gdb/
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
0fb0cc75
JB
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
faf5f7ad
SB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
20
21#include "defs.h"
c20f6dea
SB
22#include "target.h"
23#include "value.h"
faf5f7ad 24#include "gdbtypes.h"
134e61c4 25#include "floatformat.h"
2a451106
KB
26#include "gdbcore.h"
27#include "frame.h"
4e052eda 28#include "regcache.h"
d16aafd8 29#include "doublest.h"
7aa1783e 30#include "solib-svr4.h"
4be87837 31#include "osabi.h"
cb587d83 32#include "regset.h"
8e9d1a24
DJ
33#include "trad-frame.h"
34#include "tramp-frame.h"
daddc3c1 35#include "breakpoint.h"
faf5f7ad 36
34e8f22d 37#include "arm-tdep.h"
cb587d83 38#include "arm-linux-tdep.h"
4aa995e1 39#include "linux-tdep.h"
0670c0aa 40#include "glibc-tdep.h"
cca44b1b
JB
41#include "arch-utils.h"
42#include "inferior.h"
43#include "gdbthread.h"
44#include "symfile.h"
a52e6aac 45
8e9d1a24
DJ
46#include "gdb_string.h"
47
cb587d83
DJ
48extern int arm_apcs_32;
49
fdf39c9a
RE
50/* Under ARM GNU/Linux the traditional way of performing a breakpoint
51 is to execute a particular software interrupt, rather than use a
52 particular undefined instruction to provoke a trap. Upon exection
53 of the software interrupt the kernel stops the inferior with a
498b1f87 54 SIGTRAP, and wakes the debugger. */
66e810cd 55
2ef47cd0
DJ
56static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
57
58static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 59
c75a2cc8
DJ
60/* However, the EABI syscall interface (new in Nov. 2005) does not look at
61 the operand of the swi if old-ABI compatibility is disabled. Therefore,
62 use an undefined instruction instead. This is supported as of kernel
63 version 2.5.70 (May 2003), so should be a safe assumption for EABI
64 binaries. */
65
66static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
67
68static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
69
70/* All the kernels which support Thumb support using a specific undefined
71 instruction for the Thumb breakpoint. */
72
498b1f87
DJ
73static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
74
75static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
76
9df628e0 77/* Description of the longjmp buffer. */
7a5ea0d4 78#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
a6cdd8c5 79#define ARM_LINUX_JB_PC 21
faf5f7ad 80
f38e884d 81/*
fdf39c9a
RE
82 Dynamic Linking on ARM GNU/Linux
83 --------------------------------
f38e884d
SB
84
85 Note: PLT = procedure linkage table
86 GOT = global offset table
87
88 As much as possible, ELF dynamic linking defers the resolution of
89 jump/call addresses until the last minute. The technique used is
90 inspired by the i386 ELF design, and is based on the following
91 constraints.
92
93 1) The calling technique should not force a change in the assembly
94 code produced for apps; it MAY cause changes in the way assembly
95 code is produced for position independent code (i.e. shared
96 libraries).
97
98 2) The technique must be such that all executable areas must not be
99 modified; and any modified areas must not be executed.
100
101 To do this, there are three steps involved in a typical jump:
102
103 1) in the code
104 2) through the PLT
105 3) using a pointer from the GOT
106
107 When the executable or library is first loaded, each GOT entry is
108 initialized to point to the code which implements dynamic name
109 resolution and code finding. This is normally a function in the
fdf39c9a
RE
110 program interpreter (on ARM GNU/Linux this is usually
111 ld-linux.so.2, but it does not have to be). On the first
112 invocation, the function is located and the GOT entry is replaced
113 with the real function address. Subsequent calls go through steps
114 1, 2 and 3 and end up calling the real code.
f38e884d
SB
115
116 1) In the code:
117
118 b function_call
119 bl function_call
120
121 This is typical ARM code using the 26 bit relative branch or branch
122 and link instructions. The target of the instruction
123 (function_call is usually the address of the function to be called.
124 In position independent code, the target of the instruction is
125 actually an entry in the PLT when calling functions in a shared
126 library. Note that this call is identical to a normal function
127 call, only the target differs.
128
129 2) In the PLT:
130
131 The PLT is a synthetic area, created by the linker. It exists in
132 both executables and libraries. It is an array of stubs, one per
133 imported function call. It looks like this:
134
135 PLT[0]:
136 str lr, [sp, #-4]! @push the return address (lr)
137 ldr lr, [pc, #16] @load from 6 words ahead
138 add lr, pc, lr @form an address for GOT[0]
139 ldr pc, [lr, #8]! @jump to the contents of that addr
140
141 The return address (lr) is pushed on the stack and used for
142 calculations. The load on the second line loads the lr with
143 &GOT[3] - . - 20. The addition on the third leaves:
144
145 lr = (&GOT[3] - . - 20) + (. + 8)
146 lr = (&GOT[3] - 12)
147 lr = &GOT[0]
148
149 On the fourth line, the pc and lr are both updated, so that:
150
151 pc = GOT[2]
152 lr = &GOT[0] + 8
153 = &GOT[2]
154
155 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
156 "tight", but allows us to keep all the PLT entries the same size.
157
158 PLT[n+1]:
159 ldr ip, [pc, #4] @load offset from gotoff
160 add ip, pc, ip @add the offset to the pc
161 ldr pc, [ip] @jump to that address
162 gotoff: .word GOT[n+3] - .
163
164 The load on the first line, gets an offset from the fourth word of
165 the PLT entry. The add on the second line makes ip = &GOT[n+3],
166 which contains either a pointer to PLT[0] (the fixup trampoline) or
167 a pointer to the actual code.
168
169 3) In the GOT:
170
171 The GOT contains helper pointers for both code (PLT) fixups and
172 data fixups. The first 3 entries of the GOT are special. The next
173 M entries (where M is the number of entries in the PLT) belong to
174 the PLT fixups. The next D (all remaining) entries belong to
175 various data fixups. The actual size of the GOT is 3 + M + D.
176
177 The GOT is also a synthetic area, created by the linker. It exists
178 in both executables and libraries. When the GOT is first
179 initialized , all the GOT entries relating to PLT fixups are
180 pointing to code back at PLT[0].
181
182 The special entries in the GOT are:
183
184 GOT[0] = linked list pointer used by the dynamic loader
185 GOT[1] = pointer to the reloc table for this module
186 GOT[2] = pointer to the fixup/resolver code
187
188 The first invocation of function call comes through and uses the
189 fixup/resolver code. On the entry to the fixup/resolver code:
190
191 ip = &GOT[n+3]
192 lr = &GOT[2]
193 stack[0] = return address (lr) of the function call
194 [r0, r1, r2, r3] are still the arguments to the function call
195
196 This is enough information for the fixup/resolver code to work
197 with. Before the fixup/resolver code returns, it actually calls
198 the requested function and repairs &GOT[n+3]. */
199
2a451106
KB
200/* The constants below were determined by examining the following files
201 in the linux kernel sources:
202
203 arch/arm/kernel/signal.c
204 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
205 include/asm-arm/unistd.h
206 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
207
208#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
209#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
210
edfb1a26
DJ
211/* For ARM EABI, the syscall number is not in the SWI instruction
212 (instead it is loaded into r7). We recognize the pattern that
213 glibc uses... alternatively, we could arrange to do this by
214 function name, but they are not always exported. */
8e9d1a24
DJ
215#define ARM_SET_R7_SIGRETURN 0xe3a07077
216#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
217#define ARM_EABI_SYSCALL 0xef000000
2a451106 218
8e9d1a24 219static void
a262aec2 220arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
221 struct trad_frame_cache *this_cache,
222 CORE_ADDR func, int regs_offset)
2a451106 223{
a262aec2 224 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
225 CORE_ADDR base = sp + regs_offset;
226 int i;
2a451106 227
8e9d1a24
DJ
228 for (i = 0; i < 16; i++)
229 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 230
8e9d1a24 231 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 232
8e9d1a24
DJ
233 /* The VFP or iWMMXt registers may be saved on the stack, but there's
234 no reliable way to restore them (yet). */
2a451106 235
8e9d1a24
DJ
236 /* Save a frame ID. */
237 trad_frame_set_id (this_cache, frame_id_build (sp, func));
238}
2a451106 239
edfb1a26
DJ
240/* There are a couple of different possible stack layouts that
241 we need to support.
242
243 Before version 2.6.18, the kernel used completely independent
244 layouts for non-RT and RT signals. For non-RT signals the stack
245 began directly with a struct sigcontext. For RT signals the stack
246 began with two redundant pointers (to the siginfo and ucontext),
247 and then the siginfo and ucontext.
248
249 As of version 2.6.18, the non-RT signal frame layout starts with
250 a ucontext and the RT signal frame starts with a siginfo and then
251 a ucontext. Also, the ucontext now has a designated save area
252 for coprocessor registers.
253
254 For RT signals, it's easy to tell the difference: we look for
255 pinfo, the pointer to the siginfo. If it has the expected
256 value, we have an old layout. If it doesn't, we have the new
257 layout.
258
259 For non-RT signals, it's a bit harder. We need something in one
260 layout or the other with a recognizable offset and value. We can't
261 use the return trampoline, because ARM usually uses SA_RESTORER,
262 in which case the stack return trampoline is not filled in.
263 We can't use the saved stack pointer, because sigaltstack might
264 be in use. So for now we guess the new layout... */
265
266/* There are three words (trap_no, error_code, oldmask) in
267 struct sigcontext before r0. */
268#define ARM_SIGCONTEXT_R0 0xc
269
270/* There are five words (uc_flags, uc_link, and three for uc_stack)
271 in the ucontext_t before the sigcontext. */
272#define ARM_UCONTEXT_SIGCONTEXT 0x14
273
274/* There are three elements in an rt_sigframe before the ucontext:
275 pinfo, puc, and info. The first two are pointers and the third
276 is a struct siginfo, with size 128 bytes. We could follow puc
277 to the ucontext, but it's simpler to skip the whole thing. */
278#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
279#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
280
281#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
282
283#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
284
8e9d1a24
DJ
285static void
286arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 287 struct frame_info *this_frame,
8e9d1a24
DJ
288 struct trad_frame_cache *this_cache,
289 CORE_ADDR func)
2a451106 290{
e17a4113
UW
291 struct gdbarch *gdbarch = get_frame_arch (this_frame);
292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 293 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 294 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
295
296 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 297 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
298 ARM_UCONTEXT_SIGCONTEXT
299 + ARM_SIGCONTEXT_R0);
300 else
a262aec2 301 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 302 ARM_SIGCONTEXT_R0);
8e9d1a24 303}
2a451106 304
8e9d1a24
DJ
305static void
306arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 307 struct frame_info *this_frame,
8e9d1a24
DJ
308 struct trad_frame_cache *this_cache,
309 CORE_ADDR func)
310{
e17a4113
UW
311 struct gdbarch *gdbarch = get_frame_arch (this_frame);
312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 313 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 314 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
315
316 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 317 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
318 ARM_OLD_RT_SIGFRAME_UCONTEXT
319 + ARM_UCONTEXT_SIGCONTEXT
320 + ARM_SIGCONTEXT_R0);
321 else
a262aec2 322 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
323 ARM_NEW_RT_SIGFRAME_UCONTEXT
324 + ARM_UCONTEXT_SIGCONTEXT
325 + ARM_SIGCONTEXT_R0);
2a451106
KB
326}
327
8e9d1a24
DJ
328static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
329 SIGTRAMP_FRAME,
330 4,
331 {
332 { ARM_LINUX_SIGRETURN_INSTR, -1 },
333 { TRAMP_SENTINEL_INSN }
334 },
335 arm_linux_sigreturn_init
336};
337
338static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
339 SIGTRAMP_FRAME,
340 4,
341 {
342 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
343 { TRAMP_SENTINEL_INSN }
344 },
345 arm_linux_rt_sigreturn_init
346};
347
348static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
349 SIGTRAMP_FRAME,
350 4,
351 {
352 { ARM_SET_R7_SIGRETURN, -1 },
353 { ARM_EABI_SYSCALL, -1 },
354 { TRAMP_SENTINEL_INSN }
355 },
356 arm_linux_sigreturn_init
357};
358
359static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
360 SIGTRAMP_FRAME,
361 4,
362 {
363 { ARM_SET_R7_RT_SIGRETURN, -1 },
364 { ARM_EABI_SYSCALL, -1 },
365 { TRAMP_SENTINEL_INSN }
366 },
367 arm_linux_rt_sigreturn_init
368};
369
cb587d83
DJ
370/* Core file and register set support. */
371
372#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
373
374void
375arm_linux_supply_gregset (const struct regset *regset,
376 struct regcache *regcache,
377 int regnum, const void *gregs_buf, size_t len)
378{
e17a4113
UW
379 struct gdbarch *gdbarch = get_regcache_arch (regcache);
380 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cb587d83
DJ
381 const gdb_byte *gregs = gregs_buf;
382 int regno;
383 CORE_ADDR reg_pc;
384 gdb_byte pc_buf[INT_REGISTER_SIZE];
385
386 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
387 if (regnum == -1 || regnum == regno)
388 regcache_raw_supply (regcache, regno,
389 gregs + INT_REGISTER_SIZE * regno);
390
391 if (regnum == ARM_PS_REGNUM || regnum == -1)
392 {
393 if (arm_apcs_32)
394 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 395 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
396 else
397 regcache_raw_supply (regcache, ARM_PS_REGNUM,
398 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
399 }
400
401 if (regnum == ARM_PC_REGNUM || regnum == -1)
402 {
403 reg_pc = extract_unsigned_integer (gregs
404 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
405 INT_REGISTER_SIZE, byte_order);
406 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
407 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
408 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
409 }
410}
411
412void
413arm_linux_collect_gregset (const struct regset *regset,
414 const struct regcache *regcache,
415 int regnum, void *gregs_buf, size_t len)
416{
417 gdb_byte *gregs = gregs_buf;
418 int regno;
419
420 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
421 if (regnum == -1 || regnum == regno)
422 regcache_raw_collect (regcache, regno,
423 gregs + INT_REGISTER_SIZE * regno);
424
425 if (regnum == ARM_PS_REGNUM || regnum == -1)
426 {
427 if (arm_apcs_32)
428 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 429 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
430 else
431 regcache_raw_collect (regcache, ARM_PS_REGNUM,
432 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
433 }
434
435 if (regnum == ARM_PC_REGNUM || regnum == -1)
436 regcache_raw_collect (regcache, ARM_PC_REGNUM,
437 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
438}
439
440/* Support for register format used by the NWFPE FPA emulator. */
441
442#define typeNone 0x00
443#define typeSingle 0x01
444#define typeDouble 0x02
445#define typeExtended 0x03
446
447void
448supply_nwfpe_register (struct regcache *regcache, int regno,
449 const gdb_byte *regs)
450{
451 const gdb_byte *reg_data;
452 gdb_byte reg_tag;
453 gdb_byte buf[FP_REGISTER_SIZE];
454
455 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
456 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
457 memset (buf, 0, FP_REGISTER_SIZE);
458
459 switch (reg_tag)
460 {
461 case typeSingle:
462 memcpy (buf, reg_data, 4);
463 break;
464 case typeDouble:
465 memcpy (buf, reg_data + 4, 4);
466 memcpy (buf + 4, reg_data, 4);
467 break;
468 case typeExtended:
469 /* We want sign and exponent, then least significant bits,
470 then most significant. NWFPE does sign, most, least. */
471 memcpy (buf, reg_data, 4);
472 memcpy (buf + 4, reg_data + 8, 4);
473 memcpy (buf + 8, reg_data + 4, 4);
474 break;
475 default:
476 break;
477 }
478
479 regcache_raw_supply (regcache, regno, buf);
480}
481
482void
483collect_nwfpe_register (const struct regcache *regcache, int regno,
484 gdb_byte *regs)
485{
486 gdb_byte *reg_data;
487 gdb_byte reg_tag;
488 gdb_byte buf[FP_REGISTER_SIZE];
489
490 regcache_raw_collect (regcache, regno, buf);
491
492 /* NOTE drow/2006-06-07: This code uses the tag already in the
493 register buffer. I've preserved that when moving the code
494 from the native file to the target file. But this doesn't
495 always make sense. */
496
497 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
498 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
499
500 switch (reg_tag)
501 {
502 case typeSingle:
503 memcpy (reg_data, buf, 4);
504 break;
505 case typeDouble:
506 memcpy (reg_data, buf + 4, 4);
507 memcpy (reg_data + 4, buf, 4);
508 break;
509 case typeExtended:
510 memcpy (reg_data, buf, 4);
511 memcpy (reg_data + 4, buf + 8, 4);
512 memcpy (reg_data + 8, buf + 4, 4);
513 break;
514 default:
515 break;
516 }
517}
518
519void
520arm_linux_supply_nwfpe (const struct regset *regset,
521 struct regcache *regcache,
522 int regnum, const void *regs_buf, size_t len)
523{
524 const gdb_byte *regs = regs_buf;
525 int regno;
526
527 if (regnum == ARM_FPS_REGNUM || regnum == -1)
528 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
529 regs + NWFPE_FPSR_OFFSET);
530
531 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
532 if (regnum == -1 || regnum == regno)
533 supply_nwfpe_register (regcache, regno, regs);
534}
535
536void
537arm_linux_collect_nwfpe (const struct regset *regset,
538 const struct regcache *regcache,
539 int regnum, void *regs_buf, size_t len)
540{
541 gdb_byte *regs = regs_buf;
542 int regno;
543
544 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
545 if (regnum == -1 || regnum == regno)
546 collect_nwfpe_register (regcache, regno, regs);
547
548 if (regnum == ARM_FPS_REGNUM || regnum == -1)
549 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
550 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
551}
552
553/* Return the appropriate register set for the core section identified
554 by SECT_NAME and SECT_SIZE. */
555
556static const struct regset *
557arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
558 const char *sect_name, size_t sect_size)
559{
560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
561
562 if (strcmp (sect_name, ".reg") == 0
563 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
564 {
565 if (tdep->gregset == NULL)
566 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
567 arm_linux_collect_gregset);
568 return tdep->gregset;
569 }
570
571 if (strcmp (sect_name, ".reg2") == 0
572 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
573 {
574 if (tdep->fpregset == NULL)
575 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
576 arm_linux_collect_nwfpe);
577 return tdep->fpregset;
578 }
579
580 return NULL;
581}
582
daddc3c1
DJ
583/* Insert a single step breakpoint at the next executed instruction. */
584
63807e1d 585static int
daddc3c1
DJ
586arm_linux_software_single_step (struct frame_info *frame)
587{
a6d9a66e 588 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 589 struct address_space *aspace = get_frame_address_space (frame);
daddc3c1
DJ
590 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
591
592 /* The Linux kernel offers some user-mode helpers in a high page. We can
593 not read this page (as of 2.6.23), and even if we could then we couldn't
594 set breakpoints in it, and even if we could then the atomic operations
595 would fail when interrupted. They are all called as functions and return
596 to the address in LR, so step to there instead. */
597 if (next_pc > 0xffff0000)
598 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
599
6c95b8df 600 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
601
602 return 1;
603}
604
cca44b1b
JB
605/* Support for displaced stepping of Linux SVC instructions. */
606
607static void
608arm_linux_cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
609 struct regcache *regs,
610 struct displaced_step_closure *dsc)
611{
612 CORE_ADDR from = dsc->insn_addr;
613 ULONGEST apparent_pc;
614 int within_scratch;
615
616 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
617
618 within_scratch = (apparent_pc >= dsc->scratch_base
619 && apparent_pc < (dsc->scratch_base
620 + DISPLACED_MODIFIED_INSNS * 4 + 4));
621
622 if (debug_displaced)
623 {
624 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
625 "SVC step ", (unsigned long) apparent_pc);
626 if (within_scratch)
627 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
628 else
629 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
630 }
631
632 if (within_scratch)
633 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
634}
635
636static int
637arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
638 struct regcache *regs, struct displaced_step_closure *dsc)
639{
640 CORE_ADDR from = dsc->insn_addr;
641 struct frame_info *frame;
642 unsigned int svc_number = displaced_read_reg (regs, from, 7);
643
644 if (debug_displaced)
645 fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
646 (unsigned long) insn);
647
648 frame = get_current_frame ();
649
650 /* Is this a sigreturn or rt_sigreturn syscall? Note: these are only useful
651 for EABI. */
652 if (svc_number == 119 || svc_number == 173)
653 {
654 if (get_frame_type (frame) == SIGTRAMP_FRAME)
655 {
656 CORE_ADDR return_to;
657 struct symtab_and_line sal;
658
659 if (debug_displaced)
660 fprintf_unfiltered (gdb_stdlog, "displaced: found "
661 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
662 (unsigned long) get_frame_pc (frame));
663
664 return_to = frame_unwind_caller_pc (frame);
665 if (debug_displaced)
666 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
667 "Setting momentary breakpoint.\n", (unsigned long) return_to);
668
669 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
670
671 sal = find_pc_line (return_to, 0);
672 sal.pc = return_to;
673 sal.section = find_pc_overlay (return_to);
674 sal.explicit_pc = 1;
675
676 frame = get_prev_frame (frame);
677
678 if (frame)
679 {
680 inferior_thread ()->step_resume_breakpoint
681 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
682 bp_step_resume);
683
684 /* We need to make sure we actually insert the momentary
685 breakpoint set above. */
686 insert_breakpoints ();
687 }
688 else if (debug_displaced)
689 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
690 "frame to set momentary breakpoint for "
691 "sigreturn/rt_sigreturn\n");
692 }
693 else if (debug_displaced)
694 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
695 "SVC call not in signal trampoline frame\n");
696 }
697
698 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
699 location, else nothing.
700 Insn: unmodified svc.
701 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
702 else leave pc alone. */
703
704 dsc->modinsn[0] = insn;
705
706 dsc->cleanup = &arm_linux_cleanup_svc;
707 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
708 instruction. */
709 dsc->wrote_to_pc = 1;
710
711 return 0;
712}
713
714
715/* The following two functions implement single-stepping over calls to Linux
716 kernel helper routines, which perform e.g. atomic operations on architecture
717 variants which don't support them natively.
718
719 When this function is called, the PC will be pointing at the kernel helper
720 (at an address inaccessible to GDB), and r14 will point to the return
721 address. Displaced stepping always executes code in the copy area:
722 so, make the copy-area instruction branch back to the kernel helper (the
723 "from" address), and make r14 point to the breakpoint in the copy area. In
724 that way, we regain control once the kernel helper returns, and can clean
725 up appropriately (as if we had just returned from the kernel helper as it
726 would have been called from the non-displaced location). */
727
728static void
729cleanup_kernel_helper_return (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
730 struct regcache *regs,
731 struct displaced_step_closure *dsc)
732{
733 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
734 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
735}
736
737static void
738arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
739 CORE_ADDR to, struct regcache *regs,
740 struct displaced_step_closure *dsc)
741{
742 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
743
744 dsc->numinsns = 1;
745 dsc->insn_addr = from;
746 dsc->cleanup = &cleanup_kernel_helper_return;
747 /* Say we wrote to the PC, else cleanup will set PC to the next
748 instruction in the helper, which isn't helpful. */
749 dsc->wrote_to_pc = 1;
750
751 /* Preparation: tmp[0] <- r14
752 r14 <- <scratch space>+4
753 *(<scratch space>+8) <- from
754 Insn: ldr pc, [r14, #4]
755 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
756
757 dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
758 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
759 CANNOT_WRITE_PC);
760 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
761
762 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
763}
764
765/* Linux-specific displaced step instruction copying function. Detects when
766 the program has stepped into a Linux kernel helper routine (which must be
767 handled as a special case), falling back to arm_displaced_step_copy_insn()
768 if it hasn't. */
769
770static struct displaced_step_closure *
771arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
772 CORE_ADDR from, CORE_ADDR to,
773 struct regcache *regs)
774{
775 struct displaced_step_closure *dsc
776 = xmalloc (sizeof (struct displaced_step_closure));
777
778 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
779 stop at the return location. */
780 if (from > 0xffff0000)
781 {
782 if (debug_displaced)
783 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
784 "at %.8lx\n", (unsigned long) from);
785
786 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
787 }
788 else
789 {
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
792
793 if (debug_displaced)
794 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
795 "at %.8lx\n", (unsigned long) insn,
796 (unsigned long) from);
797
798 /* Override the default handling of SVC instructions. */
799 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
800
801 arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
802 }
803
804 arm_displaced_init_closure (gdbarch, from, to, dsc);
805
806 return dsc;
807}
808
97e03143
RE
809static void
810arm_linux_init_abi (struct gdbarch_info info,
811 struct gdbarch *gdbarch)
812{
813 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
814
815 tdep->lowest_pc = 0x8000;
2ef47cd0 816 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 817 {
c75a2cc8
DJ
818 if (tdep->arm_abi == ARM_ABI_AAPCS)
819 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
820 else
821 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87
DJ
822 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
823 }
2ef47cd0 824 else
498b1f87 825 {
c75a2cc8
DJ
826 if (tdep->arm_abi == ARM_ABI_AAPCS)
827 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
828 else
829 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87
DJ
830 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
831 }
66e810cd 832 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 833 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
9df628e0 834
28e97307
DJ
835 if (tdep->fp_model == ARM_FLOAT_AUTO)
836 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 837
a6cdd8c5
RE
838 tdep->jb_pc = ARM_LINUX_JB_PC;
839 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 840
7aa1783e 841 set_solib_svr4_fetch_link_map_offsets
76a9d10f 842 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 843
190dce09 844 /* Single stepping. */
daddc3c1 845 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 846
0e18d038 847 /* Shared library handling. */
0e18d038 848 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
bb41a796 849 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
850
851 /* Enable TLS support. */
852 set_gdbarch_fetch_tls_load_module_address (gdbarch,
853 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
854
855 tramp_frame_prepend_unwinder (gdbarch,
856 &arm_linux_sigreturn_tramp_frame);
857 tramp_frame_prepend_unwinder (gdbarch,
858 &arm_linux_rt_sigreturn_tramp_frame);
859 tramp_frame_prepend_unwinder (gdbarch,
860 &arm_eabi_linux_sigreturn_tramp_frame);
861 tramp_frame_prepend_unwinder (gdbarch,
862 &arm_eabi_linux_rt_sigreturn_tramp_frame);
cb587d83
DJ
863
864 /* Core file support. */
865 set_gdbarch_regset_from_core_section (gdbarch,
866 arm_linux_regset_from_core_section);
4aa995e1
PA
867
868 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
cca44b1b
JB
869
870 /* Displaced stepping. */
871 set_gdbarch_displaced_step_copy_insn (gdbarch,
872 arm_linux_displaced_step_copy_insn);
873 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
874 set_gdbarch_displaced_step_free_closure (gdbarch,
875 simple_displaced_step_free_closure);
876 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
97e03143
RE
877}
878
63807e1d
PA
879/* Provide a prototype to silence -Wmissing-prototypes. */
880extern initialize_file_ftype _initialize_arm_linux_tdep;
881
faf5f7ad
SB
882void
883_initialize_arm_linux_tdep (void)
884{
05816f70
MK
885 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
886 arm_linux_init_abi);
faf5f7ad 887}
This page took 1.098787 seconds and 4 git commands to generate.