*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
9b254dd1
DJ
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
842e1f1e
DJ
39#include "objfiles.h"
40#include "dwarf2-frame.h"
e4c16157 41#include "gdbtypes.h"
29d73ae4 42#include "prologue-value.h"
123dc839
DJ
43#include "target-descriptions.h"
44#include "user-regs.h"
34e8f22d
RE
45
46#include "arm-tdep.h"
26216b98 47#include "gdb/sim-arm.h"
34e8f22d 48
082fc60d
RE
49#include "elf-bfd.h"
50#include "coff/internal.h"
97e03143 51#include "elf/arm.h"
c906108c 52
26216b98
AC
53#include "gdb_assert.h"
54
6529d2dd
AC
55static int arm_debug;
56
082fc60d
RE
57/* Macros for setting and testing a bit in a minimal symbol that marks
58 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 59 is used for this purpose.
082fc60d
RE
60
61 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 62 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
63
64#define MSYMBOL_SET_SPECIAL(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68#define MSYMBOL_IS_SPECIAL(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
afd7eef0
RE
71/* The list of available "set arm ..." and "show arm ..." commands. */
72static struct cmd_list_element *setarmcmdlist = NULL;
73static struct cmd_list_element *showarmcmdlist = NULL;
74
fd50bc42
RE
75/* The type of floating-point to use. Keep this in sync with enum
76 arm_float_model, and the help string in _initialize_arm_tdep. */
77static const char *fp_model_strings[] =
78{
79 "auto",
80 "softfpa",
81 "fpa",
82 "softvfp",
28e97307
DJ
83 "vfp",
84 NULL
fd50bc42
RE
85};
86
87/* A variable that can be configured by the user. */
88static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
89static const char *current_fp_model = "auto";
90
28e97307
DJ
91/* The ABI to use. Keep this in sync with arm_abi_kind. */
92static const char *arm_abi_strings[] =
93{
94 "auto",
95 "APCS",
96 "AAPCS",
97 NULL
98};
99
100/* A variable that can be configured by the user. */
101static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
102static const char *arm_abi_string = "auto";
103
94c30b78 104/* Number of different reg name sets (options). */
afd7eef0 105static int num_disassembly_options;
bc90b915 106
123dc839
DJ
107/* The standard register names, and all the valid aliases for them. */
108static const struct
109{
110 const char *name;
111 int regnum;
112} arm_register_aliases[] = {
113 /* Basic register numbers. */
114 { "r0", 0 },
115 { "r1", 1 },
116 { "r2", 2 },
117 { "r3", 3 },
118 { "r4", 4 },
119 { "r5", 5 },
120 { "r6", 6 },
121 { "r7", 7 },
122 { "r8", 8 },
123 { "r9", 9 },
124 { "r10", 10 },
125 { "r11", 11 },
126 { "r12", 12 },
127 { "r13", 13 },
128 { "r14", 14 },
129 { "r15", 15 },
130 /* Synonyms (argument and variable registers). */
131 { "a1", 0 },
132 { "a2", 1 },
133 { "a3", 2 },
134 { "a4", 3 },
135 { "v1", 4 },
136 { "v2", 5 },
137 { "v3", 6 },
138 { "v4", 7 },
139 { "v5", 8 },
140 { "v6", 9 },
141 { "v7", 10 },
142 { "v8", 11 },
143 /* Other platform-specific names for r9. */
144 { "sb", 9 },
145 { "tr", 9 },
146 /* Special names. */
147 { "ip", 12 },
148 { "sp", 13 },
149 { "lr", 14 },
150 { "pc", 15 },
151 /* Names used by GCC (not listed in the ARM EABI). */
152 { "sl", 10 },
153 { "fp", 11 },
154 /* A special name from the older ATPCS. */
155 { "wr", 7 },
156};
bc90b915 157
123dc839 158static const char *const arm_register_names[] =
da59e081
JM
159{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
160 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
161 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
162 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
163 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
164 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 165 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 166
afd7eef0
RE
167/* Valid register name styles. */
168static const char **valid_disassembly_styles;
ed9a39eb 169
afd7eef0
RE
170/* Disassembly style to use. Default to "std" register names. */
171static const char *disassembly_style;
96baa820 172
ed9a39eb 173/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
174 style. */
175static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 176 struct cmd_list_element *);
afd7eef0 177static void set_disassembly_style (void);
ed9a39eb 178
b508a996
RE
179static void convert_from_extended (const struct floatformat *, const void *,
180 void *);
181static void convert_to_extended (const struct floatformat *, void *,
182 const void *);
ed9a39eb 183
9b8d791a 184struct arm_prologue_cache
c3b4394c 185{
eb5492fa
DJ
186 /* The stack pointer at the time this frame was created; i.e. the
187 caller's stack pointer when this function was called. It is used
188 to identify this frame. */
189 CORE_ADDR prev_sp;
190
4be43953
DJ
191 /* The frame base for this frame is just prev_sp - frame size.
192 FRAMESIZE is the distance from the frame pointer to the
193 initial stack pointer. */
eb5492fa 194
c3b4394c 195 int framesize;
eb5492fa
DJ
196
197 /* The register used to hold the frame pointer for this frame. */
c3b4394c 198 int framereg;
eb5492fa
DJ
199
200 /* Saved register offsets. */
201 struct trad_frame_saved_reg *saved_regs;
c3b4394c 202};
ed9a39eb 203
bc90b915
FN
204/* Addresses for calling Thumb functions have the bit 0 set.
205 Here are some macros to test, set, or clear bit 0 of addresses. */
206#define IS_THUMB_ADDR(addr) ((addr) & 1)
207#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
208#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
209
94c30b78 210/* Set to true if the 32-bit mode is in use. */
c906108c
SS
211
212int arm_apcs_32 = 1;
213
ed9a39eb
JM
214/* Determine if the program counter specified in MEMADDR is in a Thumb
215 function. */
c906108c 216
ad527d2e 217static int
2a451106 218arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 219{
c5aa993b 220 struct minimal_symbol *sym;
c906108c 221
ed9a39eb 222 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
223 if (IS_THUMB_ADDR (memaddr))
224 return 1;
225
ed9a39eb 226 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
227 sym = lookup_minimal_symbol_by_pc (memaddr);
228 if (sym)
229 {
c5aa993b 230 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
231 }
232 else
ed9a39eb
JM
233 {
234 return 0;
235 }
c906108c
SS
236}
237
181c1381 238/* Remove useless bits from addresses in a running program. */
34e8f22d 239static CORE_ADDR
ed9a39eb 240arm_addr_bits_remove (CORE_ADDR val)
c906108c 241{
a3a2ee65
JT
242 if (arm_apcs_32)
243 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 244 else
a3a2ee65 245 return (val & 0x03fffffc);
c906108c
SS
246}
247
181c1381
RE
248/* When reading symbols, we need to zap the low bit of the address,
249 which may be set to 1 for Thumb functions. */
34e8f22d 250static CORE_ADDR
181c1381
RE
251arm_smash_text_address (CORE_ADDR val)
252{
253 return val & ~1;
254}
255
29d73ae4
DJ
256/* Analyze a Thumb prologue, looking for a recognizable stack frame
257 and frame pointer. Scan until we encounter a store that could
258 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
259
260static CORE_ADDR
29d73ae4
DJ
261thumb_analyze_prologue (struct gdbarch *gdbarch,
262 CORE_ADDR start, CORE_ADDR limit,
263 struct arm_prologue_cache *cache)
c906108c 264{
29d73ae4
DJ
265 int i;
266 pv_t regs[16];
267 struct pv_area *stack;
268 struct cleanup *back_to;
269 CORE_ADDR offset;
da3c6d4a 270
29d73ae4
DJ
271 for (i = 0; i < 16; i++)
272 regs[i] = pv_register (i, 0);
273 stack = make_pv_area (ARM_SP_REGNUM);
274 back_to = make_cleanup_free_pv_area (stack);
275
276 /* The call instruction saved PC in LR, and the current PC is not
277 interesting. Due to this file's conventions, we want the value
278 of LR at this function's entry, not at the call site, so we do
279 not record the save of the PC - when the ARM prologue analyzer
280 has also been converted to the pv mechanism, we could record the
281 save here and remove the hack in prev_register. */
282 regs[ARM_PC_REGNUM] = pv_unknown ();
283
284 while (start < limit)
c906108c 285 {
29d73ae4
DJ
286 unsigned short insn;
287
288 insn = read_memory_unsigned_integer (start, 2);
c906108c 289
94c30b78 290 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 291 {
29d73ae4
DJ
292 int regno;
293 int mask;
4be43953
DJ
294
295 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
296 break;
29d73ae4
DJ
297
298 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
299 whether to save LR (R14). */
300 mask = (insn & 0xff) | ((insn & 0x100) << 6);
301
302 /* Calculate offsets of saved R0-R7 and LR. */
303 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
304 if (mask & (1 << regno))
305 {
29d73ae4
DJ
306 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
307 -4);
308 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
309 }
da59e081 310 }
da3c6d4a
MS
311 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
312 sub sp, #simm */
da59e081 313 {
29d73ae4
DJ
314 offset = (insn & 0x7f) << 2; /* get scaled offset */
315 if (insn & 0x80) /* Check for SUB. */
316 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
317 -offset);
da59e081 318 else
29d73ae4
DJ
319 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
320 offset);
da59e081
JM
321 }
322 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
323 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
324 (insn & 0xff) << 2);
325 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 326 {
29d73ae4
DJ
327 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
328 int src_reg = (insn & 0x78) >> 3;
329 regs[dst_reg] = regs[src_reg];
da59e081 330 }
29d73ae4 331 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 332 {
29d73ae4
DJ
333 /* Handle stores to the stack. Normally pushes are used,
334 but with GCC -mtpcs-frame, there may be other stores
335 in the prologue to create the frame. */
336 int regno = (insn >> 8) & 0x7;
337 pv_t addr;
338
339 offset = (insn & 0xff) << 2;
340 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
341
342 if (pv_area_store_would_trash (stack, addr))
343 break;
344
345 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 346 }
29d73ae4 347 else
3d74b771 348 {
29d73ae4
DJ
349 /* We don't know what this instruction is. We're finished
350 scanning. NOTE: Recognizing more safe-to-ignore
351 instructions here will improve support for optimized
352 code. */
da3c6d4a 353 break;
3d74b771 354 }
29d73ae4
DJ
355
356 start += 2;
c906108c
SS
357 }
358
29d73ae4
DJ
359 if (cache == NULL)
360 {
361 do_cleanups (back_to);
362 return start;
363 }
364
29d73ae4
DJ
365 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
366 {
367 /* Frame pointer is fp. Frame size is constant. */
368 cache->framereg = ARM_FP_REGNUM;
369 cache->framesize = -regs[ARM_FP_REGNUM].k;
370 }
371 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
372 {
373 /* Frame pointer is r7. Frame size is constant. */
374 cache->framereg = THUMB_FP_REGNUM;
375 cache->framesize = -regs[THUMB_FP_REGNUM].k;
376 }
377 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
378 {
379 /* Try the stack pointer... this is a bit desperate. */
380 cache->framereg = ARM_SP_REGNUM;
381 cache->framesize = -regs[ARM_SP_REGNUM].k;
382 }
383 else
384 {
385 /* We're just out of luck. We don't know where the frame is. */
386 cache->framereg = -1;
387 cache->framesize = 0;
388 }
389
390 for (i = 0; i < 16; i++)
391 if (pv_area_find_reg (stack, gdbarch, i, &offset))
392 cache->saved_regs[i].addr = offset;
393
394 do_cleanups (back_to);
395 return start;
c906108c
SS
396}
397
da3c6d4a
MS
398/* Advance the PC across any function entry prologue instructions to
399 reach some "real" code.
34e8f22d
RE
400
401 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 402 prologue:
c906108c 403
c5aa993b
JM
404 mov ip, sp
405 [stmfd sp!, {a1,a2,a3,a4}]
406 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
407 [stfe f7, [sp, #-12]!]
408 [stfe f6, [sp, #-12]!]
409 [stfe f5, [sp, #-12]!]
410 [stfe f4, [sp, #-12]!]
411 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 412
34e8f22d 413static CORE_ADDR
ed9a39eb 414arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
415{
416 unsigned long inst;
417 CORE_ADDR skip_pc;
b8d5e71d 418 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 419 char *func_name;
c906108c
SS
420 struct symtab_and_line sal;
421
848cfffb 422 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 423 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
424 return pc;
425
96baa820 426 /* See what the symbol table says. */
ed9a39eb 427
50f6fb4b 428 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 429 {
50f6fb4b
CV
430 struct symbol *sym;
431
432 /* Found a function. */
176620f1 433 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
434 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
435 {
94c30b78 436 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
437 sal = find_pc_line (func_addr, 0);
438 if ((sal.line != 0) && (sal.end < func_end))
439 return sal.end;
440 }
c906108c
SS
441 }
442
c906108c 443 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 444 by disassembling the instructions. */
c906108c 445
b8d5e71d
MS
446 /* Like arm_scan_prologue, stop no later than pc + 64. */
447 if (func_end == 0 || func_end > pc + 64)
448 func_end = pc + 64;
c906108c 449
29d73ae4
DJ
450 /* Check if this is Thumb code. */
451 if (arm_pc_is_thumb (pc))
452 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
453
b8d5e71d 454 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 455 {
1c5bada0 456 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 457
b8d5e71d
MS
458 /* "mov ip, sp" is no longer a required part of the prologue. */
459 if (inst == 0xe1a0c00d) /* mov ip, sp */
460 continue;
c906108c 461
28cd8767
JG
462 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
463 continue;
464
465 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
466 continue;
467
b8d5e71d
MS
468 /* Some prologues begin with "str lr, [sp, #-4]!". */
469 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
470 continue;
c906108c 471
b8d5e71d
MS
472 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
473 continue;
c906108c 474
b8d5e71d
MS
475 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
476 continue;
11d3b27d 477
b8d5e71d
MS
478 /* Any insns after this point may float into the code, if it makes
479 for better instruction scheduling, so we skip them only if we
480 find them, but still consider the function to be frame-ful. */
f43845b3 481
b8d5e71d
MS
482 /* We may have either one sfmfd instruction here, or several stfe
483 insns, depending on the version of floating point code we
484 support. */
485 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
486 continue;
487
488 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
489 continue;
490
491 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
492 continue;
493
494 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
495 continue;
496
497 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
498 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
499 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
500 continue;
501
502 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
503 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
504 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
505 continue;
506
507 /* Un-recognized instruction; stop scanning. */
508 break;
f43845b3 509 }
c906108c 510
b8d5e71d 511 return skip_pc; /* End of prologue */
c906108c 512}
94c30b78 513
c5aa993b 514/* *INDENT-OFF* */
c906108c
SS
515/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
516 This function decodes a Thumb function prologue to determine:
517 1) the size of the stack frame
518 2) which registers are saved on it
519 3) the offsets of saved regs
520 4) the offset from the stack pointer to the frame pointer
c906108c 521
da59e081
JM
522 A typical Thumb function prologue would create this stack frame
523 (offsets relative to FP)
c906108c
SS
524 old SP -> 24 stack parameters
525 20 LR
526 16 R7
527 R7 -> 0 local variables (16 bytes)
528 SP -> -12 additional stack space (12 bytes)
529 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
530 12 bytes. The frame register is R7.
531
da3c6d4a
MS
532 The comments for thumb_skip_prolog() describe the algorithm we use
533 to detect the end of the prolog. */
c5aa993b
JM
534/* *INDENT-ON* */
535
c906108c 536static void
eb5492fa 537thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
538{
539 CORE_ADDR prologue_start;
540 CORE_ADDR prologue_end;
541 CORE_ADDR current_pc;
94c30b78 542 /* Which register has been copied to register n? */
da3c6d4a
MS
543 int saved_reg[16];
544 /* findmask:
545 bit 0 - push { rlist }
546 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
547 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
548 */
549 int findmask = 0;
c5aa993b 550 int i;
c906108c 551
eb5492fa 552 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
553 {
554 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
555
94c30b78 556 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 557 prologue_end = prev_pc;
c906108c 558 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 559 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
560 }
561 else
f7060f85
DJ
562 /* We're in the boondocks: we have no idea where the start of the
563 function is. */
564 return;
c906108c 565
eb5492fa 566 prologue_end = min (prologue_end, prev_pc);
c906108c 567
29d73ae4
DJ
568 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
569 cache);
c906108c
SS
570}
571
ed9a39eb 572/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
573 1) the size of the stack frame
574 2) which registers are saved on it
575 3) the offsets of saved regs
576 4) the offset from the stack pointer to the frame pointer
c906108c
SS
577 This information is stored in the "extra" fields of the frame_info.
578
96baa820
JM
579 There are two basic forms for the ARM prologue. The fixed argument
580 function call will look like:
ed9a39eb
JM
581
582 mov ip, sp
583 stmfd sp!, {fp, ip, lr, pc}
584 sub fp, ip, #4
585 [sub sp, sp, #4]
96baa820 586
c906108c 587 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
588 IP -> 4 (caller's stack)
589 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
590 -4 LR (return address in caller)
591 -8 IP (copy of caller's SP)
592 -12 FP (caller's FP)
593 SP -> -28 Local variables
594
c906108c 595 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
596 28 bytes. The stmfd call can also save any of the vN registers it
597 plans to use, which increases the frame size accordingly.
598
599 Note: The stored PC is 8 off of the STMFD instruction that stored it
600 because the ARM Store instructions always store PC + 8 when you read
601 the PC register.
ed9a39eb 602
96baa820
JM
603 A variable argument function call will look like:
604
ed9a39eb
JM
605 mov ip, sp
606 stmfd sp!, {a1, a2, a3, a4}
607 stmfd sp!, {fp, ip, lr, pc}
608 sub fp, ip, #20
609
96baa820 610 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
611 IP -> 20 (caller's stack)
612 16 A4
613 12 A3
614 8 A2
615 4 A1
616 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
617 -4 LR (return address in caller)
618 -8 IP (copy of caller's SP)
619 -12 FP (caller's FP)
620 SP -> -28 Local variables
96baa820
JM
621
622 The frame size would thus be 48 bytes, and the frame offset would be
623 28 bytes.
624
625 There is another potential complication, which is that the optimizer
626 will try to separate the store of fp in the "stmfd" instruction from
627 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
628 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
629
630 Also, note, the original version of the ARM toolchain claimed that there
631 should be an
632
633 instruction at the end of the prologue. I have never seen GCC produce
634 this, and the ARM docs don't mention it. We still test for it below in
635 case it happens...
ed9a39eb
JM
636
637 */
c906108c
SS
638
639static void
2af46ca0
UW
640arm_scan_prologue (struct frame_info *next_frame,
641 struct arm_prologue_cache *cache)
c906108c 642{
2af46ca0 643 struct gdbarch *gdbarch = get_frame_arch (next_frame);
4be43953 644 int regno;
c906108c 645 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 646 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
4be43953
DJ
647 pv_t regs[ARM_FPS_REGNUM];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
c906108c 651
c906108c 652 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
653 cache->framereg = ARM_SP_REGNUM;
654 cache->framesize = 0;
c906108c
SS
655
656 /* Check for Thumb prologue. */
eb5492fa 657 if (arm_pc_is_thumb (prev_pc))
c906108c 658 {
eb5492fa 659 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
660 return;
661 }
662
663 /* Find the function prologue. If we can't find the function in
664 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 665 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 666 {
2a451106
KB
667 /* One way to find the end of the prologue (which works well
668 for unoptimized code) is to do the following:
669
670 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
671
672 if (sal.line == 0)
eb5492fa 673 prologue_end = prev_pc;
2a451106
KB
674 else if (sal.end < prologue_end)
675 prologue_end = sal.end;
676
677 This mechanism is very accurate so long as the optimizer
678 doesn't move any instructions from the function body into the
679 prologue. If this happens, sal.end will be the last
680 instruction in the first hunk of prologue code just before
681 the first instruction that the scheduler has moved from
682 the body to the prologue.
683
684 In order to make sure that we scan all of the prologue
685 instructions, we use a slightly less accurate mechanism which
686 may scan more than necessary. To help compensate for this
687 lack of accuracy, the prologue scanning loop below contains
688 several clauses which'll cause the loop to terminate early if
689 an implausible prologue instruction is encountered.
690
691 The expression
692
693 prologue_start + 64
694
695 is a suitable endpoint since it accounts for the largest
696 possible prologue plus up to five instructions inserted by
94c30b78 697 the scheduler. */
2a451106
KB
698
699 if (prologue_end > prologue_start + 64)
700 {
94c30b78 701 prologue_end = prologue_start + 64; /* See above. */
2a451106 702 }
c906108c
SS
703 }
704 else
705 {
eb5492fa
DJ
706 /* We have no symbol information. Our only option is to assume this
707 function has a standard stack frame and the normal frame register.
708 Then, we can find the value of our frame pointer on entrance to
709 the callee (or at the present moment if this is the innermost frame).
710 The value stored there should be the address of the stmfd + 8. */
711 CORE_ADDR frame_loc;
712 LONGEST return_value;
713
714 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
715 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
716 return;
717 else
718 {
bf6ae464 719 prologue_start = gdbarch_addr_bits_remove
2af46ca0 720 (gdbarch, return_value) - 8;
94c30b78 721 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 722 }
c906108c
SS
723 }
724
eb5492fa
DJ
725 if (prev_pc < prologue_end)
726 prologue_end = prev_pc;
727
c906108c 728 /* Now search the prologue looking for instructions that set up the
96baa820 729 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 730
96baa820
JM
731 Be careful, however, and if it doesn't look like a prologue,
732 don't try to scan it. If, for instance, a frameless function
733 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 734 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
735 and other operations that rely on a knowledge of the stack
736 traceback.
737
738 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 739 if we don't see this as the first insn, we will stop.
c906108c 740
f43845b3
MS
741 [Note: This doesn't seem to be true any longer, so it's now an
742 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 743
f43845b3
MS
744 [Note further: The "mov ip,sp" only seems to be missing in
745 frameless functions at optimization level "-O2" or above,
746 in which case it is often (but not always) replaced by
b8d5e71d 747 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 748
4be43953
DJ
749 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
750 regs[regno] = pv_register (regno, 0);
751 stack = make_pv_area (ARM_SP_REGNUM);
752 back_to = make_cleanup_free_pv_area (stack);
753
754 regs[ARM_PC_REGNUM] = pv_unknown ();
f43845b3 755
94c30b78
MS
756 for (current_pc = prologue_start;
757 current_pc < prologue_end;
f43845b3 758 current_pc += 4)
96baa820 759 {
d4473757
KB
760 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
761
94c30b78 762 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 763 {
4be43953 764 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
765 continue;
766 }
767 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
768 {
769 unsigned imm = insn & 0xff; /* immediate value */
770 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
771 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 772 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
28cd8767
JG
773 continue;
774 }
775 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
776 {
777 unsigned imm = insn & 0xff; /* immediate value */
778 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
779 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 780 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
f43845b3
MS
781 continue;
782 }
94c30b78 783 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 784 {
4be43953
DJ
785 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
786 break;
787 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
788 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
f43845b3
MS
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
c906108c 795 {
d4473757 796 int mask = insn & 0xffff;
ed9a39eb 797
4be43953
DJ
798 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
799 break;
800
94c30b78 801 /* Calculate offsets of saved registers. */
34e8f22d 802 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
803 if (mask & (1 << regno))
804 {
4be43953
DJ
805 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
806 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
807 }
808 }
b8d5e71d
MS
809 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
810 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
811 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
812 {
813 /* No need to add this to saved_regs -- it's just an arg reg. */
814 continue;
815 }
816 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
817 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
818 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
819 {
820 /* No need to add this to saved_regs -- it's just an arg reg. */
821 continue;
822 }
d4473757
KB
823 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
824 {
94c30b78
MS
825 unsigned imm = insn & 0xff; /* immediate value */
826 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 827 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 828 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
829 }
830 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 {
94c30b78
MS
832 unsigned imm = insn & 0xff; /* immediate value */
833 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 834 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 835 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 836 }
ff6f572f 837 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
2af46ca0 838 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 839 {
4be43953
DJ
840 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
841 break;
842
843 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 844 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 845 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 846 }
ff6f572f 847 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
2af46ca0 848 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
849 {
850 int n_saved_fp_regs;
851 unsigned int fp_start_reg, fp_bound_reg;
852
4be43953
DJ
853 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
854 break;
855
94c30b78 856 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 857 {
d4473757
KB
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 3;
860 else
861 n_saved_fp_regs = 1;
96baa820 862 }
d4473757 863 else
96baa820 864 {
d4473757
KB
865 if ((insn & 0x40000) == 0x40000) /* N1 is set */
866 n_saved_fp_regs = 2;
867 else
868 n_saved_fp_regs = 4;
96baa820 869 }
d4473757 870
34e8f22d 871 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
872 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
873 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 874 {
4be43953
DJ
875 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
876 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
877 regs[fp_start_reg++]);
96baa820 878 }
c906108c 879 }
d4473757 880 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 881 break; /* Condition not true, exit early */
b8d5e71d 882 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 883 break; /* Don't scan past a block load */
d4473757
KB
884 else
885 /* The optimizer might shove anything into the prologue,
94c30b78 886 so we just skip what we don't recognize. */
d4473757 887 continue;
c906108c
SS
888 }
889
4be43953
DJ
890 /* The frame size is just the distance from the frame register
891 to the original stack pointer. */
892 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
893 {
894 /* Frame pointer is fp. */
895 cache->framereg = ARM_FP_REGNUM;
896 cache->framesize = -regs[ARM_FP_REGNUM].k;
897 }
898 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
899 {
900 /* Try the stack pointer... this is a bit desperate. */
901 cache->framereg = ARM_SP_REGNUM;
902 cache->framesize = -regs[ARM_SP_REGNUM].k;
903 }
d4473757 904 else
4be43953
DJ
905 {
906 /* We're just out of luck. We don't know where the frame is. */
907 cache->framereg = -1;
908 cache->framesize = 0;
909 }
910
911 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
912 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
913 cache->saved_regs[regno].addr = offset;
914
915 do_cleanups (back_to);
c906108c
SS
916}
917
eb5492fa
DJ
918static struct arm_prologue_cache *
919arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 920{
eb5492fa
DJ
921 int reg;
922 struct arm_prologue_cache *cache;
923 CORE_ADDR unwound_fp;
c5aa993b 924
35d5d4ee 925 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 926 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 927
eb5492fa 928 arm_scan_prologue (next_frame, cache);
848cfffb 929
eb5492fa
DJ
930 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
931 if (unwound_fp == 0)
932 return cache;
c906108c 933
4be43953 934 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 935
eb5492fa
DJ
936 /* Calculate actual addresses of saved registers using offsets
937 determined by arm_scan_prologue. */
2af46ca0 938 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
e28a332c 939 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
940 cache->saved_regs[reg].addr += cache->prev_sp;
941
942 return cache;
c906108c
SS
943}
944
eb5492fa
DJ
945/* Our frame ID for a normal frame is the current function's starting PC
946 and the caller's SP when we were called. */
c906108c 947
148754e5 948static void
eb5492fa
DJ
949arm_prologue_this_id (struct frame_info *next_frame,
950 void **this_cache,
951 struct frame_id *this_id)
c906108c 952{
eb5492fa
DJ
953 struct arm_prologue_cache *cache;
954 struct frame_id id;
955 CORE_ADDR func;
f079148d 956
eb5492fa
DJ
957 if (*this_cache == NULL)
958 *this_cache = arm_make_prologue_cache (next_frame);
959 cache = *this_cache;
2a451106 960
93d42b30 961 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 962
eb5492fa
DJ
963 /* This is meant to halt the backtrace at "_start". Make sure we
964 don't halt it at a generic dummy frame. */
2301df11 965 if (func <= gdbarch_tdep (get_frame_arch (next_frame))->lowest_pc)
eb5492fa 966 return;
5a203e44 967
eb5492fa
DJ
968 /* If we've hit a wall, stop. */
969 if (cache->prev_sp == 0)
970 return;
24de872b 971
eb5492fa 972 id = frame_id_build (cache->prev_sp, func);
eb5492fa 973 *this_id = id;
c906108c
SS
974}
975
eb5492fa
DJ
976static void
977arm_prologue_prev_register (struct frame_info *next_frame,
978 void **this_cache,
979 int prev_regnum,
980 int *optimized,
981 enum lval_type *lvalp,
982 CORE_ADDR *addrp,
983 int *realnump,
9af75ef6 984 gdb_byte *valuep)
24de872b
DJ
985{
986 struct arm_prologue_cache *cache;
987
eb5492fa
DJ
988 if (*this_cache == NULL)
989 *this_cache = arm_make_prologue_cache (next_frame);
990 cache = *this_cache;
24de872b 991
eb5492fa
DJ
992 /* If we are asked to unwind the PC, then we need to return the LR
993 instead. The saved value of PC points into this frame's
994 prologue, not the next frame's resume location. */
995 if (prev_regnum == ARM_PC_REGNUM)
996 prev_regnum = ARM_LR_REGNUM;
24de872b 997
eb5492fa
DJ
998 /* SP is generally not saved to the stack, but this frame is
999 identified by NEXT_FRAME's stack pointer at the time of the call.
1000 The value was already reconstructed into PREV_SP. */
1001 if (prev_regnum == ARM_SP_REGNUM)
1002 {
1003 *lvalp = not_lval;
1004 if (valuep)
1005 store_unsigned_integer (valuep, 4, cache->prev_sp);
1006 return;
1007 }
1008
1f67027d
AC
1009 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1010 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
1011}
1012
1013struct frame_unwind arm_prologue_unwind = {
1014 NORMAL_FRAME,
1015 arm_prologue_this_id,
1016 arm_prologue_prev_register
1017};
1018
1019static const struct frame_unwind *
1020arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1021{
1022 return &arm_prologue_unwind;
24de872b
DJ
1023}
1024
909cf6ea
DJ
1025static struct arm_prologue_cache *
1026arm_make_stub_cache (struct frame_info *next_frame)
1027{
1028 int reg;
1029 struct arm_prologue_cache *cache;
1030 CORE_ADDR unwound_fp;
1031
35d5d4ee 1032 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1033 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1034
1035 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1036
1037 return cache;
1038}
1039
1040/* Our frame ID for a stub frame is the current SP and LR. */
1041
1042static void
1043arm_stub_this_id (struct frame_info *next_frame,
1044 void **this_cache,
1045 struct frame_id *this_id)
1046{
1047 struct arm_prologue_cache *cache;
1048
1049 if (*this_cache == NULL)
1050 *this_cache = arm_make_stub_cache (next_frame);
1051 cache = *this_cache;
1052
1053 *this_id = frame_id_build (cache->prev_sp,
1054 frame_pc_unwind (next_frame));
1055}
1056
1057struct frame_unwind arm_stub_unwind = {
1058 NORMAL_FRAME,
1059 arm_stub_this_id,
1060 arm_prologue_prev_register
1061};
1062
1063static const struct frame_unwind *
1064arm_stub_unwind_sniffer (struct frame_info *next_frame)
1065{
93d42b30 1066 CORE_ADDR addr_in_block;
909cf6ea
DJ
1067 char dummy[4];
1068
93d42b30
DJ
1069 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1070 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1071 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1072 return &arm_stub_unwind;
1073
1074 return NULL;
1075}
1076
24de872b 1077static CORE_ADDR
eb5492fa 1078arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1079{
1080 struct arm_prologue_cache *cache;
1081
eb5492fa
DJ
1082 if (*this_cache == NULL)
1083 *this_cache = arm_make_prologue_cache (next_frame);
1084 cache = *this_cache;
1085
4be43953 1086 return cache->prev_sp - cache->framesize;
24de872b
DJ
1087}
1088
eb5492fa
DJ
1089struct frame_base arm_normal_base = {
1090 &arm_prologue_unwind,
1091 arm_normal_frame_base,
1092 arm_normal_frame_base,
1093 arm_normal_frame_base
1094};
1095
eb5492fa
DJ
1096/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1097 dummy frame. The frame ID's base needs to match the TOS value
1098 saved by save_dummy_frame_tos() and returned from
1099 arm_push_dummy_call, and the PC needs to match the dummy frame's
1100 breakpoint. */
c906108c 1101
eb5492fa
DJ
1102static struct frame_id
1103arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1104{
eb5492fa
DJ
1105 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1106 frame_pc_unwind (next_frame));
1107}
c3b4394c 1108
eb5492fa
DJ
1109/* Given THIS_FRAME, find the previous frame's resume PC (which will
1110 be used to construct the previous frame's ID, after looking up the
1111 containing function). */
c3b4394c 1112
eb5492fa
DJ
1113static CORE_ADDR
1114arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1115{
1116 CORE_ADDR pc;
1117 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1118 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1119}
1120
1121static CORE_ADDR
1122arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1123{
1124 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1125}
1126
2dd604e7
RE
1127/* When arguments must be pushed onto the stack, they go on in reverse
1128 order. The code below implements a FILO (stack) to do this. */
1129
1130struct stack_item
1131{
1132 int len;
1133 struct stack_item *prev;
1134 void *data;
1135};
1136
1137static struct stack_item *
1138push_stack_item (struct stack_item *prev, void *contents, int len)
1139{
1140 struct stack_item *si;
1141 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1142 si->data = xmalloc (len);
2dd604e7
RE
1143 si->len = len;
1144 si->prev = prev;
1145 memcpy (si->data, contents, len);
1146 return si;
1147}
1148
1149static struct stack_item *
1150pop_stack_item (struct stack_item *si)
1151{
1152 struct stack_item *dead = si;
1153 si = si->prev;
1154 xfree (dead->data);
1155 xfree (dead);
1156 return si;
1157}
1158
2af48f68
PB
1159
1160/* Return the alignment (in bytes) of the given type. */
1161
1162static int
1163arm_type_align (struct type *t)
1164{
1165 int n;
1166 int align;
1167 int falign;
1168
1169 t = check_typedef (t);
1170 switch (TYPE_CODE (t))
1171 {
1172 default:
1173 /* Should never happen. */
1174 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1175 return 4;
1176
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_ENUM:
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_FLT:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_REF:
1185 case TYPE_CODE_CHAR:
1186 case TYPE_CODE_BOOL:
1187 return TYPE_LENGTH (t);
1188
1189 case TYPE_CODE_ARRAY:
1190 case TYPE_CODE_COMPLEX:
1191 /* TODO: What about vector types? */
1192 return arm_type_align (TYPE_TARGET_TYPE (t));
1193
1194 case TYPE_CODE_STRUCT:
1195 case TYPE_CODE_UNION:
1196 align = 1;
1197 for (n = 0; n < TYPE_NFIELDS (t); n++)
1198 {
1199 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1200 if (falign > align)
1201 align = falign;
1202 }
1203 return align;
1204 }
1205}
1206
2dd604e7
RE
1207/* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211static CORE_ADDR
7d9b040b 1212arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
2dd604e7
RE
1216{
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
6a65450a
AC
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
2dd604e7 1224 /* XXX Fix for Thumb. */
6a65450a 1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
2dd604e7
RE
1235 /* The struct_return pointer occupies the first parameter
1236 passing register. */
1237 if (struct_return)
1238 {
1239 if (arm_debug)
1240 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
2af46ca0 1241 gdbarch_register_name (gdbarch, argreg),
c9f4d572 1242 paddr (struct_addr));
2dd604e7
RE
1243 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1244 argreg++;
1245 }
1246
1247 for (argnum = 0; argnum < nargs; argnum++)
1248 {
1249 int len;
1250 struct type *arg_type;
1251 struct type *target_type;
1252 enum type_code typecode;
0fd88904 1253 bfd_byte *val;
2af48f68 1254 int align;
2dd604e7 1255
df407dfe 1256 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1257 len = TYPE_LENGTH (arg_type);
1258 target_type = TYPE_TARGET_TYPE (arg_type);
1259 typecode = TYPE_CODE (arg_type);
0fd88904 1260 val = value_contents_writeable (args[argnum]);
2dd604e7 1261
2af48f68
PB
1262 align = arm_type_align (arg_type);
1263 /* Round alignment up to a whole number of words. */
1264 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1265 /* Different ABIs have different maximum alignments. */
1266 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1267 {
1268 /* The APCS ABI only requires word alignment. */
1269 align = INT_REGISTER_SIZE;
1270 }
1271 else
1272 {
1273 /* The AAPCS requires at most doubleword alignment. */
1274 if (align > INT_REGISTER_SIZE * 2)
1275 align = INT_REGISTER_SIZE * 2;
1276 }
1277
1278 /* Push stack padding for dowubleword alignment. */
1279 if (nstack & (align - 1))
1280 {
1281 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1282 nstack += INT_REGISTER_SIZE;
1283 }
1284
1285 /* Doubleword aligned quantities must go in even register pairs. */
1286 if (argreg <= ARM_LAST_ARG_REGNUM
1287 && align > INT_REGISTER_SIZE
1288 && argreg & 1)
1289 argreg++;
1290
2dd604e7
RE
1291 /* If the argument is a pointer to a function, and it is a
1292 Thumb function, create a LOCAL copy of the value and set
1293 the THUMB bit in it. */
1294 if (TYPE_CODE_PTR == typecode
1295 && target_type != NULL
1296 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1297 {
7c0b4a20 1298 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1299 if (arm_pc_is_thumb (regval))
1300 {
1301 val = alloca (len);
fbd9dcd3 1302 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1303 }
1304 }
1305
1306 /* Copy the argument to general registers or the stack in
1307 register-sized pieces. Large arguments are split between
1308 registers and stack. */
1309 while (len > 0)
1310 {
f0c9063c 1311 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7
RE
1312
1313 if (argreg <= ARM_LAST_ARG_REGNUM)
1314 {
1315 /* The argument is being passed in a general purpose
1316 register. */
7c0b4a20 1317 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2af46ca0 1318 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8bf8793c 1319 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
1320 if (arm_debug)
1321 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
1322 argnum,
1323 gdbarch_register_name
2af46ca0 1324 (gdbarch, argreg),
f0c9063c 1325 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
1326 regcache_cooked_write_unsigned (regcache, argreg, regval);
1327 argreg++;
1328 }
1329 else
1330 {
1331 /* Push the arguments onto the stack. */
1332 if (arm_debug)
1333 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1334 argnum, nstack);
f0c9063c
UW
1335 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1336 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
1337 }
1338
1339 len -= partial_len;
1340 val += partial_len;
1341 }
1342 }
1343 /* If we have an odd number of words to push, then decrement the stack
1344 by one word now, so first stack argument will be dword aligned. */
1345 if (nstack & 4)
1346 sp -= 4;
1347
1348 while (si)
1349 {
1350 sp -= si->len;
1351 write_memory (sp, si->data, si->len);
1352 si = pop_stack_item (si);
1353 }
1354
1355 /* Finally, update teh SP register. */
1356 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1357
1358 return sp;
1359}
1360
f53f0d0b
PB
1361
1362/* Always align the frame to an 8-byte boundary. This is required on
1363 some platforms and harmless on the rest. */
1364
1365static CORE_ADDR
1366arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1367{
1368 /* Align the stack to eight bytes. */
1369 return sp & ~ (CORE_ADDR) 7;
1370}
1371
c906108c 1372static void
ed9a39eb 1373print_fpu_flags (int flags)
c906108c 1374{
c5aa993b
JM
1375 if (flags & (1 << 0))
1376 fputs ("IVO ", stdout);
1377 if (flags & (1 << 1))
1378 fputs ("DVZ ", stdout);
1379 if (flags & (1 << 2))
1380 fputs ("OFL ", stdout);
1381 if (flags & (1 << 3))
1382 fputs ("UFL ", stdout);
1383 if (flags & (1 << 4))
1384 fputs ("INX ", stdout);
1385 putchar ('\n');
c906108c
SS
1386}
1387
5e74b15c
RE
1388/* Print interesting information about the floating point processor
1389 (if present) or emulator. */
34e8f22d 1390static void
d855c300 1391arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1392 struct frame_info *frame, const char *args)
c906108c 1393{
9c9acae0 1394 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
1395 int type;
1396
1397 type = (status >> 24) & 127;
edefbb7c
AC
1398 if (status & (1 << 31))
1399 printf (_("Hardware FPU type %d\n"), type);
1400 else
1401 printf (_("Software FPU type %d\n"), type);
1402 /* i18n: [floating point unit] mask */
1403 fputs (_("mask: "), stdout);
c5aa993b 1404 print_fpu_flags (status >> 16);
edefbb7c
AC
1405 /* i18n: [floating point unit] flags */
1406 fputs (_("flags: "), stdout);
c5aa993b 1407 print_fpu_flags (status);
c906108c
SS
1408}
1409
34e8f22d
RE
1410/* Return the GDB type object for the "standard" data type of data in
1411 register N. */
1412
1413static struct type *
7a5ea0d4 1414arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1415{
34e8f22d 1416 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1417 return builtin_type_arm_ext;
e4c16157
DJ
1418 else if (regnum == ARM_SP_REGNUM)
1419 return builtin_type_void_data_ptr;
1420 else if (regnum == ARM_PC_REGNUM)
1421 return builtin_type_void_func_ptr;
ff6f572f
DJ
1422 else if (regnum >= ARRAY_SIZE (arm_register_names))
1423 /* These registers are only supported on targets which supply
1424 an XML description. */
1425 return builtin_type_int0;
032758dc 1426 else
e4c16157 1427 return builtin_type_uint32;
032758dc
AC
1428}
1429
ff6f572f
DJ
1430/* Map a DWARF register REGNUM onto the appropriate GDB register
1431 number. */
1432
1433static int
d3f73121 1434arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
1435{
1436 /* Core integer regs. */
1437 if (reg >= 0 && reg <= 15)
1438 return reg;
1439
1440 /* Legacy FPA encoding. These were once used in a way which
1441 overlapped with VFP register numbering, so their use is
1442 discouraged, but GDB doesn't support the ARM toolchain
1443 which used them for VFP. */
1444 if (reg >= 16 && reg <= 23)
1445 return ARM_F0_REGNUM + reg - 16;
1446
1447 /* New assignments for the FPA registers. */
1448 if (reg >= 96 && reg <= 103)
1449 return ARM_F0_REGNUM + reg - 96;
1450
1451 /* WMMX register assignments. */
1452 if (reg >= 104 && reg <= 111)
1453 return ARM_WCGR0_REGNUM + reg - 104;
1454
1455 if (reg >= 112 && reg <= 127)
1456 return ARM_WR0_REGNUM + reg - 112;
1457
1458 if (reg >= 192 && reg <= 199)
1459 return ARM_WC0_REGNUM + reg - 192;
1460
1461 return -1;
1462}
1463
26216b98
AC
1464/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1465static int
e7faf938 1466arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
1467{
1468 int reg = regnum;
e7faf938 1469 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 1470
ff6f572f
DJ
1471 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1472 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1473
1474 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1475 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1476
1477 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1478 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1479
26216b98
AC
1480 if (reg < NUM_GREGS)
1481 return SIM_ARM_R0_REGNUM + reg;
1482 reg -= NUM_GREGS;
1483
1484 if (reg < NUM_FREGS)
1485 return SIM_ARM_FP0_REGNUM + reg;
1486 reg -= NUM_FREGS;
1487
1488 if (reg < NUM_SREGS)
1489 return SIM_ARM_FPS_REGNUM + reg;
1490 reg -= NUM_SREGS;
1491
edefbb7c 1492 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1493}
34e8f22d 1494
a37b3cc0
AC
1495/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1496 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1497 It is thought that this is is the floating-point register format on
1498 little-endian systems. */
c906108c 1499
ed9a39eb 1500static void
b508a996
RE
1501convert_from_extended (const struct floatformat *fmt, const void *ptr,
1502 void *dbl)
c906108c 1503{
a37b3cc0 1504 DOUBLEST d;
4c6b5505 1505 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1506 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1507 else
1508 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1509 ptr, &d);
b508a996 1510 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1511}
1512
34e8f22d 1513static void
b508a996 1514convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1515{
a37b3cc0 1516 DOUBLEST d;
b508a996 1517 floatformat_to_doublest (fmt, ptr, &d);
4c6b5505 1518 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1519 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1520 else
1521 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1522 &d, dbl);
c906108c 1523}
ed9a39eb 1524
c906108c 1525static int
ed9a39eb 1526condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1527{
1528 if (cond == INST_AL || cond == INST_NV)
1529 return 1;
1530
1531 switch (cond)
1532 {
1533 case INST_EQ:
1534 return ((status_reg & FLAG_Z) != 0);
1535 case INST_NE:
1536 return ((status_reg & FLAG_Z) == 0);
1537 case INST_CS:
1538 return ((status_reg & FLAG_C) != 0);
1539 case INST_CC:
1540 return ((status_reg & FLAG_C) == 0);
1541 case INST_MI:
1542 return ((status_reg & FLAG_N) != 0);
1543 case INST_PL:
1544 return ((status_reg & FLAG_N) == 0);
1545 case INST_VS:
1546 return ((status_reg & FLAG_V) != 0);
1547 case INST_VC:
1548 return ((status_reg & FLAG_V) == 0);
1549 case INST_HI:
1550 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1551 case INST_LS:
1552 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1553 case INST_GE:
1554 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1555 case INST_LT:
1556 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1557 case INST_GT:
1558 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1559 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1560 case INST_LE:
1561 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1562 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1563 }
1564 return 1;
1565}
1566
9512d7fd 1567/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1568#define submask(x) ((1L << ((x) + 1)) - 1)
1569#define bit(obj,st) (((obj) >> (st)) & 1)
1570#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1571#define sbits(obj,st,fn) \
1572 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1573#define BranchDest(addr,instr) \
1574 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1575#define ARM_PC_32 1
1576
1577static unsigned long
0b1b3e42
UW
1578shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1579 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
1580{
1581 unsigned long res, shift;
1582 int rm = bits (inst, 0, 3);
1583 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1584
1585 if (bit (inst, 4))
c906108c
SS
1586 {
1587 int rs = bits (inst, 8, 11);
0b1b3e42
UW
1588 shift = (rs == 15 ? pc_val + 8
1589 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
1590 }
1591 else
1592 shift = bits (inst, 7, 11);
c5aa993b
JM
1593
1594 res = (rm == 15
c906108c 1595 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1596 + (bit (inst, 4) ? 12 : 8))
0b1b3e42 1597 : get_frame_register_unsigned (frame, rm));
c906108c
SS
1598
1599 switch (shifttype)
1600 {
c5aa993b 1601 case 0: /* LSL */
c906108c
SS
1602 res = shift >= 32 ? 0 : res << shift;
1603 break;
c5aa993b
JM
1604
1605 case 1: /* LSR */
c906108c
SS
1606 res = shift >= 32 ? 0 : res >> shift;
1607 break;
1608
c5aa993b
JM
1609 case 2: /* ASR */
1610 if (shift >= 32)
1611 shift = 31;
c906108c
SS
1612 res = ((res & 0x80000000L)
1613 ? ~((~res) >> shift) : res >> shift);
1614 break;
1615
c5aa993b 1616 case 3: /* ROR/RRX */
c906108c
SS
1617 shift &= 31;
1618 if (shift == 0)
1619 res = (res >> 1) | (carry ? 0x80000000L : 0);
1620 else
c5aa993b 1621 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1622 break;
1623 }
1624
1625 return res & 0xffffffff;
1626}
1627
c906108c
SS
1628/* Return number of 1-bits in VAL. */
1629
1630static int
ed9a39eb 1631bitcount (unsigned long val)
c906108c
SS
1632{
1633 int nbits;
1634 for (nbits = 0; val != 0; nbits++)
c5aa993b 1635 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1636 return nbits;
1637}
1638
ad527d2e 1639static CORE_ADDR
0b1b3e42 1640thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1641{
2af46ca0 1642 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b 1643 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1644 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1645 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1646 unsigned long offset;
1647
1648 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1649 {
1650 CORE_ADDR sp;
1651
1652 /* Fetch the saved PC from the stack. It's stored above
1653 all of the other registers. */
f0c9063c 1654 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 1655 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1c5bada0 1656 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
2af46ca0 1657 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1658 if (nextpc == pc)
edefbb7c 1659 error (_("Infinite loop detected"));
c906108c
SS
1660 }
1661 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1662 {
0b1b3e42 1663 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1664 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1665 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1666 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1667 }
1668 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1669 {
1670 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1671 }
aa17d93e 1672 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1673 {
1c5bada0 1674 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1675 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1676 nextpc = pc_val + offset;
aa17d93e
DJ
1677 /* For BLX make sure to clear the low bits. */
1678 if (bits (inst2, 11, 12) == 1)
1679 nextpc = nextpc & 0xfffffffc;
c906108c 1680 }
aa17d93e 1681 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1682 {
1683 if (bits (inst1, 3, 6) == 0x0f)
1684 nextpc = pc_val;
1685 else
0b1b3e42 1686 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 1687
2af46ca0 1688 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
9498281f 1689 if (nextpc == pc)
edefbb7c 1690 error (_("Infinite loop detected"));
9498281f 1691 }
c906108c
SS
1692
1693 return nextpc;
1694}
1695
daddc3c1 1696CORE_ADDR
0b1b3e42 1697arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1698{
2af46ca0 1699 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c
SS
1700 unsigned long pc_val;
1701 unsigned long this_instr;
1702 unsigned long status;
1703 CORE_ADDR nextpc;
1704
1705 if (arm_pc_is_thumb (pc))
0b1b3e42 1706 return thumb_get_next_pc (frame, pc);
c906108c
SS
1707
1708 pc_val = (unsigned long) pc;
1c5bada0 1709 this_instr = read_memory_unsigned_integer (pc, 4);
0b1b3e42 1710 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1711 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 1712
daddc3c1
DJ
1713 if (bits (this_instr, 28, 31) == INST_NV)
1714 switch (bits (this_instr, 24, 27))
1715 {
1716 case 0xa:
1717 case 0xb:
1718 {
1719 /* Branch with Link and change to Thumb. */
1720 nextpc = BranchDest (pc, this_instr);
1721 nextpc |= bit (this_instr, 24) << 1;
1722
e1e01acd 1723 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
daddc3c1
DJ
1724 if (nextpc == pc)
1725 error (_("Infinite loop detected"));
1726 break;
1727 }
1728 case 0xc:
1729 case 0xd:
1730 case 0xe:
1731 /* Coprocessor register transfer. */
1732 if (bits (this_instr, 12, 15) == 15)
1733 error (_("Invalid update to pc in instruction"));
1734 break;
1735 }
1736 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
1737 {
1738 switch (bits (this_instr, 24, 27))
1739 {
c5aa993b 1740 case 0x0:
94c30b78 1741 case 0x1: /* data processing */
c5aa993b
JM
1742 case 0x2:
1743 case 0x3:
c906108c
SS
1744 {
1745 unsigned long operand1, operand2, result = 0;
1746 unsigned long rn;
1747 int c;
c5aa993b 1748
c906108c
SS
1749 if (bits (this_instr, 12, 15) != 15)
1750 break;
1751
1752 if (bits (this_instr, 22, 25) == 0
c5aa993b 1753 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1754 error (_("Invalid update to pc in instruction"));
c906108c 1755
9498281f 1756 /* BX <reg>, BLX <reg> */
e150acc7
PB
1757 if (bits (this_instr, 4, 27) == 0x12fff1
1758 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1759 {
1760 rn = bits (this_instr, 0, 3);
0b1b3e42
UW
1761 result = (rn == 15) ? pc_val + 8
1762 : get_frame_register_unsigned (frame, rn);
bf6ae464 1763 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1764 (gdbarch, result);
9498281f
DJ
1765
1766 if (nextpc == pc)
edefbb7c 1767 error (_("Infinite loop detected"));
9498281f
DJ
1768
1769 return nextpc;
1770 }
1771
c906108c
SS
1772 /* Multiply into PC */
1773 c = (status & FLAG_C) ? 1 : 0;
1774 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1775 operand1 = (rn == 15) ? pc_val + 8
1776 : get_frame_register_unsigned (frame, rn);
c5aa993b 1777
c906108c
SS
1778 if (bit (this_instr, 25))
1779 {
1780 unsigned long immval = bits (this_instr, 0, 7);
1781 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1782 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1783 & 0xffffffff;
c906108c 1784 }
c5aa993b 1785 else /* operand 2 is a shifted register */
0b1b3e42 1786 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
c5aa993b 1787
c906108c
SS
1788 switch (bits (this_instr, 21, 24))
1789 {
c5aa993b 1790 case 0x0: /*and */
c906108c
SS
1791 result = operand1 & operand2;
1792 break;
1793
c5aa993b 1794 case 0x1: /*eor */
c906108c
SS
1795 result = operand1 ^ operand2;
1796 break;
1797
c5aa993b 1798 case 0x2: /*sub */
c906108c
SS
1799 result = operand1 - operand2;
1800 break;
1801
c5aa993b 1802 case 0x3: /*rsb */
c906108c
SS
1803 result = operand2 - operand1;
1804 break;
1805
c5aa993b 1806 case 0x4: /*add */
c906108c
SS
1807 result = operand1 + operand2;
1808 break;
1809
c5aa993b 1810 case 0x5: /*adc */
c906108c
SS
1811 result = operand1 + operand2 + c;
1812 break;
1813
c5aa993b 1814 case 0x6: /*sbc */
c906108c
SS
1815 result = operand1 - operand2 + c;
1816 break;
1817
c5aa993b 1818 case 0x7: /*rsc */
c906108c
SS
1819 result = operand2 - operand1 + c;
1820 break;
1821
c5aa993b
JM
1822 case 0x8:
1823 case 0x9:
1824 case 0xa:
1825 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1826 result = (unsigned long) nextpc;
1827 break;
1828
c5aa993b 1829 case 0xc: /*orr */
c906108c
SS
1830 result = operand1 | operand2;
1831 break;
1832
c5aa993b 1833 case 0xd: /*mov */
c906108c
SS
1834 /* Always step into a function. */
1835 result = operand2;
c5aa993b 1836 break;
c906108c 1837
c5aa993b 1838 case 0xe: /*bic */
c906108c
SS
1839 result = operand1 & ~operand2;
1840 break;
1841
c5aa993b 1842 case 0xf: /*mvn */
c906108c
SS
1843 result = ~operand2;
1844 break;
1845 }
bf6ae464 1846 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1847 (gdbarch, result);
c906108c
SS
1848
1849 if (nextpc == pc)
edefbb7c 1850 error (_("Infinite loop detected"));
c906108c
SS
1851 break;
1852 }
c5aa993b
JM
1853
1854 case 0x4:
1855 case 0x5: /* data transfer */
1856 case 0x6:
1857 case 0x7:
c906108c
SS
1858 if (bit (this_instr, 20))
1859 {
1860 /* load */
1861 if (bits (this_instr, 12, 15) == 15)
1862 {
1863 /* rd == pc */
c5aa993b 1864 unsigned long rn;
c906108c 1865 unsigned long base;
c5aa993b 1866
c906108c 1867 if (bit (this_instr, 22))
edefbb7c 1868 error (_("Invalid update to pc in instruction"));
c906108c
SS
1869
1870 /* byte write to PC */
1871 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1872 base = (rn == 15) ? pc_val + 8
1873 : get_frame_register_unsigned (frame, rn);
c906108c
SS
1874 if (bit (this_instr, 24))
1875 {
1876 /* pre-indexed */
1877 int c = (status & FLAG_C) ? 1 : 0;
1878 unsigned long offset =
c5aa993b 1879 (bit (this_instr, 25)
0b1b3e42 1880 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 1881 : bits (this_instr, 0, 11));
c906108c
SS
1882
1883 if (bit (this_instr, 23))
1884 base += offset;
1885 else
1886 base -= offset;
1887 }
c5aa993b 1888 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1889 4);
c5aa993b 1890
2af46ca0 1891 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c
SS
1892
1893 if (nextpc == pc)
edefbb7c 1894 error (_("Infinite loop detected"));
c906108c
SS
1895 }
1896 }
1897 break;
c5aa993b
JM
1898
1899 case 0x8:
1900 case 0x9: /* block transfer */
c906108c
SS
1901 if (bit (this_instr, 20))
1902 {
1903 /* LDM */
1904 if (bit (this_instr, 15))
1905 {
1906 /* loading pc */
1907 int offset = 0;
1908
1909 if (bit (this_instr, 23))
1910 {
1911 /* up */
1912 unsigned long reglist = bits (this_instr, 0, 14);
1913 offset = bitcount (reglist) * 4;
c5aa993b 1914 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1915 offset += 4;
1916 }
1917 else if (bit (this_instr, 24))
1918 offset = -4;
c5aa993b 1919
c906108c 1920 {
c5aa993b 1921 unsigned long rn_val =
0b1b3e42
UW
1922 get_frame_register_unsigned (frame,
1923 bits (this_instr, 16, 19));
c906108c
SS
1924 nextpc =
1925 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1926 + offset),
c906108c
SS
1927 4);
1928 }
bf6ae464 1929 nextpc = gdbarch_addr_bits_remove
2af46ca0 1930 (gdbarch, nextpc);
c906108c 1931 if (nextpc == pc)
edefbb7c 1932 error (_("Infinite loop detected"));
c906108c
SS
1933 }
1934 }
1935 break;
c5aa993b
JM
1936
1937 case 0xb: /* branch & link */
1938 case 0xa: /* branch */
c906108c
SS
1939 {
1940 nextpc = BranchDest (pc, this_instr);
1941
2af46ca0 1942 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1943 if (nextpc == pc)
edefbb7c 1944 error (_("Infinite loop detected"));
c906108c
SS
1945 break;
1946 }
c5aa993b
JM
1947
1948 case 0xc:
1949 case 0xd:
1950 case 0xe: /* coproc ops */
1951 case 0xf: /* SWI */
c906108c
SS
1952 break;
1953
1954 default:
edefbb7c 1955 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1956 return (pc);
1957 }
1958 }
1959
1960 return nextpc;
1961}
1962
9512d7fd
FN
1963/* single_step() is called just before we want to resume the inferior,
1964 if we want to single-step it but there is no hardware or kernel
1965 single-step support. We find the target of the coming instruction
e0cd558a 1966 and breakpoint it. */
9512d7fd 1967
190dce09 1968int
0b1b3e42 1969arm_software_single_step (struct frame_info *frame)
9512d7fd 1970{
8181d85f
DJ
1971 /* NOTE: This may insert the wrong breakpoint instruction when
1972 single-stepping over a mode-changing instruction, if the
1973 CPSR heuristics are used. */
9512d7fd 1974
0b1b3e42 1975 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
e0cd558a 1976 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1977
1978 return 1;
9512d7fd 1979}
9512d7fd 1980
c906108c
SS
1981#include "bfd-in2.h"
1982#include "libcoff.h"
1983
1984static int
ed9a39eb 1985gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1986{
1987 if (arm_pc_is_thumb (memaddr))
1988 {
c5aa993b
JM
1989 static asymbol *asym;
1990 static combined_entry_type ce;
1991 static struct coff_symbol_struct csym;
27cddce2 1992 static struct bfd fake_bfd;
c5aa993b 1993 static bfd_target fake_target;
c906108c
SS
1994
1995 if (csym.native == NULL)
1996 {
da3c6d4a
MS
1997 /* Create a fake symbol vector containing a Thumb symbol.
1998 This is solely so that the code in print_insn_little_arm()
1999 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2000 the presence of a Thumb symbol and switch to decoding
2001 Thumb instructions. */
c5aa993b
JM
2002
2003 fake_target.flavour = bfd_target_coff_flavour;
2004 fake_bfd.xvec = &fake_target;
c906108c 2005 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2006 csym.native = &ce;
2007 csym.symbol.the_bfd = &fake_bfd;
2008 csym.symbol.name = "fake";
2009 asym = (asymbol *) & csym;
c906108c 2010 }
c5aa993b 2011
c906108c 2012 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2013 info->symbols = &asym;
c906108c
SS
2014 }
2015 else
2016 info->symbols = NULL;
c5aa993b 2017
4c6b5505 2018 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
2019 return print_insn_big_arm (memaddr, info);
2020 else
2021 return print_insn_little_arm (memaddr, info);
2022}
2023
66e810cd
RE
2024/* The following define instruction sequences that will cause ARM
2025 cpu's to take an undefined instruction trap. These are used to
2026 signal a breakpoint to GDB.
2027
2028 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2029 modes. A different instruction is required for each mode. The ARM
2030 cpu's can also be big or little endian. Thus four different
2031 instructions are needed to support all cases.
2032
2033 Note: ARMv4 defines several new instructions that will take the
2034 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2035 not in fact add the new instructions. The new undefined
2036 instructions in ARMv4 are all instructions that had no defined
2037 behaviour in earlier chips. There is no guarantee that they will
2038 raise an exception, but may be treated as NOP's. In practice, it
2039 may only safe to rely on instructions matching:
2040
2041 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2042 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2043 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2044
2045 Even this may only true if the condition predicate is true. The
2046 following use a condition predicate of ALWAYS so it is always TRUE.
2047
2048 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2049 and NetBSD all use a software interrupt rather than an undefined
2050 instruction to force a trap. This can be handled by by the
2051 abi-specific code during establishment of the gdbarch vector. */
2052
66e810cd 2053#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
66e810cd 2054#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
190dce09
UW
2055#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2056#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
66e810cd
RE
2057
2058static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2059static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2060static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2061static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2062
34e8f22d
RE
2063/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2064 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2065 breakpoint should be used. It returns a pointer to a string of
2066 bytes that encode a breakpoint instruction, stores the length of
2067 the string to *lenptr, and adjusts the program counter (if
2068 necessary) to point to the actual memory location where the
c906108c
SS
2069 breakpoint should be inserted. */
2070
ab89facf 2071static const unsigned char *
67d57894 2072arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
c906108c 2073{
67d57894 2074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
66e810cd 2075
4bf7064c 2076 if (arm_pc_is_thumb (*pcptr))
c906108c 2077 {
66e810cd
RE
2078 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2079 *lenptr = tdep->thumb_breakpoint_size;
2080 return tdep->thumb_breakpoint;
c906108c
SS
2081 }
2082 else
2083 {
66e810cd
RE
2084 *lenptr = tdep->arm_breakpoint_size;
2085 return tdep->arm_breakpoint;
c906108c
SS
2086 }
2087}
ed9a39eb
JM
2088
2089/* Extract from an array REGBUF containing the (raw) register state a
2090 function return value of type TYPE, and copy that, in virtual
2091 format, into VALBUF. */
2092
34e8f22d 2093static void
5238cf52
MK
2094arm_extract_return_value (struct type *type, struct regcache *regs,
2095 gdb_byte *valbuf)
ed9a39eb
JM
2096{
2097 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2098 {
2af46ca0 2099 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
08216dd7
RE
2100 {
2101 case ARM_FLOAT_FPA:
b508a996
RE
2102 {
2103 /* The value is in register F0 in internal format. We need to
2104 extract the raw value and then convert it to the desired
2105 internal type. */
7a5ea0d4 2106 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2107
2108 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2109 convert_from_extended (floatformat_from_type (type), tmpbuf,
2110 valbuf);
2111 }
08216dd7
RE
2112 break;
2113
fd50bc42 2114 case ARM_FLOAT_SOFT_FPA:
08216dd7 2115 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2116 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2117 if (TYPE_LENGTH (type) > 4)
2118 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2119 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2120 break;
2121
2122 default:
2123 internal_error
2124 (__FILE__, __LINE__,
edefbb7c 2125 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2126 break;
2127 }
2128 }
b508a996
RE
2129 else if (TYPE_CODE (type) == TYPE_CODE_INT
2130 || TYPE_CODE (type) == TYPE_CODE_CHAR
2131 || TYPE_CODE (type) == TYPE_CODE_BOOL
2132 || TYPE_CODE (type) == TYPE_CODE_PTR
2133 || TYPE_CODE (type) == TYPE_CODE_REF
2134 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2135 {
2136 /* If the the type is a plain integer, then the access is
2137 straight-forward. Otherwise we have to play around a bit more. */
2138 int len = TYPE_LENGTH (type);
2139 int regno = ARM_A1_REGNUM;
2140 ULONGEST tmp;
2141
2142 while (len > 0)
2143 {
2144 /* By using store_unsigned_integer we avoid having to do
2145 anything special for small big-endian values. */
2146 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2147 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2148 (len > INT_REGISTER_SIZE
2149 ? INT_REGISTER_SIZE : len),
b508a996 2150 tmp);
7a5ea0d4
DJ
2151 len -= INT_REGISTER_SIZE;
2152 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2153 }
2154 }
ed9a39eb 2155 else
b508a996
RE
2156 {
2157 /* For a structure or union the behaviour is as if the value had
2158 been stored to word-aligned memory and then loaded into
2159 registers with 32-bit load instruction(s). */
2160 int len = TYPE_LENGTH (type);
2161 int regno = ARM_A1_REGNUM;
7a5ea0d4 2162 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2163
2164 while (len > 0)
2165 {
2166 regcache_cooked_read (regs, regno++, tmpbuf);
2167 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2168 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2169 len -= INT_REGISTER_SIZE;
2170 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2171 }
2172 }
34e8f22d
RE
2173}
2174
67255d04
RE
2175
2176/* Will a function return an aggregate type in memory or in a
2177 register? Return 0 if an aggregate type can be returned in a
2178 register, 1 if it must be returned in memory. */
2179
2180static int
2af48f68 2181arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2182{
2183 int nRc;
52f0bd74 2184 enum type_code code;
67255d04 2185
44e1a9eb
DJ
2186 CHECK_TYPEDEF (type);
2187
67255d04
RE
2188 /* In the ARM ABI, "integer" like aggregate types are returned in
2189 registers. For an aggregate type to be integer like, its size
f0c9063c 2190 must be less than or equal to INT_REGISTER_SIZE and the
b1e29e33
AC
2191 offset of each addressable subfield must be zero. Note that bit
2192 fields are not addressable, and all addressable subfields of
2193 unions always start at offset zero.
67255d04
RE
2194
2195 This function is based on the behaviour of GCC 2.95.1.
2196 See: gcc/arm.c: arm_return_in_memory() for details.
2197
2198 Note: All versions of GCC before GCC 2.95.2 do not set up the
2199 parameters correctly for a function returning the following
2200 structure: struct { float f;}; This should be returned in memory,
2201 not a register. Richard Earnshaw sent me a patch, but I do not
2202 know of any way to detect if a function like the above has been
2203 compiled with the correct calling convention. */
2204
2205 /* All aggregate types that won't fit in a register must be returned
2206 in memory. */
f0c9063c 2207 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
67255d04
RE
2208 {
2209 return 1;
2210 }
2211
2af48f68
PB
2212 /* The AAPCS says all aggregates not larger than a word are returned
2213 in a register. */
2214 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2215 return 0;
2216
67255d04
RE
2217 /* The only aggregate types that can be returned in a register are
2218 structs and unions. Arrays must be returned in memory. */
2219 code = TYPE_CODE (type);
2220 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2221 {
2222 return 1;
2223 }
2224
2225 /* Assume all other aggregate types can be returned in a register.
2226 Run a check for structures, unions and arrays. */
2227 nRc = 0;
2228
2229 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2230 {
2231 int i;
2232 /* Need to check if this struct/union is "integer" like. For
2233 this to be true, its size must be less than or equal to
f0c9063c 2234 INT_REGISTER_SIZE and the offset of each addressable
b1e29e33
AC
2235 subfield must be zero. Note that bit fields are not
2236 addressable, and unions always start at offset zero. If any
2237 of the subfields is a floating point type, the struct/union
2238 cannot be an integer type. */
67255d04
RE
2239
2240 /* For each field in the object, check:
2241 1) Is it FP? --> yes, nRc = 1;
2242 2) Is it addressable (bitpos != 0) and
2243 not packed (bitsize == 0)?
2244 --> yes, nRc = 1
2245 */
2246
2247 for (i = 0; i < TYPE_NFIELDS (type); i++)
2248 {
2249 enum type_code field_type_code;
44e1a9eb 2250 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2251
2252 /* Is it a floating point type field? */
2253 if (field_type_code == TYPE_CODE_FLT)
2254 {
2255 nRc = 1;
2256 break;
2257 }
2258
2259 /* If bitpos != 0, then we have to care about it. */
2260 if (TYPE_FIELD_BITPOS (type, i) != 0)
2261 {
2262 /* Bitfields are not addressable. If the field bitsize is
2263 zero, then the field is not packed. Hence it cannot be
2264 a bitfield or any other packed type. */
2265 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2266 {
2267 nRc = 1;
2268 break;
2269 }
2270 }
2271 }
2272 }
2273
2274 return nRc;
2275}
2276
34e8f22d
RE
2277/* Write into appropriate registers a function return value of type
2278 TYPE, given in virtual format. */
2279
2280static void
b508a996 2281arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2282 const gdb_byte *valbuf)
34e8f22d
RE
2283{
2284 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2285 {
7a5ea0d4 2286 char buf[MAX_REGISTER_SIZE];
34e8f22d 2287
2af46ca0 2288 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
08216dd7
RE
2289 {
2290 case ARM_FLOAT_FPA:
2291
b508a996
RE
2292 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2293 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2294 break;
2295
fd50bc42 2296 case ARM_FLOAT_SOFT_FPA:
08216dd7 2297 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2298 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2299 if (TYPE_LENGTH (type) > 4)
2300 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2301 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2302 break;
2303
2304 default:
2305 internal_error
2306 (__FILE__, __LINE__,
edefbb7c 2307 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2308 break;
2309 }
34e8f22d 2310 }
b508a996
RE
2311 else if (TYPE_CODE (type) == TYPE_CODE_INT
2312 || TYPE_CODE (type) == TYPE_CODE_CHAR
2313 || TYPE_CODE (type) == TYPE_CODE_BOOL
2314 || TYPE_CODE (type) == TYPE_CODE_PTR
2315 || TYPE_CODE (type) == TYPE_CODE_REF
2316 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2317 {
2318 if (TYPE_LENGTH (type) <= 4)
2319 {
2320 /* Values of one word or less are zero/sign-extended and
2321 returned in r0. */
7a5ea0d4 2322 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2323 LONGEST val = unpack_long (type, valbuf);
2324
7a5ea0d4 2325 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2326 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2327 }
2328 else
2329 {
2330 /* Integral values greater than one word are stored in consecutive
2331 registers starting with r0. This will always be a multiple of
2332 the regiser size. */
2333 int len = TYPE_LENGTH (type);
2334 int regno = ARM_A1_REGNUM;
2335
2336 while (len > 0)
2337 {
2338 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2339 len -= INT_REGISTER_SIZE;
2340 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2341 }
2342 }
2343 }
34e8f22d 2344 else
b508a996
RE
2345 {
2346 /* For a structure or union the behaviour is as if the value had
2347 been stored to word-aligned memory and then loaded into
2348 registers with 32-bit load instruction(s). */
2349 int len = TYPE_LENGTH (type);
2350 int regno = ARM_A1_REGNUM;
7a5ea0d4 2351 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2352
2353 while (len > 0)
2354 {
2355 memcpy (tmpbuf, valbuf,
7a5ea0d4 2356 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2357 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2358 len -= INT_REGISTER_SIZE;
2359 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2360 }
2361 }
34e8f22d
RE
2362}
2363
2af48f68
PB
2364
2365/* Handle function return values. */
2366
2367static enum return_value_convention
2368arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2369 struct regcache *regcache, gdb_byte *readbuf,
2370 const gdb_byte *writebuf)
2af48f68 2371{
7c00367c
MK
2372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2373
2af48f68
PB
2374 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2375 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2376 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2377 {
7c00367c
MK
2378 if (tdep->struct_return == pcc_struct_return
2379 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2380 return RETURN_VALUE_STRUCT_CONVENTION;
2381 }
2382
2383 if (writebuf)
2384 arm_store_return_value (valtype, regcache, writebuf);
2385
2386 if (readbuf)
2387 arm_extract_return_value (valtype, regcache, readbuf);
2388
2389 return RETURN_VALUE_REGISTER_CONVENTION;
2390}
2391
2392
9df628e0 2393static int
60ade65d 2394arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0
RE
2395{
2396 CORE_ADDR jb_addr;
7a5ea0d4 2397 char buf[INT_REGISTER_SIZE];
60ade65d 2398 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
9df628e0 2399
60ade65d 2400 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
2401
2402 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2403 INT_REGISTER_SIZE))
9df628e0
RE
2404 return 0;
2405
7a5ea0d4 2406 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2407 return 1;
2408}
2409
faa95490
DJ
2410/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2411 return the target PC. Otherwise return 0. */
c906108c
SS
2412
2413CORE_ADDR
52f729a7 2414arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 2415{
c5aa993b 2416 char *name;
faa95490 2417 int namelen;
c906108c
SS
2418 CORE_ADDR start_addr;
2419
2420 /* Find the starting address and name of the function containing the PC. */
2421 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2422 return 0;
2423
faa95490
DJ
2424 /* If PC is in a Thumb call or return stub, return the address of the
2425 target PC, which is in a register. The thunk functions are called
2426 _call_via_xx, where x is the register name. The possible names
2427 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2428 if (strncmp (name, "_call_via_", 10) == 0)
2429 {
ed9a39eb
JM
2430 /* Use the name suffix to determine which register contains the
2431 target PC. */
c5aa993b
JM
2432 static char *table[15] =
2433 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2434 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2435 };
c906108c 2436 int regno;
faa95490 2437 int offset = strlen (name) - 2;
c906108c
SS
2438
2439 for (regno = 0; regno <= 14; regno++)
faa95490 2440 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 2441 return get_frame_register_unsigned (frame, regno);
c906108c 2442 }
ed9a39eb 2443
faa95490
DJ
2444 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2445 non-interworking calls to foo. We could decode the stubs
2446 to find the target but it's easier to use the symbol table. */
2447 namelen = strlen (name);
2448 if (name[0] == '_' && name[1] == '_'
2449 && ((namelen > 2 + strlen ("_from_thumb")
2450 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2451 strlen ("_from_thumb")) == 0)
2452 || (namelen > 2 + strlen ("_from_arm")
2453 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2454 strlen ("_from_arm")) == 0)))
2455 {
2456 char *target_name;
2457 int target_len = namelen - 2;
2458 struct minimal_symbol *minsym;
2459 struct objfile *objfile;
2460 struct obj_section *sec;
2461
2462 if (name[namelen - 1] == 'b')
2463 target_len -= strlen ("_from_thumb");
2464 else
2465 target_len -= strlen ("_from_arm");
2466
2467 target_name = alloca (target_len + 1);
2468 memcpy (target_name, name + 2, target_len);
2469 target_name[target_len] = '\0';
2470
2471 sec = find_pc_section (pc);
2472 objfile = (sec == NULL) ? NULL : sec->objfile;
2473 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2474 if (minsym != NULL)
2475 return SYMBOL_VALUE_ADDRESS (minsym);
2476 else
2477 return 0;
2478 }
2479
c5aa993b 2480 return 0; /* not a stub */
c906108c
SS
2481}
2482
afd7eef0
RE
2483static void
2484set_arm_command (char *args, int from_tty)
2485{
edefbb7c
AC
2486 printf_unfiltered (_("\
2487\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2488 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2489}
2490
2491static void
2492show_arm_command (char *args, int from_tty)
2493{
26304000 2494 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2495}
2496
28e97307
DJ
2497static void
2498arm_update_current_architecture (void)
fd50bc42 2499{
28e97307 2500 struct gdbarch_info info;
fd50bc42 2501
28e97307
DJ
2502 /* If the current architecture is not ARM, we have nothing to do. */
2503 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2504 return;
fd50bc42 2505
28e97307
DJ
2506 /* Update the architecture. */
2507 gdbarch_info_init (&info);
fd50bc42 2508
28e97307
DJ
2509 if (!gdbarch_update_p (info))
2510 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2511}
2512
2513static void
2514set_fp_model_sfunc (char *args, int from_tty,
2515 struct cmd_list_element *c)
2516{
2517 enum arm_float_model fp_model;
2518
2519 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2520 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2521 {
2522 arm_fp_model = fp_model;
2523 break;
2524 }
2525
2526 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2527 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2528 current_fp_model);
2529
28e97307 2530 arm_update_current_architecture ();
fd50bc42
RE
2531}
2532
2533static void
08546159
AC
2534show_fp_model (struct ui_file *file, int from_tty,
2535 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2536{
2537 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2538
28e97307 2539 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2540 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2541 fprintf_filtered (file, _("\
2542The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2543 fp_model_strings[tdep->fp_model]);
2544 else
2545 fprintf_filtered (file, _("\
2546The current ARM floating point model is \"%s\".\n"),
2547 fp_model_strings[arm_fp_model]);
2548}
2549
2550static void
2551arm_set_abi (char *args, int from_tty,
2552 struct cmd_list_element *c)
2553{
2554 enum arm_abi_kind arm_abi;
2555
2556 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2557 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2558 {
2559 arm_abi_global = arm_abi;
2560 break;
2561 }
2562
2563 if (arm_abi == ARM_ABI_LAST)
2564 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2565 arm_abi_string);
2566
2567 arm_update_current_architecture ();
2568}
2569
2570static void
2571arm_show_abi (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573{
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2575
2576 if (arm_abi_global == ARM_ABI_AUTO
2577 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2578 fprintf_filtered (file, _("\
2579The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2580 arm_abi_strings[tdep->arm_abi]);
2581 else
2582 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2583 arm_abi_string);
fd50bc42
RE
2584}
2585
afd7eef0
RE
2586/* If the user changes the register disassembly style used for info
2587 register and other commands, we have to also switch the style used
2588 in opcodes for disassembly output. This function is run in the "set
2589 arm disassembly" command, and does that. */
bc90b915
FN
2590
2591static void
afd7eef0 2592set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2593 struct cmd_list_element *c)
2594{
afd7eef0 2595 set_disassembly_style ();
bc90b915
FN
2596}
2597\f
966fbf70 2598/* Return the ARM register name corresponding to register I. */
a208b0cb 2599static const char *
d93859e2 2600arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 2601{
ff6f572f
DJ
2602 if (i >= ARRAY_SIZE (arm_register_names))
2603 /* These registers are only supported on targets which supply
2604 an XML description. */
2605 return "";
2606
966fbf70
RE
2607 return arm_register_names[i];
2608}
2609
bc90b915 2610static void
afd7eef0 2611set_disassembly_style (void)
bc90b915 2612{
123dc839 2613 int current;
bc90b915 2614
123dc839
DJ
2615 /* Find the style that the user wants. */
2616 for (current = 0; current < num_disassembly_options; current++)
2617 if (disassembly_style == valid_disassembly_styles[current])
2618 break;
2619 gdb_assert (current < num_disassembly_options);
bc90b915 2620
94c30b78 2621 /* Synchronize the disassembler. */
bc90b915
FN
2622 set_arm_regname_option (current);
2623}
2624
082fc60d
RE
2625/* Test whether the coff symbol specific value corresponds to a Thumb
2626 function. */
2627
2628static int
2629coff_sym_is_thumb (int val)
2630{
2631 return (val == C_THUMBEXT ||
2632 val == C_THUMBSTAT ||
2633 val == C_THUMBEXTFUNC ||
2634 val == C_THUMBSTATFUNC ||
2635 val == C_THUMBLABEL);
2636}
2637
2638/* arm_coff_make_msymbol_special()
2639 arm_elf_make_msymbol_special()
2640
2641 These functions test whether the COFF or ELF symbol corresponds to
2642 an address in thumb code, and set a "special" bit in a minimal
2643 symbol to indicate that it does. */
2644
34e8f22d 2645static void
082fc60d
RE
2646arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2647{
2648 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2649 STT_ARM_TFUNC). */
2650 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2651 == STT_LOPROC)
2652 MSYMBOL_SET_SPECIAL (msym);
2653}
2654
34e8f22d 2655static void
082fc60d
RE
2656arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2657{
2658 if (coff_sym_is_thumb (val))
2659 MSYMBOL_SET_SPECIAL (msym);
2660}
2661
756fe439 2662static void
61a1198a 2663arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 2664{
61a1198a 2665 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
2666
2667 /* If necessary, set the T bit. */
2668 if (arm_apcs_32)
2669 {
61a1198a
UW
2670 ULONGEST val;
2671 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
756fe439 2672 if (arm_pc_is_thumb (pc))
61a1198a 2673 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
756fe439 2674 else
61a1198a
UW
2675 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2676 val & ~(ULONGEST) 0x20);
756fe439
DJ
2677 }
2678}
123dc839
DJ
2679
2680static struct value *
2681value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2682{
2683 const int *reg_p = baton;
2684 return value_of_register (*reg_p, frame);
2685}
97e03143 2686\f
70f80edf
JT
2687static enum gdb_osabi
2688arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2689{
2af48f68 2690 unsigned int elfosabi;
70f80edf 2691 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2692
70f80edf 2693 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2694
28e97307
DJ
2695 if (elfosabi == ELFOSABI_ARM)
2696 /* GNU tools use this value. Check note sections in this case,
2697 as well. */
2698 bfd_map_over_sections (abfd,
2699 generic_elf_osabi_sniff_abi_tag_sections,
2700 &osabi);
97e03143 2701
28e97307 2702 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2703 return osabi;
97e03143
RE
2704}
2705
70f80edf 2706\f
da3c6d4a
MS
2707/* Initialize the current architecture based on INFO. If possible,
2708 re-use an architecture from ARCHES, which is a list of
2709 architectures already created during this debugging session.
97e03143 2710
da3c6d4a
MS
2711 Called e.g. at program startup, when reading a core file, and when
2712 reading a binary file. */
97e03143 2713
39bbf761
RE
2714static struct gdbarch *
2715arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2716{
97e03143 2717 struct gdbarch_tdep *tdep;
39bbf761 2718 struct gdbarch *gdbarch;
28e97307
DJ
2719 struct gdbarch_list *best_arch;
2720 enum arm_abi_kind arm_abi = arm_abi_global;
2721 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2722 struct tdesc_arch_data *tdesc_data = NULL;
2723 int i;
ff6f572f 2724 int have_fpa_registers = 1;
123dc839
DJ
2725
2726 /* Check any target description for validity. */
2727 if (tdesc_has_registers (info.target_desc))
2728 {
2729 /* For most registers we require GDB's default names; but also allow
2730 the numeric names for sp / lr / pc, as a convenience. */
2731 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2732 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2733 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2734
2735 const struct tdesc_feature *feature;
2736 int i, valid_p;
2737
2738 feature = tdesc_find_feature (info.target_desc,
2739 "org.gnu.gdb.arm.core");
2740 if (feature == NULL)
2741 return NULL;
2742
2743 tdesc_data = tdesc_data_alloc ();
2744
2745 valid_p = 1;
2746 for (i = 0; i < ARM_SP_REGNUM; i++)
2747 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2748 arm_register_names[i]);
2749 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2750 ARM_SP_REGNUM,
2751 arm_sp_names);
2752 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2753 ARM_LR_REGNUM,
2754 arm_lr_names);
2755 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2756 ARM_PC_REGNUM,
2757 arm_pc_names);
2758 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2759 ARM_PS_REGNUM, "cpsr");
2760
2761 if (!valid_p)
2762 {
2763 tdesc_data_cleanup (tdesc_data);
2764 return NULL;
2765 }
2766
2767 feature = tdesc_find_feature (info.target_desc,
2768 "org.gnu.gdb.arm.fpa");
2769 if (feature != NULL)
2770 {
2771 valid_p = 1;
2772 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2773 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2774 arm_register_names[i]);
2775 if (!valid_p)
2776 {
2777 tdesc_data_cleanup (tdesc_data);
2778 return NULL;
2779 }
2780 }
ff6f572f
DJ
2781 else
2782 have_fpa_registers = 0;
2783
2784 feature = tdesc_find_feature (info.target_desc,
2785 "org.gnu.gdb.xscale.iwmmxt");
2786 if (feature != NULL)
2787 {
2788 static const char *const iwmmxt_names[] = {
2789 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2790 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2791 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2792 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2793 };
2794
2795 valid_p = 1;
2796 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2797 valid_p
2798 &= tdesc_numbered_register (feature, tdesc_data, i,
2799 iwmmxt_names[i - ARM_WR0_REGNUM]);
2800
2801 /* Check for the control registers, but do not fail if they
2802 are missing. */
2803 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2804 tdesc_numbered_register (feature, tdesc_data, i,
2805 iwmmxt_names[i - ARM_WR0_REGNUM]);
2806
2807 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2808 valid_p
2809 &= tdesc_numbered_register (feature, tdesc_data, i,
2810 iwmmxt_names[i - ARM_WR0_REGNUM]);
2811
2812 if (!valid_p)
2813 {
2814 tdesc_data_cleanup (tdesc_data);
2815 return NULL;
2816 }
2817 }
123dc839 2818 }
39bbf761 2819
28e97307
DJ
2820 /* If we have an object to base this architecture on, try to determine
2821 its ABI. */
39bbf761 2822
28e97307 2823 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2824 {
6b26d61a 2825 int ei_osabi, e_flags;
28e97307 2826
4be87837 2827 switch (bfd_get_flavour (info.abfd))
97e03143 2828 {
4be87837
DJ
2829 case bfd_target_aout_flavour:
2830 /* Assume it's an old APCS-style ABI. */
28e97307 2831 arm_abi = ARM_ABI_APCS;
4be87837 2832 break;
97e03143 2833
4be87837
DJ
2834 case bfd_target_coff_flavour:
2835 /* Assume it's an old APCS-style ABI. */
2836 /* XXX WinCE? */
28e97307
DJ
2837 arm_abi = ARM_ABI_APCS;
2838 break;
2839
2840 case bfd_target_elf_flavour:
2841 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2842 e_flags = elf_elfheader (info.abfd)->e_flags;
2843
28e97307
DJ
2844 if (ei_osabi == ELFOSABI_ARM)
2845 {
2846 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2847 objects. There's nowhere to tag an EABI version
2848 anyway, so assume APCS. */
28e97307
DJ
2849 arm_abi = ARM_ABI_APCS;
2850 }
2851 else if (ei_osabi == ELFOSABI_NONE)
2852 {
6b26d61a 2853 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2854
2855 switch (eabi_ver)
2856 {
2857 case EF_ARM_EABI_UNKNOWN:
2858 /* Assume GNU tools. */
2859 arm_abi = ARM_ABI_APCS;
2860 break;
2861
2862 case EF_ARM_EABI_VER4:
625b5003 2863 case EF_ARM_EABI_VER5:
28e97307 2864 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2865 /* EABI binaries default to VFP float ordering. */
2866 if (fp_model == ARM_FLOAT_AUTO)
2867 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2868 break;
2869
2870 default:
6b26d61a 2871 /* Leave it as "auto". */
28e97307 2872 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2873 break;
2874 }
2875 }
2876
2877 if (fp_model == ARM_FLOAT_AUTO)
2878 {
2879 int e_flags = elf_elfheader (info.abfd)->e_flags;
2880
2881 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2882 {
2883 case 0:
2884 /* Leave it as "auto". Strictly speaking this case
2885 means FPA, but almost nobody uses that now, and
2886 many toolchains fail to set the appropriate bits
2887 for the floating-point model they use. */
2888 break;
2889 case EF_ARM_SOFT_FLOAT:
2890 fp_model = ARM_FLOAT_SOFT_FPA;
2891 break;
2892 case EF_ARM_VFP_FLOAT:
2893 fp_model = ARM_FLOAT_VFP;
2894 break;
2895 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2896 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2897 break;
2898 }
2899 }
4be87837 2900 break;
97e03143 2901
4be87837 2902 default:
28e97307 2903 /* Leave it as "auto". */
50ceaba5 2904 break;
97e03143
RE
2905 }
2906 }
2907
28e97307
DJ
2908 /* If there is already a candidate, use it. */
2909 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2910 best_arch != NULL;
2911 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2912 {
b8926edc
DJ
2913 if (arm_abi != ARM_ABI_AUTO
2914 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
2915 continue;
2916
b8926edc
DJ
2917 if (fp_model != ARM_FLOAT_AUTO
2918 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
2919 continue;
2920
2921 /* Found a match. */
2922 break;
2923 }
97e03143 2924
28e97307 2925 if (best_arch != NULL)
123dc839
DJ
2926 {
2927 if (tdesc_data != NULL)
2928 tdesc_data_cleanup (tdesc_data);
2929 return best_arch->gdbarch;
2930 }
28e97307
DJ
2931
2932 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2933 gdbarch = gdbarch_alloc (&info, tdep);
2934
28e97307
DJ
2935 /* Record additional information about the architecture we are defining.
2936 These are gdbarch discriminators, like the OSABI. */
2937 tdep->arm_abi = arm_abi;
2938 tdep->fp_model = fp_model;
ff6f572f 2939 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2940
2941 /* Breakpoints. */
67255d04
RE
2942 switch (info.byte_order)
2943 {
2944 case BFD_ENDIAN_BIG:
66e810cd
RE
2945 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2946 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2947 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2948 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2949
67255d04
RE
2950 break;
2951
2952 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2953 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2954 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2955 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2956 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2957
67255d04
RE
2958 break;
2959
2960 default:
2961 internal_error (__FILE__, __LINE__,
edefbb7c 2962 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2963 }
2964
d7b486e7
RE
2965 /* On ARM targets char defaults to unsigned. */
2966 set_gdbarch_char_signed (gdbarch, 0);
2967
9df628e0 2968 /* This should be low enough for everything. */
97e03143 2969 tdep->lowest_pc = 0x20;
94c30b78 2970 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2971
7c00367c
MK
2972 /* The default, for both APCS and AAPCS, is to return small
2973 structures in registers. */
2974 tdep->struct_return = reg_struct_return;
2975
2dd604e7 2976 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2977 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2978
756fe439
DJ
2979 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2980
148754e5 2981 /* Frame handling. */
eb5492fa
DJ
2982 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2983 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2984 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2985
eb5492fa 2986 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2987
34e8f22d
RE
2988 /* Address manipulation. */
2989 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2990 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2991
34e8f22d
RE
2992 /* Advance PC across function entry code. */
2993 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2994
190dce09
UW
2995 /* Skip trampolines. */
2996 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2997
34e8f22d
RE
2998 /* The stack grows downward. */
2999 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3000
3001 /* Breakpoint manipulation. */
3002 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
3003
3004 /* Information about registers, etc. */
0ba6dca9 3005 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
3006 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3007 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 3008 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 3009 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 3010
ff6f572f
DJ
3011 /* This "info float" is FPA-specific. Use the generic version if we
3012 do not have FPA. */
3013 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3014 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3015
26216b98 3016 /* Internal <-> external register number maps. */
ff6f572f
DJ
3017 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3018 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
3019 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3020
34e8f22d
RE
3021 set_gdbarch_register_name (gdbarch, arm_register_name);
3022
3023 /* Returning results. */
2af48f68 3024 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 3025
03d48a7d
RE
3026 /* Disassembly. */
3027 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3028
34e8f22d
RE
3029 /* Minsymbol frobbing. */
3030 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3031 set_gdbarch_coff_make_msymbol_special (gdbarch,
3032 arm_coff_make_msymbol_special);
3033
0d5de010
DJ
3034 /* Virtual tables. */
3035 set_gdbarch_vbit_in_delta (gdbarch, 1);
3036
97e03143 3037 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3038 gdbarch_init_osabi (info, gdbarch);
97e03143 3039
eb5492fa 3040 /* Add some default predicates. */
909cf6ea 3041 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 3042 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
3043 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3044
97e03143
RE
3045 /* Now we have tuned the configuration, set a few final things,
3046 based on what the OS ABI has told us. */
3047
b8926edc
DJ
3048 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3049 binaries are always marked. */
3050 if (tdep->arm_abi == ARM_ABI_AUTO)
3051 tdep->arm_abi = ARM_ABI_APCS;
3052
3053 /* We used to default to FPA for generic ARM, but almost nobody
3054 uses that now, and we now provide a way for the user to force
3055 the model. So default to the most useful variant. */
3056 if (tdep->fp_model == ARM_FLOAT_AUTO)
3057 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3058
9df628e0
RE
3059 if (tdep->jb_pc >= 0)
3060 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3061
08216dd7 3062 /* Floating point sizes and format. */
8da61cc4 3063 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 3064 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 3065 {
8da61cc4
DJ
3066 set_gdbarch_double_format
3067 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3068 set_gdbarch_long_double_format
3069 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3070 }
3071 else
3072 {
3073 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3074 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3075 }
3076
123dc839 3077 if (tdesc_data)
7cc46491 3078 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
123dc839
DJ
3079
3080 /* Add standard register aliases. We add aliases even for those
3081 nanes which are used by the current architecture - it's simpler,
3082 and does no harm, since nothing ever lists user registers. */
3083 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3084 user_reg_add (gdbarch, arm_register_aliases[i].name,
3085 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3086
39bbf761
RE
3087 return gdbarch;
3088}
3089
97e03143 3090static void
2af46ca0 3091arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 3092{
2af46ca0 3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
3094
3095 if (tdep == NULL)
3096 return;
3097
edefbb7c 3098 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3099 (unsigned long) tdep->lowest_pc);
3100}
3101
a78f21af
AC
3102extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3103
c906108c 3104void
ed9a39eb 3105_initialize_arm_tdep (void)
c906108c 3106{
bc90b915
FN
3107 struct ui_file *stb;
3108 long length;
26304000 3109 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3110 const char *setname;
3111 const char *setdesc;
4bd7b427 3112 const char *const *regnames;
bc90b915
FN
3113 int numregs, i, j;
3114 static char *helptext;
edefbb7c
AC
3115 char regdesc[1024], *rdptr = regdesc;
3116 size_t rest = sizeof (regdesc);
085dd6e6 3117
42cf1509 3118 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3119
70f80edf
JT
3120 /* Register an ELF OS ABI sniffer for ARM binaries. */
3121 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3122 bfd_target_elf_flavour,
3123 arm_elf_osabi_sniffer);
3124
94c30b78 3125 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3126 num_disassembly_options = get_arm_regname_num_options ();
3127
3128 /* Add root prefix command for all "set arm"/"show arm" commands. */
3129 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3130 _("Various ARM-specific commands."),
afd7eef0
RE
3131 &setarmcmdlist, "set arm ", 0, &setlist);
3132
3133 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3134 _("Various ARM-specific commands."),
afd7eef0 3135 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3136
94c30b78 3137 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3138 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3139
eefe576e
AC
3140 /* Initialize the array that will be passed to
3141 add_setshow_enum_cmd(). */
afd7eef0
RE
3142 valid_disassembly_styles
3143 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3144 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3145 {
3146 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3147 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3148 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3149 rdptr += length;
3150 rest -= length;
123dc839
DJ
3151 /* When we find the default names, tell the disassembler to use
3152 them. */
bc90b915
FN
3153 if (!strcmp (setname, "std"))
3154 {
afd7eef0 3155 disassembly_style = setname;
bc90b915
FN
3156 set_arm_regname_option (i);
3157 }
3158 }
94c30b78 3159 /* Mark the end of valid options. */
afd7eef0 3160 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3161
edefbb7c
AC
3162 /* Create the help text. */
3163 stb = mem_fileopen ();
3164 fprintf_unfiltered (stb, "%s%s%s",
3165 _("The valid values are:\n"),
3166 regdesc,
3167 _("The default is \"std\"."));
bc90b915
FN
3168 helptext = ui_file_xstrdup (stb, &length);
3169 ui_file_delete (stb);
ed9a39eb 3170
edefbb7c
AC
3171 add_setshow_enum_cmd("disassembler", no_class,
3172 valid_disassembly_styles, &disassembly_style,
3173 _("Set the disassembly style."),
3174 _("Show the disassembly style."),
3175 helptext,
2c5b56ce 3176 set_disassembly_style_sfunc,
7915a72c 3177 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3178 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3179
3180 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3181 _("Set usage of ARM 32-bit mode."),
3182 _("Show usage of ARM 32-bit mode."),
3183 _("When off, a 26-bit PC will be used."),
2c5b56ce 3184 NULL,
7915a72c 3185 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3186 &setarmcmdlist, &showarmcmdlist);
c906108c 3187
fd50bc42 3188 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3189 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3190 _("Set the floating point type."),
3191 _("Show the floating point type."),
3192 _("auto - Determine the FP typefrom the OS-ABI.\n\
3193softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3194fpa - FPA co-processor (GCC compiled).\n\
3195softvfp - Software FP with pure-endian doubles.\n\
3196vfp - VFP co-processor."),
edefbb7c 3197 set_fp_model_sfunc, show_fp_model,
7376b4c2 3198 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3199
28e97307
DJ
3200 /* Add a command to allow the user to force the ABI. */
3201 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3202 _("Set the ABI."),
3203 _("Show the ABI."),
3204 NULL, arm_set_abi, arm_show_abi,
3205 &setarmcmdlist, &showarmcmdlist);
3206
6529d2dd 3207 /* Debugging flag. */
edefbb7c
AC
3208 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3209 _("Set ARM debugging."),
3210 _("Show ARM debugging."),
3211 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3212 NULL,
7915a72c 3213 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3214 &setdebuglist, &showdebuglist);
c906108c 3215}
This page took 0.907955 seconds and 4 git commands to generate.