buf[offset + 1] == 0xff)
1987 {
1988 /* Check the REX.B bit. */
1989 if ((buf[offset] & 0x1) != 0)
1990 r = 8;
1991 offset += 2;
1992 }
1993 else
1994 return pc;
1995
1996 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1997 01. */
1998 if (buf[offset + 1] != 0xf8
1999 || (buf[offset] & 0xf8) != 0x70)
2000 return pc;
2001
2002 /* R/M has register. */
2003 r += buf[offset] & 7;
2004
2005 /* Registers in leaq and pushq have to be the same. */
2006 if (reg != r)
2007 return pc;
2008
2009 if (current_pc > pc + offset_and)
35669430 2010 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198
L
2011
2012 return min (pc + offset + 2, current_pc);
2013}
2014
ac142d96
L
2015/* Similar to amd64_analyze_stack_align for x32. */
2016
2017static CORE_ADDR
2018amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2019 struct amd64_frame_cache *cache)
2020{
2021 /* There are 2 code sequences to re-align stack before the frame
2022 gets set up:
2023
2024 1. Use a caller-saved saved register:
2025
2026 leaq 8(%rsp), %reg
2027 andq $-XXX, %rsp
2028 pushq -8(%reg)
2029
2030 or
2031
2032 [addr32] leal 8(%rsp), %reg
2033 andl $-XXX, %esp
2034 [addr32] pushq -8(%reg)
2035
2036 2. Use a callee-saved saved register:
2037
2038 pushq %reg
2039 leaq 16(%rsp), %reg
2040 andq $-XXX, %rsp
2041 pushq -8(%reg)
2042
2043 or
2044
2045 pushq %reg
2046 [addr32] leal 16(%rsp), %reg
2047 andl $-XXX, %esp
2048 [addr32] pushq -8(%reg)
2049
2050 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2051
2052 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2053 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2054
2055 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2056
2057 0x83 0xe4 0xf0 andl $-16, %esp
2058 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2059 */
2060
2061 gdb_byte buf[19];
2062 int reg, r;
2063 int offset, offset_and;
2064
2065 if (target_read_memory (pc, buf, sizeof buf))
2066 return pc;
2067
2068 /* Skip optional addr32 prefix. */
2069 offset = buf[0] == 0x67 ? 1 : 0;
2070
2071 /* Check caller-saved saved register. The first instruction has
2072 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2073 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2074 && buf[offset + 1] == 0x8d
2075 && buf[offset + 3] == 0x24
2076 && buf[offset + 4] == 0x8)
2077 {
2078 /* MOD must be binary 10 and R/M must be binary 100. */
2079 if ((buf[offset + 2] & 0xc7) != 0x44)
2080 return pc;
2081
2082 /* REG has register number. */
2083 reg = (buf[offset + 2] >> 3) & 7;
2084
2085 /* Check the REX.R bit. */
2086 if ((buf[offset] & 0x4) != 0)
2087 reg += 8;
2088
2089 offset += 5;
2090 }
2091 else
2092 {
2093 /* Check callee-saved saved register. The first instruction
2094 has to be "pushq %reg". */
2095 reg = 0;
2096 if ((buf[offset] & 0xf6) == 0x40
2097 && (buf[offset + 1] & 0xf8) == 0x50)
2098 {
2099 /* Check the REX.B bit. */
2100 if ((buf[offset] & 1) != 0)
2101 reg = 8;
2102
2103 offset += 1;
2104 }
2105 else if ((buf[offset] & 0xf8) != 0x50)
2106 return pc;
2107
2108 /* Get register. */
2109 reg += buf[offset] & 0x7;
2110
2111 offset++;
2112
2113 /* Skip optional addr32 prefix. */
2114 if (buf[offset] == 0x67)
2115 offset++;
2116
2117 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2118 "leal 16(%rsp), %reg". */
2119 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2120 || buf[offset + 1] != 0x8d
2121 || buf[offset + 3] != 0x24
2122 || buf[offset + 4] != 0x10)
2123 return pc;
2124
2125 /* MOD must be binary 10 and R/M must be binary 100. */
2126 if ((buf[offset + 2] & 0xc7) != 0x44)
2127 return pc;
2128
2129 /* REG has register number. */
2130 r = (buf[offset + 2] >> 3) & 7;
2131
2132 /* Check the REX.R bit. */
2133 if ((buf[offset] & 0x4) != 0)
2134 r += 8;
2135
2136 /* Registers in pushq and leaq have to be the same. */
2137 if (reg != r)
2138 return pc;
2139
2140 offset += 5;
2141 }
2142
2143 /* Rigister can't be %rsp nor %rbp. */
2144 if (reg == 4 || reg == 5)
2145 return pc;
2146
2147 /* The next instruction may be "andq $-XXX, %rsp" or
2148 "andl $-XXX, %esp". */
2149 if (buf[offset] != 0x48)
2150 offset--;
2151
2152 if (buf[offset + 2] != 0xe4
2153 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2154 return pc;
2155
2156 offset_and = offset;
2157 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2158
2159 /* Skip optional addr32 prefix. */
2160 if (buf[offset] == 0x67)
2161 offset++;
2162
2163 /* The next instruction has to be "pushq -8(%reg)". */
2164 r = 0;
2165 if (buf[offset] == 0xff)
2166 offset++;
2167 else if ((buf[offset] & 0xf6) == 0x40
2168 && buf[offset + 1] == 0xff)
2169 {
2170 /* Check the REX.B bit. */
2171 if ((buf[offset] & 0x1) != 0)
2172 r = 8;
2173 offset += 2;
2174 }
2175 else
2176 return pc;
2177
2178 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2179 01. */
2180 if (buf[offset + 1] != 0xf8
2181 || (buf[offset] & 0xf8) != 0x70)
2182 return pc;
2183
2184 /* R/M has register. */
2185 r += buf[offset] & 7;
2186
2187 /* Registers in leaq and pushq have to be the same. */
2188 if (reg != r)
2189 return pc;
2190
2191 if (current_pc > pc + offset_and)
2192 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2193
2194 return min (pc + offset + 2, current_pc);
2195}
2196
c4f35dd8
MK
2197/* Do a limited analysis of the prologue at PC and update CACHE
2198 accordingly. Bail out early if CURRENT_PC is reached. Return the
2199 address where the analysis stopped.
2200
2201 We will handle only functions beginning with:
2202
2203 pushq %rbp 0x55
50f1ae7b 2204 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2205
649e6d92
MK
2206 or (for the X32 ABI):
2207
2208 pushq %rbp 0x55
2209 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2210
2211 Any function that doesn't start with one of these sequences will be
2212 assumed to have no prologue and thus no valid frame pointer in
2213 %rbp. */
c4f35dd8
MK
2214
2215static CORE_ADDR
e17a4113
UW
2216amd64_analyze_prologue (struct gdbarch *gdbarch,
2217 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2218 struct amd64_frame_cache *cache)
53e95fcf 2219{
e17a4113 2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
50f1ae7b
DE
2221 /* There are two variations of movq %rsp, %rbp. */
2222 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2223 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2224 /* Ditto for movl %esp, %ebp. */
2225 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2226 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2227
d8de1ef7
MK
2228 gdb_byte buf[3];
2229 gdb_byte op;
c4f35dd8
MK
2230
2231 if (current_pc <= pc)
2232 return current_pc;
2233
ac142d96
L
2234 if (gdbarch_ptr_bit (gdbarch) == 32)
2235 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2236 else
2237 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2238
bae8a07a 2239 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8
MK
2240
2241 if (op == 0x55) /* pushq %rbp */
2242 {
2243 /* Take into account that we've executed the `pushq %rbp' that
2244 starts this instruction sequence. */
90f90721 2245 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2246 cache->sp_offset += 8;
2247
2248 /* If that's all, return now. */
2249 if (current_pc <= pc + 1)
2250 return current_pc;
2251
bae8a07a 2252 read_code (pc + 1, buf, 3);
c4f35dd8 2253
649e6d92
MK
2254 /* Check for `movq %rsp, %rbp'. */
2255 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2256 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2257 {
2258 /* OK, we actually have a frame. */
2259 cache->frameless_p = 0;
2260 return pc + 4;
2261 }
2262
2263 /* For X32, also check for `movq %esp, %ebp'. */
2264 if (gdbarch_ptr_bit (gdbarch) == 32)
2265 {
2266 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2267 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2268 {
2269 /* OK, we actually have a frame. */
2270 cache->frameless_p = 0;
2271 return pc + 3;
2272 }
2273 }
2274
2275 return pc + 1;
c4f35dd8
MK
2276 }
2277
2278 return pc;
53e95fcf
JS
2279}
2280
df15bd07
JK
2281/* Work around false termination of prologue - GCC PR debug/48827.
2282
2283 START_PC is the first instruction of a function, PC is its minimal already
2284 determined advanced address. Function returns PC if it has nothing to do.
2285
2286 84 c0 test %al,%al
2287 74 23 je after
2288 <-- here is 0 lines advance - the false prologue end marker.
2289 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2290 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2291 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2292 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2293 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2294 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2295 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2296 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2297 after: */
c4f35dd8
MK
2298
2299static CORE_ADDR
df15bd07 2300amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2301{
08711b9a
JK
2302 struct symtab_and_line start_pc_sal, next_sal;
2303 gdb_byte buf[4 + 8 * 7];
2304 int offset, xmmreg;
c4f35dd8 2305
08711b9a
JK
2306 if (pc == start_pc)
2307 return pc;
2308
2309 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2310 if (start_pc_sal.symtab == NULL
43f3e411
DE
2311 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2312 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
08711b9a
JK
2313 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2314 return pc;
2315
2316 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2317 if (next_sal.line != start_pc_sal.line)
2318 return pc;
2319
2320 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2321 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2322 return pc;
2323
2324 /* test %al,%al */
2325 if (buf[0] != 0x84 || buf[1] != 0xc0)
2326 return pc;
2327 /* je AFTER */
2328 if (buf[2] != 0x74)
2329 return pc;
2330
2331 offset = 4;
2332 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2333 {
bede5f5f 2334 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2335 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
bede5f5f 2336 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2337 return pc;
2338
bede5f5f
JK
2339 /* 0b01?????? */
2340 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2341 {
2342 /* 8-bit displacement. */
2343 offset += 4;
2344 }
bede5f5f
JK
2345 /* 0b10?????? */
2346 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2347 {
2348 /* 32-bit displacement. */
2349 offset += 7;
2350 }
2351 else
2352 return pc;
2353 }
2354
2355 /* je AFTER */
2356 if (offset - 4 != buf[3])
2357 return pc;
2358
2359 return next_sal.end;
53e95fcf 2360}
df15bd07
JK
2361
2362/* Return PC of first real instruction. */
2363
2364static CORE_ADDR
2365amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2366{
2367 struct amd64_frame_cache cache;
2368 CORE_ADDR pc;
56bf0743
KB
2369 CORE_ADDR func_addr;
2370
2371 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2372 {
2373 CORE_ADDR post_prologue_pc
2374 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2375 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
2376
2377 /* Clang always emits a line note before the prologue and another
2378 one after. We trust clang to emit usable line notes. */
2379 if (post_prologue_pc
43f3e411
DE
2380 && (cust != NULL
2381 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 2382 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
56bf0743
KB
2383 return max (start_pc, post_prologue_pc);
2384 }
df15bd07
JK
2385
2386 amd64_init_frame_cache (&cache);
2387 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2388 &cache);
2389 if (cache.frameless_p)
2390 return start_pc;
2391
2392 return amd64_skip_xmm_prologue (pc, start_pc);
2393}
c4f35dd8 2394\f
53e95fcf 2395
c4f35dd8
MK
2396/* Normal frames. */
2397
8fbca658
PA
2398static void
2399amd64_frame_cache_1 (struct frame_info *this_frame,
2400 struct amd64_frame_cache *cache)
6d686a84 2401{
e17a4113
UW
2402 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2404 gdb_byte buf[8];
6d686a84 2405 int i;
6d686a84 2406
10458914 2407 cache->pc = get_frame_func (this_frame);
c4f35dd8 2408 if (cache->pc != 0)
e17a4113
UW
2409 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2410 cache);
c4f35dd8
MK
2411
2412 if (cache->frameless_p)
2413 {
4a28816e
MK
2414 /* We didn't find a valid frame. If we're at the start of a
2415 function, or somewhere half-way its prologue, the function's
2416 frame probably hasn't been fully setup yet. Try to
2417 reconstruct the base address for the stack frame by looking
2418 at the stack pointer. For truly "frameless" functions this
2419 might work too. */
c4f35dd8 2420
e0c62198
L
2421 if (cache->saved_sp_reg != -1)
2422 {
8fbca658
PA
2423 /* Stack pointer has been saved. */
2424 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2425 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2426
e0c62198
L
2427 /* We're halfway aligning the stack. */
2428 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2429 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2430
2431 /* This will be added back below. */
2432 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2433 }
2434 else
2435 {
2436 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2437 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2438 + cache->sp_offset;
e0c62198 2439 }
c4f35dd8 2440 }
35883a3f
MK
2441 else
2442 {
10458914 2443 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2444 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2445 }
c4f35dd8
MK
2446
2447 /* Now that we have the base address for the stack frame we can
2448 calculate the value of %rsp in the calling frame. */
2449 cache->saved_sp = cache->base + 16;
2450
35883a3f
MK
2451 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2452 frame we find it at the same offset from the reconstructed base
e0c62198
L
2453 address. If we're halfway aligning the stack, %rip is handled
2454 differently (see above). */
2455 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2456 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2457
c4f35dd8
MK
2458 /* Adjust all the saved registers such that they contain addresses
2459 instead of offsets. */
e53bef9f 2460 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2461 if (cache->saved_regs[i] != -1)
2462 cache->saved_regs[i] += cache->base;
2463
8fbca658
PA
2464 cache->base_p = 1;
2465}
2466
2467static struct amd64_frame_cache *
2468amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2469{
8fbca658
PA
2470 struct amd64_frame_cache *cache;
2471
2472 if (*this_cache)
2473 return *this_cache;
2474
2475 cache = amd64_alloc_frame_cache ();
2476 *this_cache = cache;
2477
492d29ea 2478 TRY
8fbca658
PA
2479 {
2480 amd64_frame_cache_1 (this_frame, cache);
2481 }
492d29ea 2482 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2483 {
2484 if (ex.error != NOT_AVAILABLE_ERROR)
2485 throw_exception (ex);
2486 }
492d29ea 2487 END_CATCH
8fbca658 2488
c4f35dd8 2489 return cache;
6d686a84
ML
2490}
2491
8fbca658
PA
2492static enum unwind_stop_reason
2493amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2494 void **this_cache)
2495{
2496 struct amd64_frame_cache *cache =
2497 amd64_frame_cache (this_frame, this_cache);
2498
2499 if (!cache->base_p)
2500 return UNWIND_UNAVAILABLE;
2501
2502 /* This marks the outermost frame. */
2503 if (cache->base == 0)
2504 return UNWIND_OUTERMOST;
2505
2506 return UNWIND_NO_REASON;
2507}
2508
c4f35dd8 2509static void
10458914 2510amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
e53bef9f 2511 struct frame_id *this_id)
c4f35dd8 2512{
e53bef9f 2513 struct amd64_frame_cache *cache =
10458914 2514 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2515
8fbca658 2516 if (!cache->base_p)
5ce0145d
PA
2517 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2518 else if (cache->base == 0)
2519 {
2520 /* This marks the outermost frame. */
2521 return;
2522 }
2523 else
2524 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2525}
e76e1718 2526
10458914
DJ
2527static struct value *
2528amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2529 int regnum)
53e95fcf 2530{
10458914 2531 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2532 struct amd64_frame_cache *cache =
10458914 2533 amd64_frame_cache (this_frame, this_cache);
e76e1718 2534
c4f35dd8 2535 gdb_assert (regnum >= 0);
b1ab997b 2536
2ae02b47 2537 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2538 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2539
e53bef9f 2540 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2541 return frame_unwind_got_memory (this_frame, regnum,
2542 cache->saved_regs[regnum]);
e76e1718 2543
10458914 2544 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2545}
e76e1718 2546
e53bef9f 2547static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
2548{
2549 NORMAL_FRAME,
8fbca658 2550 amd64_frame_unwind_stop_reason,
e53bef9f 2551 amd64_frame_this_id,
10458914
DJ
2552 amd64_frame_prev_register,
2553 NULL,
2554 default_frame_sniffer
c4f35dd8 2555};
c4f35dd8 2556\f
6710bf39
SS
2557/* Generate a bytecode expression to get the value of the saved PC. */
2558
2559static void
2560amd64_gen_return_address (struct gdbarch *gdbarch,
2561 struct agent_expr *ax, struct axs_value *value,
2562 CORE_ADDR scope)
2563{
2564 /* The following sequence assumes the traditional use of the base
2565 register. */
2566 ax_reg (ax, AMD64_RBP_REGNUM);
2567 ax_const_l (ax, 8);
2568 ax_simple (ax, aop_add);
2569 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2570 value->kind = axs_lvalue_memory;
2571}
2572\f
e76e1718 2573
c4f35dd8
MK
2574/* Signal trampolines. */
2575
2576/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2577 64-bit variants. This would require using identical frame caches
2578 on both platforms. */
2579
e53bef9f 2580static struct amd64_frame_cache *
10458914 2581amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2582{
e17a4113
UW
2583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2586 struct amd64_frame_cache *cache;
c4f35dd8 2587 CORE_ADDR addr;
d8de1ef7 2588 gdb_byte buf[8];
2b5e0749 2589 int i;
c4f35dd8
MK
2590
2591 if (*this_cache)
2592 return *this_cache;
2593
e53bef9f 2594 cache = amd64_alloc_frame_cache ();
c4f35dd8 2595
492d29ea 2596 TRY
8fbca658
PA
2597 {
2598 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2599 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2600
2601 addr = tdep->sigcontext_addr (this_frame);
2602 gdb_assert (tdep->sc_reg_offset);
2603 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2604 for (i = 0; i < tdep->sc_num_regs; i++)
2605 if (tdep->sc_reg_offset[i] != -1)
2606 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2607
8fbca658
PA
2608 cache->base_p = 1;
2609 }
492d29ea 2610 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2611 {
2612 if (ex.error != NOT_AVAILABLE_ERROR)
2613 throw_exception (ex);
2614 }
492d29ea 2615 END_CATCH
c4f35dd8
MK
2616
2617 *this_cache = cache;
2618 return cache;
53e95fcf
JS
2619}
2620
8fbca658
PA
2621static enum unwind_stop_reason
2622amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2623 void **this_cache)
2624{
2625 struct amd64_frame_cache *cache =
2626 amd64_sigtramp_frame_cache (this_frame, this_cache);
2627
2628 if (!cache->base_p)
2629 return UNWIND_UNAVAILABLE;
2630
2631 return UNWIND_NO_REASON;
2632}
2633
c4f35dd8 2634static void
10458914 2635amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
e53bef9f 2636 void **this_cache, struct frame_id *this_id)
c4f35dd8 2637{
e53bef9f 2638 struct amd64_frame_cache *cache =
10458914 2639 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2640
8fbca658 2641 if (!cache->base_p)
5ce0145d
PA
2642 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2643 else if (cache->base == 0)
2644 {
2645 /* This marks the outermost frame. */
2646 return;
2647 }
2648 else
2649 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2650}
2651
10458914
DJ
2652static struct value *
2653amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2654 void **this_cache, int regnum)
c4f35dd8
MK
2655{
2656 /* Make sure we've initialized the cache. */
10458914 2657 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2658
10458914 2659 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2660}
2661
10458914
DJ
2662static int
2663amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2664 struct frame_info *this_frame,
2665 void **this_cache)
c4f35dd8 2666{
10458914 2667 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
911bc6ee
MK
2668
2669 /* We shouldn't even bother if we don't have a sigcontext_addr
2670 handler. */
2671 if (tdep->sigcontext_addr == NULL)
10458914 2672 return 0;
911bc6ee
MK
2673
2674 if (tdep->sigtramp_p != NULL)
2675 {
10458914
DJ
2676 if (tdep->sigtramp_p (this_frame))
2677 return 1;
911bc6ee 2678 }
c4f35dd8 2679
911bc6ee 2680 if (tdep->sigtramp_start != 0)
1c3545ae 2681 {
10458914 2682 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2683
911bc6ee
MK
2684 gdb_assert (tdep->sigtramp_end != 0);
2685 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2686 return 1;
1c3545ae 2687 }
c4f35dd8 2688
10458914 2689 return 0;
c4f35dd8 2690}
10458914
DJ
2691
2692static const struct frame_unwind amd64_sigtramp_frame_unwind =
2693{
2694 SIGTRAMP_FRAME,
8fbca658 2695 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2696 amd64_sigtramp_frame_this_id,
2697 amd64_sigtramp_frame_prev_register,
2698 NULL,
2699 amd64_sigtramp_frame_sniffer
2700};
c4f35dd8
MK
2701\f
2702
2703static CORE_ADDR
10458914 2704amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2705{
e53bef9f 2706 struct amd64_frame_cache *cache =
10458914 2707 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2708
2709 return cache->base;
2710}
2711
e53bef9f 2712static const struct frame_base amd64_frame_base =
c4f35dd8 2713{
e53bef9f
MK
2714 &amd64_frame_unwind,
2715 amd64_frame_base_address,
2716 amd64_frame_base_address,
2717 amd64_frame_base_address
c4f35dd8
MK
2718};
2719
872761f4
MS
2720/* Normal frames, but in a function epilogue. */
2721
c9cf6e20
MG
2722/* Implement the stack_frame_destroyed_p gdbarch method.
2723
2724 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2725 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2726 the function's stack frame. */
2727
2728static int
c9cf6e20 2729amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2730{
2731 gdb_byte insn;
43f3e411 2732 struct compunit_symtab *cust;
e0d00bc7 2733
43f3e411
DE
2734 cust = find_pc_compunit_symtab (pc);
2735 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2736 return 0;
872761f4
MS
2737
2738 if (target_read_memory (pc, &insn, 1))
2739 return 0; /* Can't read memory at pc. */
2740
2741 if (insn != 0xc3) /* 'ret' instruction. */
2742 return 0;
2743
2744 return 1;
2745}
2746
2747static int
2748amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2749 struct frame_info *this_frame,
2750 void **this_prologue_cache)
2751{
2752 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2753 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2754 get_frame_pc (this_frame));
872761f4
MS
2755 else
2756 return 0;
2757}
2758
2759static struct amd64_frame_cache *
2760amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2761{
2762 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2763 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2764 struct amd64_frame_cache *cache;
6c10c06b 2765 gdb_byte buf[8];
872761f4
MS
2766
2767 if (*this_cache)
2768 return *this_cache;
2769
2770 cache = amd64_alloc_frame_cache ();
2771 *this_cache = cache;
2772
492d29ea 2773 TRY
8fbca658
PA
2774 {
2775 /* Cache base will be %esp plus cache->sp_offset (-8). */
2776 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2777 cache->base = extract_unsigned_integer (buf, 8,
2778 byte_order) + cache->sp_offset;
2779
2780 /* Cache pc will be the frame func. */
2781 cache->pc = get_frame_pc (this_frame);
872761f4 2782
8fbca658
PA
2783 /* The saved %esp will be at cache->base plus 16. */
2784 cache->saved_sp = cache->base + 16;
872761f4 2785
8fbca658
PA
2786 /* The saved %eip will be at cache->base plus 8. */
2787 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2788
8fbca658
PA
2789 cache->base_p = 1;
2790 }
492d29ea 2791 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2792 {
2793 if (ex.error != NOT_AVAILABLE_ERROR)
2794 throw_exception (ex);
2795 }
492d29ea 2796 END_CATCH
872761f4
MS
2797
2798 return cache;
2799}
2800
8fbca658
PA
2801static enum unwind_stop_reason
2802amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2803 void **this_cache)
2804{
2805 struct amd64_frame_cache *cache
2806 = amd64_epilogue_frame_cache (this_frame, this_cache);
2807
2808 if (!cache->base_p)
2809 return UNWIND_UNAVAILABLE;
2810
2811 return UNWIND_NO_REASON;
2812}
2813
872761f4
MS
2814static void
2815amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2816 void **this_cache,
2817 struct frame_id *this_id)
2818{
2819 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2820 this_cache);
2821
8fbca658 2822 if (!cache->base_p)
5ce0145d
PA
2823 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2824 else
2825 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
872761f4
MS
2826}
2827
2828static const struct frame_unwind amd64_epilogue_frame_unwind =
2829{
2830 NORMAL_FRAME,
8fbca658 2831 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
2832 amd64_epilogue_frame_this_id,
2833 amd64_frame_prev_register,
2834 NULL,
2835 amd64_epilogue_frame_sniffer
2836};
2837
166f4c7b 2838static struct frame_id
10458914 2839amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
166f4c7b 2840{
c4f35dd8
MK
2841 CORE_ADDR fp;
2842
10458914 2843 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 2844
10458914 2845 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
2846}
2847
8b148df9
AC
2848/* 16 byte align the SP per frame requirements. */
2849
2850static CORE_ADDR
e53bef9f 2851amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
2852{
2853 return sp & -(CORE_ADDR)16;
2854}
473f17b0
MK
2855\f
2856
593adc23
MK
2857/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2858 in the floating-point register set REGSET to register cache
2859 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2860
2861static void
e53bef9f
MK
2862amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2863 int regnum, const void *fpregs, size_t len)
473f17b0 2864{
09424cff
AA
2865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 2867
1528345d 2868 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 2869 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 2870}
8b148df9 2871
593adc23
MK
2872/* Collect register REGNUM from the register cache REGCACHE and store
2873 it in the buffer specified by FPREGS and LEN as described by the
2874 floating-point register set REGSET. If REGNUM is -1, do this for
2875 all registers in REGSET. */
2876
2877static void
2878amd64_collect_fpregset (const struct regset *regset,
2879 const struct regcache *regcache,
2880 int regnum, void *fpregs, size_t len)
2881{
09424cff
AA
2882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2883 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
593adc23 2884
1528345d 2885 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
2886 amd64_collect_fxsave (regcache, regnum, fpregs);
2887}
2888
8f0435f7 2889const struct regset amd64_fpregset =
ecc37a5a
AA
2890 {
2891 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2892 };
c6b33596
MK
2893\f
2894
436675d3
PA
2895/* Figure out where the longjmp will land. Slurp the jmp_buf out of
2896 %rdi. We expect its value to be a pointer to the jmp_buf structure
2897 from which we extract the address that we will land at. This
2898 address is copied into PC. This routine returns non-zero on
2899 success. */
2900
2901static int
2902amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2903{
2904 gdb_byte buf[8];
2905 CORE_ADDR jb_addr;
2906 struct gdbarch *gdbarch = get_frame_arch (frame);
2907 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
0dfff4cb 2908 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2909
2910 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2911 longjmp will land. */
2912 if (jb_pc_offset == -1)
2913 return 0;
2914
2915 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
2916 jb_addr= extract_typed_address
2917 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
2918 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2919 return 0;
2920
0dfff4cb 2921 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2922
2923 return 1;
2924}
2925
cf648174
HZ
2926static const int amd64_record_regmap[] =
2927{
2928 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2929 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2930 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2931 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2932 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2933 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2934};
2935
2213a65d 2936void
90f90721 2937amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 2938{
0c1a73d6 2939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 2940 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
2941 static const char *const stap_integer_prefixes[] = { "$", NULL };
2942 static const char *const stap_register_prefixes[] = { "%", NULL };
2943 static const char *const stap_register_indirection_prefixes[] = { "(",
2944 NULL };
2945 static const char *const stap_register_indirection_suffixes[] = { ")",
2946 NULL };
53e95fcf 2947
473f17b0
MK
2948 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2949 floating-point registers. */
2950 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 2951 tdep->fpregset = &amd64_fpregset;
473f17b0 2952
90884b2b
L
2953 if (! tdesc_has_registers (tdesc))
2954 tdesc = tdesc_amd64;
2955 tdep->tdesc = tdesc;
2956
2957 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2958 tdep->register_names = amd64_register_names;
2959
01f9f808
MS
2960 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2961 {
2962 tdep->zmmh_register_names = amd64_zmmh_names;
2963 tdep->k_register_names = amd64_k_names;
2964 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2965 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2966
2967 tdep->num_zmm_regs = 32;
2968 tdep->num_xmm_avx512_regs = 16;
2969 tdep->num_ymm_avx512_regs = 16;
2970
2971 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2972 tdep->k0_regnum = AMD64_K0_REGNUM;
2973 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2974 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
2975 }
2976
a055a187
L
2977 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2978 {
2979 tdep->ymmh_register_names = amd64_ymmh_names;
2980 tdep->num_ymm_regs = 16;
2981 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2982 }
2983
e43e105e
WT
2984 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
2985 {
2986 tdep->mpx_register_names = amd64_mpx_names;
2987 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
2988 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
2989 }
2990
fe01d668 2991 tdep->num_byte_regs = 20;
1ba53b71
L
2992 tdep->num_word_regs = 16;
2993 tdep->num_dword_regs = 16;
2994 /* Avoid wiring in the MMX registers for now. */
2995 tdep->num_mmx_regs = 0;
2996
3543a589
TT
2997 set_gdbarch_pseudo_register_read_value (gdbarch,
2998 amd64_pseudo_register_read_value);
1ba53b71
L
2999 set_gdbarch_pseudo_register_write (gdbarch,
3000 amd64_pseudo_register_write);
3001
3002 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3003
5716833c 3004 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3005 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3006 tdep->num_xmm_regs = 16;
53e95fcf 3007
0c1a73d6 3008 /* This is what all the fuss is about. */
53e95fcf
JS
3009 set_gdbarch_long_bit (gdbarch, 64);
3010 set_gdbarch_long_long_bit (gdbarch, 64);
3011 set_gdbarch_ptr_bit (gdbarch, 64);
3012
e53bef9f
MK
3013 /* In contrast to the i386, on AMD64 a `long double' actually takes
3014 up 128 bits, even though it's still based on the i387 extended
3015 floating-point format which has only 80 significant bits. */
b83b026c
MK
3016 set_gdbarch_long_double_bit (gdbarch, 128);
3017
e53bef9f 3018 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3019
3020 /* Register numbers of various important registers. */
90f90721
MK
3021 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3022 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3023 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3024 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3025
e53bef9f
MK
3026 /* The "default" register numbering scheme for AMD64 is referred to
3027 as the "DWARF Register Number Mapping" in the System V psABI.
3028 The preferred debugging format for all known AMD64 targets is
3029 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3030 DWARF-1), but we provide the same mapping just in case. This
3031 mapping is also used for stabs, which GCC does support. */
3032 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3033 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3034
c4f35dd8 3035 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3036 be in use on any of the supported AMD64 targets. */
53e95fcf 3037
c4f35dd8 3038 /* Call dummy code. */
e53bef9f
MK
3039 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3040 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3041 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3042
83acabca 3043 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3044 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3045 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3046
efb1c01c 3047 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 3048
e53bef9f 3049 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3050
cf648174
HZ
3051 tdep->record_regmap = amd64_record_regmap;
3052
10458914 3053 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3054
872761f4
MS
3055 /* Hook the function epilogue frame unwinder. This unwinder is
3056 appended to the list first, so that it supercedes the other
3057 unwinders in function epilogues. */
3058 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3059
3060 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3061 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3062 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3063 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3064
436675d3 3065 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3066
3067 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3068
3069 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3070
3071 /* SystemTap variables and functions. */
05c0465e
SDJ
3072 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3073 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3074 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3075 stap_register_indirection_prefixes);
3076 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3077 stap_register_indirection_suffixes);
55aa24fb
SDJ
3078 set_gdbarch_stap_is_single_operand (gdbarch,
3079 i386_stap_is_single_operand);
3080 set_gdbarch_stap_parse_special_token (gdbarch,
3081 i386_stap_parse_special_token);
c2170eef
MM
3082 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3083 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3084 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
c4f35dd8 3085}
fff4548b
MK
3086\f
3087
3088static struct type *
3089amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3090{
3091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3092
3093 switch (regnum - tdep->eax_regnum)
3094 {
3095 case AMD64_RBP_REGNUM: /* %ebp */
3096 case AMD64_RSP_REGNUM: /* %esp */
3097 return builtin_type (gdbarch)->builtin_data_ptr;
3098 case AMD64_RIP_REGNUM: /* %eip */
3099 return builtin_type (gdbarch)->builtin_func_ptr;
3100 }
3101
3102 return i386_pseudo_register_type (gdbarch, regnum);
3103}
3104
3105void
3106amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3107{
3108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3109 const struct target_desc *tdesc = info.target_desc;
3110
3111 amd64_init_abi (info, gdbarch);
3112
3113 if (! tdesc_has_registers (tdesc))
3114 tdesc = tdesc_x32;
3115 tdep->tdesc = tdesc;
3116
3117 tdep->num_dword_regs = 17;
3118 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3119
3120 set_gdbarch_long_bit (gdbarch, 32);
3121 set_gdbarch_ptr_bit (gdbarch, 32);
3122}
90884b2b 3123
97de3545
JB
3124/* Return the target description for a specified XSAVE feature mask. */
3125
3126const struct target_desc *
3127amd64_target_description (uint64_t xcr0)
3128{
3129 switch (xcr0 & X86_XSTATE_ALL_MASK)
3130 {
3131 case X86_XSTATE_MPX_AVX512_MASK:
3132 case X86_XSTATE_AVX512_MASK:
3133 return tdesc_amd64_avx512;
3134 case X86_XSTATE_MPX_MASK:
3135 return tdesc_amd64_mpx;
3136 case X86_XSTATE_AVX_MASK:
3137 return tdesc_amd64_avx;
3138 default:
3139 return tdesc_amd64;
3140 }
3141}
3142
90884b2b
L
3143/* Provide a prototype to silence -Wmissing-prototypes. */
3144void _initialize_amd64_tdep (void);
3145
3146void
3147_initialize_amd64_tdep (void)
3148{
3149 initialize_tdesc_amd64 ();
a055a187 3150 initialize_tdesc_amd64_avx ();
e43e105e 3151 initialize_tdesc_amd64_mpx ();
01f9f808
MS
3152 initialize_tdesc_amd64_avx512 ();
3153
ac1438b5
L
3154 initialize_tdesc_x32 ();
3155 initialize_tdesc_x32_avx ();
01f9f808 3156 initialize_tdesc_x32_avx512 ();
90884b2b 3157}
c4f35dd8
MK
3158\f
3159
41d041d6
MK
3160/* The 64-bit FXSAVE format differs from the 32-bit format in the
3161 sense that the instruction pointer and data pointer are simply
3162 64-bit offsets into the code segment and the data segment instead
3163 of a selector offset pair. The functions below store the upper 32
3164 bits of these pointers (instead of just the 16-bits of the segment
3165 selector). */
3166
3167/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3168 floating-point or SSE register value from *FXSAVE. If REGNUM is
3169 -1, do this for all registers. This function masks off any of the
3170 reserved bits in *FXSAVE. */
c4f35dd8
MK
3171
3172void
90f90721 3173amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3174 const void *fxsave)
c4f35dd8 3175{
20a6ec49
MD
3176 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3178
41d041d6 3179 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3180
233dfcf0
L
3181 if (fxsave
3182 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3183 {
d8de1ef7 3184 const gdb_byte *regs = fxsave;
41d041d6 3185
20a6ec49
MD
3186 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3187 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3188 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3189 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3190 }
0c1a73d6
MK
3191}
3192
a055a187
L
3193/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3194
3195void
3196amd64_supply_xsave (struct regcache *regcache, int regnum,
3197 const void *xsave)
3198{
3199 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3201
3202 i387_supply_xsave (regcache, regnum, xsave);
3203
233dfcf0
L
3204 if (xsave
3205 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3206 {
3207 const gdb_byte *regs = xsave;
3208
3209 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3210 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3211 regs + 12);
3212 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3213 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3214 regs + 20);
3215 }
3216}
3217
3c017e40
MK
3218/* Fill register REGNUM (if it is a floating-point or SSE register) in
3219 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3220 all registers. This function doesn't touch any of the reserved
3221 bits in *FXSAVE. */
3222
3223void
3224amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3225 void *fxsave)
3226{
20a6ec49
MD
3227 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d8de1ef7 3229 gdb_byte *regs = fxsave;
3c017e40
MK
3230
3231 i387_collect_fxsave (regcache, regnum, fxsave);
3232
233dfcf0 3233 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3234 {
20a6ec49
MD
3235 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3236 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3237 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3238 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3239 }
3c017e40 3240}
a055a187 3241
7a9dd1b2 3242/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3243
3244void
3245amd64_collect_xsave (const struct regcache *regcache, int regnum,
3246 void *xsave, int gcore)
3247{
3248 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3250 gdb_byte *regs = xsave;
3251
3252 i387_collect_xsave (regcache, regnum, xsave, gcore);
3253
233dfcf0 3254 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3255 {
3256 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3257 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3258 regs + 12);
3259 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3260 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3261 regs + 20);
3262 }
3263}
This page took 1.405442 seconds and 4 git commands to generate.