Share regcache function regcache_raw_read_unsigned
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
9f948660 36#include "xml-syscall.h"
faf5f7ad 37
34e8f22d 38#include "arm-tdep.h"
cb587d83 39#include "arm-linux-tdep.h"
4aa995e1 40#include "linux-tdep.h"
0670c0aa 41#include "glibc-tdep.h"
cca44b1b
JB
42#include "arch-utils.h"
43#include "inferior.h"
45741a9c 44#include "infrun.h"
cca44b1b
JB
45#include "gdbthread.h"
46#include "symfile.h"
a52e6aac 47
97dfe206
OJ
48#include "record-full.h"
49#include "linux-record.h"
50
55aa24fb
SDJ
51#include "cli/cli-utils.h"
52#include "stap-probe.h"
53#include "parser-defs.h"
54#include "user-regs.h"
55#include <ctype.h>
04a83fee 56#include "elf/common.h"
cb587d83
DJ
57extern int arm_apcs_32;
58
fdf39c9a
RE
59/* Under ARM GNU/Linux the traditional way of performing a breakpoint
60 is to execute a particular software interrupt, rather than use a
61 particular undefined instruction to provoke a trap. Upon exection
62 of the software interrupt the kernel stops the inferior with a
498b1f87 63 SIGTRAP, and wakes the debugger. */
66e810cd 64
948f8e3d 65static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 66
948f8e3d 67static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 68
c75a2cc8
DJ
69/* However, the EABI syscall interface (new in Nov. 2005) does not look at
70 the operand of the swi if old-ABI compatibility is disabled. Therefore,
71 use an undefined instruction instead. This is supported as of kernel
72 version 2.5.70 (May 2003), so should be a safe assumption for EABI
73 binaries. */
74
948f8e3d 75static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 76
948f8e3d 77static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
78
79/* All the kernels which support Thumb support using a specific undefined
80 instruction for the Thumb breakpoint. */
81
948f8e3d 82static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 83
948f8e3d 84static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 85
177321bd
DJ
86/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87 we must use a length-appropriate breakpoint for 32-bit Thumb
88 instructions. See also thumb_get_next_pc. */
89
948f8e3d 90static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 91
948f8e3d 92static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 93
f8624c62
MGD
94/* Description of the longjmp buffer. The buffer is treated as an array of
95 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
96
97 The location of saved registers in this buffer (in particular the PC
98 to use after longjmp is called) varies depending on the ABI (in
99 particular the FP model) and also (possibly) the C Library.
100
101 For glibc, eglibc, and uclibc the following holds: If the FP model is
102 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103 buffer. This is also true for the SoftFPA model. However, for the FPA
104 model the PC is at offset 21 in the buffer. */
7a5ea0d4 105#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
106#define ARM_LINUX_JB_PC_FPA 21
107#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 108
f38e884d 109/*
fdf39c9a
RE
110 Dynamic Linking on ARM GNU/Linux
111 --------------------------------
f38e884d
SB
112
113 Note: PLT = procedure linkage table
114 GOT = global offset table
115
116 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 117 jump/call addresses until the last minute. The technique used is
f38e884d
SB
118 inspired by the i386 ELF design, and is based on the following
119 constraints.
120
121 1) The calling technique should not force a change in the assembly
122 code produced for apps; it MAY cause changes in the way assembly
123 code is produced for position independent code (i.e. shared
124 libraries).
125
126 2) The technique must be such that all executable areas must not be
127 modified; and any modified areas must not be executed.
128
129 To do this, there are three steps involved in a typical jump:
130
131 1) in the code
132 2) through the PLT
133 3) using a pointer from the GOT
134
135 When the executable or library is first loaded, each GOT entry is
136 initialized to point to the code which implements dynamic name
137 resolution and code finding. This is normally a function in the
fdf39c9a
RE
138 program interpreter (on ARM GNU/Linux this is usually
139 ld-linux.so.2, but it does not have to be). On the first
140 invocation, the function is located and the GOT entry is replaced
141 with the real function address. Subsequent calls go through steps
142 1, 2 and 3 and end up calling the real code.
f38e884d
SB
143
144 1) In the code:
145
146 b function_call
147 bl function_call
148
149 This is typical ARM code using the 26 bit relative branch or branch
150 and link instructions. The target of the instruction
151 (function_call is usually the address of the function to be called.
152 In position independent code, the target of the instruction is
153 actually an entry in the PLT when calling functions in a shared
154 library. Note that this call is identical to a normal function
155 call, only the target differs.
156
157 2) In the PLT:
158
0963b4bd
MS
159 The PLT is a synthetic area, created by the linker. It exists in
160 both executables and libraries. It is an array of stubs, one per
161 imported function call. It looks like this:
f38e884d
SB
162
163 PLT[0]:
164 str lr, [sp, #-4]! @push the return address (lr)
165 ldr lr, [pc, #16] @load from 6 words ahead
166 add lr, pc, lr @form an address for GOT[0]
167 ldr pc, [lr, #8]! @jump to the contents of that addr
168
169 The return address (lr) is pushed on the stack and used for
170 calculations. The load on the second line loads the lr with
171 &GOT[3] - . - 20. The addition on the third leaves:
172
173 lr = (&GOT[3] - . - 20) + (. + 8)
174 lr = (&GOT[3] - 12)
175 lr = &GOT[0]
176
177 On the fourth line, the pc and lr are both updated, so that:
178
179 pc = GOT[2]
180 lr = &GOT[0] + 8
181 = &GOT[2]
182
0963b4bd 183 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
184 "tight", but allows us to keep all the PLT entries the same size.
185
186 PLT[n+1]:
187 ldr ip, [pc, #4] @load offset from gotoff
188 add ip, pc, ip @add the offset to the pc
189 ldr pc, [ip] @jump to that address
190 gotoff: .word GOT[n+3] - .
191
192 The load on the first line, gets an offset from the fourth word of
193 the PLT entry. The add on the second line makes ip = &GOT[n+3],
194 which contains either a pointer to PLT[0] (the fixup trampoline) or
195 a pointer to the actual code.
196
197 3) In the GOT:
198
199 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 200 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 201 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
202 the PLT fixups. The next D (all remaining) entries belong to
203 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 204
0963b4bd 205 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
206 in both executables and libraries. When the GOT is first
207 initialized , all the GOT entries relating to PLT fixups are
208 pointing to code back at PLT[0].
209
210 The special entries in the GOT are:
211
212 GOT[0] = linked list pointer used by the dynamic loader
213 GOT[1] = pointer to the reloc table for this module
214 GOT[2] = pointer to the fixup/resolver code
215
216 The first invocation of function call comes through and uses the
217 fixup/resolver code. On the entry to the fixup/resolver code:
218
219 ip = &GOT[n+3]
220 lr = &GOT[2]
221 stack[0] = return address (lr) of the function call
222 [r0, r1, r2, r3] are still the arguments to the function call
223
224 This is enough information for the fixup/resolver code to work
225 with. Before the fixup/resolver code returns, it actually calls
226 the requested function and repairs &GOT[n+3]. */
227
2a451106
KB
228/* The constants below were determined by examining the following files
229 in the linux kernel sources:
230
231 arch/arm/kernel/signal.c
232 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233 include/asm-arm/unistd.h
234 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
235
236#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
237#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
238
edfb1a26
DJ
239/* For ARM EABI, the syscall number is not in the SWI instruction
240 (instead it is loaded into r7). We recognize the pattern that
241 glibc uses... alternatively, we could arrange to do this by
242 function name, but they are not always exported. */
8e9d1a24
DJ
243#define ARM_SET_R7_SIGRETURN 0xe3a07077
244#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
245#define ARM_EABI_SYSCALL 0xef000000
2a451106 246
f347ffc9
WN
247/* Equivalent patterns for Thumb2. */
248#define THUMB2_SET_R7_SIGRETURN1 0xf04f
249#define THUMB2_SET_R7_SIGRETURN2 0x0777
250#define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
251#define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
252#define THUMB2_EABI_SYSCALL 0xdf00
253
f1973203
MR
254/* OABI syscall restart trampoline, used for EABI executables too
255 whenever OABI support has been enabled in the kernel. */
256#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
257#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 258#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 259
d0e59a68
AT
260/* Syscall number for sigreturn. */
261#define ARM_SIGRETURN 119
262/* Syscall number for rt_sigreturn. */
263#define ARM_RT_SIGRETURN 173
264
8e9d1a24 265static void
a262aec2 266arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
267 struct trad_frame_cache *this_cache,
268 CORE_ADDR func, int regs_offset)
2a451106 269{
a262aec2 270 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
271 CORE_ADDR base = sp + regs_offset;
272 int i;
2a451106 273
8e9d1a24
DJ
274 for (i = 0; i < 16; i++)
275 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 276
8e9d1a24 277 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 278
8e9d1a24
DJ
279 /* The VFP or iWMMXt registers may be saved on the stack, but there's
280 no reliable way to restore them (yet). */
2a451106 281
8e9d1a24
DJ
282 /* Save a frame ID. */
283 trad_frame_set_id (this_cache, frame_id_build (sp, func));
284}
2a451106 285
edfb1a26
DJ
286/* There are a couple of different possible stack layouts that
287 we need to support.
288
289 Before version 2.6.18, the kernel used completely independent
290 layouts for non-RT and RT signals. For non-RT signals the stack
291 began directly with a struct sigcontext. For RT signals the stack
292 began with two redundant pointers (to the siginfo and ucontext),
293 and then the siginfo and ucontext.
294
295 As of version 2.6.18, the non-RT signal frame layout starts with
296 a ucontext and the RT signal frame starts with a siginfo and then
297 a ucontext. Also, the ucontext now has a designated save area
298 for coprocessor registers.
299
300 For RT signals, it's easy to tell the difference: we look for
301 pinfo, the pointer to the siginfo. If it has the expected
302 value, we have an old layout. If it doesn't, we have the new
303 layout.
304
305 For non-RT signals, it's a bit harder. We need something in one
306 layout or the other with a recognizable offset and value. We can't
307 use the return trampoline, because ARM usually uses SA_RESTORER,
308 in which case the stack return trampoline is not filled in.
309 We can't use the saved stack pointer, because sigaltstack might
310 be in use. So for now we guess the new layout... */
311
312/* There are three words (trap_no, error_code, oldmask) in
313 struct sigcontext before r0. */
314#define ARM_SIGCONTEXT_R0 0xc
315
316/* There are five words (uc_flags, uc_link, and three for uc_stack)
317 in the ucontext_t before the sigcontext. */
318#define ARM_UCONTEXT_SIGCONTEXT 0x14
319
320/* There are three elements in an rt_sigframe before the ucontext:
321 pinfo, puc, and info. The first two are pointers and the third
322 is a struct siginfo, with size 128 bytes. We could follow puc
323 to the ucontext, but it's simpler to skip the whole thing. */
324#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
325#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
326
327#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
328
329#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
330
8e9d1a24
DJ
331static void
332arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 333 struct frame_info *this_frame,
8e9d1a24
DJ
334 struct trad_frame_cache *this_cache,
335 CORE_ADDR func)
2a451106 336{
e17a4113
UW
337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 339 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 340 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
341
342 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 343 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
344 ARM_UCONTEXT_SIGCONTEXT
345 + ARM_SIGCONTEXT_R0);
346 else
a262aec2 347 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 348 ARM_SIGCONTEXT_R0);
8e9d1a24 349}
2a451106 350
8e9d1a24
DJ
351static void
352arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 353 struct frame_info *this_frame,
8e9d1a24
DJ
354 struct trad_frame_cache *this_cache,
355 CORE_ADDR func)
356{
e17a4113
UW
357 struct gdbarch *gdbarch = get_frame_arch (this_frame);
358 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 359 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 360 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
361
362 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 363 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
364 ARM_OLD_RT_SIGFRAME_UCONTEXT
365 + ARM_UCONTEXT_SIGCONTEXT
366 + ARM_SIGCONTEXT_R0);
367 else
a262aec2 368 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
369 ARM_NEW_RT_SIGFRAME_UCONTEXT
370 + ARM_UCONTEXT_SIGCONTEXT
371 + ARM_SIGCONTEXT_R0);
2a451106
KB
372}
373
f1973203
MR
374static void
375arm_linux_restart_syscall_init (const struct tramp_frame *self,
376 struct frame_info *this_frame,
377 struct trad_frame_cache *this_cache,
378 CORE_ADDR func)
379{
478fd957 380 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 381 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
382 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
383 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
384 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
385 int sp_offset;
386
387 /* There are two variants of this trampoline; with older kernels, the
388 stub is placed on the stack, while newer kernels use the stub from
389 the vector page. They are identical except that the older version
390 increments SP by 12 (to skip stored PC and the stub itself), while
391 the newer version increments SP only by 4 (just the stored PC). */
392 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
393 sp_offset = 4;
394 else
395 sp_offset = 12;
396
397 /* Update Thumb bit in CPSR. */
398 if (pc & 1)
399 cpsr |= t_bit;
400 else
401 cpsr &= ~t_bit;
f1973203 402
478fd957
UW
403 /* Remove Thumb bit from PC. */
404 pc = gdbarch_addr_bits_remove (gdbarch, pc);
405
406 /* Save previous register values. */
407 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
408 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
409 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
410
411 /* Save a frame ID. */
412 trad_frame_set_id (this_cache, frame_id_build (sp, func));
413}
414
8e9d1a24
DJ
415static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
417 4,
418 {
419 { ARM_LINUX_SIGRETURN_INSTR, -1 },
420 { TRAMP_SENTINEL_INSN }
421 },
422 arm_linux_sigreturn_init
423};
424
425static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
426 SIGTRAMP_FRAME,
427 4,
428 {
429 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
430 { TRAMP_SENTINEL_INSN }
431 },
432 arm_linux_rt_sigreturn_init
433};
434
435static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
436 SIGTRAMP_FRAME,
437 4,
438 {
439 { ARM_SET_R7_SIGRETURN, -1 },
440 { ARM_EABI_SYSCALL, -1 },
441 { TRAMP_SENTINEL_INSN }
442 },
443 arm_linux_sigreturn_init
444};
445
446static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
447 SIGTRAMP_FRAME,
448 4,
449 {
450 { ARM_SET_R7_RT_SIGRETURN, -1 },
451 { ARM_EABI_SYSCALL, -1 },
452 { TRAMP_SENTINEL_INSN }
453 },
454 arm_linux_rt_sigreturn_init
455};
456
f347ffc9
WN
457static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
458 SIGTRAMP_FRAME,
459 2,
460 {
461 { THUMB2_SET_R7_SIGRETURN1, -1 },
462 { THUMB2_SET_R7_SIGRETURN2, -1 },
463 { THUMB2_EABI_SYSCALL, -1 },
464 { TRAMP_SENTINEL_INSN }
465 },
466 arm_linux_sigreturn_init
467};
468
469static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
470 SIGTRAMP_FRAME,
471 2,
472 {
473 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
474 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
475 { THUMB2_EABI_SYSCALL, -1 },
476 { TRAMP_SENTINEL_INSN }
477 },
478 arm_linux_rt_sigreturn_init
479};
480
f1973203
MR
481static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
482 NORMAL_FRAME,
483 4,
484 {
485 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
486 { ARM_LDR_PC_SP_12, -1 },
487 { TRAMP_SENTINEL_INSN }
488 },
489 arm_linux_restart_syscall_init
490};
491
478fd957
UW
492static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
493 NORMAL_FRAME,
494 4,
495 {
496 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
497 { ARM_LDR_PC_SP_4, -1 },
498 { TRAMP_SENTINEL_INSN }
499 },
500 arm_linux_restart_syscall_init
501};
502
cb587d83
DJ
503/* Core file and register set support. */
504
505#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
506
507void
508arm_linux_supply_gregset (const struct regset *regset,
509 struct regcache *regcache,
510 int regnum, const void *gregs_buf, size_t len)
511{
e17a4113
UW
512 struct gdbarch *gdbarch = get_regcache_arch (regcache);
513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263 514 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
cb587d83
DJ
515 int regno;
516 CORE_ADDR reg_pc;
517 gdb_byte pc_buf[INT_REGISTER_SIZE];
518
519 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
520 if (regnum == -1 || regnum == regno)
521 regcache_raw_supply (regcache, regno,
522 gregs + INT_REGISTER_SIZE * regno);
523
524 if (regnum == ARM_PS_REGNUM || regnum == -1)
525 {
526 if (arm_apcs_32)
527 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 528 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
529 else
530 regcache_raw_supply (regcache, ARM_PS_REGNUM,
531 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
532 }
533
534 if (regnum == ARM_PC_REGNUM || regnum == -1)
535 {
536 reg_pc = extract_unsigned_integer (gregs
537 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
538 INT_REGISTER_SIZE, byte_order);
539 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
540 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
541 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
542 }
543}
544
545void
546arm_linux_collect_gregset (const struct regset *regset,
547 const struct regcache *regcache,
548 int regnum, void *gregs_buf, size_t len)
549{
9a3c8263 550 gdb_byte *gregs = (gdb_byte *) gregs_buf;
cb587d83
DJ
551 int regno;
552
553 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
554 if (regnum == -1 || regnum == regno)
555 regcache_raw_collect (regcache, regno,
556 gregs + INT_REGISTER_SIZE * regno);
557
558 if (regnum == ARM_PS_REGNUM || regnum == -1)
559 {
560 if (arm_apcs_32)
561 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 562 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
563 else
564 regcache_raw_collect (regcache, ARM_PS_REGNUM,
565 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
566 }
567
568 if (regnum == ARM_PC_REGNUM || regnum == -1)
569 regcache_raw_collect (regcache, ARM_PC_REGNUM,
570 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
571}
572
573/* Support for register format used by the NWFPE FPA emulator. */
574
575#define typeNone 0x00
576#define typeSingle 0x01
577#define typeDouble 0x02
578#define typeExtended 0x03
579
580void
581supply_nwfpe_register (struct regcache *regcache, int regno,
582 const gdb_byte *regs)
583{
584 const gdb_byte *reg_data;
585 gdb_byte reg_tag;
586 gdb_byte buf[FP_REGISTER_SIZE];
587
588 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
589 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
590 memset (buf, 0, FP_REGISTER_SIZE);
591
592 switch (reg_tag)
593 {
594 case typeSingle:
595 memcpy (buf, reg_data, 4);
596 break;
597 case typeDouble:
598 memcpy (buf, reg_data + 4, 4);
599 memcpy (buf + 4, reg_data, 4);
600 break;
601 case typeExtended:
602 /* We want sign and exponent, then least significant bits,
603 then most significant. NWFPE does sign, most, least. */
604 memcpy (buf, reg_data, 4);
605 memcpy (buf + 4, reg_data + 8, 4);
606 memcpy (buf + 8, reg_data + 4, 4);
607 break;
608 default:
609 break;
610 }
611
612 regcache_raw_supply (regcache, regno, buf);
613}
614
615void
616collect_nwfpe_register (const struct regcache *regcache, int regno,
617 gdb_byte *regs)
618{
619 gdb_byte *reg_data;
620 gdb_byte reg_tag;
621 gdb_byte buf[FP_REGISTER_SIZE];
622
623 regcache_raw_collect (regcache, regno, buf);
624
625 /* NOTE drow/2006-06-07: This code uses the tag already in the
626 register buffer. I've preserved that when moving the code
627 from the native file to the target file. But this doesn't
628 always make sense. */
629
630 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
631 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
632
633 switch (reg_tag)
634 {
635 case typeSingle:
636 memcpy (reg_data, buf, 4);
637 break;
638 case typeDouble:
639 memcpy (reg_data, buf + 4, 4);
640 memcpy (reg_data + 4, buf, 4);
641 break;
642 case typeExtended:
643 memcpy (reg_data, buf, 4);
644 memcpy (reg_data + 4, buf + 8, 4);
645 memcpy (reg_data + 8, buf + 4, 4);
646 break;
647 default:
648 break;
649 }
650}
651
652void
653arm_linux_supply_nwfpe (const struct regset *regset,
654 struct regcache *regcache,
655 int regnum, const void *regs_buf, size_t len)
656{
9a3c8263 657 const gdb_byte *regs = (const gdb_byte *) regs_buf;
cb587d83
DJ
658 int regno;
659
660 if (regnum == ARM_FPS_REGNUM || regnum == -1)
661 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
662 regs + NWFPE_FPSR_OFFSET);
663
664 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
665 if (regnum == -1 || regnum == regno)
666 supply_nwfpe_register (regcache, regno, regs);
667}
668
669void
670arm_linux_collect_nwfpe (const struct regset *regset,
671 const struct regcache *regcache,
672 int regnum, void *regs_buf, size_t len)
673{
9a3c8263 674 gdb_byte *regs = (gdb_byte *) regs_buf;
cb587d83
DJ
675 int regno;
676
677 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
678 if (regnum == -1 || regnum == regno)
679 collect_nwfpe_register (regcache, regno, regs);
680
681 if (regnum == ARM_FPS_REGNUM || regnum == -1)
682 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
683 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
684}
685
ef7e8358
UW
686/* Support VFP register format. */
687
688#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
689
690static void
691arm_linux_supply_vfp (const struct regset *regset,
692 struct regcache *regcache,
693 int regnum, const void *regs_buf, size_t len)
694{
9a3c8263 695 const gdb_byte *regs = (const gdb_byte *) regs_buf;
ef7e8358
UW
696 int regno;
697
698 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
699 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
700
701 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
702 if (regnum == -1 || regnum == regno)
703 regcache_raw_supply (regcache, regno,
704 regs + (regno - ARM_D0_REGNUM) * 8);
705}
706
707static void
708arm_linux_collect_vfp (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *regs_buf, size_t len)
711{
9a3c8263 712 gdb_byte *regs = (gdb_byte *) regs_buf;
ef7e8358
UW
713 int regno;
714
715 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
716 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
717
718 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
719 if (regnum == -1 || regnum == regno)
720 regcache_raw_collect (regcache, regno,
721 regs + (regno - ARM_D0_REGNUM) * 8);
722}
723
b7611c43
AA
724static const struct regset arm_linux_gregset =
725 {
726 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
727 };
728
729static const struct regset arm_linux_fpregset =
730 {
731 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
732 };
733
734static const struct regset arm_linux_vfpregset =
735 {
736 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
737 };
738
5aa82d05 739/* Iterate over core file register note sections. */
ef7e8358 740
5aa82d05
AA
741static void
742arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
743 iterate_over_regset_sections_cb *cb,
744 void *cb_data,
745 const struct regcache *regcache)
ef7e8358 746{
5aa82d05 747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef7e8358 748
8f0435f7 749 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, &arm_linux_gregset, NULL, cb_data);
5aa82d05 750
330c6ca9 751 if (tdep->vfp_register_count > 0)
8f0435f7
AA
752 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, &arm_linux_vfpregset,
753 "VFP floating-point", cb_data);
5aa82d05 754 else if (tdep->have_fpa_registers)
8f0435f7
AA
755 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, &arm_linux_fpregset,
756 "FPA floating-point", cb_data);
5aa82d05 757}
ef7e8358
UW
758
759/* Determine target description from core file. */
760
761static const struct target_desc *
762arm_linux_core_read_description (struct gdbarch *gdbarch,
763 struct target_ops *target,
764 bfd *abfd)
765{
766 CORE_ADDR arm_hwcap = 0;
767
768 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
769 return NULL;
770
771 if (arm_hwcap & HWCAP_VFP)
772 {
773 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
774 Neon with VFPv3-D32. */
775 if (arm_hwcap & HWCAP_NEON)
776 return tdesc_arm_with_neon;
777 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
778 return tdesc_arm_with_vfpv3;
779 else
780 return tdesc_arm_with_vfpv2;
781 }
782
cb587d83
DJ
783 return NULL;
784}
785
ef7e8358 786
25b41d01 787/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
788 return 1. In addition, set IS_THUMB depending on whether we
789 will return to ARM or Thumb code. Return 0 if it is not a
790 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
791static int
792arm_linux_sigreturn_return_addr (struct frame_info *frame,
793 unsigned long svc_number,
18819fa6 794 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
795{
796 /* Is this a sigreturn or rt_sigreturn syscall? */
797 if (svc_number == 119 || svc_number == 173)
798 {
799 if (get_frame_type (frame) == SIGTRAMP_FRAME)
800 {
18819fa6
UW
801 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
802 CORE_ADDR cpsr
803 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
804
805 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
806 *pc = frame_unwind_caller_pc (frame);
807 return 1;
808 }
809 }
810 return 0;
811}
812
d0e59a68
AT
813/* Calculate the offset from stack pointer of the pc register on the stack
814 in the case of a sigreturn or sigreturn_rt syscall. */
815static int
816arm_linux_sigreturn_next_pc_offset (unsigned long sp,
817 unsigned long sp_data,
818 unsigned long svc_number,
819 int is_sigreturn)
820{
821 /* Offset of R0 register. */
822 int r0_offset = 0;
823 /* Offset of PC register. */
824 int pc_offset = 0;
825
826 if (is_sigreturn)
827 {
828 if (sp_data == ARM_NEW_SIGFRAME_MAGIC)
829 r0_offset = ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0;
830 else
831 r0_offset = ARM_SIGCONTEXT_R0;
832 }
833 else
834 {
835 if (sp_data == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
836 r0_offset = ARM_OLD_RT_SIGFRAME_UCONTEXT;
837 else
838 r0_offset = ARM_NEW_RT_SIGFRAME_UCONTEXT;
839
840 r0_offset += ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0;
841 }
842
843 pc_offset = r0_offset + INT_REGISTER_SIZE * ARM_PC_REGNUM;
844
845 return pc_offset;
846}
847
848/* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
849 based on current processor state. */
850static CORE_ADDR
851arm_linux_sigreturn_next_pc (struct regcache *regcache,
852 unsigned long svc_number)
853{
854 ULONGEST sp;
855 unsigned long sp_data;
856 CORE_ADDR next_pc = 0;
857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
859 int pc_offset = 0;
860 int is_sigreturn = 0;
861
862 gdb_assert (svc_number == ARM_SIGRETURN
863 || svc_number == ARM_RT_SIGRETURN);
864
865 is_sigreturn = (svc_number == ARM_SIGRETURN);
866 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
867 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
868
869 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
870 is_sigreturn);
871
872 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
873
874 return next_pc;
875}
876
9f948660
SDJ
877/* At a ptrace syscall-stop, return the syscall number. This either
878 comes from the SWI instruction (OABI) or from r7 (EABI).
879
880 When the function fails, it should return -1. */
881
882static LONGEST
883arm_linux_get_syscall_number (struct gdbarch *gdbarch,
884 ptid_t ptid)
885{
886 struct regcache *regs = get_thread_regcache (ptid);
887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
888
889 ULONGEST pc;
890 ULONGEST cpsr;
891 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
892 int is_thumb;
893 ULONGEST svc_number = -1;
894
895 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
896 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
897 is_thumb = (cpsr & t_bit) != 0;
898
899 if (is_thumb)
900 {
901 regcache_cooked_read_unsigned (regs, 7, &svc_number);
902 }
903 else
904 {
905 enum bfd_endian byte_order_for_code =
906 gdbarch_byte_order_for_code (gdbarch);
907
908 /* PC gets incremented before the syscall-stop, so read the
909 previous instruction. */
910 unsigned long this_instr =
911 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
912
913 unsigned long svc_operand = (0x00ffffff & this_instr);
914
915 if (svc_operand)
916 {
917 /* OABI */
918 svc_number = svc_operand - 0x900000;
919 }
920 else
921 {
922 /* EABI */
923 regcache_cooked_read_unsigned (regs, 7, &svc_number);
924 }
925 }
926
927 return svc_number;
928}
929
d0e59a68
AT
930/* When the processor is at a syscall instruction, return the PC of the
931 next instruction to be executed. */
25b41d01
YQ
932
933static CORE_ADDR
d0e59a68 934arm_linux_syscall_next_pc (struct regcache *regcache)
25b41d01 935{
d0e59a68
AT
936 CORE_ADDR pc = regcache_read_pc (regcache);
937 CORE_ADDR next_pc = 0;
938 int is_thumb = arm_is_thumb (regcache);
25b41d01 939 ULONGEST svc_number = 0;
d0e59a68 940 struct gdbarch *gdbarch = get_regcache_arch (regcache);
25b41d01
YQ
941
942 if (is_thumb)
943 {
d0e59a68
AT
944 svc_number = regcache_raw_get_unsigned (regcache, 7);
945 next_pc = pc + 2;
25b41d01
YQ
946 }
947 else
948 {
d0e59a68 949 struct gdbarch *gdbarch = get_regcache_arch (regcache);
25b41d01
YQ
950 enum bfd_endian byte_order_for_code =
951 gdbarch_byte_order_for_code (gdbarch);
952 unsigned long this_instr =
953 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
954
955 unsigned long svc_operand = (0x00ffffff & this_instr);
956 if (svc_operand) /* OABI. */
957 {
958 svc_number = svc_operand - 0x900000;
959 }
960 else /* EABI. */
961 {
d0e59a68 962 svc_number = regcache_raw_get_unsigned (regcache, 7);
25b41d01 963 }
18819fa6 964
d0e59a68 965 next_pc = pc + 4;
25b41d01
YQ
966 }
967
d0e59a68
AT
968 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
969 next_pc = arm_linux_sigreturn_next_pc (regcache, svc_number);
25b41d01 970
18819fa6 971 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 972 if (is_thumb)
d0e59a68 973 next_pc = MAKE_THUMB_ADDR (next_pc);
25b41d01 974
d0e59a68 975 return next_pc;
25b41d01
YQ
976}
977
978
daddc3c1
DJ
979/* Insert a single step breakpoint at the next executed instruction. */
980
63807e1d 981static int
daddc3c1
DJ
982arm_linux_software_single_step (struct frame_info *frame)
983{
d0e59a68
AT
984 struct regcache *regcache = get_current_regcache ();
985 struct gdbarch *gdbarch = get_regcache_arch (regcache);
986 struct address_space *aspace = get_regcache_aspace (regcache);
987
35f73cfc
UW
988 CORE_ADDR next_pc;
989
d0e59a68 990 if (arm_deal_with_atomic_sequence (regcache))
35f73cfc
UW
991 return 1;
992
750ce8d1
YQ
993 /* If the target does have hardware single step, GDB doesn't have
994 to bother software single step. */
995 if (target_can_do_single_step () == 1)
996 return 0;
997
d0e59a68 998 next_pc = arm_get_next_pc (regcache, regcache_read_pc (regcache));
daddc3c1
DJ
999
1000 /* The Linux kernel offers some user-mode helpers in a high page. We can
1001 not read this page (as of 2.6.23), and even if we could then we couldn't
1002 set breakpoints in it, and even if we could then the atomic operations
1003 would fail when interrupted. They are all called as functions and return
1004 to the address in LR, so step to there instead. */
1005 if (next_pc > 0xffff0000)
1006 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
1007
18819fa6 1008 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
1009
1010 return 1;
1011}
1012
cca44b1b
JB
1013/* Support for displaced stepping of Linux SVC instructions. */
1014
1015static void
6e39997a 1016arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
1017 struct regcache *regs,
1018 struct displaced_step_closure *dsc)
1019{
cca44b1b
JB
1020 ULONGEST apparent_pc;
1021 int within_scratch;
1022
1023 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
1024
1025 within_scratch = (apparent_pc >= dsc->scratch_base
1026 && apparent_pc < (dsc->scratch_base
1027 + DISPLACED_MODIFIED_INSNS * 4 + 4));
1028
1029 if (debug_displaced)
1030 {
1031 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
1032 "SVC step ", (unsigned long) apparent_pc);
1033 if (within_scratch)
1034 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
1035 else
1036 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
1037 }
1038
1039 if (within_scratch)
41f071ef
YQ
1040 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
1041 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
cca44b1b
JB
1042}
1043
1044static int
bd18283a
YQ
1045arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
1046 struct displaced_step_closure *dsc)
cca44b1b 1047{
25b41d01
YQ
1048 CORE_ADDR return_to = 0;
1049
cca44b1b 1050 struct frame_info *frame;
36073a92 1051 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 1052 int is_sigreturn = 0;
18819fa6 1053 int is_thumb;
cca44b1b 1054
cca44b1b
JB
1055 frame = get_current_frame ();
1056
25b41d01 1057 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 1058 &return_to, &is_thumb);
25b41d01 1059 if (is_sigreturn)
cca44b1b 1060 {
2bb2dcab
YQ
1061 struct symtab_and_line sal;
1062
1063 if (debug_displaced)
1064 fprintf_unfiltered (gdb_stdlog, "displaced: found "
1065 "sigreturn/rt_sigreturn SVC call. PC in "
1066 "frame = %lx\n",
1067 (unsigned long) get_frame_pc (frame));
1068
1069 if (debug_displaced)
1070 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1071 "Setting momentary breakpoint.\n",
1072 (unsigned long) return_to);
1073
1074 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1075 == NULL);
1076
1077 sal = find_pc_line (return_to, 0);
1078 sal.pc = return_to;
1079 sal.section = find_pc_overlay (return_to);
1080 sal.explicit_pc = 1;
1081
1082 frame = get_prev_frame (frame);
1083
1084 if (frame)
1085 {
1086 inferior_thread ()->control.step_resume_breakpoint
1087 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1088 bp_step_resume);
1089
1090 /* set_momentary_breakpoint invalidates FRAME. */
1091 frame = NULL;
1092
1093 /* We need to make sure we actually insert the momentary
1094 breakpoint set above. */
1095 insert_breakpoints ();
cca44b1b
JB
1096 }
1097 else if (debug_displaced)
2bb2dcab
YQ
1098 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1099 "frame to set momentary breakpoint for "
1100 "sigreturn/rt_sigreturn\n");
1101 }
1102 else if (debug_displaced)
6bbbba9b 1103 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
cca44b1b
JB
1104
1105 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1106 location, else nothing.
1107 Insn: unmodified svc.
41f071ef 1108 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
cca44b1b
JB
1109 else leave pc alone. */
1110
cca44b1b
JB
1111
1112 dsc->cleanup = &arm_linux_cleanup_svc;
1113 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1114 instruction. */
1115 dsc->wrote_to_pc = 1;
1116
1117 return 0;
1118}
1119
1120
1121/* The following two functions implement single-stepping over calls to Linux
1122 kernel helper routines, which perform e.g. atomic operations on architecture
1123 variants which don't support them natively.
1124
1125 When this function is called, the PC will be pointing at the kernel helper
1126 (at an address inaccessible to GDB), and r14 will point to the return
1127 address. Displaced stepping always executes code in the copy area:
1128 so, make the copy-area instruction branch back to the kernel helper (the
1129 "from" address), and make r14 point to the breakpoint in the copy area. In
1130 that way, we regain control once the kernel helper returns, and can clean
1131 up appropriately (as if we had just returned from the kernel helper as it
1132 would have been called from the non-displaced location). */
1133
1134static void
6e39997a 1135cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
1136 struct regcache *regs,
1137 struct displaced_step_closure *dsc)
1138{
1139 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1140 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1141}
1142
1143static void
1144arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1145 CORE_ADDR to, struct regcache *regs,
1146 struct displaced_step_closure *dsc)
1147{
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1149
1150 dsc->numinsns = 1;
1151 dsc->insn_addr = from;
1152 dsc->cleanup = &cleanup_kernel_helper_return;
1153 /* Say we wrote to the PC, else cleanup will set PC to the next
1154 instruction in the helper, which isn't helpful. */
1155 dsc->wrote_to_pc = 1;
1156
1157 /* Preparation: tmp[0] <- r14
1158 r14 <- <scratch space>+4
1159 *(<scratch space>+8) <- from
1160 Insn: ldr pc, [r14, #4]
1161 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1162
36073a92 1163 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1164 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1165 CANNOT_WRITE_PC);
1166 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1167
1168 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1169}
1170
1171/* Linux-specific displaced step instruction copying function. Detects when
1172 the program has stepped into a Linux kernel helper routine (which must be
1173 handled as a special case), falling back to arm_displaced_step_copy_insn()
1174 if it hasn't. */
1175
1176static struct displaced_step_closure *
1177arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1178 CORE_ADDR from, CORE_ADDR to,
1179 struct regcache *regs)
1180{
8d749320 1181 struct displaced_step_closure *dsc = XNEW (struct displaced_step_closure);
cca44b1b
JB
1182
1183 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1184 stop at the return location. */
1185 if (from > 0xffff0000)
1186 {
1187 if (debug_displaced)
1188 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1189 "at %.8lx\n", (unsigned long) from);
1190
1191 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1192 }
1193 else
1194 {
cca44b1b
JB
1195 /* Override the default handling of SVC instructions. */
1196 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1197
b434a28f 1198 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1199 }
1200
1201 arm_displaced_init_closure (gdbarch, from, to, dsc);
1202
1203 return dsc;
1204}
1205
c248fc1d
SDJ
1206/* Implementation of `gdbarch_stap_is_single_operand', as defined in
1207 gdbarch.h. */
1208
55aa24fb
SDJ
1209static int
1210arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1211{
8d85bacb 1212 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
55aa24fb
SDJ
1213 || *s == '[' /* Register indirection or
1214 displacement. */
1215 || isalpha (*s)); /* Register value. */
1216}
1217
1218/* This routine is used to parse a special token in ARM's assembly.
1219
1220 The special tokens parsed by it are:
1221
1222 - Register displacement (e.g, [fp, #-8])
1223
1224 It returns one if the special token has been parsed successfully,
1225 or zero if the current token is not considered special. */
1226
1227static int
1228arm_stap_parse_special_token (struct gdbarch *gdbarch,
1229 struct stap_parse_info *p)
1230{
1231 if (*p->arg == '[')
1232 {
1233 /* Temporary holder for lookahead. */
1234 const char *tmp = p->arg;
a0bcdaa7 1235 char *endp;
55aa24fb
SDJ
1236 /* Used to save the register name. */
1237 const char *start;
1238 char *regname;
1239 int len, offset;
1240 int got_minus = 0;
1241 long displacement;
1242 struct stoken str;
1243
1244 ++tmp;
1245 start = tmp;
1246
1247 /* Register name. */
1248 while (isalnum (*tmp))
1249 ++tmp;
1250
1251 if (*tmp != ',')
1252 return 0;
1253
1254 len = tmp - start;
224c3ddb 1255 regname = (char *) alloca (len + 2);
55aa24fb
SDJ
1256
1257 offset = 0;
1258 if (isdigit (*start))
1259 {
1260 /* If we are dealing with a register whose name begins with a
1261 digit, it means we should prefix the name with the letter
1262 `r', because GDB expects this name pattern. Otherwise (e.g.,
1263 we are dealing with the register `fp'), we don't need to
1264 add such a prefix. */
1265 regname[0] = 'r';
1266 offset = 1;
1267 }
1268
1269 strncpy (regname + offset, start, len);
1270 len += offset;
1271 regname[len] = '\0';
1272
1273 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1274 error (_("Invalid register name `%s' on expression `%s'."),
1275 regname, p->saved_arg);
1276
1277 ++tmp;
1278 tmp = skip_spaces_const (tmp);
8d85bacb
SDJ
1279 if (*tmp == '#' || *tmp == '$')
1280 ++tmp;
55aa24fb
SDJ
1281
1282 if (*tmp == '-')
1283 {
1284 ++tmp;
1285 got_minus = 1;
1286 }
1287
a0bcdaa7
PA
1288 displacement = strtol (tmp, &endp, 10);
1289 tmp = endp;
55aa24fb
SDJ
1290
1291 /* Skipping last `]'. */
1292 if (*tmp++ != ']')
1293 return 0;
1294
1295 /* The displacement. */
410a0ff2
SDJ
1296 write_exp_elt_opcode (&p->pstate, OP_LONG);
1297 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1298 write_exp_elt_longcst (&p->pstate, displacement);
1299 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 1300 if (got_minus)
410a0ff2 1301 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
1302
1303 /* The register name. */
410a0ff2 1304 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
1305 str.ptr = regname;
1306 str.length = len;
410a0ff2
SDJ
1307 write_exp_string (&p->pstate, str);
1308 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb 1309
410a0ff2 1310 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
1311
1312 /* Casting to the expected type. */
410a0ff2
SDJ
1313 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1314 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1315 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 1316
410a0ff2 1317 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
1318
1319 p->arg = tmp;
1320 }
1321 else
1322 return 0;
1323
1324 return 1;
1325}
1326
97dfe206
OJ
1327/* ARM process record-replay constructs: syscall, signal etc. */
1328
1329struct linux_record_tdep arm_linux_record_tdep;
1330
1331/* arm_canonicalize_syscall maps from the native arm Linux set
1332 of syscall ids into a canonical set of syscall ids used by
1333 process record. */
1334
1335static enum gdb_syscall
1336arm_canonicalize_syscall (int syscall)
1337{
1338 enum { sys_process_vm_writev = 377 };
1339
1340 if (syscall <= gdb_sys_sched_getaffinity)
f9fa37b3 1341 return (enum gdb_syscall) syscall;
97dfe206 1342 else if (syscall >= 243 && syscall <= 247)
f9fa37b3 1343 return (enum gdb_syscall) (syscall + 2);
97dfe206 1344 else if (syscall >= 248 && syscall <= 253)
f9fa37b3 1345 return (enum gdb_syscall) (syscall + 4);
97dfe206 1346
f486487f 1347 return gdb_sys_no_syscall;
97dfe206
OJ
1348}
1349
1350/* Record all registers but PC register for process-record. */
1351
1352static int
1353arm_all_but_pc_registers_record (struct regcache *regcache)
1354{
1355 int i;
1356
1357 for (i = 0; i < ARM_PC_REGNUM; i++)
1358 {
1359 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1360 return -1;
1361 }
1362
1363 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1364 return -1;
1365
1366 return 0;
1367}
1368
1369/* Handler for arm system call instruction recording. */
1370
1371static int
1372arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1373{
1374 int ret = 0;
1375 enum gdb_syscall syscall_gdb;
1376
1377 syscall_gdb = arm_canonicalize_syscall (svc_number);
1378
f486487f 1379 if (syscall_gdb == gdb_sys_no_syscall)
97dfe206
OJ
1380 {
1381 printf_unfiltered (_("Process record and replay target doesn't "
1382 "support syscall number %s\n"),
1383 plongest (svc_number));
1384 return -1;
1385 }
1386
1387 if (syscall_gdb == gdb_sys_sigreturn
1388 || syscall_gdb == gdb_sys_rt_sigreturn)
1389 {
1390 if (arm_all_but_pc_registers_record (regcache))
1391 return -1;
1392 return 0;
1393 }
1394
1395 ret = record_linux_system_call (syscall_gdb, regcache,
1396 &arm_linux_record_tdep);
1397 if (ret != 0)
1398 return ret;
1399
1400 /* Record the return value of the system call. */
1401 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1402 return -1;
1403 /* Record LR. */
1404 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1405 return -1;
1406 /* Record CPSR. */
1407 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1408 return -1;
1409
1410 return 0;
1411}
1412
3343ef86
YQ
1413/* Implement the skip_trampoline_code gdbarch method. */
1414
1415static CORE_ADDR
1416arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1417{
1418 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1419
1420 if (target_pc != 0)
1421 return target_pc;
1422
1423 return find_solib_trampoline_target (frame, pc);
1424}
1425
97e03143
RE
1426static void
1427arm_linux_init_abi (struct gdbarch_info info,
1428 struct gdbarch *gdbarch)
1429{
8d85bacb 1430 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
05c0465e
SDJ
1431 static const char *const stap_register_prefixes[] = { "r", NULL };
1432 static const char *const stap_register_indirection_prefixes[] = { "[",
1433 NULL };
1434 static const char *const stap_register_indirection_suffixes[] = { "]",
1435 NULL };
97e03143
RE
1436 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1437
a5ee0f0c
PA
1438 linux_init_abi (info, gdbarch);
1439
97e03143 1440 tdep->lowest_pc = 0x8000;
dcd4a3a4 1441 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
498b1f87 1442 {
c75a2cc8
DJ
1443 if (tdep->arm_abi == ARM_ABI_AAPCS)
1444 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1445 else
1446 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1447 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1448 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1449 }
2ef47cd0 1450 else
498b1f87 1451 {
c75a2cc8
DJ
1452 if (tdep->arm_abi == ARM_ABI_AAPCS)
1453 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1454 else
1455 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1456 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1457 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1458 }
66e810cd 1459 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1460 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1461 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1462
28e97307
DJ
1463 if (tdep->fp_model == ARM_FLOAT_AUTO)
1464 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1465
f8624c62
MGD
1466 switch (tdep->fp_model)
1467 {
1468 case ARM_FLOAT_FPA:
1469 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1470 break;
1471 case ARM_FLOAT_SOFT_FPA:
1472 case ARM_FLOAT_SOFT_VFP:
1473 case ARM_FLOAT_VFP:
1474 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1475 break;
1476 default:
1477 internal_error
1478 (__FILE__, __LINE__,
1479 _("arm_linux_init_abi: Floating point model not supported"));
1480 break;
1481 }
a6cdd8c5 1482 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1483
7aa1783e 1484 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1485 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1486
190dce09 1487 /* Single stepping. */
daddc3c1 1488 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1489
0e18d038 1490 /* Shared library handling. */
3343ef86 1491 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
bb41a796 1492 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1493
1494 /* Enable TLS support. */
1495 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1496 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1497
1498 tramp_frame_prepend_unwinder (gdbarch,
1499 &arm_linux_sigreturn_tramp_frame);
1500 tramp_frame_prepend_unwinder (gdbarch,
1501 &arm_linux_rt_sigreturn_tramp_frame);
1502 tramp_frame_prepend_unwinder (gdbarch,
1503 &arm_eabi_linux_sigreturn_tramp_frame);
1504 tramp_frame_prepend_unwinder (gdbarch,
1505 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f347ffc9
WN
1506 tramp_frame_prepend_unwinder (gdbarch,
1507 &thumb2_eabi_linux_sigreturn_tramp_frame);
1508 tramp_frame_prepend_unwinder (gdbarch,
1509 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1510 tramp_frame_prepend_unwinder (gdbarch,
1511 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1512 tramp_frame_prepend_unwinder (gdbarch,
1513 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1514
1515 /* Core file support. */
5aa82d05
AA
1516 set_gdbarch_iterate_over_regset_sections
1517 (gdbarch, arm_linux_iterate_over_regset_sections);
ef7e8358
UW
1518 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1519
cca44b1b
JB
1520 /* Displaced stepping. */
1521 set_gdbarch_displaced_step_copy_insn (gdbarch,
1522 arm_linux_displaced_step_copy_insn);
1523 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1524 set_gdbarch_displaced_step_free_closure (gdbarch,
1525 simple_displaced_step_free_closure);
906d60cf 1526 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
25b41d01 1527
72508ac0
PO
1528 /* Reversible debugging, process record. */
1529 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1530
55aa24fb 1531 /* SystemTap functions. */
05c0465e
SDJ
1532 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1533 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1534 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1535 stap_register_indirection_prefixes);
1536 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1537 stap_register_indirection_suffixes);
55aa24fb
SDJ
1538 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1539 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1540 set_gdbarch_stap_parse_special_token (gdbarch,
1541 arm_stap_parse_special_token);
1542
25b41d01 1543 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
72508ac0 1544
9f948660 1545 /* `catch syscall' */
458c8db8 1546 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
9f948660
SDJ
1547 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1548
72508ac0 1549 /* Syscall record. */
97dfe206
OJ
1550 tdep->arm_syscall_record = arm_linux_syscall_record;
1551
1552 /* Initialize the arm_linux_record_tdep. */
1553 /* These values are the size of the type that will be used in a system
1554 call. They are obtained from Linux Kernel source. */
1555 arm_linux_record_tdep.size_pointer
1556 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1557 arm_linux_record_tdep.size__old_kernel_stat = 32;
1558 arm_linux_record_tdep.size_tms = 16;
1559 arm_linux_record_tdep.size_loff_t = 8;
1560 arm_linux_record_tdep.size_flock = 16;
1561 arm_linux_record_tdep.size_oldold_utsname = 45;
1562 arm_linux_record_tdep.size_ustat = 20;
7571f7f2
MK
1563 arm_linux_record_tdep.size_old_sigaction = 16;
1564 arm_linux_record_tdep.size_old_sigset_t = 4;
97dfe206
OJ
1565 arm_linux_record_tdep.size_rlimit = 8;
1566 arm_linux_record_tdep.size_rusage = 72;
1567 arm_linux_record_tdep.size_timeval = 8;
1568 arm_linux_record_tdep.size_timezone = 8;
1569 arm_linux_record_tdep.size_old_gid_t = 2;
1570 arm_linux_record_tdep.size_old_uid_t = 2;
1571 arm_linux_record_tdep.size_fd_set = 128;
72aded86 1572 arm_linux_record_tdep.size_old_dirent = 268;
97dfe206
OJ
1573 arm_linux_record_tdep.size_statfs = 64;
1574 arm_linux_record_tdep.size_statfs64 = 84;
1575 arm_linux_record_tdep.size_sockaddr = 16;
1576 arm_linux_record_tdep.size_int
1577 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1578 arm_linux_record_tdep.size_long
1579 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1580 arm_linux_record_tdep.size_ulong
1581 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1582 arm_linux_record_tdep.size_msghdr = 28;
1583 arm_linux_record_tdep.size_itimerval = 16;
1584 arm_linux_record_tdep.size_stat = 88;
1585 arm_linux_record_tdep.size_old_utsname = 325;
1586 arm_linux_record_tdep.size_sysinfo = 64;
1587 arm_linux_record_tdep.size_msqid_ds = 88;
1588 arm_linux_record_tdep.size_shmid_ds = 84;
1589 arm_linux_record_tdep.size_new_utsname = 390;
1590 arm_linux_record_tdep.size_timex = 128;
1591 arm_linux_record_tdep.size_mem_dqinfo = 24;
1592 arm_linux_record_tdep.size_if_dqblk = 68;
1593 arm_linux_record_tdep.size_fs_quota_stat = 68;
1594 arm_linux_record_tdep.size_timespec = 8;
1595 arm_linux_record_tdep.size_pollfd = 8;
1596 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1597 arm_linux_record_tdep.size_knfsd_fh = 132;
1598 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
7571f7f2 1599 arm_linux_record_tdep.size_sigaction = 20;
97dfe206
OJ
1600 arm_linux_record_tdep.size_sigset_t = 8;
1601 arm_linux_record_tdep.size_siginfo_t = 128;
1602 arm_linux_record_tdep.size_cap_user_data_t = 12;
1603 arm_linux_record_tdep.size_stack_t = 12;
1604 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1605 arm_linux_record_tdep.size_stat64 = 96;
d625f9a9
MK
1606 arm_linux_record_tdep.size_gid_t = 4;
1607 arm_linux_record_tdep.size_uid_t = 4;
97dfe206
OJ
1608 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1609 arm_linux_record_tdep.size_flock64 = 24;
1610 arm_linux_record_tdep.size_user_desc = 16;
1611 arm_linux_record_tdep.size_io_event = 32;
1612 arm_linux_record_tdep.size_iocb = 64;
1613 arm_linux_record_tdep.size_epoll_event = 12;
1614 arm_linux_record_tdep.size_itimerspec
1615 = arm_linux_record_tdep.size_timespec * 2;
1616 arm_linux_record_tdep.size_mq_attr = 32;
97dfe206
OJ
1617 arm_linux_record_tdep.size_termios = 36;
1618 arm_linux_record_tdep.size_termios2 = 44;
1619 arm_linux_record_tdep.size_pid_t = 4;
1620 arm_linux_record_tdep.size_winsize = 8;
1621 arm_linux_record_tdep.size_serial_struct = 60;
1622 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1623 arm_linux_record_tdep.size_hayes_esp_config = 12;
1624 arm_linux_record_tdep.size_size_t = 4;
1625 arm_linux_record_tdep.size_iovec = 8;
b80d067f 1626 arm_linux_record_tdep.size_time_t = 4;
97dfe206
OJ
1627
1628 /* These values are the second argument of system call "sys_ioctl".
1629 They are obtained from Linux Kernel source. */
1630 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1631 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1632 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1633 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1634 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1635 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1636 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1637 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1638 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1639 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1640 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1641 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1642 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1643 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1644 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1645 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1646 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1647 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1648 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1649 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1650 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1651 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1652 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1653 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1654 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1655 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1656 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1657 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1658 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1659 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1660 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1661 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1662 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1663 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1664 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1665 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1666 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1667 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1668 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1669 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1670 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1671 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1672 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1673 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1674 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1675 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1676 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1677 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1678 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1679 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1680 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1681 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1682 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1683 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1684 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1685 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1686 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1687 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1688 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1689 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1690 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1691 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1692 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1693 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1694 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1695
1696 /* These values are the second argument of system call "sys_fcntl"
1697 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1698 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1699 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1700 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1701 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1702
1703 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1704 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1705 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1706 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
97e03143
RE
1707}
1708
63807e1d
PA
1709/* Provide a prototype to silence -Wmissing-prototypes. */
1710extern initialize_file_ftype _initialize_arm_linux_tdep;
1711
faf5f7ad
SB
1712void
1713_initialize_arm_linux_tdep (void)
1714{
05816f70
MK
1715 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1716 arm_linux_init_abi);
faf5f7ad 1717}
This page took 1.013863 seconds and 4 git commands to generate.