Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
b6ba6518 KB |
2 | Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, |
3 | 2001 Free Software Foundation, Inc. | |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "symfile.h" | |
28 | #include "gdb_string.h" | |
29 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
e8b09175 | 30 | #include "dis-asm.h" /* For register flavors. */ |
30f6df08 | 31 | #include <ctype.h> /* for isupper () */ |
4e052eda | 32 | #include "regcache.h" |
d16aafd8 | 33 | #include "doublest.h" |
c906108c | 34 | |
2a451106 KB |
35 | /* Each OS has a different mechanism for accessing the various |
36 | registers stored in the sigcontext structure. | |
37 | ||
38 | SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or | |
39 | function pointer) which may be used to determine the addresses | |
40 | of the various saved registers in the sigcontext structure. | |
41 | ||
42 | For the ARM target, there are three parameters to this function. | |
43 | The first is the pc value of the frame under consideration, the | |
44 | second the stack pointer of this frame, and the last is the | |
45 | register number to fetch. | |
46 | ||
47 | If the tm.h file does not define this macro, then it's assumed that | |
48 | no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to | |
49 | be 0. | |
50 | ||
51 | When it comes time to multi-arching this code, see the identically | |
52 | named machinery in ia64-tdep.c for an example of how it could be | |
53 | done. It should not be necessary to modify the code below where | |
54 | this macro is used. */ | |
55 | ||
3bb04bdd AC |
56 | #ifdef SIGCONTEXT_REGISTER_ADDRESS |
57 | #ifndef SIGCONTEXT_REGISTER_ADDRESS_P | |
58 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 1 | |
59 | #endif | |
60 | #else | |
61 | #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0 | |
62 | #define SIGCONTEXT_REGISTER_ADDRESS_P() 0 | |
2a451106 KB |
63 | #endif |
64 | ||
ed9a39eb JM |
65 | extern void _initialize_arm_tdep (void); |
66 | ||
bc90b915 FN |
67 | /* Number of different reg name sets (options). */ |
68 | static int num_flavor_options; | |
69 | ||
70 | /* We have more registers than the disassembler as gdb can print the value | |
71 | of special registers as well. | |
72 | The general register names are overwritten by whatever is being used by | |
73 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ | |
74 | ||
75 | /* Initial value: Register names used in ARM's ISA documentation. */ | |
76 | static char * arm_register_name_strings[] = | |
da59e081 JM |
77 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
78 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
79 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
80 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
81 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
82 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
bc90b915 FN |
83 | "fps", "cpsr" }; /* 24 25 */ |
84 | char **arm_register_names = arm_register_name_strings; | |
ed9a39eb | 85 | |
bc90b915 | 86 | /* Valid register name flavors. */ |
53904c9e | 87 | static const char **valid_flavors; |
ed9a39eb | 88 | |
bc90b915 | 89 | /* Disassembly flavor to use. Default to "std" register names. */ |
53904c9e | 90 | static const char *disassembly_flavor; |
bc90b915 | 91 | static int current_option; /* Index to that option in the opcodes table. */ |
96baa820 | 92 | |
ed9a39eb JM |
93 | /* This is used to keep the bfd arch_info in sync with the disassembly |
94 | flavor. */ | |
95 | static void set_disassembly_flavor_sfunc(char *, int, | |
96 | struct cmd_list_element *); | |
97 | static void set_disassembly_flavor (void); | |
98 | ||
99 | static void convert_from_extended (void *ptr, void *dbl); | |
100 | ||
101 | /* Define other aspects of the stack frame. We keep the offsets of | |
102 | all saved registers, 'cause we need 'em a lot! We also keep the | |
103 | current size of the stack frame, and the offset of the frame | |
104 | pointer from the stack pointer (for frameless functions, and when | |
105 | we're still in the prologue of a function with a frame) */ | |
106 | ||
107 | struct frame_extra_info | |
108 | { | |
109 | struct frame_saved_regs fsr; | |
110 | int framesize; | |
111 | int frameoffset; | |
112 | int framereg; | |
113 | }; | |
114 | ||
bc90b915 FN |
115 | /* Addresses for calling Thumb functions have the bit 0 set. |
116 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
117 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
118 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
119 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
120 | ||
ed9a39eb JM |
121 | /* Will a function return an aggregate type in memory or in a |
122 | register? Return 0 if an aggregate type can be returned in a | |
123 | register, 1 if it must be returned in memory. */ | |
085dd6e6 | 124 | |
c906108c | 125 | int |
ed9a39eb | 126 | arm_use_struct_convention (int gcc_p, struct type *type) |
c906108c | 127 | { |
ed9a39eb JM |
128 | int nRc; |
129 | register enum type_code code; | |
130 | ||
131 | /* In the ARM ABI, "integer" like aggregate types are returned in | |
132 | registers. For an aggregate type to be integer like, its size | |
133 | must be less than or equal to REGISTER_SIZE and the offset of | |
134 | each addressable subfield must be zero. Note that bit fields are | |
135 | not addressable, and all addressable subfields of unions always | |
136 | start at offset zero. | |
137 | ||
138 | This function is based on the behaviour of GCC 2.95.1. | |
139 | See: gcc/arm.c: arm_return_in_memory() for details. | |
140 | ||
141 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
142 | parameters correctly for a function returning the following | |
143 | structure: struct { float f;}; This should be returned in memory, | |
144 | not a register. Richard Earnshaw sent me a patch, but I do not | |
145 | know of any way to detect if a function like the above has been | |
146 | compiled with the correct calling convention. */ | |
147 | ||
148 | /* All aggregate types that won't fit in a register must be returned | |
149 | in memory. */ | |
150 | if (TYPE_LENGTH (type) > REGISTER_SIZE) | |
151 | { | |
152 | return 1; | |
153 | } | |
154 | ||
155 | /* The only aggregate types that can be returned in a register are | |
156 | structs and unions. Arrays must be returned in memory. */ | |
157 | code = TYPE_CODE (type); | |
158 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
159 | { | |
160 | return 1; | |
161 | } | |
162 | ||
163 | /* Assume all other aggregate types can be returned in a register. | |
164 | Run a check for structures, unions and arrays. */ | |
165 | nRc = 0; | |
166 | ||
167 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
168 | { | |
169 | int i; | |
170 | /* Need to check if this struct/union is "integer" like. For | |
171 | this to be true, its size must be less than or equal to | |
172 | REGISTER_SIZE and the offset of each addressable subfield | |
173 | must be zero. Note that bit fields are not addressable, and | |
174 | unions always start at offset zero. If any of the subfields | |
175 | is a floating point type, the struct/union cannot be an | |
176 | integer type. */ | |
177 | ||
178 | /* For each field in the object, check: | |
179 | 1) Is it FP? --> yes, nRc = 1; | |
180 | 2) Is it addressable (bitpos != 0) and | |
181 | not packed (bitsize == 0)? | |
182 | --> yes, nRc = 1 | |
183 | */ | |
184 | ||
185 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
186 | { | |
187 | enum type_code field_type_code; | |
188 | field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); | |
189 | ||
190 | /* Is it a floating point type field? */ | |
191 | if (field_type_code == TYPE_CODE_FLT) | |
192 | { | |
193 | nRc = 1; | |
194 | break; | |
195 | } | |
196 | ||
197 | /* If bitpos != 0, then we have to care about it. */ | |
198 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
199 | { | |
200 | /* Bitfields are not addressable. If the field bitsize is | |
201 | zero, then the field is not packed. Hence it cannot be | |
202 | a bitfield or any other packed type. */ | |
203 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
204 | { | |
205 | nRc = 1; | |
206 | break; | |
207 | } | |
208 | } | |
209 | } | |
210 | } | |
211 | ||
212 | return nRc; | |
c906108c SS |
213 | } |
214 | ||
215 | int | |
ed9a39eb | 216 | arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) |
c906108c | 217 | { |
c906108c SS |
218 | return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); |
219 | } | |
220 | ||
221 | /* Set to true if the 32-bit mode is in use. */ | |
222 | ||
223 | int arm_apcs_32 = 1; | |
224 | ||
ed9a39eb JM |
225 | /* Flag set by arm_fix_call_dummy that tells whether the target |
226 | function is a Thumb function. This flag is checked by | |
227 | arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and | |
228 | its use in valops.c) to pass the function address as an additional | |
229 | parameter. */ | |
c906108c SS |
230 | |
231 | static int target_is_thumb; | |
232 | ||
ed9a39eb JM |
233 | /* Flag set by arm_fix_call_dummy that tells whether the calling |
234 | function is a Thumb function. This flag is checked by | |
235 | arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ | |
c906108c SS |
236 | |
237 | static int caller_is_thumb; | |
238 | ||
ed9a39eb JM |
239 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
240 | function. */ | |
c906108c SS |
241 | |
242 | int | |
2a451106 | 243 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 244 | { |
c5aa993b | 245 | struct minimal_symbol *sym; |
c906108c | 246 | |
ed9a39eb | 247 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
248 | if (IS_THUMB_ADDR (memaddr)) |
249 | return 1; | |
250 | ||
ed9a39eb | 251 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
252 | sym = lookup_minimal_symbol_by_pc (memaddr); |
253 | if (sym) | |
254 | { | |
c5aa993b | 255 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
256 | } |
257 | else | |
ed9a39eb JM |
258 | { |
259 | return 0; | |
260 | } | |
c906108c SS |
261 | } |
262 | ||
ed9a39eb JM |
263 | /* Determine if the program counter specified in MEMADDR is in a call |
264 | dummy being called from a Thumb function. */ | |
c906108c SS |
265 | |
266 | int | |
2a451106 | 267 | arm_pc_is_thumb_dummy (CORE_ADDR memaddr) |
c906108c | 268 | { |
c5aa993b | 269 | CORE_ADDR sp = read_sp (); |
c906108c | 270 | |
dfcd3bfb JM |
271 | /* FIXME: Until we switch for the new call dummy macros, this heuristic |
272 | is the best we can do. We are trying to determine if the pc is on | |
273 | the stack, which (hopefully) will only happen in a call dummy. | |
274 | We hope the current stack pointer is not so far alway from the dummy | |
275 | frame location (true if we have not pushed large data structures or | |
276 | gone too many levels deep) and that our 1024 is not enough to consider | |
277 | code regions as part of the stack (true for most practical purposes) */ | |
278 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) | |
c906108c SS |
279 | return caller_is_thumb; |
280 | else | |
281 | return 0; | |
282 | } | |
283 | ||
284 | CORE_ADDR | |
ed9a39eb | 285 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c SS |
286 | { |
287 | if (arm_pc_is_thumb (val)) | |
288 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
289 | else | |
290 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
291 | } | |
292 | ||
293 | CORE_ADDR | |
ed9a39eb | 294 | arm_saved_pc_after_call (struct frame_info *frame) |
c906108c SS |
295 | { |
296 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); | |
297 | } | |
298 | ||
392a587b | 299 | int |
ed9a39eb | 300 | arm_frameless_function_invocation (struct frame_info *fi) |
392a587b | 301 | { |
392a587b | 302 | CORE_ADDR func_start, after_prologue; |
96baa820 | 303 | int frameless; |
ed9a39eb | 304 | |
392a587b | 305 | func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); |
7be570e7 | 306 | after_prologue = SKIP_PROLOGUE (func_start); |
ed9a39eb | 307 | |
96baa820 | 308 | /* There are some frameless functions whose first two instructions |
ed9a39eb JM |
309 | follow the standard APCS form, in which case after_prologue will |
310 | be func_start + 8. */ | |
311 | ||
96baa820 | 312 | frameless = (after_prologue < func_start + 12); |
392a587b JM |
313 | return frameless; |
314 | } | |
315 | ||
c906108c | 316 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
317 | push {r7, lr} |
318 | add sp, sp, #-28 | |
319 | add r7, sp, #12 | |
c906108c | 320 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
321 | mov r7, sp |
322 | ||
323 | or like this: | |
324 | push {r7, lr} | |
325 | mov r7, sp | |
326 | sub sp, #12 | |
327 | ||
328 | or, on tpcs, like this: | |
329 | sub sp,#16 | |
330 | push {r7, lr} | |
331 | (many instructions) | |
332 | mov r7, sp | |
333 | sub sp, #12 | |
334 | ||
335 | There is always one instruction of three classes: | |
336 | 1 - push | |
337 | 2 - setting of r7 | |
338 | 3 - adjusting of sp | |
339 | ||
340 | When we have found at least one of each class we are done with the prolog. | |
341 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 342 | */ |
c906108c SS |
343 | |
344 | static CORE_ADDR | |
c7885828 | 345 | thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) |
c906108c SS |
346 | { |
347 | CORE_ADDR current_pc; | |
da59e081 JM |
348 | int findmask = 0; /* findmask: |
349 | bit 0 - push { rlist } | |
350 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
351 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
352 | */ | |
c906108c | 353 | |
c7885828 | 354 | for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2) |
c906108c SS |
355 | { |
356 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
357 | ||
da59e081 JM |
358 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
359 | { | |
360 | findmask |= 1; /* push found */ | |
361 | } | |
362 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ | |
363 | { | |
364 | if ((findmask & 1) == 0) /* before push ? */ | |
365 | continue; | |
366 | else | |
367 | findmask |= 4; /* add/sub sp found */ | |
368 | } | |
369 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
370 | { | |
371 | findmask |= 2; /* setting of r7 found */ | |
372 | } | |
373 | else if (insn == 0x466f) /* mov r7, sp */ | |
374 | { | |
375 | findmask |= 2; /* setting of r7 found */ | |
376 | } | |
377 | else | |
378 | continue; /* something in the prolog that we don't care about or some | |
379 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
380 | } |
381 | ||
382 | return current_pc; | |
383 | } | |
384 | ||
ed9a39eb JM |
385 | /* The APCS (ARM Procedure Call Standard) defines the following |
386 | prologue: | |
c906108c | 387 | |
c5aa993b JM |
388 | mov ip, sp |
389 | [stmfd sp!, {a1,a2,a3,a4}] | |
390 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
391 | [stfe f7, [sp, #-12]!] |
392 | [stfe f6, [sp, #-12]!] | |
393 | [stfe f5, [sp, #-12]!] | |
394 | [stfe f4, [sp, #-12]!] | |
395 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c SS |
396 | |
397 | CORE_ADDR | |
ed9a39eb | 398 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
399 | { |
400 | unsigned long inst; | |
401 | CORE_ADDR skip_pc; | |
402 | CORE_ADDR func_addr, func_end; | |
403 | struct symtab_and_line sal; | |
404 | ||
96baa820 | 405 | /* See what the symbol table says. */ |
ed9a39eb | 406 | |
c5aa993b | 407 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
c906108c SS |
408 | { |
409 | sal = find_pc_line (func_addr, 0); | |
96baa820 | 410 | if ((sal.line != 0) && (sal.end < func_end)) |
c906108c SS |
411 | return sal.end; |
412 | } | |
413 | ||
414 | /* Check if this is Thumb code. */ | |
415 | if (arm_pc_is_thumb (pc)) | |
c7885828 | 416 | return thumb_skip_prologue (pc, func_end); |
c906108c SS |
417 | |
418 | /* Can't find the prologue end in the symbol table, try it the hard way | |
419 | by disassembling the instructions. */ | |
420 | skip_pc = pc; | |
421 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 422 | if (inst != 0xe1a0c00d) /* mov ip, sp */ |
c906108c SS |
423 | return pc; |
424 | ||
425 | skip_pc += 4; | |
426 | inst = read_memory_integer (skip_pc, 4); | |
c5aa993b | 427 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
c906108c SS |
428 | { |
429 | skip_pc += 4; | |
430 | inst = read_memory_integer (skip_pc, 4); | |
431 | } | |
432 | ||
c5aa993b | 433 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ |
c906108c SS |
434 | return pc; |
435 | ||
436 | skip_pc += 4; | |
437 | inst = read_memory_integer (skip_pc, 4); | |
438 | ||
439 | /* Any insns after this point may float into the code, if it makes | |
ed9a39eb JM |
440 | for better instruction scheduling, so we skip them only if we |
441 | find them, but still consdier the function to be frame-ful. */ | |
c906108c | 442 | |
ed9a39eb JM |
443 | /* We may have either one sfmfd instruction here, or several stfe |
444 | insns, depending on the version of floating point code we | |
445 | support. */ | |
c5aa993b | 446 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ |
c906108c SS |
447 | { |
448 | skip_pc += 4; | |
449 | inst = read_memory_integer (skip_pc, 4); | |
450 | } | |
451 | else | |
452 | { | |
c5aa993b JM |
453 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ |
454 | { | |
455 | skip_pc += 4; | |
456 | inst = read_memory_integer (skip_pc, 4); | |
457 | } | |
c906108c SS |
458 | } |
459 | ||
c5aa993b | 460 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ |
c906108c SS |
461 | skip_pc += 4; |
462 | ||
463 | return skip_pc; | |
464 | } | |
c5aa993b | 465 | /* *INDENT-OFF* */ |
c906108c SS |
466 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
467 | This function decodes a Thumb function prologue to determine: | |
468 | 1) the size of the stack frame | |
469 | 2) which registers are saved on it | |
470 | 3) the offsets of saved regs | |
471 | 4) the offset from the stack pointer to the frame pointer | |
472 | This information is stored in the "extra" fields of the frame_info. | |
473 | ||
da59e081 JM |
474 | A typical Thumb function prologue would create this stack frame |
475 | (offsets relative to FP) | |
c906108c SS |
476 | old SP -> 24 stack parameters |
477 | 20 LR | |
478 | 16 R7 | |
479 | R7 -> 0 local variables (16 bytes) | |
480 | SP -> -12 additional stack space (12 bytes) | |
481 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
482 | 12 bytes. The frame register is R7. |
483 | ||
484 | The comments for thumb_skip_prolog() describe the algorithm we use to detect | |
485 | the end of the prolog */ | |
c5aa993b JM |
486 | /* *INDENT-ON* */ |
487 | ||
c906108c | 488 | static void |
ed9a39eb | 489 | thumb_scan_prologue (struct frame_info *fi) |
c906108c SS |
490 | { |
491 | CORE_ADDR prologue_start; | |
492 | CORE_ADDR prologue_end; | |
493 | CORE_ADDR current_pc; | |
c5aa993b | 494 | int saved_reg[16]; /* which register has been copied to register n? */ |
da59e081 JM |
495 | int findmask = 0; /* findmask: |
496 | bit 0 - push { rlist } | |
497 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
498 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
499 | */ | |
c5aa993b | 500 | int i; |
c906108c | 501 | |
c5aa993b | 502 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
503 | { |
504 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
505 | ||
c5aa993b | 506 | if (sal.line == 0) /* no line info, use current PC */ |
c906108c SS |
507 | prologue_end = fi->pc; |
508 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
c5aa993b | 509 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
510 | } |
511 | else | |
c5aa993b JM |
512 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ |
513 | /* 16 pushes, an add, and "mv fp,sp" */ | |
c906108c SS |
514 | |
515 | prologue_end = min (prologue_end, fi->pc); | |
516 | ||
517 | /* Initialize the saved register map. When register H is copied to | |
518 | register L, we will put H in saved_reg[L]. */ | |
519 | for (i = 0; i < 16; i++) | |
520 | saved_reg[i] = i; | |
521 | ||
522 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
523 | frame pointer, adjust the stack pointer, and save registers. |
524 | Do this until all basic prolog instructions are found. */ | |
c906108c SS |
525 | |
526 | fi->framesize = 0; | |
da59e081 JM |
527 | for (current_pc = prologue_start; |
528 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
529 | current_pc += 2) | |
c906108c SS |
530 | { |
531 | unsigned short insn; | |
532 | int regno; | |
533 | int offset; | |
534 | ||
535 | insn = read_memory_unsigned_integer (current_pc, 2); | |
536 | ||
c5aa993b | 537 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 538 | { |
da59e081 JM |
539 | int mask; |
540 | findmask |= 1; /* push found */ | |
c906108c SS |
541 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
542 | whether to save LR (R14). */ | |
da59e081 | 543 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c SS |
544 | |
545 | /* Calculate offsets of saved R0-R7 and LR. */ | |
546 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
547 | if (mask & (1 << regno)) | |
c5aa993b | 548 | { |
c906108c SS |
549 | fi->framesize += 4; |
550 | fi->fsr.regs[saved_reg[regno]] = -(fi->framesize); | |
551 | saved_reg[regno] = regno; /* reset saved register map */ | |
552 | } | |
553 | } | |
da59e081 | 554 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ |
c906108c | 555 | { |
da59e081 JM |
556 | if ((findmask & 1) == 0) /* before push ? */ |
557 | continue; | |
558 | else | |
559 | findmask |= 4; /* add/sub sp found */ | |
560 | ||
c5aa993b | 561 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
da59e081 JM |
562 | if (insn & 0x80) /* is it signed? (==subtracting) */ |
563 | { | |
564 | fi->frameoffset += offset; | |
565 | offset = -offset; | |
566 | } | |
c906108c SS |
567 | fi->framesize -= offset; |
568 | } | |
569 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
570 | { | |
da59e081 | 571 | findmask |= 2; /* setting of r7 found */ |
c906108c | 572 | fi->framereg = THUMB_FP_REGNUM; |
c5aa993b | 573 | fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */ |
c906108c | 574 | } |
da59e081 | 575 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 576 | { |
da59e081 | 577 | findmask |= 2; /* setting of r7 found */ |
c906108c SS |
578 | fi->framereg = THUMB_FP_REGNUM; |
579 | fi->frameoffset = 0; | |
580 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; | |
581 | } | |
582 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
583 | { | |
c5aa993b | 584 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 585 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
c5aa993b | 586 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
587 | } |
588 | else | |
da59e081 JM |
589 | continue; /* something in the prolog that we don't care about or some |
590 | instruction from outside the prolog scheduled here for optimization */ | |
c906108c SS |
591 | } |
592 | } | |
593 | ||
ed9a39eb JM |
594 | /* Check if prologue for this frame's PC has already been scanned. If |
595 | it has, copy the relevant information about that prologue and | |
c906108c SS |
596 | return non-zero. Otherwise do not copy anything and return zero. |
597 | ||
598 | The information saved in the cache includes: | |
c5aa993b JM |
599 | * the frame register number; |
600 | * the size of the stack frame; | |
601 | * the offsets of saved regs (relative to the old SP); and | |
602 | * the offset from the stack pointer to the frame pointer | |
c906108c | 603 | |
ed9a39eb JM |
604 | The cache contains only one entry, since this is adequate for the |
605 | typical sequence of prologue scan requests we get. When performing | |
606 | a backtrace, GDB will usually ask to scan the same function twice | |
607 | in a row (once to get the frame chain, and once to fill in the | |
608 | extra frame information). */ | |
c906108c SS |
609 | |
610 | static struct frame_info prologue_cache; | |
611 | ||
612 | static int | |
ed9a39eb | 613 | check_prologue_cache (struct frame_info *fi) |
c906108c SS |
614 | { |
615 | int i; | |
616 | ||
617 | if (fi->pc == prologue_cache.pc) | |
618 | { | |
619 | fi->framereg = prologue_cache.framereg; | |
620 | fi->framesize = prologue_cache.framesize; | |
621 | fi->frameoffset = prologue_cache.frameoffset; | |
911413e6 | 622 | for (i = 0; i < NUM_REGS; i++) |
c906108c SS |
623 | fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; |
624 | return 1; | |
625 | } | |
626 | else | |
627 | return 0; | |
628 | } | |
629 | ||
630 | ||
ed9a39eb | 631 | /* Copy the prologue information from fi to the prologue cache. */ |
c906108c SS |
632 | |
633 | static void | |
ed9a39eb | 634 | save_prologue_cache (struct frame_info *fi) |
c906108c SS |
635 | { |
636 | int i; | |
637 | ||
c5aa993b JM |
638 | prologue_cache.pc = fi->pc; |
639 | prologue_cache.framereg = fi->framereg; | |
640 | prologue_cache.framesize = fi->framesize; | |
c906108c | 641 | prologue_cache.frameoffset = fi->frameoffset; |
c5aa993b | 642 | |
911413e6 | 643 | for (i = 0; i < NUM_REGS; i++) |
c906108c SS |
644 | prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; |
645 | } | |
646 | ||
647 | ||
ed9a39eb | 648 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
649 | 1) the size of the stack frame |
650 | 2) which registers are saved on it | |
651 | 3) the offsets of saved regs | |
652 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
653 | This information is stored in the "extra" fields of the frame_info. |
654 | ||
96baa820 JM |
655 | There are two basic forms for the ARM prologue. The fixed argument |
656 | function call will look like: | |
ed9a39eb JM |
657 | |
658 | mov ip, sp | |
659 | stmfd sp!, {fp, ip, lr, pc} | |
660 | sub fp, ip, #4 | |
661 | [sub sp, sp, #4] | |
96baa820 | 662 | |
c906108c | 663 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
664 | IP -> 4 (caller's stack) |
665 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
666 | -4 LR (return address in caller) | |
667 | -8 IP (copy of caller's SP) | |
668 | -12 FP (caller's FP) | |
669 | SP -> -28 Local variables | |
670 | ||
c906108c | 671 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
672 | 28 bytes. The stmfd call can also save any of the vN registers it |
673 | plans to use, which increases the frame size accordingly. | |
674 | ||
675 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
676 | because the ARM Store instructions always store PC + 8 when you read | |
677 | the PC register. | |
ed9a39eb | 678 | |
96baa820 JM |
679 | A variable argument function call will look like: |
680 | ||
ed9a39eb JM |
681 | mov ip, sp |
682 | stmfd sp!, {a1, a2, a3, a4} | |
683 | stmfd sp!, {fp, ip, lr, pc} | |
684 | sub fp, ip, #20 | |
685 | ||
96baa820 | 686 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
687 | IP -> 20 (caller's stack) |
688 | 16 A4 | |
689 | 12 A3 | |
690 | 8 A2 | |
691 | 4 A1 | |
692 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
693 | -4 LR (return address in caller) | |
694 | -8 IP (copy of caller's SP) | |
695 | -12 FP (caller's FP) | |
696 | SP -> -28 Local variables | |
96baa820 JM |
697 | |
698 | The frame size would thus be 48 bytes, and the frame offset would be | |
699 | 28 bytes. | |
700 | ||
701 | There is another potential complication, which is that the optimizer | |
702 | will try to separate the store of fp in the "stmfd" instruction from | |
703 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
704 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
705 | ||
706 | Also, note, the original version of the ARM toolchain claimed that there | |
707 | should be an | |
708 | ||
709 | instruction at the end of the prologue. I have never seen GCC produce | |
710 | this, and the ARM docs don't mention it. We still test for it below in | |
711 | case it happens... | |
ed9a39eb JM |
712 | |
713 | */ | |
c906108c SS |
714 | |
715 | static void | |
ed9a39eb | 716 | arm_scan_prologue (struct frame_info *fi) |
c906108c SS |
717 | { |
718 | int regno, sp_offset, fp_offset; | |
719 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
720 | ||
721 | /* Check if this function is already in the cache of frame information. */ | |
722 | if (check_prologue_cache (fi)) | |
723 | return; | |
724 | ||
725 | /* Assume there is no frame until proven otherwise. */ | |
c5aa993b JM |
726 | fi->framereg = SP_REGNUM; |
727 | fi->framesize = 0; | |
c906108c SS |
728 | fi->frameoffset = 0; |
729 | ||
730 | /* Check for Thumb prologue. */ | |
731 | if (arm_pc_is_thumb (fi->pc)) | |
732 | { | |
733 | thumb_scan_prologue (fi); | |
734 | save_prologue_cache (fi); | |
735 | return; | |
736 | } | |
737 | ||
738 | /* Find the function prologue. If we can't find the function in | |
739 | the symbol table, peek in the stack frame to find the PC. */ | |
740 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
741 | { | |
2a451106 KB |
742 | /* One way to find the end of the prologue (which works well |
743 | for unoptimized code) is to do the following: | |
744 | ||
745 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
746 | ||
747 | if (sal.line == 0) | |
748 | prologue_end = fi->pc; | |
749 | else if (sal.end < prologue_end) | |
750 | prologue_end = sal.end; | |
751 | ||
752 | This mechanism is very accurate so long as the optimizer | |
753 | doesn't move any instructions from the function body into the | |
754 | prologue. If this happens, sal.end will be the last | |
755 | instruction in the first hunk of prologue code just before | |
756 | the first instruction that the scheduler has moved from | |
757 | the body to the prologue. | |
758 | ||
759 | In order to make sure that we scan all of the prologue | |
760 | instructions, we use a slightly less accurate mechanism which | |
761 | may scan more than necessary. To help compensate for this | |
762 | lack of accuracy, the prologue scanning loop below contains | |
763 | several clauses which'll cause the loop to terminate early if | |
764 | an implausible prologue instruction is encountered. | |
765 | ||
766 | The expression | |
767 | ||
768 | prologue_start + 64 | |
769 | ||
770 | is a suitable endpoint since it accounts for the largest | |
771 | possible prologue plus up to five instructions inserted by | |
772 | the scheduler. */ | |
773 | ||
774 | if (prologue_end > prologue_start + 64) | |
775 | { | |
776 | prologue_end = prologue_start + 64; /* See above. */ | |
777 | } | |
c906108c SS |
778 | } |
779 | else | |
780 | { | |
781 | /* Get address of the stmfd in the prologue of the callee; the saved | |
96baa820 | 782 | PC is the address of the stmfd + 8. */ |
ed9a39eb | 783 | prologue_start = ADDR_BITS_REMOVE (read_memory_integer (fi->frame, 4)) |
96baa820 | 784 | - 8; |
2a451106 | 785 | prologue_end = prologue_start + 64; /* See above. */ |
c906108c SS |
786 | } |
787 | ||
788 | /* Now search the prologue looking for instructions that set up the | |
96baa820 | 789 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 790 | |
96baa820 JM |
791 | Be careful, however, and if it doesn't look like a prologue, |
792 | don't try to scan it. If, for instance, a frameless function | |
793 | begins with stmfd sp!, then we will tell ourselves there is | |
794 | a frame, which will confuse stack traceback, as well ad"finish" | |
795 | and other operations that rely on a knowledge of the stack | |
796 | traceback. | |
797 | ||
798 | In the APCS, the prologue should start with "mov ip, sp" so | |
799 | if we don't see this as the first insn, we will stop. */ | |
c906108c SS |
800 | |
801 | sp_offset = fp_offset = 0; | |
c906108c | 802 | |
ed9a39eb JM |
803 | if (read_memory_unsigned_integer (prologue_start, 4) |
804 | == 0xe1a0c00d) /* mov ip, sp */ | |
96baa820 | 805 | { |
ed9a39eb | 806 | for (current_pc = prologue_start + 4; current_pc < prologue_end; |
96baa820 | 807 | current_pc += 4) |
c906108c | 808 | { |
96baa820 | 809 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
ed9a39eb | 810 | |
96baa820 JM |
811 | if ((insn & 0xffff0000) == 0xe92d0000) |
812 | /* stmfd sp!, {..., fp, ip, lr, pc} | |
813 | or | |
814 | stmfd sp!, {a1, a2, a3, a4} */ | |
815 | { | |
816 | int mask = insn & 0xffff; | |
ed9a39eb | 817 | |
96baa820 JM |
818 | /* Calculate offsets of saved registers. */ |
819 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
820 | if (mask & (1 << regno)) | |
821 | { | |
822 | sp_offset -= 4; | |
823 | fi->fsr.regs[regno] = sp_offset; | |
824 | } | |
825 | } | |
ed9a39eb | 826 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
96baa820 | 827 | { |
ed9a39eb JM |
828 | unsigned imm = insn & 0xff; /* immediate value */ |
829 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
830 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
831 | fp_offset = -imm; |
832 | fi->framereg = FP_REGNUM; | |
833 | } | |
ed9a39eb | 834 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ |
96baa820 | 835 | { |
ed9a39eb JM |
836 | unsigned imm = insn & 0xff; /* immediate value */ |
837 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
838 | imm = (imm >> rot) | (imm << (32 - rot)); | |
96baa820 JM |
839 | sp_offset -= imm; |
840 | } | |
ed9a39eb | 841 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ |
96baa820 JM |
842 | { |
843 | sp_offset -= 12; | |
844 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
845 | fi->fsr.regs[regno] = sp_offset; | |
846 | } | |
ed9a39eb | 847 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ |
96baa820 | 848 | { |
ed9a39eb | 849 | int n_saved_fp_regs; |
96baa820 | 850 | unsigned int fp_start_reg, fp_bound_reg; |
ed9a39eb JM |
851 | |
852 | if ((insn & 0x800) == 0x800) /* N0 is set */ | |
853 | { | |
854 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
855 | n_saved_fp_regs = 3; |
856 | else | |
857 | n_saved_fp_regs = 1; | |
858 | } | |
859 | else | |
ed9a39eb JM |
860 | { |
861 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ | |
96baa820 JM |
862 | n_saved_fp_regs = 2; |
863 | else | |
864 | n_saved_fp_regs = 4; | |
865 | } | |
ed9a39eb | 866 | |
96baa820 JM |
867 | fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); |
868 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | |
869 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
870 | { | |
871 | sp_offset -= 12; | |
872 | fi->fsr.regs[fp_start_reg++] = sp_offset; | |
873 | } | |
874 | } | |
2a451106 KB |
875 | else if ((insn & 0xf0000000) != 0xe0000000) |
876 | break; /* Condition not true, exit early */ | |
877 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ | |
878 | break; /* Don't scan past a block load */ | |
96baa820 | 879 | else |
ed9a39eb JM |
880 | /* The optimizer might shove anything into the prologue, |
881 | so we just skip what we don't recognize. */ | |
882 | continue; | |
c906108c | 883 | } |
c906108c SS |
884 | } |
885 | ||
886 | /* The frame size is just the negative of the offset (from the original SP) | |
887 | of the last thing thing we pushed on the stack. The frame offset is | |
888 | [new FP] - [new SP]. */ | |
889 | fi->framesize = -sp_offset; | |
890 | fi->frameoffset = fp_offset - sp_offset; | |
ed9a39eb | 891 | |
c906108c SS |
892 | save_prologue_cache (fi); |
893 | } | |
894 | ||
ed9a39eb JM |
895 | /* Find REGNUM on the stack. Otherwise, it's in an active register. |
896 | One thing we might want to do here is to check REGNUM against the | |
897 | clobber mask, and somehow flag it as invalid if it isn't saved on | |
898 | the stack somewhere. This would provide a graceful failure mode | |
899 | when trying to get the value of caller-saves registers for an inner | |
900 | frame. */ | |
c906108c SS |
901 | |
902 | static CORE_ADDR | |
ed9a39eb | 903 | arm_find_callers_reg (struct frame_info *fi, int regnum) |
c906108c SS |
904 | { |
905 | for (; fi; fi = fi->next) | |
c5aa993b JM |
906 | |
907 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
c906108c SS |
908 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
909 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
910 | else | |
911 | #endif | |
c5aa993b JM |
912 | if (fi->fsr.regs[regnum] != 0) |
913 | return read_memory_integer (fi->fsr.regs[regnum], | |
914 | REGISTER_RAW_SIZE (regnum)); | |
c906108c SS |
915 | return read_register (regnum); |
916 | } | |
c5aa993b | 917 | /* *INDENT-OFF* */ |
c906108c SS |
918 | /* Function: frame_chain |
919 | Given a GDB frame, determine the address of the calling function's frame. | |
920 | This will be used to create a new GDB frame struct, and then | |
921 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
922 | For ARM, we save the frame size when we initialize the frame_info. | |
923 | ||
924 | The original definition of this function was a macro in tm-arm.h: | |
925 | { In the case of the ARM, the frame's nominal address is the FP value, | |
926 | and 12 bytes before comes the saved previous FP value as a 4-byte word. } | |
927 | ||
928 | #define FRAME_CHAIN(thisframe) \ | |
929 | ((thisframe)->pc >= LOWEST_PC ? \ | |
930 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
931 | 0) | |
932 | */ | |
c5aa993b JM |
933 | /* *INDENT-ON* */ |
934 | ||
c906108c | 935 | CORE_ADDR |
ed9a39eb | 936 | arm_frame_chain (struct frame_info *fi) |
c906108c | 937 | { |
c5aa993b | 938 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
939 | CORE_ADDR fn_start, callers_pc, fp; |
940 | ||
941 | /* is this a dummy frame? */ | |
942 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
c5aa993b | 943 | return fi->frame; /* dummy frame same as caller's frame */ |
c906108c SS |
944 | |
945 | /* is caller-of-this a dummy frame? */ | |
c5aa993b | 946 | callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ |
c906108c | 947 | fp = arm_find_callers_reg (fi, FP_REGNUM); |
c5aa993b JM |
948 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) |
949 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
c906108c SS |
950 | |
951 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
952 | if (fn_start == entry_point_address ()) | |
c5aa993b | 953 | return 0; /* in _start fn, don't chain further */ |
c906108c SS |
954 | #endif |
955 | CORE_ADDR caller_pc, fn_start; | |
956 | struct frame_info caller_fi; | |
957 | int framereg = fi->framereg; | |
958 | ||
959 | if (fi->pc < LOWEST_PC) | |
960 | return 0; | |
961 | ||
962 | /* If the caller is the startup code, we're at the end of the chain. */ | |
963 | caller_pc = FRAME_SAVED_PC (fi); | |
964 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
965 | if (fn_start == entry_point_address ()) | |
966 | return 0; | |
967 | ||
968 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
969 | the frame register of the caller is different from ours. | |
970 | So we must scan the prologue of the caller to determine its | |
971 | frame register number. */ | |
972 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) | |
973 | { | |
c5aa993b | 974 | memset (&caller_fi, 0, sizeof (caller_fi)); |
c906108c | 975 | caller_fi.pc = caller_pc; |
c5aa993b | 976 | arm_scan_prologue (&caller_fi); |
c906108c SS |
977 | framereg = caller_fi.framereg; |
978 | } | |
979 | ||
980 | /* If the caller used a frame register, return its value. | |
981 | Otherwise, return the caller's stack pointer. */ | |
982 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
983 | return arm_find_callers_reg (fi, framereg); | |
984 | else | |
985 | return fi->frame + fi->framesize; | |
986 | } | |
987 | ||
ed9a39eb JM |
988 | /* This function actually figures out the frame address for a given pc |
989 | and sp. This is tricky because we sometimes don't use an explicit | |
990 | frame pointer, and the previous stack pointer isn't necessarily | |
991 | recorded on the stack. The only reliable way to get this info is | |
992 | to examine the prologue. FROMLEAF is a little confusing, it means | |
993 | this is the next frame up the chain AFTER a frameless function. If | |
994 | this is true, then the frame value for this frame is still in the | |
995 | fp register. */ | |
c906108c SS |
996 | |
997 | void | |
ed9a39eb | 998 | arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
999 | { |
1000 | int reg; | |
1001 | ||
1002 | if (fi->next) | |
1003 | fi->pc = FRAME_SAVED_PC (fi->next); | |
1004 | ||
1005 | memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); | |
1006 | ||
c5aa993b | 1007 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1008 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1009 | { | |
1010 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
c5aa993b JM |
1011 | by assuming it's always FP. */ |
1012 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
1013 | fi->framesize = 0; | |
c906108c SS |
1014 | fi->frameoffset = 0; |
1015 | return; | |
1016 | } | |
c5aa993b | 1017 | else |
c906108c | 1018 | #endif |
2a451106 KB |
1019 | |
1020 | /* Determine whether or not we're in a sigtramp frame. | |
1021 | Unfortunately, it isn't sufficient to test | |
1022 | fi->signal_handler_caller because this value is sometimes set | |
1023 | after invoking INIT_EXTRA_FRAME_INFO. So we test *both* | |
1024 | fi->signal_handler_caller and IN_SIGTRAMP to determine if we need | |
1025 | to use the sigcontext addresses for the saved registers. | |
1026 | ||
1027 | Note: If an ARM IN_SIGTRAMP method ever needs to compare against | |
1028 | the name of the function, the code below will have to be changed | |
1029 | to first fetch the name of the function and then pass this name | |
1030 | to IN_SIGTRAMP. */ | |
1031 | ||
3bb04bdd | 1032 | if (SIGCONTEXT_REGISTER_ADDRESS_P () |
2a451106 KB |
1033 | && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, 0))) |
1034 | { | |
1035 | CORE_ADDR sp; | |
1036 | ||
1037 | if (!fi->next) | |
1038 | sp = read_sp(); | |
1039 | else | |
1040 | sp = fi->next->frame - fi->next->frameoffset + fi->next->framesize; | |
1041 | ||
1042 | for (reg = 0; reg < NUM_REGS; reg++) | |
1043 | fi->fsr.regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg); | |
1044 | ||
1045 | /* FIXME: What about thumb mode? */ | |
1046 | fi->framereg = SP_REGNUM; | |
1047 | fi->frame = read_memory_integer (fi->fsr.regs[fi->framereg], 4); | |
1048 | fi->framesize = 0; | |
1049 | fi->frameoffset = 0; | |
1050 | ||
1051 | } | |
1052 | else | |
c906108c SS |
1053 | { |
1054 | arm_scan_prologue (fi); | |
1055 | ||
104c1213 JM |
1056 | if (!fi->next) |
1057 | /* this is the innermost frame? */ | |
c906108c | 1058 | fi->frame = read_register (fi->framereg); |
ed9a39eb JM |
1059 | else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM) |
1060 | { | |
1061 | /* not the innermost frame */ | |
1062 | /* If we have an FP, the callee saved it. */ | |
1063 | if (fi->next->fsr.regs[fi->framereg] != 0) | |
1064 | fi->frame = | |
1065 | read_memory_integer (fi->next->fsr.regs[fi->framereg], 4); | |
1066 | else if (fromleaf) | |
1067 | /* If we were called by a frameless fn. then our frame is | |
1068 | still in the frame pointer register on the board... */ | |
1069 | fi->frame = read_fp (); | |
1070 | } | |
c906108c | 1071 | |
ed9a39eb JM |
1072 | /* Calculate actual addresses of saved registers using offsets |
1073 | determined by arm_scan_prologue. */ | |
c906108c SS |
1074 | for (reg = 0; reg < NUM_REGS; reg++) |
1075 | if (fi->fsr.regs[reg] != 0) | |
1076 | fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | ||
ed9a39eb JM |
1081 | /* Find the caller of this frame. We do this by seeing if LR_REGNUM |
1082 | is saved in the stack anywhere, otherwise we get it from the | |
1083 | registers. | |
c906108c SS |
1084 | |
1085 | The old definition of this function was a macro: | |
c5aa993b | 1086 | #define FRAME_SAVED_PC(FRAME) \ |
ed9a39eb | 1087 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ |
c906108c SS |
1088 | |
1089 | CORE_ADDR | |
ed9a39eb | 1090 | arm_frame_saved_pc (struct frame_info *fi) |
c906108c | 1091 | { |
c5aa993b | 1092 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ |
c906108c SS |
1093 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1094 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
1095 | else | |
1096 | #endif | |
1097 | { | |
1098 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
1099 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
1100 | } | |
1101 | } | |
1102 | ||
c906108c SS |
1103 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. |
1104 | Examine the Program Status Register to decide which state we're in. */ | |
1105 | ||
1106 | CORE_ADDR | |
ed9a39eb | 1107 | arm_target_read_fp (void) |
c906108c SS |
1108 | { |
1109 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
1110 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
1111 | else | |
c5aa993b | 1112 | return read_register (FP_REGNUM); /* R11 if ARM */ |
c906108c SS |
1113 | } |
1114 | ||
ed9a39eb | 1115 | /* Calculate the frame offsets of the saved registers (ARM version). */ |
c906108c | 1116 | |
c906108c | 1117 | void |
ed9a39eb JM |
1118 | arm_frame_find_saved_regs (struct frame_info *fi, |
1119 | struct frame_saved_regs *regaddr) | |
c906108c SS |
1120 | { |
1121 | memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); | |
1122 | } | |
1123 | ||
c906108c | 1124 | void |
ed9a39eb | 1125 | arm_push_dummy_frame (void) |
c906108c SS |
1126 | { |
1127 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
1128 | CORE_ADDR sp = old_sp; | |
1129 | CORE_ADDR fp, prologue_start; | |
1130 | int regnum; | |
1131 | ||
1132 | /* Push the two dummy prologue instructions in reverse order, | |
1133 | so that they'll be in the correct low-to-high order in memory. */ | |
1134 | /* sub fp, ip, #4 */ | |
1135 | sp = push_word (sp, 0xe24cb004); | |
1136 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
1137 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
1138 | ||
ed9a39eb JM |
1139 | /* Push a pointer to the dummy prologue + 12, because when stm |
1140 | instruction stores the PC, it stores the address of the stm | |
c906108c SS |
1141 | instruction itself plus 12. */ |
1142 | fp = sp = push_word (sp, prologue_start + 12); | |
c5aa993b | 1143 | sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */ |
c906108c SS |
1144 | sp = push_word (sp, old_sp); |
1145 | sp = push_word (sp, read_register (FP_REGNUM)); | |
c5aa993b JM |
1146 | |
1147 | for (regnum = 10; regnum >= 0; regnum--) | |
c906108c | 1148 | sp = push_word (sp, read_register (regnum)); |
c5aa993b | 1149 | |
c906108c SS |
1150 | write_register (FP_REGNUM, fp); |
1151 | write_register (THUMB_FP_REGNUM, fp); | |
1152 | write_register (SP_REGNUM, sp); | |
1153 | } | |
1154 | ||
1155 | /* Fix up the call dummy, based on whether the processor is currently | |
ed9a39eb JM |
1156 | in Thumb or ARM mode, and whether the target function is Thumb or |
1157 | ARM. There are three different situations requiring three | |
c906108c SS |
1158 | different dummies: |
1159 | ||
1160 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
c5aa993b | 1161 | been copied into the dummy parameter to this function. |
c906108c | 1162 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the |
c5aa993b | 1163 | "mov pc,r4" instruction patched to be a "bx r4" instead. |
c906108c | 1164 | * Thumb calling anything: uses the Thumb dummy defined below, which |
c5aa993b | 1165 | works for calling both ARM and Thumb functions. |
c906108c | 1166 | |
ed9a39eb JM |
1167 | All three call dummies expect to receive the target function |
1168 | address in R4, with the low bit set if it's a Thumb function. */ | |
c906108c SS |
1169 | |
1170 | void | |
ed9a39eb | 1171 | arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, |
ea7c478f | 1172 | struct value **args, struct type *type, int gcc_p) |
c906108c SS |
1173 | { |
1174 | static short thumb_dummy[4] = | |
1175 | { | |
c5aa993b JM |
1176 | 0xf000, 0xf801, /* bl label */ |
1177 | 0xdf18, /* swi 24 */ | |
1178 | 0x4720, /* label: bx r4 */ | |
c906108c SS |
1179 | }; |
1180 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
1181 | ||
1182 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
c5aa993b | 1183 | caller_is_thumb = arm_pc_is_thumb (read_pc ()); |
c906108c | 1184 | |
ed9a39eb JM |
1185 | /* If the target function is Thumb, set the low bit of the function |
1186 | address. And if the CPU is currently in ARM mode, patch the | |
1187 | second instruction of call dummy to use a BX instruction to | |
1188 | switch to Thumb mode. */ | |
c906108c SS |
1189 | target_is_thumb = arm_pc_is_thumb (fun); |
1190 | if (target_is_thumb) | |
1191 | { | |
1192 | fun |= 1; | |
1193 | if (!caller_is_thumb) | |
1194 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
1195 | } | |
1196 | ||
1197 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy | |
1198 | instead of the ARM one that's already been copied. This will | |
1199 | work for both Thumb and ARM target functions. */ | |
1200 | if (caller_is_thumb) | |
1201 | { | |
1202 | int i; | |
1203 | char *p = dummy; | |
1204 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
1205 | ||
1206 | for (i = 0; i < len; i++) | |
1207 | { | |
1208 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); | |
1209 | p += sizeof (thumb_dummy[0]); | |
1210 | } | |
1211 | } | |
1212 | ||
ed9a39eb JM |
1213 | /* Put the target address in r4; the call dummy will copy this to |
1214 | the PC. */ | |
c906108c SS |
1215 | write_register (4, fun); |
1216 | } | |
1217 | ||
c906108c | 1218 | /* Return the offset in the call dummy of the instruction that needs |
ed9a39eb JM |
1219 | to have a breakpoint placed on it. This is the offset of the 'swi |
1220 | 24' instruction, which is no longer actually used, but simply acts | |
c906108c SS |
1221 | as a place-holder now. |
1222 | ||
ed9a39eb | 1223 | This implements the CALL_DUMMY_BREAK_OFFSET macro. */ |
c906108c SS |
1224 | |
1225 | int | |
ed9a39eb | 1226 | arm_call_dummy_breakpoint_offset (void) |
c906108c SS |
1227 | { |
1228 | if (caller_is_thumb) | |
1229 | return 4; | |
1230 | else | |
1231 | return 8; | |
1232 | } | |
1233 | ||
ed9a39eb JM |
1234 | /* Note: ScottB |
1235 | ||
1236 | This function does not support passing parameters using the FPA | |
1237 | variant of the APCS. It passes any floating point arguments in the | |
1238 | general registers and/or on the stack. */ | |
c906108c SS |
1239 | |
1240 | CORE_ADDR | |
ea7c478f | 1241 | arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
ed9a39eb | 1242 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 1243 | { |
ed9a39eb JM |
1244 | char *fp; |
1245 | int argnum, argreg, nstack_size; | |
1246 | ||
1247 | /* Walk through the list of args and determine how large a temporary | |
1248 | stack is required. Need to take care here as structs may be | |
1249 | passed on the stack, and we have to to push them. */ | |
1250 | nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ | |
1251 | if (struct_return) /* The struct address goes in A1. */ | |
1252 | nstack_size += REGISTER_SIZE; | |
1253 | ||
1254 | /* Walk through the arguments and add their size to nstack_size. */ | |
1255 | for (argnum = 0; argnum < nargs; argnum++) | |
c5aa993b | 1256 | { |
c906108c | 1257 | int len; |
ed9a39eb JM |
1258 | struct type *arg_type; |
1259 | ||
1260 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1261 | len = TYPE_LENGTH (arg_type); | |
c906108c | 1262 | |
ed9a39eb JM |
1263 | /* ANSI C code passes float arguments as integers, K&R code |
1264 | passes float arguments as doubles. Correct for this here. */ | |
1265 | if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) | |
1266 | nstack_size += FP_REGISTER_VIRTUAL_SIZE; | |
1267 | else | |
1268 | nstack_size += len; | |
1269 | } | |
c906108c | 1270 | |
ed9a39eb JM |
1271 | /* Allocate room on the stack, and initialize our stack frame |
1272 | pointer. */ | |
1273 | fp = NULL; | |
1274 | if (nstack_size > 0) | |
1275 | { | |
1276 | sp -= nstack_size; | |
1277 | fp = (char *) sp; | |
1278 | } | |
1279 | ||
1280 | /* Initialize the integer argument register pointer. */ | |
c906108c | 1281 | argreg = A1_REGNUM; |
c906108c | 1282 | |
ed9a39eb JM |
1283 | /* The struct_return pointer occupies the first parameter passing |
1284 | register. */ | |
c906108c | 1285 | if (struct_return) |
c5aa993b | 1286 | write_register (argreg++, struct_addr); |
c906108c | 1287 | |
ed9a39eb JM |
1288 | /* Process arguments from left to right. Store as many as allowed |
1289 | in the parameter passing registers (A1-A4), and save the rest on | |
1290 | the temporary stack. */ | |
c5aa993b | 1291 | for (argnum = 0; argnum < nargs; argnum++) |
c906108c | 1292 | { |
ed9a39eb | 1293 | int len; |
c5aa993b | 1294 | char *val; |
c5aa993b | 1295 | CORE_ADDR regval; |
ed9a39eb JM |
1296 | enum type_code typecode; |
1297 | struct type *arg_type, *target_type; | |
1298 | ||
1299 | arg_type = check_typedef (VALUE_TYPE (args[argnum])); | |
1300 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1301 | len = TYPE_LENGTH (arg_type); | |
1302 | typecode = TYPE_CODE (arg_type); | |
1303 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1304 | ||
1305 | /* ANSI C code passes float arguments as integers, K&R code | |
1306 | passes float arguments as doubles. The .stabs record for | |
1307 | for ANSI prototype floating point arguments records the | |
1308 | type as FP_INTEGER, while a K&R style (no prototype) | |
1309 | .stabs records the type as FP_FLOAT. In this latter case | |
1310 | the compiler converts the float arguments to double before | |
1311 | calling the function. */ | |
1312 | if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) | |
1313 | { | |
a37b3cc0 AC |
1314 | DOUBLEST dblval; |
1315 | dblval = extract_floating (val, len); | |
1316 | len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; | |
1317 | val = alloca (len); | |
1318 | store_floating (val, len, dblval); | |
ed9a39eb | 1319 | } |
da59e081 JM |
1320 | #if 1 |
1321 | /* I don't know why this code was disable. The only logical use | |
1322 | for a function pointer is to call that function, so setting | |
1323 | the mode bit is perfectly fine. FN */ | |
ed9a39eb | 1324 | /* If the argument is a pointer to a function, and it is a Thumb |
c906108c | 1325 | function, set the low bit of the pointer. */ |
ed9a39eb JM |
1326 | if (TYPE_CODE_PTR == typecode |
1327 | && NULL != target_type | |
1328 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
c906108c | 1329 | { |
ed9a39eb | 1330 | CORE_ADDR regval = extract_address (val, len); |
c906108c SS |
1331 | if (arm_pc_is_thumb (regval)) |
1332 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
1333 | } | |
c906108c | 1334 | #endif |
ed9a39eb JM |
1335 | /* Copy the argument to general registers or the stack in |
1336 | register-sized pieces. Large arguments are split between | |
1337 | registers and stack. */ | |
1338 | while (len > 0) | |
c906108c | 1339 | { |
ed9a39eb JM |
1340 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; |
1341 | ||
1342 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
c906108c | 1343 | { |
ed9a39eb JM |
1344 | /* It's an argument being passed in a general register. */ |
1345 | regval = extract_address (val, partial_len); | |
1346 | write_register (argreg++, regval); | |
c906108c | 1347 | } |
ed9a39eb JM |
1348 | else |
1349 | { | |
1350 | /* Push the arguments onto the stack. */ | |
1351 | write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); | |
1352 | fp += REGISTER_SIZE; | |
1353 | } | |
1354 | ||
1355 | len -= partial_len; | |
1356 | val += partial_len; | |
c906108c SS |
1357 | } |
1358 | } | |
c906108c SS |
1359 | |
1360 | /* Return adjusted stack pointer. */ | |
1361 | return sp; | |
1362 | } | |
1363 | ||
1364 | void | |
ed9a39eb | 1365 | arm_pop_frame (void) |
c906108c | 1366 | { |
c906108c | 1367 | int regnum; |
8b93c638 | 1368 | struct frame_info *frame = get_current_frame (); |
c906108c | 1369 | |
8b93c638 JM |
1370 | if (!PC_IN_CALL_DUMMY(frame->pc, frame->frame, read_fp())) |
1371 | { | |
1372 | CORE_ADDR old_SP; | |
1373 | ||
1374 | old_SP = read_register (frame->framereg); | |
1375 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
1376 | if (frame->fsr.regs[regnum] != 0) | |
1377 | write_register (regnum, | |
c906108c SS |
1378 | read_memory_integer (frame->fsr.regs[regnum], 4)); |
1379 | ||
8b93c638 JM |
1380 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); |
1381 | write_register (SP_REGNUM, old_SP); | |
1382 | } | |
1383 | else | |
1384 | { | |
1385 | CORE_ADDR sp; | |
1386 | ||
1387 | sp = read_register (FP_REGNUM); | |
1388 | sp -= sizeof(CORE_ADDR); /* we don't care about this first word */ | |
1389 | ||
1390 | write_register (PC_REGNUM, read_memory_integer (sp, 4)); | |
1391 | sp -= sizeof(CORE_ADDR); | |
1392 | write_register (SP_REGNUM, read_memory_integer (sp, 4)); | |
1393 | sp -= sizeof(CORE_ADDR); | |
1394 | write_register (FP_REGNUM, read_memory_integer (sp, 4)); | |
1395 | sp -= sizeof(CORE_ADDR); | |
1396 | ||
1397 | for (regnum = 10; regnum >= 0; regnum--) | |
1398 | { | |
1399 | write_register (regnum, read_memory_integer (sp, 4)); | |
1400 | sp -= sizeof(CORE_ADDR); | |
1401 | } | |
1402 | } | |
c906108c SS |
1403 | |
1404 | flush_cached_frames (); | |
1405 | } | |
1406 | ||
1407 | static void | |
ed9a39eb | 1408 | print_fpu_flags (int flags) |
c906108c | 1409 | { |
c5aa993b JM |
1410 | if (flags & (1 << 0)) |
1411 | fputs ("IVO ", stdout); | |
1412 | if (flags & (1 << 1)) | |
1413 | fputs ("DVZ ", stdout); | |
1414 | if (flags & (1 << 2)) | |
1415 | fputs ("OFL ", stdout); | |
1416 | if (flags & (1 << 3)) | |
1417 | fputs ("UFL ", stdout); | |
1418 | if (flags & (1 << 4)) | |
1419 | fputs ("INX ", stdout); | |
1420 | putchar ('\n'); | |
c906108c SS |
1421 | } |
1422 | ||
1423 | void | |
ed9a39eb | 1424 | arm_float_info (void) |
c906108c | 1425 | { |
c5aa993b JM |
1426 | register unsigned long status = read_register (FPS_REGNUM); |
1427 | int type; | |
1428 | ||
1429 | type = (status >> 24) & 127; | |
1430 | printf ("%s FPU type %d\n", | |
ed9a39eb | 1431 | (status & (1 << 31)) ? "Hardware" : "Software", |
c5aa993b JM |
1432 | type); |
1433 | fputs ("mask: ", stdout); | |
1434 | print_fpu_flags (status >> 16); | |
1435 | fputs ("flags: ", stdout); | |
1436 | print_fpu_flags (status); | |
c906108c SS |
1437 | } |
1438 | ||
a37b3cc0 AC |
1439 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
1440 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
1441 | It is thought that this is is the floating-point register format on | |
1442 | little-endian systems. */ | |
c906108c | 1443 | |
ed9a39eb JM |
1444 | static void |
1445 | convert_from_extended (void *ptr, void *dbl) | |
c906108c | 1446 | { |
a37b3cc0 AC |
1447 | DOUBLEST d; |
1448 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1449 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); | |
1450 | else | |
1451 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1452 | ptr, &d); | |
1453 | floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl); | |
c906108c SS |
1454 | } |
1455 | ||
c5aa993b | 1456 | void |
ed9a39eb | 1457 | convert_to_extended (void *dbl, void *ptr) |
c906108c | 1458 | { |
a37b3cc0 AC |
1459 | DOUBLEST d; |
1460 | floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d); | |
1461 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1462 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); | |
1463 | else | |
1464 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1465 | &d, dbl); | |
c906108c | 1466 | } |
ed9a39eb JM |
1467 | |
1468 | /* Nonzero if register N requires conversion from raw format to | |
1469 | virtual format. */ | |
1470 | ||
1471 | int | |
1472 | arm_register_convertible (unsigned int regnum) | |
1473 | { | |
1474 | return ((regnum - F0_REGNUM) < 8); | |
1475 | } | |
1476 | ||
1477 | /* Convert data from raw format for register REGNUM in buffer FROM to | |
1478 | virtual format with type TYPE in buffer TO. */ | |
1479 | ||
1480 | void | |
1481 | arm_register_convert_to_virtual (unsigned int regnum, struct type *type, | |
1482 | void *from, void *to) | |
1483 | { | |
1484 | double val; | |
1485 | ||
1486 | convert_from_extended (from, &val); | |
1487 | store_floating (to, TYPE_LENGTH (type), val); | |
1488 | } | |
1489 | ||
1490 | /* Convert data from virtual format with type TYPE in buffer FROM to | |
1491 | raw format for register REGNUM in buffer TO. */ | |
1492 | ||
1493 | void | |
1494 | arm_register_convert_to_raw (unsigned int regnum, struct type *type, | |
1495 | void *from, void *to) | |
1496 | { | |
1497 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1498 | ||
1499 | convert_to_extended (&val, to); | |
1500 | } | |
c906108c SS |
1501 | |
1502 | static int | |
ed9a39eb | 1503 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1504 | { |
1505 | if (cond == INST_AL || cond == INST_NV) | |
1506 | return 1; | |
1507 | ||
1508 | switch (cond) | |
1509 | { | |
1510 | case INST_EQ: | |
1511 | return ((status_reg & FLAG_Z) != 0); | |
1512 | case INST_NE: | |
1513 | return ((status_reg & FLAG_Z) == 0); | |
1514 | case INST_CS: | |
1515 | return ((status_reg & FLAG_C) != 0); | |
1516 | case INST_CC: | |
1517 | return ((status_reg & FLAG_C) == 0); | |
1518 | case INST_MI: | |
1519 | return ((status_reg & FLAG_N) != 0); | |
1520 | case INST_PL: | |
1521 | return ((status_reg & FLAG_N) == 0); | |
1522 | case INST_VS: | |
1523 | return ((status_reg & FLAG_V) != 0); | |
1524 | case INST_VC: | |
1525 | return ((status_reg & FLAG_V) == 0); | |
1526 | case INST_HI: | |
1527 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1528 | case INST_LS: | |
1529 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1530 | case INST_GE: | |
1531 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1532 | case INST_LT: | |
1533 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1534 | case INST_GT: | |
1535 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1536 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1537 | case INST_LE: |
1538 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1539 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1540 | } |
1541 | return 1; | |
1542 | } | |
1543 | ||
1544 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
1545 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1546 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1547 | #define sbits(obj,st,fn) \ | |
1548 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1549 | #define BranchDest(addr,instr) \ | |
1550 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1551 | #define ARM_PC_32 1 | |
1552 | ||
1553 | static unsigned long | |
ed9a39eb JM |
1554 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1555 | unsigned long status_reg) | |
c906108c SS |
1556 | { |
1557 | unsigned long res, shift; | |
1558 | int rm = bits (inst, 0, 3); | |
1559 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1560 | |
1561 | if (bit (inst, 4)) | |
c906108c SS |
1562 | { |
1563 | int rs = bits (inst, 8, 11); | |
1564 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1565 | } | |
1566 | else | |
1567 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1568 | |
1569 | res = (rm == 15 | |
c906108c | 1570 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1571 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1572 | : read_register (rm)); |
1573 | ||
1574 | switch (shifttype) | |
1575 | { | |
c5aa993b | 1576 | case 0: /* LSL */ |
c906108c SS |
1577 | res = shift >= 32 ? 0 : res << shift; |
1578 | break; | |
c5aa993b JM |
1579 | |
1580 | case 1: /* LSR */ | |
c906108c SS |
1581 | res = shift >= 32 ? 0 : res >> shift; |
1582 | break; | |
1583 | ||
c5aa993b JM |
1584 | case 2: /* ASR */ |
1585 | if (shift >= 32) | |
1586 | shift = 31; | |
c906108c SS |
1587 | res = ((res & 0x80000000L) |
1588 | ? ~((~res) >> shift) : res >> shift); | |
1589 | break; | |
1590 | ||
c5aa993b | 1591 | case 3: /* ROR/RRX */ |
c906108c SS |
1592 | shift &= 31; |
1593 | if (shift == 0) | |
1594 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1595 | else | |
c5aa993b | 1596 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1597 | break; |
1598 | } | |
1599 | ||
1600 | return res & 0xffffffff; | |
1601 | } | |
1602 | ||
c906108c SS |
1603 | /* Return number of 1-bits in VAL. */ |
1604 | ||
1605 | static int | |
ed9a39eb | 1606 | bitcount (unsigned long val) |
c906108c SS |
1607 | { |
1608 | int nbits; | |
1609 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1610 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1611 | return nbits; |
1612 | } | |
1613 | ||
c906108c | 1614 | static CORE_ADDR |
ed9a39eb | 1615 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1616 | { |
c5aa993b | 1617 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
c906108c | 1618 | unsigned short inst1 = read_memory_integer (pc, 2); |
c5aa993b | 1619 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1620 | unsigned long offset; |
1621 | ||
1622 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1623 | { | |
1624 | CORE_ADDR sp; | |
1625 | ||
1626 | /* Fetch the saved PC from the stack. It's stored above | |
1627 | all of the other registers. */ | |
1628 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1629 | sp = read_register (SP_REGNUM); | |
1630 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1631 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1632 | if (nextpc == pc) | |
1633 | error ("Infinite loop detected"); | |
1634 | } | |
1635 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1636 | { | |
1637 | unsigned long status = read_register (PS_REGNUM); | |
c5aa993b | 1638 | unsigned long cond = bits (inst1, 8, 11); |
c906108c SS |
1639 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
1640 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1641 | } | |
1642 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1643 | { | |
1644 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1645 | } | |
1646 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1647 | { | |
1648 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
c5aa993b | 1649 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c SS |
1650 | nextpc = pc_val + offset; |
1651 | } | |
1652 | ||
1653 | return nextpc; | |
1654 | } | |
1655 | ||
c906108c | 1656 | CORE_ADDR |
ed9a39eb | 1657 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1658 | { |
1659 | unsigned long pc_val; | |
1660 | unsigned long this_instr; | |
1661 | unsigned long status; | |
1662 | CORE_ADDR nextpc; | |
1663 | ||
1664 | if (arm_pc_is_thumb (pc)) | |
1665 | return thumb_get_next_pc (pc); | |
1666 | ||
1667 | pc_val = (unsigned long) pc; | |
1668 | this_instr = read_memory_integer (pc, 4); | |
1669 | status = read_register (PS_REGNUM); | |
c5aa993b | 1670 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1671 | |
1672 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1673 | { | |
1674 | switch (bits (this_instr, 24, 27)) | |
1675 | { | |
c5aa993b JM |
1676 | case 0x0: |
1677 | case 0x1: /* data processing */ | |
1678 | case 0x2: | |
1679 | case 0x3: | |
c906108c SS |
1680 | { |
1681 | unsigned long operand1, operand2, result = 0; | |
1682 | unsigned long rn; | |
1683 | int c; | |
c5aa993b | 1684 | |
c906108c SS |
1685 | if (bits (this_instr, 12, 15) != 15) |
1686 | break; | |
1687 | ||
1688 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1689 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
c906108c SS |
1690 | error ("Illegal update to pc in instruction"); |
1691 | ||
1692 | /* Multiply into PC */ | |
1693 | c = (status & FLAG_C) ? 1 : 0; | |
1694 | rn = bits (this_instr, 16, 19); | |
1695 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1696 | |
c906108c SS |
1697 | if (bit (this_instr, 25)) |
1698 | { | |
1699 | unsigned long immval = bits (this_instr, 0, 7); | |
1700 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1701 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1702 | & 0xffffffff; | |
c906108c | 1703 | } |
c5aa993b | 1704 | else /* operand 2 is a shifted register */ |
c906108c | 1705 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1706 | |
c906108c SS |
1707 | switch (bits (this_instr, 21, 24)) |
1708 | { | |
c5aa993b | 1709 | case 0x0: /*and */ |
c906108c SS |
1710 | result = operand1 & operand2; |
1711 | break; | |
1712 | ||
c5aa993b | 1713 | case 0x1: /*eor */ |
c906108c SS |
1714 | result = operand1 ^ operand2; |
1715 | break; | |
1716 | ||
c5aa993b | 1717 | case 0x2: /*sub */ |
c906108c SS |
1718 | result = operand1 - operand2; |
1719 | break; | |
1720 | ||
c5aa993b | 1721 | case 0x3: /*rsb */ |
c906108c SS |
1722 | result = operand2 - operand1; |
1723 | break; | |
1724 | ||
c5aa993b | 1725 | case 0x4: /*add */ |
c906108c SS |
1726 | result = operand1 + operand2; |
1727 | break; | |
1728 | ||
c5aa993b | 1729 | case 0x5: /*adc */ |
c906108c SS |
1730 | result = operand1 + operand2 + c; |
1731 | break; | |
1732 | ||
c5aa993b | 1733 | case 0x6: /*sbc */ |
c906108c SS |
1734 | result = operand1 - operand2 + c; |
1735 | break; | |
1736 | ||
c5aa993b | 1737 | case 0x7: /*rsc */ |
c906108c SS |
1738 | result = operand2 - operand1 + c; |
1739 | break; | |
1740 | ||
c5aa993b JM |
1741 | case 0x8: |
1742 | case 0x9: | |
1743 | case 0xa: | |
1744 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1745 | result = (unsigned long) nextpc; |
1746 | break; | |
1747 | ||
c5aa993b | 1748 | case 0xc: /*orr */ |
c906108c SS |
1749 | result = operand1 | operand2; |
1750 | break; | |
1751 | ||
c5aa993b | 1752 | case 0xd: /*mov */ |
c906108c SS |
1753 | /* Always step into a function. */ |
1754 | result = operand2; | |
c5aa993b | 1755 | break; |
c906108c | 1756 | |
c5aa993b | 1757 | case 0xe: /*bic */ |
c906108c SS |
1758 | result = operand1 & ~operand2; |
1759 | break; | |
1760 | ||
c5aa993b | 1761 | case 0xf: /*mvn */ |
c906108c SS |
1762 | result = ~operand2; |
1763 | break; | |
1764 | } | |
1765 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1766 | ||
1767 | if (nextpc == pc) | |
1768 | error ("Infinite loop detected"); | |
1769 | break; | |
1770 | } | |
c5aa993b JM |
1771 | |
1772 | case 0x4: | |
1773 | case 0x5: /* data transfer */ | |
1774 | case 0x6: | |
1775 | case 0x7: | |
c906108c SS |
1776 | if (bit (this_instr, 20)) |
1777 | { | |
1778 | /* load */ | |
1779 | if (bits (this_instr, 12, 15) == 15) | |
1780 | { | |
1781 | /* rd == pc */ | |
c5aa993b | 1782 | unsigned long rn; |
c906108c | 1783 | unsigned long base; |
c5aa993b | 1784 | |
c906108c SS |
1785 | if (bit (this_instr, 22)) |
1786 | error ("Illegal update to pc in instruction"); | |
1787 | ||
1788 | /* byte write to PC */ | |
1789 | rn = bits (this_instr, 16, 19); | |
1790 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1791 | if (bit (this_instr, 24)) | |
1792 | { | |
1793 | /* pre-indexed */ | |
1794 | int c = (status & FLAG_C) ? 1 : 0; | |
1795 | unsigned long offset = | |
c5aa993b | 1796 | (bit (this_instr, 25) |
ed9a39eb | 1797 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1798 | : bits (this_instr, 0, 11)); |
c906108c SS |
1799 | |
1800 | if (bit (this_instr, 23)) | |
1801 | base += offset; | |
1802 | else | |
1803 | base -= offset; | |
1804 | } | |
c5aa993b | 1805 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1806 | 4); |
c5aa993b | 1807 | |
c906108c SS |
1808 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1809 | ||
1810 | if (nextpc == pc) | |
1811 | error ("Infinite loop detected"); | |
1812 | } | |
1813 | } | |
1814 | break; | |
c5aa993b JM |
1815 | |
1816 | case 0x8: | |
1817 | case 0x9: /* block transfer */ | |
c906108c SS |
1818 | if (bit (this_instr, 20)) |
1819 | { | |
1820 | /* LDM */ | |
1821 | if (bit (this_instr, 15)) | |
1822 | { | |
1823 | /* loading pc */ | |
1824 | int offset = 0; | |
1825 | ||
1826 | if (bit (this_instr, 23)) | |
1827 | { | |
1828 | /* up */ | |
1829 | unsigned long reglist = bits (this_instr, 0, 14); | |
1830 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1831 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1832 | offset += 4; |
1833 | } | |
1834 | else if (bit (this_instr, 24)) | |
1835 | offset = -4; | |
c5aa993b | 1836 | |
c906108c | 1837 | { |
c5aa993b JM |
1838 | unsigned long rn_val = |
1839 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1840 | nextpc = |
1841 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1842 | + offset), |
c906108c SS |
1843 | 4); |
1844 | } | |
1845 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1846 | if (nextpc == pc) | |
1847 | error ("Infinite loop detected"); | |
1848 | } | |
1849 | } | |
1850 | break; | |
c5aa993b JM |
1851 | |
1852 | case 0xb: /* branch & link */ | |
1853 | case 0xa: /* branch */ | |
c906108c SS |
1854 | { |
1855 | nextpc = BranchDest (pc, this_instr); | |
1856 | ||
1857 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1858 | if (nextpc == pc) | |
1859 | error ("Infinite loop detected"); | |
1860 | break; | |
1861 | } | |
c5aa993b JM |
1862 | |
1863 | case 0xc: | |
1864 | case 0xd: | |
1865 | case 0xe: /* coproc ops */ | |
1866 | case 0xf: /* SWI */ | |
c906108c SS |
1867 | break; |
1868 | ||
1869 | default: | |
1870 | fprintf (stderr, "Bad bit-field extraction\n"); | |
1871 | return (pc); | |
1872 | } | |
1873 | } | |
1874 | ||
1875 | return nextpc; | |
1876 | } | |
1877 | ||
1878 | #include "bfd-in2.h" | |
1879 | #include "libcoff.h" | |
1880 | ||
1881 | static int | |
ed9a39eb | 1882 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
1883 | { |
1884 | if (arm_pc_is_thumb (memaddr)) | |
1885 | { | |
c5aa993b JM |
1886 | static asymbol *asym; |
1887 | static combined_entry_type ce; | |
1888 | static struct coff_symbol_struct csym; | |
1889 | static struct _bfd fake_bfd; | |
1890 | static bfd_target fake_target; | |
c906108c SS |
1891 | |
1892 | if (csym.native == NULL) | |
1893 | { | |
1894 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
1895 | solely so that the code in print_insn_little_arm() and | |
1896 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
1897 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
c5aa993b JM |
1898 | |
1899 | fake_target.flavour = bfd_target_coff_flavour; | |
1900 | fake_bfd.xvec = &fake_target; | |
c906108c | 1901 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
1902 | csym.native = &ce; |
1903 | csym.symbol.the_bfd = &fake_bfd; | |
1904 | csym.symbol.name = "fake"; | |
1905 | asym = (asymbol *) & csym; | |
c906108c | 1906 | } |
c5aa993b | 1907 | |
c906108c | 1908 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 1909 | info->symbols = &asym; |
c906108c SS |
1910 | } |
1911 | else | |
1912 | info->symbols = NULL; | |
c5aa993b | 1913 | |
c906108c SS |
1914 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) |
1915 | return print_insn_big_arm (memaddr, info); | |
1916 | else | |
1917 | return print_insn_little_arm (memaddr, info); | |
1918 | } | |
1919 | ||
ed9a39eb JM |
1920 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the |
1921 | program counter value to determine whether a 16-bit or 32-bit | |
1922 | breakpoint should be used. It returns a pointer to a string of | |
1923 | bytes that encode a breakpoint instruction, stores the length of | |
1924 | the string to *lenptr, and adjusts the program counter (if | |
1925 | necessary) to point to the actual memory location where the | |
c906108c SS |
1926 | breakpoint should be inserted. */ |
1927 | ||
1928 | unsigned char * | |
ed9a39eb | 1929 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c SS |
1930 | { |
1931 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
1932 | { | |
1933 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1934 | { |
1935 | static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; | |
1936 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1937 | *lenptr = sizeof (thumb_breakpoint); | |
1938 | return thumb_breakpoint; | |
1939 | } | |
c906108c | 1940 | else |
c5aa993b JM |
1941 | { |
1942 | static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; | |
1943 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1944 | *lenptr = sizeof (thumb_breakpoint); | |
1945 | return thumb_breakpoint; | |
1946 | } | |
c906108c SS |
1947 | } |
1948 | else | |
1949 | { | |
1950 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
c5aa993b JM |
1951 | { |
1952 | static char arm_breakpoint[] = ARM_BE_BREAKPOINT; | |
1953 | *lenptr = sizeof (arm_breakpoint); | |
1954 | return arm_breakpoint; | |
1955 | } | |
c906108c | 1956 | else |
c5aa993b JM |
1957 | { |
1958 | static char arm_breakpoint[] = ARM_LE_BREAKPOINT; | |
1959 | *lenptr = sizeof (arm_breakpoint); | |
1960 | return arm_breakpoint; | |
1961 | } | |
c906108c SS |
1962 | } |
1963 | } | |
ed9a39eb JM |
1964 | |
1965 | /* Extract from an array REGBUF containing the (raw) register state a | |
1966 | function return value of type TYPE, and copy that, in virtual | |
1967 | format, into VALBUF. */ | |
1968 | ||
1969 | void | |
1970 | arm_extract_return_value (struct type *type, | |
1971 | char regbuf[REGISTER_BYTES], | |
1972 | char *valbuf) | |
1973 | { | |
1974 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
1975 | convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf); | |
1976 | else | |
1977 | memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type)); | |
1978 | } | |
1979 | ||
1980 | /* Return non-zero if the PC is inside a thumb call thunk. */ | |
c906108c SS |
1981 | |
1982 | int | |
ed9a39eb | 1983 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
1984 | { |
1985 | CORE_ADDR start_addr; | |
1986 | ||
ed9a39eb JM |
1987 | /* Find the starting address of the function containing the PC. If |
1988 | the caller didn't give us a name, look it up at the same time. */ | |
c906108c SS |
1989 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) |
1990 | return 0; | |
1991 | ||
1992 | return strncmp (name, "_call_via_r", 11) == 0; | |
1993 | } | |
1994 | ||
ed9a39eb JM |
1995 | /* If PC is in a Thumb call or return stub, return the address of the |
1996 | target PC, which is in a register. The thunk functions are called | |
1997 | _called_via_xx, where x is the register name. The possible names | |
1998 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
1999 | |
2000 | CORE_ADDR | |
ed9a39eb | 2001 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 2002 | { |
c5aa993b | 2003 | char *name; |
c906108c SS |
2004 | CORE_ADDR start_addr; |
2005 | ||
2006 | /* Find the starting address and name of the function containing the PC. */ | |
2007 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2008 | return 0; | |
2009 | ||
2010 | /* Call thunks always start with "_call_via_". */ | |
2011 | if (strncmp (name, "_call_via_", 10) == 0) | |
2012 | { | |
ed9a39eb JM |
2013 | /* Use the name suffix to determine which register contains the |
2014 | target PC. */ | |
c5aa993b JM |
2015 | static char *table[15] = |
2016 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
2017 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
2018 | }; | |
c906108c SS |
2019 | int regno; |
2020 | ||
2021 | for (regno = 0; regno <= 14; regno++) | |
2022 | if (strcmp (&name[10], table[regno]) == 0) | |
2023 | return read_register (regno); | |
2024 | } | |
ed9a39eb | 2025 | |
c5aa993b | 2026 | return 0; /* not a stub */ |
c906108c SS |
2027 | } |
2028 | ||
bc90b915 FN |
2029 | /* If the user changes the register disassembly flavor used for info register |
2030 | and other commands, we have to also switch the flavor used in opcodes | |
2031 | for disassembly output. | |
2032 | This function is run in the set disassembly_flavor command, and does that. */ | |
2033 | ||
2034 | static void | |
2035 | set_disassembly_flavor_sfunc (char *args, int from_tty, | |
2036 | struct cmd_list_element *c) | |
2037 | { | |
2038 | set_disassembly_flavor (); | |
2039 | } | |
2040 | \f | |
2041 | static void | |
2042 | set_disassembly_flavor (void) | |
2043 | { | |
2044 | const char *setname, *setdesc, **regnames; | |
2045 | int numregs, j; | |
2046 | ||
2047 | /* Find the flavor that the user wants in the opcodes table. */ | |
2048 | int current = 0; | |
2049 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
2050 | while ((disassembly_flavor != setname) | |
2051 | && (current < num_flavor_options)) | |
2052 | get_arm_regnames (++current, &setname, &setdesc, ®names); | |
2053 | current_option = current; | |
2054 | ||
2055 | /* Fill our copy. */ | |
2056 | for (j = 0; j < numregs; j++) | |
2057 | arm_register_names[j] = (char *) regnames[j]; | |
2058 | ||
2059 | /* Adjust case. */ | |
2060 | if (isupper (*regnames[PC_REGNUM])) | |
2061 | { | |
2062 | arm_register_names[FPS_REGNUM] = "FPS"; | |
2063 | arm_register_names[PS_REGNUM] = "CPSR"; | |
2064 | } | |
2065 | else | |
2066 | { | |
2067 | arm_register_names[FPS_REGNUM] = "fps"; | |
2068 | arm_register_names[PS_REGNUM] = "cpsr"; | |
2069 | } | |
2070 | ||
2071 | /* Synchronize the disassembler. */ | |
2072 | set_arm_regname_option (current); | |
2073 | } | |
2074 | ||
2075 | /* arm_othernames implements the "othernames" command. This is kind | |
2076 | of hacky, and I prefer the set-show disassembly-flavor which is | |
2077 | also used for the x86 gdb. I will keep this around, however, in | |
2078 | case anyone is actually using it. */ | |
2079 | ||
2080 | static void | |
2081 | arm_othernames (char *names, int n) | |
2082 | { | |
2083 | /* Circle through the various flavors. */ | |
2084 | current_option = (current_option + 1) % num_flavor_options; | |
2085 | ||
2086 | disassembly_flavor = valid_flavors[current_option]; | |
2087 | set_disassembly_flavor (); | |
2088 | } | |
2089 | ||
c906108c | 2090 | void |
ed9a39eb | 2091 | _initialize_arm_tdep (void) |
c906108c | 2092 | { |
bc90b915 FN |
2093 | struct ui_file *stb; |
2094 | long length; | |
96baa820 | 2095 | struct cmd_list_element *new_cmd; |
53904c9e AC |
2096 | const char *setname; |
2097 | const char *setdesc; | |
2098 | const char **regnames; | |
bc90b915 FN |
2099 | int numregs, i, j; |
2100 | static char *helptext; | |
085dd6e6 | 2101 | |
c906108c | 2102 | tm_print_insn = gdb_print_insn_arm; |
ed9a39eb | 2103 | |
bc90b915 FN |
2104 | /* Get the number of possible sets of register names defined in opcodes. */ |
2105 | num_flavor_options = get_arm_regname_num_options (); | |
2106 | ||
085dd6e6 | 2107 | /* Sync the opcode insn printer with our register viewer: */ |
bc90b915 | 2108 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 2109 | |
bc90b915 FN |
2110 | /* Begin creating the help text. */ |
2111 | stb = mem_fileopen (); | |
2112 | fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ | |
2113 | The valid values are:\n"); | |
ed9a39eb | 2114 | |
bc90b915 FN |
2115 | /* Initialize the array that will be passed to add_set_enum_cmd(). */ |
2116 | valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); | |
2117 | for (i = 0; i < num_flavor_options; i++) | |
2118 | { | |
2119 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
53904c9e | 2120 | valid_flavors[i] = setname; |
bc90b915 FN |
2121 | fprintf_unfiltered (stb, "%s - %s\n", setname, |
2122 | setdesc); | |
2123 | /* Copy the default names (if found) and synchronize disassembler. */ | |
2124 | if (!strcmp (setname, "std")) | |
2125 | { | |
53904c9e | 2126 | disassembly_flavor = setname; |
bc90b915 FN |
2127 | current_option = i; |
2128 | for (j = 0; j < numregs; j++) | |
2129 | arm_register_names[j] = (char *) regnames[j]; | |
2130 | set_arm_regname_option (i); | |
2131 | } | |
2132 | } | |
2133 | /* Mark the end of valid options. */ | |
2134 | valid_flavors[num_flavor_options] = NULL; | |
c906108c | 2135 | |
bc90b915 FN |
2136 | /* Finish the creation of the help text. */ |
2137 | fprintf_unfiltered (stb, "The default is \"std\"."); | |
2138 | helptext = ui_file_xstrdup (stb, &length); | |
2139 | ui_file_delete (stb); | |
ed9a39eb | 2140 | |
bc90b915 | 2141 | /* Add the disassembly-flavor command */ |
96baa820 | 2142 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
ed9a39eb | 2143 | valid_flavors, |
1ed2a135 | 2144 | &disassembly_flavor, |
bc90b915 | 2145 | helptext, |
ed9a39eb | 2146 | &setlist); |
96baa820 | 2147 | new_cmd->function.sfunc = set_disassembly_flavor_sfunc; |
ed9a39eb JM |
2148 | add_show_from_set (new_cmd, &showlist); |
2149 | ||
c906108c SS |
2150 | /* ??? Maybe this should be a boolean. */ |
2151 | add_show_from_set (add_set_cmd ("apcs32", no_class, | |
ed9a39eb | 2152 | var_zinteger, (char *) &arm_apcs_32, |
96baa820 | 2153 | "Set usage of ARM 32-bit mode.\n", &setlist), |
ed9a39eb | 2154 | &showlist); |
c906108c | 2155 | |
bc90b915 FN |
2156 | /* Add the deprecated "othernames" command */ |
2157 | ||
2158 | add_com ("othernames", class_obscure, arm_othernames, | |
2159 | "Switch to the next set of register names."); | |
c906108c SS |
2160 | } |
2161 | ||
ed9a39eb JM |
2162 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2163 | function. */ | |
2164 | ||
c906108c | 2165 | int |
c5aa993b | 2166 | coff_sym_is_thumb (int val) |
c906108c | 2167 | { |
c5aa993b JM |
2168 | return (val == C_THUMBEXT || |
2169 | val == C_THUMBSTAT || | |
2170 | val == C_THUMBEXTFUNC || | |
2171 | val == C_THUMBSTATFUNC || | |
2172 | val == C_THUMBLABEL); | |
c906108c | 2173 | } |