Target FP: Use target format throughout expression parsing
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
61baf725 3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
35669430
DE
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
28#include "frame.h"
29#include "frame-base.h"
30#include "frame-unwind.h"
53e95fcf 31#include "inferior.h"
45741a9c 32#include "infrun.h"
53e95fcf 33#include "gdbcmd.h"
c4f35dd8
MK
34#include "gdbcore.h"
35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
eda5a4d7 39#include "disasm.h"
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
97de3545 42#include "x86-xstate.h"
325fac50 43#include <algorithm>
22916b07
YQ
44#include "target-descriptions.h"
45#include "arch/amd64.h"
b32b108a 46#include "producer.h"
6710bf39
SS
47#include "ax.h"
48#include "ax-gdb.h"
cfba9872 49#include "common/byte-vector.h"
6710bf39 50
e53bef9f
MK
51/* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
90f90721 53 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
57
402ecd56 58/* Register information. */
c4f35dd8 59
6707b003 60static const char *amd64_register_names[] =
de220d0f 61{
6707b003 62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
63
64 /* %r8 is indeed register number 8. */
6707b003
UW
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 67
af233647 68 /* %st0 is register number 24. */
6707b003
UW
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 71
af233647 72 /* %xmm0 is register number 40. */
6707b003
UW
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
75 "mxcsr",
0e04a514
ML
76};
77
a055a187
L
78static const char *amd64_ymm_names[] =
79{
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
84};
85
01f9f808
MS
86static const char *amd64_ymm_avx512_names[] =
87{
88 "ymm16", "ymm17", "ymm18", "ymm19",
89 "ymm20", "ymm21", "ymm22", "ymm23",
90 "ymm24", "ymm25", "ymm26", "ymm27",
91 "ymm28", "ymm29", "ymm30", "ymm31"
92};
93
a055a187
L
94static const char *amd64_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
99 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
100};
de220d0f 101
01f9f808
MS
102static const char *amd64_ymmh_avx512_names[] =
103{
104 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
105 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
106 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
107 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
108};
109
e43e105e
WT
110static const char *amd64_mpx_names[] =
111{
112 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
113};
114
01f9f808
MS
115static const char *amd64_k_names[] =
116{
117 "k0", "k1", "k2", "k3",
118 "k4", "k5", "k6", "k7"
119};
120
121static const char *amd64_zmmh_names[] =
122{
123 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
124 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
125 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
126 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
127 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
128 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
129 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
130 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
131};
132
133static const char *amd64_zmm_names[] =
134{
135 "zmm0", "zmm1", "zmm2", "zmm3",
136 "zmm4", "zmm5", "zmm6", "zmm7",
137 "zmm8", "zmm9", "zmm10", "zmm11",
138 "zmm12", "zmm13", "zmm14", "zmm15",
139 "zmm16", "zmm17", "zmm18", "zmm19",
140 "zmm20", "zmm21", "zmm22", "zmm23",
141 "zmm24", "zmm25", "zmm26", "zmm27",
142 "zmm28", "zmm29", "zmm30", "zmm31"
143};
144
145static const char *amd64_xmm_avx512_names[] = {
146 "xmm16", "xmm17", "xmm18", "xmm19",
147 "xmm20", "xmm21", "xmm22", "xmm23",
148 "xmm24", "xmm25", "xmm26", "xmm27",
149 "xmm28", "xmm29", "xmm30", "xmm31"
150};
151
51547df6
MS
152static const char *amd64_pkeys_names[] = {
153 "pkru"
154};
155
c4f35dd8
MK
156/* DWARF Register Number Mapping as defined in the System V psABI,
157 section 3.6. */
53e95fcf 158
e53bef9f 159static int amd64_dwarf_regmap[] =
0e04a514 160{
c4f35dd8 161 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
162 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
163 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
164 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
165
166 /* Frame Pointer Register RBP. */
90f90721 167 AMD64_RBP_REGNUM,
c4f35dd8
MK
168
169 /* Stack Pointer Register RSP. */
90f90721 170 AMD64_RSP_REGNUM,
c4f35dd8
MK
171
172 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
173 AMD64_R8_REGNUM, /* %r8 */
174 AMD64_R9_REGNUM, /* %r9 */
175 AMD64_R10_REGNUM, /* %r10 */
176 AMD64_R11_REGNUM, /* %r11 */
177 AMD64_R12_REGNUM, /* %r12 */
178 AMD64_R13_REGNUM, /* %r13 */
179 AMD64_R14_REGNUM, /* %r14 */
180 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 181
59207364 182 /* Return Address RA. Mapped to RIP. */
90f90721 183 AMD64_RIP_REGNUM,
c4f35dd8
MK
184
185 /* SSE Registers 0 - 7. */
90f90721
MK
186 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
187 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
188 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
189 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
190
191 /* Extended SSE Registers 8 - 15. */
90f90721
MK
192 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
193 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
194 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
195 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
196
197 /* Floating Point Registers 0-7. */
90f90721
MK
198 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
199 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
200 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 201 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
202
203 /* MMX Registers 0 - 7.
204 We have to handle those registers specifically, as their register
205 number within GDB depends on the target (or they may even not be
206 available at all). */
207 -1, -1, -1, -1, -1, -1, -1, -1,
208
c6f4c129
JB
209 /* Control and Status Flags Register. */
210 AMD64_EFLAGS_REGNUM,
211
212 /* Selector Registers. */
213 AMD64_ES_REGNUM,
214 AMD64_CS_REGNUM,
215 AMD64_SS_REGNUM,
216 AMD64_DS_REGNUM,
217 AMD64_FS_REGNUM,
218 AMD64_GS_REGNUM,
219 -1,
220 -1,
221
222 /* Segment Base Address Registers. */
223 -1,
224 -1,
225 -1,
226 -1,
227
228 /* Special Selector Registers. */
229 -1,
230 -1,
231
232 /* Floating Point Control Registers. */
233 AMD64_MXCSR_REGNUM,
234 AMD64_FCTRL_REGNUM,
235 AMD64_FSTAT_REGNUM
c4f35dd8 236};
0e04a514 237
e53bef9f
MK
238static const int amd64_dwarf_regmap_len =
239 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 240
c4f35dd8
MK
241/* Convert DWARF register number REG to the appropriate register
242 number used by GDB. */
26abbdc4 243
c4f35dd8 244static int
d3f73121 245amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 246{
a055a187
L
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 249 int regnum = -1;
53e95fcf 250
16aff9a6 251 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 252 regnum = amd64_dwarf_regmap[reg];
53e95fcf 253
0fde2c53 254 if (ymm0_regnum >= 0
a055a187
L
255 && i386_xmm_regnum_p (gdbarch, regnum))
256 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
257
258 return regnum;
53e95fcf 259}
d532c08f 260
35669430
DE
261/* Map architectural register numbers to gdb register numbers. */
262
263static const int amd64_arch_regmap[16] =
264{
265 AMD64_RAX_REGNUM, /* %rax */
266 AMD64_RCX_REGNUM, /* %rcx */
267 AMD64_RDX_REGNUM, /* %rdx */
268 AMD64_RBX_REGNUM, /* %rbx */
269 AMD64_RSP_REGNUM, /* %rsp */
270 AMD64_RBP_REGNUM, /* %rbp */
271 AMD64_RSI_REGNUM, /* %rsi */
272 AMD64_RDI_REGNUM, /* %rdi */
273 AMD64_R8_REGNUM, /* %r8 */
274 AMD64_R9_REGNUM, /* %r9 */
275 AMD64_R10_REGNUM, /* %r10 */
276 AMD64_R11_REGNUM, /* %r11 */
277 AMD64_R12_REGNUM, /* %r12 */
278 AMD64_R13_REGNUM, /* %r13 */
279 AMD64_R14_REGNUM, /* %r14 */
280 AMD64_R15_REGNUM /* %r15 */
281};
282
283static const int amd64_arch_regmap_len =
284 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
285
286/* Convert architectural register number REG to the appropriate register
287 number used by GDB. */
288
289static int
290amd64_arch_reg_to_regnum (int reg)
291{
292 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
293
294 return amd64_arch_regmap[reg];
295}
296
1ba53b71
L
297/* Register names for byte pseudo-registers. */
298
299static const char *amd64_byte_names[] =
300{
301 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
302 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
303 "ah", "bh", "ch", "dh"
1ba53b71
L
304};
305
fe01d668
L
306/* Number of lower byte registers. */
307#define AMD64_NUM_LOWER_BYTE_REGS 16
308
1ba53b71
L
309/* Register names for word pseudo-registers. */
310
311static const char *amd64_word_names[] =
312{
9cad29ac 313 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
314 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
315};
316
317/* Register names for dword pseudo-registers. */
318
319static const char *amd64_dword_names[] =
320{
321 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
322 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
323 "eip"
1ba53b71
L
324};
325
326/* Return the name of register REGNUM. */
327
328static const char *
329amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330{
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_byte_regnum_p (gdbarch, regnum))
333 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
334 else if (i386_zmm_regnum_p (gdbarch, regnum))
335 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
338 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
339 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return amd64_word_names[regnum - tdep->ax_regnum];
342 else if (i386_dword_regnum_p (gdbarch, regnum))
343 return amd64_dword_names[regnum - tdep->eax_regnum];
344 else
345 return i386_pseudo_register_name (gdbarch, regnum);
346}
347
3543a589
TT
348static struct value *
349amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
350 struct regcache *regcache,
351 int regnum)
1ba53b71 352{
9890e433 353 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1ba53b71 354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
05d1431c 355 enum register_status status;
3543a589
TT
356 struct value *result_value;
357 gdb_byte *buf;
358
359 result_value = allocate_value (register_type (gdbarch, regnum));
360 VALUE_LVAL (result_value) = lval_register;
361 VALUE_REGNUM (result_value) = regnum;
362 buf = value_contents_raw (result_value);
1ba53b71
L
363
364 if (i386_byte_regnum_p (gdbarch, regnum))
365 {
366 int gpnum = regnum - tdep->al_regnum;
367
368 /* Extract (always little endian). */
fe01d668
L
369 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
370 {
371 /* Special handling for AH, BH, CH, DH. */
05d1431c
PA
372 status = regcache_raw_read (regcache,
373 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
374 raw_buf);
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
377 else
378 mark_value_bytes_unavailable (result_value, 0,
379 TYPE_LENGTH (value_type (result_value)));
fe01d668
L
380 }
381 else
382 {
05d1431c
PA
383 status = regcache_raw_read (regcache, gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
3543a589
TT
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
fe01d668 389 }
1ba53b71
L
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 /* Extract (always little endian). */
05d1431c
PA
395 status = regcache_raw_read (regcache, gpnum, raw_buf);
396 if (status == REG_VALID)
397 memcpy (buf, raw_buf, 4);
3543a589
TT
398 else
399 mark_value_bytes_unavailable (result_value, 0,
400 TYPE_LENGTH (value_type (result_value)));
1ba53b71
L
401 }
402 else
3543a589
TT
403 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
404 result_value);
405
406 return result_value;
1ba53b71
L
407}
408
409static void
410amd64_pseudo_register_write (struct gdbarch *gdbarch,
411 struct regcache *regcache,
412 int regnum, const gdb_byte *buf)
413{
9890e433 414 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1ba53b71
L
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
fe01d668
L
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 /* Read ... AH, BH, CH, DH. */
424 regcache_raw_read (regcache,
425 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
426 /* ... Modify ... (always little endian). */
427 memcpy (raw_buf + 1, buf, 1);
428 /* ... Write. */
429 regcache_raw_write (regcache,
430 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
431 }
432 else
433 {
434 /* Read ... */
435 regcache_raw_read (regcache, gpnum, raw_buf);
436 /* ... Modify ... (always little endian). */
437 memcpy (raw_buf, buf, 1);
438 /* ... Write. */
439 regcache_raw_write (regcache, gpnum, raw_buf);
440 }
1ba53b71
L
441 }
442 else if (i386_dword_regnum_p (gdbarch, regnum))
443 {
444 int gpnum = regnum - tdep->eax_regnum;
445
446 /* Read ... */
447 regcache_raw_read (regcache, gpnum, raw_buf);
448 /* ... Modify ... (always little endian). */
449 memcpy (raw_buf, buf, 4);
450 /* ... Write. */
451 regcache_raw_write (regcache, gpnum, raw_buf);
452 }
453 else
454 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
455}
456
62e5fd57
MK
457/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
458
459static int
460amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
461 struct agent_expr *ax, int regnum)
462{
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464
465 if (i386_byte_regnum_p (gdbarch, regnum))
466 {
467 int gpnum = regnum - tdep->al_regnum;
468
469 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
470 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
471 else
472 ax_reg_mask (ax, gpnum);
473 return 0;
474 }
475 else if (i386_dword_regnum_p (gdbarch, regnum))
476 {
477 int gpnum = regnum - tdep->eax_regnum;
478
479 ax_reg_mask (ax, gpnum);
480 return 0;
481 }
482 else
483 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
484}
485
53e95fcf
JS
486\f
487
bf4d6c1c
JB
488/* Register classes as defined in the psABI. */
489
490enum amd64_reg_class
491{
492 AMD64_INTEGER,
493 AMD64_SSE,
494 AMD64_SSEUP,
495 AMD64_X87,
496 AMD64_X87UP,
497 AMD64_COMPLEX_X87,
498 AMD64_NO_CLASS,
499 AMD64_MEMORY
500};
501
efb1c01c
MK
502/* Return the union class of CLASS1 and CLASS2. See the psABI for
503 details. */
504
505static enum amd64_reg_class
506amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
507{
508 /* Rule (a): If both classes are equal, this is the resulting class. */
509 if (class1 == class2)
510 return class1;
511
512 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
513 is the other class. */
514 if (class1 == AMD64_NO_CLASS)
515 return class2;
516 if (class2 == AMD64_NO_CLASS)
517 return class1;
518
519 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
520 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
521 return AMD64_MEMORY;
522
523 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
524 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
525 return AMD64_INTEGER;
526
527 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
528 MEMORY is used as class. */
529 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
530 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
531 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
532 return AMD64_MEMORY;
533
534 /* Rule (f): Otherwise class SSE is used. */
535 return AMD64_SSE;
536}
537
fe978cb0 538static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 539
79b1ab3d
MK
540/* Return non-zero if TYPE is a non-POD structure or union type. */
541
542static int
543amd64_non_pod_p (struct type *type)
544{
545 /* ??? A class with a base class certainly isn't POD, but does this
546 catch all non-POD structure types? */
547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
548 return 1;
549
550 return 0;
551}
552
efb1c01c
MK
553/* Classify TYPE according to the rules for aggregate (structures and
554 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
555
556static void
fe978cb0 557amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 558{
efb1c01c
MK
559 /* 1. If the size of an object is larger than two eightbytes, or in
560 C++, is a non-POD structure or union type, or contains
561 unaligned fields, it has class memory. */
744a8059 562 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
53e95fcf 563 {
fe978cb0 564 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 565 return;
53e95fcf 566 }
efb1c01c
MK
567
568 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 569 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
570
571 /* 3. Each field of an object is classified recursively so that
572 always two fields are considered. The resulting class is
573 calculated according to the classes of the fields in the
574 eightbyte: */
575
576 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 577 {
efb1c01c
MK
578 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
579
580 /* All fields in an array have the same type. */
fe978cb0
PA
581 amd64_classify (subtype, theclass);
582 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
583 theclass[1] = theclass[0];
8ffd9b1b 584 }
53e95fcf
JS
585 else
586 {
efb1c01c 587 int i;
53e95fcf 588
efb1c01c
MK
589 /* Structure or union. */
590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
591 || TYPE_CODE (type) == TYPE_CODE_UNION);
592
593 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 594 {
efb1c01c
MK
595 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
596 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
597 enum amd64_reg_class subclass[2];
e4e2711a
JB
598 int bitsize = TYPE_FIELD_BITSIZE (type, i);
599 int endpos;
600
601 if (bitsize == 0)
602 bitsize = TYPE_LENGTH (subtype) * 8;
603 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
efb1c01c 604
562c50c2 605 /* Ignore static fields. */
d6a843b5 606 if (field_is_static (&TYPE_FIELD (type, i)))
562c50c2
MK
607 continue;
608
efb1c01c
MK
609 gdb_assert (pos == 0 || pos == 1);
610
611 amd64_classify (subtype, subclass);
fe978cb0 612 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
e4e2711a
JB
613 if (bitsize <= 64 && pos == 0 && endpos == 1)
614 /* This is a bit of an odd case: We have a field that would
615 normally fit in one of the two eightbytes, except that
616 it is placed in a way that this field straddles them.
617 This has been seen with a structure containing an array.
618
619 The ABI is a bit unclear in this case, but we assume that
620 this field's class (stored in subclass[0]) must also be merged
621 into class[1]. In other words, our field has a piece stored
622 in the second eight-byte, and thus its class applies to
623 the second eight-byte as well.
624
625 In the case where the field length exceeds 8 bytes,
626 it should not be necessary to merge the field class
627 into class[1]. As LEN > 8, subclass[1] is necessarily
628 different from AMD64_NO_CLASS. If subclass[1] is equal
629 to subclass[0], then the normal class[1]/subclass[1]
630 merging will take care of everything. For subclass[1]
631 to be different from subclass[0], I can only see the case
632 where we have a SSE/SSEUP or X87/X87UP pair, which both
633 use up all 16 bytes of the aggregate, and are already
634 handled just fine (because each portion sits on its own
635 8-byte). */
fe978cb0 636 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
efb1c01c 637 if (pos == 0)
fe978cb0 638 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
53e95fcf 639 }
53e95fcf 640 }
efb1c01c
MK
641
642 /* 4. Then a post merger cleanup is done: */
643
644 /* Rule (a): If one of the classes is MEMORY, the whole argument is
645 passed in memory. */
fe978cb0
PA
646 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
647 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 648
177b42fe 649 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 650 SSE. */
fe978cb0
PA
651 if (theclass[0] == AMD64_SSEUP)
652 theclass[0] = AMD64_SSE;
653 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
654 theclass[1] = AMD64_SSE;
efb1c01c
MK
655}
656
657/* Classify TYPE, and store the result in CLASS. */
658
bf4d6c1c 659static void
fe978cb0 660amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c
MK
661{
662 enum type_code code = TYPE_CODE (type);
663 int len = TYPE_LENGTH (type);
664
fe978cb0 665 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
666
667 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
668 long, long long, and pointers are in the INTEGER class. Similarly,
669 range types, used by languages such as Ada, are also in the INTEGER
670 class. */
efb1c01c 671 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 672 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 673 || code == TYPE_CODE_CHAR
aa006118 674 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
efb1c01c 675 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 676 theclass[0] = AMD64_INTEGER;
efb1c01c 677
5daa78cc
TJB
678 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
679 are in class SSE. */
680 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
681 && (len == 4 || len == 8))
efb1c01c 682 /* FIXME: __m64 . */
fe978cb0 683 theclass[0] = AMD64_SSE;
efb1c01c 684
5daa78cc
TJB
685 /* Arguments of types __float128, _Decimal128 and __m128 are split into
686 two halves. The least significant ones belong to class SSE, the most
efb1c01c 687 significant one to class SSEUP. */
5daa78cc
TJB
688 else if (code == TYPE_CODE_DECFLOAT && len == 16)
689 /* FIXME: __float128, __m128. */
fe978cb0 690 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
691
692 /* The 64-bit mantissa of arguments of type long double belongs to
693 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
694 class X87UP. */
695 else if (code == TYPE_CODE_FLT && len == 16)
696 /* Class X87 and X87UP. */
fe978cb0 697 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 698
7f7930dd
MK
699 /* Arguments of complex T where T is one of the types float or
700 double get treated as if they are implemented as:
701
702 struct complexT {
703 T real;
704 T imag;
5f52445b
YQ
705 };
706
707 */
7f7930dd 708 else if (code == TYPE_CODE_COMPLEX && len == 8)
fe978cb0 709 theclass[0] = AMD64_SSE;
7f7930dd 710 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 711 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
712
713 /* A variable of type complex long double is classified as type
714 COMPLEX_X87. */
715 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 716 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 717
efb1c01c
MK
718 /* Aggregates. */
719 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
720 || code == TYPE_CODE_UNION)
fe978cb0 721 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
722}
723
724static enum return_value_convention
6a3a010b 725amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 726 struct type *type, struct regcache *regcache,
42835c2b 727 gdb_byte *readbuf, const gdb_byte *writebuf)
efb1c01c 728{
fe978cb0 729 enum amd64_reg_class theclass[2];
efb1c01c 730 int len = TYPE_LENGTH (type);
90f90721
MK
731 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
732 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
733 int integer_reg = 0;
734 int sse_reg = 0;
735 int i;
736
737 gdb_assert (!(readbuf && writebuf));
738
739 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 740 amd64_classify (type, theclass);
efb1c01c
MK
741
742 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 743 for the return value and passes the address of this storage in
0963b4bd 744 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
745 this address becomes a hidden first argument.
746
747 On return %rax will contain the address that has been passed in
748 by the caller in %rdi. */
fe978cb0 749 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
750 {
751 /* As indicated by the comment above, the ABI guarantees that we
752 can always find the return value just after the function has
753 returned. */
754
755 if (readbuf)
756 {
757 ULONGEST addr;
758
759 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
760 read_memory (addr, readbuf, TYPE_LENGTH (type));
761 }
762
763 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
764 }
efb1c01c 765
7f7930dd
MK
766 /* 8. If the class is COMPLEX_X87, the real part of the value is
767 returned in %st0 and the imaginary part in %st1. */
fe978cb0 768 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
769 {
770 if (readbuf)
771 {
772 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
773 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
774 }
775
776 if (writebuf)
777 {
778 i387_return_value (gdbarch, regcache);
779 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
780 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
781
782 /* Fix up the tag word such that both %st(0) and %st(1) are
783 marked as valid. */
784 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
785 }
786
787 return RETURN_VALUE_REGISTER_CONVENTION;
788 }
789
fe978cb0 790 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 791 gdb_assert (len <= 16);
efb1c01c
MK
792
793 for (i = 0; len > 0; i++, len -= 8)
794 {
795 int regnum = -1;
796 int offset = 0;
797
fe978cb0 798 switch (theclass[i])
efb1c01c
MK
799 {
800 case AMD64_INTEGER:
801 /* 3. If the class is INTEGER, the next available register
802 of the sequence %rax, %rdx is used. */
803 regnum = integer_regnum[integer_reg++];
804 break;
805
806 case AMD64_SSE:
807 /* 4. If the class is SSE, the next available SSE register
808 of the sequence %xmm0, %xmm1 is used. */
809 regnum = sse_regnum[sse_reg++];
810 break;
811
812 case AMD64_SSEUP:
813 /* 5. If the class is SSEUP, the eightbyte is passed in the
814 upper half of the last used SSE register. */
815 gdb_assert (sse_reg > 0);
816 regnum = sse_regnum[sse_reg - 1];
817 offset = 8;
818 break;
819
820 case AMD64_X87:
821 /* 6. If the class is X87, the value is returned on the X87
822 stack in %st0 as 80-bit x87 number. */
90f90721 823 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
824 if (writebuf)
825 i387_return_value (gdbarch, regcache);
826 break;
827
828 case AMD64_X87UP:
829 /* 7. If the class is X87UP, the value is returned together
830 with the previous X87 value in %st0. */
fe978cb0 831 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 832 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
833 offset = 8;
834 len = 2;
835 break;
836
837 case AMD64_NO_CLASS:
838 continue;
839
840 default:
841 gdb_assert (!"Unexpected register class.");
842 }
843
844 gdb_assert (regnum != -1);
845
846 if (readbuf)
325fac50 847 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
42835c2b 848 readbuf + i * 8);
efb1c01c 849 if (writebuf)
325fac50 850 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
42835c2b 851 writebuf + i * 8);
efb1c01c
MK
852 }
853
854 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
855}
856\f
857
720aa428
MK
858static CORE_ADDR
859amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 860 struct value **args, CORE_ADDR sp, int struct_return)
720aa428 861{
bf4d6c1c
JB
862 static int integer_regnum[] =
863 {
864 AMD64_RDI_REGNUM, /* %rdi */
865 AMD64_RSI_REGNUM, /* %rsi */
866 AMD64_RDX_REGNUM, /* %rdx */
867 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
868 AMD64_R8_REGNUM, /* %r8 */
869 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 870 };
720aa428
MK
871 static int sse_regnum[] =
872 {
873 /* %xmm0 ... %xmm7 */
90f90721
MK
874 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
875 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
876 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
877 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428 878 };
224c3ddb 879 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
720aa428
MK
880 int num_stack_args = 0;
881 int num_elements = 0;
882 int element = 0;
883 int integer_reg = 0;
884 int sse_reg = 0;
885 int i;
886
6470d250
MK
887 /* Reserve a register for the "hidden" argument. */
888 if (struct_return)
889 integer_reg++;
890
720aa428
MK
891 for (i = 0; i < nargs; i++)
892 {
4991999e 893 struct type *type = value_type (args[i]);
720aa428 894 int len = TYPE_LENGTH (type);
fe978cb0 895 enum amd64_reg_class theclass[2];
720aa428
MK
896 int needed_integer_regs = 0;
897 int needed_sse_regs = 0;
898 int j;
899
900 /* Classify argument. */
fe978cb0 901 amd64_classify (type, theclass);
720aa428
MK
902
903 /* Calculate the number of integer and SSE registers needed for
904 this argument. */
905 for (j = 0; j < 2; j++)
906 {
fe978cb0 907 if (theclass[j] == AMD64_INTEGER)
720aa428 908 needed_integer_regs++;
fe978cb0 909 else if (theclass[j] == AMD64_SSE)
720aa428
MK
910 needed_sse_regs++;
911 }
912
913 /* Check whether enough registers are available, and if the
914 argument should be passed in registers at all. */
bf4d6c1c 915 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
916 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
917 || (needed_integer_regs == 0 && needed_sse_regs == 0))
918 {
919 /* The argument will be passed on the stack. */
920 num_elements += ((len + 7) / 8);
849e9755 921 stack_args[num_stack_args++] = args[i];
720aa428
MK
922 }
923 else
924 {
925 /* The argument will be passed in registers. */
d8de1ef7
MK
926 const gdb_byte *valbuf = value_contents (args[i]);
927 gdb_byte buf[8];
720aa428
MK
928
929 gdb_assert (len <= 16);
930
931 for (j = 0; len > 0; j++, len -= 8)
932 {
933 int regnum = -1;
934 int offset = 0;
935
fe978cb0 936 switch (theclass[j])
720aa428
MK
937 {
938 case AMD64_INTEGER:
bf4d6c1c 939 regnum = integer_regnum[integer_reg++];
720aa428
MK
940 break;
941
942 case AMD64_SSE:
943 regnum = sse_regnum[sse_reg++];
944 break;
945
946 case AMD64_SSEUP:
947 gdb_assert (sse_reg > 0);
948 regnum = sse_regnum[sse_reg - 1];
949 offset = 8;
950 break;
951
952 default:
953 gdb_assert (!"Unexpected register class.");
954 }
955
956 gdb_assert (regnum != -1);
957 memset (buf, 0, sizeof buf);
325fac50 958 memcpy (buf, valbuf + j * 8, std::min (len, 8));
720aa428
MK
959 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
960 }
961 }
962 }
963
964 /* Allocate space for the arguments on the stack. */
965 sp -= num_elements * 8;
966
967 /* The psABI says that "The end of the input argument area shall be
968 aligned on a 16 byte boundary." */
969 sp &= ~0xf;
970
971 /* Write out the arguments to the stack. */
972 for (i = 0; i < num_stack_args; i++)
973 {
4991999e 974 struct type *type = value_type (stack_args[i]);
d8de1ef7 975 const gdb_byte *valbuf = value_contents (stack_args[i]);
849e9755
JB
976 int len = TYPE_LENGTH (type);
977
978 write_memory (sp + element * 8, valbuf, len);
979 element += ((len + 7) / 8);
720aa428
MK
980 }
981
982 /* The psABI says that "For calls that may call functions that use
983 varargs or stdargs (prototype-less calls or calls to functions
984 containing ellipsis (...) in the declaration) %al is used as
985 hidden argument to specify the number of SSE registers used. */
90f90721 986 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
987 return sp;
988}
989
c4f35dd8 990static CORE_ADDR
7d9b040b 991amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
992 struct regcache *regcache, CORE_ADDR bp_addr,
993 int nargs, struct value **args, CORE_ADDR sp,
994 int struct_return, CORE_ADDR struct_addr)
53e95fcf 995{
e17a4113 996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 997 gdb_byte buf[8];
c4f35dd8 998
4a612d6f
WT
999 /* BND registers can be in arbitrary values at the moment of the
1000 inferior call. This can cause boundary violations that are not
1001 due to a real bug or even desired by the user. The best to be done
1002 is set the BND registers to allow access to the whole memory, INIT
1003 state, before pushing the inferior call. */
1004 i387_reset_bnd_regs (gdbarch, regcache);
1005
c4f35dd8 1006 /* Pass arguments. */
6470d250 1007 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
1008
1009 /* Pass "hidden" argument". */
1010 if (struct_return)
1011 {
e17a4113 1012 store_unsigned_integer (buf, 8, byte_order, struct_addr);
bf4d6c1c 1013 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
1014 }
1015
1016 /* Store return address. */
1017 sp -= 8;
e17a4113 1018 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
1019 write_memory (sp, buf, 8);
1020
1021 /* Finally, update the stack pointer... */
e17a4113 1022 store_unsigned_integer (buf, 8, byte_order, sp);
90f90721 1023 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
1024
1025 /* ...and fake a frame pointer. */
90f90721 1026 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 1027
3e210248 1028 return sp + 16;
53e95fcf 1029}
c4f35dd8 1030\f
35669430
DE
1031/* Displaced instruction handling. */
1032
1033/* A partially decoded instruction.
1034 This contains enough details for displaced stepping purposes. */
1035
1036struct amd64_insn
1037{
1038 /* The number of opcode bytes. */
1039 int opcode_len;
1040 /* The offset of the rex prefix or -1 if not present. */
1041 int rex_offset;
1042 /* The offset to the first opcode byte. */
1043 int opcode_offset;
1044 /* The offset to the modrm byte or -1 if not present. */
1045 int modrm_offset;
1046
1047 /* The raw instruction. */
1048 gdb_byte *raw_insn;
1049};
1050
cfba9872 1051struct amd64_displaced_step_closure : public displaced_step_closure
35669430 1052{
cfba9872
SM
1053 amd64_displaced_step_closure (int insn_buf_len)
1054 : insn_buf (insn_buf_len, 0)
1055 {}
1056
35669430 1057 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
cfba9872 1058 int tmp_used = 0;
35669430
DE
1059 int tmp_regno;
1060 ULONGEST tmp_save;
1061
1062 /* Details of the instruction. */
1063 struct amd64_insn insn_details;
1064
cfba9872
SM
1065 /* The possibly modified insn. */
1066 gdb::byte_vector insn_buf;
35669430
DE
1067};
1068
1069/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1070 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1071 at which point delete these in favor of libopcodes' versions). */
1072
1073static const unsigned char onebyte_has_modrm[256] = {
1074 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1075 /* ------------------------------- */
1076 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1077 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1078 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1079 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1080 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1081 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1082 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1083 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1084 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1085 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1086 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1087 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1088 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1089 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1090 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1091 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1092 /* ------------------------------- */
1093 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1094};
1095
1096static const unsigned char twobyte_has_modrm[256] = {
1097 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1098 /* ------------------------------- */
1099 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1100 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1101 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1102 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1103 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1104 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1105 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1106 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1107 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1108 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1109 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1110 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1111 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1112 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1113 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1114 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1115 /* ------------------------------- */
1116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1117};
1118
1119static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1120
1121static int
1122rex_prefix_p (gdb_byte pfx)
1123{
1124 return REX_PREFIX_P (pfx);
1125}
1126
1127/* Skip the legacy instruction prefixes in INSN.
1128 We assume INSN is properly sentineled so we don't have to worry
1129 about falling off the end of the buffer. */
1130
1131static gdb_byte *
1903f0e6 1132amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1133{
1134 while (1)
1135 {
1136 switch (*insn)
1137 {
1138 case DATA_PREFIX_OPCODE:
1139 case ADDR_PREFIX_OPCODE:
1140 case CS_PREFIX_OPCODE:
1141 case DS_PREFIX_OPCODE:
1142 case ES_PREFIX_OPCODE:
1143 case FS_PREFIX_OPCODE:
1144 case GS_PREFIX_OPCODE:
1145 case SS_PREFIX_OPCODE:
1146 case LOCK_PREFIX_OPCODE:
1147 case REPE_PREFIX_OPCODE:
1148 case REPNE_PREFIX_OPCODE:
1149 ++insn;
1150 continue;
1151 default:
1152 break;
1153 }
1154 break;
1155 }
1156
1157 return insn;
1158}
1159
35669430
DE
1160/* Return an integer register (other than RSP) that is unused as an input
1161 operand in INSN.
1162 In order to not require adding a rex prefix if the insn doesn't already
1163 have one, the result is restricted to RAX ... RDI, sans RSP.
1164 The register numbering of the result follows architecture ordering,
1165 e.g. RDI = 7. */
1166
1167static int
1168amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1169{
1170 /* 1 bit for each reg */
1171 int used_regs_mask = 0;
1172
1173 /* There can be at most 3 int regs used as inputs in an insn, and we have
1174 7 to choose from (RAX ... RDI, sans RSP).
1175 This allows us to take a conservative approach and keep things simple.
1176 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1177 that implicitly specify RAX. */
1178
1179 /* Avoid RAX. */
1180 used_regs_mask |= 1 << EAX_REG_NUM;
1181 /* Similarily avoid RDX, implicit operand in divides. */
1182 used_regs_mask |= 1 << EDX_REG_NUM;
1183 /* Avoid RSP. */
1184 used_regs_mask |= 1 << ESP_REG_NUM;
1185
1186 /* If the opcode is one byte long and there's no ModRM byte,
1187 assume the opcode specifies a register. */
1188 if (details->opcode_len == 1 && details->modrm_offset == -1)
1189 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1190
1191 /* Mark used regs in the modrm/sib bytes. */
1192 if (details->modrm_offset != -1)
1193 {
1194 int modrm = details->raw_insn[details->modrm_offset];
1195 int mod = MODRM_MOD_FIELD (modrm);
1196 int reg = MODRM_REG_FIELD (modrm);
1197 int rm = MODRM_RM_FIELD (modrm);
1198 int have_sib = mod != 3 && rm == 4;
1199
1200 /* Assume the reg field of the modrm byte specifies a register. */
1201 used_regs_mask |= 1 << reg;
1202
1203 if (have_sib)
1204 {
1205 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1206 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1207 used_regs_mask |= 1 << base;
d48ebb5b 1208 used_regs_mask |= 1 << idx;
35669430
DE
1209 }
1210 else
1211 {
1212 used_regs_mask |= 1 << rm;
1213 }
1214 }
1215
1216 gdb_assert (used_regs_mask < 256);
1217 gdb_assert (used_regs_mask != 255);
1218
1219 /* Finally, find a free reg. */
1220 {
1221 int i;
1222
1223 for (i = 0; i < 8; ++i)
1224 {
1225 if (! (used_regs_mask & (1 << i)))
1226 return i;
1227 }
1228
1229 /* We shouldn't get here. */
1230 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1231 }
1232}
1233
1234/* Extract the details of INSN that we need. */
1235
1236static void
1237amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1238{
1239 gdb_byte *start = insn;
1240 int need_modrm;
1241
1242 details->raw_insn = insn;
1243
1244 details->opcode_len = -1;
1245 details->rex_offset = -1;
1246 details->opcode_offset = -1;
1247 details->modrm_offset = -1;
1248
1249 /* Skip legacy instruction prefixes. */
1903f0e6 1250 insn = amd64_skip_prefixes (insn);
35669430
DE
1251
1252 /* Skip REX instruction prefix. */
1253 if (rex_prefix_p (*insn))
1254 {
1255 details->rex_offset = insn - start;
1256 ++insn;
1257 }
1258
1259 details->opcode_offset = insn - start;
1260
1261 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1262 {
1263 /* Two or three-byte opcode. */
1264 ++insn;
1265 need_modrm = twobyte_has_modrm[*insn];
1266
1267 /* Check for three-byte opcode. */
1903f0e6 1268 switch (*insn)
35669430 1269 {
1903f0e6
DE
1270 case 0x24:
1271 case 0x25:
1272 case 0x38:
1273 case 0x3a:
1274 case 0x7a:
1275 case 0x7b:
35669430
DE
1276 ++insn;
1277 details->opcode_len = 3;
1903f0e6
DE
1278 break;
1279 default:
1280 details->opcode_len = 2;
1281 break;
35669430 1282 }
35669430
DE
1283 }
1284 else
1285 {
1286 /* One-byte opcode. */
1287 need_modrm = onebyte_has_modrm[*insn];
1288 details->opcode_len = 1;
1289 }
1290
1291 if (need_modrm)
1292 {
1293 ++insn;
1294 details->modrm_offset = insn - start;
1295 }
1296}
1297
1298/* Update %rip-relative addressing in INSN.
1299
1300 %rip-relative addressing only uses a 32-bit displacement.
1301 32 bits is not enough to be guaranteed to cover the distance between where
1302 the real instruction is and where its copy is.
1303 Convert the insn to use base+disp addressing.
1304 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1305
35669430 1306static void
cfba9872 1307fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
35669430
DE
1308 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1309{
1310 const struct amd64_insn *insn_details = &dsc->insn_details;
1311 int modrm_offset = insn_details->modrm_offset;
1312 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1313 CORE_ADDR rip_base;
35669430
DE
1314 int insn_length;
1315 int arch_tmp_regno, tmp_regno;
1316 ULONGEST orig_value;
1317
1318 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1319 ++insn;
1320
1321 /* Compute the rip-relative address. */
cfba9872
SM
1322 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1323 dsc->insn_buf.size (), from);
35669430
DE
1324 rip_base = from + insn_length;
1325
1326 /* We need a register to hold the address.
1327 Pick one not used in the insn.
1328 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1329 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1330 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1331
1332 /* REX.B should be unset as we were using rip-relative addressing,
1333 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1334 if (insn_details->rex_offset != -1)
1335 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1336
1337 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1338 dsc->tmp_regno = tmp_regno;
1339 dsc->tmp_save = orig_value;
1340 dsc->tmp_used = 1;
1341
1342 /* Convert the ModRM field to be base+disp. */
1343 dsc->insn_buf[modrm_offset] &= ~0xc7;
1344 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1345
1346 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1347
1348 if (debug_displaced)
1349 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
5af949e3
UW
1350 "displaced: using temp reg %d, old value %s, new value %s\n",
1351 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1352 paddress (gdbarch, rip_base));
35669430
DE
1353}
1354
1355static void
1356fixup_displaced_copy (struct gdbarch *gdbarch,
cfba9872 1357 amd64_displaced_step_closure *dsc,
35669430
DE
1358 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1359{
1360 const struct amd64_insn *details = &dsc->insn_details;
1361
1362 if (details->modrm_offset != -1)
1363 {
1364 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1365
1366 if ((modrm & 0xc7) == 0x05)
1367 {
1368 /* The insn uses rip-relative addressing.
1369 Deal with it. */
1370 fixup_riprel (gdbarch, dsc, from, to, regs);
1371 }
1372 }
1373}
1374
1375struct displaced_step_closure *
1376amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1377 CORE_ADDR from, CORE_ADDR to,
1378 struct regcache *regs)
1379{
1380 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1381 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1382 continually watch for running off the end of the buffer. */
1383 int fixup_sentinel_space = len;
cfba9872
SM
1384 amd64_displaced_step_closure *dsc
1385 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
35669430
DE
1386 gdb_byte *buf = &dsc->insn_buf[0];
1387 struct amd64_insn *details = &dsc->insn_details;
1388
35669430
DE
1389 read_memory (from, buf, len);
1390
1391 /* Set up the sentinel space so we don't have to worry about running
1392 off the end of the buffer. An excessive number of leading prefixes
1393 could otherwise cause this. */
1394 memset (buf + len, 0, fixup_sentinel_space);
1395
1396 amd64_get_insn_details (buf, details);
1397
1398 /* GDB may get control back after the insn after the syscall.
1399 Presumably this is a kernel bug.
1400 If this is a syscall, make sure there's a nop afterwards. */
1401 {
1402 int syscall_length;
1403
1404 if (amd64_syscall_p (details, &syscall_length))
1405 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1406 }
1407
1408 /* Modify the insn to cope with the address where it will be executed from.
1409 In particular, handle any rip-relative addressing. */
1410 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1411
1412 write_memory (to, buf, len);
1413
1414 if (debug_displaced)
1415 {
5af949e3
UW
1416 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1417 paddress (gdbarch, from), paddress (gdbarch, to));
35669430
DE
1418 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1419 }
1420
1421 return dsc;
1422}
1423
1424static int
1425amd64_absolute_jmp_p (const struct amd64_insn *details)
1426{
1427 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1428
1429 if (insn[0] == 0xff)
1430 {
1431 /* jump near, absolute indirect (/4) */
1432 if ((insn[1] & 0x38) == 0x20)
1433 return 1;
1434
1435 /* jump far, absolute indirect (/5) */
1436 if ((insn[1] & 0x38) == 0x28)
1437 return 1;
1438 }
1439
1440 return 0;
1441}
1442
c2170eef
MM
1443/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1444
1445static int
1446amd64_jmp_p (const struct amd64_insn *details)
1447{
1448 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1449
1450 /* jump short, relative. */
1451 if (insn[0] == 0xeb)
1452 return 1;
1453
1454 /* jump near, relative. */
1455 if (insn[0] == 0xe9)
1456 return 1;
1457
1458 return amd64_absolute_jmp_p (details);
1459}
1460
35669430
DE
1461static int
1462amd64_absolute_call_p (const struct amd64_insn *details)
1463{
1464 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1465
1466 if (insn[0] == 0xff)
1467 {
1468 /* Call near, absolute indirect (/2) */
1469 if ((insn[1] & 0x38) == 0x10)
1470 return 1;
1471
1472 /* Call far, absolute indirect (/3) */
1473 if ((insn[1] & 0x38) == 0x18)
1474 return 1;
1475 }
1476
1477 return 0;
1478}
1479
1480static int
1481amd64_ret_p (const struct amd64_insn *details)
1482{
1483 /* NOTE: gcc can emit "repz ; ret". */
1484 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1485
1486 switch (insn[0])
1487 {
1488 case 0xc2: /* ret near, pop N bytes */
1489 case 0xc3: /* ret near */
1490 case 0xca: /* ret far, pop N bytes */
1491 case 0xcb: /* ret far */
1492 case 0xcf: /* iret */
1493 return 1;
1494
1495 default:
1496 return 0;
1497 }
1498}
1499
1500static int
1501amd64_call_p (const struct amd64_insn *details)
1502{
1503 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1504
1505 if (amd64_absolute_call_p (details))
1506 return 1;
1507
1508 /* call near, relative */
1509 if (insn[0] == 0xe8)
1510 return 1;
1511
1512 return 0;
1513}
1514
35669430
DE
1515/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1516 length in bytes. Otherwise, return zero. */
1517
1518static int
1519amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1520{
1521 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1522
1523 if (insn[0] == 0x0f && insn[1] == 0x05)
1524 {
1525 *lengthp = 2;
1526 return 1;
1527 }
1528
1529 return 0;
1530}
1531
c2170eef
MM
1532/* Classify the instruction at ADDR using PRED.
1533 Throw an error if the memory can't be read. */
1534
1535static int
1536amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1537 int (*pred) (const struct amd64_insn *))
1538{
1539 struct amd64_insn details;
1540 gdb_byte *buf;
1541 int len, classification;
1542
1543 len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1544 buf = (gdb_byte *) alloca (len);
c2170eef
MM
1545
1546 read_code (addr, buf, len);
1547 amd64_get_insn_details (buf, &details);
1548
1549 classification = pred (&details);
1550
1551 return classification;
1552}
1553
1554/* The gdbarch insn_is_call method. */
1555
1556static int
1557amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1558{
1559 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1560}
1561
1562/* The gdbarch insn_is_ret method. */
1563
1564static int
1565amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1566{
1567 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1568}
1569
1570/* The gdbarch insn_is_jump method. */
1571
1572static int
1573amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1574{
1575 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1576}
1577
35669430
DE
1578/* Fix up the state of registers and memory after having single-stepped
1579 a displaced instruction. */
1580
1581void
1582amd64_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 1583 struct displaced_step_closure *dsc_,
35669430
DE
1584 CORE_ADDR from, CORE_ADDR to,
1585 struct regcache *regs)
1586{
cfba9872 1587 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
e17a4113 1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1589 /* The offset we applied to the instruction's address. */
1590 ULONGEST insn_offset = to - from;
cfba9872 1591 gdb_byte *insn = dsc->insn_buf.data ();
35669430
DE
1592 const struct amd64_insn *insn_details = &dsc->insn_details;
1593
1594 if (debug_displaced)
1595 fprintf_unfiltered (gdb_stdlog,
5af949e3 1596 "displaced: fixup (%s, %s), "
35669430 1597 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
1598 paddress (gdbarch, from), paddress (gdbarch, to),
1599 insn[0], insn[1]);
35669430
DE
1600
1601 /* If we used a tmp reg, restore it. */
1602
1603 if (dsc->tmp_used)
1604 {
1605 if (debug_displaced)
5af949e3
UW
1606 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1607 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1608 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1609 }
1610
1611 /* The list of issues to contend with here is taken from
1612 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1613 Yay for Free Software! */
1614
1615 /* Relocate the %rip back to the program's instruction stream,
1616 if necessary. */
1617
1618 /* Except in the case of absolute or indirect jump or call
1619 instructions, or a return instruction, the new rip is relative to
1620 the displaced instruction; make it relative to the original insn.
1621 Well, signal handler returns don't need relocation either, but we use the
1622 value of %rip to recognize those; see below. */
1623 if (! amd64_absolute_jmp_p (insn_details)
1624 && ! amd64_absolute_call_p (insn_details)
1625 && ! amd64_ret_p (insn_details))
1626 {
1627 ULONGEST orig_rip;
1628 int insn_len;
1629
1630 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1631
1632 /* A signal trampoline system call changes the %rip, resuming
1633 execution of the main program after the signal handler has
1634 returned. That makes them like 'return' instructions; we
1635 shouldn't relocate %rip.
1636
1637 But most system calls don't, and we do need to relocate %rip.
1638
1639 Our heuristic for distinguishing these cases: if stepping
1640 over the system call instruction left control directly after
1641 the instruction, the we relocate --- control almost certainly
1642 doesn't belong in the displaced copy. Otherwise, we assume
1643 the instruction has put control where it belongs, and leave
1644 it unrelocated. Goodness help us if there are PC-relative
1645 system calls. */
1646 if (amd64_syscall_p (insn_details, &insn_len)
1647 && orig_rip != to + insn_len
1648 /* GDB can get control back after the insn after the syscall.
1649 Presumably this is a kernel bug.
1650 Fixup ensures its a nop, we add one to the length for it. */
1651 && orig_rip != to + insn_len + 1)
1652 {
1653 if (debug_displaced)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "displaced: syscall changed %%rip; "
1656 "not relocating\n");
1657 }
1658 else
1659 {
1660 ULONGEST rip = orig_rip - insn_offset;
1661
1903f0e6
DE
1662 /* If we just stepped over a breakpoint insn, we don't backup
1663 the pc on purpose; this is to match behaviour without
1664 stepping. */
35669430
DE
1665
1666 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "displaced: "
5af949e3
UW
1671 "relocated %%rip from %s to %s\n",
1672 paddress (gdbarch, orig_rip),
1673 paddress (gdbarch, rip));
35669430
DE
1674 }
1675 }
1676
1677 /* If the instruction was PUSHFL, then the TF bit will be set in the
1678 pushed value, and should be cleared. We'll leave this for later,
1679 since GDB already messes up the TF flag when stepping over a
1680 pushfl. */
1681
1682 /* If the instruction was a call, the return address now atop the
1683 stack is the address following the copied instruction. We need
1684 to make it the address following the original instruction. */
1685 if (amd64_call_p (insn_details))
1686 {
1687 ULONGEST rsp;
1688 ULONGEST retaddr;
1689 const ULONGEST retaddr_len = 8;
1690
1691 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1692 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1693 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1694 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430
DE
1695
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1698 "displaced: relocated return addr at %s "
1699 "to %s\n",
1700 paddress (gdbarch, rsp),
1701 paddress (gdbarch, retaddr));
35669430
DE
1702 }
1703}
dde08ee1
PA
1704
1705/* If the instruction INSN uses RIP-relative addressing, return the
1706 offset into the raw INSN where the displacement to be adjusted is
1707 found. Returns 0 if the instruction doesn't use RIP-relative
1708 addressing. */
1709
1710static int
1711rip_relative_offset (struct amd64_insn *insn)
1712{
1713 if (insn->modrm_offset != -1)
1714 {
1715 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1716
1717 if ((modrm & 0xc7) == 0x05)
1718 {
1719 /* The displacement is found right after the ModRM byte. */
1720 return insn->modrm_offset + 1;
1721 }
1722 }
1723
1724 return 0;
1725}
1726
1727static void
1728append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1729{
1730 target_write_memory (*to, buf, len);
1731 *to += len;
1732}
1733
60965737 1734static void
dde08ee1
PA
1735amd64_relocate_instruction (struct gdbarch *gdbarch,
1736 CORE_ADDR *to, CORE_ADDR oldloc)
1737{
1738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1739 int len = gdbarch_max_insn_length (gdbarch);
1740 /* Extra space for sentinels. */
1741 int fixup_sentinel_space = len;
224c3ddb 1742 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
dde08ee1
PA
1743 struct amd64_insn insn_details;
1744 int offset = 0;
1745 LONGEST rel32, newrel;
1746 gdb_byte *insn;
1747 int insn_length;
1748
1749 read_memory (oldloc, buf, len);
1750
1751 /* Set up the sentinel space so we don't have to worry about running
1752 off the end of the buffer. An excessive number of leading prefixes
1753 could otherwise cause this. */
1754 memset (buf + len, 0, fixup_sentinel_space);
1755
1756 insn = buf;
1757 amd64_get_insn_details (insn, &insn_details);
1758
1759 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1760
1761 /* Skip legacy instruction prefixes. */
1762 insn = amd64_skip_prefixes (insn);
1763
1764 /* Adjust calls with 32-bit relative addresses as push/jump, with
1765 the address pushed being the location where the original call in
1766 the user program would return to. */
1767 if (insn[0] == 0xe8)
1768 {
f077e978
PA
1769 gdb_byte push_buf[32];
1770 CORE_ADDR ret_addr;
1771 int i = 0;
dde08ee1
PA
1772
1773 /* Where "ret" in the original code will return to. */
1774 ret_addr = oldloc + insn_length;
f077e978
PA
1775
1776 /* If pushing an address higher than or equal to 0x80000000,
1777 avoid 'pushq', as that sign extends its 32-bit operand, which
1778 would be incorrect. */
1779 if (ret_addr <= 0x7fffffff)
1780 {
1781 push_buf[0] = 0x68; /* pushq $... */
1782 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1783 i = 5;
1784 }
1785 else
1786 {
1787 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1788 push_buf[i++] = 0x83;
1789 push_buf[i++] = 0xec;
1790 push_buf[i++] = 0x08;
1791
1792 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1793 push_buf[i++] = 0x04;
1794 push_buf[i++] = 0x24;
1795 store_unsigned_integer (&push_buf[i], 4, byte_order,
1796 ret_addr & 0xffffffff);
1797 i += 4;
1798
1799 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1800 push_buf[i++] = 0x44;
1801 push_buf[i++] = 0x24;
1802 push_buf[i++] = 0x04;
1803 store_unsigned_integer (&push_buf[i], 4, byte_order,
1804 ret_addr >> 32);
1805 i += 4;
1806 }
1807 gdb_assert (i <= sizeof (push_buf));
dde08ee1 1808 /* Push the push. */
f077e978 1809 append_insns (to, i, push_buf);
dde08ee1
PA
1810
1811 /* Convert the relative call to a relative jump. */
1812 insn[0] = 0xe9;
1813
1814 /* Adjust the destination offset. */
1815 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1816 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1817 store_signed_integer (insn + 1, 4, byte_order, newrel);
1818
1819 if (debug_displaced)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "Adjusted insn rel32=%s at %s to"
1822 " rel32=%s at %s\n",
1823 hex_string (rel32), paddress (gdbarch, oldloc),
1824 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1825
1826 /* Write the adjusted jump into its displaced location. */
1827 append_insns (to, 5, insn);
1828 return;
1829 }
1830
1831 offset = rip_relative_offset (&insn_details);
1832 if (!offset)
1833 {
1834 /* Adjust jumps with 32-bit relative addresses. Calls are
1835 already handled above. */
1836 if (insn[0] == 0xe9)
1837 offset = 1;
1838 /* Adjust conditional jumps. */
1839 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1840 offset = 2;
1841 }
1842
1843 if (offset)
1844 {
1845 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1846 newrel = (oldloc - *to) + rel32;
f4a1794a 1847 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1848 if (debug_displaced)
1849 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1850 "Adjusted insn rel32=%s at %s to"
1851 " rel32=%s at %s\n",
dde08ee1
PA
1852 hex_string (rel32), paddress (gdbarch, oldloc),
1853 hex_string (newrel), paddress (gdbarch, *to));
1854 }
1855
1856 /* Write the adjusted instruction into its displaced location. */
1857 append_insns (to, insn_length, buf);
1858}
1859
35669430 1860\f
c4f35dd8 1861/* The maximum number of saved registers. This should include %rip. */
90f90721 1862#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1863
e53bef9f 1864struct amd64_frame_cache
c4f35dd8
MK
1865{
1866 /* Base address. */
1867 CORE_ADDR base;
8fbca658 1868 int base_p;
c4f35dd8
MK
1869 CORE_ADDR sp_offset;
1870 CORE_ADDR pc;
1871
1872 /* Saved registers. */
e53bef9f 1873 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1874 CORE_ADDR saved_sp;
e0c62198 1875 int saved_sp_reg;
c4f35dd8
MK
1876
1877 /* Do we have a frame? */
1878 int frameless_p;
1879};
8dda9770 1880
d2449ee8 1881/* Initialize a frame cache. */
c4f35dd8 1882
d2449ee8
DJ
1883static void
1884amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1885{
c4f35dd8
MK
1886 int i;
1887
c4f35dd8
MK
1888 /* Base address. */
1889 cache->base = 0;
8fbca658 1890 cache->base_p = 0;
c4f35dd8
MK
1891 cache->sp_offset = -8;
1892 cache->pc = 0;
1893
1894 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1895 offset (that's where %rbp is supposed to be stored).
1896 The values start out as being offsets, and are later converted to
1897 addresses (at which point -1 is interpreted as an address, still meaning
1898 "invalid"). */
e53bef9f 1899 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1900 cache->saved_regs[i] = -1;
1901 cache->saved_sp = 0;
e0c62198 1902 cache->saved_sp_reg = -1;
c4f35dd8
MK
1903
1904 /* Frameless until proven otherwise. */
1905 cache->frameless_p = 1;
d2449ee8 1906}
c4f35dd8 1907
d2449ee8
DJ
1908/* Allocate and initialize a frame cache. */
1909
1910static struct amd64_frame_cache *
1911amd64_alloc_frame_cache (void)
1912{
1913 struct amd64_frame_cache *cache;
1914
1915 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1916 amd64_init_frame_cache (cache);
c4f35dd8 1917 return cache;
8dda9770 1918}
53e95fcf 1919
e0c62198
L
1920/* GCC 4.4 and later, can put code in the prologue to realign the
1921 stack pointer. Check whether PC points to such code, and update
1922 CACHE accordingly. Return the first instruction after the code
1923 sequence or CURRENT_PC, whichever is smaller. If we don't
1924 recognize the code, return PC. */
1925
1926static CORE_ADDR
1927amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1928 struct amd64_frame_cache *cache)
1929{
1930 /* There are 2 code sequences to re-align stack before the frame
1931 gets set up:
1932
1933 1. Use a caller-saved saved register:
1934
1935 leaq 8(%rsp), %reg
1936 andq $-XXX, %rsp
1937 pushq -8(%reg)
1938
1939 2. Use a callee-saved saved register:
1940
1941 pushq %reg
1942 leaq 16(%rsp), %reg
1943 andq $-XXX, %rsp
1944 pushq -8(%reg)
1945
1946 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1947
1948 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1949 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1950 */
1951
1952 gdb_byte buf[18];
1953 int reg, r;
1954 int offset, offset_and;
e0c62198 1955
bae8a07a 1956 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1957 return pc;
1958
1959 /* Check caller-saved saved register. The first instruction has
1960 to be "leaq 8(%rsp), %reg". */
1961 if ((buf[0] & 0xfb) == 0x48
1962 && buf[1] == 0x8d
1963 && buf[3] == 0x24
1964 && buf[4] == 0x8)
1965 {
1966 /* MOD must be binary 10 and R/M must be binary 100. */
1967 if ((buf[2] & 0xc7) != 0x44)
1968 return pc;
1969
1970 /* REG has register number. */
1971 reg = (buf[2] >> 3) & 7;
1972
1973 /* Check the REX.R bit. */
1974 if (buf[0] == 0x4c)
1975 reg += 8;
1976
1977 offset = 5;
1978 }
1979 else
1980 {
1981 /* Check callee-saved saved register. The first instruction
1982 has to be "pushq %reg". */
1983 reg = 0;
1984 if ((buf[0] & 0xf8) == 0x50)
1985 offset = 0;
1986 else if ((buf[0] & 0xf6) == 0x40
1987 && (buf[1] & 0xf8) == 0x50)
1988 {
1989 /* Check the REX.B bit. */
1990 if ((buf[0] & 1) != 0)
1991 reg = 8;
1992
1993 offset = 1;
1994 }
1995 else
1996 return pc;
1997
1998 /* Get register. */
1999 reg += buf[offset] & 0x7;
2000
2001 offset++;
2002
2003 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2004 if ((buf[offset] & 0xfb) != 0x48
2005 || buf[offset + 1] != 0x8d
2006 || buf[offset + 3] != 0x24
2007 || buf[offset + 4] != 0x10)
2008 return pc;
2009
2010 /* MOD must be binary 10 and R/M must be binary 100. */
2011 if ((buf[offset + 2] & 0xc7) != 0x44)
2012 return pc;
2013
2014 /* REG has register number. */
2015 r = (buf[offset + 2] >> 3) & 7;
2016
2017 /* Check the REX.R bit. */
2018 if (buf[offset] == 0x4c)
2019 r += 8;
2020
2021 /* Registers in pushq and leaq have to be the same. */
2022 if (reg != r)
2023 return pc;
2024
2025 offset += 5;
2026 }
2027
2028 /* Rigister can't be %rsp nor %rbp. */
2029 if (reg == 4 || reg == 5)
2030 return pc;
2031
2032 /* The next instruction has to be "andq $-XXX, %rsp". */
2033 if (buf[offset] != 0x48
2034 || buf[offset + 2] != 0xe4
2035 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2036 return pc;
2037
2038 offset_and = offset;
2039 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2040
2041 /* The next instruction has to be "pushq -8(%reg)". */
2042 r = 0;
2043 if (buf[offset] == 0xff)
2044 offset++;
2045 else if ((buf[offset] & 0xf6) == 0x40
2046 && buf[offset + 1] == 0xff)
2047 {
2048 /* Check the REX.B bit. */
2049 if ((buf[offset] & 0x1) != 0)
2050 r = 8;
2051 offset += 2;
2052 }
2053 else
2054 return pc;
2055
2056 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2057 01. */
2058 if (buf[offset + 1] != 0xf8
2059 || (buf[offset] & 0xf8) != 0x70)
2060 return pc;
2061
2062 /* R/M has register. */
2063 r += buf[offset] & 7;
2064
2065 /* Registers in leaq and pushq have to be the same. */
2066 if (reg != r)
2067 return pc;
2068
2069 if (current_pc > pc + offset_and)
35669430 2070 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198 2071
325fac50 2072 return std::min (pc + offset + 2, current_pc);
e0c62198
L
2073}
2074
ac142d96
L
2075/* Similar to amd64_analyze_stack_align for x32. */
2076
2077static CORE_ADDR
2078amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2079 struct amd64_frame_cache *cache)
2080{
2081 /* There are 2 code sequences to re-align stack before the frame
2082 gets set up:
2083
2084 1. Use a caller-saved saved register:
2085
2086 leaq 8(%rsp), %reg
2087 andq $-XXX, %rsp
2088 pushq -8(%reg)
2089
2090 or
2091
2092 [addr32] leal 8(%rsp), %reg
2093 andl $-XXX, %esp
2094 [addr32] pushq -8(%reg)
2095
2096 2. Use a callee-saved saved register:
2097
2098 pushq %reg
2099 leaq 16(%rsp), %reg
2100 andq $-XXX, %rsp
2101 pushq -8(%reg)
2102
2103 or
2104
2105 pushq %reg
2106 [addr32] leal 16(%rsp), %reg
2107 andl $-XXX, %esp
2108 [addr32] pushq -8(%reg)
2109
2110 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2111
2112 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2113 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2114
2115 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2116
2117 0x83 0xe4 0xf0 andl $-16, %esp
2118 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2119 */
2120
2121 gdb_byte buf[19];
2122 int reg, r;
2123 int offset, offset_and;
2124
2125 if (target_read_memory (pc, buf, sizeof buf))
2126 return pc;
2127
2128 /* Skip optional addr32 prefix. */
2129 offset = buf[0] == 0x67 ? 1 : 0;
2130
2131 /* Check caller-saved saved register. The first instruction has
2132 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2133 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2134 && buf[offset + 1] == 0x8d
2135 && buf[offset + 3] == 0x24
2136 && buf[offset + 4] == 0x8)
2137 {
2138 /* MOD must be binary 10 and R/M must be binary 100. */
2139 if ((buf[offset + 2] & 0xc7) != 0x44)
2140 return pc;
2141
2142 /* REG has register number. */
2143 reg = (buf[offset + 2] >> 3) & 7;
2144
2145 /* Check the REX.R bit. */
2146 if ((buf[offset] & 0x4) != 0)
2147 reg += 8;
2148
2149 offset += 5;
2150 }
2151 else
2152 {
2153 /* Check callee-saved saved register. The first instruction
2154 has to be "pushq %reg". */
2155 reg = 0;
2156 if ((buf[offset] & 0xf6) == 0x40
2157 && (buf[offset + 1] & 0xf8) == 0x50)
2158 {
2159 /* Check the REX.B bit. */
2160 if ((buf[offset] & 1) != 0)
2161 reg = 8;
2162
2163 offset += 1;
2164 }
2165 else if ((buf[offset] & 0xf8) != 0x50)
2166 return pc;
2167
2168 /* Get register. */
2169 reg += buf[offset] & 0x7;
2170
2171 offset++;
2172
2173 /* Skip optional addr32 prefix. */
2174 if (buf[offset] == 0x67)
2175 offset++;
2176
2177 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2178 "leal 16(%rsp), %reg". */
2179 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2180 || buf[offset + 1] != 0x8d
2181 || buf[offset + 3] != 0x24
2182 || buf[offset + 4] != 0x10)
2183 return pc;
2184
2185 /* MOD must be binary 10 and R/M must be binary 100. */
2186 if ((buf[offset + 2] & 0xc7) != 0x44)
2187 return pc;
2188
2189 /* REG has register number. */
2190 r = (buf[offset + 2] >> 3) & 7;
2191
2192 /* Check the REX.R bit. */
2193 if ((buf[offset] & 0x4) != 0)
2194 r += 8;
2195
2196 /* Registers in pushq and leaq have to be the same. */
2197 if (reg != r)
2198 return pc;
2199
2200 offset += 5;
2201 }
2202
2203 /* Rigister can't be %rsp nor %rbp. */
2204 if (reg == 4 || reg == 5)
2205 return pc;
2206
2207 /* The next instruction may be "andq $-XXX, %rsp" or
2208 "andl $-XXX, %esp". */
2209 if (buf[offset] != 0x48)
2210 offset--;
2211
2212 if (buf[offset + 2] != 0xe4
2213 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2214 return pc;
2215
2216 offset_and = offset;
2217 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2218
2219 /* Skip optional addr32 prefix. */
2220 if (buf[offset] == 0x67)
2221 offset++;
2222
2223 /* The next instruction has to be "pushq -8(%reg)". */
2224 r = 0;
2225 if (buf[offset] == 0xff)
2226 offset++;
2227 else if ((buf[offset] & 0xf6) == 0x40
2228 && buf[offset + 1] == 0xff)
2229 {
2230 /* Check the REX.B bit. */
2231 if ((buf[offset] & 0x1) != 0)
2232 r = 8;
2233 offset += 2;
2234 }
2235 else
2236 return pc;
2237
2238 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2239 01. */
2240 if (buf[offset + 1] != 0xf8
2241 || (buf[offset] & 0xf8) != 0x70)
2242 return pc;
2243
2244 /* R/M has register. */
2245 r += buf[offset] & 7;
2246
2247 /* Registers in leaq and pushq have to be the same. */
2248 if (reg != r)
2249 return pc;
2250
2251 if (current_pc > pc + offset_and)
2252 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2253
325fac50 2254 return std::min (pc + offset + 2, current_pc);
ac142d96
L
2255}
2256
c4f35dd8
MK
2257/* Do a limited analysis of the prologue at PC and update CACHE
2258 accordingly. Bail out early if CURRENT_PC is reached. Return the
2259 address where the analysis stopped.
2260
2261 We will handle only functions beginning with:
2262
2263 pushq %rbp 0x55
50f1ae7b 2264 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2265
649e6d92
MK
2266 or (for the X32 ABI):
2267
2268 pushq %rbp 0x55
2269 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2270
2271 Any function that doesn't start with one of these sequences will be
2272 assumed to have no prologue and thus no valid frame pointer in
2273 %rbp. */
c4f35dd8
MK
2274
2275static CORE_ADDR
e17a4113
UW
2276amd64_analyze_prologue (struct gdbarch *gdbarch,
2277 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2278 struct amd64_frame_cache *cache)
53e95fcf 2279{
e17a4113 2280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
50f1ae7b
DE
2281 /* There are two variations of movq %rsp, %rbp. */
2282 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2283 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2284 /* Ditto for movl %esp, %ebp. */
2285 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2286 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2287
d8de1ef7
MK
2288 gdb_byte buf[3];
2289 gdb_byte op;
c4f35dd8
MK
2290
2291 if (current_pc <= pc)
2292 return current_pc;
2293
ac142d96
L
2294 if (gdbarch_ptr_bit (gdbarch) == 32)
2295 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2296 else
2297 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2298
bae8a07a 2299 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8
MK
2300
2301 if (op == 0x55) /* pushq %rbp */
2302 {
2303 /* Take into account that we've executed the `pushq %rbp' that
2304 starts this instruction sequence. */
90f90721 2305 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2306 cache->sp_offset += 8;
2307
2308 /* If that's all, return now. */
2309 if (current_pc <= pc + 1)
2310 return current_pc;
2311
bae8a07a 2312 read_code (pc + 1, buf, 3);
c4f35dd8 2313
649e6d92
MK
2314 /* Check for `movq %rsp, %rbp'. */
2315 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2316 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2317 {
2318 /* OK, we actually have a frame. */
2319 cache->frameless_p = 0;
2320 return pc + 4;
2321 }
2322
2323 /* For X32, also check for `movq %esp, %ebp'. */
2324 if (gdbarch_ptr_bit (gdbarch) == 32)
2325 {
2326 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2327 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2328 {
2329 /* OK, we actually have a frame. */
2330 cache->frameless_p = 0;
2331 return pc + 3;
2332 }
2333 }
2334
2335 return pc + 1;
c4f35dd8
MK
2336 }
2337
2338 return pc;
53e95fcf
JS
2339}
2340
df15bd07
JK
2341/* Work around false termination of prologue - GCC PR debug/48827.
2342
2343 START_PC is the first instruction of a function, PC is its minimal already
2344 determined advanced address. Function returns PC if it has nothing to do.
2345
2346 84 c0 test %al,%al
2347 74 23 je after
2348 <-- here is 0 lines advance - the false prologue end marker.
2349 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2350 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2351 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2352 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2353 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2354 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2355 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2356 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2357 after: */
c4f35dd8
MK
2358
2359static CORE_ADDR
df15bd07 2360amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2361{
08711b9a
JK
2362 struct symtab_and_line start_pc_sal, next_sal;
2363 gdb_byte buf[4 + 8 * 7];
2364 int offset, xmmreg;
c4f35dd8 2365
08711b9a
JK
2366 if (pc == start_pc)
2367 return pc;
2368
2369 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2370 if (start_pc_sal.symtab == NULL
43f3e411
DE
2371 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2372 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
08711b9a
JK
2373 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2374 return pc;
2375
2376 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2377 if (next_sal.line != start_pc_sal.line)
2378 return pc;
2379
2380 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2381 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2382 return pc;
2383
2384 /* test %al,%al */
2385 if (buf[0] != 0x84 || buf[1] != 0xc0)
2386 return pc;
2387 /* je AFTER */
2388 if (buf[2] != 0x74)
2389 return pc;
2390
2391 offset = 4;
2392 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2393 {
bede5f5f 2394 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2395 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
bede5f5f 2396 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2397 return pc;
2398
bede5f5f
JK
2399 /* 0b01?????? */
2400 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2401 {
2402 /* 8-bit displacement. */
2403 offset += 4;
2404 }
bede5f5f
JK
2405 /* 0b10?????? */
2406 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2407 {
2408 /* 32-bit displacement. */
2409 offset += 7;
2410 }
2411 else
2412 return pc;
2413 }
2414
2415 /* je AFTER */
2416 if (offset - 4 != buf[3])
2417 return pc;
2418
2419 return next_sal.end;
53e95fcf 2420}
df15bd07
JK
2421
2422/* Return PC of first real instruction. */
2423
2424static CORE_ADDR
2425amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2426{
2427 struct amd64_frame_cache cache;
2428 CORE_ADDR pc;
56bf0743
KB
2429 CORE_ADDR func_addr;
2430
2431 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2432 {
2433 CORE_ADDR post_prologue_pc
2434 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2435 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
2436
2437 /* Clang always emits a line note before the prologue and another
2438 one after. We trust clang to emit usable line notes. */
2439 if (post_prologue_pc
43f3e411
DE
2440 && (cust != NULL
2441 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 2442 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 2443 return std::max (start_pc, post_prologue_pc);
56bf0743 2444 }
df15bd07
JK
2445
2446 amd64_init_frame_cache (&cache);
2447 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2448 &cache);
2449 if (cache.frameless_p)
2450 return start_pc;
2451
2452 return amd64_skip_xmm_prologue (pc, start_pc);
2453}
c4f35dd8 2454\f
53e95fcf 2455
c4f35dd8
MK
2456/* Normal frames. */
2457
8fbca658
PA
2458static void
2459amd64_frame_cache_1 (struct frame_info *this_frame,
2460 struct amd64_frame_cache *cache)
6d686a84 2461{
e17a4113
UW
2462 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2464 gdb_byte buf[8];
6d686a84 2465 int i;
6d686a84 2466
10458914 2467 cache->pc = get_frame_func (this_frame);
c4f35dd8 2468 if (cache->pc != 0)
e17a4113
UW
2469 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2470 cache);
c4f35dd8
MK
2471
2472 if (cache->frameless_p)
2473 {
4a28816e
MK
2474 /* We didn't find a valid frame. If we're at the start of a
2475 function, or somewhere half-way its prologue, the function's
2476 frame probably hasn't been fully setup yet. Try to
2477 reconstruct the base address for the stack frame by looking
2478 at the stack pointer. For truly "frameless" functions this
2479 might work too. */
c4f35dd8 2480
e0c62198
L
2481 if (cache->saved_sp_reg != -1)
2482 {
8fbca658
PA
2483 /* Stack pointer has been saved. */
2484 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2485 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2486
e0c62198
L
2487 /* We're halfway aligning the stack. */
2488 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2489 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2490
2491 /* This will be added back below. */
2492 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2493 }
2494 else
2495 {
2496 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2497 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2498 + cache->sp_offset;
e0c62198 2499 }
c4f35dd8 2500 }
35883a3f
MK
2501 else
2502 {
10458914 2503 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2504 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2505 }
c4f35dd8
MK
2506
2507 /* Now that we have the base address for the stack frame we can
2508 calculate the value of %rsp in the calling frame. */
2509 cache->saved_sp = cache->base + 16;
2510
35883a3f
MK
2511 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2512 frame we find it at the same offset from the reconstructed base
e0c62198
L
2513 address. If we're halfway aligning the stack, %rip is handled
2514 differently (see above). */
2515 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2516 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2517
c4f35dd8
MK
2518 /* Adjust all the saved registers such that they contain addresses
2519 instead of offsets. */
e53bef9f 2520 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2521 if (cache->saved_regs[i] != -1)
2522 cache->saved_regs[i] += cache->base;
2523
8fbca658
PA
2524 cache->base_p = 1;
2525}
2526
2527static struct amd64_frame_cache *
2528amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2529{
8fbca658
PA
2530 struct amd64_frame_cache *cache;
2531
2532 if (*this_cache)
9a3c8263 2533 return (struct amd64_frame_cache *) *this_cache;
8fbca658
PA
2534
2535 cache = amd64_alloc_frame_cache ();
2536 *this_cache = cache;
2537
492d29ea 2538 TRY
8fbca658
PA
2539 {
2540 amd64_frame_cache_1 (this_frame, cache);
2541 }
492d29ea 2542 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2543 {
2544 if (ex.error != NOT_AVAILABLE_ERROR)
2545 throw_exception (ex);
2546 }
492d29ea 2547 END_CATCH
8fbca658 2548
c4f35dd8 2549 return cache;
6d686a84
ML
2550}
2551
8fbca658
PA
2552static enum unwind_stop_reason
2553amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2554 void **this_cache)
2555{
2556 struct amd64_frame_cache *cache =
2557 amd64_frame_cache (this_frame, this_cache);
2558
2559 if (!cache->base_p)
2560 return UNWIND_UNAVAILABLE;
2561
2562 /* This marks the outermost frame. */
2563 if (cache->base == 0)
2564 return UNWIND_OUTERMOST;
2565
2566 return UNWIND_NO_REASON;
2567}
2568
c4f35dd8 2569static void
10458914 2570amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
e53bef9f 2571 struct frame_id *this_id)
c4f35dd8 2572{
e53bef9f 2573 struct amd64_frame_cache *cache =
10458914 2574 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2575
8fbca658 2576 if (!cache->base_p)
5ce0145d
PA
2577 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2578 else if (cache->base == 0)
2579 {
2580 /* This marks the outermost frame. */
2581 return;
2582 }
2583 else
2584 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2585}
e76e1718 2586
10458914
DJ
2587static struct value *
2588amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2589 int regnum)
53e95fcf 2590{
10458914 2591 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2592 struct amd64_frame_cache *cache =
10458914 2593 amd64_frame_cache (this_frame, this_cache);
e76e1718 2594
c4f35dd8 2595 gdb_assert (regnum >= 0);
b1ab997b 2596
2ae02b47 2597 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2598 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2599
e53bef9f 2600 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2601 return frame_unwind_got_memory (this_frame, regnum,
2602 cache->saved_regs[regnum]);
e76e1718 2603
10458914 2604 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2605}
e76e1718 2606
e53bef9f 2607static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
2608{
2609 NORMAL_FRAME,
8fbca658 2610 amd64_frame_unwind_stop_reason,
e53bef9f 2611 amd64_frame_this_id,
10458914
DJ
2612 amd64_frame_prev_register,
2613 NULL,
2614 default_frame_sniffer
c4f35dd8 2615};
c4f35dd8 2616\f
6710bf39
SS
2617/* Generate a bytecode expression to get the value of the saved PC. */
2618
2619static void
2620amd64_gen_return_address (struct gdbarch *gdbarch,
2621 struct agent_expr *ax, struct axs_value *value,
2622 CORE_ADDR scope)
2623{
2624 /* The following sequence assumes the traditional use of the base
2625 register. */
2626 ax_reg (ax, AMD64_RBP_REGNUM);
2627 ax_const_l (ax, 8);
2628 ax_simple (ax, aop_add);
2629 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2630 value->kind = axs_lvalue_memory;
2631}
2632\f
e76e1718 2633
c4f35dd8
MK
2634/* Signal trampolines. */
2635
2636/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2637 64-bit variants. This would require using identical frame caches
2638 on both platforms. */
2639
e53bef9f 2640static struct amd64_frame_cache *
10458914 2641amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2642{
e17a4113
UW
2643 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2644 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2646 struct amd64_frame_cache *cache;
c4f35dd8 2647 CORE_ADDR addr;
d8de1ef7 2648 gdb_byte buf[8];
2b5e0749 2649 int i;
c4f35dd8
MK
2650
2651 if (*this_cache)
9a3c8263 2652 return (struct amd64_frame_cache *) *this_cache;
c4f35dd8 2653
e53bef9f 2654 cache = amd64_alloc_frame_cache ();
c4f35dd8 2655
492d29ea 2656 TRY
8fbca658
PA
2657 {
2658 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2659 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2660
2661 addr = tdep->sigcontext_addr (this_frame);
2662 gdb_assert (tdep->sc_reg_offset);
2663 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2664 for (i = 0; i < tdep->sc_num_regs; i++)
2665 if (tdep->sc_reg_offset[i] != -1)
2666 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2667
8fbca658
PA
2668 cache->base_p = 1;
2669 }
492d29ea 2670 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2671 {
2672 if (ex.error != NOT_AVAILABLE_ERROR)
2673 throw_exception (ex);
2674 }
492d29ea 2675 END_CATCH
c4f35dd8
MK
2676
2677 *this_cache = cache;
2678 return cache;
53e95fcf
JS
2679}
2680
8fbca658
PA
2681static enum unwind_stop_reason
2682amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2683 void **this_cache)
2684{
2685 struct amd64_frame_cache *cache =
2686 amd64_sigtramp_frame_cache (this_frame, this_cache);
2687
2688 if (!cache->base_p)
2689 return UNWIND_UNAVAILABLE;
2690
2691 return UNWIND_NO_REASON;
2692}
2693
c4f35dd8 2694static void
10458914 2695amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
e53bef9f 2696 void **this_cache, struct frame_id *this_id)
c4f35dd8 2697{
e53bef9f 2698 struct amd64_frame_cache *cache =
10458914 2699 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2700
8fbca658 2701 if (!cache->base_p)
5ce0145d
PA
2702 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2703 else if (cache->base == 0)
2704 {
2705 /* This marks the outermost frame. */
2706 return;
2707 }
2708 else
2709 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2710}
2711
10458914
DJ
2712static struct value *
2713amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2714 void **this_cache, int regnum)
c4f35dd8
MK
2715{
2716 /* Make sure we've initialized the cache. */
10458914 2717 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2718
10458914 2719 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2720}
2721
10458914
DJ
2722static int
2723amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2724 struct frame_info *this_frame,
2725 void **this_cache)
c4f35dd8 2726{
10458914 2727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
911bc6ee
MK
2728
2729 /* We shouldn't even bother if we don't have a sigcontext_addr
2730 handler. */
2731 if (tdep->sigcontext_addr == NULL)
10458914 2732 return 0;
911bc6ee
MK
2733
2734 if (tdep->sigtramp_p != NULL)
2735 {
10458914
DJ
2736 if (tdep->sigtramp_p (this_frame))
2737 return 1;
911bc6ee 2738 }
c4f35dd8 2739
911bc6ee 2740 if (tdep->sigtramp_start != 0)
1c3545ae 2741 {
10458914 2742 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2743
911bc6ee
MK
2744 gdb_assert (tdep->sigtramp_end != 0);
2745 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2746 return 1;
1c3545ae 2747 }
c4f35dd8 2748
10458914 2749 return 0;
c4f35dd8 2750}
10458914
DJ
2751
2752static const struct frame_unwind amd64_sigtramp_frame_unwind =
2753{
2754 SIGTRAMP_FRAME,
8fbca658 2755 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2756 amd64_sigtramp_frame_this_id,
2757 amd64_sigtramp_frame_prev_register,
2758 NULL,
2759 amd64_sigtramp_frame_sniffer
2760};
c4f35dd8
MK
2761\f
2762
2763static CORE_ADDR
10458914 2764amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c4f35dd8 2765{
e53bef9f 2766 struct amd64_frame_cache *cache =
10458914 2767 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2768
2769 return cache->base;
2770}
2771
e53bef9f 2772static const struct frame_base amd64_frame_base =
c4f35dd8 2773{
e53bef9f
MK
2774 &amd64_frame_unwind,
2775 amd64_frame_base_address,
2776 amd64_frame_base_address,
2777 amd64_frame_base_address
c4f35dd8
MK
2778};
2779
872761f4
MS
2780/* Normal frames, but in a function epilogue. */
2781
c9cf6e20
MG
2782/* Implement the stack_frame_destroyed_p gdbarch method.
2783
2784 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2785 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2786 the function's stack frame. */
2787
2788static int
c9cf6e20 2789amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2790{
2791 gdb_byte insn;
43f3e411 2792 struct compunit_symtab *cust;
e0d00bc7 2793
43f3e411
DE
2794 cust = find_pc_compunit_symtab (pc);
2795 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2796 return 0;
872761f4
MS
2797
2798 if (target_read_memory (pc, &insn, 1))
2799 return 0; /* Can't read memory at pc. */
2800
2801 if (insn != 0xc3) /* 'ret' instruction. */
2802 return 0;
2803
2804 return 1;
2805}
2806
2807static int
2808amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2809 struct frame_info *this_frame,
2810 void **this_prologue_cache)
2811{
2812 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2813 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2814 get_frame_pc (this_frame));
872761f4
MS
2815 else
2816 return 0;
2817}
2818
2819static struct amd64_frame_cache *
2820amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2821{
2822 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2823 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2824 struct amd64_frame_cache *cache;
6c10c06b 2825 gdb_byte buf[8];
872761f4
MS
2826
2827 if (*this_cache)
9a3c8263 2828 return (struct amd64_frame_cache *) *this_cache;
872761f4
MS
2829
2830 cache = amd64_alloc_frame_cache ();
2831 *this_cache = cache;
2832
492d29ea 2833 TRY
8fbca658
PA
2834 {
2835 /* Cache base will be %esp plus cache->sp_offset (-8). */
2836 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2837 cache->base = extract_unsigned_integer (buf, 8,
2838 byte_order) + cache->sp_offset;
2839
2840 /* Cache pc will be the frame func. */
2841 cache->pc = get_frame_pc (this_frame);
872761f4 2842
8fbca658
PA
2843 /* The saved %esp will be at cache->base plus 16. */
2844 cache->saved_sp = cache->base + 16;
872761f4 2845
8fbca658
PA
2846 /* The saved %eip will be at cache->base plus 8. */
2847 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2848
8fbca658
PA
2849 cache->base_p = 1;
2850 }
492d29ea 2851 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2852 {
2853 if (ex.error != NOT_AVAILABLE_ERROR)
2854 throw_exception (ex);
2855 }
492d29ea 2856 END_CATCH
872761f4
MS
2857
2858 return cache;
2859}
2860
8fbca658
PA
2861static enum unwind_stop_reason
2862amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2863 void **this_cache)
2864{
2865 struct amd64_frame_cache *cache
2866 = amd64_epilogue_frame_cache (this_frame, this_cache);
2867
2868 if (!cache->base_p)
2869 return UNWIND_UNAVAILABLE;
2870
2871 return UNWIND_NO_REASON;
2872}
2873
872761f4
MS
2874static void
2875amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2876 void **this_cache,
2877 struct frame_id *this_id)
2878{
2879 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2880 this_cache);
2881
8fbca658 2882 if (!cache->base_p)
5ce0145d
PA
2883 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2884 else
2885 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
872761f4
MS
2886}
2887
2888static const struct frame_unwind amd64_epilogue_frame_unwind =
2889{
2890 NORMAL_FRAME,
8fbca658 2891 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
2892 amd64_epilogue_frame_this_id,
2893 amd64_frame_prev_register,
2894 NULL,
2895 amd64_epilogue_frame_sniffer
2896};
2897
166f4c7b 2898static struct frame_id
10458914 2899amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
166f4c7b 2900{
c4f35dd8
MK
2901 CORE_ADDR fp;
2902
10458914 2903 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 2904
10458914 2905 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
2906}
2907
8b148df9
AC
2908/* 16 byte align the SP per frame requirements. */
2909
2910static CORE_ADDR
e53bef9f 2911amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
2912{
2913 return sp & -(CORE_ADDR)16;
2914}
473f17b0
MK
2915\f
2916
593adc23
MK
2917/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2918 in the floating-point register set REGSET to register cache
2919 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2920
2921static void
e53bef9f
MK
2922amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2923 int regnum, const void *fpregs, size_t len)
473f17b0 2924{
09424cff
AA
2925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2926 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 2927
1528345d 2928 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 2929 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 2930}
8b148df9 2931
593adc23
MK
2932/* Collect register REGNUM from the register cache REGCACHE and store
2933 it in the buffer specified by FPREGS and LEN as described by the
2934 floating-point register set REGSET. If REGNUM is -1, do this for
2935 all registers in REGSET. */
2936
2937static void
2938amd64_collect_fpregset (const struct regset *regset,
2939 const struct regcache *regcache,
2940 int regnum, void *fpregs, size_t len)
2941{
09424cff
AA
2942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2943 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
593adc23 2944
1528345d 2945 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
2946 amd64_collect_fxsave (regcache, regnum, fpregs);
2947}
2948
8f0435f7 2949const struct regset amd64_fpregset =
ecc37a5a
AA
2950 {
2951 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2952 };
c6b33596
MK
2953\f
2954
436675d3
PA
2955/* Figure out where the longjmp will land. Slurp the jmp_buf out of
2956 %rdi. We expect its value to be a pointer to the jmp_buf structure
2957 from which we extract the address that we will land at. This
2958 address is copied into PC. This routine returns non-zero on
2959 success. */
2960
2961static int
2962amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2963{
2964 gdb_byte buf[8];
2965 CORE_ADDR jb_addr;
2966 struct gdbarch *gdbarch = get_frame_arch (frame);
2967 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
0dfff4cb 2968 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2969
2970 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2971 longjmp will land. */
2972 if (jb_pc_offset == -1)
2973 return 0;
2974
2975 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
2976 jb_addr= extract_typed_address
2977 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
2978 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2979 return 0;
2980
0dfff4cb 2981 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
2982
2983 return 1;
2984}
2985
cf648174
HZ
2986static const int amd64_record_regmap[] =
2987{
2988 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2989 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2990 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2991 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2992 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2993 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2994};
2995
2213a65d 2996void
c55a47e7 2997amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 2998 const target_desc *default_tdesc)
53e95fcf 2999{
0c1a73d6 3000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 3001 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
3002 static const char *const stap_integer_prefixes[] = { "$", NULL };
3003 static const char *const stap_register_prefixes[] = { "%", NULL };
3004 static const char *const stap_register_indirection_prefixes[] = { "(",
3005 NULL };
3006 static const char *const stap_register_indirection_suffixes[] = { ")",
3007 NULL };
53e95fcf 3008
473f17b0
MK
3009 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3010 floating-point registers. */
3011 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 3012 tdep->fpregset = &amd64_fpregset;
473f17b0 3013
90884b2b 3014 if (! tdesc_has_registers (tdesc))
c55a47e7 3015 tdesc = default_tdesc;
90884b2b
L
3016 tdep->tdesc = tdesc;
3017
3018 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3019 tdep->register_names = amd64_register_names;
3020
01f9f808
MS
3021 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3022 {
3023 tdep->zmmh_register_names = amd64_zmmh_names;
3024 tdep->k_register_names = amd64_k_names;
3025 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3026 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3027
3028 tdep->num_zmm_regs = 32;
3029 tdep->num_xmm_avx512_regs = 16;
3030 tdep->num_ymm_avx512_regs = 16;
3031
3032 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3033 tdep->k0_regnum = AMD64_K0_REGNUM;
3034 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3035 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3036 }
3037
a055a187
L
3038 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3039 {
3040 tdep->ymmh_register_names = amd64_ymmh_names;
3041 tdep->num_ymm_regs = 16;
3042 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3043 }
3044
e43e105e
WT
3045 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3046 {
3047 tdep->mpx_register_names = amd64_mpx_names;
3048 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3049 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3050 }
3051
2735833d
WT
3052 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3053 {
3054 const struct tdesc_feature *feature =
3055 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3056 struct tdesc_arch_data *tdesc_data_segments =
3057 (struct tdesc_arch_data *) info.tdep_info;
3058
3059 tdesc_numbered_register (feature, tdesc_data_segments,
3060 AMD64_FSBASE_REGNUM, "fs_base");
3061 tdesc_numbered_register (feature, tdesc_data_segments,
3062 AMD64_GSBASE_REGNUM, "gs_base");
3063 }
3064
51547df6
MS
3065 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3066 {
3067 tdep->pkeys_register_names = amd64_pkeys_names;
3068 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3069 tdep->num_pkeys_regs = 1;
3070 }
3071
fe01d668 3072 tdep->num_byte_regs = 20;
1ba53b71
L
3073 tdep->num_word_regs = 16;
3074 tdep->num_dword_regs = 16;
3075 /* Avoid wiring in the MMX registers for now. */
3076 tdep->num_mmx_regs = 0;
3077
3543a589
TT
3078 set_gdbarch_pseudo_register_read_value (gdbarch,
3079 amd64_pseudo_register_read_value);
1ba53b71
L
3080 set_gdbarch_pseudo_register_write (gdbarch,
3081 amd64_pseudo_register_write);
62e5fd57
MK
3082 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3083 amd64_ax_pseudo_register_collect);
1ba53b71
L
3084
3085 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3086
5716833c 3087 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3088 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3089 tdep->num_xmm_regs = 16;
53e95fcf 3090
0c1a73d6 3091 /* This is what all the fuss is about. */
53e95fcf
JS
3092 set_gdbarch_long_bit (gdbarch, 64);
3093 set_gdbarch_long_long_bit (gdbarch, 64);
3094 set_gdbarch_ptr_bit (gdbarch, 64);
3095
e53bef9f
MK
3096 /* In contrast to the i386, on AMD64 a `long double' actually takes
3097 up 128 bits, even though it's still based on the i387 extended
3098 floating-point format which has only 80 significant bits. */
b83b026c
MK
3099 set_gdbarch_long_double_bit (gdbarch, 128);
3100
e53bef9f 3101 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3102
3103 /* Register numbers of various important registers. */
90f90721
MK
3104 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3105 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3106 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3107 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3108
e53bef9f
MK
3109 /* The "default" register numbering scheme for AMD64 is referred to
3110 as the "DWARF Register Number Mapping" in the System V psABI.
3111 The preferred debugging format for all known AMD64 targets is
3112 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3113 DWARF-1), but we provide the same mapping just in case. This
3114 mapping is also used for stabs, which GCC does support. */
3115 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3116 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3117
c4f35dd8 3118 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3119 be in use on any of the supported AMD64 targets. */
53e95fcf 3120
c4f35dd8 3121 /* Call dummy code. */
e53bef9f
MK
3122 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3123 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3124 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3125
83acabca 3126 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3127 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3128 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3129
efb1c01c 3130 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 3131
e53bef9f 3132 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3133
cf648174
HZ
3134 tdep->record_regmap = amd64_record_regmap;
3135
10458914 3136 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3137
872761f4
MS
3138 /* Hook the function epilogue frame unwinder. This unwinder is
3139 appended to the list first, so that it supercedes the other
3140 unwinders in function epilogues. */
3141 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3142
3143 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3144 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3145 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3146 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3147
436675d3 3148 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3149
3150 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3151
3152 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3153
3154 /* SystemTap variables and functions. */
05c0465e
SDJ
3155 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3156 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3157 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3158 stap_register_indirection_prefixes);
3159 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3160 stap_register_indirection_suffixes);
55aa24fb
SDJ
3161 set_gdbarch_stap_is_single_operand (gdbarch,
3162 i386_stap_is_single_operand);
3163 set_gdbarch_stap_parse_special_token (gdbarch,
3164 i386_stap_parse_special_token);
c2170eef
MM
3165 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3166 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3167 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
c4f35dd8 3168}
fff4548b
MK
3169\f
3170
3171static struct type *
3172amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3173{
3174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3175
3176 switch (regnum - tdep->eax_regnum)
3177 {
3178 case AMD64_RBP_REGNUM: /* %ebp */
3179 case AMD64_RSP_REGNUM: /* %esp */
3180 return builtin_type (gdbarch)->builtin_data_ptr;
3181 case AMD64_RIP_REGNUM: /* %eip */
3182 return builtin_type (gdbarch)->builtin_func_ptr;
3183 }
3184
3185 return i386_pseudo_register_type (gdbarch, regnum);
3186}
3187
3188void
c55a47e7 3189amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3190 const target_desc *default_tdesc)
fff4548b
MK
3191{
3192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fff4548b 3193
c55a47e7 3194 amd64_init_abi (info, gdbarch, default_tdesc);
fff4548b
MK
3195
3196 tdep->num_dword_regs = 17;
3197 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3198
3199 set_gdbarch_long_bit (gdbarch, 32);
3200 set_gdbarch_ptr_bit (gdbarch, 32);
3201}
90884b2b 3202
97de3545
JB
3203/* Return the target description for a specified XSAVE feature mask. */
3204
3205const struct target_desc *
3206amd64_target_description (uint64_t xcr0)
3207{
22916b07
YQ
3208 static target_desc *amd64_tdescs \
3209 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
3210 target_desc **tdesc;
3211
3212 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3213 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3214 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3215 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
3216
3217 if (*tdesc == NULL)
3218 *tdesc = amd64_create_target_description (xcr0, false, false);
3219
3220 return *tdesc;
97de3545
JB
3221}
3222
90884b2b
L
3223void
3224_initialize_amd64_tdep (void)
3225{
22916b07
YQ
3226#if GDB_SELF_TEST
3227 struct
3228 {
3229 const char *xml;
3230 uint64_t mask;
3231 } xml_masks[] = {
3232 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3233 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3234 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3235 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3236 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3237 { "i386/amd64-avx-mpx-avx512-pku.xml",
3238 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3239 };
3240
3241 for (auto &a : xml_masks)
3242 {
3243 auto tdesc = amd64_target_description (a.mask);
3244
3245 selftests::record_xml_tdesc (a.xml, tdesc);
3246 }
3247#endif /* GDB_SELF_TEST */
90884b2b 3248}
c4f35dd8
MK
3249\f
3250
41d041d6
MK
3251/* The 64-bit FXSAVE format differs from the 32-bit format in the
3252 sense that the instruction pointer and data pointer are simply
3253 64-bit offsets into the code segment and the data segment instead
3254 of a selector offset pair. The functions below store the upper 32
3255 bits of these pointers (instead of just the 16-bits of the segment
3256 selector). */
3257
3258/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3259 floating-point or SSE register value from *FXSAVE. If REGNUM is
3260 -1, do this for all registers. This function masks off any of the
3261 reserved bits in *FXSAVE. */
c4f35dd8
MK
3262
3263void
90f90721 3264amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3265 const void *fxsave)
c4f35dd8 3266{
20a6ec49
MD
3267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3269
41d041d6 3270 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3271
233dfcf0
L
3272 if (fxsave
3273 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3274 {
9a3c8263 3275 const gdb_byte *regs = (const gdb_byte *) fxsave;
41d041d6 3276
20a6ec49
MD
3277 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3278 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3279 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3280 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3281 }
0c1a73d6
MK
3282}
3283
a055a187
L
3284/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3285
3286void
3287amd64_supply_xsave (struct regcache *regcache, int regnum,
3288 const void *xsave)
3289{
3290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3292
3293 i387_supply_xsave (regcache, regnum, xsave);
3294
233dfcf0
L
3295 if (xsave
3296 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187 3297 {
9a3c8263 3298 const gdb_byte *regs = (const gdb_byte *) xsave;
a055a187
L
3299
3300 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3301 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3302 regs + 12);
3303 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3304 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3305 regs + 20);
3306 }
3307}
3308
3c017e40
MK
3309/* Fill register REGNUM (if it is a floating-point or SSE register) in
3310 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3311 all registers. This function doesn't touch any of the reserved
3312 bits in *FXSAVE. */
3313
3314void
3315amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3316 void *fxsave)
3317{
20a6ec49
MD
3318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3320 gdb_byte *regs = (gdb_byte *) fxsave;
3c017e40
MK
3321
3322 i387_collect_fxsave (regcache, regnum, fxsave);
3323
233dfcf0 3324 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3325 {
20a6ec49
MD
3326 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3327 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3328 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3329 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3330 }
3c017e40 3331}
a055a187 3332
7a9dd1b2 3333/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3334
3335void
3336amd64_collect_xsave (const struct regcache *regcache, int regnum,
3337 void *xsave, int gcore)
3338{
3339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3341 gdb_byte *regs = (gdb_byte *) xsave;
a055a187
L
3342
3343 i387_collect_xsave (regcache, regnum, xsave, gcore);
3344
233dfcf0 3345 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3346 {
3347 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3348 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3349 regs + 12);
3350 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3351 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3352 regs + 20);
3353 }
3354}
This page took 2.139476 seconds and 4 git commands to generate.