* tracepoint.c (trace_save): Call the writer's start method.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
28e7fd62 3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
faf5f7ad 36
34e8f22d 37#include "arm-tdep.h"
cb587d83 38#include "arm-linux-tdep.h"
4aa995e1 39#include "linux-tdep.h"
0670c0aa 40#include "glibc-tdep.h"
cca44b1b
JB
41#include "arch-utils.h"
42#include "inferior.h"
43#include "gdbthread.h"
44#include "symfile.h"
a52e6aac 45
55aa24fb
SDJ
46#include "cli/cli-utils.h"
47#include "stap-probe.h"
48#include "parser-defs.h"
49#include "user-regs.h"
50#include <ctype.h>
51
8e9d1a24
DJ
52#include "gdb_string.h"
53
ef7e8358
UW
54/* This is defined in <elf.h> on ARM GNU/Linux systems. */
55#define AT_HWCAP 16
56
cb587d83
DJ
57extern int arm_apcs_32;
58
fdf39c9a
RE
59/* Under ARM GNU/Linux the traditional way of performing a breakpoint
60 is to execute a particular software interrupt, rather than use a
61 particular undefined instruction to provoke a trap. Upon exection
62 of the software interrupt the kernel stops the inferior with a
498b1f87 63 SIGTRAP, and wakes the debugger. */
66e810cd 64
948f8e3d 65static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 66
948f8e3d 67static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 68
c75a2cc8
DJ
69/* However, the EABI syscall interface (new in Nov. 2005) does not look at
70 the operand of the swi if old-ABI compatibility is disabled. Therefore,
71 use an undefined instruction instead. This is supported as of kernel
72 version 2.5.70 (May 2003), so should be a safe assumption for EABI
73 binaries. */
74
948f8e3d 75static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 76
948f8e3d 77static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
78
79/* All the kernels which support Thumb support using a specific undefined
80 instruction for the Thumb breakpoint. */
81
948f8e3d 82static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 83
948f8e3d 84static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 85
177321bd
DJ
86/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87 we must use a length-appropriate breakpoint for 32-bit Thumb
88 instructions. See also thumb_get_next_pc. */
89
948f8e3d 90static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 91
948f8e3d 92static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 93
f8624c62
MGD
94/* Description of the longjmp buffer. The buffer is treated as an array of
95 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
96
97 The location of saved registers in this buffer (in particular the PC
98 to use after longjmp is called) varies depending on the ABI (in
99 particular the FP model) and also (possibly) the C Library.
100
101 For glibc, eglibc, and uclibc the following holds: If the FP model is
102 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103 buffer. This is also true for the SoftFPA model. However, for the FPA
104 model the PC is at offset 21 in the buffer. */
7a5ea0d4 105#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
106#define ARM_LINUX_JB_PC_FPA 21
107#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 108
f38e884d 109/*
fdf39c9a
RE
110 Dynamic Linking on ARM GNU/Linux
111 --------------------------------
f38e884d
SB
112
113 Note: PLT = procedure linkage table
114 GOT = global offset table
115
116 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 117 jump/call addresses until the last minute. The technique used is
f38e884d
SB
118 inspired by the i386 ELF design, and is based on the following
119 constraints.
120
121 1) The calling technique should not force a change in the assembly
122 code produced for apps; it MAY cause changes in the way assembly
123 code is produced for position independent code (i.e. shared
124 libraries).
125
126 2) The technique must be such that all executable areas must not be
127 modified; and any modified areas must not be executed.
128
129 To do this, there are three steps involved in a typical jump:
130
131 1) in the code
132 2) through the PLT
133 3) using a pointer from the GOT
134
135 When the executable or library is first loaded, each GOT entry is
136 initialized to point to the code which implements dynamic name
137 resolution and code finding. This is normally a function in the
fdf39c9a
RE
138 program interpreter (on ARM GNU/Linux this is usually
139 ld-linux.so.2, but it does not have to be). On the first
140 invocation, the function is located and the GOT entry is replaced
141 with the real function address. Subsequent calls go through steps
142 1, 2 and 3 and end up calling the real code.
f38e884d
SB
143
144 1) In the code:
145
146 b function_call
147 bl function_call
148
149 This is typical ARM code using the 26 bit relative branch or branch
150 and link instructions. The target of the instruction
151 (function_call is usually the address of the function to be called.
152 In position independent code, the target of the instruction is
153 actually an entry in the PLT when calling functions in a shared
154 library. Note that this call is identical to a normal function
155 call, only the target differs.
156
157 2) In the PLT:
158
0963b4bd
MS
159 The PLT is a synthetic area, created by the linker. It exists in
160 both executables and libraries. It is an array of stubs, one per
161 imported function call. It looks like this:
f38e884d
SB
162
163 PLT[0]:
164 str lr, [sp, #-4]! @push the return address (lr)
165 ldr lr, [pc, #16] @load from 6 words ahead
166 add lr, pc, lr @form an address for GOT[0]
167 ldr pc, [lr, #8]! @jump to the contents of that addr
168
169 The return address (lr) is pushed on the stack and used for
170 calculations. The load on the second line loads the lr with
171 &GOT[3] - . - 20. The addition on the third leaves:
172
173 lr = (&GOT[3] - . - 20) + (. + 8)
174 lr = (&GOT[3] - 12)
175 lr = &GOT[0]
176
177 On the fourth line, the pc and lr are both updated, so that:
178
179 pc = GOT[2]
180 lr = &GOT[0] + 8
181 = &GOT[2]
182
0963b4bd 183 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
184 "tight", but allows us to keep all the PLT entries the same size.
185
186 PLT[n+1]:
187 ldr ip, [pc, #4] @load offset from gotoff
188 add ip, pc, ip @add the offset to the pc
189 ldr pc, [ip] @jump to that address
190 gotoff: .word GOT[n+3] - .
191
192 The load on the first line, gets an offset from the fourth word of
193 the PLT entry. The add on the second line makes ip = &GOT[n+3],
194 which contains either a pointer to PLT[0] (the fixup trampoline) or
195 a pointer to the actual code.
196
197 3) In the GOT:
198
199 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 200 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 201 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
202 the PLT fixups. The next D (all remaining) entries belong to
203 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 204
0963b4bd 205 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
206 in both executables and libraries. When the GOT is first
207 initialized , all the GOT entries relating to PLT fixups are
208 pointing to code back at PLT[0].
209
210 The special entries in the GOT are:
211
212 GOT[0] = linked list pointer used by the dynamic loader
213 GOT[1] = pointer to the reloc table for this module
214 GOT[2] = pointer to the fixup/resolver code
215
216 The first invocation of function call comes through and uses the
217 fixup/resolver code. On the entry to the fixup/resolver code:
218
219 ip = &GOT[n+3]
220 lr = &GOT[2]
221 stack[0] = return address (lr) of the function call
222 [r0, r1, r2, r3] are still the arguments to the function call
223
224 This is enough information for the fixup/resolver code to work
225 with. Before the fixup/resolver code returns, it actually calls
226 the requested function and repairs &GOT[n+3]. */
227
2a451106
KB
228/* The constants below were determined by examining the following files
229 in the linux kernel sources:
230
231 arch/arm/kernel/signal.c
232 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233 include/asm-arm/unistd.h
234 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
235
236#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
237#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
238
edfb1a26
DJ
239/* For ARM EABI, the syscall number is not in the SWI instruction
240 (instead it is loaded into r7). We recognize the pattern that
241 glibc uses... alternatively, we could arrange to do this by
242 function name, but they are not always exported. */
8e9d1a24
DJ
243#define ARM_SET_R7_SIGRETURN 0xe3a07077
244#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
245#define ARM_EABI_SYSCALL 0xef000000
2a451106 246
f1973203
MR
247/* OABI syscall restart trampoline, used for EABI executables too
248 whenever OABI support has been enabled in the kernel. */
249#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
250#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 251#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 252
8e9d1a24 253static void
a262aec2 254arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
255 struct trad_frame_cache *this_cache,
256 CORE_ADDR func, int regs_offset)
2a451106 257{
a262aec2 258 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
259 CORE_ADDR base = sp + regs_offset;
260 int i;
2a451106 261
8e9d1a24
DJ
262 for (i = 0; i < 16; i++)
263 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 264
8e9d1a24 265 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 266
8e9d1a24
DJ
267 /* The VFP or iWMMXt registers may be saved on the stack, but there's
268 no reliable way to restore them (yet). */
2a451106 269
8e9d1a24
DJ
270 /* Save a frame ID. */
271 trad_frame_set_id (this_cache, frame_id_build (sp, func));
272}
2a451106 273
edfb1a26
DJ
274/* There are a couple of different possible stack layouts that
275 we need to support.
276
277 Before version 2.6.18, the kernel used completely independent
278 layouts for non-RT and RT signals. For non-RT signals the stack
279 began directly with a struct sigcontext. For RT signals the stack
280 began with two redundant pointers (to the siginfo and ucontext),
281 and then the siginfo and ucontext.
282
283 As of version 2.6.18, the non-RT signal frame layout starts with
284 a ucontext and the RT signal frame starts with a siginfo and then
285 a ucontext. Also, the ucontext now has a designated save area
286 for coprocessor registers.
287
288 For RT signals, it's easy to tell the difference: we look for
289 pinfo, the pointer to the siginfo. If it has the expected
290 value, we have an old layout. If it doesn't, we have the new
291 layout.
292
293 For non-RT signals, it's a bit harder. We need something in one
294 layout or the other with a recognizable offset and value. We can't
295 use the return trampoline, because ARM usually uses SA_RESTORER,
296 in which case the stack return trampoline is not filled in.
297 We can't use the saved stack pointer, because sigaltstack might
298 be in use. So for now we guess the new layout... */
299
300/* There are three words (trap_no, error_code, oldmask) in
301 struct sigcontext before r0. */
302#define ARM_SIGCONTEXT_R0 0xc
303
304/* There are five words (uc_flags, uc_link, and three for uc_stack)
305 in the ucontext_t before the sigcontext. */
306#define ARM_UCONTEXT_SIGCONTEXT 0x14
307
308/* There are three elements in an rt_sigframe before the ucontext:
309 pinfo, puc, and info. The first two are pointers and the third
310 is a struct siginfo, with size 128 bytes. We could follow puc
311 to the ucontext, but it's simpler to skip the whole thing. */
312#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
313#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
314
315#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
316
317#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
318
8e9d1a24
DJ
319static void
320arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 321 struct frame_info *this_frame,
8e9d1a24
DJ
322 struct trad_frame_cache *this_cache,
323 CORE_ADDR func)
2a451106 324{
e17a4113
UW
325 struct gdbarch *gdbarch = get_frame_arch (this_frame);
326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 327 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 328 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
329
330 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 331 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
332 ARM_UCONTEXT_SIGCONTEXT
333 + ARM_SIGCONTEXT_R0);
334 else
a262aec2 335 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 336 ARM_SIGCONTEXT_R0);
8e9d1a24 337}
2a451106 338
8e9d1a24
DJ
339static void
340arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 341 struct frame_info *this_frame,
8e9d1a24
DJ
342 struct trad_frame_cache *this_cache,
343 CORE_ADDR func)
344{
e17a4113
UW
345 struct gdbarch *gdbarch = get_frame_arch (this_frame);
346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 347 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 348 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
349
350 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 351 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
352 ARM_OLD_RT_SIGFRAME_UCONTEXT
353 + ARM_UCONTEXT_SIGCONTEXT
354 + ARM_SIGCONTEXT_R0);
355 else
a262aec2 356 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
357 ARM_NEW_RT_SIGFRAME_UCONTEXT
358 + ARM_UCONTEXT_SIGCONTEXT
359 + ARM_SIGCONTEXT_R0);
2a451106
KB
360}
361
f1973203
MR
362static void
363arm_linux_restart_syscall_init (const struct tramp_frame *self,
364 struct frame_info *this_frame,
365 struct trad_frame_cache *this_cache,
366 CORE_ADDR func)
367{
478fd957 368 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 369 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
370 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
371 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
372 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
373 int sp_offset;
374
375 /* There are two variants of this trampoline; with older kernels, the
376 stub is placed on the stack, while newer kernels use the stub from
377 the vector page. They are identical except that the older version
378 increments SP by 12 (to skip stored PC and the stub itself), while
379 the newer version increments SP only by 4 (just the stored PC). */
380 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
381 sp_offset = 4;
382 else
383 sp_offset = 12;
384
385 /* Update Thumb bit in CPSR. */
386 if (pc & 1)
387 cpsr |= t_bit;
388 else
389 cpsr &= ~t_bit;
f1973203 390
478fd957
UW
391 /* Remove Thumb bit from PC. */
392 pc = gdbarch_addr_bits_remove (gdbarch, pc);
393
394 /* Save previous register values. */
395 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
396 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
397 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
398
399 /* Save a frame ID. */
400 trad_frame_set_id (this_cache, frame_id_build (sp, func));
401}
402
8e9d1a24
DJ
403static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
404 SIGTRAMP_FRAME,
405 4,
406 {
407 { ARM_LINUX_SIGRETURN_INSTR, -1 },
408 { TRAMP_SENTINEL_INSN }
409 },
410 arm_linux_sigreturn_init
411};
412
413static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
414 SIGTRAMP_FRAME,
415 4,
416 {
417 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
418 { TRAMP_SENTINEL_INSN }
419 },
420 arm_linux_rt_sigreturn_init
421};
422
423static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
424 SIGTRAMP_FRAME,
425 4,
426 {
427 { ARM_SET_R7_SIGRETURN, -1 },
428 { ARM_EABI_SYSCALL, -1 },
429 { TRAMP_SENTINEL_INSN }
430 },
431 arm_linux_sigreturn_init
432};
433
434static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
435 SIGTRAMP_FRAME,
436 4,
437 {
438 { ARM_SET_R7_RT_SIGRETURN, -1 },
439 { ARM_EABI_SYSCALL, -1 },
440 { TRAMP_SENTINEL_INSN }
441 },
442 arm_linux_rt_sigreturn_init
443};
444
f1973203
MR
445static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
446 NORMAL_FRAME,
447 4,
448 {
449 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
450 { ARM_LDR_PC_SP_12, -1 },
451 { TRAMP_SENTINEL_INSN }
452 },
453 arm_linux_restart_syscall_init
454};
455
478fd957
UW
456static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
457 NORMAL_FRAME,
458 4,
459 {
460 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
461 { ARM_LDR_PC_SP_4, -1 },
462 { TRAMP_SENTINEL_INSN }
463 },
464 arm_linux_restart_syscall_init
465};
466
cb587d83
DJ
467/* Core file and register set support. */
468
469#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
470
471void
472arm_linux_supply_gregset (const struct regset *regset,
473 struct regcache *regcache,
474 int regnum, const void *gregs_buf, size_t len)
475{
e17a4113
UW
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cb587d83
DJ
478 const gdb_byte *gregs = gregs_buf;
479 int regno;
480 CORE_ADDR reg_pc;
481 gdb_byte pc_buf[INT_REGISTER_SIZE];
482
483 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
484 if (regnum == -1 || regnum == regno)
485 regcache_raw_supply (regcache, regno,
486 gregs + INT_REGISTER_SIZE * regno);
487
488 if (regnum == ARM_PS_REGNUM || regnum == -1)
489 {
490 if (arm_apcs_32)
491 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 492 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
493 else
494 regcache_raw_supply (regcache, ARM_PS_REGNUM,
495 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
496 }
497
498 if (regnum == ARM_PC_REGNUM || regnum == -1)
499 {
500 reg_pc = extract_unsigned_integer (gregs
501 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
502 INT_REGISTER_SIZE, byte_order);
503 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
504 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
505 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
506 }
507}
508
509void
510arm_linux_collect_gregset (const struct regset *regset,
511 const struct regcache *regcache,
512 int regnum, void *gregs_buf, size_t len)
513{
514 gdb_byte *gregs = gregs_buf;
515 int regno;
516
517 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
518 if (regnum == -1 || regnum == regno)
519 regcache_raw_collect (regcache, regno,
520 gregs + INT_REGISTER_SIZE * regno);
521
522 if (regnum == ARM_PS_REGNUM || regnum == -1)
523 {
524 if (arm_apcs_32)
525 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 526 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
527 else
528 regcache_raw_collect (regcache, ARM_PS_REGNUM,
529 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
530 }
531
532 if (regnum == ARM_PC_REGNUM || regnum == -1)
533 regcache_raw_collect (regcache, ARM_PC_REGNUM,
534 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
535}
536
537/* Support for register format used by the NWFPE FPA emulator. */
538
539#define typeNone 0x00
540#define typeSingle 0x01
541#define typeDouble 0x02
542#define typeExtended 0x03
543
544void
545supply_nwfpe_register (struct regcache *regcache, int regno,
546 const gdb_byte *regs)
547{
548 const gdb_byte *reg_data;
549 gdb_byte reg_tag;
550 gdb_byte buf[FP_REGISTER_SIZE];
551
552 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
553 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
554 memset (buf, 0, FP_REGISTER_SIZE);
555
556 switch (reg_tag)
557 {
558 case typeSingle:
559 memcpy (buf, reg_data, 4);
560 break;
561 case typeDouble:
562 memcpy (buf, reg_data + 4, 4);
563 memcpy (buf + 4, reg_data, 4);
564 break;
565 case typeExtended:
566 /* We want sign and exponent, then least significant bits,
567 then most significant. NWFPE does sign, most, least. */
568 memcpy (buf, reg_data, 4);
569 memcpy (buf + 4, reg_data + 8, 4);
570 memcpy (buf + 8, reg_data + 4, 4);
571 break;
572 default:
573 break;
574 }
575
576 regcache_raw_supply (regcache, regno, buf);
577}
578
579void
580collect_nwfpe_register (const struct regcache *regcache, int regno,
581 gdb_byte *regs)
582{
583 gdb_byte *reg_data;
584 gdb_byte reg_tag;
585 gdb_byte buf[FP_REGISTER_SIZE];
586
587 regcache_raw_collect (regcache, regno, buf);
588
589 /* NOTE drow/2006-06-07: This code uses the tag already in the
590 register buffer. I've preserved that when moving the code
591 from the native file to the target file. But this doesn't
592 always make sense. */
593
594 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
595 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
596
597 switch (reg_tag)
598 {
599 case typeSingle:
600 memcpy (reg_data, buf, 4);
601 break;
602 case typeDouble:
603 memcpy (reg_data, buf + 4, 4);
604 memcpy (reg_data + 4, buf, 4);
605 break;
606 case typeExtended:
607 memcpy (reg_data, buf, 4);
608 memcpy (reg_data + 4, buf + 8, 4);
609 memcpy (reg_data + 8, buf + 4, 4);
610 break;
611 default:
612 break;
613 }
614}
615
616void
617arm_linux_supply_nwfpe (const struct regset *regset,
618 struct regcache *regcache,
619 int regnum, const void *regs_buf, size_t len)
620{
621 const gdb_byte *regs = regs_buf;
622 int regno;
623
624 if (regnum == ARM_FPS_REGNUM || regnum == -1)
625 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
626 regs + NWFPE_FPSR_OFFSET);
627
628 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
629 if (regnum == -1 || regnum == regno)
630 supply_nwfpe_register (regcache, regno, regs);
631}
632
633void
634arm_linux_collect_nwfpe (const struct regset *regset,
635 const struct regcache *regcache,
636 int regnum, void *regs_buf, size_t len)
637{
638 gdb_byte *regs = regs_buf;
639 int regno;
640
641 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
642 if (regnum == -1 || regnum == regno)
643 collect_nwfpe_register (regcache, regno, regs);
644
645 if (regnum == ARM_FPS_REGNUM || regnum == -1)
646 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
647 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
648}
649
ef7e8358
UW
650/* Support VFP register format. */
651
652#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
653
654static void
655arm_linux_supply_vfp (const struct regset *regset,
656 struct regcache *regcache,
657 int regnum, const void *regs_buf, size_t len)
658{
659 const gdb_byte *regs = regs_buf;
660 int regno;
661
662 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
663 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
664
665 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
666 if (regnum == -1 || regnum == regno)
667 regcache_raw_supply (regcache, regno,
668 regs + (regno - ARM_D0_REGNUM) * 8);
669}
670
671static void
672arm_linux_collect_vfp (const struct regset *regset,
673 const struct regcache *regcache,
674 int regnum, void *regs_buf, size_t len)
675{
676 gdb_byte *regs = regs_buf;
677 int regno;
678
679 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
680 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
681
682 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
683 if (regnum == -1 || regnum == regno)
684 regcache_raw_collect (regcache, regno,
685 regs + (regno - ARM_D0_REGNUM) * 8);
686}
687
cb587d83
DJ
688/* Return the appropriate register set for the core section identified
689 by SECT_NAME and SECT_SIZE. */
690
691static const struct regset *
692arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
693 const char *sect_name, size_t sect_size)
694{
695 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
696
697 if (strcmp (sect_name, ".reg") == 0
698 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
699 {
700 if (tdep->gregset == NULL)
701 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
702 arm_linux_collect_gregset);
703 return tdep->gregset;
704 }
705
706 if (strcmp (sect_name, ".reg2") == 0
707 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
708 {
709 if (tdep->fpregset == NULL)
710 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
711 arm_linux_collect_nwfpe);
712 return tdep->fpregset;
713 }
714
ef7e8358
UW
715 if (strcmp (sect_name, ".reg-arm-vfp") == 0
716 && sect_size == ARM_LINUX_SIZEOF_VFP)
717 {
718 if (tdep->vfpregset == NULL)
719 tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
720 arm_linux_collect_vfp);
721 return tdep->vfpregset;
722 }
723
724 return NULL;
725}
726
727/* Core file register set sections. */
728
729static struct core_regset_section arm_linux_fpa_regset_sections[] =
730{
731 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
732 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
733 { NULL, 0}
734};
735
736static struct core_regset_section arm_linux_vfp_regset_sections[] =
737{
738 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
739 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
740 { NULL, 0}
741};
742
743/* Determine target description from core file. */
744
745static const struct target_desc *
746arm_linux_core_read_description (struct gdbarch *gdbarch,
747 struct target_ops *target,
748 bfd *abfd)
749{
750 CORE_ADDR arm_hwcap = 0;
751
752 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
753 return NULL;
754
755 if (arm_hwcap & HWCAP_VFP)
756 {
757 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
758 Neon with VFPv3-D32. */
759 if (arm_hwcap & HWCAP_NEON)
760 return tdesc_arm_with_neon;
761 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
762 return tdesc_arm_with_vfpv3;
763 else
764 return tdesc_arm_with_vfpv2;
765 }
766
cb587d83
DJ
767 return NULL;
768}
769
ef7e8358 770
25b41d01 771/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
772 return 1. In addition, set IS_THUMB depending on whether we
773 will return to ARM or Thumb code. Return 0 if it is not a
774 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
775static int
776arm_linux_sigreturn_return_addr (struct frame_info *frame,
777 unsigned long svc_number,
18819fa6 778 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
779{
780 /* Is this a sigreturn or rt_sigreturn syscall? */
781 if (svc_number == 119 || svc_number == 173)
782 {
783 if (get_frame_type (frame) == SIGTRAMP_FRAME)
784 {
18819fa6
UW
785 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
786 CORE_ADDR cpsr
787 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
788
789 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
790 *pc = frame_unwind_caller_pc (frame);
791 return 1;
792 }
793 }
794 return 0;
795}
796
797/* When FRAME is at a syscall instruction, return the PC of the next
798 instruction to be executed. */
799
800static CORE_ADDR
801arm_linux_syscall_next_pc (struct frame_info *frame)
802{
803 CORE_ADDR pc = get_frame_pc (frame);
804 CORE_ADDR return_addr = 0;
805 int is_thumb = arm_frame_is_thumb (frame);
806 ULONGEST svc_number = 0;
25b41d01
YQ
807
808 if (is_thumb)
809 {
810 svc_number = get_frame_register_unsigned (frame, 7);
18819fa6 811 return_addr = pc + 2;
25b41d01
YQ
812 }
813 else
814 {
815 struct gdbarch *gdbarch = get_frame_arch (frame);
816 enum bfd_endian byte_order_for_code =
817 gdbarch_byte_order_for_code (gdbarch);
818 unsigned long this_instr =
819 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
820
821 unsigned long svc_operand = (0x00ffffff & this_instr);
822 if (svc_operand) /* OABI. */
823 {
824 svc_number = svc_operand - 0x900000;
825 }
826 else /* EABI. */
827 {
828 svc_number = get_frame_register_unsigned (frame, 7);
829 }
18819fa6
UW
830
831 return_addr = pc + 4;
25b41d01
YQ
832 }
833
18819fa6 834 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
25b41d01 835
18819fa6 836 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 837 if (is_thumb)
18819fa6 838 return_addr |= 1;
25b41d01
YQ
839
840 return return_addr;
841}
842
843
daddc3c1
DJ
844/* Insert a single step breakpoint at the next executed instruction. */
845
63807e1d 846static int
daddc3c1
DJ
847arm_linux_software_single_step (struct frame_info *frame)
848{
a6d9a66e 849 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 850 struct address_space *aspace = get_frame_address_space (frame);
35f73cfc
UW
851 CORE_ADDR next_pc;
852
853 if (arm_deal_with_atomic_sequence (frame))
854 return 1;
855
856 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
daddc3c1
DJ
857
858 /* The Linux kernel offers some user-mode helpers in a high page. We can
859 not read this page (as of 2.6.23), and even if we could then we couldn't
860 set breakpoints in it, and even if we could then the atomic operations
861 would fail when interrupted. They are all called as functions and return
862 to the address in LR, so step to there instead. */
863 if (next_pc > 0xffff0000)
864 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
865
18819fa6 866 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
867
868 return 1;
869}
870
cca44b1b
JB
871/* Support for displaced stepping of Linux SVC instructions. */
872
873static void
6e39997a 874arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
875 struct regcache *regs,
876 struct displaced_step_closure *dsc)
877{
878 CORE_ADDR from = dsc->insn_addr;
879 ULONGEST apparent_pc;
880 int within_scratch;
881
882 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
883
884 within_scratch = (apparent_pc >= dsc->scratch_base
885 && apparent_pc < (dsc->scratch_base
886 + DISPLACED_MODIFIED_INSNS * 4 + 4));
887
888 if (debug_displaced)
889 {
890 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
891 "SVC step ", (unsigned long) apparent_pc);
892 if (within_scratch)
893 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
894 else
895 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
896 }
897
898 if (within_scratch)
899 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
900}
901
902static int
bd18283a
YQ
903arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
904 struct displaced_step_closure *dsc)
cca44b1b 905{
25b41d01
YQ
906 CORE_ADDR return_to = 0;
907
cca44b1b 908 struct frame_info *frame;
36073a92 909 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 910 int is_sigreturn = 0;
18819fa6 911 int is_thumb;
cca44b1b 912
cca44b1b
JB
913 frame = get_current_frame ();
914
25b41d01 915 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 916 &return_to, &is_thumb);
25b41d01 917 if (is_sigreturn)
cca44b1b 918 {
cca44b1b
JB
919 struct symtab_and_line sal;
920
921 if (debug_displaced)
922 fprintf_unfiltered (gdb_stdlog, "displaced: found "
0963b4bd 923 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
cca44b1b
JB
924 (unsigned long) get_frame_pc (frame));
925
cca44b1b 926 if (debug_displaced)
0963b4bd 927 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
cca44b1b
JB
928 "Setting momentary breakpoint.\n", (unsigned long) return_to);
929
8358c15c
JK
930 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
931 == NULL);
cca44b1b
JB
932
933 sal = find_pc_line (return_to, 0);
934 sal.pc = return_to;
935 sal.section = find_pc_overlay (return_to);
936 sal.explicit_pc = 1;
937
938 frame = get_prev_frame (frame);
939
940 if (frame)
941 {
8358c15c 942 inferior_thread ()->control.step_resume_breakpoint
cca44b1b
JB
943 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
944 bp_step_resume);
945
c70a6932
JK
946 /* set_momentary_breakpoint invalidates FRAME. */
947 frame = NULL;
948
cca44b1b
JB
949 /* We need to make sure we actually insert the momentary
950 breakpoint set above. */
951 insert_breakpoints ();
952 }
953 else if (debug_displaced)
954 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
955 "frame to set momentary breakpoint for "
956 "sigreturn/rt_sigreturn\n");
957 }
958 else if (debug_displaced)
959 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
960 "SVC call not in signal trampoline frame\n");
25b41d01 961
cca44b1b
JB
962
963 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
964 location, else nothing.
965 Insn: unmodified svc.
966 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
967 else leave pc alone. */
968
cca44b1b
JB
969
970 dsc->cleanup = &arm_linux_cleanup_svc;
971 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
972 instruction. */
973 dsc->wrote_to_pc = 1;
974
975 return 0;
976}
977
978
979/* The following two functions implement single-stepping over calls to Linux
980 kernel helper routines, which perform e.g. atomic operations on architecture
981 variants which don't support them natively.
982
983 When this function is called, the PC will be pointing at the kernel helper
984 (at an address inaccessible to GDB), and r14 will point to the return
985 address. Displaced stepping always executes code in the copy area:
986 so, make the copy-area instruction branch back to the kernel helper (the
987 "from" address), and make r14 point to the breakpoint in the copy area. In
988 that way, we regain control once the kernel helper returns, and can clean
989 up appropriately (as if we had just returned from the kernel helper as it
990 would have been called from the non-displaced location). */
991
992static void
6e39997a 993cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
994 struct regcache *regs,
995 struct displaced_step_closure *dsc)
996{
997 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
998 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
999}
1000
1001static void
1002arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1003 CORE_ADDR to, struct regcache *regs,
1004 struct displaced_step_closure *dsc)
1005{
1006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1007
1008 dsc->numinsns = 1;
1009 dsc->insn_addr = from;
1010 dsc->cleanup = &cleanup_kernel_helper_return;
1011 /* Say we wrote to the PC, else cleanup will set PC to the next
1012 instruction in the helper, which isn't helpful. */
1013 dsc->wrote_to_pc = 1;
1014
1015 /* Preparation: tmp[0] <- r14
1016 r14 <- <scratch space>+4
1017 *(<scratch space>+8) <- from
1018 Insn: ldr pc, [r14, #4]
1019 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1020
36073a92 1021 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1022 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1023 CANNOT_WRITE_PC);
1024 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1025
1026 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1027}
1028
1029/* Linux-specific displaced step instruction copying function. Detects when
1030 the program has stepped into a Linux kernel helper routine (which must be
1031 handled as a special case), falling back to arm_displaced_step_copy_insn()
1032 if it hasn't. */
1033
1034static struct displaced_step_closure *
1035arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1036 CORE_ADDR from, CORE_ADDR to,
1037 struct regcache *regs)
1038{
1039 struct displaced_step_closure *dsc
1040 = xmalloc (sizeof (struct displaced_step_closure));
1041
1042 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1043 stop at the return location. */
1044 if (from > 0xffff0000)
1045 {
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1048 "at %.8lx\n", (unsigned long) from);
1049
1050 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1051 }
1052 else
1053 {
cca44b1b
JB
1054 /* Override the default handling of SVC instructions. */
1055 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1056
b434a28f 1057 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1058 }
1059
1060 arm_displaced_init_closure (gdbarch, from, to, dsc);
1061
1062 return dsc;
1063}
1064
55aa24fb
SDJ
1065static int
1066arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1067{
1068 return (*s == '#' /* Literal number. */
1069 || *s == '[' /* Register indirection or
1070 displacement. */
1071 || isalpha (*s)); /* Register value. */
1072}
1073
1074/* This routine is used to parse a special token in ARM's assembly.
1075
1076 The special tokens parsed by it are:
1077
1078 - Register displacement (e.g, [fp, #-8])
1079
1080 It returns one if the special token has been parsed successfully,
1081 or zero if the current token is not considered special. */
1082
1083static int
1084arm_stap_parse_special_token (struct gdbarch *gdbarch,
1085 struct stap_parse_info *p)
1086{
1087 if (*p->arg == '[')
1088 {
1089 /* Temporary holder for lookahead. */
1090 const char *tmp = p->arg;
a0bcdaa7 1091 char *endp;
55aa24fb
SDJ
1092 /* Used to save the register name. */
1093 const char *start;
1094 char *regname;
1095 int len, offset;
1096 int got_minus = 0;
1097 long displacement;
1098 struct stoken str;
1099
1100 ++tmp;
1101 start = tmp;
1102
1103 /* Register name. */
1104 while (isalnum (*tmp))
1105 ++tmp;
1106
1107 if (*tmp != ',')
1108 return 0;
1109
1110 len = tmp - start;
1111 regname = alloca (len + 2);
1112
1113 offset = 0;
1114 if (isdigit (*start))
1115 {
1116 /* If we are dealing with a register whose name begins with a
1117 digit, it means we should prefix the name with the letter
1118 `r', because GDB expects this name pattern. Otherwise (e.g.,
1119 we are dealing with the register `fp'), we don't need to
1120 add such a prefix. */
1121 regname[0] = 'r';
1122 offset = 1;
1123 }
1124
1125 strncpy (regname + offset, start, len);
1126 len += offset;
1127 regname[len] = '\0';
1128
1129 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1130 error (_("Invalid register name `%s' on expression `%s'."),
1131 regname, p->saved_arg);
1132
1133 ++tmp;
1134 tmp = skip_spaces_const (tmp);
1135 if (*tmp++ != '#')
1136 return 0;
1137
1138 if (*tmp == '-')
1139 {
1140 ++tmp;
1141 got_minus = 1;
1142 }
1143
a0bcdaa7
PA
1144 displacement = strtol (tmp, &endp, 10);
1145 tmp = endp;
55aa24fb
SDJ
1146
1147 /* Skipping last `]'. */
1148 if (*tmp++ != ']')
1149 return 0;
1150
1151 /* The displacement. */
1152 write_exp_elt_opcode (OP_LONG);
1153 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1154 write_exp_elt_longcst (displacement);
1155 write_exp_elt_opcode (OP_LONG);
1156 if (got_minus)
1157 write_exp_elt_opcode (UNOP_NEG);
1158
1159 /* The register name. */
1160 write_exp_elt_opcode (OP_REGISTER);
1161 str.ptr = regname;
1162 str.length = len;
1163 write_exp_string (str);
1164 write_exp_elt_opcode (OP_REGISTER);
1165
1166 write_exp_elt_opcode (BINOP_ADD);
1167
1168 /* Casting to the expected type. */
1169 write_exp_elt_opcode (UNOP_CAST);
1170 write_exp_elt_type (lookup_pointer_type (p->arg_type));
1171 write_exp_elt_opcode (UNOP_CAST);
1172
1173 write_exp_elt_opcode (UNOP_IND);
1174
1175 p->arg = tmp;
1176 }
1177 else
1178 return 0;
1179
1180 return 1;
1181}
1182
97e03143
RE
1183static void
1184arm_linux_init_abi (struct gdbarch_info info,
1185 struct gdbarch *gdbarch)
1186{
1187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1188
a5ee0f0c
PA
1189 linux_init_abi (info, gdbarch);
1190
97e03143 1191 tdep->lowest_pc = 0x8000;
2ef47cd0 1192 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 1193 {
c75a2cc8
DJ
1194 if (tdep->arm_abi == ARM_ABI_AAPCS)
1195 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1196 else
1197 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1198 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1199 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1200 }
2ef47cd0 1201 else
498b1f87 1202 {
c75a2cc8
DJ
1203 if (tdep->arm_abi == ARM_ABI_AAPCS)
1204 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1205 else
1206 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1207 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1208 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1209 }
66e810cd 1210 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1211 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1212 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1213
28e97307
DJ
1214 if (tdep->fp_model == ARM_FLOAT_AUTO)
1215 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1216
f8624c62
MGD
1217 switch (tdep->fp_model)
1218 {
1219 case ARM_FLOAT_FPA:
1220 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1221 break;
1222 case ARM_FLOAT_SOFT_FPA:
1223 case ARM_FLOAT_SOFT_VFP:
1224 case ARM_FLOAT_VFP:
1225 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1226 break;
1227 default:
1228 internal_error
1229 (__FILE__, __LINE__,
1230 _("arm_linux_init_abi: Floating point model not supported"));
1231 break;
1232 }
a6cdd8c5 1233 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1234
7aa1783e 1235 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1236 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1237
190dce09 1238 /* Single stepping. */
daddc3c1 1239 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1240
0e18d038 1241 /* Shared library handling. */
0e18d038 1242 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
bb41a796 1243 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1244
1245 /* Enable TLS support. */
1246 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1247 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1248
1249 tramp_frame_prepend_unwinder (gdbarch,
1250 &arm_linux_sigreturn_tramp_frame);
1251 tramp_frame_prepend_unwinder (gdbarch,
1252 &arm_linux_rt_sigreturn_tramp_frame);
1253 tramp_frame_prepend_unwinder (gdbarch,
1254 &arm_eabi_linux_sigreturn_tramp_frame);
1255 tramp_frame_prepend_unwinder (gdbarch,
1256 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1257 tramp_frame_prepend_unwinder (gdbarch,
1258 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1259 tramp_frame_prepend_unwinder (gdbarch,
1260 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1261
1262 /* Core file support. */
1263 set_gdbarch_regset_from_core_section (gdbarch,
1264 arm_linux_regset_from_core_section);
ef7e8358
UW
1265 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1266
1267 if (tdep->have_vfp_registers)
1268 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1269 else if (tdep->have_fpa_registers)
1270 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
4aa995e1
PA
1271
1272 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
cca44b1b
JB
1273
1274 /* Displaced stepping. */
1275 set_gdbarch_displaced_step_copy_insn (gdbarch,
1276 arm_linux_displaced_step_copy_insn);
1277 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1278 set_gdbarch_displaced_step_free_closure (gdbarch,
1279 simple_displaced_step_free_closure);
1280 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
25b41d01 1281
72508ac0
PO
1282 /* Reversible debugging, process record. */
1283 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1284
55aa24fb
SDJ
1285 /* SystemTap functions. */
1286 set_gdbarch_stap_integer_prefix (gdbarch, "#");
1287 set_gdbarch_stap_register_prefix (gdbarch, "r");
1288 set_gdbarch_stap_register_indirection_prefix (gdbarch, "[");
1289 set_gdbarch_stap_register_indirection_suffix (gdbarch, "]");
1290 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1291 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1292 set_gdbarch_stap_parse_special_token (gdbarch,
1293 arm_stap_parse_special_token);
1294
25b41d01 1295 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
72508ac0
PO
1296
1297 /* Syscall record. */
1298 tdep->arm_swi_record = NULL;
97e03143
RE
1299}
1300
63807e1d
PA
1301/* Provide a prototype to silence -Wmissing-prototypes. */
1302extern initialize_file_ftype _initialize_arm_linux_tdep;
1303
faf5f7ad
SB
1304void
1305_initialize_arm_linux_tdep (void)
1306{
05816f70
MK
1307 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1308 arm_linux_init_abi);
faf5f7ad 1309}
This page took 1.202403 seconds and 4 git commands to generate.