Error in build_executable_own_libs for non-native target
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
9f948660 36#include "xml-syscall.h"
faf5f7ad 37
34e8f22d 38#include "arm-tdep.h"
cb587d83 39#include "arm-linux-tdep.h"
4aa995e1 40#include "linux-tdep.h"
0670c0aa 41#include "glibc-tdep.h"
cca44b1b
JB
42#include "arch-utils.h"
43#include "inferior.h"
45741a9c 44#include "infrun.h"
cca44b1b
JB
45#include "gdbthread.h"
46#include "symfile.h"
a52e6aac 47
97dfe206
OJ
48#include "record-full.h"
49#include "linux-record.h"
50
55aa24fb
SDJ
51#include "cli/cli-utils.h"
52#include "stap-probe.h"
53#include "parser-defs.h"
54#include "user-regs.h"
55#include <ctype.h>
04a83fee 56#include "elf/common.h"
cb587d83
DJ
57extern int arm_apcs_32;
58
fdf39c9a
RE
59/* Under ARM GNU/Linux the traditional way of performing a breakpoint
60 is to execute a particular software interrupt, rather than use a
61 particular undefined instruction to provoke a trap. Upon exection
62 of the software interrupt the kernel stops the inferior with a
498b1f87 63 SIGTRAP, and wakes the debugger. */
66e810cd 64
948f8e3d 65static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 66
948f8e3d 67static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 68
c75a2cc8
DJ
69/* However, the EABI syscall interface (new in Nov. 2005) does not look at
70 the operand of the swi if old-ABI compatibility is disabled. Therefore,
71 use an undefined instruction instead. This is supported as of kernel
72 version 2.5.70 (May 2003), so should be a safe assumption for EABI
73 binaries. */
74
948f8e3d 75static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 76
948f8e3d 77static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
78
79/* All the kernels which support Thumb support using a specific undefined
80 instruction for the Thumb breakpoint. */
81
948f8e3d 82static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 83
948f8e3d 84static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 85
177321bd
DJ
86/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
87 we must use a length-appropriate breakpoint for 32-bit Thumb
88 instructions. See also thumb_get_next_pc. */
89
948f8e3d 90static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 91
948f8e3d 92static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 93
f8624c62
MGD
94/* Description of the longjmp buffer. The buffer is treated as an array of
95 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
96
97 The location of saved registers in this buffer (in particular the PC
98 to use after longjmp is called) varies depending on the ABI (in
99 particular the FP model) and also (possibly) the C Library.
100
101 For glibc, eglibc, and uclibc the following holds: If the FP model is
102 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
103 buffer. This is also true for the SoftFPA model. However, for the FPA
104 model the PC is at offset 21 in the buffer. */
7a5ea0d4 105#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
106#define ARM_LINUX_JB_PC_FPA 21
107#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 108
f38e884d 109/*
fdf39c9a
RE
110 Dynamic Linking on ARM GNU/Linux
111 --------------------------------
f38e884d
SB
112
113 Note: PLT = procedure linkage table
114 GOT = global offset table
115
116 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 117 jump/call addresses until the last minute. The technique used is
f38e884d
SB
118 inspired by the i386 ELF design, and is based on the following
119 constraints.
120
121 1) The calling technique should not force a change in the assembly
122 code produced for apps; it MAY cause changes in the way assembly
123 code is produced for position independent code (i.e. shared
124 libraries).
125
126 2) The technique must be such that all executable areas must not be
127 modified; and any modified areas must not be executed.
128
129 To do this, there are three steps involved in a typical jump:
130
131 1) in the code
132 2) through the PLT
133 3) using a pointer from the GOT
134
135 When the executable or library is first loaded, each GOT entry is
136 initialized to point to the code which implements dynamic name
137 resolution and code finding. This is normally a function in the
fdf39c9a
RE
138 program interpreter (on ARM GNU/Linux this is usually
139 ld-linux.so.2, but it does not have to be). On the first
140 invocation, the function is located and the GOT entry is replaced
141 with the real function address. Subsequent calls go through steps
142 1, 2 and 3 and end up calling the real code.
f38e884d
SB
143
144 1) In the code:
145
146 b function_call
147 bl function_call
148
149 This is typical ARM code using the 26 bit relative branch or branch
150 and link instructions. The target of the instruction
151 (function_call is usually the address of the function to be called.
152 In position independent code, the target of the instruction is
153 actually an entry in the PLT when calling functions in a shared
154 library. Note that this call is identical to a normal function
155 call, only the target differs.
156
157 2) In the PLT:
158
0963b4bd
MS
159 The PLT is a synthetic area, created by the linker. It exists in
160 both executables and libraries. It is an array of stubs, one per
161 imported function call. It looks like this:
f38e884d
SB
162
163 PLT[0]:
164 str lr, [sp, #-4]! @push the return address (lr)
165 ldr lr, [pc, #16] @load from 6 words ahead
166 add lr, pc, lr @form an address for GOT[0]
167 ldr pc, [lr, #8]! @jump to the contents of that addr
168
169 The return address (lr) is pushed on the stack and used for
170 calculations. The load on the second line loads the lr with
171 &GOT[3] - . - 20. The addition on the third leaves:
172
173 lr = (&GOT[3] - . - 20) + (. + 8)
174 lr = (&GOT[3] - 12)
175 lr = &GOT[0]
176
177 On the fourth line, the pc and lr are both updated, so that:
178
179 pc = GOT[2]
180 lr = &GOT[0] + 8
181 = &GOT[2]
182
0963b4bd 183 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
184 "tight", but allows us to keep all the PLT entries the same size.
185
186 PLT[n+1]:
187 ldr ip, [pc, #4] @load offset from gotoff
188 add ip, pc, ip @add the offset to the pc
189 ldr pc, [ip] @jump to that address
190 gotoff: .word GOT[n+3] - .
191
192 The load on the first line, gets an offset from the fourth word of
193 the PLT entry. The add on the second line makes ip = &GOT[n+3],
194 which contains either a pointer to PLT[0] (the fixup trampoline) or
195 a pointer to the actual code.
196
197 3) In the GOT:
198
199 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 200 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 201 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
202 the PLT fixups. The next D (all remaining) entries belong to
203 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 204
0963b4bd 205 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
206 in both executables and libraries. When the GOT is first
207 initialized , all the GOT entries relating to PLT fixups are
208 pointing to code back at PLT[0].
209
210 The special entries in the GOT are:
211
212 GOT[0] = linked list pointer used by the dynamic loader
213 GOT[1] = pointer to the reloc table for this module
214 GOT[2] = pointer to the fixup/resolver code
215
216 The first invocation of function call comes through and uses the
217 fixup/resolver code. On the entry to the fixup/resolver code:
218
219 ip = &GOT[n+3]
220 lr = &GOT[2]
221 stack[0] = return address (lr) of the function call
222 [r0, r1, r2, r3] are still the arguments to the function call
223
224 This is enough information for the fixup/resolver code to work
225 with. Before the fixup/resolver code returns, it actually calls
226 the requested function and repairs &GOT[n+3]. */
227
2a451106
KB
228/* The constants below were determined by examining the following files
229 in the linux kernel sources:
230
231 arch/arm/kernel/signal.c
232 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
233 include/asm-arm/unistd.h
234 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
235
236#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
237#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
238
edfb1a26
DJ
239/* For ARM EABI, the syscall number is not in the SWI instruction
240 (instead it is loaded into r7). We recognize the pattern that
241 glibc uses... alternatively, we could arrange to do this by
242 function name, but they are not always exported. */
8e9d1a24
DJ
243#define ARM_SET_R7_SIGRETURN 0xe3a07077
244#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
245#define ARM_EABI_SYSCALL 0xef000000
2a451106 246
f347ffc9
WN
247/* Equivalent patterns for Thumb2. */
248#define THUMB2_SET_R7_SIGRETURN1 0xf04f
249#define THUMB2_SET_R7_SIGRETURN2 0x0777
250#define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
251#define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
252#define THUMB2_EABI_SYSCALL 0xdf00
253
f1973203
MR
254/* OABI syscall restart trampoline, used for EABI executables too
255 whenever OABI support has been enabled in the kernel. */
256#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
257#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 258#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 259
8e9d1a24 260static void
a262aec2 261arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
262 struct trad_frame_cache *this_cache,
263 CORE_ADDR func, int regs_offset)
2a451106 264{
a262aec2 265 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
266 CORE_ADDR base = sp + regs_offset;
267 int i;
2a451106 268
8e9d1a24
DJ
269 for (i = 0; i < 16; i++)
270 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 271
8e9d1a24 272 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 273
8e9d1a24
DJ
274 /* The VFP or iWMMXt registers may be saved on the stack, but there's
275 no reliable way to restore them (yet). */
2a451106 276
8e9d1a24
DJ
277 /* Save a frame ID. */
278 trad_frame_set_id (this_cache, frame_id_build (sp, func));
279}
2a451106 280
edfb1a26
DJ
281/* There are a couple of different possible stack layouts that
282 we need to support.
283
284 Before version 2.6.18, the kernel used completely independent
285 layouts for non-RT and RT signals. For non-RT signals the stack
286 began directly with a struct sigcontext. For RT signals the stack
287 began with two redundant pointers (to the siginfo and ucontext),
288 and then the siginfo and ucontext.
289
290 As of version 2.6.18, the non-RT signal frame layout starts with
291 a ucontext and the RT signal frame starts with a siginfo and then
292 a ucontext. Also, the ucontext now has a designated save area
293 for coprocessor registers.
294
295 For RT signals, it's easy to tell the difference: we look for
296 pinfo, the pointer to the siginfo. If it has the expected
297 value, we have an old layout. If it doesn't, we have the new
298 layout.
299
300 For non-RT signals, it's a bit harder. We need something in one
301 layout or the other with a recognizable offset and value. We can't
302 use the return trampoline, because ARM usually uses SA_RESTORER,
303 in which case the stack return trampoline is not filled in.
304 We can't use the saved stack pointer, because sigaltstack might
305 be in use. So for now we guess the new layout... */
306
307/* There are three words (trap_no, error_code, oldmask) in
308 struct sigcontext before r0. */
309#define ARM_SIGCONTEXT_R0 0xc
310
311/* There are five words (uc_flags, uc_link, and three for uc_stack)
312 in the ucontext_t before the sigcontext. */
313#define ARM_UCONTEXT_SIGCONTEXT 0x14
314
315/* There are three elements in an rt_sigframe before the ucontext:
316 pinfo, puc, and info. The first two are pointers and the third
317 is a struct siginfo, with size 128 bytes. We could follow puc
318 to the ucontext, but it's simpler to skip the whole thing. */
319#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
320#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
321
322#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
323
324#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
325
8e9d1a24
DJ
326static void
327arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 328 struct frame_info *this_frame,
8e9d1a24
DJ
329 struct trad_frame_cache *this_cache,
330 CORE_ADDR func)
2a451106 331{
e17a4113
UW
332 struct gdbarch *gdbarch = get_frame_arch (this_frame);
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 334 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 335 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
336
337 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 338 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
339 ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
341 else
a262aec2 342 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 343 ARM_SIGCONTEXT_R0);
8e9d1a24 344}
2a451106 345
8e9d1a24
DJ
346static void
347arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 348 struct frame_info *this_frame,
8e9d1a24
DJ
349 struct trad_frame_cache *this_cache,
350 CORE_ADDR func)
351{
e17a4113
UW
352 struct gdbarch *gdbarch = get_frame_arch (this_frame);
353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 354 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 355 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
356
357 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 358 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
359 ARM_OLD_RT_SIGFRAME_UCONTEXT
360 + ARM_UCONTEXT_SIGCONTEXT
361 + ARM_SIGCONTEXT_R0);
362 else
a262aec2 363 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
364 ARM_NEW_RT_SIGFRAME_UCONTEXT
365 + ARM_UCONTEXT_SIGCONTEXT
366 + ARM_SIGCONTEXT_R0);
2a451106
KB
367}
368
f1973203
MR
369static void
370arm_linux_restart_syscall_init (const struct tramp_frame *self,
371 struct frame_info *this_frame,
372 struct trad_frame_cache *this_cache,
373 CORE_ADDR func)
374{
478fd957 375 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 376 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
377 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
378 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
379 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
380 int sp_offset;
381
382 /* There are two variants of this trampoline; with older kernels, the
383 stub is placed on the stack, while newer kernels use the stub from
384 the vector page. They are identical except that the older version
385 increments SP by 12 (to skip stored PC and the stub itself), while
386 the newer version increments SP only by 4 (just the stored PC). */
387 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
388 sp_offset = 4;
389 else
390 sp_offset = 12;
391
392 /* Update Thumb bit in CPSR. */
393 if (pc & 1)
394 cpsr |= t_bit;
395 else
396 cpsr &= ~t_bit;
f1973203 397
478fd957
UW
398 /* Remove Thumb bit from PC. */
399 pc = gdbarch_addr_bits_remove (gdbarch, pc);
400
401 /* Save previous register values. */
402 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
403 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
404 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
405
406 /* Save a frame ID. */
407 trad_frame_set_id (this_cache, frame_id_build (sp, func));
408}
409
8e9d1a24
DJ
410static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
411 SIGTRAMP_FRAME,
412 4,
413 {
414 { ARM_LINUX_SIGRETURN_INSTR, -1 },
415 { TRAMP_SENTINEL_INSN }
416 },
417 arm_linux_sigreturn_init
418};
419
420static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
421 SIGTRAMP_FRAME,
422 4,
423 {
424 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
425 { TRAMP_SENTINEL_INSN }
426 },
427 arm_linux_rt_sigreturn_init
428};
429
430static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
431 SIGTRAMP_FRAME,
432 4,
433 {
434 { ARM_SET_R7_SIGRETURN, -1 },
435 { ARM_EABI_SYSCALL, -1 },
436 { TRAMP_SENTINEL_INSN }
437 },
438 arm_linux_sigreturn_init
439};
440
441static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
442 SIGTRAMP_FRAME,
443 4,
444 {
445 { ARM_SET_R7_RT_SIGRETURN, -1 },
446 { ARM_EABI_SYSCALL, -1 },
447 { TRAMP_SENTINEL_INSN }
448 },
449 arm_linux_rt_sigreturn_init
450};
451
f347ffc9
WN
452static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
453 SIGTRAMP_FRAME,
454 2,
455 {
456 { THUMB2_SET_R7_SIGRETURN1, -1 },
457 { THUMB2_SET_R7_SIGRETURN2, -1 },
458 { THUMB2_EABI_SYSCALL, -1 },
459 { TRAMP_SENTINEL_INSN }
460 },
461 arm_linux_sigreturn_init
462};
463
464static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
465 SIGTRAMP_FRAME,
466 2,
467 {
468 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
469 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
470 { THUMB2_EABI_SYSCALL, -1 },
471 { TRAMP_SENTINEL_INSN }
472 },
473 arm_linux_rt_sigreturn_init
474};
475
f1973203
MR
476static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
477 NORMAL_FRAME,
478 4,
479 {
480 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
481 { ARM_LDR_PC_SP_12, -1 },
482 { TRAMP_SENTINEL_INSN }
483 },
484 arm_linux_restart_syscall_init
485};
486
478fd957
UW
487static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
488 NORMAL_FRAME,
489 4,
490 {
491 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
492 { ARM_LDR_PC_SP_4, -1 },
493 { TRAMP_SENTINEL_INSN }
494 },
495 arm_linux_restart_syscall_init
496};
497
cb587d83
DJ
498/* Core file and register set support. */
499
500#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
501
502void
503arm_linux_supply_gregset (const struct regset *regset,
504 struct regcache *regcache,
505 int regnum, const void *gregs_buf, size_t len)
506{
e17a4113
UW
507 struct gdbarch *gdbarch = get_regcache_arch (regcache);
508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cb587d83
DJ
509 const gdb_byte *gregs = gregs_buf;
510 int regno;
511 CORE_ADDR reg_pc;
512 gdb_byte pc_buf[INT_REGISTER_SIZE];
513
514 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
515 if (regnum == -1 || regnum == regno)
516 regcache_raw_supply (regcache, regno,
517 gregs + INT_REGISTER_SIZE * regno);
518
519 if (regnum == ARM_PS_REGNUM || regnum == -1)
520 {
521 if (arm_apcs_32)
522 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 523 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
524 else
525 regcache_raw_supply (regcache, ARM_PS_REGNUM,
526 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
527 }
528
529 if (regnum == ARM_PC_REGNUM || regnum == -1)
530 {
531 reg_pc = extract_unsigned_integer (gregs
532 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
533 INT_REGISTER_SIZE, byte_order);
534 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
535 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
536 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
537 }
538}
539
540void
541arm_linux_collect_gregset (const struct regset *regset,
542 const struct regcache *regcache,
543 int regnum, void *gregs_buf, size_t len)
544{
545 gdb_byte *gregs = gregs_buf;
546 int regno;
547
548 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
549 if (regnum == -1 || regnum == regno)
550 regcache_raw_collect (regcache, regno,
551 gregs + INT_REGISTER_SIZE * regno);
552
553 if (regnum == ARM_PS_REGNUM || regnum == -1)
554 {
555 if (arm_apcs_32)
556 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 557 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
558 else
559 regcache_raw_collect (regcache, ARM_PS_REGNUM,
560 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
561 }
562
563 if (regnum == ARM_PC_REGNUM || regnum == -1)
564 regcache_raw_collect (regcache, ARM_PC_REGNUM,
565 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
566}
567
568/* Support for register format used by the NWFPE FPA emulator. */
569
570#define typeNone 0x00
571#define typeSingle 0x01
572#define typeDouble 0x02
573#define typeExtended 0x03
574
575void
576supply_nwfpe_register (struct regcache *regcache, int regno,
577 const gdb_byte *regs)
578{
579 const gdb_byte *reg_data;
580 gdb_byte reg_tag;
581 gdb_byte buf[FP_REGISTER_SIZE];
582
583 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
584 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
585 memset (buf, 0, FP_REGISTER_SIZE);
586
587 switch (reg_tag)
588 {
589 case typeSingle:
590 memcpy (buf, reg_data, 4);
591 break;
592 case typeDouble:
593 memcpy (buf, reg_data + 4, 4);
594 memcpy (buf + 4, reg_data, 4);
595 break;
596 case typeExtended:
597 /* We want sign and exponent, then least significant bits,
598 then most significant. NWFPE does sign, most, least. */
599 memcpy (buf, reg_data, 4);
600 memcpy (buf + 4, reg_data + 8, 4);
601 memcpy (buf + 8, reg_data + 4, 4);
602 break;
603 default:
604 break;
605 }
606
607 regcache_raw_supply (regcache, regno, buf);
608}
609
610void
611collect_nwfpe_register (const struct regcache *regcache, int regno,
612 gdb_byte *regs)
613{
614 gdb_byte *reg_data;
615 gdb_byte reg_tag;
616 gdb_byte buf[FP_REGISTER_SIZE];
617
618 regcache_raw_collect (regcache, regno, buf);
619
620 /* NOTE drow/2006-06-07: This code uses the tag already in the
621 register buffer. I've preserved that when moving the code
622 from the native file to the target file. But this doesn't
623 always make sense. */
624
625 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
626 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
627
628 switch (reg_tag)
629 {
630 case typeSingle:
631 memcpy (reg_data, buf, 4);
632 break;
633 case typeDouble:
634 memcpy (reg_data, buf + 4, 4);
635 memcpy (reg_data + 4, buf, 4);
636 break;
637 case typeExtended:
638 memcpy (reg_data, buf, 4);
639 memcpy (reg_data + 4, buf + 8, 4);
640 memcpy (reg_data + 8, buf + 4, 4);
641 break;
642 default:
643 break;
644 }
645}
646
647void
648arm_linux_supply_nwfpe (const struct regset *regset,
649 struct regcache *regcache,
650 int regnum, const void *regs_buf, size_t len)
651{
652 const gdb_byte *regs = regs_buf;
653 int regno;
654
655 if (regnum == ARM_FPS_REGNUM || regnum == -1)
656 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
657 regs + NWFPE_FPSR_OFFSET);
658
659 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
660 if (regnum == -1 || regnum == regno)
661 supply_nwfpe_register (regcache, regno, regs);
662}
663
664void
665arm_linux_collect_nwfpe (const struct regset *regset,
666 const struct regcache *regcache,
667 int regnum, void *regs_buf, size_t len)
668{
669 gdb_byte *regs = regs_buf;
670 int regno;
671
672 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
673 if (regnum == -1 || regnum == regno)
674 collect_nwfpe_register (regcache, regno, regs);
675
676 if (regnum == ARM_FPS_REGNUM || regnum == -1)
677 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
678 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
679}
680
ef7e8358
UW
681/* Support VFP register format. */
682
683#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
684
685static void
686arm_linux_supply_vfp (const struct regset *regset,
687 struct regcache *regcache,
688 int regnum, const void *regs_buf, size_t len)
689{
690 const gdb_byte *regs = regs_buf;
691 int regno;
692
693 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
694 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
695
696 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
697 if (regnum == -1 || regnum == regno)
698 regcache_raw_supply (regcache, regno,
699 regs + (regno - ARM_D0_REGNUM) * 8);
700}
701
702static void
703arm_linux_collect_vfp (const struct regset *regset,
704 const struct regcache *regcache,
705 int regnum, void *regs_buf, size_t len)
706{
707 gdb_byte *regs = regs_buf;
708 int regno;
709
710 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
711 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
712
713 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
714 if (regnum == -1 || regnum == regno)
715 regcache_raw_collect (regcache, regno,
716 regs + (regno - ARM_D0_REGNUM) * 8);
717}
718
b7611c43
AA
719static const struct regset arm_linux_gregset =
720 {
721 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
722 };
723
724static const struct regset arm_linux_fpregset =
725 {
726 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
727 };
728
729static const struct regset arm_linux_vfpregset =
730 {
731 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
732 };
733
cb587d83
DJ
734/* Return the appropriate register set for the core section identified
735 by SECT_NAME and SECT_SIZE. */
736
737static const struct regset *
738arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
739 const char *sect_name, size_t sect_size)
740{
cb587d83
DJ
741 if (strcmp (sect_name, ".reg") == 0
742 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
b7611c43 743 return &arm_linux_gregset;
cb587d83
DJ
744
745 if (strcmp (sect_name, ".reg2") == 0
746 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
b7611c43 747 return &arm_linux_fpregset;
cb587d83 748
ef7e8358
UW
749 if (strcmp (sect_name, ".reg-arm-vfp") == 0
750 && sect_size == ARM_LINUX_SIZEOF_VFP)
b7611c43 751 return &arm_linux_vfpregset;
ef7e8358
UW
752
753 return NULL;
754}
755
756/* Core file register set sections. */
757
758static struct core_regset_section arm_linux_fpa_regset_sections[] =
759{
760 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
761 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
762 { NULL, 0}
763};
764
765static struct core_regset_section arm_linux_vfp_regset_sections[] =
766{
767 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
768 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
769 { NULL, 0}
770};
771
772/* Determine target description from core file. */
773
774static const struct target_desc *
775arm_linux_core_read_description (struct gdbarch *gdbarch,
776 struct target_ops *target,
777 bfd *abfd)
778{
779 CORE_ADDR arm_hwcap = 0;
780
781 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
782 return NULL;
783
784 if (arm_hwcap & HWCAP_VFP)
785 {
786 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
787 Neon with VFPv3-D32. */
788 if (arm_hwcap & HWCAP_NEON)
789 return tdesc_arm_with_neon;
790 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
791 return tdesc_arm_with_vfpv3;
792 else
793 return tdesc_arm_with_vfpv2;
794 }
795
cb587d83
DJ
796 return NULL;
797}
798
ef7e8358 799
25b41d01 800/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
801 return 1. In addition, set IS_THUMB depending on whether we
802 will return to ARM or Thumb code. Return 0 if it is not a
803 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
804static int
805arm_linux_sigreturn_return_addr (struct frame_info *frame,
806 unsigned long svc_number,
18819fa6 807 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
808{
809 /* Is this a sigreturn or rt_sigreturn syscall? */
810 if (svc_number == 119 || svc_number == 173)
811 {
812 if (get_frame_type (frame) == SIGTRAMP_FRAME)
813 {
18819fa6
UW
814 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
815 CORE_ADDR cpsr
816 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
817
818 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
819 *pc = frame_unwind_caller_pc (frame);
820 return 1;
821 }
822 }
823 return 0;
824}
825
9f948660
SDJ
826/* At a ptrace syscall-stop, return the syscall number. This either
827 comes from the SWI instruction (OABI) or from r7 (EABI).
828
829 When the function fails, it should return -1. */
830
831static LONGEST
832arm_linux_get_syscall_number (struct gdbarch *gdbarch,
833 ptid_t ptid)
834{
835 struct regcache *regs = get_thread_regcache (ptid);
836 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
837
838 ULONGEST pc;
839 ULONGEST cpsr;
840 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
841 int is_thumb;
842 ULONGEST svc_number = -1;
843
844 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
845 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
846 is_thumb = (cpsr & t_bit) != 0;
847
848 if (is_thumb)
849 {
850 regcache_cooked_read_unsigned (regs, 7, &svc_number);
851 }
852 else
853 {
854 enum bfd_endian byte_order_for_code =
855 gdbarch_byte_order_for_code (gdbarch);
856
857 /* PC gets incremented before the syscall-stop, so read the
858 previous instruction. */
859 unsigned long this_instr =
860 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
861
862 unsigned long svc_operand = (0x00ffffff & this_instr);
863
864 if (svc_operand)
865 {
866 /* OABI */
867 svc_number = svc_operand - 0x900000;
868 }
869 else
870 {
871 /* EABI */
872 regcache_cooked_read_unsigned (regs, 7, &svc_number);
873 }
874 }
875
876 return svc_number;
877}
878
25b41d01
YQ
879/* When FRAME is at a syscall instruction, return the PC of the next
880 instruction to be executed. */
881
882static CORE_ADDR
883arm_linux_syscall_next_pc (struct frame_info *frame)
884{
885 CORE_ADDR pc = get_frame_pc (frame);
886 CORE_ADDR return_addr = 0;
887 int is_thumb = arm_frame_is_thumb (frame);
888 ULONGEST svc_number = 0;
25b41d01
YQ
889
890 if (is_thumb)
891 {
892 svc_number = get_frame_register_unsigned (frame, 7);
18819fa6 893 return_addr = pc + 2;
25b41d01
YQ
894 }
895 else
896 {
897 struct gdbarch *gdbarch = get_frame_arch (frame);
898 enum bfd_endian byte_order_for_code =
899 gdbarch_byte_order_for_code (gdbarch);
900 unsigned long this_instr =
901 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
902
903 unsigned long svc_operand = (0x00ffffff & this_instr);
904 if (svc_operand) /* OABI. */
905 {
906 svc_number = svc_operand - 0x900000;
907 }
908 else /* EABI. */
909 {
910 svc_number = get_frame_register_unsigned (frame, 7);
911 }
18819fa6
UW
912
913 return_addr = pc + 4;
25b41d01
YQ
914 }
915
18819fa6 916 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
25b41d01 917
18819fa6 918 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 919 if (is_thumb)
18819fa6 920 return_addr |= 1;
25b41d01
YQ
921
922 return return_addr;
923}
924
925
daddc3c1
DJ
926/* Insert a single step breakpoint at the next executed instruction. */
927
63807e1d 928static int
daddc3c1
DJ
929arm_linux_software_single_step (struct frame_info *frame)
930{
a6d9a66e 931 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 932 struct address_space *aspace = get_frame_address_space (frame);
35f73cfc
UW
933 CORE_ADDR next_pc;
934
935 if (arm_deal_with_atomic_sequence (frame))
936 return 1;
937
938 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
daddc3c1
DJ
939
940 /* The Linux kernel offers some user-mode helpers in a high page. We can
941 not read this page (as of 2.6.23), and even if we could then we couldn't
942 set breakpoints in it, and even if we could then the atomic operations
943 would fail when interrupted. They are all called as functions and return
944 to the address in LR, so step to there instead. */
945 if (next_pc > 0xffff0000)
946 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
947
18819fa6 948 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
949
950 return 1;
951}
952
cca44b1b
JB
953/* Support for displaced stepping of Linux SVC instructions. */
954
955static void
6e39997a 956arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
957 struct regcache *regs,
958 struct displaced_step_closure *dsc)
959{
960 CORE_ADDR from = dsc->insn_addr;
961 ULONGEST apparent_pc;
962 int within_scratch;
963
964 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
965
966 within_scratch = (apparent_pc >= dsc->scratch_base
967 && apparent_pc < (dsc->scratch_base
968 + DISPLACED_MODIFIED_INSNS * 4 + 4));
969
970 if (debug_displaced)
971 {
972 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
973 "SVC step ", (unsigned long) apparent_pc);
974 if (within_scratch)
975 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
976 else
977 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
978 }
979
980 if (within_scratch)
981 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
982}
983
984static int
bd18283a
YQ
985arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
986 struct displaced_step_closure *dsc)
cca44b1b 987{
25b41d01
YQ
988 CORE_ADDR return_to = 0;
989
cca44b1b 990 struct frame_info *frame;
36073a92 991 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 992 int is_sigreturn = 0;
18819fa6 993 int is_thumb;
cca44b1b 994
cca44b1b
JB
995 frame = get_current_frame ();
996
25b41d01 997 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 998 &return_to, &is_thumb);
25b41d01 999 if (is_sigreturn)
cca44b1b 1000 {
cca44b1b
JB
1001 struct symtab_and_line sal;
1002
1003 if (debug_displaced)
1004 fprintf_unfiltered (gdb_stdlog, "displaced: found "
0963b4bd 1005 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
cca44b1b
JB
1006 (unsigned long) get_frame_pc (frame));
1007
cca44b1b 1008 if (debug_displaced)
0963b4bd 1009 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
cca44b1b
JB
1010 "Setting momentary breakpoint.\n", (unsigned long) return_to);
1011
8358c15c
JK
1012 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1013 == NULL);
cca44b1b
JB
1014
1015 sal = find_pc_line (return_to, 0);
1016 sal.pc = return_to;
1017 sal.section = find_pc_overlay (return_to);
1018 sal.explicit_pc = 1;
1019
1020 frame = get_prev_frame (frame);
1021
1022 if (frame)
1023 {
8358c15c 1024 inferior_thread ()->control.step_resume_breakpoint
cca44b1b
JB
1025 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1026 bp_step_resume);
1027
c70a6932
JK
1028 /* set_momentary_breakpoint invalidates FRAME. */
1029 frame = NULL;
1030
cca44b1b
JB
1031 /* We need to make sure we actually insert the momentary
1032 breakpoint set above. */
1033 insert_breakpoints ();
1034 }
1035 else if (debug_displaced)
1036 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1037 "frame to set momentary breakpoint for "
1038 "sigreturn/rt_sigreturn\n");
1039 }
1040 else if (debug_displaced)
1041 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1042 "SVC call not in signal trampoline frame\n");
25b41d01 1043
cca44b1b
JB
1044
1045 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1046 location, else nothing.
1047 Insn: unmodified svc.
1048 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1049 else leave pc alone. */
1050
cca44b1b
JB
1051
1052 dsc->cleanup = &arm_linux_cleanup_svc;
1053 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1054 instruction. */
1055 dsc->wrote_to_pc = 1;
1056
1057 return 0;
1058}
1059
1060
1061/* The following two functions implement single-stepping over calls to Linux
1062 kernel helper routines, which perform e.g. atomic operations on architecture
1063 variants which don't support them natively.
1064
1065 When this function is called, the PC will be pointing at the kernel helper
1066 (at an address inaccessible to GDB), and r14 will point to the return
1067 address. Displaced stepping always executes code in the copy area:
1068 so, make the copy-area instruction branch back to the kernel helper (the
1069 "from" address), and make r14 point to the breakpoint in the copy area. In
1070 that way, we regain control once the kernel helper returns, and can clean
1071 up appropriately (as if we had just returned from the kernel helper as it
1072 would have been called from the non-displaced location). */
1073
1074static void
6e39997a 1075cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
1076 struct regcache *regs,
1077 struct displaced_step_closure *dsc)
1078{
1079 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1080 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1081}
1082
1083static void
1084arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1085 CORE_ADDR to, struct regcache *regs,
1086 struct displaced_step_closure *dsc)
1087{
1088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1089
1090 dsc->numinsns = 1;
1091 dsc->insn_addr = from;
1092 dsc->cleanup = &cleanup_kernel_helper_return;
1093 /* Say we wrote to the PC, else cleanup will set PC to the next
1094 instruction in the helper, which isn't helpful. */
1095 dsc->wrote_to_pc = 1;
1096
1097 /* Preparation: tmp[0] <- r14
1098 r14 <- <scratch space>+4
1099 *(<scratch space>+8) <- from
1100 Insn: ldr pc, [r14, #4]
1101 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1102
36073a92 1103 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1104 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1105 CANNOT_WRITE_PC);
1106 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1107
1108 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1109}
1110
1111/* Linux-specific displaced step instruction copying function. Detects when
1112 the program has stepped into a Linux kernel helper routine (which must be
1113 handled as a special case), falling back to arm_displaced_step_copy_insn()
1114 if it hasn't. */
1115
1116static struct displaced_step_closure *
1117arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1118 CORE_ADDR from, CORE_ADDR to,
1119 struct regcache *regs)
1120{
1121 struct displaced_step_closure *dsc
1122 = xmalloc (sizeof (struct displaced_step_closure));
1123
1124 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1125 stop at the return location. */
1126 if (from > 0xffff0000)
1127 {
1128 if (debug_displaced)
1129 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1130 "at %.8lx\n", (unsigned long) from);
1131
1132 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1133 }
1134 else
1135 {
cca44b1b
JB
1136 /* Override the default handling of SVC instructions. */
1137 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1138
b434a28f 1139 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1140 }
1141
1142 arm_displaced_init_closure (gdbarch, from, to, dsc);
1143
1144 return dsc;
1145}
1146
c248fc1d
SDJ
1147/* Implementation of `gdbarch_stap_is_single_operand', as defined in
1148 gdbarch.h. */
1149
55aa24fb
SDJ
1150static int
1151arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1152{
8d85bacb 1153 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
55aa24fb
SDJ
1154 || *s == '[' /* Register indirection or
1155 displacement. */
1156 || isalpha (*s)); /* Register value. */
1157}
1158
1159/* This routine is used to parse a special token in ARM's assembly.
1160
1161 The special tokens parsed by it are:
1162
1163 - Register displacement (e.g, [fp, #-8])
1164
1165 It returns one if the special token has been parsed successfully,
1166 or zero if the current token is not considered special. */
1167
1168static int
1169arm_stap_parse_special_token (struct gdbarch *gdbarch,
1170 struct stap_parse_info *p)
1171{
1172 if (*p->arg == '[')
1173 {
1174 /* Temporary holder for lookahead. */
1175 const char *tmp = p->arg;
a0bcdaa7 1176 char *endp;
55aa24fb
SDJ
1177 /* Used to save the register name. */
1178 const char *start;
1179 char *regname;
1180 int len, offset;
1181 int got_minus = 0;
1182 long displacement;
1183 struct stoken str;
1184
1185 ++tmp;
1186 start = tmp;
1187
1188 /* Register name. */
1189 while (isalnum (*tmp))
1190 ++tmp;
1191
1192 if (*tmp != ',')
1193 return 0;
1194
1195 len = tmp - start;
1196 regname = alloca (len + 2);
1197
1198 offset = 0;
1199 if (isdigit (*start))
1200 {
1201 /* If we are dealing with a register whose name begins with a
1202 digit, it means we should prefix the name with the letter
1203 `r', because GDB expects this name pattern. Otherwise (e.g.,
1204 we are dealing with the register `fp'), we don't need to
1205 add such a prefix. */
1206 regname[0] = 'r';
1207 offset = 1;
1208 }
1209
1210 strncpy (regname + offset, start, len);
1211 len += offset;
1212 regname[len] = '\0';
1213
1214 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1215 error (_("Invalid register name `%s' on expression `%s'."),
1216 regname, p->saved_arg);
1217
1218 ++tmp;
1219 tmp = skip_spaces_const (tmp);
8d85bacb
SDJ
1220 if (*tmp == '#' || *tmp == '$')
1221 ++tmp;
55aa24fb
SDJ
1222
1223 if (*tmp == '-')
1224 {
1225 ++tmp;
1226 got_minus = 1;
1227 }
1228
a0bcdaa7
PA
1229 displacement = strtol (tmp, &endp, 10);
1230 tmp = endp;
55aa24fb
SDJ
1231
1232 /* Skipping last `]'. */
1233 if (*tmp++ != ']')
1234 return 0;
1235
1236 /* The displacement. */
410a0ff2
SDJ
1237 write_exp_elt_opcode (&p->pstate, OP_LONG);
1238 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1239 write_exp_elt_longcst (&p->pstate, displacement);
1240 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 1241 if (got_minus)
410a0ff2 1242 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
1243
1244 /* The register name. */
410a0ff2 1245 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
1246 str.ptr = regname;
1247 str.length = len;
410a0ff2
SDJ
1248 write_exp_string (&p->pstate, str);
1249 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb 1250
410a0ff2 1251 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
1252
1253 /* Casting to the expected type. */
410a0ff2
SDJ
1254 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1255 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1256 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 1257
410a0ff2 1258 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
1259
1260 p->arg = tmp;
1261 }
1262 else
1263 return 0;
1264
1265 return 1;
1266}
1267
97dfe206
OJ
1268/* ARM process record-replay constructs: syscall, signal etc. */
1269
1270struct linux_record_tdep arm_linux_record_tdep;
1271
1272/* arm_canonicalize_syscall maps from the native arm Linux set
1273 of syscall ids into a canonical set of syscall ids used by
1274 process record. */
1275
1276static enum gdb_syscall
1277arm_canonicalize_syscall (int syscall)
1278{
1279 enum { sys_process_vm_writev = 377 };
1280
1281 if (syscall <= gdb_sys_sched_getaffinity)
1282 return syscall;
1283 else if (syscall >= 243 && syscall <= 247)
1284 return syscall + 2;
1285 else if (syscall >= 248 && syscall <= 253)
1286 return syscall + 4;
1287
1288 return -1;
1289}
1290
1291/* Record all registers but PC register for process-record. */
1292
1293static int
1294arm_all_but_pc_registers_record (struct regcache *regcache)
1295{
1296 int i;
1297
1298 for (i = 0; i < ARM_PC_REGNUM; i++)
1299 {
1300 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1301 return -1;
1302 }
1303
1304 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1305 return -1;
1306
1307 return 0;
1308}
1309
1310/* Handler for arm system call instruction recording. */
1311
1312static int
1313arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1314{
1315 int ret = 0;
1316 enum gdb_syscall syscall_gdb;
1317
1318 syscall_gdb = arm_canonicalize_syscall (svc_number);
1319
1320 if (syscall_gdb < 0)
1321 {
1322 printf_unfiltered (_("Process record and replay target doesn't "
1323 "support syscall number %s\n"),
1324 plongest (svc_number));
1325 return -1;
1326 }
1327
1328 if (syscall_gdb == gdb_sys_sigreturn
1329 || syscall_gdb == gdb_sys_rt_sigreturn)
1330 {
1331 if (arm_all_but_pc_registers_record (regcache))
1332 return -1;
1333 return 0;
1334 }
1335
1336 ret = record_linux_system_call (syscall_gdb, regcache,
1337 &arm_linux_record_tdep);
1338 if (ret != 0)
1339 return ret;
1340
1341 /* Record the return value of the system call. */
1342 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1343 return -1;
1344 /* Record LR. */
1345 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1346 return -1;
1347 /* Record CPSR. */
1348 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1349 return -1;
1350
1351 return 0;
1352}
1353
3343ef86
YQ
1354/* Implement the skip_trampoline_code gdbarch method. */
1355
1356static CORE_ADDR
1357arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1358{
1359 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1360
1361 if (target_pc != 0)
1362 return target_pc;
1363
1364 return find_solib_trampoline_target (frame, pc);
1365}
1366
97e03143
RE
1367static void
1368arm_linux_init_abi (struct gdbarch_info info,
1369 struct gdbarch *gdbarch)
1370{
8d85bacb 1371 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
05c0465e
SDJ
1372 static const char *const stap_register_prefixes[] = { "r", NULL };
1373 static const char *const stap_register_indirection_prefixes[] = { "[",
1374 NULL };
1375 static const char *const stap_register_indirection_suffixes[] = { "]",
1376 NULL };
97e03143
RE
1377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1378
a5ee0f0c
PA
1379 linux_init_abi (info, gdbarch);
1380
97e03143 1381 tdep->lowest_pc = 0x8000;
2ef47cd0 1382 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 1383 {
c75a2cc8
DJ
1384 if (tdep->arm_abi == ARM_ABI_AAPCS)
1385 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1386 else
1387 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1388 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1389 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1390 }
2ef47cd0 1391 else
498b1f87 1392 {
c75a2cc8
DJ
1393 if (tdep->arm_abi == ARM_ABI_AAPCS)
1394 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1395 else
1396 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1397 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1398 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1399 }
66e810cd 1400 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1401 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1402 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1403
28e97307
DJ
1404 if (tdep->fp_model == ARM_FLOAT_AUTO)
1405 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1406
f8624c62
MGD
1407 switch (tdep->fp_model)
1408 {
1409 case ARM_FLOAT_FPA:
1410 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1411 break;
1412 case ARM_FLOAT_SOFT_FPA:
1413 case ARM_FLOAT_SOFT_VFP:
1414 case ARM_FLOAT_VFP:
1415 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1416 break;
1417 default:
1418 internal_error
1419 (__FILE__, __LINE__,
1420 _("arm_linux_init_abi: Floating point model not supported"));
1421 break;
1422 }
a6cdd8c5 1423 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1424
7aa1783e 1425 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1426 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1427
190dce09 1428 /* Single stepping. */
daddc3c1 1429 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1430
0e18d038 1431 /* Shared library handling. */
3343ef86 1432 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
bb41a796 1433 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1434
1435 /* Enable TLS support. */
1436 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1437 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1438
1439 tramp_frame_prepend_unwinder (gdbarch,
1440 &arm_linux_sigreturn_tramp_frame);
1441 tramp_frame_prepend_unwinder (gdbarch,
1442 &arm_linux_rt_sigreturn_tramp_frame);
1443 tramp_frame_prepend_unwinder (gdbarch,
1444 &arm_eabi_linux_sigreturn_tramp_frame);
1445 tramp_frame_prepend_unwinder (gdbarch,
1446 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f347ffc9
WN
1447 tramp_frame_prepend_unwinder (gdbarch,
1448 &thumb2_eabi_linux_sigreturn_tramp_frame);
1449 tramp_frame_prepend_unwinder (gdbarch,
1450 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1451 tramp_frame_prepend_unwinder (gdbarch,
1452 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1453 tramp_frame_prepend_unwinder (gdbarch,
1454 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1455
1456 /* Core file support. */
1457 set_gdbarch_regset_from_core_section (gdbarch,
1458 arm_linux_regset_from_core_section);
ef7e8358
UW
1459 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1460
1461 if (tdep->have_vfp_registers)
1462 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1463 else if (tdep->have_fpa_registers)
1464 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
4aa995e1
PA
1465
1466 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
cca44b1b
JB
1467
1468 /* Displaced stepping. */
1469 set_gdbarch_displaced_step_copy_insn (gdbarch,
1470 arm_linux_displaced_step_copy_insn);
1471 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1472 set_gdbarch_displaced_step_free_closure (gdbarch,
1473 simple_displaced_step_free_closure);
1474 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
25b41d01 1475
72508ac0
PO
1476 /* Reversible debugging, process record. */
1477 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1478
55aa24fb 1479 /* SystemTap functions. */
05c0465e
SDJ
1480 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1481 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1482 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1483 stap_register_indirection_prefixes);
1484 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1485 stap_register_indirection_suffixes);
55aa24fb
SDJ
1486 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1487 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1488 set_gdbarch_stap_parse_special_token (gdbarch,
1489 arm_stap_parse_special_token);
1490
25b41d01 1491 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
72508ac0 1492
9f948660
SDJ
1493 /* `catch syscall' */
1494 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1495 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1496
72508ac0 1497 /* Syscall record. */
97dfe206
OJ
1498 tdep->arm_syscall_record = arm_linux_syscall_record;
1499
1500 /* Initialize the arm_linux_record_tdep. */
1501 /* These values are the size of the type that will be used in a system
1502 call. They are obtained from Linux Kernel source. */
1503 arm_linux_record_tdep.size_pointer
1504 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1505 arm_linux_record_tdep.size__old_kernel_stat = 32;
1506 arm_linux_record_tdep.size_tms = 16;
1507 arm_linux_record_tdep.size_loff_t = 8;
1508 arm_linux_record_tdep.size_flock = 16;
1509 arm_linux_record_tdep.size_oldold_utsname = 45;
1510 arm_linux_record_tdep.size_ustat = 20;
1511 arm_linux_record_tdep.size_old_sigaction = 140;
1512 arm_linux_record_tdep.size_old_sigset_t = 128;
1513 arm_linux_record_tdep.size_rlimit = 8;
1514 arm_linux_record_tdep.size_rusage = 72;
1515 arm_linux_record_tdep.size_timeval = 8;
1516 arm_linux_record_tdep.size_timezone = 8;
1517 arm_linux_record_tdep.size_old_gid_t = 2;
1518 arm_linux_record_tdep.size_old_uid_t = 2;
1519 arm_linux_record_tdep.size_fd_set = 128;
1520 arm_linux_record_tdep.size_dirent = 268;
1521 arm_linux_record_tdep.size_dirent64 = 276;
1522 arm_linux_record_tdep.size_statfs = 64;
1523 arm_linux_record_tdep.size_statfs64 = 84;
1524 arm_linux_record_tdep.size_sockaddr = 16;
1525 arm_linux_record_tdep.size_int
1526 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1527 arm_linux_record_tdep.size_long
1528 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1529 arm_linux_record_tdep.size_ulong
1530 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1531 arm_linux_record_tdep.size_msghdr = 28;
1532 arm_linux_record_tdep.size_itimerval = 16;
1533 arm_linux_record_tdep.size_stat = 88;
1534 arm_linux_record_tdep.size_old_utsname = 325;
1535 arm_linux_record_tdep.size_sysinfo = 64;
1536 arm_linux_record_tdep.size_msqid_ds = 88;
1537 arm_linux_record_tdep.size_shmid_ds = 84;
1538 arm_linux_record_tdep.size_new_utsname = 390;
1539 arm_linux_record_tdep.size_timex = 128;
1540 arm_linux_record_tdep.size_mem_dqinfo = 24;
1541 arm_linux_record_tdep.size_if_dqblk = 68;
1542 arm_linux_record_tdep.size_fs_quota_stat = 68;
1543 arm_linux_record_tdep.size_timespec = 8;
1544 arm_linux_record_tdep.size_pollfd = 8;
1545 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1546 arm_linux_record_tdep.size_knfsd_fh = 132;
1547 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1548 arm_linux_record_tdep.size_sigaction = 140;
1549 arm_linux_record_tdep.size_sigset_t = 8;
1550 arm_linux_record_tdep.size_siginfo_t = 128;
1551 arm_linux_record_tdep.size_cap_user_data_t = 12;
1552 arm_linux_record_tdep.size_stack_t = 12;
1553 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1554 arm_linux_record_tdep.size_stat64 = 96;
1555 arm_linux_record_tdep.size_gid_t = 2;
1556 arm_linux_record_tdep.size_uid_t = 2;
1557 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1558 arm_linux_record_tdep.size_flock64 = 24;
1559 arm_linux_record_tdep.size_user_desc = 16;
1560 arm_linux_record_tdep.size_io_event = 32;
1561 arm_linux_record_tdep.size_iocb = 64;
1562 arm_linux_record_tdep.size_epoll_event = 12;
1563 arm_linux_record_tdep.size_itimerspec
1564 = arm_linux_record_tdep.size_timespec * 2;
1565 arm_linux_record_tdep.size_mq_attr = 32;
1566 arm_linux_record_tdep.size_siginfo = 128;
1567 arm_linux_record_tdep.size_termios = 36;
1568 arm_linux_record_tdep.size_termios2 = 44;
1569 arm_linux_record_tdep.size_pid_t = 4;
1570 arm_linux_record_tdep.size_winsize = 8;
1571 arm_linux_record_tdep.size_serial_struct = 60;
1572 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1573 arm_linux_record_tdep.size_hayes_esp_config = 12;
1574 arm_linux_record_tdep.size_size_t = 4;
1575 arm_linux_record_tdep.size_iovec = 8;
1576
1577 /* These values are the second argument of system call "sys_ioctl".
1578 They are obtained from Linux Kernel source. */
1579 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1580 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1581 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1582 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1583 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1584 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1585 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1586 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1587 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1588 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1589 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1590 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1591 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1592 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1593 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1594 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1595 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1596 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1597 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1598 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1599 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1600 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1601 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1602 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1603 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1604 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1605 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1606 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1607 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1608 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1609 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1610 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1611 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1612 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1613 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1614 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1615 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1616 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1617 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1618 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1619 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1620 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1621 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1622 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1623 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1624 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1625 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1626 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1627 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1628 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1629 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1630 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1631 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1632 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1633 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1634 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1635 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1636 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1637 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1638 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1639 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1640 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1641 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1642 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1643 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1644
1645 /* These values are the second argument of system call "sys_fcntl"
1646 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1647 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1648 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1649 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1650 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1651
1652 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1653 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1654 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1655 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
97e03143
RE
1656}
1657
63807e1d
PA
1658/* Provide a prototype to silence -Wmissing-prototypes. */
1659extern initialize_file_ftype _initialize_arm_linux_tdep;
1660
faf5f7ad
SB
1661void
1662_initialize_arm_linux_tdep (void)
1663{
05816f70
MK
1664 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1665 arm_linux_init_abi);
faf5f7ad 1666}
This page took 1.012369 seconds and 4 git commands to generate.