Remove documentation of deleted function S_IS_EXTERN.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
618f726f 3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
9f948660 36#include "xml-syscall.h"
faf5f7ad 37
d9311bfa
AT
38#include "arch/arm.h"
39#include "arch/arm-get-next-pcs.h"
40#include "arch/arm-linux.h"
34e8f22d 41#include "arm-tdep.h"
cb587d83 42#include "arm-linux-tdep.h"
4aa995e1 43#include "linux-tdep.h"
0670c0aa 44#include "glibc-tdep.h"
cca44b1b
JB
45#include "arch-utils.h"
46#include "inferior.h"
45741a9c 47#include "infrun.h"
cca44b1b
JB
48#include "gdbthread.h"
49#include "symfile.h"
a52e6aac 50
97dfe206
OJ
51#include "record-full.h"
52#include "linux-record.h"
53
55aa24fb
SDJ
54#include "cli/cli-utils.h"
55#include "stap-probe.h"
56#include "parser-defs.h"
57#include "user-regs.h"
58#include <ctype.h>
04a83fee 59#include "elf/common.h"
cb587d83
DJ
60extern int arm_apcs_32;
61
fdf39c9a
RE
62/* Under ARM GNU/Linux the traditional way of performing a breakpoint
63 is to execute a particular software interrupt, rather than use a
64 particular undefined instruction to provoke a trap. Upon exection
65 of the software interrupt the kernel stops the inferior with a
498b1f87 66 SIGTRAP, and wakes the debugger. */
66e810cd 67
948f8e3d 68static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 69
948f8e3d 70static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 71
c75a2cc8
DJ
72/* However, the EABI syscall interface (new in Nov. 2005) does not look at
73 the operand of the swi if old-ABI compatibility is disabled. Therefore,
74 use an undefined instruction instead. This is supported as of kernel
75 version 2.5.70 (May 2003), so should be a safe assumption for EABI
76 binaries. */
77
948f8e3d 78static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 79
948f8e3d 80static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
81
82/* All the kernels which support Thumb support using a specific undefined
83 instruction for the Thumb breakpoint. */
84
948f8e3d 85static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 86
948f8e3d 87static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 88
177321bd
DJ
89/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
90 we must use a length-appropriate breakpoint for 32-bit Thumb
91 instructions. See also thumb_get_next_pc. */
92
948f8e3d 93static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 94
948f8e3d 95static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 96
f8624c62
MGD
97/* Description of the longjmp buffer. The buffer is treated as an array of
98 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
99
100 The location of saved registers in this buffer (in particular the PC
101 to use after longjmp is called) varies depending on the ABI (in
102 particular the FP model) and also (possibly) the C Library.
103
104 For glibc, eglibc, and uclibc the following holds: If the FP model is
105 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
106 buffer. This is also true for the SoftFPA model. However, for the FPA
107 model the PC is at offset 21 in the buffer. */
7a5ea0d4 108#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
109#define ARM_LINUX_JB_PC_FPA 21
110#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 111
f38e884d 112/*
fdf39c9a
RE
113 Dynamic Linking on ARM GNU/Linux
114 --------------------------------
f38e884d
SB
115
116 Note: PLT = procedure linkage table
117 GOT = global offset table
118
119 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 120 jump/call addresses until the last minute. The technique used is
f38e884d
SB
121 inspired by the i386 ELF design, and is based on the following
122 constraints.
123
124 1) The calling technique should not force a change in the assembly
125 code produced for apps; it MAY cause changes in the way assembly
126 code is produced for position independent code (i.e. shared
127 libraries).
128
129 2) The technique must be such that all executable areas must not be
130 modified; and any modified areas must not be executed.
131
132 To do this, there are three steps involved in a typical jump:
133
134 1) in the code
135 2) through the PLT
136 3) using a pointer from the GOT
137
138 When the executable or library is first loaded, each GOT entry is
139 initialized to point to the code which implements dynamic name
140 resolution and code finding. This is normally a function in the
fdf39c9a
RE
141 program interpreter (on ARM GNU/Linux this is usually
142 ld-linux.so.2, but it does not have to be). On the first
143 invocation, the function is located and the GOT entry is replaced
144 with the real function address. Subsequent calls go through steps
145 1, 2 and 3 and end up calling the real code.
f38e884d
SB
146
147 1) In the code:
148
149 b function_call
150 bl function_call
151
152 This is typical ARM code using the 26 bit relative branch or branch
153 and link instructions. The target of the instruction
154 (function_call is usually the address of the function to be called.
155 In position independent code, the target of the instruction is
156 actually an entry in the PLT when calling functions in a shared
157 library. Note that this call is identical to a normal function
158 call, only the target differs.
159
160 2) In the PLT:
161
0963b4bd
MS
162 The PLT is a synthetic area, created by the linker. It exists in
163 both executables and libraries. It is an array of stubs, one per
164 imported function call. It looks like this:
f38e884d
SB
165
166 PLT[0]:
167 str lr, [sp, #-4]! @push the return address (lr)
168 ldr lr, [pc, #16] @load from 6 words ahead
169 add lr, pc, lr @form an address for GOT[0]
170 ldr pc, [lr, #8]! @jump to the contents of that addr
171
172 The return address (lr) is pushed on the stack and used for
173 calculations. The load on the second line loads the lr with
174 &GOT[3] - . - 20. The addition on the third leaves:
175
176 lr = (&GOT[3] - . - 20) + (. + 8)
177 lr = (&GOT[3] - 12)
178 lr = &GOT[0]
179
180 On the fourth line, the pc and lr are both updated, so that:
181
182 pc = GOT[2]
183 lr = &GOT[0] + 8
184 = &GOT[2]
185
0963b4bd 186 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
187 "tight", but allows us to keep all the PLT entries the same size.
188
189 PLT[n+1]:
190 ldr ip, [pc, #4] @load offset from gotoff
191 add ip, pc, ip @add the offset to the pc
192 ldr pc, [ip] @jump to that address
193 gotoff: .word GOT[n+3] - .
194
195 The load on the first line, gets an offset from the fourth word of
196 the PLT entry. The add on the second line makes ip = &GOT[n+3],
197 which contains either a pointer to PLT[0] (the fixup trampoline) or
198 a pointer to the actual code.
199
200 3) In the GOT:
201
202 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 203 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 204 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
205 the PLT fixups. The next D (all remaining) entries belong to
206 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 207
0963b4bd 208 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
209 in both executables and libraries. When the GOT is first
210 initialized , all the GOT entries relating to PLT fixups are
211 pointing to code back at PLT[0].
212
213 The special entries in the GOT are:
214
215 GOT[0] = linked list pointer used by the dynamic loader
216 GOT[1] = pointer to the reloc table for this module
217 GOT[2] = pointer to the fixup/resolver code
218
219 The first invocation of function call comes through and uses the
220 fixup/resolver code. On the entry to the fixup/resolver code:
221
222 ip = &GOT[n+3]
223 lr = &GOT[2]
224 stack[0] = return address (lr) of the function call
225 [r0, r1, r2, r3] are still the arguments to the function call
226
227 This is enough information for the fixup/resolver code to work
228 with. Before the fixup/resolver code returns, it actually calls
229 the requested function and repairs &GOT[n+3]. */
230
2a451106
KB
231/* The constants below were determined by examining the following files
232 in the linux kernel sources:
233
234 arch/arm/kernel/signal.c
235 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
236 include/asm-arm/unistd.h
237 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
238
239#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
240#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
241
edfb1a26
DJ
242/* For ARM EABI, the syscall number is not in the SWI instruction
243 (instead it is loaded into r7). We recognize the pattern that
244 glibc uses... alternatively, we could arrange to do this by
245 function name, but they are not always exported. */
8e9d1a24
DJ
246#define ARM_SET_R7_SIGRETURN 0xe3a07077
247#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
248#define ARM_EABI_SYSCALL 0xef000000
2a451106 249
f347ffc9
WN
250/* Equivalent patterns for Thumb2. */
251#define THUMB2_SET_R7_SIGRETURN1 0xf04f
252#define THUMB2_SET_R7_SIGRETURN2 0x0777
253#define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
254#define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
255#define THUMB2_EABI_SYSCALL 0xdf00
256
f1973203
MR
257/* OABI syscall restart trampoline, used for EABI executables too
258 whenever OABI support has been enabled in the kernel. */
259#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
260#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 261#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 262
d0e59a68
AT
263/* Syscall number for sigreturn. */
264#define ARM_SIGRETURN 119
265/* Syscall number for rt_sigreturn. */
266#define ARM_RT_SIGRETURN 173
267
e7cf25a8
YQ
268static CORE_ADDR
269 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self,
270 CORE_ADDR pc);
271
d9311bfa
AT
272/* Operation function pointers for get_next_pcs. */
273static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
274 arm_get_next_pcs_read_memory_unsigned_integer,
e7cf25a8 275 arm_linux_get_next_pcs_syscall_next_pc,
d9311bfa 276 arm_get_next_pcs_addr_bits_remove,
ed443b61
YQ
277 arm_get_next_pcs_is_thumb,
278 arm_linux_get_next_pcs_fixup,
d9311bfa
AT
279};
280
8e9d1a24 281static void
a262aec2 282arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
283 struct trad_frame_cache *this_cache,
284 CORE_ADDR func, int regs_offset)
2a451106 285{
a262aec2 286 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
287 CORE_ADDR base = sp + regs_offset;
288 int i;
2a451106 289
8e9d1a24
DJ
290 for (i = 0; i < 16; i++)
291 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 292
8e9d1a24 293 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 294
8e9d1a24
DJ
295 /* The VFP or iWMMXt registers may be saved on the stack, but there's
296 no reliable way to restore them (yet). */
2a451106 297
8e9d1a24
DJ
298 /* Save a frame ID. */
299 trad_frame_set_id (this_cache, frame_id_build (sp, func));
300}
2a451106 301
d9311bfa 302/* See arm-linux.h for stack layout details. */
8e9d1a24
DJ
303static void
304arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 305 struct frame_info *this_frame,
8e9d1a24
DJ
306 struct trad_frame_cache *this_cache,
307 CORE_ADDR func)
2a451106 308{
e17a4113
UW
309 struct gdbarch *gdbarch = get_frame_arch (this_frame);
310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 311 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 312 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
313
314 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 315 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
316 ARM_UCONTEXT_SIGCONTEXT
317 + ARM_SIGCONTEXT_R0);
318 else
a262aec2 319 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 320 ARM_SIGCONTEXT_R0);
8e9d1a24 321}
2a451106 322
8e9d1a24
DJ
323static void
324arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 325 struct frame_info *this_frame,
8e9d1a24
DJ
326 struct trad_frame_cache *this_cache,
327 CORE_ADDR func)
328{
e17a4113
UW
329 struct gdbarch *gdbarch = get_frame_arch (this_frame);
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 331 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 332 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
333
334 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 335 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
336 ARM_OLD_RT_SIGFRAME_UCONTEXT
337 + ARM_UCONTEXT_SIGCONTEXT
338 + ARM_SIGCONTEXT_R0);
339 else
a262aec2 340 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
341 ARM_NEW_RT_SIGFRAME_UCONTEXT
342 + ARM_UCONTEXT_SIGCONTEXT
343 + ARM_SIGCONTEXT_R0);
2a451106
KB
344}
345
f1973203
MR
346static void
347arm_linux_restart_syscall_init (const struct tramp_frame *self,
348 struct frame_info *this_frame,
349 struct trad_frame_cache *this_cache,
350 CORE_ADDR func)
351{
478fd957 352 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 353 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
354 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
355 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
356 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
357 int sp_offset;
358
359 /* There are two variants of this trampoline; with older kernels, the
360 stub is placed on the stack, while newer kernels use the stub from
361 the vector page. They are identical except that the older version
362 increments SP by 12 (to skip stored PC and the stub itself), while
363 the newer version increments SP only by 4 (just the stored PC). */
364 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
365 sp_offset = 4;
366 else
367 sp_offset = 12;
368
369 /* Update Thumb bit in CPSR. */
370 if (pc & 1)
371 cpsr |= t_bit;
372 else
373 cpsr &= ~t_bit;
f1973203 374
478fd957
UW
375 /* Remove Thumb bit from PC. */
376 pc = gdbarch_addr_bits_remove (gdbarch, pc);
377
378 /* Save previous register values. */
379 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
380 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
381 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
382
383 /* Save a frame ID. */
384 trad_frame_set_id (this_cache, frame_id_build (sp, func));
385}
386
8e9d1a24
DJ
387static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
388 SIGTRAMP_FRAME,
389 4,
390 {
391 { ARM_LINUX_SIGRETURN_INSTR, -1 },
392 { TRAMP_SENTINEL_INSN }
393 },
394 arm_linux_sigreturn_init
395};
396
397static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
398 SIGTRAMP_FRAME,
399 4,
400 {
401 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
402 { TRAMP_SENTINEL_INSN }
403 },
404 arm_linux_rt_sigreturn_init
405};
406
407static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
408 SIGTRAMP_FRAME,
409 4,
410 {
411 { ARM_SET_R7_SIGRETURN, -1 },
412 { ARM_EABI_SYSCALL, -1 },
413 { TRAMP_SENTINEL_INSN }
414 },
415 arm_linux_sigreturn_init
416};
417
418static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
419 SIGTRAMP_FRAME,
420 4,
421 {
422 { ARM_SET_R7_RT_SIGRETURN, -1 },
423 { ARM_EABI_SYSCALL, -1 },
424 { TRAMP_SENTINEL_INSN }
425 },
426 arm_linux_rt_sigreturn_init
427};
428
f347ffc9
WN
429static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
430 SIGTRAMP_FRAME,
431 2,
432 {
433 { THUMB2_SET_R7_SIGRETURN1, -1 },
434 { THUMB2_SET_R7_SIGRETURN2, -1 },
435 { THUMB2_EABI_SYSCALL, -1 },
436 { TRAMP_SENTINEL_INSN }
437 },
438 arm_linux_sigreturn_init
439};
440
441static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
442 SIGTRAMP_FRAME,
443 2,
444 {
445 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
446 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
447 { THUMB2_EABI_SYSCALL, -1 },
448 { TRAMP_SENTINEL_INSN }
449 },
450 arm_linux_rt_sigreturn_init
451};
452
f1973203
MR
453static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
454 NORMAL_FRAME,
455 4,
456 {
457 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
458 { ARM_LDR_PC_SP_12, -1 },
459 { TRAMP_SENTINEL_INSN }
460 },
461 arm_linux_restart_syscall_init
462};
463
478fd957
UW
464static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
465 NORMAL_FRAME,
466 4,
467 {
468 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
469 { ARM_LDR_PC_SP_4, -1 },
470 { TRAMP_SENTINEL_INSN }
471 },
472 arm_linux_restart_syscall_init
473};
474
cb587d83
DJ
475/* Core file and register set support. */
476
477#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
478
479void
480arm_linux_supply_gregset (const struct regset *regset,
481 struct regcache *regcache,
482 int regnum, const void *gregs_buf, size_t len)
483{
e17a4113
UW
484 struct gdbarch *gdbarch = get_regcache_arch (regcache);
485 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263 486 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
cb587d83
DJ
487 int regno;
488 CORE_ADDR reg_pc;
489 gdb_byte pc_buf[INT_REGISTER_SIZE];
490
491 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
492 if (regnum == -1 || regnum == regno)
493 regcache_raw_supply (regcache, regno,
494 gregs + INT_REGISTER_SIZE * regno);
495
496 if (regnum == ARM_PS_REGNUM || regnum == -1)
497 {
498 if (arm_apcs_32)
499 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 500 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
501 else
502 regcache_raw_supply (regcache, ARM_PS_REGNUM,
503 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
504 }
505
506 if (regnum == ARM_PC_REGNUM || regnum == -1)
507 {
508 reg_pc = extract_unsigned_integer (gregs
509 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
510 INT_REGISTER_SIZE, byte_order);
511 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
512 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
513 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
514 }
515}
516
517void
518arm_linux_collect_gregset (const struct regset *regset,
519 const struct regcache *regcache,
520 int regnum, void *gregs_buf, size_t len)
521{
9a3c8263 522 gdb_byte *gregs = (gdb_byte *) gregs_buf;
cb587d83
DJ
523 int regno;
524
525 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
526 if (regnum == -1 || regnum == regno)
527 regcache_raw_collect (regcache, regno,
528 gregs + INT_REGISTER_SIZE * regno);
529
530 if (regnum == ARM_PS_REGNUM || regnum == -1)
531 {
532 if (arm_apcs_32)
533 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 534 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
535 else
536 regcache_raw_collect (regcache, ARM_PS_REGNUM,
537 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
538 }
539
540 if (regnum == ARM_PC_REGNUM || regnum == -1)
541 regcache_raw_collect (regcache, ARM_PC_REGNUM,
542 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
543}
544
545/* Support for register format used by the NWFPE FPA emulator. */
546
547#define typeNone 0x00
548#define typeSingle 0x01
549#define typeDouble 0x02
550#define typeExtended 0x03
551
552void
553supply_nwfpe_register (struct regcache *regcache, int regno,
554 const gdb_byte *regs)
555{
556 const gdb_byte *reg_data;
557 gdb_byte reg_tag;
558 gdb_byte buf[FP_REGISTER_SIZE];
559
560 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
561 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
562 memset (buf, 0, FP_REGISTER_SIZE);
563
564 switch (reg_tag)
565 {
566 case typeSingle:
567 memcpy (buf, reg_data, 4);
568 break;
569 case typeDouble:
570 memcpy (buf, reg_data + 4, 4);
571 memcpy (buf + 4, reg_data, 4);
572 break;
573 case typeExtended:
574 /* We want sign and exponent, then least significant bits,
575 then most significant. NWFPE does sign, most, least. */
576 memcpy (buf, reg_data, 4);
577 memcpy (buf + 4, reg_data + 8, 4);
578 memcpy (buf + 8, reg_data + 4, 4);
579 break;
580 default:
581 break;
582 }
583
584 regcache_raw_supply (regcache, regno, buf);
585}
586
587void
588collect_nwfpe_register (const struct regcache *regcache, int regno,
589 gdb_byte *regs)
590{
591 gdb_byte *reg_data;
592 gdb_byte reg_tag;
593 gdb_byte buf[FP_REGISTER_SIZE];
594
595 regcache_raw_collect (regcache, regno, buf);
596
597 /* NOTE drow/2006-06-07: This code uses the tag already in the
598 register buffer. I've preserved that when moving the code
599 from the native file to the target file. But this doesn't
600 always make sense. */
601
602 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
603 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
604
605 switch (reg_tag)
606 {
607 case typeSingle:
608 memcpy (reg_data, buf, 4);
609 break;
610 case typeDouble:
611 memcpy (reg_data, buf + 4, 4);
612 memcpy (reg_data + 4, buf, 4);
613 break;
614 case typeExtended:
615 memcpy (reg_data, buf, 4);
616 memcpy (reg_data + 4, buf + 8, 4);
617 memcpy (reg_data + 8, buf + 4, 4);
618 break;
619 default:
620 break;
621 }
622}
623
624void
625arm_linux_supply_nwfpe (const struct regset *regset,
626 struct regcache *regcache,
627 int regnum, const void *regs_buf, size_t len)
628{
9a3c8263 629 const gdb_byte *regs = (const gdb_byte *) regs_buf;
cb587d83
DJ
630 int regno;
631
632 if (regnum == ARM_FPS_REGNUM || regnum == -1)
633 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
634 regs + NWFPE_FPSR_OFFSET);
635
636 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
637 if (regnum == -1 || regnum == regno)
638 supply_nwfpe_register (regcache, regno, regs);
639}
640
641void
642arm_linux_collect_nwfpe (const struct regset *regset,
643 const struct regcache *regcache,
644 int regnum, void *regs_buf, size_t len)
645{
9a3c8263 646 gdb_byte *regs = (gdb_byte *) regs_buf;
cb587d83
DJ
647 int regno;
648
649 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
650 if (regnum == -1 || regnum == regno)
651 collect_nwfpe_register (regcache, regno, regs);
652
653 if (regnum == ARM_FPS_REGNUM || regnum == -1)
654 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
655 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
656}
657
ef7e8358
UW
658/* Support VFP register format. */
659
660#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
661
662static void
663arm_linux_supply_vfp (const struct regset *regset,
664 struct regcache *regcache,
665 int regnum, const void *regs_buf, size_t len)
666{
9a3c8263 667 const gdb_byte *regs = (const gdb_byte *) regs_buf;
ef7e8358
UW
668 int regno;
669
670 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
671 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
672
673 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
674 if (regnum == -1 || regnum == regno)
675 regcache_raw_supply (regcache, regno,
676 regs + (regno - ARM_D0_REGNUM) * 8);
677}
678
679static void
680arm_linux_collect_vfp (const struct regset *regset,
681 const struct regcache *regcache,
682 int regnum, void *regs_buf, size_t len)
683{
9a3c8263 684 gdb_byte *regs = (gdb_byte *) regs_buf;
ef7e8358
UW
685 int regno;
686
687 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
688 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
689
690 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
691 if (regnum == -1 || regnum == regno)
692 regcache_raw_collect (regcache, regno,
693 regs + (regno - ARM_D0_REGNUM) * 8);
694}
695
b7611c43
AA
696static const struct regset arm_linux_gregset =
697 {
698 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
699 };
700
701static const struct regset arm_linux_fpregset =
702 {
703 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
704 };
705
706static const struct regset arm_linux_vfpregset =
707 {
708 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
709 };
710
5aa82d05 711/* Iterate over core file register note sections. */
ef7e8358 712
5aa82d05
AA
713static void
714arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
715 iterate_over_regset_sections_cb *cb,
716 void *cb_data,
717 const struct regcache *regcache)
ef7e8358 718{
5aa82d05 719 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef7e8358 720
8f0435f7 721 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, &arm_linux_gregset, NULL, cb_data);
5aa82d05 722
330c6ca9 723 if (tdep->vfp_register_count > 0)
8f0435f7
AA
724 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, &arm_linux_vfpregset,
725 "VFP floating-point", cb_data);
5aa82d05 726 else if (tdep->have_fpa_registers)
8f0435f7
AA
727 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, &arm_linux_fpregset,
728 "FPA floating-point", cb_data);
5aa82d05 729}
ef7e8358
UW
730
731/* Determine target description from core file. */
732
733static const struct target_desc *
734arm_linux_core_read_description (struct gdbarch *gdbarch,
735 struct target_ops *target,
736 bfd *abfd)
737{
738 CORE_ADDR arm_hwcap = 0;
739
740 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
741 return NULL;
742
743 if (arm_hwcap & HWCAP_VFP)
744 {
745 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
746 Neon with VFPv3-D32. */
747 if (arm_hwcap & HWCAP_NEON)
748 return tdesc_arm_with_neon;
749 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
750 return tdesc_arm_with_vfpv3;
751 else
752 return tdesc_arm_with_vfpv2;
753 }
754
cb587d83
DJ
755 return NULL;
756}
757
ef7e8358 758
25b41d01 759/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
760 return 1. In addition, set IS_THUMB depending on whether we
761 will return to ARM or Thumb code. Return 0 if it is not a
762 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
763static int
764arm_linux_sigreturn_return_addr (struct frame_info *frame,
765 unsigned long svc_number,
18819fa6 766 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
767{
768 /* Is this a sigreturn or rt_sigreturn syscall? */
769 if (svc_number == 119 || svc_number == 173)
770 {
771 if (get_frame_type (frame) == SIGTRAMP_FRAME)
772 {
18819fa6
UW
773 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
774 CORE_ADDR cpsr
775 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
776
777 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
778 *pc = frame_unwind_caller_pc (frame);
779 return 1;
780 }
781 }
782 return 0;
783}
784
d0e59a68 785/* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
f7a6a40d
YQ
786 based on current processor state. In addition, set IS_THUMB depending
787 on whether we will return to ARM or Thumb code. */
788
d0e59a68
AT
789static CORE_ADDR
790arm_linux_sigreturn_next_pc (struct regcache *regcache,
f7a6a40d 791 unsigned long svc_number, int *is_thumb)
d0e59a68
AT
792{
793 ULONGEST sp;
794 unsigned long sp_data;
795 CORE_ADDR next_pc = 0;
796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
797 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
798 int pc_offset = 0;
799 int is_sigreturn = 0;
f7a6a40d 800 CORE_ADDR cpsr;
d0e59a68
AT
801
802 gdb_assert (svc_number == ARM_SIGRETURN
803 || svc_number == ARM_RT_SIGRETURN);
804
805 is_sigreturn = (svc_number == ARM_SIGRETURN);
806 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
807 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
808
809 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
810 is_sigreturn);
811
812 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
813
f7a6a40d
YQ
814 /* Set IS_THUMB according the CPSR saved on the stack. */
815 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
816 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
817
d0e59a68
AT
818 return next_pc;
819}
820
9f948660
SDJ
821/* At a ptrace syscall-stop, return the syscall number. This either
822 comes from the SWI instruction (OABI) or from r7 (EABI).
823
824 When the function fails, it should return -1. */
825
826static LONGEST
827arm_linux_get_syscall_number (struct gdbarch *gdbarch,
828 ptid_t ptid)
829{
830 struct regcache *regs = get_thread_regcache (ptid);
831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
832
833 ULONGEST pc;
834 ULONGEST cpsr;
835 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
836 int is_thumb;
837 ULONGEST svc_number = -1;
838
839 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
840 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
841 is_thumb = (cpsr & t_bit) != 0;
842
843 if (is_thumb)
844 {
845 regcache_cooked_read_unsigned (regs, 7, &svc_number);
846 }
847 else
848 {
849 enum bfd_endian byte_order_for_code =
850 gdbarch_byte_order_for_code (gdbarch);
851
852 /* PC gets incremented before the syscall-stop, so read the
853 previous instruction. */
854 unsigned long this_instr =
855 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
856
857 unsigned long svc_operand = (0x00ffffff & this_instr);
858
859 if (svc_operand)
860 {
861 /* OABI */
862 svc_number = svc_operand - 0x900000;
863 }
864 else
865 {
866 /* EABI */
867 regcache_cooked_read_unsigned (regs, 7, &svc_number);
868 }
869 }
870
871 return svc_number;
872}
873
25b41d01 874static CORE_ADDR
e7cf25a8
YQ
875arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self,
876 CORE_ADDR pc)
25b41d01 877{
d0e59a68 878 CORE_ADDR next_pc = 0;
e7cf25a8 879 int is_thumb = arm_is_thumb (self->regcache);
25b41d01 880 ULONGEST svc_number = 0;
e7cf25a8 881 struct gdbarch *gdbarch = get_regcache_arch (self->regcache);
25b41d01
YQ
882
883 if (is_thumb)
884 {
e7cf25a8 885 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
d0e59a68 886 next_pc = pc + 2;
25b41d01
YQ
887 }
888 else
889 {
e7cf25a8 890 struct gdbarch *gdbarch = get_regcache_arch (self->regcache);
25b41d01
YQ
891 enum bfd_endian byte_order_for_code =
892 gdbarch_byte_order_for_code (gdbarch);
893 unsigned long this_instr =
894 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
895
896 unsigned long svc_operand = (0x00ffffff & this_instr);
897 if (svc_operand) /* OABI. */
898 {
899 svc_number = svc_operand - 0x900000;
900 }
901 else /* EABI. */
902 {
e7cf25a8 903 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
25b41d01 904 }
18819fa6 905
d0e59a68 906 next_pc = pc + 4;
25b41d01
YQ
907 }
908
d0e59a68 909 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
f7a6a40d
YQ
910 {
911 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
912 update IS_THUMB. */
913 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
914 &is_thumb);
915 }
25b41d01 916
18819fa6 917 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 918 if (is_thumb)
d0e59a68 919 next_pc = MAKE_THUMB_ADDR (next_pc);
25b41d01 920
d0e59a68 921 return next_pc;
25b41d01
YQ
922}
923
924
daddc3c1
DJ
925/* Insert a single step breakpoint at the next executed instruction. */
926
63807e1d 927static int
daddc3c1
DJ
928arm_linux_software_single_step (struct frame_info *frame)
929{
d0e59a68
AT
930 struct regcache *regcache = get_current_regcache ();
931 struct gdbarch *gdbarch = get_regcache_arch (regcache);
932 struct address_space *aspace = get_regcache_aspace (regcache);
d9311bfa
AT
933 struct arm_get_next_pcs next_pcs_ctx;
934 CORE_ADDR pc;
935 int i;
936 VEC (CORE_ADDR) *next_pcs = NULL;
937 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
35f73cfc 938
750ce8d1
YQ
939 /* If the target does have hardware single step, GDB doesn't have
940 to bother software single step. */
941 if (target_can_do_single_step () == 1)
942 return 0;
943
d9311bfa
AT
944 arm_get_next_pcs_ctor (&next_pcs_ctx,
945 &arm_linux_get_next_pcs_ops,
946 gdbarch_byte_order (gdbarch),
947 gdbarch_byte_order_for_code (gdbarch),
1b451dda 948 1,
d9311bfa
AT
949 regcache);
950
4d18591b 951 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
daddc3c1 952
d9311bfa 953 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
ed443b61 954 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
daddc3c1 955
d9311bfa 956 do_cleanups (old_chain);
daddc3c1
DJ
957
958 return 1;
959}
960
cca44b1b
JB
961/* Support for displaced stepping of Linux SVC instructions. */
962
963static void
6e39997a 964arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
965 struct regcache *regs,
966 struct displaced_step_closure *dsc)
967{
cca44b1b
JB
968 ULONGEST apparent_pc;
969 int within_scratch;
970
971 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
972
973 within_scratch = (apparent_pc >= dsc->scratch_base
974 && apparent_pc < (dsc->scratch_base
975 + DISPLACED_MODIFIED_INSNS * 4 + 4));
976
977 if (debug_displaced)
978 {
979 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
980 "SVC step ", (unsigned long) apparent_pc);
981 if (within_scratch)
982 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
983 else
984 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
985 }
986
987 if (within_scratch)
41f071ef
YQ
988 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
989 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
cca44b1b
JB
990}
991
992static int
bd18283a
YQ
993arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
994 struct displaced_step_closure *dsc)
cca44b1b 995{
25b41d01
YQ
996 CORE_ADDR return_to = 0;
997
cca44b1b 998 struct frame_info *frame;
36073a92 999 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 1000 int is_sigreturn = 0;
18819fa6 1001 int is_thumb;
cca44b1b 1002
cca44b1b
JB
1003 frame = get_current_frame ();
1004
25b41d01 1005 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 1006 &return_to, &is_thumb);
25b41d01 1007 if (is_sigreturn)
cca44b1b 1008 {
2bb2dcab
YQ
1009 struct symtab_and_line sal;
1010
1011 if (debug_displaced)
1012 fprintf_unfiltered (gdb_stdlog, "displaced: found "
1013 "sigreturn/rt_sigreturn SVC call. PC in "
1014 "frame = %lx\n",
1015 (unsigned long) get_frame_pc (frame));
1016
1017 if (debug_displaced)
1018 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1019 "Setting momentary breakpoint.\n",
1020 (unsigned long) return_to);
1021
1022 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1023 == NULL);
1024
1025 sal = find_pc_line (return_to, 0);
1026 sal.pc = return_to;
1027 sal.section = find_pc_overlay (return_to);
1028 sal.explicit_pc = 1;
1029
1030 frame = get_prev_frame (frame);
1031
1032 if (frame)
1033 {
1034 inferior_thread ()->control.step_resume_breakpoint
1035 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1036 bp_step_resume);
1037
1038 /* set_momentary_breakpoint invalidates FRAME. */
1039 frame = NULL;
1040
1041 /* We need to make sure we actually insert the momentary
1042 breakpoint set above. */
1043 insert_breakpoints ();
cca44b1b
JB
1044 }
1045 else if (debug_displaced)
2bb2dcab
YQ
1046 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1047 "frame to set momentary breakpoint for "
1048 "sigreturn/rt_sigreturn\n");
1049 }
1050 else if (debug_displaced)
6bbbba9b 1051 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
cca44b1b
JB
1052
1053 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1054 location, else nothing.
1055 Insn: unmodified svc.
41f071ef 1056 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
cca44b1b
JB
1057 else leave pc alone. */
1058
cca44b1b
JB
1059
1060 dsc->cleanup = &arm_linux_cleanup_svc;
1061 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1062 instruction. */
1063 dsc->wrote_to_pc = 1;
1064
1065 return 0;
1066}
1067
1068
1069/* The following two functions implement single-stepping over calls to Linux
1070 kernel helper routines, which perform e.g. atomic operations on architecture
1071 variants which don't support them natively.
1072
1073 When this function is called, the PC will be pointing at the kernel helper
1074 (at an address inaccessible to GDB), and r14 will point to the return
1075 address. Displaced stepping always executes code in the copy area:
1076 so, make the copy-area instruction branch back to the kernel helper (the
1077 "from" address), and make r14 point to the breakpoint in the copy area. In
1078 that way, we regain control once the kernel helper returns, and can clean
1079 up appropriately (as if we had just returned from the kernel helper as it
1080 would have been called from the non-displaced location). */
1081
1082static void
6e39997a 1083cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
1084 struct regcache *regs,
1085 struct displaced_step_closure *dsc)
1086{
1087 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1088 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1089}
1090
1091static void
1092arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1093 CORE_ADDR to, struct regcache *regs,
1094 struct displaced_step_closure *dsc)
1095{
1096 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1097
1098 dsc->numinsns = 1;
1099 dsc->insn_addr = from;
1100 dsc->cleanup = &cleanup_kernel_helper_return;
1101 /* Say we wrote to the PC, else cleanup will set PC to the next
1102 instruction in the helper, which isn't helpful. */
1103 dsc->wrote_to_pc = 1;
1104
1105 /* Preparation: tmp[0] <- r14
1106 r14 <- <scratch space>+4
1107 *(<scratch space>+8) <- from
1108 Insn: ldr pc, [r14, #4]
1109 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1110
36073a92 1111 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1112 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1113 CANNOT_WRITE_PC);
1114 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1115
1116 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1117}
1118
1119/* Linux-specific displaced step instruction copying function. Detects when
1120 the program has stepped into a Linux kernel helper routine (which must be
2ba163c8 1121 handled as a special case). */
cca44b1b
JB
1122
1123static struct displaced_step_closure *
1124arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1125 CORE_ADDR from, CORE_ADDR to,
1126 struct regcache *regs)
1127{
8d749320 1128 struct displaced_step_closure *dsc = XNEW (struct displaced_step_closure);
cca44b1b
JB
1129
1130 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1131 stop at the return location. */
1132 if (from > 0xffff0000)
1133 {
1134 if (debug_displaced)
1135 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1136 "at %.8lx\n", (unsigned long) from);
1137
1138 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1139 }
1140 else
1141 {
cca44b1b
JB
1142 /* Override the default handling of SVC instructions. */
1143 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1144
b434a28f 1145 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1146 }
1147
1148 arm_displaced_init_closure (gdbarch, from, to, dsc);
1149
1150 return dsc;
1151}
1152
c248fc1d
SDJ
1153/* Implementation of `gdbarch_stap_is_single_operand', as defined in
1154 gdbarch.h. */
1155
55aa24fb
SDJ
1156static int
1157arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1158{
8d85bacb 1159 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
55aa24fb
SDJ
1160 || *s == '[' /* Register indirection or
1161 displacement. */
1162 || isalpha (*s)); /* Register value. */
1163}
1164
1165/* This routine is used to parse a special token in ARM's assembly.
1166
1167 The special tokens parsed by it are:
1168
1169 - Register displacement (e.g, [fp, #-8])
1170
1171 It returns one if the special token has been parsed successfully,
1172 or zero if the current token is not considered special. */
1173
1174static int
1175arm_stap_parse_special_token (struct gdbarch *gdbarch,
1176 struct stap_parse_info *p)
1177{
1178 if (*p->arg == '[')
1179 {
1180 /* Temporary holder for lookahead. */
1181 const char *tmp = p->arg;
a0bcdaa7 1182 char *endp;
55aa24fb
SDJ
1183 /* Used to save the register name. */
1184 const char *start;
1185 char *regname;
1186 int len, offset;
1187 int got_minus = 0;
1188 long displacement;
1189 struct stoken str;
1190
1191 ++tmp;
1192 start = tmp;
1193
1194 /* Register name. */
1195 while (isalnum (*tmp))
1196 ++tmp;
1197
1198 if (*tmp != ',')
1199 return 0;
1200
1201 len = tmp - start;
224c3ddb 1202 regname = (char *) alloca (len + 2);
55aa24fb
SDJ
1203
1204 offset = 0;
1205 if (isdigit (*start))
1206 {
1207 /* If we are dealing with a register whose name begins with a
1208 digit, it means we should prefix the name with the letter
1209 `r', because GDB expects this name pattern. Otherwise (e.g.,
1210 we are dealing with the register `fp'), we don't need to
1211 add such a prefix. */
1212 regname[0] = 'r';
1213 offset = 1;
1214 }
1215
1216 strncpy (regname + offset, start, len);
1217 len += offset;
1218 regname[len] = '\0';
1219
1220 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1221 error (_("Invalid register name `%s' on expression `%s'."),
1222 regname, p->saved_arg);
1223
1224 ++tmp;
1225 tmp = skip_spaces_const (tmp);
8d85bacb
SDJ
1226 if (*tmp == '#' || *tmp == '$')
1227 ++tmp;
55aa24fb
SDJ
1228
1229 if (*tmp == '-')
1230 {
1231 ++tmp;
1232 got_minus = 1;
1233 }
1234
a0bcdaa7
PA
1235 displacement = strtol (tmp, &endp, 10);
1236 tmp = endp;
55aa24fb
SDJ
1237
1238 /* Skipping last `]'. */
1239 if (*tmp++ != ']')
1240 return 0;
1241
1242 /* The displacement. */
410a0ff2
SDJ
1243 write_exp_elt_opcode (&p->pstate, OP_LONG);
1244 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1245 write_exp_elt_longcst (&p->pstate, displacement);
1246 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 1247 if (got_minus)
410a0ff2 1248 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
1249
1250 /* The register name. */
410a0ff2 1251 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
1252 str.ptr = regname;
1253 str.length = len;
410a0ff2
SDJ
1254 write_exp_string (&p->pstate, str);
1255 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb 1256
410a0ff2 1257 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
1258
1259 /* Casting to the expected type. */
410a0ff2
SDJ
1260 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1261 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1262 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 1263
410a0ff2 1264 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
1265
1266 p->arg = tmp;
1267 }
1268 else
1269 return 0;
1270
1271 return 1;
1272}
1273
97dfe206
OJ
1274/* ARM process record-replay constructs: syscall, signal etc. */
1275
1276struct linux_record_tdep arm_linux_record_tdep;
1277
1278/* arm_canonicalize_syscall maps from the native arm Linux set
1279 of syscall ids into a canonical set of syscall ids used by
1280 process record. */
1281
1282static enum gdb_syscall
1283arm_canonicalize_syscall (int syscall)
1284{
1285 enum { sys_process_vm_writev = 377 };
1286
1287 if (syscall <= gdb_sys_sched_getaffinity)
f9fa37b3 1288 return (enum gdb_syscall) syscall;
97dfe206 1289 else if (syscall >= 243 && syscall <= 247)
f9fa37b3 1290 return (enum gdb_syscall) (syscall + 2);
97dfe206 1291 else if (syscall >= 248 && syscall <= 253)
f9fa37b3 1292 return (enum gdb_syscall) (syscall + 4);
97dfe206 1293
f486487f 1294 return gdb_sys_no_syscall;
97dfe206
OJ
1295}
1296
1297/* Record all registers but PC register for process-record. */
1298
1299static int
1300arm_all_but_pc_registers_record (struct regcache *regcache)
1301{
1302 int i;
1303
1304 for (i = 0; i < ARM_PC_REGNUM; i++)
1305 {
1306 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1307 return -1;
1308 }
1309
1310 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1311 return -1;
1312
1313 return 0;
1314}
1315
1316/* Handler for arm system call instruction recording. */
1317
1318static int
1319arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1320{
1321 int ret = 0;
1322 enum gdb_syscall syscall_gdb;
1323
1324 syscall_gdb = arm_canonicalize_syscall (svc_number);
1325
f486487f 1326 if (syscall_gdb == gdb_sys_no_syscall)
97dfe206
OJ
1327 {
1328 printf_unfiltered (_("Process record and replay target doesn't "
1329 "support syscall number %s\n"),
1330 plongest (svc_number));
1331 return -1;
1332 }
1333
1334 if (syscall_gdb == gdb_sys_sigreturn
1335 || syscall_gdb == gdb_sys_rt_sigreturn)
1336 {
1337 if (arm_all_but_pc_registers_record (regcache))
1338 return -1;
1339 return 0;
1340 }
1341
1342 ret = record_linux_system_call (syscall_gdb, regcache,
1343 &arm_linux_record_tdep);
1344 if (ret != 0)
1345 return ret;
1346
1347 /* Record the return value of the system call. */
1348 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1349 return -1;
1350 /* Record LR. */
1351 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1352 return -1;
1353 /* Record CPSR. */
1354 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1355 return -1;
1356
1357 return 0;
1358}
1359
3343ef86
YQ
1360/* Implement the skip_trampoline_code gdbarch method. */
1361
1362static CORE_ADDR
1363arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1364{
1365 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1366
1367 if (target_pc != 0)
1368 return target_pc;
1369
1370 return find_solib_trampoline_target (frame, pc);
1371}
1372
97e03143
RE
1373static void
1374arm_linux_init_abi (struct gdbarch_info info,
1375 struct gdbarch *gdbarch)
1376{
8d85bacb 1377 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
05c0465e
SDJ
1378 static const char *const stap_register_prefixes[] = { "r", NULL };
1379 static const char *const stap_register_indirection_prefixes[] = { "[",
1380 NULL };
1381 static const char *const stap_register_indirection_suffixes[] = { "]",
1382 NULL };
97e03143
RE
1383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1384
a5ee0f0c
PA
1385 linux_init_abi (info, gdbarch);
1386
97e03143 1387 tdep->lowest_pc = 0x8000;
dcd4a3a4 1388 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
498b1f87 1389 {
c75a2cc8
DJ
1390 if (tdep->arm_abi == ARM_ABI_AAPCS)
1391 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1392 else
1393 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1394 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1395 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1396 }
2ef47cd0 1397 else
498b1f87 1398 {
c75a2cc8
DJ
1399 if (tdep->arm_abi == ARM_ABI_AAPCS)
1400 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1401 else
1402 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1403 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1404 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1405 }
66e810cd 1406 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1407 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1408 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1409
28e97307
DJ
1410 if (tdep->fp_model == ARM_FLOAT_AUTO)
1411 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1412
f8624c62
MGD
1413 switch (tdep->fp_model)
1414 {
1415 case ARM_FLOAT_FPA:
1416 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1417 break;
1418 case ARM_FLOAT_SOFT_FPA:
1419 case ARM_FLOAT_SOFT_VFP:
1420 case ARM_FLOAT_VFP:
1421 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1422 break;
1423 default:
1424 internal_error
1425 (__FILE__, __LINE__,
1426 _("arm_linux_init_abi: Floating point model not supported"));
1427 break;
1428 }
a6cdd8c5 1429 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1430
7aa1783e 1431 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1432 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1433
190dce09 1434 /* Single stepping. */
daddc3c1 1435 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1436
0e18d038 1437 /* Shared library handling. */
3343ef86 1438 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
bb41a796 1439 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1440
1441 /* Enable TLS support. */
1442 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1443 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1444
1445 tramp_frame_prepend_unwinder (gdbarch,
1446 &arm_linux_sigreturn_tramp_frame);
1447 tramp_frame_prepend_unwinder (gdbarch,
1448 &arm_linux_rt_sigreturn_tramp_frame);
1449 tramp_frame_prepend_unwinder (gdbarch,
1450 &arm_eabi_linux_sigreturn_tramp_frame);
1451 tramp_frame_prepend_unwinder (gdbarch,
1452 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f347ffc9
WN
1453 tramp_frame_prepend_unwinder (gdbarch,
1454 &thumb2_eabi_linux_sigreturn_tramp_frame);
1455 tramp_frame_prepend_unwinder (gdbarch,
1456 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1457 tramp_frame_prepend_unwinder (gdbarch,
1458 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1459 tramp_frame_prepend_unwinder (gdbarch,
1460 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1461
1462 /* Core file support. */
5aa82d05
AA
1463 set_gdbarch_iterate_over_regset_sections
1464 (gdbarch, arm_linux_iterate_over_regset_sections);
ef7e8358
UW
1465 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1466
cca44b1b
JB
1467 /* Displaced stepping. */
1468 set_gdbarch_displaced_step_copy_insn (gdbarch,
1469 arm_linux_displaced_step_copy_insn);
1470 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1471 set_gdbarch_displaced_step_free_closure (gdbarch,
1472 simple_displaced_step_free_closure);
906d60cf 1473 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
25b41d01 1474
72508ac0
PO
1475 /* Reversible debugging, process record. */
1476 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1477
55aa24fb 1478 /* SystemTap functions. */
05c0465e
SDJ
1479 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1480 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1481 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1482 stap_register_indirection_prefixes);
1483 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1484 stap_register_indirection_suffixes);
55aa24fb
SDJ
1485 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1486 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1487 set_gdbarch_stap_parse_special_token (gdbarch,
1488 arm_stap_parse_special_token);
1489
9f948660 1490 /* `catch syscall' */
458c8db8 1491 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
9f948660
SDJ
1492 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1493
72508ac0 1494 /* Syscall record. */
97dfe206
OJ
1495 tdep->arm_syscall_record = arm_linux_syscall_record;
1496
1497 /* Initialize the arm_linux_record_tdep. */
1498 /* These values are the size of the type that will be used in a system
1499 call. They are obtained from Linux Kernel source. */
1500 arm_linux_record_tdep.size_pointer
1501 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1502 arm_linux_record_tdep.size__old_kernel_stat = 32;
1503 arm_linux_record_tdep.size_tms = 16;
1504 arm_linux_record_tdep.size_loff_t = 8;
1505 arm_linux_record_tdep.size_flock = 16;
1506 arm_linux_record_tdep.size_oldold_utsname = 45;
1507 arm_linux_record_tdep.size_ustat = 20;
7571f7f2
MK
1508 arm_linux_record_tdep.size_old_sigaction = 16;
1509 arm_linux_record_tdep.size_old_sigset_t = 4;
97dfe206
OJ
1510 arm_linux_record_tdep.size_rlimit = 8;
1511 arm_linux_record_tdep.size_rusage = 72;
1512 arm_linux_record_tdep.size_timeval = 8;
1513 arm_linux_record_tdep.size_timezone = 8;
1514 arm_linux_record_tdep.size_old_gid_t = 2;
1515 arm_linux_record_tdep.size_old_uid_t = 2;
1516 arm_linux_record_tdep.size_fd_set = 128;
72aded86 1517 arm_linux_record_tdep.size_old_dirent = 268;
97dfe206
OJ
1518 arm_linux_record_tdep.size_statfs = 64;
1519 arm_linux_record_tdep.size_statfs64 = 84;
1520 arm_linux_record_tdep.size_sockaddr = 16;
1521 arm_linux_record_tdep.size_int
1522 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1523 arm_linux_record_tdep.size_long
1524 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1525 arm_linux_record_tdep.size_ulong
1526 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1527 arm_linux_record_tdep.size_msghdr = 28;
1528 arm_linux_record_tdep.size_itimerval = 16;
1529 arm_linux_record_tdep.size_stat = 88;
1530 arm_linux_record_tdep.size_old_utsname = 325;
1531 arm_linux_record_tdep.size_sysinfo = 64;
1532 arm_linux_record_tdep.size_msqid_ds = 88;
1533 arm_linux_record_tdep.size_shmid_ds = 84;
1534 arm_linux_record_tdep.size_new_utsname = 390;
1535 arm_linux_record_tdep.size_timex = 128;
1536 arm_linux_record_tdep.size_mem_dqinfo = 24;
1537 arm_linux_record_tdep.size_if_dqblk = 68;
1538 arm_linux_record_tdep.size_fs_quota_stat = 68;
1539 arm_linux_record_tdep.size_timespec = 8;
1540 arm_linux_record_tdep.size_pollfd = 8;
1541 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1542 arm_linux_record_tdep.size_knfsd_fh = 132;
1543 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
7571f7f2 1544 arm_linux_record_tdep.size_sigaction = 20;
97dfe206
OJ
1545 arm_linux_record_tdep.size_sigset_t = 8;
1546 arm_linux_record_tdep.size_siginfo_t = 128;
1547 arm_linux_record_tdep.size_cap_user_data_t = 12;
1548 arm_linux_record_tdep.size_stack_t = 12;
1549 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1550 arm_linux_record_tdep.size_stat64 = 96;
d625f9a9
MK
1551 arm_linux_record_tdep.size_gid_t = 4;
1552 arm_linux_record_tdep.size_uid_t = 4;
97dfe206
OJ
1553 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1554 arm_linux_record_tdep.size_flock64 = 24;
1555 arm_linux_record_tdep.size_user_desc = 16;
1556 arm_linux_record_tdep.size_io_event = 32;
1557 arm_linux_record_tdep.size_iocb = 64;
1558 arm_linux_record_tdep.size_epoll_event = 12;
1559 arm_linux_record_tdep.size_itimerspec
1560 = arm_linux_record_tdep.size_timespec * 2;
1561 arm_linux_record_tdep.size_mq_attr = 32;
97dfe206
OJ
1562 arm_linux_record_tdep.size_termios = 36;
1563 arm_linux_record_tdep.size_termios2 = 44;
1564 arm_linux_record_tdep.size_pid_t = 4;
1565 arm_linux_record_tdep.size_winsize = 8;
1566 arm_linux_record_tdep.size_serial_struct = 60;
1567 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1568 arm_linux_record_tdep.size_hayes_esp_config = 12;
1569 arm_linux_record_tdep.size_size_t = 4;
1570 arm_linux_record_tdep.size_iovec = 8;
b80d067f 1571 arm_linux_record_tdep.size_time_t = 4;
97dfe206
OJ
1572
1573 /* These values are the second argument of system call "sys_ioctl".
1574 They are obtained from Linux Kernel source. */
1575 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1576 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1577 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1578 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1579 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1580 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1581 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1582 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1583 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1584 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1585 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1586 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1587 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1588 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1589 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1590 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1591 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1592 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1593 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1594 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1595 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1596 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1597 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1598 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1599 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1600 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1601 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1602 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1603 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1604 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1605 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1606 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1607 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1608 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1609 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1610 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1611 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1612 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1613 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1614 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1615 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1616 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1617 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1618 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1619 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1620 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1621 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1622 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1623 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1624 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1625 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1626 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1627 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1628 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1629 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1630 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1631 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1632 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1633 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1634 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1635 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1636 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1637 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1638 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1639 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1640
1641 /* These values are the second argument of system call "sys_fcntl"
1642 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1643 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1644 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1645 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1646 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1647
1648 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1649 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1650 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1651 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
97e03143
RE
1652}
1653
63807e1d
PA
1654/* Provide a prototype to silence -Wmissing-prototypes. */
1655extern initialize_file_ftype _initialize_arm_linux_tdep;
1656
faf5f7ad
SB
1657void
1658_initialize_arm_linux_tdep (void)
1659{
05816f70
MK
1660 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1661 arm_linux_init_abi);
faf5f7ad 1662}
This page took 1.289826 seconds and 4 git commands to generate.