Don't store the inferior's exit code for --return-child-result in a print routine.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
9f948660 36#include "xml-syscall.h"
faf5f7ad 37
34e8f22d 38#include "arm-tdep.h"
cb587d83 39#include "arm-linux-tdep.h"
4aa995e1 40#include "linux-tdep.h"
0670c0aa 41#include "glibc-tdep.h"
cca44b1b
JB
42#include "arch-utils.h"
43#include "inferior.h"
44#include "gdbthread.h"
45#include "symfile.h"
a52e6aac 46
97dfe206
OJ
47#include "record-full.h"
48#include "linux-record.h"
49
55aa24fb
SDJ
50#include "cli/cli-utils.h"
51#include "stap-probe.h"
52#include "parser-defs.h"
53#include "user-regs.h"
54#include <ctype.h>
04a83fee 55#include "elf/common.h"
0e9f083f 56#include <string.h>
8e9d1a24 57
cb587d83
DJ
58extern int arm_apcs_32;
59
fdf39c9a
RE
60/* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
498b1f87 64 SIGTRAP, and wakes the debugger. */
66e810cd 65
948f8e3d 66static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 67
948f8e3d 68static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 69
c75a2cc8
DJ
70/* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
948f8e3d 76static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 77
948f8e3d 78static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
79
80/* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
948f8e3d 83static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 84
948f8e3d 85static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 86
177321bd
DJ
87/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
948f8e3d 91static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 92
948f8e3d 93static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 94
f8624c62
MGD
95/* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
7a5ea0d4 106#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
107#define ARM_LINUX_JB_PC_FPA 21
108#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 109
f38e884d 110/*
fdf39c9a
RE
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
f38e884d
SB
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 118 jump/call addresses until the last minute. The technique used is
f38e884d
SB
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
fdf39c9a
RE
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
f38e884d
SB
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
0963b4bd
MS
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
f38e884d
SB
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
0963b4bd 184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 201 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 202 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 205
0963b4bd 206 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
2a451106
KB
229/* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
edfb1a26
DJ
240/* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
8e9d1a24
DJ
244#define ARM_SET_R7_SIGRETURN 0xe3a07077
245#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246#define ARM_EABI_SYSCALL 0xef000000
2a451106 247
f1973203
MR
248/* OABI syscall restart trampoline, used for EABI executables too
249 whenever OABI support has been enabled in the kernel. */
250#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
251#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 252#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 253
8e9d1a24 254static void
a262aec2 255arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
256 struct trad_frame_cache *this_cache,
257 CORE_ADDR func, int regs_offset)
2a451106 258{
a262aec2 259 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
260 CORE_ADDR base = sp + regs_offset;
261 int i;
2a451106 262
8e9d1a24
DJ
263 for (i = 0; i < 16; i++)
264 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 265
8e9d1a24 266 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 267
8e9d1a24
DJ
268 /* The VFP or iWMMXt registers may be saved on the stack, but there's
269 no reliable way to restore them (yet). */
2a451106 270
8e9d1a24
DJ
271 /* Save a frame ID. */
272 trad_frame_set_id (this_cache, frame_id_build (sp, func));
273}
2a451106 274
edfb1a26
DJ
275/* There are a couple of different possible stack layouts that
276 we need to support.
277
278 Before version 2.6.18, the kernel used completely independent
279 layouts for non-RT and RT signals. For non-RT signals the stack
280 began directly with a struct sigcontext. For RT signals the stack
281 began with two redundant pointers (to the siginfo and ucontext),
282 and then the siginfo and ucontext.
283
284 As of version 2.6.18, the non-RT signal frame layout starts with
285 a ucontext and the RT signal frame starts with a siginfo and then
286 a ucontext. Also, the ucontext now has a designated save area
287 for coprocessor registers.
288
289 For RT signals, it's easy to tell the difference: we look for
290 pinfo, the pointer to the siginfo. If it has the expected
291 value, we have an old layout. If it doesn't, we have the new
292 layout.
293
294 For non-RT signals, it's a bit harder. We need something in one
295 layout or the other with a recognizable offset and value. We can't
296 use the return trampoline, because ARM usually uses SA_RESTORER,
297 in which case the stack return trampoline is not filled in.
298 We can't use the saved stack pointer, because sigaltstack might
299 be in use. So for now we guess the new layout... */
300
301/* There are three words (trap_no, error_code, oldmask) in
302 struct sigcontext before r0. */
303#define ARM_SIGCONTEXT_R0 0xc
304
305/* There are five words (uc_flags, uc_link, and three for uc_stack)
306 in the ucontext_t before the sigcontext. */
307#define ARM_UCONTEXT_SIGCONTEXT 0x14
308
309/* There are three elements in an rt_sigframe before the ucontext:
310 pinfo, puc, and info. The first two are pointers and the third
311 is a struct siginfo, with size 128 bytes. We could follow puc
312 to the ucontext, but it's simpler to skip the whole thing. */
313#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
314#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
315
316#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
317
318#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
319
8e9d1a24
DJ
320static void
321arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 322 struct frame_info *this_frame,
8e9d1a24
DJ
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
2a451106 325{
e17a4113
UW
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 329 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
330
331 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
333 ARM_UCONTEXT_SIGCONTEXT
334 + ARM_SIGCONTEXT_R0);
335 else
a262aec2 336 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 337 ARM_SIGCONTEXT_R0);
8e9d1a24 338}
2a451106 339
8e9d1a24
DJ
340static void
341arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 342 struct frame_info *this_frame,
8e9d1a24
DJ
343 struct trad_frame_cache *this_cache,
344 CORE_ADDR func)
345{
e17a4113
UW
346 struct gdbarch *gdbarch = get_frame_arch (this_frame);
347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 348 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 349 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
350
351 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 352 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
353 ARM_OLD_RT_SIGFRAME_UCONTEXT
354 + ARM_UCONTEXT_SIGCONTEXT
355 + ARM_SIGCONTEXT_R0);
356 else
a262aec2 357 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
358 ARM_NEW_RT_SIGFRAME_UCONTEXT
359 + ARM_UCONTEXT_SIGCONTEXT
360 + ARM_SIGCONTEXT_R0);
2a451106
KB
361}
362
f1973203
MR
363static void
364arm_linux_restart_syscall_init (const struct tramp_frame *self,
365 struct frame_info *this_frame,
366 struct trad_frame_cache *this_cache,
367 CORE_ADDR func)
368{
478fd957 369 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 370 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
371 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
372 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
373 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
374 int sp_offset;
375
376 /* There are two variants of this trampoline; with older kernels, the
377 stub is placed on the stack, while newer kernels use the stub from
378 the vector page. They are identical except that the older version
379 increments SP by 12 (to skip stored PC and the stub itself), while
380 the newer version increments SP only by 4 (just the stored PC). */
381 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
382 sp_offset = 4;
383 else
384 sp_offset = 12;
385
386 /* Update Thumb bit in CPSR. */
387 if (pc & 1)
388 cpsr |= t_bit;
389 else
390 cpsr &= ~t_bit;
f1973203 391
478fd957
UW
392 /* Remove Thumb bit from PC. */
393 pc = gdbarch_addr_bits_remove (gdbarch, pc);
394
395 /* Save previous register values. */
396 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
397 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
398 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
399
400 /* Save a frame ID. */
401 trad_frame_set_id (this_cache, frame_id_build (sp, func));
402}
403
8e9d1a24
DJ
404static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_LINUX_SIGRETURN_INSTR, -1 },
409 { TRAMP_SENTINEL_INSN }
410 },
411 arm_linux_sigreturn_init
412};
413
414static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
415 SIGTRAMP_FRAME,
416 4,
417 {
418 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
419 { TRAMP_SENTINEL_INSN }
420 },
421 arm_linux_rt_sigreturn_init
422};
423
424static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
425 SIGTRAMP_FRAME,
426 4,
427 {
428 { ARM_SET_R7_SIGRETURN, -1 },
429 { ARM_EABI_SYSCALL, -1 },
430 { TRAMP_SENTINEL_INSN }
431 },
432 arm_linux_sigreturn_init
433};
434
435static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
436 SIGTRAMP_FRAME,
437 4,
438 {
439 { ARM_SET_R7_RT_SIGRETURN, -1 },
440 { ARM_EABI_SYSCALL, -1 },
441 { TRAMP_SENTINEL_INSN }
442 },
443 arm_linux_rt_sigreturn_init
444};
445
f1973203
MR
446static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
447 NORMAL_FRAME,
448 4,
449 {
450 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
451 { ARM_LDR_PC_SP_12, -1 },
452 { TRAMP_SENTINEL_INSN }
453 },
454 arm_linux_restart_syscall_init
455};
456
478fd957
UW
457static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
458 NORMAL_FRAME,
459 4,
460 {
461 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
462 { ARM_LDR_PC_SP_4, -1 },
463 { TRAMP_SENTINEL_INSN }
464 },
465 arm_linux_restart_syscall_init
466};
467
cb587d83
DJ
468/* Core file and register set support. */
469
470#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
471
472void
473arm_linux_supply_gregset (const struct regset *regset,
474 struct regcache *regcache,
475 int regnum, const void *gregs_buf, size_t len)
476{
e17a4113
UW
477 struct gdbarch *gdbarch = get_regcache_arch (regcache);
478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cb587d83
DJ
479 const gdb_byte *gregs = gregs_buf;
480 int regno;
481 CORE_ADDR reg_pc;
482 gdb_byte pc_buf[INT_REGISTER_SIZE];
483
484 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
485 if (regnum == -1 || regnum == regno)
486 regcache_raw_supply (regcache, regno,
487 gregs + INT_REGISTER_SIZE * regno);
488
489 if (regnum == ARM_PS_REGNUM || regnum == -1)
490 {
491 if (arm_apcs_32)
492 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 493 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
494 else
495 regcache_raw_supply (regcache, ARM_PS_REGNUM,
496 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
497 }
498
499 if (regnum == ARM_PC_REGNUM || regnum == -1)
500 {
501 reg_pc = extract_unsigned_integer (gregs
502 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
503 INT_REGISTER_SIZE, byte_order);
504 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
505 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
506 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
507 }
508}
509
510void
511arm_linux_collect_gregset (const struct regset *regset,
512 const struct regcache *regcache,
513 int regnum, void *gregs_buf, size_t len)
514{
515 gdb_byte *gregs = gregs_buf;
516 int regno;
517
518 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
519 if (regnum == -1 || regnum == regno)
520 regcache_raw_collect (regcache, regno,
521 gregs + INT_REGISTER_SIZE * regno);
522
523 if (regnum == ARM_PS_REGNUM || regnum == -1)
524 {
525 if (arm_apcs_32)
526 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 527 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
528 else
529 regcache_raw_collect (regcache, ARM_PS_REGNUM,
530 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
531 }
532
533 if (regnum == ARM_PC_REGNUM || regnum == -1)
534 regcache_raw_collect (regcache, ARM_PC_REGNUM,
535 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
536}
537
538/* Support for register format used by the NWFPE FPA emulator. */
539
540#define typeNone 0x00
541#define typeSingle 0x01
542#define typeDouble 0x02
543#define typeExtended 0x03
544
545void
546supply_nwfpe_register (struct regcache *regcache, int regno,
547 const gdb_byte *regs)
548{
549 const gdb_byte *reg_data;
550 gdb_byte reg_tag;
551 gdb_byte buf[FP_REGISTER_SIZE];
552
553 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
554 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
555 memset (buf, 0, FP_REGISTER_SIZE);
556
557 switch (reg_tag)
558 {
559 case typeSingle:
560 memcpy (buf, reg_data, 4);
561 break;
562 case typeDouble:
563 memcpy (buf, reg_data + 4, 4);
564 memcpy (buf + 4, reg_data, 4);
565 break;
566 case typeExtended:
567 /* We want sign and exponent, then least significant bits,
568 then most significant. NWFPE does sign, most, least. */
569 memcpy (buf, reg_data, 4);
570 memcpy (buf + 4, reg_data + 8, 4);
571 memcpy (buf + 8, reg_data + 4, 4);
572 break;
573 default:
574 break;
575 }
576
577 regcache_raw_supply (regcache, regno, buf);
578}
579
580void
581collect_nwfpe_register (const struct regcache *regcache, int regno,
582 gdb_byte *regs)
583{
584 gdb_byte *reg_data;
585 gdb_byte reg_tag;
586 gdb_byte buf[FP_REGISTER_SIZE];
587
588 regcache_raw_collect (regcache, regno, buf);
589
590 /* NOTE drow/2006-06-07: This code uses the tag already in the
591 register buffer. I've preserved that when moving the code
592 from the native file to the target file. But this doesn't
593 always make sense. */
594
595 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
596 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
597
598 switch (reg_tag)
599 {
600 case typeSingle:
601 memcpy (reg_data, buf, 4);
602 break;
603 case typeDouble:
604 memcpy (reg_data, buf + 4, 4);
605 memcpy (reg_data + 4, buf, 4);
606 break;
607 case typeExtended:
608 memcpy (reg_data, buf, 4);
609 memcpy (reg_data + 4, buf + 8, 4);
610 memcpy (reg_data + 8, buf + 4, 4);
611 break;
612 default:
613 break;
614 }
615}
616
617void
618arm_linux_supply_nwfpe (const struct regset *regset,
619 struct regcache *regcache,
620 int regnum, const void *regs_buf, size_t len)
621{
622 const gdb_byte *regs = regs_buf;
623 int regno;
624
625 if (regnum == ARM_FPS_REGNUM || regnum == -1)
626 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
627 regs + NWFPE_FPSR_OFFSET);
628
629 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
630 if (regnum == -1 || regnum == regno)
631 supply_nwfpe_register (regcache, regno, regs);
632}
633
634void
635arm_linux_collect_nwfpe (const struct regset *regset,
636 const struct regcache *regcache,
637 int regnum, void *regs_buf, size_t len)
638{
639 gdb_byte *regs = regs_buf;
640 int regno;
641
642 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
643 if (regnum == -1 || regnum == regno)
644 collect_nwfpe_register (regcache, regno, regs);
645
646 if (regnum == ARM_FPS_REGNUM || regnum == -1)
647 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
648 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
649}
650
ef7e8358
UW
651/* Support VFP register format. */
652
653#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
654
655static void
656arm_linux_supply_vfp (const struct regset *regset,
657 struct regcache *regcache,
658 int regnum, const void *regs_buf, size_t len)
659{
660 const gdb_byte *regs = regs_buf;
661 int regno;
662
663 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
664 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
665
666 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
667 if (regnum == -1 || regnum == regno)
668 regcache_raw_supply (regcache, regno,
669 regs + (regno - ARM_D0_REGNUM) * 8);
670}
671
672static void
673arm_linux_collect_vfp (const struct regset *regset,
674 const struct regcache *regcache,
675 int regnum, void *regs_buf, size_t len)
676{
677 gdb_byte *regs = regs_buf;
678 int regno;
679
680 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
681 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
682
683 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
684 if (regnum == -1 || regnum == regno)
685 regcache_raw_collect (regcache, regno,
686 regs + (regno - ARM_D0_REGNUM) * 8);
687}
688
b7611c43
AA
689static const struct regset arm_linux_gregset =
690 {
691 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
692 };
693
694static const struct regset arm_linux_fpregset =
695 {
696 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
697 };
698
699static const struct regset arm_linux_vfpregset =
700 {
701 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
702 };
703
cb587d83
DJ
704/* Return the appropriate register set for the core section identified
705 by SECT_NAME and SECT_SIZE. */
706
707static const struct regset *
708arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
709 const char *sect_name, size_t sect_size)
710{
cb587d83
DJ
711 if (strcmp (sect_name, ".reg") == 0
712 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
b7611c43 713 return &arm_linux_gregset;
cb587d83
DJ
714
715 if (strcmp (sect_name, ".reg2") == 0
716 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
b7611c43 717 return &arm_linux_fpregset;
cb587d83 718
ef7e8358
UW
719 if (strcmp (sect_name, ".reg-arm-vfp") == 0
720 && sect_size == ARM_LINUX_SIZEOF_VFP)
b7611c43 721 return &arm_linux_vfpregset;
ef7e8358
UW
722
723 return NULL;
724}
725
726/* Core file register set sections. */
727
728static struct core_regset_section arm_linux_fpa_regset_sections[] =
729{
730 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
731 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
732 { NULL, 0}
733};
734
735static struct core_regset_section arm_linux_vfp_regset_sections[] =
736{
737 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
738 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
739 { NULL, 0}
740};
741
742/* Determine target description from core file. */
743
744static const struct target_desc *
745arm_linux_core_read_description (struct gdbarch *gdbarch,
746 struct target_ops *target,
747 bfd *abfd)
748{
749 CORE_ADDR arm_hwcap = 0;
750
751 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
752 return NULL;
753
754 if (arm_hwcap & HWCAP_VFP)
755 {
756 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
757 Neon with VFPv3-D32. */
758 if (arm_hwcap & HWCAP_NEON)
759 return tdesc_arm_with_neon;
760 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
761 return tdesc_arm_with_vfpv3;
762 else
763 return tdesc_arm_with_vfpv2;
764 }
765
cb587d83
DJ
766 return NULL;
767}
768
ef7e8358 769
25b41d01 770/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
771 return 1. In addition, set IS_THUMB depending on whether we
772 will return to ARM or Thumb code. Return 0 if it is not a
773 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
774static int
775arm_linux_sigreturn_return_addr (struct frame_info *frame,
776 unsigned long svc_number,
18819fa6 777 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
778{
779 /* Is this a sigreturn or rt_sigreturn syscall? */
780 if (svc_number == 119 || svc_number == 173)
781 {
782 if (get_frame_type (frame) == SIGTRAMP_FRAME)
783 {
18819fa6
UW
784 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
785 CORE_ADDR cpsr
786 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
787
788 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
789 *pc = frame_unwind_caller_pc (frame);
790 return 1;
791 }
792 }
793 return 0;
794}
795
9f948660
SDJ
796/* At a ptrace syscall-stop, return the syscall number. This either
797 comes from the SWI instruction (OABI) or from r7 (EABI).
798
799 When the function fails, it should return -1. */
800
801static LONGEST
802arm_linux_get_syscall_number (struct gdbarch *gdbarch,
803 ptid_t ptid)
804{
805 struct regcache *regs = get_thread_regcache (ptid);
806 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
807
808 ULONGEST pc;
809 ULONGEST cpsr;
810 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
811 int is_thumb;
812 ULONGEST svc_number = -1;
813
814 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
815 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
816 is_thumb = (cpsr & t_bit) != 0;
817
818 if (is_thumb)
819 {
820 regcache_cooked_read_unsigned (regs, 7, &svc_number);
821 }
822 else
823 {
824 enum bfd_endian byte_order_for_code =
825 gdbarch_byte_order_for_code (gdbarch);
826
827 /* PC gets incremented before the syscall-stop, so read the
828 previous instruction. */
829 unsigned long this_instr =
830 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
831
832 unsigned long svc_operand = (0x00ffffff & this_instr);
833
834 if (svc_operand)
835 {
836 /* OABI */
837 svc_number = svc_operand - 0x900000;
838 }
839 else
840 {
841 /* EABI */
842 regcache_cooked_read_unsigned (regs, 7, &svc_number);
843 }
844 }
845
846 return svc_number;
847}
848
25b41d01
YQ
849/* When FRAME is at a syscall instruction, return the PC of the next
850 instruction to be executed. */
851
852static CORE_ADDR
853arm_linux_syscall_next_pc (struct frame_info *frame)
854{
855 CORE_ADDR pc = get_frame_pc (frame);
856 CORE_ADDR return_addr = 0;
857 int is_thumb = arm_frame_is_thumb (frame);
858 ULONGEST svc_number = 0;
25b41d01
YQ
859
860 if (is_thumb)
861 {
862 svc_number = get_frame_register_unsigned (frame, 7);
18819fa6 863 return_addr = pc + 2;
25b41d01
YQ
864 }
865 else
866 {
867 struct gdbarch *gdbarch = get_frame_arch (frame);
868 enum bfd_endian byte_order_for_code =
869 gdbarch_byte_order_for_code (gdbarch);
870 unsigned long this_instr =
871 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
872
873 unsigned long svc_operand = (0x00ffffff & this_instr);
874 if (svc_operand) /* OABI. */
875 {
876 svc_number = svc_operand - 0x900000;
877 }
878 else /* EABI. */
879 {
880 svc_number = get_frame_register_unsigned (frame, 7);
881 }
18819fa6
UW
882
883 return_addr = pc + 4;
25b41d01
YQ
884 }
885
18819fa6 886 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
25b41d01 887
18819fa6 888 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 889 if (is_thumb)
18819fa6 890 return_addr |= 1;
25b41d01
YQ
891
892 return return_addr;
893}
894
895
daddc3c1
DJ
896/* Insert a single step breakpoint at the next executed instruction. */
897
63807e1d 898static int
daddc3c1
DJ
899arm_linux_software_single_step (struct frame_info *frame)
900{
a6d9a66e 901 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 902 struct address_space *aspace = get_frame_address_space (frame);
35f73cfc
UW
903 CORE_ADDR next_pc;
904
905 if (arm_deal_with_atomic_sequence (frame))
906 return 1;
907
908 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
daddc3c1
DJ
909
910 /* The Linux kernel offers some user-mode helpers in a high page. We can
911 not read this page (as of 2.6.23), and even if we could then we couldn't
912 set breakpoints in it, and even if we could then the atomic operations
913 would fail when interrupted. They are all called as functions and return
914 to the address in LR, so step to there instead. */
915 if (next_pc > 0xffff0000)
916 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
917
18819fa6 918 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
919
920 return 1;
921}
922
cca44b1b
JB
923/* Support for displaced stepping of Linux SVC instructions. */
924
925static void
6e39997a 926arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
927 struct regcache *regs,
928 struct displaced_step_closure *dsc)
929{
930 CORE_ADDR from = dsc->insn_addr;
931 ULONGEST apparent_pc;
932 int within_scratch;
933
934 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
935
936 within_scratch = (apparent_pc >= dsc->scratch_base
937 && apparent_pc < (dsc->scratch_base
938 + DISPLACED_MODIFIED_INSNS * 4 + 4));
939
940 if (debug_displaced)
941 {
942 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
943 "SVC step ", (unsigned long) apparent_pc);
944 if (within_scratch)
945 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
946 else
947 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
948 }
949
950 if (within_scratch)
951 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
952}
953
954static int
bd18283a
YQ
955arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
956 struct displaced_step_closure *dsc)
cca44b1b 957{
25b41d01
YQ
958 CORE_ADDR return_to = 0;
959
cca44b1b 960 struct frame_info *frame;
36073a92 961 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 962 int is_sigreturn = 0;
18819fa6 963 int is_thumb;
cca44b1b 964
cca44b1b
JB
965 frame = get_current_frame ();
966
25b41d01 967 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 968 &return_to, &is_thumb);
25b41d01 969 if (is_sigreturn)
cca44b1b 970 {
cca44b1b
JB
971 struct symtab_and_line sal;
972
973 if (debug_displaced)
974 fprintf_unfiltered (gdb_stdlog, "displaced: found "
0963b4bd 975 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
cca44b1b
JB
976 (unsigned long) get_frame_pc (frame));
977
cca44b1b 978 if (debug_displaced)
0963b4bd 979 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
cca44b1b
JB
980 "Setting momentary breakpoint.\n", (unsigned long) return_to);
981
8358c15c
JK
982 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
983 == NULL);
cca44b1b
JB
984
985 sal = find_pc_line (return_to, 0);
986 sal.pc = return_to;
987 sal.section = find_pc_overlay (return_to);
988 sal.explicit_pc = 1;
989
990 frame = get_prev_frame (frame);
991
992 if (frame)
993 {
8358c15c 994 inferior_thread ()->control.step_resume_breakpoint
cca44b1b
JB
995 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
996 bp_step_resume);
997
c70a6932
JK
998 /* set_momentary_breakpoint invalidates FRAME. */
999 frame = NULL;
1000
cca44b1b
JB
1001 /* We need to make sure we actually insert the momentary
1002 breakpoint set above. */
1003 insert_breakpoints ();
1004 }
1005 else if (debug_displaced)
1006 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1007 "frame to set momentary breakpoint for "
1008 "sigreturn/rt_sigreturn\n");
1009 }
1010 else if (debug_displaced)
1011 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1012 "SVC call not in signal trampoline frame\n");
25b41d01 1013
cca44b1b
JB
1014
1015 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1016 location, else nothing.
1017 Insn: unmodified svc.
1018 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1019 else leave pc alone. */
1020
cca44b1b
JB
1021
1022 dsc->cleanup = &arm_linux_cleanup_svc;
1023 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1024 instruction. */
1025 dsc->wrote_to_pc = 1;
1026
1027 return 0;
1028}
1029
1030
1031/* The following two functions implement single-stepping over calls to Linux
1032 kernel helper routines, which perform e.g. atomic operations on architecture
1033 variants which don't support them natively.
1034
1035 When this function is called, the PC will be pointing at the kernel helper
1036 (at an address inaccessible to GDB), and r14 will point to the return
1037 address. Displaced stepping always executes code in the copy area:
1038 so, make the copy-area instruction branch back to the kernel helper (the
1039 "from" address), and make r14 point to the breakpoint in the copy area. In
1040 that way, we regain control once the kernel helper returns, and can clean
1041 up appropriately (as if we had just returned from the kernel helper as it
1042 would have been called from the non-displaced location). */
1043
1044static void
6e39997a 1045cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
1046 struct regcache *regs,
1047 struct displaced_step_closure *dsc)
1048{
1049 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1050 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1051}
1052
1053static void
1054arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1055 CORE_ADDR to, struct regcache *regs,
1056 struct displaced_step_closure *dsc)
1057{
1058 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1059
1060 dsc->numinsns = 1;
1061 dsc->insn_addr = from;
1062 dsc->cleanup = &cleanup_kernel_helper_return;
1063 /* Say we wrote to the PC, else cleanup will set PC to the next
1064 instruction in the helper, which isn't helpful. */
1065 dsc->wrote_to_pc = 1;
1066
1067 /* Preparation: tmp[0] <- r14
1068 r14 <- <scratch space>+4
1069 *(<scratch space>+8) <- from
1070 Insn: ldr pc, [r14, #4]
1071 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1072
36073a92 1073 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1074 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1075 CANNOT_WRITE_PC);
1076 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1077
1078 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1079}
1080
1081/* Linux-specific displaced step instruction copying function. Detects when
1082 the program has stepped into a Linux kernel helper routine (which must be
1083 handled as a special case), falling back to arm_displaced_step_copy_insn()
1084 if it hasn't. */
1085
1086static struct displaced_step_closure *
1087arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1088 CORE_ADDR from, CORE_ADDR to,
1089 struct regcache *regs)
1090{
1091 struct displaced_step_closure *dsc
1092 = xmalloc (sizeof (struct displaced_step_closure));
1093
1094 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1095 stop at the return location. */
1096 if (from > 0xffff0000)
1097 {
1098 if (debug_displaced)
1099 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1100 "at %.8lx\n", (unsigned long) from);
1101
1102 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1103 }
1104 else
1105 {
cca44b1b
JB
1106 /* Override the default handling of SVC instructions. */
1107 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1108
b434a28f 1109 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1110 }
1111
1112 arm_displaced_init_closure (gdbarch, from, to, dsc);
1113
1114 return dsc;
1115}
1116
c248fc1d
SDJ
1117/* Implementation of `gdbarch_stap_is_single_operand', as defined in
1118 gdbarch.h. */
1119
55aa24fb
SDJ
1120static int
1121arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1122{
8d85bacb 1123 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
55aa24fb
SDJ
1124 || *s == '[' /* Register indirection or
1125 displacement. */
1126 || isalpha (*s)); /* Register value. */
1127}
1128
1129/* This routine is used to parse a special token in ARM's assembly.
1130
1131 The special tokens parsed by it are:
1132
1133 - Register displacement (e.g, [fp, #-8])
1134
1135 It returns one if the special token has been parsed successfully,
1136 or zero if the current token is not considered special. */
1137
1138static int
1139arm_stap_parse_special_token (struct gdbarch *gdbarch,
1140 struct stap_parse_info *p)
1141{
1142 if (*p->arg == '[')
1143 {
1144 /* Temporary holder for lookahead. */
1145 const char *tmp = p->arg;
a0bcdaa7 1146 char *endp;
55aa24fb
SDJ
1147 /* Used to save the register name. */
1148 const char *start;
1149 char *regname;
1150 int len, offset;
1151 int got_minus = 0;
1152 long displacement;
1153 struct stoken str;
1154
1155 ++tmp;
1156 start = tmp;
1157
1158 /* Register name. */
1159 while (isalnum (*tmp))
1160 ++tmp;
1161
1162 if (*tmp != ',')
1163 return 0;
1164
1165 len = tmp - start;
1166 regname = alloca (len + 2);
1167
1168 offset = 0;
1169 if (isdigit (*start))
1170 {
1171 /* If we are dealing with a register whose name begins with a
1172 digit, it means we should prefix the name with the letter
1173 `r', because GDB expects this name pattern. Otherwise (e.g.,
1174 we are dealing with the register `fp'), we don't need to
1175 add such a prefix. */
1176 regname[0] = 'r';
1177 offset = 1;
1178 }
1179
1180 strncpy (regname + offset, start, len);
1181 len += offset;
1182 regname[len] = '\0';
1183
1184 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1185 error (_("Invalid register name `%s' on expression `%s'."),
1186 regname, p->saved_arg);
1187
1188 ++tmp;
1189 tmp = skip_spaces_const (tmp);
8d85bacb
SDJ
1190 if (*tmp == '#' || *tmp == '$')
1191 ++tmp;
55aa24fb
SDJ
1192
1193 if (*tmp == '-')
1194 {
1195 ++tmp;
1196 got_minus = 1;
1197 }
1198
a0bcdaa7
PA
1199 displacement = strtol (tmp, &endp, 10);
1200 tmp = endp;
55aa24fb
SDJ
1201
1202 /* Skipping last `]'. */
1203 if (*tmp++ != ']')
1204 return 0;
1205
1206 /* The displacement. */
410a0ff2
SDJ
1207 write_exp_elt_opcode (&p->pstate, OP_LONG);
1208 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1209 write_exp_elt_longcst (&p->pstate, displacement);
1210 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 1211 if (got_minus)
410a0ff2 1212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
1213
1214 /* The register name. */
410a0ff2 1215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
1216 str.ptr = regname;
1217 str.length = len;
410a0ff2
SDJ
1218 write_exp_string (&p->pstate, str);
1219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb 1220
410a0ff2 1221 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
1222
1223 /* Casting to the expected type. */
410a0ff2
SDJ
1224 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1225 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1226 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 1227
410a0ff2 1228 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
1229
1230 p->arg = tmp;
1231 }
1232 else
1233 return 0;
1234
1235 return 1;
1236}
1237
97dfe206
OJ
1238/* ARM process record-replay constructs: syscall, signal etc. */
1239
1240struct linux_record_tdep arm_linux_record_tdep;
1241
1242/* arm_canonicalize_syscall maps from the native arm Linux set
1243 of syscall ids into a canonical set of syscall ids used by
1244 process record. */
1245
1246static enum gdb_syscall
1247arm_canonicalize_syscall (int syscall)
1248{
1249 enum { sys_process_vm_writev = 377 };
1250
1251 if (syscall <= gdb_sys_sched_getaffinity)
1252 return syscall;
1253 else if (syscall >= 243 && syscall <= 247)
1254 return syscall + 2;
1255 else if (syscall >= 248 && syscall <= 253)
1256 return syscall + 4;
1257
1258 return -1;
1259}
1260
1261/* Record all registers but PC register for process-record. */
1262
1263static int
1264arm_all_but_pc_registers_record (struct regcache *regcache)
1265{
1266 int i;
1267
1268 for (i = 0; i < ARM_PC_REGNUM; i++)
1269 {
1270 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1271 return -1;
1272 }
1273
1274 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1275 return -1;
1276
1277 return 0;
1278}
1279
1280/* Handler for arm system call instruction recording. */
1281
1282static int
1283arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1284{
1285 int ret = 0;
1286 enum gdb_syscall syscall_gdb;
1287
1288 syscall_gdb = arm_canonicalize_syscall (svc_number);
1289
1290 if (syscall_gdb < 0)
1291 {
1292 printf_unfiltered (_("Process record and replay target doesn't "
1293 "support syscall number %s\n"),
1294 plongest (svc_number));
1295 return -1;
1296 }
1297
1298 if (syscall_gdb == gdb_sys_sigreturn
1299 || syscall_gdb == gdb_sys_rt_sigreturn)
1300 {
1301 if (arm_all_but_pc_registers_record (regcache))
1302 return -1;
1303 return 0;
1304 }
1305
1306 ret = record_linux_system_call (syscall_gdb, regcache,
1307 &arm_linux_record_tdep);
1308 if (ret != 0)
1309 return ret;
1310
1311 /* Record the return value of the system call. */
1312 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1313 return -1;
1314 /* Record LR. */
1315 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1316 return -1;
1317 /* Record CPSR. */
1318 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1319 return -1;
1320
1321 return 0;
1322}
1323
97e03143
RE
1324static void
1325arm_linux_init_abi (struct gdbarch_info info,
1326 struct gdbarch *gdbarch)
1327{
8d85bacb 1328 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
05c0465e
SDJ
1329 static const char *const stap_register_prefixes[] = { "r", NULL };
1330 static const char *const stap_register_indirection_prefixes[] = { "[",
1331 NULL };
1332 static const char *const stap_register_indirection_suffixes[] = { "]",
1333 NULL };
97e03143
RE
1334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1335
a5ee0f0c
PA
1336 linux_init_abi (info, gdbarch);
1337
97e03143 1338 tdep->lowest_pc = 0x8000;
2ef47cd0 1339 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 1340 {
c75a2cc8
DJ
1341 if (tdep->arm_abi == ARM_ABI_AAPCS)
1342 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1343 else
1344 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1345 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1346 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1347 }
2ef47cd0 1348 else
498b1f87 1349 {
c75a2cc8
DJ
1350 if (tdep->arm_abi == ARM_ABI_AAPCS)
1351 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1352 else
1353 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1354 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1355 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1356 }
66e810cd 1357 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1358 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1359 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1360
28e97307
DJ
1361 if (tdep->fp_model == ARM_FLOAT_AUTO)
1362 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1363
f8624c62
MGD
1364 switch (tdep->fp_model)
1365 {
1366 case ARM_FLOAT_FPA:
1367 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1368 break;
1369 case ARM_FLOAT_SOFT_FPA:
1370 case ARM_FLOAT_SOFT_VFP:
1371 case ARM_FLOAT_VFP:
1372 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1373 break;
1374 default:
1375 internal_error
1376 (__FILE__, __LINE__,
1377 _("arm_linux_init_abi: Floating point model not supported"));
1378 break;
1379 }
a6cdd8c5 1380 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1381
7aa1783e 1382 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1383 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1384
190dce09 1385 /* Single stepping. */
daddc3c1 1386 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1387
0e18d038 1388 /* Shared library handling. */
0e18d038 1389 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
bb41a796 1390 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1391
1392 /* Enable TLS support. */
1393 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1394 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1395
1396 tramp_frame_prepend_unwinder (gdbarch,
1397 &arm_linux_sigreturn_tramp_frame);
1398 tramp_frame_prepend_unwinder (gdbarch,
1399 &arm_linux_rt_sigreturn_tramp_frame);
1400 tramp_frame_prepend_unwinder (gdbarch,
1401 &arm_eabi_linux_sigreturn_tramp_frame);
1402 tramp_frame_prepend_unwinder (gdbarch,
1403 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1404 tramp_frame_prepend_unwinder (gdbarch,
1405 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1406 tramp_frame_prepend_unwinder (gdbarch,
1407 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1408
1409 /* Core file support. */
1410 set_gdbarch_regset_from_core_section (gdbarch,
1411 arm_linux_regset_from_core_section);
ef7e8358
UW
1412 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1413
1414 if (tdep->have_vfp_registers)
1415 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1416 else if (tdep->have_fpa_registers)
1417 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
4aa995e1
PA
1418
1419 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
cca44b1b
JB
1420
1421 /* Displaced stepping. */
1422 set_gdbarch_displaced_step_copy_insn (gdbarch,
1423 arm_linux_displaced_step_copy_insn);
1424 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1425 set_gdbarch_displaced_step_free_closure (gdbarch,
1426 simple_displaced_step_free_closure);
1427 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
25b41d01 1428
72508ac0
PO
1429 /* Reversible debugging, process record. */
1430 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1431
55aa24fb 1432 /* SystemTap functions. */
05c0465e
SDJ
1433 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1434 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1435 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1436 stap_register_indirection_prefixes);
1437 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1438 stap_register_indirection_suffixes);
55aa24fb
SDJ
1439 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1440 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1441 set_gdbarch_stap_parse_special_token (gdbarch,
1442 arm_stap_parse_special_token);
1443
25b41d01 1444 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
72508ac0 1445
9f948660
SDJ
1446 /* `catch syscall' */
1447 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1448 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1449
72508ac0 1450 /* Syscall record. */
97dfe206
OJ
1451 tdep->arm_syscall_record = arm_linux_syscall_record;
1452
1453 /* Initialize the arm_linux_record_tdep. */
1454 /* These values are the size of the type that will be used in a system
1455 call. They are obtained from Linux Kernel source. */
1456 arm_linux_record_tdep.size_pointer
1457 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1458 arm_linux_record_tdep.size__old_kernel_stat = 32;
1459 arm_linux_record_tdep.size_tms = 16;
1460 arm_linux_record_tdep.size_loff_t = 8;
1461 arm_linux_record_tdep.size_flock = 16;
1462 arm_linux_record_tdep.size_oldold_utsname = 45;
1463 arm_linux_record_tdep.size_ustat = 20;
1464 arm_linux_record_tdep.size_old_sigaction = 140;
1465 arm_linux_record_tdep.size_old_sigset_t = 128;
1466 arm_linux_record_tdep.size_rlimit = 8;
1467 arm_linux_record_tdep.size_rusage = 72;
1468 arm_linux_record_tdep.size_timeval = 8;
1469 arm_linux_record_tdep.size_timezone = 8;
1470 arm_linux_record_tdep.size_old_gid_t = 2;
1471 arm_linux_record_tdep.size_old_uid_t = 2;
1472 arm_linux_record_tdep.size_fd_set = 128;
1473 arm_linux_record_tdep.size_dirent = 268;
1474 arm_linux_record_tdep.size_dirent64 = 276;
1475 arm_linux_record_tdep.size_statfs = 64;
1476 arm_linux_record_tdep.size_statfs64 = 84;
1477 arm_linux_record_tdep.size_sockaddr = 16;
1478 arm_linux_record_tdep.size_int
1479 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1480 arm_linux_record_tdep.size_long
1481 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1482 arm_linux_record_tdep.size_ulong
1483 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1484 arm_linux_record_tdep.size_msghdr = 28;
1485 arm_linux_record_tdep.size_itimerval = 16;
1486 arm_linux_record_tdep.size_stat = 88;
1487 arm_linux_record_tdep.size_old_utsname = 325;
1488 arm_linux_record_tdep.size_sysinfo = 64;
1489 arm_linux_record_tdep.size_msqid_ds = 88;
1490 arm_linux_record_tdep.size_shmid_ds = 84;
1491 arm_linux_record_tdep.size_new_utsname = 390;
1492 arm_linux_record_tdep.size_timex = 128;
1493 arm_linux_record_tdep.size_mem_dqinfo = 24;
1494 arm_linux_record_tdep.size_if_dqblk = 68;
1495 arm_linux_record_tdep.size_fs_quota_stat = 68;
1496 arm_linux_record_tdep.size_timespec = 8;
1497 arm_linux_record_tdep.size_pollfd = 8;
1498 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1499 arm_linux_record_tdep.size_knfsd_fh = 132;
1500 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1501 arm_linux_record_tdep.size_sigaction = 140;
1502 arm_linux_record_tdep.size_sigset_t = 8;
1503 arm_linux_record_tdep.size_siginfo_t = 128;
1504 arm_linux_record_tdep.size_cap_user_data_t = 12;
1505 arm_linux_record_tdep.size_stack_t = 12;
1506 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1507 arm_linux_record_tdep.size_stat64 = 96;
1508 arm_linux_record_tdep.size_gid_t = 2;
1509 arm_linux_record_tdep.size_uid_t = 2;
1510 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1511 arm_linux_record_tdep.size_flock64 = 24;
1512 arm_linux_record_tdep.size_user_desc = 16;
1513 arm_linux_record_tdep.size_io_event = 32;
1514 arm_linux_record_tdep.size_iocb = 64;
1515 arm_linux_record_tdep.size_epoll_event = 12;
1516 arm_linux_record_tdep.size_itimerspec
1517 = arm_linux_record_tdep.size_timespec * 2;
1518 arm_linux_record_tdep.size_mq_attr = 32;
1519 arm_linux_record_tdep.size_siginfo = 128;
1520 arm_linux_record_tdep.size_termios = 36;
1521 arm_linux_record_tdep.size_termios2 = 44;
1522 arm_linux_record_tdep.size_pid_t = 4;
1523 arm_linux_record_tdep.size_winsize = 8;
1524 arm_linux_record_tdep.size_serial_struct = 60;
1525 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1526 arm_linux_record_tdep.size_hayes_esp_config = 12;
1527 arm_linux_record_tdep.size_size_t = 4;
1528 arm_linux_record_tdep.size_iovec = 8;
1529
1530 /* These values are the second argument of system call "sys_ioctl".
1531 They are obtained from Linux Kernel source. */
1532 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1533 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1534 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1535 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1536 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1537 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1538 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1539 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1540 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1541 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1542 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1543 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1544 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1545 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1546 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1547 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1548 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1549 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1550 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1551 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1552 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1553 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1554 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1555 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1556 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1557 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1558 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1559 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1560 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1561 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1562 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1563 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1564 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1565 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1566 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1567 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1568 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1569 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1570 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1571 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1572 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1573 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1574 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1575 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1576 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1577 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1578 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1579 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1580 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1581 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1582 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1583 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1584 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1585 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1586 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1587 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1588 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1589 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1590 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1591 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1592 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1593 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1594 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1595 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1596 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1597
1598 /* These values are the second argument of system call "sys_fcntl"
1599 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1600 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1601 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1602 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1603 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1604
1605 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1606 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1607 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1608 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
97e03143
RE
1609}
1610
63807e1d
PA
1611/* Provide a prototype to silence -Wmissing-prototypes. */
1612extern initialize_file_ftype _initialize_arm_linux_tdep;
1613
faf5f7ad
SB
1614void
1615_initialize_arm_linux_tdep (void)
1616{
05816f70
MK
1617 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1618 arm_linux_init_abi);
faf5f7ad 1619}
This page took 1.333376 seconds and 4 git commands to generate.