2007-12-06 Mick Davis <mickd@goanna.iinet.net.au>
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
6aba47ca 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
5ae96ec1
MK
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
22
23#include "defs.h"
c4f35dd8
MK
24#include "arch-utils.h"
25#include "block.h"
26#include "dummy-frame.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
53e95fcf 30#include "inferior.h"
53e95fcf 31#include "gdbcmd.h"
c4f35dd8
MK
32#include "gdbcore.h"
33#include "objfiles.h"
53e95fcf 34#include "regcache.h"
2c261fae 35#include "regset.h"
53e95fcf 36#include "symfile.h"
c4f35dd8 37
82dbc5f7 38#include "gdb_assert.h"
c4f35dd8 39
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
53e95fcf 42
e53bef9f
MK
43/* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
90f90721 45 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
402ecd56 50/* Register information. */
c4f35dd8 51
6707b003 52static const char *amd64_register_names[] =
de220d0f 53{
6707b003 54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
55
56 /* %r8 is indeed register number 8. */
6707b003
UW
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 59
af233647 60 /* %st0 is register number 24. */
6707b003
UW
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 63
af233647 64 /* %xmm0 is register number 40. */
6707b003
UW
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
67 "mxcsr",
0e04a514
ML
68};
69
c4f35dd8 70/* Total number of registers. */
6707b003 71#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
de220d0f 72
c4f35dd8 73/* Return the name of register REGNUM. */
b6779aa2 74
8695c747 75const char *
d93859e2 76amd64_register_name (struct gdbarch *gdbarch, int regnum)
53e95fcf 77{
e53bef9f 78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
6707b003 79 return amd64_register_names[regnum];
53e95fcf 80
c4f35dd8 81 return NULL;
53e95fcf
JS
82}
83
84/* Return the GDB type object for the "standard" data type of data in
c4f35dd8 85 register REGNUM. */
53e95fcf 86
8695c747 87struct type *
e53bef9f 88amd64_register_type (struct gdbarch *gdbarch, int regnum)
53e95fcf 89{
6707b003
UW
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
794ac428 107 return i386_sse_type (gdbarch);
6707b003
UW
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
110
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
53e95fcf
JS
112}
113
c4f35dd8
MK
114/* DWARF Register Number Mapping as defined in the System V psABI,
115 section 3.6. */
53e95fcf 116
e53bef9f 117static int amd64_dwarf_regmap[] =
0e04a514 118{
c4f35dd8 119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
123
124 /* Frame Pointer Register RBP. */
90f90721 125 AMD64_RBP_REGNUM,
c4f35dd8
MK
126
127 /* Stack Pointer Register RSP. */
90f90721 128 AMD64_RSP_REGNUM,
c4f35dd8
MK
129
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
132
59207364 133 /* Return Address RA. Mapped to RIP. */
90f90721 134 AMD64_RIP_REGNUM,
c4f35dd8
MK
135
136 /* SSE Registers 0 - 7. */
90f90721
MK
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
141
142 /* Extended SSE Registers 8 - 15. */
90f90721
MK
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
147
148 /* Floating Point Registers 0-7. */
90f90721
MK
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129
JB
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
153
154 /* Control and Status Flags Register. */
155 AMD64_EFLAGS_REGNUM,
156
157 /* Selector Registers. */
158 AMD64_ES_REGNUM,
159 AMD64_CS_REGNUM,
160 AMD64_SS_REGNUM,
161 AMD64_DS_REGNUM,
162 AMD64_FS_REGNUM,
163 AMD64_GS_REGNUM,
164 -1,
165 -1,
166
167 /* Segment Base Address Registers. */
168 -1,
169 -1,
170 -1,
171 -1,
172
173 /* Special Selector Registers. */
174 -1,
175 -1,
176
177 /* Floating Point Control Registers. */
178 AMD64_MXCSR_REGNUM,
179 AMD64_FCTRL_REGNUM,
180 AMD64_FSTAT_REGNUM
c4f35dd8 181};
0e04a514 182
e53bef9f
MK
183static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 185
c4f35dd8
MK
186/* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
26abbdc4 188
c4f35dd8 189static int
e53bef9f 190amd64_dwarf_reg_to_regnum (int reg)
53e95fcf 191{
c4f35dd8 192 int regnum = -1;
53e95fcf 193
16aff9a6 194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 195 regnum = amd64_dwarf_regmap[reg];
53e95fcf 196
c4f35dd8 197 if (regnum == -1)
8a3fe4f8 198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
c4f35dd8
MK
199
200 return regnum;
53e95fcf 201}
d532c08f 202
53e95fcf
JS
203\f
204
efb1c01c
MK
205/* Register classes as defined in the psABI. */
206
207enum amd64_reg_class
208{
209 AMD64_INTEGER,
210 AMD64_SSE,
211 AMD64_SSEUP,
212 AMD64_X87,
213 AMD64_X87UP,
214 AMD64_COMPLEX_X87,
215 AMD64_NO_CLASS,
216 AMD64_MEMORY
217};
218
219/* Return the union class of CLASS1 and CLASS2. See the psABI for
220 details. */
221
222static enum amd64_reg_class
223amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
224{
225 /* Rule (a): If both classes are equal, this is the resulting class. */
226 if (class1 == class2)
227 return class1;
228
229 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
230 is the other class. */
231 if (class1 == AMD64_NO_CLASS)
232 return class2;
233 if (class2 == AMD64_NO_CLASS)
234 return class1;
235
236 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
237 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
238 return AMD64_MEMORY;
239
240 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
241 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
242 return AMD64_INTEGER;
243
244 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
245 MEMORY is used as class. */
246 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
247 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
248 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
249 return AMD64_MEMORY;
250
251 /* Rule (f): Otherwise class SSE is used. */
252 return AMD64_SSE;
253}
254
255static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
256
79b1ab3d
MK
257/* Return non-zero if TYPE is a non-POD structure or union type. */
258
259static int
260amd64_non_pod_p (struct type *type)
261{
262 /* ??? A class with a base class certainly isn't POD, but does this
263 catch all non-POD structure types? */
264 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
265 return 1;
266
267 return 0;
268}
269
efb1c01c
MK
270/* Classify TYPE according to the rules for aggregate (structures and
271 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
272
273static void
efb1c01c 274amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
53e95fcf
JS
275{
276 int len = TYPE_LENGTH (type);
277
efb1c01c
MK
278 /* 1. If the size of an object is larger than two eightbytes, or in
279 C++, is a non-POD structure or union type, or contains
280 unaligned fields, it has class memory. */
79b1ab3d 281 if (len > 16 || amd64_non_pod_p (type))
53e95fcf 282 {
efb1c01c
MK
283 class[0] = class[1] = AMD64_MEMORY;
284 return;
53e95fcf 285 }
efb1c01c
MK
286
287 /* 2. Both eightbytes get initialized to class NO_CLASS. */
288 class[0] = class[1] = AMD64_NO_CLASS;
289
290 /* 3. Each field of an object is classified recursively so that
291 always two fields are considered. The resulting class is
292 calculated according to the classes of the fields in the
293 eightbyte: */
294
295 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 296 {
efb1c01c
MK
297 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
298
299 /* All fields in an array have the same type. */
300 amd64_classify (subtype, class);
301 if (len > 8 && class[1] == AMD64_NO_CLASS)
302 class[1] = class[0];
8ffd9b1b 303 }
53e95fcf
JS
304 else
305 {
efb1c01c 306 int i;
53e95fcf 307
efb1c01c
MK
308 /* Structure or union. */
309 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type) == TYPE_CODE_UNION);
311
312 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 313 {
efb1c01c
MK
314 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
315 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
316 enum amd64_reg_class subclass[2];
317
562c50c2
MK
318 /* Ignore static fields. */
319 if (TYPE_FIELD_STATIC (type, i))
320 continue;
321
efb1c01c
MK
322 gdb_assert (pos == 0 || pos == 1);
323
324 amd64_classify (subtype, subclass);
325 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
326 if (pos == 0)
327 class[1] = amd64_merge_classes (class[1], subclass[1]);
53e95fcf 328 }
53e95fcf 329 }
efb1c01c
MK
330
331 /* 4. Then a post merger cleanup is done: */
332
333 /* Rule (a): If one of the classes is MEMORY, the whole argument is
334 passed in memory. */
335 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
336 class[0] = class[1] = AMD64_MEMORY;
337
338 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
339 SSE. */
340 if (class[0] == AMD64_SSEUP)
341 class[0] = AMD64_SSE;
342 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
343 class[1] = AMD64_SSE;
344}
345
346/* Classify TYPE, and store the result in CLASS. */
347
348static void
349amd64_classify (struct type *type, enum amd64_reg_class class[2])
350{
351 enum type_code code = TYPE_CODE (type);
352 int len = TYPE_LENGTH (type);
353
354 class[0] = class[1] = AMD64_NO_CLASS;
355
356 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
357 long, long long, and pointers are in the INTEGER class. Similarly,
358 range types, used by languages such as Ada, are also in the INTEGER
359 class. */
efb1c01c 360 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 361 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
efb1c01c
MK
362 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
363 && (len == 1 || len == 2 || len == 4 || len == 8))
364 class[0] = AMD64_INTEGER;
365
366 /* Arguments of types float, double and __m64 are in class SSE. */
367 else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
368 /* FIXME: __m64 . */
369 class[0] = AMD64_SSE;
370
371 /* Arguments of types __float128 and __m128 are split into two
372 halves. The least significant ones belong to class SSE, the most
373 significant one to class SSEUP. */
374 /* FIXME: __float128, __m128. */
375
376 /* The 64-bit mantissa of arguments of type long double belongs to
377 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
378 class X87UP. */
379 else if (code == TYPE_CODE_FLT && len == 16)
380 /* Class X87 and X87UP. */
381 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
382
383 /* Aggregates. */
384 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
385 || code == TYPE_CODE_UNION)
386 amd64_classify_aggregate (type, class);
387}
388
389static enum return_value_convention
390amd64_return_value (struct gdbarch *gdbarch, struct type *type,
391 struct regcache *regcache,
42835c2b 392 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c
MK
393{
394 enum amd64_reg_class class[2];
395 int len = TYPE_LENGTH (type);
90f90721
MK
396 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
397 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
398 int integer_reg = 0;
399 int sse_reg = 0;
400 int i;
401
402 gdb_assert (!(readbuf && writebuf));
403
404 /* 1. Classify the return type with the classification algorithm. */
405 amd64_classify (type, class);
406
407 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d
MK
408 for the return value and passes the address of this storage in
409 %rdi as if it were the first argument to the function. In effect,
410 this address becomes a hidden first argument.
411
412 On return %rax will contain the address that has been passed in
413 by the caller in %rdi. */
efb1c01c 414 if (class[0] == AMD64_MEMORY)
6fa57a7d
MK
415 {
416 /* As indicated by the comment above, the ABI guarantees that we
417 can always find the return value just after the function has
418 returned. */
419
420 if (readbuf)
421 {
422 ULONGEST addr;
423
424 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
425 read_memory (addr, readbuf, TYPE_LENGTH (type));
426 }
427
428 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
429 }
efb1c01c
MK
430
431 gdb_assert (class[1] != AMD64_MEMORY);
432 gdb_assert (len <= 16);
433
434 for (i = 0; len > 0; i++, len -= 8)
435 {
436 int regnum = -1;
437 int offset = 0;
438
439 switch (class[i])
440 {
441 case AMD64_INTEGER:
442 /* 3. If the class is INTEGER, the next available register
443 of the sequence %rax, %rdx is used. */
444 regnum = integer_regnum[integer_reg++];
445 break;
446
447 case AMD64_SSE:
448 /* 4. If the class is SSE, the next available SSE register
449 of the sequence %xmm0, %xmm1 is used. */
450 regnum = sse_regnum[sse_reg++];
451 break;
452
453 case AMD64_SSEUP:
454 /* 5. If the class is SSEUP, the eightbyte is passed in the
455 upper half of the last used SSE register. */
456 gdb_assert (sse_reg > 0);
457 regnum = sse_regnum[sse_reg - 1];
458 offset = 8;
459 break;
460
461 case AMD64_X87:
462 /* 6. If the class is X87, the value is returned on the X87
463 stack in %st0 as 80-bit x87 number. */
90f90721 464 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
465 if (writebuf)
466 i387_return_value (gdbarch, regcache);
467 break;
468
469 case AMD64_X87UP:
470 /* 7. If the class is X87UP, the value is returned together
471 with the previous X87 value in %st0. */
472 gdb_assert (i > 0 && class[0] == AMD64_X87);
90f90721 473 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
474 offset = 8;
475 len = 2;
476 break;
477
478 case AMD64_NO_CLASS:
479 continue;
480
481 default:
482 gdb_assert (!"Unexpected register class.");
483 }
484
485 gdb_assert (regnum != -1);
486
487 if (readbuf)
488 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
42835c2b 489 readbuf + i * 8);
efb1c01c
MK
490 if (writebuf)
491 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
42835c2b 492 writebuf + i * 8);
efb1c01c
MK
493 }
494
495 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
496}
497\f
498
720aa428
MK
499static CORE_ADDR
500amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 501 struct value **args, CORE_ADDR sp, int struct_return)
720aa428
MK
502{
503 static int integer_regnum[] =
504 {
90f90721
MK
505 AMD64_RDI_REGNUM, /* %rdi */
506 AMD64_RSI_REGNUM, /* %rsi */
507 AMD64_RDX_REGNUM, /* %rdx */
508 AMD64_RCX_REGNUM, /* %rcx */
509 8, /* %r8 */
510 9 /* %r9 */
720aa428
MK
511 };
512 static int sse_regnum[] =
513 {
514 /* %xmm0 ... %xmm7 */
90f90721
MK
515 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
516 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
517 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
518 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428
MK
519 };
520 struct value **stack_args = alloca (nargs * sizeof (struct value *));
521 int num_stack_args = 0;
522 int num_elements = 0;
523 int element = 0;
524 int integer_reg = 0;
525 int sse_reg = 0;
526 int i;
527
6470d250
MK
528 /* Reserve a register for the "hidden" argument. */
529 if (struct_return)
530 integer_reg++;
531
720aa428
MK
532 for (i = 0; i < nargs; i++)
533 {
4991999e 534 struct type *type = value_type (args[i]);
720aa428
MK
535 int len = TYPE_LENGTH (type);
536 enum amd64_reg_class class[2];
537 int needed_integer_regs = 0;
538 int needed_sse_regs = 0;
539 int j;
540
541 /* Classify argument. */
542 amd64_classify (type, class);
543
544 /* Calculate the number of integer and SSE registers needed for
545 this argument. */
546 for (j = 0; j < 2; j++)
547 {
548 if (class[j] == AMD64_INTEGER)
549 needed_integer_regs++;
550 else if (class[j] == AMD64_SSE)
551 needed_sse_regs++;
552 }
553
554 /* Check whether enough registers are available, and if the
555 argument should be passed in registers at all. */
556 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
557 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
558 || (needed_integer_regs == 0 && needed_sse_regs == 0))
559 {
560 /* The argument will be passed on the stack. */
561 num_elements += ((len + 7) / 8);
562 stack_args[num_stack_args++] = args[i];
563 }
564 else
565 {
566 /* The argument will be passed in registers. */
d8de1ef7
MK
567 const gdb_byte *valbuf = value_contents (args[i]);
568 gdb_byte buf[8];
720aa428
MK
569
570 gdb_assert (len <= 16);
571
572 for (j = 0; len > 0; j++, len -= 8)
573 {
574 int regnum = -1;
575 int offset = 0;
576
577 switch (class[j])
578 {
579 case AMD64_INTEGER:
580 regnum = integer_regnum[integer_reg++];
581 break;
582
583 case AMD64_SSE:
584 regnum = sse_regnum[sse_reg++];
585 break;
586
587 case AMD64_SSEUP:
588 gdb_assert (sse_reg > 0);
589 regnum = sse_regnum[sse_reg - 1];
590 offset = 8;
591 break;
592
593 default:
594 gdb_assert (!"Unexpected register class.");
595 }
596
597 gdb_assert (regnum != -1);
598 memset (buf, 0, sizeof buf);
599 memcpy (buf, valbuf + j * 8, min (len, 8));
600 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
601 }
602 }
603 }
604
605 /* Allocate space for the arguments on the stack. */
606 sp -= num_elements * 8;
607
608 /* The psABI says that "The end of the input argument area shall be
609 aligned on a 16 byte boundary." */
610 sp &= ~0xf;
611
612 /* Write out the arguments to the stack. */
613 for (i = 0; i < num_stack_args; i++)
614 {
4991999e 615 struct type *type = value_type (stack_args[i]);
d8de1ef7 616 const gdb_byte *valbuf = value_contents (stack_args[i]);
720aa428
MK
617 int len = TYPE_LENGTH (type);
618
619 write_memory (sp + element * 8, valbuf, len);
620 element += ((len + 7) / 8);
621 }
622
623 /* The psABI says that "For calls that may call functions that use
624 varargs or stdargs (prototype-less calls or calls to functions
625 containing ellipsis (...) in the declaration) %al is used as
626 hidden argument to specify the number of SSE registers used. */
90f90721 627 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
628 return sp;
629}
630
c4f35dd8 631static CORE_ADDR
7d9b040b 632amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
633 struct regcache *regcache, CORE_ADDR bp_addr,
634 int nargs, struct value **args, CORE_ADDR sp,
635 int struct_return, CORE_ADDR struct_addr)
53e95fcf 636{
d8de1ef7 637 gdb_byte buf[8];
c4f35dd8
MK
638
639 /* Pass arguments. */
6470d250 640 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
641
642 /* Pass "hidden" argument". */
643 if (struct_return)
644 {
645 store_unsigned_integer (buf, 8, struct_addr);
90f90721 646 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
647 }
648
649 /* Store return address. */
650 sp -= 8;
10f93086 651 store_unsigned_integer (buf, 8, bp_addr);
c4f35dd8
MK
652 write_memory (sp, buf, 8);
653
654 /* Finally, update the stack pointer... */
655 store_unsigned_integer (buf, 8, sp);
90f90721 656 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
657
658 /* ...and fake a frame pointer. */
90f90721 659 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 660
3e210248 661 return sp + 16;
53e95fcf 662}
c4f35dd8
MK
663\f
664
665/* The maximum number of saved registers. This should include %rip. */
90f90721 666#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 667
e53bef9f 668struct amd64_frame_cache
c4f35dd8
MK
669{
670 /* Base address. */
671 CORE_ADDR base;
672 CORE_ADDR sp_offset;
673 CORE_ADDR pc;
674
675 /* Saved registers. */
e53bef9f 676 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8
MK
677 CORE_ADDR saved_sp;
678
679 /* Do we have a frame? */
680 int frameless_p;
681};
8dda9770 682
d2449ee8 683/* Initialize a frame cache. */
c4f35dd8 684
d2449ee8
DJ
685static void
686amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 687{
c4f35dd8
MK
688 int i;
689
c4f35dd8
MK
690 /* Base address. */
691 cache->base = 0;
692 cache->sp_offset = -8;
693 cache->pc = 0;
694
695 /* Saved registers. We initialize these to -1 since zero is a valid
696 offset (that's where %rbp is supposed to be stored). */
e53bef9f 697 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
698 cache->saved_regs[i] = -1;
699 cache->saved_sp = 0;
700
701 /* Frameless until proven otherwise. */
702 cache->frameless_p = 1;
d2449ee8 703}
c4f35dd8 704
d2449ee8
DJ
705/* Allocate and initialize a frame cache. */
706
707static struct amd64_frame_cache *
708amd64_alloc_frame_cache (void)
709{
710 struct amd64_frame_cache *cache;
711
712 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
713 amd64_init_frame_cache (cache);
c4f35dd8 714 return cache;
8dda9770 715}
53e95fcf 716
c4f35dd8
MK
717/* Do a limited analysis of the prologue at PC and update CACHE
718 accordingly. Bail out early if CURRENT_PC is reached. Return the
719 address where the analysis stopped.
720
721 We will handle only functions beginning with:
722
723 pushq %rbp 0x55
724 movq %rsp, %rbp 0x48 0x89 0xe5
725
726 Any function that doesn't start with this sequence will be assumed
727 to have no prologue and thus no valid frame pointer in %rbp. */
728
729static CORE_ADDR
e53bef9f
MK
730amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
731 struct amd64_frame_cache *cache)
53e95fcf 732{
d8de1ef7
MK
733 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
734 gdb_byte buf[3];
735 gdb_byte op;
c4f35dd8
MK
736
737 if (current_pc <= pc)
738 return current_pc;
739
740 op = read_memory_unsigned_integer (pc, 1);
741
742 if (op == 0x55) /* pushq %rbp */
743 {
744 /* Take into account that we've executed the `pushq %rbp' that
745 starts this instruction sequence. */
90f90721 746 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
747 cache->sp_offset += 8;
748
749 /* If that's all, return now. */
750 if (current_pc <= pc + 1)
751 return current_pc;
752
753 /* Check for `movq %rsp, %rbp'. */
754 read_memory (pc + 1, buf, 3);
755 if (memcmp (buf, proto, 3) != 0)
756 return pc + 1;
757
758 /* OK, we actually have a frame. */
759 cache->frameless_p = 0;
760 return pc + 4;
761 }
762
763 return pc;
53e95fcf
JS
764}
765
c4f35dd8
MK
766/* Return PC of first real instruction. */
767
768static CORE_ADDR
e53bef9f 769amd64_skip_prologue (CORE_ADDR start_pc)
53e95fcf 770{
e53bef9f 771 struct amd64_frame_cache cache;
c4f35dd8
MK
772 CORE_ADDR pc;
773
d2449ee8 774 amd64_init_frame_cache (&cache);
594706e6 775 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
c4f35dd8
MK
776 if (cache.frameless_p)
777 return start_pc;
778
779 return pc;
53e95fcf 780}
c4f35dd8 781\f
53e95fcf 782
c4f35dd8
MK
783/* Normal frames. */
784
e53bef9f
MK
785static struct amd64_frame_cache *
786amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
6d686a84 787{
e53bef9f 788 struct amd64_frame_cache *cache;
d8de1ef7 789 gdb_byte buf[8];
6d686a84 790 int i;
6d686a84 791
c4f35dd8
MK
792 if (*this_cache)
793 return *this_cache;
6d686a84 794
e53bef9f 795 cache = amd64_alloc_frame_cache ();
c4f35dd8
MK
796 *this_cache = cache;
797
93d42b30 798 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
c4f35dd8 799 if (cache->pc != 0)
e53bef9f 800 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
c4f35dd8
MK
801
802 if (cache->frameless_p)
803 {
4a28816e
MK
804 /* We didn't find a valid frame. If we're at the start of a
805 function, or somewhere half-way its prologue, the function's
806 frame probably hasn't been fully setup yet. Try to
807 reconstruct the base address for the stack frame by looking
808 at the stack pointer. For truly "frameless" functions this
809 might work too. */
c4f35dd8 810
90f90721 811 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
812 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
813 }
35883a3f
MK
814 else
815 {
90f90721 816 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
35883a3f
MK
817 cache->base = extract_unsigned_integer (buf, 8);
818 }
c4f35dd8
MK
819
820 /* Now that we have the base address for the stack frame we can
821 calculate the value of %rsp in the calling frame. */
822 cache->saved_sp = cache->base + 16;
823
35883a3f
MK
824 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
825 frame we find it at the same offset from the reconstructed base
826 address. */
90f90721 827 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 828
c4f35dd8
MK
829 /* Adjust all the saved registers such that they contain addresses
830 instead of offsets. */
e53bef9f 831 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
832 if (cache->saved_regs[i] != -1)
833 cache->saved_regs[i] += cache->base;
834
835 return cache;
6d686a84
ML
836}
837
c4f35dd8 838static void
e53bef9f
MK
839amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
840 struct frame_id *this_id)
c4f35dd8 841{
e53bef9f
MK
842 struct amd64_frame_cache *cache =
843 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
844
845 /* This marks the outermost frame. */
846 if (cache->base == 0)
847 return;
848
849 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
850}
e76e1718 851
c4f35dd8 852static void
e53bef9f
MK
853amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
854 int regnum, int *optimizedp,
855 enum lval_type *lvalp, CORE_ADDR *addrp,
5323dd1d 856 int *realnump, gdb_byte *valuep)
53e95fcf 857{
2ae02b47 858 struct gdbarch *gdbarch = get_frame_arch (next_frame);
e53bef9f
MK
859 struct amd64_frame_cache *cache =
860 amd64_frame_cache (next_frame, this_cache);
e76e1718 861
c4f35dd8 862 gdb_assert (regnum >= 0);
b1ab997b 863
2ae02b47 864 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
c4f35dd8
MK
865 {
866 *optimizedp = 0;
867 *lvalp = not_lval;
868 *addrp = 0;
869 *realnump = -1;
870 if (valuep)
871 {
872 /* Store the value. */
873 store_unsigned_integer (valuep, 8, cache->saved_sp);
874 }
875 return;
876 }
e76e1718 877
e53bef9f 878 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
c4f35dd8
MK
879 {
880 *optimizedp = 0;
881 *lvalp = lval_memory;
882 *addrp = cache->saved_regs[regnum];
883 *realnump = -1;
884 if (valuep)
885 {
886 /* Read the value in from memory. */
887 read_memory (*addrp, valuep,
2ae02b47 888 register_size (gdbarch, regnum));
c4f35dd8
MK
889 }
890 return;
891 }
e76e1718 892
00b25ff3
AC
893 *optimizedp = 0;
894 *lvalp = lval_register;
895 *addrp = 0;
896 *realnump = regnum;
897 if (valuep)
898 frame_unwind_register (next_frame, (*realnump), valuep);
c4f35dd8 899}
e76e1718 900
e53bef9f 901static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
902{
903 NORMAL_FRAME,
e53bef9f
MK
904 amd64_frame_this_id,
905 amd64_frame_prev_register
c4f35dd8 906};
e76e1718 907
c4f35dd8 908static const struct frame_unwind *
e53bef9f 909amd64_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 910{
e53bef9f 911 return &amd64_frame_unwind;
c4f35dd8
MK
912}
913\f
e76e1718 914
c4f35dd8
MK
915/* Signal trampolines. */
916
917/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
918 64-bit variants. This would require using identical frame caches
919 on both platforms. */
920
e53bef9f
MK
921static struct amd64_frame_cache *
922amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
c4f35dd8 923{
e53bef9f 924 struct amd64_frame_cache *cache;
2ae02b47 925 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
c4f35dd8 926 CORE_ADDR addr;
d8de1ef7 927 gdb_byte buf[8];
2b5e0749 928 int i;
c4f35dd8
MK
929
930 if (*this_cache)
931 return *this_cache;
932
e53bef9f 933 cache = amd64_alloc_frame_cache ();
c4f35dd8 934
90f90721 935 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
936 cache->base = extract_unsigned_integer (buf, 8) - 8;
937
938 addr = tdep->sigcontext_addr (next_frame);
2b5e0749 939 gdb_assert (tdep->sc_reg_offset);
e53bef9f 940 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2b5e0749
MK
941 for (i = 0; i < tdep->sc_num_regs; i++)
942 if (tdep->sc_reg_offset[i] != -1)
943 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8
MK
944
945 *this_cache = cache;
946 return cache;
53e95fcf
JS
947}
948
c4f35dd8 949static void
e53bef9f
MK
950amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
951 void **this_cache, struct frame_id *this_id)
c4f35dd8 952{
e53bef9f
MK
953 struct amd64_frame_cache *cache =
954 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8
MK
955
956 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
957}
958
959static void
e53bef9f
MK
960amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
961 void **this_cache,
962 int regnum, int *optimizedp,
963 enum lval_type *lvalp, CORE_ADDR *addrp,
5323dd1d 964 int *realnump, gdb_byte *valuep)
c4f35dd8
MK
965{
966 /* Make sure we've initialized the cache. */
e53bef9f 967 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8 968
e53bef9f
MK
969 amd64_frame_prev_register (next_frame, this_cache, regnum,
970 optimizedp, lvalp, addrp, realnump, valuep);
c4f35dd8
MK
971}
972
e53bef9f 973static const struct frame_unwind amd64_sigtramp_frame_unwind =
c4f35dd8
MK
974{
975 SIGTRAMP_FRAME,
e53bef9f
MK
976 amd64_sigtramp_frame_this_id,
977 amd64_sigtramp_frame_prev_register
c4f35dd8
MK
978};
979
980static const struct frame_unwind *
e53bef9f 981amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 982{
911bc6ee
MK
983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
984
985 /* We shouldn't even bother if we don't have a sigcontext_addr
986 handler. */
987 if (tdep->sigcontext_addr == NULL)
988 return NULL;
989
990 if (tdep->sigtramp_p != NULL)
991 {
992 if (tdep->sigtramp_p (next_frame))
993 return &amd64_sigtramp_frame_unwind;
994 }
c4f35dd8 995
911bc6ee 996 if (tdep->sigtramp_start != 0)
1c3545ae 997 {
911bc6ee 998 CORE_ADDR pc = frame_pc_unwind (next_frame);
1c3545ae 999
911bc6ee
MK
1000 gdb_assert (tdep->sigtramp_end != 0);
1001 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1002 return &amd64_sigtramp_frame_unwind;
1c3545ae 1003 }
c4f35dd8
MK
1004
1005 return NULL;
1006}
1007\f
1008
1009static CORE_ADDR
e53bef9f 1010amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
c4f35dd8 1011{
e53bef9f
MK
1012 struct amd64_frame_cache *cache =
1013 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
1014
1015 return cache->base;
1016}
1017
e53bef9f 1018static const struct frame_base amd64_frame_base =
c4f35dd8 1019{
e53bef9f
MK
1020 &amd64_frame_unwind,
1021 amd64_frame_base_address,
1022 amd64_frame_base_address,
1023 amd64_frame_base_address
c4f35dd8
MK
1024};
1025
166f4c7b 1026static struct frame_id
e53bef9f 1027amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
166f4c7b 1028{
d8de1ef7 1029 gdb_byte buf[8];
c4f35dd8
MK
1030 CORE_ADDR fp;
1031
90f90721 1032 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
c4f35dd8
MK
1033 fp = extract_unsigned_integer (buf, 8);
1034
1035 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
166f4c7b
ML
1036}
1037
8b148df9
AC
1038/* 16 byte align the SP per frame requirements. */
1039
1040static CORE_ADDR
e53bef9f 1041amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
1042{
1043 return sp & -(CORE_ADDR)16;
1044}
473f17b0
MK
1045\f
1046
593adc23
MK
1047/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1048 in the floating-point register set REGSET to register cache
1049 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1050
1051static void
e53bef9f
MK
1052amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1053 int regnum, const void *fpregs, size_t len)
473f17b0 1054{
9ea75c57 1055 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1056
1057 gdb_assert (len == tdep->sizeof_fpregset);
90f90721 1058 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 1059}
8b148df9 1060
593adc23
MK
1061/* Collect register REGNUM from the register cache REGCACHE and store
1062 it in the buffer specified by FPREGS and LEN as described by the
1063 floating-point register set REGSET. If REGNUM is -1, do this for
1064 all registers in REGSET. */
1065
1066static void
1067amd64_collect_fpregset (const struct regset *regset,
1068 const struct regcache *regcache,
1069 int regnum, void *fpregs, size_t len)
1070{
1071 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1072
1073 gdb_assert (len == tdep->sizeof_fpregset);
1074 amd64_collect_fxsave (regcache, regnum, fpregs);
1075}
1076
c6b33596
MK
1077/* Return the appropriate register set for the core section identified
1078 by SECT_NAME and SECT_SIZE. */
1079
1080static const struct regset *
e53bef9f
MK
1081amd64_regset_from_core_section (struct gdbarch *gdbarch,
1082 const char *sect_name, size_t sect_size)
c6b33596
MK
1083{
1084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1085
1086 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1087 {
1088 if (tdep->fpregset == NULL)
593adc23
MK
1089 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1090 amd64_collect_fpregset);
c6b33596
MK
1091
1092 return tdep->fpregset;
1093 }
1094
1095 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1096}
1097\f
1098
2213a65d 1099void
90f90721 1100amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 1101{
0c1a73d6 1102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
53e95fcf 1103
473f17b0
MK
1104 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1105 floating-point registers. */
1106 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1107
5716833c 1108 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 1109 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 1110 tdep->num_xmm_regs = 16;
53e95fcf 1111
0c1a73d6 1112 /* This is what all the fuss is about. */
53e95fcf
JS
1113 set_gdbarch_long_bit (gdbarch, 64);
1114 set_gdbarch_long_long_bit (gdbarch, 64);
1115 set_gdbarch_ptr_bit (gdbarch, 64);
1116
e53bef9f
MK
1117 /* In contrast to the i386, on AMD64 a `long double' actually takes
1118 up 128 bits, even though it's still based on the i387 extended
1119 floating-point format which has only 80 significant bits. */
b83b026c
MK
1120 set_gdbarch_long_double_bit (gdbarch, 128);
1121
e53bef9f
MK
1122 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1123 set_gdbarch_register_name (gdbarch, amd64_register_name);
1124 set_gdbarch_register_type (gdbarch, amd64_register_type);
b83b026c
MK
1125
1126 /* Register numbers of various important registers. */
90f90721
MK
1127 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1128 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1129 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1130 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 1131
e53bef9f
MK
1132 /* The "default" register numbering scheme for AMD64 is referred to
1133 as the "DWARF Register Number Mapping" in the System V psABI.
1134 The preferred debugging format for all known AMD64 targets is
1135 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1136 DWARF-1), but we provide the same mapping just in case. This
1137 mapping is also used for stabs, which GCC does support. */
1138 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1139 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1140 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 1141
c4f35dd8 1142 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 1143 be in use on any of the supported AMD64 targets. */
53e95fcf 1144
c4f35dd8 1145 /* Call dummy code. */
e53bef9f
MK
1146 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1147 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 1148 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 1149
83acabca 1150 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
1151 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1152 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1153
efb1c01c 1154 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 1155
e53bef9f 1156 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 1157
c4f35dd8 1158 /* Avoid wiring in the MMX registers for now. */
2213a65d 1159 set_gdbarch_num_pseudo_regs (gdbarch, 0);
5716833c 1160 tdep->mm0_regnum = -1;
2213a65d 1161
e53bef9f 1162 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
53e95fcf 1163
e53bef9f
MK
1164 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1165 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1166 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596
MK
1167
1168 /* If we have a register mapping, enable the generic core file support. */
1169 if (tdep->gregset_reg_offset)
1170 set_gdbarch_regset_from_core_section (gdbarch,
e53bef9f 1171 amd64_regset_from_core_section);
c4f35dd8
MK
1172}
1173\f
1174
90f90721 1175#define I387_ST0_REGNUM AMD64_ST0_REGNUM
c4f35dd8 1176
41d041d6
MK
1177/* The 64-bit FXSAVE format differs from the 32-bit format in the
1178 sense that the instruction pointer and data pointer are simply
1179 64-bit offsets into the code segment and the data segment instead
1180 of a selector offset pair. The functions below store the upper 32
1181 bits of these pointers (instead of just the 16-bits of the segment
1182 selector). */
1183
1184/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
1185 floating-point or SSE register value from *FXSAVE. If REGNUM is
1186 -1, do this for all registers. This function masks off any of the
1187 reserved bits in *FXSAVE. */
c4f35dd8
MK
1188
1189void
90f90721 1190amd64_supply_fxsave (struct regcache *regcache, int regnum,
41d041d6 1191 const void *fxsave)
c4f35dd8 1192{
41d041d6 1193 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 1194
f0ef85a5 1195 if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c4f35dd8 1196 {
d8de1ef7 1197 const gdb_byte *regs = fxsave;
41d041d6 1198
0485f6ad 1199 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
41d041d6 1200 regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
0485f6ad 1201 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
41d041d6 1202 regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
c4f35dd8 1203 }
0c1a73d6
MK
1204}
1205
3c017e40
MK
1206/* Fill register REGNUM (if it is a floating-point or SSE register) in
1207 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1208 all registers. This function doesn't touch any of the reserved
1209 bits in *FXSAVE. */
1210
1211void
1212amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1213 void *fxsave)
1214{
d8de1ef7 1215 gdb_byte *regs = fxsave;
3c017e40
MK
1216
1217 i387_collect_fxsave (regcache, regnum, fxsave);
1218
f0ef85a5
MK
1219 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1220 {
1221 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1222 regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
1223 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1224 regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
1225 }
3c017e40 1226}
This page took 0.813967 seconds and 4 git commands to generate.