Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
e2882c85 | 3 | Copyright (C) 1988-2018 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 19 | |
0baeab03 PA |
20 | #include "defs.h" |
21 | ||
0963b4bd | 22 | #include <ctype.h> /* XXX for isupper (). */ |
34e8f22d | 23 | |
c906108c SS |
24 | #include "frame.h" |
25 | #include "inferior.h" | |
45741a9c | 26 | #include "infrun.h" |
c906108c SS |
27 | #include "gdbcmd.h" |
28 | #include "gdbcore.h" | |
0963b4bd | 29 | #include "dis-asm.h" /* For register styles. */ |
e47ad6c0 | 30 | #include "disasm.h" |
4e052eda | 31 | #include "regcache.h" |
54483882 | 32 | #include "reggroups.h" |
3b2ca824 | 33 | #include "target-float.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
4be87837 | 36 | #include "osabi.h" |
eb5492fa DJ |
37 | #include "frame-unwind.h" |
38 | #include "frame-base.h" | |
39 | #include "trad-frame.h" | |
842e1f1e DJ |
40 | #include "objfiles.h" |
41 | #include "dwarf2-frame.h" | |
e4c16157 | 42 | #include "gdbtypes.h" |
29d73ae4 | 43 | #include "prologue-value.h" |
25f8c692 | 44 | #include "remote.h" |
123dc839 DJ |
45 | #include "target-descriptions.h" |
46 | #include "user-regs.h" | |
76727919 | 47 | #include "observable.h" |
34e8f22d | 48 | |
8689682c | 49 | #include "arch/arm.h" |
d9311bfa | 50 | #include "arch/arm-get-next-pcs.h" |
34e8f22d | 51 | #include "arm-tdep.h" |
26216b98 | 52 | #include "gdb/sim-arm.h" |
34e8f22d | 53 | |
082fc60d RE |
54 | #include "elf-bfd.h" |
55 | #include "coff/internal.h" | |
97e03143 | 56 | #include "elf/arm.h" |
c906108c | 57 | |
60c5725c | 58 | #include "vec.h" |
26216b98 | 59 | |
72508ac0 | 60 | #include "record.h" |
d02ed0bb | 61 | #include "record-full.h" |
325fac50 | 62 | #include <algorithm> |
72508ac0 | 63 | |
0a69eedb YQ |
64 | #include "features/arm/arm-with-m.c" |
65 | #include "features/arm/arm-with-m-fpa-layout.c" | |
66 | #include "features/arm/arm-with-m-vfp-d16.c" | |
67 | #include "features/arm/arm-with-iwmmxt.c" | |
68 | #include "features/arm/arm-with-vfpv2.c" | |
69 | #include "features/arm/arm-with-vfpv3.c" | |
70 | #include "features/arm/arm-with-neon.c" | |
9779414d | 71 | |
b121eeb9 YQ |
72 | #if GDB_SELF_TEST |
73 | #include "selftest.h" | |
74 | #endif | |
75 | ||
6529d2dd AC |
76 | static int arm_debug; |
77 | ||
082fc60d RE |
78 | /* Macros for setting and testing a bit in a minimal symbol that marks |
79 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 80 | is used for this purpose. |
082fc60d RE |
81 | |
82 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 83 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d | 84 | |
0963b4bd | 85 | #define MSYMBOL_SET_SPECIAL(msym) \ |
b887350f | 86 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
87 | |
88 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 89 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 90 | |
60c5725c DJ |
91 | /* Per-objfile data used for mapping symbols. */ |
92 | static const struct objfile_data *arm_objfile_data_key; | |
93 | ||
94 | struct arm_mapping_symbol | |
95 | { | |
96 | bfd_vma value; | |
97 | char type; | |
98 | }; | |
99 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
100 | DEF_VEC_O(arm_mapping_symbol_s); | |
101 | ||
102 | struct arm_per_objfile | |
103 | { | |
104 | VEC(arm_mapping_symbol_s) **section_maps; | |
105 | }; | |
106 | ||
afd7eef0 RE |
107 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
108 | static struct cmd_list_element *setarmcmdlist = NULL; | |
109 | static struct cmd_list_element *showarmcmdlist = NULL; | |
110 | ||
fd50bc42 RE |
111 | /* The type of floating-point to use. Keep this in sync with enum |
112 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
40478521 | 113 | static const char *const fp_model_strings[] = |
fd50bc42 RE |
114 | { |
115 | "auto", | |
116 | "softfpa", | |
117 | "fpa", | |
118 | "softvfp", | |
28e97307 DJ |
119 | "vfp", |
120 | NULL | |
fd50bc42 RE |
121 | }; |
122 | ||
123 | /* A variable that can be configured by the user. */ | |
124 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
125 | static const char *current_fp_model = "auto"; | |
126 | ||
28e97307 | 127 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
40478521 | 128 | static const char *const arm_abi_strings[] = |
28e97307 DJ |
129 | { |
130 | "auto", | |
131 | "APCS", | |
132 | "AAPCS", | |
133 | NULL | |
134 | }; | |
135 | ||
136 | /* A variable that can be configured by the user. */ | |
137 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
138 | static const char *arm_abi_string = "auto"; | |
139 | ||
0428b8f5 | 140 | /* The execution mode to assume. */ |
40478521 | 141 | static const char *const arm_mode_strings[] = |
0428b8f5 DJ |
142 | { |
143 | "auto", | |
144 | "arm", | |
68770265 MGD |
145 | "thumb", |
146 | NULL | |
0428b8f5 DJ |
147 | }; |
148 | ||
149 | static const char *arm_fallback_mode_string = "auto"; | |
150 | static const char *arm_force_mode_string = "auto"; | |
151 | ||
f32bf4a4 YQ |
152 | /* The standard register names, and all the valid aliases for them. Note |
153 | that `fp', `sp' and `pc' are not added in this alias list, because they | |
154 | have been added as builtin user registers in | |
155 | std-regs.c:_initialize_frame_reg. */ | |
123dc839 DJ |
156 | static const struct |
157 | { | |
158 | const char *name; | |
159 | int regnum; | |
160 | } arm_register_aliases[] = { | |
161 | /* Basic register numbers. */ | |
162 | { "r0", 0 }, | |
163 | { "r1", 1 }, | |
164 | { "r2", 2 }, | |
165 | { "r3", 3 }, | |
166 | { "r4", 4 }, | |
167 | { "r5", 5 }, | |
168 | { "r6", 6 }, | |
169 | { "r7", 7 }, | |
170 | { "r8", 8 }, | |
171 | { "r9", 9 }, | |
172 | { "r10", 10 }, | |
173 | { "r11", 11 }, | |
174 | { "r12", 12 }, | |
175 | { "r13", 13 }, | |
176 | { "r14", 14 }, | |
177 | { "r15", 15 }, | |
178 | /* Synonyms (argument and variable registers). */ | |
179 | { "a1", 0 }, | |
180 | { "a2", 1 }, | |
181 | { "a3", 2 }, | |
182 | { "a4", 3 }, | |
183 | { "v1", 4 }, | |
184 | { "v2", 5 }, | |
185 | { "v3", 6 }, | |
186 | { "v4", 7 }, | |
187 | { "v5", 8 }, | |
188 | { "v6", 9 }, | |
189 | { "v7", 10 }, | |
190 | { "v8", 11 }, | |
191 | /* Other platform-specific names for r9. */ | |
192 | { "sb", 9 }, | |
193 | { "tr", 9 }, | |
194 | /* Special names. */ | |
195 | { "ip", 12 }, | |
123dc839 | 196 | { "lr", 14 }, |
123dc839 DJ |
197 | /* Names used by GCC (not listed in the ARM EABI). */ |
198 | { "sl", 10 }, | |
123dc839 DJ |
199 | /* A special name from the older ATPCS. */ |
200 | { "wr", 7 }, | |
201 | }; | |
bc90b915 | 202 | |
123dc839 | 203 | static const char *const arm_register_names[] = |
da59e081 JM |
204 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
205 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
206 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
207 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
208 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
209 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 210 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 211 | |
65b48a81 PB |
212 | /* Holds the current set of options to be passed to the disassembler. */ |
213 | static char *arm_disassembler_options; | |
214 | ||
afd7eef0 RE |
215 | /* Valid register name styles. */ |
216 | static const char **valid_disassembly_styles; | |
ed9a39eb | 217 | |
afd7eef0 RE |
218 | /* Disassembly style to use. Default to "std" register names. */ |
219 | static const char *disassembly_style; | |
96baa820 | 220 | |
ed9a39eb | 221 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 | 222 | style. */ |
eb4c3f4a | 223 | static void set_disassembly_style_sfunc (const char *, int, |
ed9a39eb | 224 | struct cmd_list_element *); |
65b48a81 PB |
225 | static void show_disassembly_style_sfunc (struct ui_file *, int, |
226 | struct cmd_list_element *, | |
227 | const char *); | |
ed9a39eb | 228 | |
05d1431c | 229 | static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, |
849d0ba8 | 230 | readable_regcache *regcache, |
05d1431c | 231 | int regnum, gdb_byte *buf); |
58d6951d DJ |
232 | static void arm_neon_quad_write (struct gdbarch *gdbarch, |
233 | struct regcache *regcache, | |
234 | int regnum, const gdb_byte *buf); | |
235 | ||
e7cf25a8 | 236 | static CORE_ADDR |
553cb527 | 237 | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self); |
e7cf25a8 YQ |
238 | |
239 | ||
d9311bfa AT |
240 | /* get_next_pcs operations. */ |
241 | static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = { | |
242 | arm_get_next_pcs_read_memory_unsigned_integer, | |
243 | arm_get_next_pcs_syscall_next_pc, | |
244 | arm_get_next_pcs_addr_bits_remove, | |
ed443b61 YQ |
245 | arm_get_next_pcs_is_thumb, |
246 | NULL, | |
d9311bfa AT |
247 | }; |
248 | ||
9b8d791a | 249 | struct arm_prologue_cache |
c3b4394c | 250 | { |
eb5492fa DJ |
251 | /* The stack pointer at the time this frame was created; i.e. the |
252 | caller's stack pointer when this function was called. It is used | |
253 | to identify this frame. */ | |
254 | CORE_ADDR prev_sp; | |
255 | ||
4be43953 DJ |
256 | /* The frame base for this frame is just prev_sp - frame size. |
257 | FRAMESIZE is the distance from the frame pointer to the | |
258 | initial stack pointer. */ | |
eb5492fa | 259 | |
c3b4394c | 260 | int framesize; |
eb5492fa DJ |
261 | |
262 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 263 | int framereg; |
eb5492fa DJ |
264 | |
265 | /* Saved register offsets. */ | |
266 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 267 | }; |
ed9a39eb | 268 | |
0d39a070 DJ |
269 | static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, |
270 | CORE_ADDR prologue_start, | |
271 | CORE_ADDR prologue_end, | |
272 | struct arm_prologue_cache *cache); | |
273 | ||
cca44b1b JB |
274 | /* Architecture version for displaced stepping. This effects the behaviour of |
275 | certain instructions, and really should not be hard-wired. */ | |
276 | ||
277 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
278 | ||
94c30b78 | 279 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
280 | |
281 | int arm_apcs_32 = 1; | |
282 | ||
9779414d DJ |
283 | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
284 | ||
478fd957 | 285 | int |
9779414d DJ |
286 | arm_psr_thumb_bit (struct gdbarch *gdbarch) |
287 | { | |
288 | if (gdbarch_tdep (gdbarch)->is_m) | |
289 | return XPSR_T; | |
290 | else | |
291 | return CPSR_T; | |
292 | } | |
293 | ||
d0e59a68 AT |
294 | /* Determine if the processor is currently executing in Thumb mode. */ |
295 | ||
296 | int | |
297 | arm_is_thumb (struct regcache *regcache) | |
298 | { | |
299 | ULONGEST cpsr; | |
ac7936df | 300 | ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ()); |
d0e59a68 AT |
301 | |
302 | cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM); | |
303 | ||
304 | return (cpsr & t_bit) != 0; | |
305 | } | |
306 | ||
b39cc962 DJ |
307 | /* Determine if FRAME is executing in Thumb mode. */ |
308 | ||
25b41d01 | 309 | int |
b39cc962 DJ |
310 | arm_frame_is_thumb (struct frame_info *frame) |
311 | { | |
312 | CORE_ADDR cpsr; | |
9779414d | 313 | ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
b39cc962 DJ |
314 | |
315 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
316 | directly (from a signal frame or dummy frame) or by interpreting | |
317 | the saved LR (from a prologue or DWARF frame). So consult it and | |
318 | trust the unwinders. */ | |
319 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
320 | ||
9779414d | 321 | return (cpsr & t_bit) != 0; |
b39cc962 DJ |
322 | } |
323 | ||
60c5725c DJ |
324 | /* Callback for VEC_lower_bound. */ |
325 | ||
326 | static inline int | |
327 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
328 | const struct arm_mapping_symbol *rhs) | |
329 | { | |
330 | return lhs->value < rhs->value; | |
331 | } | |
332 | ||
f9d67f43 DJ |
333 | /* Search for the mapping symbol covering MEMADDR. If one is found, |
334 | return its type. Otherwise, return 0. If START is non-NULL, | |
335 | set *START to the location of the mapping symbol. */ | |
c906108c | 336 | |
f9d67f43 DJ |
337 | static char |
338 | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | |
c906108c | 339 | { |
60c5725c | 340 | struct obj_section *sec; |
0428b8f5 | 341 | |
60c5725c DJ |
342 | /* If there are mapping symbols, consult them. */ |
343 | sec = find_pc_section (memaddr); | |
344 | if (sec != NULL) | |
345 | { | |
346 | struct arm_per_objfile *data; | |
347 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
348 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
349 | 0 }; | |
60c5725c DJ |
350 | unsigned int idx; |
351 | ||
9a3c8263 SM |
352 | data = (struct arm_per_objfile *) objfile_data (sec->objfile, |
353 | arm_objfile_data_key); | |
60c5725c DJ |
354 | if (data != NULL) |
355 | { | |
356 | map = data->section_maps[sec->the_bfd_section->index]; | |
357 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
358 | { | |
359 | struct arm_mapping_symbol *map_sym; | |
360 | ||
361 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
362 | arm_compare_mapping_symbols); | |
363 | ||
364 | /* VEC_lower_bound finds the earliest ordered insertion | |
365 | point. If the following symbol starts at this exact | |
366 | address, we use that; otherwise, the preceding | |
367 | mapping symbol covers this address. */ | |
368 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
369 | { | |
370 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
371 | if (map_sym->value == map_key.value) | |
f9d67f43 DJ |
372 | { |
373 | if (start) | |
374 | *start = map_sym->value + obj_section_addr (sec); | |
375 | return map_sym->type; | |
376 | } | |
60c5725c DJ |
377 | } |
378 | ||
379 | if (idx > 0) | |
380 | { | |
381 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
f9d67f43 DJ |
382 | if (start) |
383 | *start = map_sym->value + obj_section_addr (sec); | |
384 | return map_sym->type; | |
60c5725c DJ |
385 | } |
386 | } | |
387 | } | |
388 | } | |
389 | ||
f9d67f43 DJ |
390 | return 0; |
391 | } | |
392 | ||
393 | /* Determine if the program counter specified in MEMADDR is in a Thumb | |
394 | function. This function should be called for addresses unrelated to | |
395 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
396 | ||
e3039479 | 397 | int |
9779414d | 398 | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
f9d67f43 | 399 | { |
7cbd4a93 | 400 | struct bound_minimal_symbol sym; |
f9d67f43 | 401 | char type; |
cfba9872 SM |
402 | arm_displaced_step_closure *dsc |
403 | = ((arm_displaced_step_closure * ) | |
404 | get_displaced_step_closure_by_addr (memaddr)); | |
a42244db YQ |
405 | |
406 | /* If checking the mode of displaced instruction in copy area, the mode | |
407 | should be determined by instruction on the original address. */ | |
408 | if (dsc) | |
409 | { | |
410 | if (debug_displaced) | |
411 | fprintf_unfiltered (gdb_stdlog, | |
412 | "displaced: check mode of %.8lx instead of %.8lx\n", | |
413 | (unsigned long) dsc->insn_addr, | |
414 | (unsigned long) memaddr); | |
415 | memaddr = dsc->insn_addr; | |
416 | } | |
f9d67f43 DJ |
417 | |
418 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
419 | if (IS_THUMB_ADDR (memaddr)) | |
420 | return 1; | |
421 | ||
422 | /* If the user wants to override the symbol table, let him. */ | |
423 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
424 | return 0; | |
425 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
426 | return 1; | |
427 | ||
9779414d DJ |
428 | /* ARM v6-M and v7-M are always in Thumb mode. */ |
429 | if (gdbarch_tdep (gdbarch)->is_m) | |
430 | return 1; | |
431 | ||
f9d67f43 DJ |
432 | /* If there are mapping symbols, consult them. */ |
433 | type = arm_find_mapping_symbol (memaddr, NULL); | |
434 | if (type) | |
435 | return type == 't'; | |
436 | ||
ed9a39eb | 437 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c | 438 | sym = lookup_minimal_symbol_by_pc (memaddr); |
7cbd4a93 TT |
439 | if (sym.minsym) |
440 | return (MSYMBOL_IS_SPECIAL (sym.minsym)); | |
0428b8f5 DJ |
441 | |
442 | /* If the user wants to override the fallback mode, let them. */ | |
443 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
444 | return 0; | |
445 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
446 | return 1; | |
447 | ||
448 | /* If we couldn't find any symbol, but we're talking to a running | |
449 | target, then trust the current value of $cpsr. This lets | |
450 | "display/i $pc" always show the correct mode (though if there is | |
451 | a symbol table we will not reach here, so it still may not be | |
18819fa6 | 452 | displayed in the mode it will be executed). */ |
0428b8f5 | 453 | if (target_has_registers) |
18819fa6 | 454 | return arm_frame_is_thumb (get_current_frame ()); |
0428b8f5 DJ |
455 | |
456 | /* Otherwise we're out of luck; we assume ARM. */ | |
457 | return 0; | |
c906108c SS |
458 | } |
459 | ||
ca90e760 FH |
460 | /* Determine if the address specified equals any of these magic return |
461 | values, called EXC_RETURN, defined by the ARM v6-M and v7-M | |
462 | architectures. | |
463 | ||
464 | From ARMv6-M Reference Manual B1.5.8 | |
465 | Table B1-5 Exception return behavior | |
466 | ||
467 | EXC_RETURN Return To Return Stack | |
468 | 0xFFFFFFF1 Handler mode Main | |
469 | 0xFFFFFFF9 Thread mode Main | |
470 | 0xFFFFFFFD Thread mode Process | |
471 | ||
472 | From ARMv7-M Reference Manual B1.5.8 | |
473 | Table B1-8 EXC_RETURN definition of exception return behavior, no FP | |
474 | ||
475 | EXC_RETURN Return To Return Stack | |
476 | 0xFFFFFFF1 Handler mode Main | |
477 | 0xFFFFFFF9 Thread mode Main | |
478 | 0xFFFFFFFD Thread mode Process | |
479 | ||
480 | Table B1-9 EXC_RETURN definition of exception return behavior, with | |
481 | FP | |
482 | ||
483 | EXC_RETURN Return To Return Stack Frame Type | |
484 | 0xFFFFFFE1 Handler mode Main Extended | |
485 | 0xFFFFFFE9 Thread mode Main Extended | |
486 | 0xFFFFFFED Thread mode Process Extended | |
487 | 0xFFFFFFF1 Handler mode Main Basic | |
488 | 0xFFFFFFF9 Thread mode Main Basic | |
489 | 0xFFFFFFFD Thread mode Process Basic | |
490 | ||
491 | For more details see "B1.5.8 Exception return behavior" | |
492 | in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */ | |
493 | ||
494 | static int | |
495 | arm_m_addr_is_magic (CORE_ADDR addr) | |
496 | { | |
497 | switch (addr) | |
498 | { | |
499 | /* Values from Tables in B1.5.8 the EXC_RETURN definitions of | |
500 | the exception return behavior. */ | |
501 | case 0xffffffe1: | |
502 | case 0xffffffe9: | |
503 | case 0xffffffed: | |
504 | case 0xfffffff1: | |
505 | case 0xfffffff9: | |
506 | case 0xfffffffd: | |
507 | /* Address is magic. */ | |
508 | return 1; | |
509 | ||
510 | default: | |
511 | /* Address is not magic. */ | |
512 | return 0; | |
513 | } | |
514 | } | |
515 | ||
181c1381 | 516 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 517 | static CORE_ADDR |
24568a2c | 518 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 519 | { |
2ae28aa9 YQ |
520 | /* On M-profile devices, do not strip the low bit from EXC_RETURN |
521 | (the magic exception return address). */ | |
522 | if (gdbarch_tdep (gdbarch)->is_m | |
ca90e760 | 523 | && arm_m_addr_is_magic (val)) |
2ae28aa9 YQ |
524 | return val; |
525 | ||
a3a2ee65 | 526 | if (arm_apcs_32) |
dd6be234 | 527 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 528 | else |
a3a2ee65 | 529 | return (val & 0x03fffffc); |
c906108c SS |
530 | } |
531 | ||
0d39a070 | 532 | /* Return 1 if PC is the start of a compiler helper function which |
e0634ccf UW |
533 | can be safely ignored during prologue skipping. IS_THUMB is true |
534 | if the function is known to be a Thumb function due to the way it | |
535 | is being called. */ | |
0d39a070 | 536 | static int |
e0634ccf | 537 | skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) |
0d39a070 | 538 | { |
e0634ccf | 539 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7cbd4a93 | 540 | struct bound_minimal_symbol msym; |
0d39a070 DJ |
541 | |
542 | msym = lookup_minimal_symbol_by_pc (pc); | |
7cbd4a93 | 543 | if (msym.minsym != NULL |
77e371c0 | 544 | && BMSYMBOL_VALUE_ADDRESS (msym) == pc |
efd66ac6 | 545 | && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL) |
e0634ccf | 546 | { |
efd66ac6 | 547 | const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym); |
0d39a070 | 548 | |
e0634ccf UW |
549 | /* The GNU linker's Thumb call stub to foo is named |
550 | __foo_from_thumb. */ | |
551 | if (strstr (name, "_from_thumb") != NULL) | |
552 | name += 2; | |
0d39a070 | 553 | |
e0634ccf UW |
554 | /* On soft-float targets, __truncdfsf2 is called to convert promoted |
555 | arguments to their argument types in non-prototyped | |
556 | functions. */ | |
61012eef | 557 | if (startswith (name, "__truncdfsf2")) |
e0634ccf | 558 | return 1; |
61012eef | 559 | if (startswith (name, "__aeabi_d2f")) |
e0634ccf | 560 | return 1; |
0d39a070 | 561 | |
e0634ccf | 562 | /* Internal functions related to thread-local storage. */ |
61012eef | 563 | if (startswith (name, "__tls_get_addr")) |
e0634ccf | 564 | return 1; |
61012eef | 565 | if (startswith (name, "__aeabi_read_tp")) |
e0634ccf UW |
566 | return 1; |
567 | } | |
568 | else | |
569 | { | |
570 | /* If we run against a stripped glibc, we may be unable to identify | |
571 | special functions by name. Check for one important case, | |
572 | __aeabi_read_tp, by comparing the *code* against the default | |
573 | implementation (this is hand-written ARM assembler in glibc). */ | |
574 | ||
575 | if (!is_thumb | |
198cd59d | 576 | && read_code_unsigned_integer (pc, 4, byte_order_for_code) |
e0634ccf | 577 | == 0xe3e00a0f /* mov r0, #0xffff0fff */ |
198cd59d | 578 | && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code) |
e0634ccf UW |
579 | == 0xe240f01f) /* sub pc, r0, #31 */ |
580 | return 1; | |
581 | } | |
ec3d575a | 582 | |
0d39a070 DJ |
583 | return 0; |
584 | } | |
585 | ||
621c6d5b YQ |
586 | /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
587 | the first 16-bit of instruction, and INSN2 is the second 16-bit of | |
588 | instruction. */ | |
589 | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | |
590 | ((bits ((insn1), 0, 3) << 12) \ | |
591 | | (bits ((insn1), 10, 10) << 11) \ | |
592 | | (bits ((insn2), 12, 14) << 8) \ | |
593 | | bits ((insn2), 0, 7)) | |
594 | ||
595 | /* Extract the immediate from instruction movw/movt of encoding A. INSN is | |
596 | the 32-bit instruction. */ | |
597 | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | |
598 | ((bits ((insn), 16, 19) << 12) \ | |
599 | | bits ((insn), 0, 11)) | |
600 | ||
ec3d575a UW |
601 | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
602 | ||
603 | static unsigned int | |
604 | thumb_expand_immediate (unsigned int imm) | |
605 | { | |
606 | unsigned int count = imm >> 7; | |
607 | ||
608 | if (count < 8) | |
609 | switch (count / 2) | |
610 | { | |
611 | case 0: | |
612 | return imm & 0xff; | |
613 | case 1: | |
614 | return (imm & 0xff) | ((imm & 0xff) << 16); | |
615 | case 2: | |
616 | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | |
617 | case 3: | |
618 | return (imm & 0xff) | ((imm & 0xff) << 8) | |
619 | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | |
620 | } | |
621 | ||
622 | return (0x80 | (imm & 0x7f)) << (32 - count); | |
623 | } | |
624 | ||
540314bd YQ |
625 | /* Return 1 if the 16-bit Thumb instruction INSN restores SP in |
626 | epilogue, 0 otherwise. */ | |
627 | ||
628 | static int | |
629 | thumb_instruction_restores_sp (unsigned short insn) | |
630 | { | |
631 | return (insn == 0x46bd /* mov sp, r7 */ | |
632 | || (insn & 0xff80) == 0xb000 /* add sp, imm */ | |
633 | || (insn & 0xfe00) == 0xbc00); /* pop <registers> */ | |
634 | } | |
635 | ||
29d73ae4 DJ |
636 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
637 | and frame pointer. Scan until we encounter a store that could | |
0d39a070 DJ |
638 | clobber the stack frame unexpectedly, or an unknown instruction. |
639 | Return the last address which is definitely safe to skip for an | |
640 | initial breakpoint. */ | |
c906108c SS |
641 | |
642 | static CORE_ADDR | |
29d73ae4 DJ |
643 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
644 | CORE_ADDR start, CORE_ADDR limit, | |
645 | struct arm_prologue_cache *cache) | |
c906108c | 646 | { |
0d39a070 | 647 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e17a4113 | 648 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
649 | int i; |
650 | pv_t regs[16]; | |
29d73ae4 | 651 | CORE_ADDR offset; |
ec3d575a | 652 | CORE_ADDR unrecognized_pc = 0; |
da3c6d4a | 653 | |
29d73ae4 DJ |
654 | for (i = 0; i < 16; i++) |
655 | regs[i] = pv_register (i, 0); | |
f7b7ed97 | 656 | pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 | 657 | |
29d73ae4 | 658 | while (start < limit) |
c906108c | 659 | { |
29d73ae4 DJ |
660 | unsigned short insn; |
661 | ||
198cd59d | 662 | insn = read_code_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 663 | |
94c30b78 | 664 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 665 | { |
29d73ae4 DJ |
666 | int regno; |
667 | int mask; | |
4be43953 | 668 | |
f7b7ed97 | 669 | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
4be43953 | 670 | break; |
29d73ae4 DJ |
671 | |
672 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
673 | whether to save LR (R14). */ | |
674 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
675 | ||
676 | /* Calculate offsets of saved R0-R7 and LR. */ | |
677 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
678 | if (mask & (1 << regno)) | |
679 | { | |
29d73ae4 DJ |
680 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
681 | -4); | |
f7b7ed97 | 682 | stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); |
29d73ae4 | 683 | } |
da59e081 | 684 | } |
1db01f22 | 685 | else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */ |
da59e081 | 686 | { |
29d73ae4 | 687 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
1db01f22 YQ |
688 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
689 | -offset); | |
da59e081 | 690 | } |
808f7ab1 YQ |
691 | else if (thumb_instruction_restores_sp (insn)) |
692 | { | |
693 | /* Don't scan past the epilogue. */ | |
694 | break; | |
695 | } | |
0d39a070 DJ |
696 | else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
697 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | |
698 | (insn & 0xff) << 2); | |
699 | else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ | |
700 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
701 | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | |
702 | bits (insn, 6, 8)); | |
703 | else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ | |
704 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
705 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | |
706 | bits (insn, 0, 7)); | |
707 | else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ | |
708 | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | |
709 | && pv_is_constant (regs[bits (insn, 3, 5)])) | |
710 | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | |
711 | regs[bits (insn, 6, 8)]); | |
712 | else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ | |
713 | && pv_is_constant (regs[bits (insn, 3, 6)])) | |
714 | { | |
715 | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | |
716 | int rm = bits (insn, 3, 6); | |
717 | regs[rd] = pv_add (regs[rd], regs[rm]); | |
718 | } | |
29d73ae4 | 719 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
da59e081 | 720 | { |
29d73ae4 DJ |
721 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
722 | int src_reg = (insn & 0x78) >> 3; | |
723 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 724 | } |
29d73ae4 | 725 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 726 | { |
29d73ae4 DJ |
727 | /* Handle stores to the stack. Normally pushes are used, |
728 | but with GCC -mtpcs-frame, there may be other stores | |
729 | in the prologue to create the frame. */ | |
730 | int regno = (insn >> 8) & 0x7; | |
731 | pv_t addr; | |
732 | ||
733 | offset = (insn & 0xff) << 2; | |
734 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
735 | ||
f7b7ed97 | 736 | if (stack.store_would_trash (addr)) |
29d73ae4 DJ |
737 | break; |
738 | ||
f7b7ed97 | 739 | stack.store (addr, 4, regs[regno]); |
da59e081 | 740 | } |
0d39a070 DJ |
741 | else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
742 | { | |
743 | int rd = bits (insn, 0, 2); | |
744 | int rn = bits (insn, 3, 5); | |
745 | pv_t addr; | |
746 | ||
747 | offset = bits (insn, 6, 10) << 2; | |
748 | addr = pv_add_constant (regs[rn], offset); | |
749 | ||
f7b7ed97 | 750 | if (stack.store_would_trash (addr)) |
0d39a070 DJ |
751 | break; |
752 | ||
f7b7ed97 | 753 | stack.store (addr, 4, regs[rd]); |
0d39a070 DJ |
754 | } |
755 | else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ | |
756 | || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ | |
757 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
758 | /* Ignore stores of argument registers to the stack. */ | |
759 | ; | |
760 | else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ | |
761 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
762 | /* Ignore block loads from the stack, potentially copying | |
763 | parameters from memory. */ | |
764 | ; | |
765 | else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ | |
766 | || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ | |
767 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | |
768 | /* Similarly ignore single loads from the stack. */ | |
769 | ; | |
770 | else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ | |
771 | || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ | |
772 | /* Skip register copies, i.e. saves to another register | |
773 | instead of the stack. */ | |
774 | ; | |
775 | else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ | |
776 | /* Recognize constant loads; even with small stacks these are necessary | |
777 | on Thumb. */ | |
778 | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | |
779 | else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ | |
780 | { | |
781 | /* Constant pool loads, for the same reason. */ | |
782 | unsigned int constant; | |
783 | CORE_ADDR loc; | |
784 | ||
785 | loc = start + 4 + bits (insn, 0, 7) * 4; | |
786 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
787 | regs[bits (insn, 8, 10)] = pv_constant (constant); | |
788 | } | |
db24da6d | 789 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */ |
0d39a070 | 790 | { |
0d39a070 DJ |
791 | unsigned short inst2; |
792 | ||
198cd59d YQ |
793 | inst2 = read_code_unsigned_integer (start + 2, 2, |
794 | byte_order_for_code); | |
0d39a070 DJ |
795 | |
796 | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | |
797 | { | |
798 | /* BL, BLX. Allow some special function calls when | |
799 | skipping the prologue; GCC generates these before | |
800 | storing arguments to the stack. */ | |
801 | CORE_ADDR nextpc; | |
802 | int j1, j2, imm1, imm2; | |
803 | ||
804 | imm1 = sbits (insn, 0, 10); | |
805 | imm2 = bits (inst2, 0, 10); | |
806 | j1 = bit (inst2, 13); | |
807 | j2 = bit (inst2, 11); | |
808 | ||
809 | offset = ((imm1 << 12) + (imm2 << 1)); | |
810 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
811 | ||
812 | nextpc = start + 4 + offset; | |
813 | /* For BLX make sure to clear the low bits. */ | |
814 | if (bit (inst2, 12) == 0) | |
815 | nextpc = nextpc & 0xfffffffc; | |
816 | ||
e0634ccf UW |
817 | if (!skip_prologue_function (gdbarch, nextpc, |
818 | bit (inst2, 12) != 0)) | |
0d39a070 DJ |
819 | break; |
820 | } | |
ec3d575a | 821 | |
0963b4bd MS |
822 | else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
823 | { registers } */ | |
ec3d575a UW |
824 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
825 | { | |
826 | pv_t addr = regs[bits (insn, 0, 3)]; | |
827 | int regno; | |
828 | ||
f7b7ed97 | 829 | if (stack.store_would_trash (addr)) |
ec3d575a UW |
830 | break; |
831 | ||
832 | /* Calculate offsets of saved registers. */ | |
833 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
834 | if (inst2 & (1 << regno)) | |
835 | { | |
836 | addr = pv_add_constant (addr, -4); | |
f7b7ed97 | 837 | stack.store (addr, 4, regs[regno]); |
ec3d575a UW |
838 | } |
839 | ||
840 | if (insn & 0x0020) | |
841 | regs[bits (insn, 0, 3)] = addr; | |
842 | } | |
843 | ||
0963b4bd MS |
844 | else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
845 | [Rn, #+/-imm]{!} */ | |
ec3d575a UW |
846 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
847 | { | |
848 | int regno1 = bits (inst2, 12, 15); | |
849 | int regno2 = bits (inst2, 8, 11); | |
850 | pv_t addr = regs[bits (insn, 0, 3)]; | |
851 | ||
852 | offset = inst2 & 0xff; | |
853 | if (insn & 0x0080) | |
854 | addr = pv_add_constant (addr, offset); | |
855 | else | |
856 | addr = pv_add_constant (addr, -offset); | |
857 | ||
f7b7ed97 | 858 | if (stack.store_would_trash (addr)) |
ec3d575a UW |
859 | break; |
860 | ||
f7b7ed97 TT |
861 | stack.store (addr, 4, regs[regno1]); |
862 | stack.store (pv_add_constant (addr, 4), | |
863 | 4, regs[regno2]); | |
ec3d575a UW |
864 | |
865 | if (insn & 0x0020) | |
866 | regs[bits (insn, 0, 3)] = addr; | |
867 | } | |
868 | ||
869 | else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ | |
870 | && (inst2 & 0x0c00) == 0x0c00 | |
871 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
872 | { | |
873 | int regno = bits (inst2, 12, 15); | |
874 | pv_t addr = regs[bits (insn, 0, 3)]; | |
875 | ||
876 | offset = inst2 & 0xff; | |
877 | if (inst2 & 0x0200) | |
878 | addr = pv_add_constant (addr, offset); | |
879 | else | |
880 | addr = pv_add_constant (addr, -offset); | |
881 | ||
f7b7ed97 | 882 | if (stack.store_would_trash (addr)) |
ec3d575a UW |
883 | break; |
884 | ||
f7b7ed97 | 885 | stack.store (addr, 4, regs[regno]); |
ec3d575a UW |
886 | |
887 | if (inst2 & 0x0100) | |
888 | regs[bits (insn, 0, 3)] = addr; | |
889 | } | |
890 | ||
891 | else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ | |
892 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
893 | { | |
894 | int regno = bits (inst2, 12, 15); | |
895 | pv_t addr; | |
896 | ||
897 | offset = inst2 & 0xfff; | |
898 | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | |
899 | ||
f7b7ed97 | 900 | if (stack.store_would_trash (addr)) |
ec3d575a UW |
901 | break; |
902 | ||
f7b7ed97 | 903 | stack.store (addr, 4, regs[regno]); |
ec3d575a UW |
904 | } |
905 | ||
906 | else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ | |
0d39a070 | 907 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 908 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 909 | ; |
ec3d575a UW |
910 | |
911 | else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ | |
912 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 913 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 914 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 915 | ; |
ec3d575a | 916 | |
0963b4bd MS |
917 | else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
918 | { registers } */ | |
ec3d575a UW |
919 | && (inst2 & 0x8000) == 0x0000 |
920 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
921 | /* Ignore block loads from the stack, potentially copying | |
922 | parameters from memory. */ | |
0d39a070 | 923 | ; |
ec3d575a | 924 | |
0963b4bd MS |
925 | else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, |
926 | [Rn, #+/-imm] */ | |
0d39a070 | 927 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 928 | /* Similarly ignore dual loads from the stack. */ |
0d39a070 | 929 | ; |
ec3d575a UW |
930 | |
931 | else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ | |
932 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 933 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 934 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 935 | ; |
ec3d575a UW |
936 | |
937 | else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ | |
0d39a070 | 938 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 939 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 940 | ; |
ec3d575a UW |
941 | |
942 | else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ | |
943 | && (inst2 & 0x8000) == 0x0000) | |
944 | { | |
945 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
946 | | (bits (inst2, 12, 14) << 8) | |
947 | | bits (inst2, 0, 7)); | |
948 | ||
949 | regs[bits (inst2, 8, 11)] | |
950 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
951 | thumb_expand_immediate (imm)); | |
952 | } | |
953 | ||
954 | else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ | |
955 | && (inst2 & 0x8000) == 0x0000) | |
0d39a070 | 956 | { |
ec3d575a UW |
957 | unsigned int imm = ((bits (insn, 10, 10) << 11) |
958 | | (bits (inst2, 12, 14) << 8) | |
959 | | bits (inst2, 0, 7)); | |
960 | ||
961 | regs[bits (inst2, 8, 11)] | |
962 | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | |
963 | } | |
964 | ||
965 | else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ | |
966 | && (inst2 & 0x8000) == 0x0000) | |
967 | { | |
968 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
969 | | (bits (inst2, 12, 14) << 8) | |
970 | | bits (inst2, 0, 7)); | |
971 | ||
972 | regs[bits (inst2, 8, 11)] | |
973 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
974 | - (CORE_ADDR) thumb_expand_immediate (imm)); | |
975 | } | |
976 | ||
977 | else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ | |
978 | && (inst2 & 0x8000) == 0x0000) | |
979 | { | |
980 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
981 | | (bits (inst2, 12, 14) << 8) | |
982 | | bits (inst2, 0, 7)); | |
983 | ||
984 | regs[bits (inst2, 8, 11)] | |
985 | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | |
986 | } | |
987 | ||
988 | else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ | |
989 | { | |
990 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
991 | | (bits (inst2, 12, 14) << 8) | |
992 | | bits (inst2, 0, 7)); | |
993 | ||
994 | regs[bits (inst2, 8, 11)] | |
995 | = pv_constant (thumb_expand_immediate (imm)); | |
996 | } | |
997 | ||
998 | else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
999 | { | |
621c6d5b YQ |
1000 | unsigned int imm |
1001 | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | |
ec3d575a UW |
1002 | |
1003 | regs[bits (inst2, 8, 11)] = pv_constant (imm); | |
1004 | } | |
1005 | ||
1006 | else if (insn == 0xea5f /* mov.w Rd,Rm */ | |
1007 | && (inst2 & 0xf0f0) == 0) | |
1008 | { | |
1009 | int dst_reg = (inst2 & 0x0f00) >> 8; | |
1010 | int src_reg = inst2 & 0xf; | |
1011 | regs[dst_reg] = regs[src_reg]; | |
1012 | } | |
1013 | ||
1014 | else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ | |
1015 | { | |
1016 | /* Constant pool loads. */ | |
1017 | unsigned int constant; | |
1018 | CORE_ADDR loc; | |
1019 | ||
cac395ea | 1020 | offset = bits (inst2, 0, 11); |
ec3d575a UW |
1021 | if (insn & 0x0080) |
1022 | loc = start + 4 + offset; | |
1023 | else | |
1024 | loc = start + 4 - offset; | |
1025 | ||
1026 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1027 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1028 | } | |
1029 | ||
1030 | else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ | |
1031 | { | |
1032 | /* Constant pool loads. */ | |
1033 | unsigned int constant; | |
1034 | CORE_ADDR loc; | |
1035 | ||
cac395ea | 1036 | offset = bits (inst2, 0, 7) << 2; |
ec3d575a UW |
1037 | if (insn & 0x0080) |
1038 | loc = start + 4 + offset; | |
1039 | else | |
1040 | loc = start + 4 - offset; | |
1041 | ||
1042 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1043 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1044 | ||
1045 | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | |
1046 | regs[bits (inst2, 8, 11)] = pv_constant (constant); | |
1047 | } | |
1048 | ||
1049 | else if (thumb2_instruction_changes_pc (insn, inst2)) | |
1050 | { | |
1051 | /* Don't scan past anything that might change control flow. */ | |
0d39a070 DJ |
1052 | break; |
1053 | } | |
ec3d575a UW |
1054 | else |
1055 | { | |
1056 | /* The optimizer might shove anything into the prologue, | |
1057 | so we just skip what we don't recognize. */ | |
1058 | unrecognized_pc = start; | |
1059 | } | |
0d39a070 DJ |
1060 | |
1061 | start += 2; | |
1062 | } | |
ec3d575a | 1063 | else if (thumb_instruction_changes_pc (insn)) |
3d74b771 | 1064 | { |
ec3d575a | 1065 | /* Don't scan past anything that might change control flow. */ |
da3c6d4a | 1066 | break; |
3d74b771 | 1067 | } |
ec3d575a UW |
1068 | else |
1069 | { | |
1070 | /* The optimizer might shove anything into the prologue, | |
1071 | so we just skip what we don't recognize. */ | |
1072 | unrecognized_pc = start; | |
1073 | } | |
29d73ae4 DJ |
1074 | |
1075 | start += 2; | |
c906108c SS |
1076 | } |
1077 | ||
0d39a070 DJ |
1078 | if (arm_debug) |
1079 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1080 | paddress (gdbarch, start)); | |
1081 | ||
ec3d575a UW |
1082 | if (unrecognized_pc == 0) |
1083 | unrecognized_pc = start; | |
1084 | ||
29d73ae4 | 1085 | if (cache == NULL) |
f7b7ed97 | 1086 | return unrecognized_pc; |
29d73ae4 | 1087 | |
29d73ae4 DJ |
1088 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
1089 | { | |
1090 | /* Frame pointer is fp. Frame size is constant. */ | |
1091 | cache->framereg = ARM_FP_REGNUM; | |
1092 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1093 | } | |
1094 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
1095 | { | |
1096 | /* Frame pointer is r7. Frame size is constant. */ | |
1097 | cache->framereg = THUMB_FP_REGNUM; | |
1098 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
1099 | } | |
72a2e3dc | 1100 | else |
29d73ae4 DJ |
1101 | { |
1102 | /* Try the stack pointer... this is a bit desperate. */ | |
1103 | cache->framereg = ARM_SP_REGNUM; | |
1104 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1105 | } | |
29d73ae4 DJ |
1106 | |
1107 | for (i = 0; i < 16; i++) | |
f7b7ed97 | 1108 | if (stack.find_reg (gdbarch, i, &offset)) |
29d73ae4 DJ |
1109 | cache->saved_regs[i].addr = offset; |
1110 | ||
ec3d575a | 1111 | return unrecognized_pc; |
c906108c SS |
1112 | } |
1113 | ||
621c6d5b YQ |
1114 | |
1115 | /* Try to analyze the instructions starting from PC, which load symbol | |
1116 | __stack_chk_guard. Return the address of instruction after loading this | |
1117 | symbol, set the dest register number to *BASEREG, and set the size of | |
1118 | instructions for loading symbol in OFFSET. Return 0 if instructions are | |
1119 | not recognized. */ | |
1120 | ||
1121 | static CORE_ADDR | |
1122 | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | |
1123 | unsigned int *destreg, int *offset) | |
1124 | { | |
1125 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1126 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1127 | unsigned int low, high, address; | |
1128 | ||
1129 | address = 0; | |
1130 | if (is_thumb) | |
1131 | { | |
1132 | unsigned short insn1 | |
198cd59d | 1133 | = read_code_unsigned_integer (pc, 2, byte_order_for_code); |
621c6d5b YQ |
1134 | |
1135 | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | |
1136 | { | |
1137 | *destreg = bits (insn1, 8, 10); | |
1138 | *offset = 2; | |
6ae274b7 YQ |
1139 | address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2); |
1140 | address = read_memory_unsigned_integer (address, 4, | |
1141 | byte_order_for_code); | |
621c6d5b YQ |
1142 | } |
1143 | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1144 | { | |
1145 | unsigned short insn2 | |
198cd59d | 1146 | = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code); |
621c6d5b YQ |
1147 | |
1148 | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1149 | ||
1150 | insn1 | |
198cd59d | 1151 | = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code); |
621c6d5b | 1152 | insn2 |
198cd59d | 1153 | = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code); |
621c6d5b YQ |
1154 | |
1155 | /* movt Rd, #const */ | |
1156 | if ((insn1 & 0xfbc0) == 0xf2c0) | |
1157 | { | |
1158 | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1159 | *destreg = bits (insn2, 8, 11); | |
1160 | *offset = 8; | |
1161 | address = (high << 16 | low); | |
1162 | } | |
1163 | } | |
1164 | } | |
1165 | else | |
1166 | { | |
2e9e421f | 1167 | unsigned int insn |
198cd59d | 1168 | = read_code_unsigned_integer (pc, 4, byte_order_for_code); |
2e9e421f | 1169 | |
6ae274b7 | 1170 | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */ |
2e9e421f | 1171 | { |
6ae274b7 YQ |
1172 | address = bits (insn, 0, 11) + pc + 8; |
1173 | address = read_memory_unsigned_integer (address, 4, | |
1174 | byte_order_for_code); | |
1175 | ||
2e9e421f UW |
1176 | *destreg = bits (insn, 12, 15); |
1177 | *offset = 4; | |
1178 | } | |
1179 | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | |
1180 | { | |
1181 | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1182 | ||
1183 | insn | |
198cd59d | 1184 | = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code); |
2e9e421f UW |
1185 | |
1186 | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | |
1187 | { | |
1188 | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1189 | *destreg = bits (insn, 12, 15); | |
1190 | *offset = 8; | |
1191 | address = (high << 16 | low); | |
1192 | } | |
1193 | } | |
621c6d5b YQ |
1194 | } |
1195 | ||
1196 | return address; | |
1197 | } | |
1198 | ||
1199 | /* Try to skip a sequence of instructions used for stack protector. If PC | |
0963b4bd MS |
1200 | points to the first instruction of this sequence, return the address of |
1201 | first instruction after this sequence, otherwise, return original PC. | |
621c6d5b YQ |
1202 | |
1203 | On arm, this sequence of instructions is composed of mainly three steps, | |
1204 | Step 1: load symbol __stack_chk_guard, | |
1205 | Step 2: load from address of __stack_chk_guard, | |
1206 | Step 3: store it to somewhere else. | |
1207 | ||
1208 | Usually, instructions on step 2 and step 3 are the same on various ARM | |
1209 | architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | |
1210 | on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, | |
1211 | instructions in step 1 vary from different ARM architectures. On ARMv7, | |
1212 | they are, | |
1213 | ||
1214 | movw Rn, #:lower16:__stack_chk_guard | |
1215 | movt Rn, #:upper16:__stack_chk_guard | |
1216 | ||
1217 | On ARMv5t, it is, | |
1218 | ||
1219 | ldr Rn, .Label | |
1220 | .... | |
1221 | .Lable: | |
1222 | .word __stack_chk_guard | |
1223 | ||
1224 | Since ldr/str is a very popular instruction, we can't use them as | |
1225 | 'fingerprint' or 'signature' of stack protector sequence. Here we choose | |
1226 | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | |
1227 | stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ | |
1228 | ||
1229 | static CORE_ADDR | |
1230 | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | |
1231 | { | |
1232 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
22e048c9 | 1233 | unsigned int basereg; |
7cbd4a93 | 1234 | struct bound_minimal_symbol stack_chk_guard; |
621c6d5b YQ |
1235 | int offset; |
1236 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1237 | CORE_ADDR addr; | |
1238 | ||
1239 | /* Try to parse the instructions in Step 1. */ | |
1240 | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | |
1241 | &basereg, &offset); | |
1242 | if (!addr) | |
1243 | return pc; | |
1244 | ||
1245 | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | |
6041179a JB |
1246 | /* ADDR must correspond to a symbol whose name is __stack_chk_guard. |
1247 | Otherwise, this sequence cannot be for stack protector. */ | |
1248 | if (stack_chk_guard.minsym == NULL | |
61012eef | 1249 | || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard")) |
621c6d5b YQ |
1250 | return pc; |
1251 | ||
1252 | if (is_thumb) | |
1253 | { | |
1254 | unsigned int destreg; | |
1255 | unsigned short insn | |
198cd59d | 1256 | = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code); |
621c6d5b YQ |
1257 | |
1258 | /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ | |
1259 | if ((insn & 0xf800) != 0x6800) | |
1260 | return pc; | |
1261 | if (bits (insn, 3, 5) != basereg) | |
1262 | return pc; | |
1263 | destreg = bits (insn, 0, 2); | |
1264 | ||
198cd59d YQ |
1265 | insn = read_code_unsigned_integer (pc + offset + 2, 2, |
1266 | byte_order_for_code); | |
621c6d5b YQ |
1267 | /* Step 3: str Rd, [Rn, #immed], encoding T1. */ |
1268 | if ((insn & 0xf800) != 0x6000) | |
1269 | return pc; | |
1270 | if (destreg != bits (insn, 0, 2)) | |
1271 | return pc; | |
1272 | } | |
1273 | else | |
1274 | { | |
1275 | unsigned int destreg; | |
1276 | unsigned int insn | |
198cd59d | 1277 | = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code); |
621c6d5b YQ |
1278 | |
1279 | /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ | |
1280 | if ((insn & 0x0e500000) != 0x04100000) | |
1281 | return pc; | |
1282 | if (bits (insn, 16, 19) != basereg) | |
1283 | return pc; | |
1284 | destreg = bits (insn, 12, 15); | |
1285 | /* Step 3: str Rd, [Rn, #immed], encoding A1. */ | |
198cd59d | 1286 | insn = read_code_unsigned_integer (pc + offset + 4, |
621c6d5b YQ |
1287 | 4, byte_order_for_code); |
1288 | if ((insn & 0x0e500000) != 0x04000000) | |
1289 | return pc; | |
1290 | if (bits (insn, 12, 15) != destreg) | |
1291 | return pc; | |
1292 | } | |
1293 | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | |
1294 | on arm. */ | |
1295 | if (is_thumb) | |
1296 | return pc + offset + 4; | |
1297 | else | |
1298 | return pc + offset + 8; | |
1299 | } | |
1300 | ||
da3c6d4a MS |
1301 | /* Advance the PC across any function entry prologue instructions to |
1302 | reach some "real" code. | |
34e8f22d RE |
1303 | |
1304 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 1305 | prologue: |
c906108c | 1306 | |
c5aa993b JM |
1307 | mov ip, sp |
1308 | [stmfd sp!, {a1,a2,a3,a4}] | |
1309 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
1310 | [stfe f7, [sp, #-12]!] |
1311 | [stfe f6, [sp, #-12]!] | |
1312 | [stfe f5, [sp, #-12]!] | |
1313 | [stfe f4, [sp, #-12]!] | |
0963b4bd | 1314 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
c906108c | 1315 | |
34e8f22d | 1316 | static CORE_ADDR |
6093d2eb | 1317 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1318 | { |
a89fea3c | 1319 | CORE_ADDR func_addr, limit_pc; |
c906108c | 1320 | |
a89fea3c JL |
1321 | /* See if we can determine the end of the prologue via the symbol table. |
1322 | If so, then return either PC, or the PC after the prologue, whichever | |
1323 | is greater. */ | |
1324 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 1325 | { |
d80b854b UW |
1326 | CORE_ADDR post_prologue_pc |
1327 | = skip_prologue_using_sal (gdbarch, func_addr); | |
43f3e411 | 1328 | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
0d39a070 | 1329 | |
621c6d5b YQ |
1330 | if (post_prologue_pc) |
1331 | post_prologue_pc | |
1332 | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | |
1333 | ||
1334 | ||
0d39a070 DJ |
1335 | /* GCC always emits a line note before the prologue and another |
1336 | one after, even if the two are at the same address or on the | |
1337 | same line. Take advantage of this so that we do not need to | |
1338 | know every instruction that might appear in the prologue. We | |
1339 | will have producer information for most binaries; if it is | |
1340 | missing (e.g. for -gstabs), assuming the GNU tools. */ | |
1341 | if (post_prologue_pc | |
43f3e411 DE |
1342 | && (cust == NULL |
1343 | || COMPUNIT_PRODUCER (cust) == NULL | |
61012eef GB |
1344 | || startswith (COMPUNIT_PRODUCER (cust), "GNU ") |
1345 | || startswith (COMPUNIT_PRODUCER (cust), "clang "))) | |
0d39a070 DJ |
1346 | return post_prologue_pc; |
1347 | ||
a89fea3c | 1348 | if (post_prologue_pc != 0) |
0d39a070 DJ |
1349 | { |
1350 | CORE_ADDR analyzed_limit; | |
1351 | ||
1352 | /* For non-GCC compilers, make sure the entire line is an | |
1353 | acceptable prologue; GDB will round this function's | |
1354 | return value up to the end of the following line so we | |
1355 | can not skip just part of a line (and we do not want to). | |
1356 | ||
1357 | RealView does not treat the prologue specially, but does | |
1358 | associate prologue code with the opening brace; so this | |
1359 | lets us skip the first line if we think it is the opening | |
1360 | brace. */ | |
9779414d | 1361 | if (arm_pc_is_thumb (gdbarch, func_addr)) |
0d39a070 DJ |
1362 | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
1363 | post_prologue_pc, NULL); | |
1364 | else | |
1365 | analyzed_limit = arm_analyze_prologue (gdbarch, func_addr, | |
1366 | post_prologue_pc, NULL); | |
1367 | ||
1368 | if (analyzed_limit != post_prologue_pc) | |
1369 | return func_addr; | |
1370 | ||
1371 | return post_prologue_pc; | |
1372 | } | |
c906108c SS |
1373 | } |
1374 | ||
a89fea3c JL |
1375 | /* Can't determine prologue from the symbol table, need to examine |
1376 | instructions. */ | |
c906108c | 1377 | |
a89fea3c JL |
1378 | /* Find an upper limit on the function prologue using the debug |
1379 | information. If the debug information could not be used to provide | |
1380 | that bound, then use an arbitrary large number as the upper bound. */ | |
0963b4bd | 1381 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 1382 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
1383 | if (limit_pc == 0) |
1384 | limit_pc = pc + 64; /* Magic. */ | |
1385 | ||
c906108c | 1386 | |
29d73ae4 | 1387 | /* Check if this is Thumb code. */ |
9779414d | 1388 | if (arm_pc_is_thumb (gdbarch, pc)) |
a89fea3c | 1389 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
21daaaaf YQ |
1390 | else |
1391 | return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL); | |
c906108c | 1392 | } |
94c30b78 | 1393 | |
c5aa993b | 1394 | /* *INDENT-OFF* */ |
c906108c SS |
1395 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
1396 | This function decodes a Thumb function prologue to determine: | |
1397 | 1) the size of the stack frame | |
1398 | 2) which registers are saved on it | |
1399 | 3) the offsets of saved regs | |
1400 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 1401 | |
da59e081 JM |
1402 | A typical Thumb function prologue would create this stack frame |
1403 | (offsets relative to FP) | |
c906108c SS |
1404 | old SP -> 24 stack parameters |
1405 | 20 LR | |
1406 | 16 R7 | |
1407 | R7 -> 0 local variables (16 bytes) | |
1408 | SP -> -12 additional stack space (12 bytes) | |
1409 | The frame size would thus be 36 bytes, and the frame offset would be | |
0963b4bd | 1410 | 12 bytes. The frame register is R7. |
da59e081 | 1411 | |
da3c6d4a MS |
1412 | The comments for thumb_skip_prolog() describe the algorithm we use |
1413 | to detect the end of the prolog. */ | |
c5aa993b JM |
1414 | /* *INDENT-ON* */ |
1415 | ||
c906108c | 1416 | static void |
be8626e0 | 1417 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 1418 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
1419 | { |
1420 | CORE_ADDR prologue_start; | |
1421 | CORE_ADDR prologue_end; | |
c906108c | 1422 | |
b39cc962 DJ |
1423 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
1424 | &prologue_end)) | |
c906108c | 1425 | { |
ec3d575a UW |
1426 | /* See comment in arm_scan_prologue for an explanation of |
1427 | this heuristics. */ | |
1428 | if (prologue_end > prologue_start + 64) | |
1429 | { | |
1430 | prologue_end = prologue_start + 64; | |
1431 | } | |
c906108c SS |
1432 | } |
1433 | else | |
f7060f85 DJ |
1434 | /* We're in the boondocks: we have no idea where the start of the |
1435 | function is. */ | |
1436 | return; | |
c906108c | 1437 | |
325fac50 | 1438 | prologue_end = std::min (prologue_end, prev_pc); |
c906108c | 1439 | |
be8626e0 | 1440 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
1441 | } |
1442 | ||
f303bc3e YQ |
1443 | /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0 |
1444 | otherwise. */ | |
1445 | ||
1446 | static int | |
1447 | arm_instruction_restores_sp (unsigned int insn) | |
1448 | { | |
1449 | if (bits (insn, 28, 31) != INST_NV) | |
1450 | { | |
1451 | if ((insn & 0x0df0f000) == 0x0080d000 | |
1452 | /* ADD SP (register or immediate). */ | |
1453 | || (insn & 0x0df0f000) == 0x0040d000 | |
1454 | /* SUB SP (register or immediate). */ | |
1455 | || (insn & 0x0ffffff0) == 0x01a0d000 | |
1456 | /* MOV SP. */ | |
1457 | || (insn & 0x0fff0000) == 0x08bd0000 | |
1458 | /* POP (LDMIA). */ | |
1459 | || (insn & 0x0fff0000) == 0x049d0000) | |
1460 | /* POP of a single register. */ | |
1461 | return 1; | |
1462 | } | |
1463 | ||
1464 | return 0; | |
1465 | } | |
1466 | ||
0d39a070 DJ |
1467 | /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
1468 | continuing no further than PROLOGUE_END. If CACHE is non-NULL, | |
1469 | fill it in. Return the first address not recognized as a prologue | |
1470 | instruction. | |
eb5492fa | 1471 | |
0d39a070 DJ |
1472 | We recognize all the instructions typically found in ARM prologues, |
1473 | plus harmless instructions which can be skipped (either for analysis | |
1474 | purposes, or a more restrictive set that can be skipped when finding | |
1475 | the end of the prologue). */ | |
1476 | ||
1477 | static CORE_ADDR | |
1478 | arm_analyze_prologue (struct gdbarch *gdbarch, | |
1479 | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | |
1480 | struct arm_prologue_cache *cache) | |
1481 | { | |
0d39a070 DJ |
1482 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
1483 | int regno; | |
1484 | CORE_ADDR offset, current_pc; | |
1485 | pv_t regs[ARM_FPS_REGNUM]; | |
0d39a070 DJ |
1486 | CORE_ADDR unrecognized_pc = 0; |
1487 | ||
1488 | /* Search the prologue looking for instructions that set up the | |
96baa820 | 1489 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 1490 | |
96baa820 JM |
1491 | Be careful, however, and if it doesn't look like a prologue, |
1492 | don't try to scan it. If, for instance, a frameless function | |
1493 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 1494 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 | 1495 | and other operations that rely on a knowledge of the stack |
0d39a070 | 1496 | traceback. */ |
d4473757 | 1497 | |
4be43953 DJ |
1498 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
1499 | regs[regno] = pv_register (regno, 0); | |
f7b7ed97 | 1500 | pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 | 1501 | |
94c30b78 MS |
1502 | for (current_pc = prologue_start; |
1503 | current_pc < prologue_end; | |
f43845b3 | 1504 | current_pc += 4) |
96baa820 | 1505 | { |
e17a4113 | 1506 | unsigned int insn |
198cd59d | 1507 | = read_code_unsigned_integer (current_pc, 4, byte_order_for_code); |
9d4fde75 | 1508 | |
94c30b78 | 1509 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 1510 | { |
4be43953 | 1511 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
1512 | continue; |
1513 | } | |
0d39a070 DJ |
1514 | else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
1515 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1516 | { |
1517 | unsigned imm = insn & 0xff; /* immediate value */ | |
1518 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1519 | int rd = bits (insn, 12, 15); |
28cd8767 | 1520 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1521 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
28cd8767 JG |
1522 | continue; |
1523 | } | |
0d39a070 DJ |
1524 | else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
1525 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1526 | { |
1527 | unsigned imm = insn & 0xff; /* immediate value */ | |
1528 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1529 | int rd = bits (insn, 12, 15); |
28cd8767 | 1530 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1531 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
f43845b3 MS |
1532 | continue; |
1533 | } | |
0963b4bd MS |
1534 | else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
1535 | [sp, #-4]! */ | |
f43845b3 | 1536 | { |
f7b7ed97 | 1537 | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
4be43953 DJ |
1538 | break; |
1539 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
f7b7ed97 TT |
1540 | stack.store (regs[ARM_SP_REGNUM], 4, |
1541 | regs[bits (insn, 12, 15)]); | |
f43845b3 MS |
1542 | continue; |
1543 | } | |
1544 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
1545 | /* stmfd sp!, {..., fp, ip, lr, pc} |
1546 | or | |
1547 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 1548 | { |
d4473757 | 1549 | int mask = insn & 0xffff; |
ed9a39eb | 1550 | |
f7b7ed97 | 1551 | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
4be43953 DJ |
1552 | break; |
1553 | ||
94c30b78 | 1554 | /* Calculate offsets of saved registers. */ |
34e8f22d | 1555 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
1556 | if (mask & (1 << regno)) |
1557 | { | |
0963b4bd MS |
1558 | regs[ARM_SP_REGNUM] |
1559 | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
f7b7ed97 | 1560 | stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); |
d4473757 KB |
1561 | } |
1562 | } | |
0d39a070 DJ |
1563 | else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
1564 | || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
f8bf5763 | 1565 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
b8d5e71d MS |
1566 | { |
1567 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1568 | continue; | |
1569 | } | |
0d39a070 DJ |
1570 | else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
1571 | || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
f8bf5763 | 1572 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
f43845b3 MS |
1573 | { |
1574 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1575 | continue; | |
1576 | } | |
0963b4bd MS |
1577 | else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
1578 | { registers } */ | |
0d39a070 DJ |
1579 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
1580 | { | |
1581 | /* No need to add this to saved_regs -- it's just arg regs. */ | |
1582 | continue; | |
1583 | } | |
d4473757 KB |
1584 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
1585 | { | |
94c30b78 MS |
1586 | unsigned imm = insn & 0xff; /* immediate value */ |
1587 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1588 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1589 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
1590 | } |
1591 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
1592 | { | |
94c30b78 MS |
1593 | unsigned imm = insn & 0xff; /* immediate value */ |
1594 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1595 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1596 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 1597 | } |
0963b4bd MS |
1598 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
1599 | [sp, -#c]! */ | |
2af46ca0 | 1600 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 1601 | { |
f7b7ed97 | 1602 | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
4be43953 DJ |
1603 | break; |
1604 | ||
1605 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 1606 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
f7b7ed97 | 1607 | stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 1608 | } |
0963b4bd MS |
1609 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
1610 | [sp!] */ | |
2af46ca0 | 1611 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
1612 | { |
1613 | int n_saved_fp_regs; | |
1614 | unsigned int fp_start_reg, fp_bound_reg; | |
1615 | ||
f7b7ed97 | 1616 | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
4be43953 DJ |
1617 | break; |
1618 | ||
94c30b78 | 1619 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 1620 | { |
d4473757 KB |
1621 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1622 | n_saved_fp_regs = 3; | |
1623 | else | |
1624 | n_saved_fp_regs = 1; | |
96baa820 | 1625 | } |
d4473757 | 1626 | else |
96baa820 | 1627 | { |
d4473757 KB |
1628 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1629 | n_saved_fp_regs = 2; | |
1630 | else | |
1631 | n_saved_fp_regs = 4; | |
96baa820 | 1632 | } |
d4473757 | 1633 | |
34e8f22d | 1634 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
1635 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
1636 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 1637 | { |
4be43953 | 1638 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
f7b7ed97 TT |
1639 | stack.store (regs[ARM_SP_REGNUM], 12, |
1640 | regs[fp_start_reg++]); | |
96baa820 | 1641 | } |
c906108c | 1642 | } |
0d39a070 DJ |
1643 | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
1644 | { | |
1645 | /* Allow some special function calls when skipping the | |
1646 | prologue; GCC generates these before storing arguments to | |
1647 | the stack. */ | |
1648 | CORE_ADDR dest = BranchDest (current_pc, insn); | |
1649 | ||
e0634ccf | 1650 | if (skip_prologue_function (gdbarch, dest, 0)) |
0d39a070 DJ |
1651 | continue; |
1652 | else | |
1653 | break; | |
1654 | } | |
d4473757 | 1655 | else if ((insn & 0xf0000000) != 0xe0000000) |
0963b4bd | 1656 | break; /* Condition not true, exit early. */ |
0d39a070 DJ |
1657 | else if (arm_instruction_changes_pc (insn)) |
1658 | /* Don't scan past anything that might change control flow. */ | |
1659 | break; | |
f303bc3e YQ |
1660 | else if (arm_instruction_restores_sp (insn)) |
1661 | { | |
1662 | /* Don't scan past the epilogue. */ | |
1663 | break; | |
1664 | } | |
d19f7eee UW |
1665 | else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */ |
1666 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1667 | /* Ignore block loads from the stack, potentially copying | |
1668 | parameters from memory. */ | |
1669 | continue; | |
1670 | else if ((insn & 0xfc500000) == 0xe4100000 | |
1671 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1672 | /* Similarly ignore single loads from the stack. */ | |
1673 | continue; | |
0d39a070 DJ |
1674 | else if ((insn & 0xffff0ff0) == 0xe1a00000) |
1675 | /* MOV Rd, Rm. Skip register copies, i.e. saves to another | |
1676 | register instead of the stack. */ | |
d4473757 | 1677 | continue; |
0d39a070 DJ |
1678 | else |
1679 | { | |
21daaaaf YQ |
1680 | /* The optimizer might shove anything into the prologue, if |
1681 | we build up cache (cache != NULL) from scanning prologue, | |
1682 | we just skip what we don't recognize and scan further to | |
1683 | make cache as complete as possible. However, if we skip | |
1684 | prologue, we'll stop immediately on unrecognized | |
1685 | instruction. */ | |
0d39a070 | 1686 | unrecognized_pc = current_pc; |
21daaaaf YQ |
1687 | if (cache != NULL) |
1688 | continue; | |
1689 | else | |
1690 | break; | |
0d39a070 | 1691 | } |
c906108c SS |
1692 | } |
1693 | ||
0d39a070 DJ |
1694 | if (unrecognized_pc == 0) |
1695 | unrecognized_pc = current_pc; | |
1696 | ||
0d39a070 DJ |
1697 | if (cache) |
1698 | { | |
4072f920 YQ |
1699 | int framereg, framesize; |
1700 | ||
1701 | /* The frame size is just the distance from the frame register | |
1702 | to the original stack pointer. */ | |
1703 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1704 | { | |
1705 | /* Frame pointer is fp. */ | |
1706 | framereg = ARM_FP_REGNUM; | |
1707 | framesize = -regs[ARM_FP_REGNUM].k; | |
1708 | } | |
1709 | else | |
1710 | { | |
1711 | /* Try the stack pointer... this is a bit desperate. */ | |
1712 | framereg = ARM_SP_REGNUM; | |
1713 | framesize = -regs[ARM_SP_REGNUM].k; | |
1714 | } | |
1715 | ||
0d39a070 DJ |
1716 | cache->framereg = framereg; |
1717 | cache->framesize = framesize; | |
1718 | ||
1719 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
f7b7ed97 | 1720 | if (stack.find_reg (gdbarch, regno, &offset)) |
0d39a070 DJ |
1721 | cache->saved_regs[regno].addr = offset; |
1722 | } | |
1723 | ||
1724 | if (arm_debug) | |
1725 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1726 | paddress (gdbarch, unrecognized_pc)); | |
4be43953 | 1727 | |
0d39a070 DJ |
1728 | return unrecognized_pc; |
1729 | } | |
1730 | ||
1731 | static void | |
1732 | arm_scan_prologue (struct frame_info *this_frame, | |
1733 | struct arm_prologue_cache *cache) | |
1734 | { | |
1735 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1736 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
bec2ab5a | 1737 | CORE_ADDR prologue_start, prologue_end; |
0d39a070 DJ |
1738 | CORE_ADDR prev_pc = get_frame_pc (this_frame); |
1739 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
0d39a070 DJ |
1740 | |
1741 | /* Assume there is no frame until proven otherwise. */ | |
1742 | cache->framereg = ARM_SP_REGNUM; | |
1743 | cache->framesize = 0; | |
1744 | ||
1745 | /* Check for Thumb prologue. */ | |
1746 | if (arm_frame_is_thumb (this_frame)) | |
1747 | { | |
1748 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | |
1749 | return; | |
1750 | } | |
1751 | ||
1752 | /* Find the function prologue. If we can't find the function in | |
1753 | the symbol table, peek in the stack frame to find the PC. */ | |
1754 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
1755 | &prologue_end)) | |
1756 | { | |
1757 | /* One way to find the end of the prologue (which works well | |
1758 | for unoptimized code) is to do the following: | |
1759 | ||
1760 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
1761 | ||
1762 | if (sal.line == 0) | |
1763 | prologue_end = prev_pc; | |
1764 | else if (sal.end < prologue_end) | |
1765 | prologue_end = sal.end; | |
1766 | ||
1767 | This mechanism is very accurate so long as the optimizer | |
1768 | doesn't move any instructions from the function body into the | |
1769 | prologue. If this happens, sal.end will be the last | |
1770 | instruction in the first hunk of prologue code just before | |
1771 | the first instruction that the scheduler has moved from | |
1772 | the body to the prologue. | |
1773 | ||
1774 | In order to make sure that we scan all of the prologue | |
1775 | instructions, we use a slightly less accurate mechanism which | |
1776 | may scan more than necessary. To help compensate for this | |
1777 | lack of accuracy, the prologue scanning loop below contains | |
1778 | several clauses which'll cause the loop to terminate early if | |
1779 | an implausible prologue instruction is encountered. | |
1780 | ||
1781 | The expression | |
1782 | ||
1783 | prologue_start + 64 | |
1784 | ||
1785 | is a suitable endpoint since it accounts for the largest | |
1786 | possible prologue plus up to five instructions inserted by | |
1787 | the scheduler. */ | |
1788 | ||
1789 | if (prologue_end > prologue_start + 64) | |
1790 | { | |
1791 | prologue_end = prologue_start + 64; /* See above. */ | |
1792 | } | |
1793 | } | |
1794 | else | |
1795 | { | |
1796 | /* We have no symbol information. Our only option is to assume this | |
1797 | function has a standard stack frame and the normal frame register. | |
1798 | Then, we can find the value of our frame pointer on entrance to | |
1799 | the callee (or at the present moment if this is the innermost frame). | |
1800 | The value stored there should be the address of the stmfd + 8. */ | |
1801 | CORE_ADDR frame_loc; | |
7913a64c | 1802 | ULONGEST return_value; |
0d39a070 DJ |
1803 | |
1804 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | |
7913a64c YQ |
1805 | if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order, |
1806 | &return_value)) | |
0d39a070 DJ |
1807 | return; |
1808 | else | |
1809 | { | |
1810 | prologue_start = gdbarch_addr_bits_remove | |
1811 | (gdbarch, return_value) - 8; | |
1812 | prologue_end = prologue_start + 64; /* See above. */ | |
1813 | } | |
1814 | } | |
1815 | ||
1816 | if (prev_pc < prologue_end) | |
1817 | prologue_end = prev_pc; | |
1818 | ||
1819 | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | |
c906108c SS |
1820 | } |
1821 | ||
eb5492fa | 1822 | static struct arm_prologue_cache * |
a262aec2 | 1823 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 1824 | { |
eb5492fa DJ |
1825 | int reg; |
1826 | struct arm_prologue_cache *cache; | |
1827 | CORE_ADDR unwound_fp; | |
c5aa993b | 1828 | |
35d5d4ee | 1829 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 1830 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 1831 | |
a262aec2 | 1832 | arm_scan_prologue (this_frame, cache); |
848cfffb | 1833 | |
a262aec2 | 1834 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
1835 | if (unwound_fp == 0) |
1836 | return cache; | |
c906108c | 1837 | |
4be43953 | 1838 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 1839 | |
eb5492fa DJ |
1840 | /* Calculate actual addresses of saved registers using offsets |
1841 | determined by arm_scan_prologue. */ | |
a262aec2 | 1842 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 1843 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
1844 | cache->saved_regs[reg].addr += cache->prev_sp; |
1845 | ||
1846 | return cache; | |
c906108c SS |
1847 | } |
1848 | ||
c1ee9414 LM |
1849 | /* Implementation of the stop_reason hook for arm_prologue frames. */ |
1850 | ||
1851 | static enum unwind_stop_reason | |
1852 | arm_prologue_unwind_stop_reason (struct frame_info *this_frame, | |
1853 | void **this_cache) | |
1854 | { | |
1855 | struct arm_prologue_cache *cache; | |
1856 | CORE_ADDR pc; | |
1857 | ||
1858 | if (*this_cache == NULL) | |
1859 | *this_cache = arm_make_prologue_cache (this_frame); | |
9a3c8263 | 1860 | cache = (struct arm_prologue_cache *) *this_cache; |
c1ee9414 LM |
1861 | |
1862 | /* This is meant to halt the backtrace at "_start". */ | |
1863 | pc = get_frame_pc (this_frame); | |
1864 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
1865 | return UNWIND_OUTERMOST; | |
1866 | ||
1867 | /* If we've hit a wall, stop. */ | |
1868 | if (cache->prev_sp == 0) | |
1869 | return UNWIND_OUTERMOST; | |
1870 | ||
1871 | return UNWIND_NO_REASON; | |
1872 | } | |
1873 | ||
eb5492fa DJ |
1874 | /* Our frame ID for a normal frame is the current function's starting PC |
1875 | and the caller's SP when we were called. */ | |
c906108c | 1876 | |
148754e5 | 1877 | static void |
a262aec2 | 1878 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
1879 | void **this_cache, |
1880 | struct frame_id *this_id) | |
c906108c | 1881 | { |
eb5492fa DJ |
1882 | struct arm_prologue_cache *cache; |
1883 | struct frame_id id; | |
2c404490 | 1884 | CORE_ADDR pc, func; |
f079148d | 1885 | |
eb5492fa | 1886 | if (*this_cache == NULL) |
a262aec2 | 1887 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 1888 | cache = (struct arm_prologue_cache *) *this_cache; |
2a451106 | 1889 | |
0e9e9abd UW |
1890 | /* Use function start address as part of the frame ID. If we cannot |
1891 | identify the start address (due to missing symbol information), | |
1892 | fall back to just using the current PC. */ | |
c1ee9414 | 1893 | pc = get_frame_pc (this_frame); |
2c404490 | 1894 | func = get_frame_func (this_frame); |
0e9e9abd UW |
1895 | if (!func) |
1896 | func = pc; | |
1897 | ||
eb5492fa | 1898 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 1899 | *this_id = id; |
c906108c SS |
1900 | } |
1901 | ||
a262aec2 DJ |
1902 | static struct value * |
1903 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 1904 | void **this_cache, |
a262aec2 | 1905 | int prev_regnum) |
24de872b | 1906 | { |
24568a2c | 1907 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
1908 | struct arm_prologue_cache *cache; |
1909 | ||
eb5492fa | 1910 | if (*this_cache == NULL) |
a262aec2 | 1911 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 1912 | cache = (struct arm_prologue_cache *) *this_cache; |
24de872b | 1913 | |
eb5492fa | 1914 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
1915 | instead. The prologue may save PC, but it will point into this |
1916 | frame's prologue, not the next frame's resume location. Also | |
1917 | strip the saved T bit. A valid LR may have the low bit set, but | |
1918 | a valid PC never does. */ | |
eb5492fa | 1919 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
1920 | { |
1921 | CORE_ADDR lr; | |
1922 | ||
1923 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1924 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 1925 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 1926 | } |
24de872b | 1927 | |
eb5492fa | 1928 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 1929 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
1930 | The value was already reconstructed into PREV_SP. */ |
1931 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 1932 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 1933 | |
b39cc962 DJ |
1934 | /* The CPSR may have been changed by the call instruction and by the |
1935 | called function. The only bit we can reconstruct is the T bit, | |
1936 | by checking the low bit of LR as of the call. This is a reliable | |
1937 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
1938 | Thumb code, which could get away with a clear low bit as long as | |
1939 | the called function did not use bx. Guess that all other | |
1940 | bits are unchanged; the condition flags are presumably lost, | |
1941 | but the processor status is likely valid. */ | |
1942 | if (prev_regnum == ARM_PS_REGNUM) | |
1943 | { | |
1944 | CORE_ADDR lr, cpsr; | |
9779414d | 1945 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
1946 | |
1947 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
1948 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1949 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 1950 | cpsr |= t_bit; |
b39cc962 | 1951 | else |
9779414d | 1952 | cpsr &= ~t_bit; |
b39cc962 DJ |
1953 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
1954 | } | |
1955 | ||
a262aec2 DJ |
1956 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
1957 | prev_regnum); | |
eb5492fa DJ |
1958 | } |
1959 | ||
1960 | struct frame_unwind arm_prologue_unwind = { | |
1961 | NORMAL_FRAME, | |
c1ee9414 | 1962 | arm_prologue_unwind_stop_reason, |
eb5492fa | 1963 | arm_prologue_this_id, |
a262aec2 DJ |
1964 | arm_prologue_prev_register, |
1965 | NULL, | |
1966 | default_frame_sniffer | |
eb5492fa DJ |
1967 | }; |
1968 | ||
0e9e9abd UW |
1969 | /* Maintain a list of ARM exception table entries per objfile, similar to the |
1970 | list of mapping symbols. We only cache entries for standard ARM-defined | |
1971 | personality routines; the cache will contain only the frame unwinding | |
1972 | instructions associated with the entry (not the descriptors). */ | |
1973 | ||
1974 | static const struct objfile_data *arm_exidx_data_key; | |
1975 | ||
1976 | struct arm_exidx_entry | |
1977 | { | |
1978 | bfd_vma addr; | |
1979 | gdb_byte *entry; | |
1980 | }; | |
1981 | typedef struct arm_exidx_entry arm_exidx_entry_s; | |
1982 | DEF_VEC_O(arm_exidx_entry_s); | |
1983 | ||
1984 | struct arm_exidx_data | |
1985 | { | |
1986 | VEC(arm_exidx_entry_s) **section_maps; | |
1987 | }; | |
1988 | ||
1989 | static void | |
1990 | arm_exidx_data_free (struct objfile *objfile, void *arg) | |
1991 | { | |
9a3c8263 | 1992 | struct arm_exidx_data *data = (struct arm_exidx_data *) arg; |
0e9e9abd UW |
1993 | unsigned int i; |
1994 | ||
1995 | for (i = 0; i < objfile->obfd->section_count; i++) | |
1996 | VEC_free (arm_exidx_entry_s, data->section_maps[i]); | |
1997 | } | |
1998 | ||
1999 | static inline int | |
2000 | arm_compare_exidx_entries (const struct arm_exidx_entry *lhs, | |
2001 | const struct arm_exidx_entry *rhs) | |
2002 | { | |
2003 | return lhs->addr < rhs->addr; | |
2004 | } | |
2005 | ||
2006 | static struct obj_section * | |
2007 | arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) | |
2008 | { | |
2009 | struct obj_section *osect; | |
2010 | ||
2011 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
2012 | if (bfd_get_section_flags (objfile->obfd, | |
2013 | osect->the_bfd_section) & SEC_ALLOC) | |
2014 | { | |
2015 | bfd_vma start, size; | |
2016 | start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section); | |
2017 | size = bfd_get_section_size (osect->the_bfd_section); | |
2018 | ||
2019 | if (start <= vma && vma < start + size) | |
2020 | return osect; | |
2021 | } | |
2022 | ||
2023 | return NULL; | |
2024 | } | |
2025 | ||
2026 | /* Parse contents of exception table and exception index sections | |
2027 | of OBJFILE, and fill in the exception table entry cache. | |
2028 | ||
2029 | For each entry that refers to a standard ARM-defined personality | |
2030 | routine, extract the frame unwinding instructions (from either | |
2031 | the index or the table section). The unwinding instructions | |
2032 | are normalized by: | |
2033 | - extracting them from the rest of the table data | |
2034 | - converting to host endianness | |
2035 | - appending the implicit 0xb0 ("Finish") code | |
2036 | ||
2037 | The extracted and normalized instructions are stored for later | |
2038 | retrieval by the arm_find_exidx_entry routine. */ | |
2039 | ||
2040 | static void | |
2041 | arm_exidx_new_objfile (struct objfile *objfile) | |
2042 | { | |
0e9e9abd UW |
2043 | struct arm_exidx_data *data; |
2044 | asection *exidx, *extab; | |
2045 | bfd_vma exidx_vma = 0, extab_vma = 0; | |
0e9e9abd UW |
2046 | LONGEST i; |
2047 | ||
2048 | /* If we've already touched this file, do nothing. */ | |
2049 | if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL) | |
2050 | return; | |
2051 | ||
2052 | /* Read contents of exception table and index. */ | |
a5eda10c | 2053 | exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind); |
984c7238 | 2054 | gdb::byte_vector exidx_data; |
0e9e9abd UW |
2055 | if (exidx) |
2056 | { | |
2057 | exidx_vma = bfd_section_vma (objfile->obfd, exidx); | |
984c7238 | 2058 | exidx_data.resize (bfd_get_section_size (exidx)); |
0e9e9abd UW |
2059 | |
2060 | if (!bfd_get_section_contents (objfile->obfd, exidx, | |
984c7238 TT |
2061 | exidx_data.data (), 0, |
2062 | exidx_data.size ())) | |
2063 | return; | |
0e9e9abd UW |
2064 | } |
2065 | ||
2066 | extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab"); | |
984c7238 | 2067 | gdb::byte_vector extab_data; |
0e9e9abd UW |
2068 | if (extab) |
2069 | { | |
2070 | extab_vma = bfd_section_vma (objfile->obfd, extab); | |
984c7238 | 2071 | extab_data.resize (bfd_get_section_size (extab)); |
0e9e9abd UW |
2072 | |
2073 | if (!bfd_get_section_contents (objfile->obfd, extab, | |
984c7238 TT |
2074 | extab_data.data (), 0, |
2075 | extab_data.size ())) | |
2076 | return; | |
0e9e9abd UW |
2077 | } |
2078 | ||
2079 | /* Allocate exception table data structure. */ | |
2080 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data); | |
2081 | set_objfile_data (objfile, arm_exidx_data_key, data); | |
2082 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
2083 | objfile->obfd->section_count, | |
2084 | VEC(arm_exidx_entry_s) *); | |
2085 | ||
2086 | /* Fill in exception table. */ | |
984c7238 | 2087 | for (i = 0; i < exidx_data.size () / 8; i++) |
0e9e9abd UW |
2088 | { |
2089 | struct arm_exidx_entry new_exidx_entry; | |
984c7238 TT |
2090 | bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8); |
2091 | bfd_vma val = bfd_h_get_32 (objfile->obfd, | |
2092 | exidx_data.data () + i * 8 + 4); | |
0e9e9abd UW |
2093 | bfd_vma addr = 0, word = 0; |
2094 | int n_bytes = 0, n_words = 0; | |
2095 | struct obj_section *sec; | |
2096 | gdb_byte *entry = NULL; | |
2097 | ||
2098 | /* Extract address of start of function. */ | |
2099 | idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2100 | idx += exidx_vma + i * 8; | |
2101 | ||
2102 | /* Find section containing function and compute section offset. */ | |
2103 | sec = arm_obj_section_from_vma (objfile, idx); | |
2104 | if (sec == NULL) | |
2105 | continue; | |
2106 | idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section); | |
2107 | ||
2108 | /* Determine address of exception table entry. */ | |
2109 | if (val == 1) | |
2110 | { | |
2111 | /* EXIDX_CANTUNWIND -- no exception table entry present. */ | |
2112 | } | |
2113 | else if ((val & 0xff000000) == 0x80000000) | |
2114 | { | |
2115 | /* Exception table entry embedded in .ARM.exidx | |
2116 | -- must be short form. */ | |
2117 | word = val; | |
2118 | n_bytes = 3; | |
2119 | } | |
2120 | else if (!(val & 0x80000000)) | |
2121 | { | |
2122 | /* Exception table entry in .ARM.extab. */ | |
2123 | addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2124 | addr += exidx_vma + i * 8 + 4; | |
2125 | ||
984c7238 | 2126 | if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ()) |
0e9e9abd UW |
2127 | { |
2128 | word = bfd_h_get_32 (objfile->obfd, | |
984c7238 | 2129 | extab_data.data () + addr - extab_vma); |
0e9e9abd UW |
2130 | addr += 4; |
2131 | ||
2132 | if ((word & 0xff000000) == 0x80000000) | |
2133 | { | |
2134 | /* Short form. */ | |
2135 | n_bytes = 3; | |
2136 | } | |
2137 | else if ((word & 0xff000000) == 0x81000000 | |
2138 | || (word & 0xff000000) == 0x82000000) | |
2139 | { | |
2140 | /* Long form. */ | |
2141 | n_bytes = 2; | |
2142 | n_words = ((word >> 16) & 0xff); | |
2143 | } | |
2144 | else if (!(word & 0x80000000)) | |
2145 | { | |
2146 | bfd_vma pers; | |
2147 | struct obj_section *pers_sec; | |
2148 | int gnu_personality = 0; | |
2149 | ||
2150 | /* Custom personality routine. */ | |
2151 | pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2152 | pers = UNMAKE_THUMB_ADDR (pers + addr - 4); | |
2153 | ||
2154 | /* Check whether we've got one of the variants of the | |
2155 | GNU personality routines. */ | |
2156 | pers_sec = arm_obj_section_from_vma (objfile, pers); | |
2157 | if (pers_sec) | |
2158 | { | |
2159 | static const char *personality[] = | |
2160 | { | |
2161 | "__gcc_personality_v0", | |
2162 | "__gxx_personality_v0", | |
2163 | "__gcj_personality_v0", | |
2164 | "__gnu_objc_personality_v0", | |
2165 | NULL | |
2166 | }; | |
2167 | ||
2168 | CORE_ADDR pc = pers + obj_section_offset (pers_sec); | |
2169 | int k; | |
2170 | ||
2171 | for (k = 0; personality[k]; k++) | |
2172 | if (lookup_minimal_symbol_by_pc_name | |
2173 | (pc, personality[k], objfile)) | |
2174 | { | |
2175 | gnu_personality = 1; | |
2176 | break; | |
2177 | } | |
2178 | } | |
2179 | ||
2180 | /* If so, the next word contains a word count in the high | |
2181 | byte, followed by the same unwind instructions as the | |
2182 | pre-defined forms. */ | |
2183 | if (gnu_personality | |
984c7238 | 2184 | && addr + 4 <= extab_vma + extab_data.size ()) |
0e9e9abd UW |
2185 | { |
2186 | word = bfd_h_get_32 (objfile->obfd, | |
984c7238 TT |
2187 | (extab_data.data () |
2188 | + addr - extab_vma)); | |
0e9e9abd UW |
2189 | addr += 4; |
2190 | n_bytes = 3; | |
2191 | n_words = ((word >> 24) & 0xff); | |
2192 | } | |
2193 | } | |
2194 | } | |
2195 | } | |
2196 | ||
2197 | /* Sanity check address. */ | |
2198 | if (n_words) | |
984c7238 TT |
2199 | if (addr < extab_vma |
2200 | || addr + 4 * n_words > extab_vma + extab_data.size ()) | |
0e9e9abd UW |
2201 | n_words = n_bytes = 0; |
2202 | ||
2203 | /* The unwind instructions reside in WORD (only the N_BYTES least | |
2204 | significant bytes are valid), followed by N_WORDS words in the | |
2205 | extab section starting at ADDR. */ | |
2206 | if (n_bytes || n_words) | |
2207 | { | |
224c3ddb SM |
2208 | gdb_byte *p = entry |
2209 | = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, | |
2210 | n_bytes + n_words * 4 + 1); | |
0e9e9abd UW |
2211 | |
2212 | while (n_bytes--) | |
2213 | *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); | |
2214 | ||
2215 | while (n_words--) | |
2216 | { | |
2217 | word = bfd_h_get_32 (objfile->obfd, | |
984c7238 | 2218 | extab_data.data () + addr - extab_vma); |
0e9e9abd UW |
2219 | addr += 4; |
2220 | ||
2221 | *p++ = (gdb_byte) ((word >> 24) & 0xff); | |
2222 | *p++ = (gdb_byte) ((word >> 16) & 0xff); | |
2223 | *p++ = (gdb_byte) ((word >> 8) & 0xff); | |
2224 | *p++ = (gdb_byte) (word & 0xff); | |
2225 | } | |
2226 | ||
2227 | /* Implied "Finish" to terminate the list. */ | |
2228 | *p++ = 0xb0; | |
2229 | } | |
2230 | ||
2231 | /* Push entry onto vector. They are guaranteed to always | |
2232 | appear in order of increasing addresses. */ | |
2233 | new_exidx_entry.addr = idx; | |
2234 | new_exidx_entry.entry = entry; | |
2235 | VEC_safe_push (arm_exidx_entry_s, | |
2236 | data->section_maps[sec->the_bfd_section->index], | |
2237 | &new_exidx_entry); | |
2238 | } | |
0e9e9abd UW |
2239 | } |
2240 | ||
2241 | /* Search for the exception table entry covering MEMADDR. If one is found, | |
2242 | return a pointer to its data. Otherwise, return 0. If START is non-NULL, | |
2243 | set *START to the start of the region covered by this entry. */ | |
2244 | ||
2245 | static gdb_byte * | |
2246 | arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) | |
2247 | { | |
2248 | struct obj_section *sec; | |
2249 | ||
2250 | sec = find_pc_section (memaddr); | |
2251 | if (sec != NULL) | |
2252 | { | |
2253 | struct arm_exidx_data *data; | |
2254 | VEC(arm_exidx_entry_s) *map; | |
2255 | struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 }; | |
2256 | unsigned int idx; | |
2257 | ||
9a3c8263 SM |
2258 | data = ((struct arm_exidx_data *) |
2259 | objfile_data (sec->objfile, arm_exidx_data_key)); | |
0e9e9abd UW |
2260 | if (data != NULL) |
2261 | { | |
2262 | map = data->section_maps[sec->the_bfd_section->index]; | |
2263 | if (!VEC_empty (arm_exidx_entry_s, map)) | |
2264 | { | |
2265 | struct arm_exidx_entry *map_sym; | |
2266 | ||
2267 | idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key, | |
2268 | arm_compare_exidx_entries); | |
2269 | ||
2270 | /* VEC_lower_bound finds the earliest ordered insertion | |
2271 | point. If the following symbol starts at this exact | |
2272 | address, we use that; otherwise, the preceding | |
2273 | exception table entry covers this address. */ | |
2274 | if (idx < VEC_length (arm_exidx_entry_s, map)) | |
2275 | { | |
2276 | map_sym = VEC_index (arm_exidx_entry_s, map, idx); | |
2277 | if (map_sym->addr == map_key.addr) | |
2278 | { | |
2279 | if (start) | |
2280 | *start = map_sym->addr + obj_section_addr (sec); | |
2281 | return map_sym->entry; | |
2282 | } | |
2283 | } | |
2284 | ||
2285 | if (idx > 0) | |
2286 | { | |
2287 | map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1); | |
2288 | if (start) | |
2289 | *start = map_sym->addr + obj_section_addr (sec); | |
2290 | return map_sym->entry; | |
2291 | } | |
2292 | } | |
2293 | } | |
2294 | } | |
2295 | ||
2296 | return NULL; | |
2297 | } | |
2298 | ||
2299 | /* Given the current frame THIS_FRAME, and its associated frame unwinding | |
2300 | instruction list from the ARM exception table entry ENTRY, allocate and | |
2301 | return a prologue cache structure describing how to unwind this frame. | |
2302 | ||
2303 | Return NULL if the unwinding instruction list contains a "spare", | |
2304 | "reserved" or "refuse to unwind" instruction as defined in section | |
2305 | "9.3 Frame unwinding instructions" of the "Exception Handling ABI | |
2306 | for the ARM Architecture" document. */ | |
2307 | ||
2308 | static struct arm_prologue_cache * | |
2309 | arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry) | |
2310 | { | |
2311 | CORE_ADDR vsp = 0; | |
2312 | int vsp_valid = 0; | |
2313 | ||
2314 | struct arm_prologue_cache *cache; | |
2315 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2316 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2317 | ||
2318 | for (;;) | |
2319 | { | |
2320 | gdb_byte insn; | |
2321 | ||
2322 | /* Whenever we reload SP, we actually have to retrieve its | |
2323 | actual value in the current frame. */ | |
2324 | if (!vsp_valid) | |
2325 | { | |
2326 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2327 | { | |
2328 | int reg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2329 | vsp = get_frame_register_unsigned (this_frame, reg); | |
2330 | } | |
2331 | else | |
2332 | { | |
2333 | CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr; | |
2334 | vsp = get_frame_memory_unsigned (this_frame, addr, 4); | |
2335 | } | |
2336 | ||
2337 | vsp_valid = 1; | |
2338 | } | |
2339 | ||
2340 | /* Decode next unwind instruction. */ | |
2341 | insn = *entry++; | |
2342 | ||
2343 | if ((insn & 0xc0) == 0) | |
2344 | { | |
2345 | int offset = insn & 0x3f; | |
2346 | vsp += (offset << 2) + 4; | |
2347 | } | |
2348 | else if ((insn & 0xc0) == 0x40) | |
2349 | { | |
2350 | int offset = insn & 0x3f; | |
2351 | vsp -= (offset << 2) + 4; | |
2352 | } | |
2353 | else if ((insn & 0xf0) == 0x80) | |
2354 | { | |
2355 | int mask = ((insn & 0xf) << 8) | *entry++; | |
2356 | int i; | |
2357 | ||
2358 | /* The special case of an all-zero mask identifies | |
2359 | "Refuse to unwind". We return NULL to fall back | |
2360 | to the prologue analyzer. */ | |
2361 | if (mask == 0) | |
2362 | return NULL; | |
2363 | ||
2364 | /* Pop registers r4..r15 under mask. */ | |
2365 | for (i = 0; i < 12; i++) | |
2366 | if (mask & (1 << i)) | |
2367 | { | |
2368 | cache->saved_regs[4 + i].addr = vsp; | |
2369 | vsp += 4; | |
2370 | } | |
2371 | ||
2372 | /* Special-case popping SP -- we need to reload vsp. */ | |
2373 | if (mask & (1 << (ARM_SP_REGNUM - 4))) | |
2374 | vsp_valid = 0; | |
2375 | } | |
2376 | else if ((insn & 0xf0) == 0x90) | |
2377 | { | |
2378 | int reg = insn & 0xf; | |
2379 | ||
2380 | /* Reserved cases. */ | |
2381 | if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) | |
2382 | return NULL; | |
2383 | ||
2384 | /* Set SP from another register and mark VSP for reload. */ | |
2385 | cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; | |
2386 | vsp_valid = 0; | |
2387 | } | |
2388 | else if ((insn & 0xf0) == 0xa0) | |
2389 | { | |
2390 | int count = insn & 0x7; | |
2391 | int pop_lr = (insn & 0x8) != 0; | |
2392 | int i; | |
2393 | ||
2394 | /* Pop r4..r[4+count]. */ | |
2395 | for (i = 0; i <= count; i++) | |
2396 | { | |
2397 | cache->saved_regs[4 + i].addr = vsp; | |
2398 | vsp += 4; | |
2399 | } | |
2400 | ||
2401 | /* If indicated by flag, pop LR as well. */ | |
2402 | if (pop_lr) | |
2403 | { | |
2404 | cache->saved_regs[ARM_LR_REGNUM].addr = vsp; | |
2405 | vsp += 4; | |
2406 | } | |
2407 | } | |
2408 | else if (insn == 0xb0) | |
2409 | { | |
2410 | /* We could only have updated PC by popping into it; if so, it | |
2411 | will show up as address. Otherwise, copy LR into PC. */ | |
2412 | if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM)) | |
2413 | cache->saved_regs[ARM_PC_REGNUM] | |
2414 | = cache->saved_regs[ARM_LR_REGNUM]; | |
2415 | ||
2416 | /* We're done. */ | |
2417 | break; | |
2418 | } | |
2419 | else if (insn == 0xb1) | |
2420 | { | |
2421 | int mask = *entry++; | |
2422 | int i; | |
2423 | ||
2424 | /* All-zero mask and mask >= 16 is "spare". */ | |
2425 | if (mask == 0 || mask >= 16) | |
2426 | return NULL; | |
2427 | ||
2428 | /* Pop r0..r3 under mask. */ | |
2429 | for (i = 0; i < 4; i++) | |
2430 | if (mask & (1 << i)) | |
2431 | { | |
2432 | cache->saved_regs[i].addr = vsp; | |
2433 | vsp += 4; | |
2434 | } | |
2435 | } | |
2436 | else if (insn == 0xb2) | |
2437 | { | |
2438 | ULONGEST offset = 0; | |
2439 | unsigned shift = 0; | |
2440 | ||
2441 | do | |
2442 | { | |
2443 | offset |= (*entry & 0x7f) << shift; | |
2444 | shift += 7; | |
2445 | } | |
2446 | while (*entry++ & 0x80); | |
2447 | ||
2448 | vsp += 0x204 + (offset << 2); | |
2449 | } | |
2450 | else if (insn == 0xb3) | |
2451 | { | |
2452 | int start = *entry >> 4; | |
2453 | int count = (*entry++) & 0xf; | |
2454 | int i; | |
2455 | ||
2456 | /* Only registers D0..D15 are valid here. */ | |
2457 | if (start + count >= 16) | |
2458 | return NULL; | |
2459 | ||
2460 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2461 | for (i = 0; i <= count; i++) | |
2462 | { | |
2463 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2464 | vsp += 8; | |
2465 | } | |
2466 | ||
2467 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2468 | vsp += 4; | |
2469 | } | |
2470 | else if ((insn & 0xf8) == 0xb8) | |
2471 | { | |
2472 | int count = insn & 0x7; | |
2473 | int i; | |
2474 | ||
2475 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2476 | for (i = 0; i <= count; i++) | |
2477 | { | |
2478 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2479 | vsp += 8; | |
2480 | } | |
2481 | ||
2482 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2483 | vsp += 4; | |
2484 | } | |
2485 | else if (insn == 0xc6) | |
2486 | { | |
2487 | int start = *entry >> 4; | |
2488 | int count = (*entry++) & 0xf; | |
2489 | int i; | |
2490 | ||
2491 | /* Only registers WR0..WR15 are valid. */ | |
2492 | if (start + count >= 16) | |
2493 | return NULL; | |
2494 | ||
2495 | /* Pop iwmmx registers WR[start]..WR[start+count]. */ | |
2496 | for (i = 0; i <= count; i++) | |
2497 | { | |
2498 | cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp; | |
2499 | vsp += 8; | |
2500 | } | |
2501 | } | |
2502 | else if (insn == 0xc7) | |
2503 | { | |
2504 | int mask = *entry++; | |
2505 | int i; | |
2506 | ||
2507 | /* All-zero mask and mask >= 16 is "spare". */ | |
2508 | if (mask == 0 || mask >= 16) | |
2509 | return NULL; | |
2510 | ||
2511 | /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */ | |
2512 | for (i = 0; i < 4; i++) | |
2513 | if (mask & (1 << i)) | |
2514 | { | |
2515 | cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp; | |
2516 | vsp += 4; | |
2517 | } | |
2518 | } | |
2519 | else if ((insn & 0xf8) == 0xc0) | |
2520 | { | |
2521 | int count = insn & 0x7; | |
2522 | int i; | |
2523 | ||
2524 | /* Pop iwmmx registers WR[10]..WR[10+count]. */ | |
2525 | for (i = 0; i <= count; i++) | |
2526 | { | |
2527 | cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp; | |
2528 | vsp += 8; | |
2529 | } | |
2530 | } | |
2531 | else if (insn == 0xc8) | |
2532 | { | |
2533 | int start = *entry >> 4; | |
2534 | int count = (*entry++) & 0xf; | |
2535 | int i; | |
2536 | ||
2537 | /* Only registers D0..D31 are valid. */ | |
2538 | if (start + count >= 16) | |
2539 | return NULL; | |
2540 | ||
2541 | /* Pop VFP double-precision registers | |
2542 | D[16+start]..D[16+start+count]. */ | |
2543 | for (i = 0; i <= count; i++) | |
2544 | { | |
2545 | cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp; | |
2546 | vsp += 8; | |
2547 | } | |
2548 | } | |
2549 | else if (insn == 0xc9) | |
2550 | { | |
2551 | int start = *entry >> 4; | |
2552 | int count = (*entry++) & 0xf; | |
2553 | int i; | |
2554 | ||
2555 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2556 | for (i = 0; i <= count; i++) | |
2557 | { | |
2558 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2559 | vsp += 8; | |
2560 | } | |
2561 | } | |
2562 | else if ((insn & 0xf8) == 0xd0) | |
2563 | { | |
2564 | int count = insn & 0x7; | |
2565 | int i; | |
2566 | ||
2567 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2568 | for (i = 0; i <= count; i++) | |
2569 | { | |
2570 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2571 | vsp += 8; | |
2572 | } | |
2573 | } | |
2574 | else | |
2575 | { | |
2576 | /* Everything else is "spare". */ | |
2577 | return NULL; | |
2578 | } | |
2579 | } | |
2580 | ||
2581 | /* If we restore SP from a register, assume this was the frame register. | |
2582 | Otherwise just fall back to SP as frame register. */ | |
2583 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2584 | cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2585 | else | |
2586 | cache->framereg = ARM_SP_REGNUM; | |
2587 | ||
2588 | /* Determine offset to previous frame. */ | |
2589 | cache->framesize | |
2590 | = vsp - get_frame_register_unsigned (this_frame, cache->framereg); | |
2591 | ||
2592 | /* We already got the previous SP. */ | |
2593 | cache->prev_sp = vsp; | |
2594 | ||
2595 | return cache; | |
2596 | } | |
2597 | ||
2598 | /* Unwinding via ARM exception table entries. Note that the sniffer | |
2599 | already computes a filled-in prologue cache, which is then used | |
2600 | with the same arm_prologue_this_id and arm_prologue_prev_register | |
2601 | routines also used for prologue-parsing based unwinding. */ | |
2602 | ||
2603 | static int | |
2604 | arm_exidx_unwind_sniffer (const struct frame_unwind *self, | |
2605 | struct frame_info *this_frame, | |
2606 | void **this_prologue_cache) | |
2607 | { | |
2608 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2609 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2610 | CORE_ADDR addr_in_block, exidx_region, func_start; | |
2611 | struct arm_prologue_cache *cache; | |
2612 | gdb_byte *entry; | |
2613 | ||
2614 | /* See if we have an ARM exception table entry covering this address. */ | |
2615 | addr_in_block = get_frame_address_in_block (this_frame); | |
2616 | entry = arm_find_exidx_entry (addr_in_block, &exidx_region); | |
2617 | if (!entry) | |
2618 | return 0; | |
2619 | ||
2620 | /* The ARM exception table does not describe unwind information | |
2621 | for arbitrary PC values, but is guaranteed to be correct only | |
2622 | at call sites. We have to decide here whether we want to use | |
2623 | ARM exception table information for this frame, or fall back | |
2624 | to using prologue parsing. (Note that if we have DWARF CFI, | |
2625 | this sniffer isn't even called -- CFI is always preferred.) | |
2626 | ||
2627 | Before we make this decision, however, we check whether we | |
2628 | actually have *symbol* information for the current frame. | |
2629 | If not, prologue parsing would not work anyway, so we might | |
2630 | as well use the exception table and hope for the best. */ | |
2631 | if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) | |
2632 | { | |
2633 | int exc_valid = 0; | |
2634 | ||
2635 | /* If the next frame is "normal", we are at a call site in this | |
2636 | frame, so exception information is guaranteed to be valid. */ | |
2637 | if (get_next_frame (this_frame) | |
2638 | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | |
2639 | exc_valid = 1; | |
2640 | ||
2641 | /* We also assume exception information is valid if we're currently | |
2642 | blocked in a system call. The system library is supposed to | |
d9311bfa AT |
2643 | ensure this, so that e.g. pthread cancellation works. */ |
2644 | if (arm_frame_is_thumb (this_frame)) | |
0e9e9abd | 2645 | { |
7913a64c | 2646 | ULONGEST insn; |
416dc9c6 | 2647 | |
7913a64c YQ |
2648 | if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2, |
2649 | 2, byte_order_for_code, &insn) | |
d9311bfa AT |
2650 | && (insn & 0xff00) == 0xdf00 /* svc */) |
2651 | exc_valid = 1; | |
0e9e9abd | 2652 | } |
d9311bfa AT |
2653 | else |
2654 | { | |
7913a64c | 2655 | ULONGEST insn; |
416dc9c6 | 2656 | |
7913a64c YQ |
2657 | if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4, |
2658 | 4, byte_order_for_code, &insn) | |
d9311bfa AT |
2659 | && (insn & 0x0f000000) == 0x0f000000 /* svc */) |
2660 | exc_valid = 1; | |
2661 | } | |
2662 | ||
0e9e9abd UW |
2663 | /* Bail out if we don't know that exception information is valid. */ |
2664 | if (!exc_valid) | |
2665 | return 0; | |
2666 | ||
2667 | /* The ARM exception index does not mark the *end* of the region | |
2668 | covered by the entry, and some functions will not have any entry. | |
2669 | To correctly recognize the end of the covered region, the linker | |
2670 | should have inserted dummy records with a CANTUNWIND marker. | |
2671 | ||
2672 | Unfortunately, current versions of GNU ld do not reliably do | |
2673 | this, and thus we may have found an incorrect entry above. | |
2674 | As a (temporary) sanity check, we only use the entry if it | |
2675 | lies *within* the bounds of the function. Note that this check | |
2676 | might reject perfectly valid entries that just happen to cover | |
2677 | multiple functions; therefore this check ought to be removed | |
2678 | once the linker is fixed. */ | |
2679 | if (func_start > exidx_region) | |
2680 | return 0; | |
2681 | } | |
2682 | ||
2683 | /* Decode the list of unwinding instructions into a prologue cache. | |
2684 | Note that this may fail due to e.g. a "refuse to unwind" code. */ | |
2685 | cache = arm_exidx_fill_cache (this_frame, entry); | |
2686 | if (!cache) | |
2687 | return 0; | |
2688 | ||
2689 | *this_prologue_cache = cache; | |
2690 | return 1; | |
2691 | } | |
2692 | ||
2693 | struct frame_unwind arm_exidx_unwind = { | |
2694 | NORMAL_FRAME, | |
8fbca658 | 2695 | default_frame_unwind_stop_reason, |
0e9e9abd UW |
2696 | arm_prologue_this_id, |
2697 | arm_prologue_prev_register, | |
2698 | NULL, | |
2699 | arm_exidx_unwind_sniffer | |
2700 | }; | |
2701 | ||
779aa56f YQ |
2702 | static struct arm_prologue_cache * |
2703 | arm_make_epilogue_frame_cache (struct frame_info *this_frame) | |
2704 | { | |
2705 | struct arm_prologue_cache *cache; | |
779aa56f YQ |
2706 | int reg; |
2707 | ||
2708 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2709 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2710 | ||
2711 | /* Still rely on the offset calculated from prologue. */ | |
2712 | arm_scan_prologue (this_frame, cache); | |
2713 | ||
2714 | /* Since we are in epilogue, the SP has been restored. */ | |
2715 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); | |
2716 | ||
2717 | /* Calculate actual addresses of saved registers using offsets | |
2718 | determined by arm_scan_prologue. */ | |
2719 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) | |
2720 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2721 | cache->saved_regs[reg].addr += cache->prev_sp; | |
2722 | ||
2723 | return cache; | |
2724 | } | |
2725 | ||
2726 | /* Implementation of function hook 'this_id' in | |
2727 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2728 | ||
2729 | static void | |
2730 | arm_epilogue_frame_this_id (struct frame_info *this_frame, | |
2731 | void **this_cache, | |
2732 | struct frame_id *this_id) | |
2733 | { | |
2734 | struct arm_prologue_cache *cache; | |
2735 | CORE_ADDR pc, func; | |
2736 | ||
2737 | if (*this_cache == NULL) | |
2738 | *this_cache = arm_make_epilogue_frame_cache (this_frame); | |
2739 | cache = (struct arm_prologue_cache *) *this_cache; | |
2740 | ||
2741 | /* Use function start address as part of the frame ID. If we cannot | |
2742 | identify the start address (due to missing symbol information), | |
2743 | fall back to just using the current PC. */ | |
2744 | pc = get_frame_pc (this_frame); | |
2745 | func = get_frame_func (this_frame); | |
fb3f3d25 | 2746 | if (func == 0) |
779aa56f YQ |
2747 | func = pc; |
2748 | ||
2749 | (*this_id) = frame_id_build (cache->prev_sp, pc); | |
2750 | } | |
2751 | ||
2752 | /* Implementation of function hook 'prev_register' in | |
2753 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2754 | ||
2755 | static struct value * | |
2756 | arm_epilogue_frame_prev_register (struct frame_info *this_frame, | |
2757 | void **this_cache, int regnum) | |
2758 | { | |
779aa56f YQ |
2759 | if (*this_cache == NULL) |
2760 | *this_cache = arm_make_epilogue_frame_cache (this_frame); | |
779aa56f YQ |
2761 | |
2762 | return arm_prologue_prev_register (this_frame, this_cache, regnum); | |
2763 | } | |
2764 | ||
2765 | static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, | |
2766 | CORE_ADDR pc); | |
2767 | static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, | |
2768 | CORE_ADDR pc); | |
2769 | ||
2770 | /* Implementation of function hook 'sniffer' in | |
2771 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2772 | ||
2773 | static int | |
2774 | arm_epilogue_frame_sniffer (const struct frame_unwind *self, | |
2775 | struct frame_info *this_frame, | |
2776 | void **this_prologue_cache) | |
2777 | { | |
2778 | if (frame_relative_level (this_frame) == 0) | |
2779 | { | |
2780 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2781 | CORE_ADDR pc = get_frame_pc (this_frame); | |
2782 | ||
2783 | if (arm_frame_is_thumb (this_frame)) | |
2784 | return thumb_stack_frame_destroyed_p (gdbarch, pc); | |
2785 | else | |
2786 | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | |
2787 | } | |
2788 | else | |
2789 | return 0; | |
2790 | } | |
2791 | ||
2792 | /* Frame unwinder from epilogue. */ | |
2793 | ||
2794 | static const struct frame_unwind arm_epilogue_frame_unwind = | |
2795 | { | |
2796 | NORMAL_FRAME, | |
2797 | default_frame_unwind_stop_reason, | |
2798 | arm_epilogue_frame_this_id, | |
2799 | arm_epilogue_frame_prev_register, | |
2800 | NULL, | |
2801 | arm_epilogue_frame_sniffer, | |
2802 | }; | |
2803 | ||
80d8d390 YQ |
2804 | /* Recognize GCC's trampoline for thumb call-indirect. If we are in a |
2805 | trampoline, return the target PC. Otherwise return 0. | |
2806 | ||
2807 | void call0a (char c, short s, int i, long l) {} | |
2808 | ||
2809 | int main (void) | |
2810 | { | |
2811 | (*pointer_to_call0a) (c, s, i, l); | |
2812 | } | |
2813 | ||
2814 | Instead of calling a stub library function _call_via_xx (xx is | |
2815 | the register name), GCC may inline the trampoline in the object | |
2816 | file as below (register r2 has the address of call0a). | |
2817 | ||
2818 | .global main | |
2819 | .type main, %function | |
2820 | ... | |
2821 | bl .L1 | |
2822 | ... | |
2823 | .size main, .-main | |
2824 | ||
2825 | .L1: | |
2826 | bx r2 | |
2827 | ||
2828 | The trampoline 'bx r2' doesn't belong to main. */ | |
2829 | ||
2830 | static CORE_ADDR | |
2831 | arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc) | |
2832 | { | |
2833 | /* The heuristics of recognizing such trampoline is that FRAME is | |
2834 | executing in Thumb mode and the instruction on PC is 'bx Rm'. */ | |
2835 | if (arm_frame_is_thumb (frame)) | |
2836 | { | |
2837 | gdb_byte buf[2]; | |
2838 | ||
2839 | if (target_read_memory (pc, buf, 2) == 0) | |
2840 | { | |
2841 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2842 | enum bfd_endian byte_order_for_code | |
2843 | = gdbarch_byte_order_for_code (gdbarch); | |
2844 | uint16_t insn | |
2845 | = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
2846 | ||
2847 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
2848 | { | |
2849 | CORE_ADDR dest | |
2850 | = get_frame_register_unsigned (frame, bits (insn, 3, 6)); | |
2851 | ||
2852 | /* Clear the LSB so that gdb core sets step-resume | |
2853 | breakpoint at the right address. */ | |
2854 | return UNMAKE_THUMB_ADDR (dest); | |
2855 | } | |
2856 | } | |
2857 | } | |
2858 | ||
2859 | return 0; | |
2860 | } | |
2861 | ||
909cf6ea | 2862 | static struct arm_prologue_cache * |
a262aec2 | 2863 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea | 2864 | { |
909cf6ea | 2865 | struct arm_prologue_cache *cache; |
909cf6ea | 2866 | |
35d5d4ee | 2867 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2868 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 2869 | |
a262aec2 | 2870 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
2871 | |
2872 | return cache; | |
2873 | } | |
2874 | ||
2875 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2876 | ||
2877 | static void | |
a262aec2 | 2878 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
2879 | void **this_cache, |
2880 | struct frame_id *this_id) | |
2881 | { | |
2882 | struct arm_prologue_cache *cache; | |
2883 | ||
2884 | if (*this_cache == NULL) | |
a262aec2 | 2885 | *this_cache = arm_make_stub_cache (this_frame); |
9a3c8263 | 2886 | cache = (struct arm_prologue_cache *) *this_cache; |
909cf6ea | 2887 | |
a262aec2 | 2888 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
2889 | } |
2890 | ||
a262aec2 DJ |
2891 | static int |
2892 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
2893 | struct frame_info *this_frame, | |
2894 | void **this_prologue_cache) | |
909cf6ea | 2895 | { |
93d42b30 | 2896 | CORE_ADDR addr_in_block; |
948f8e3d | 2897 | gdb_byte dummy[4]; |
18d18ac8 YQ |
2898 | CORE_ADDR pc, start_addr; |
2899 | const char *name; | |
909cf6ea | 2900 | |
a262aec2 | 2901 | addr_in_block = get_frame_address_in_block (this_frame); |
18d18ac8 | 2902 | pc = get_frame_pc (this_frame); |
3e5d3a5a | 2903 | if (in_plt_section (addr_in_block) |
fc36e839 DE |
2904 | /* We also use the stub winder if the target memory is unreadable |
2905 | to avoid having the prologue unwinder trying to read it. */ | |
18d18ac8 YQ |
2906 | || target_read_memory (pc, dummy, 4) != 0) |
2907 | return 1; | |
2908 | ||
2909 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0 | |
2910 | && arm_skip_bx_reg (this_frame, pc) != 0) | |
a262aec2 | 2911 | return 1; |
909cf6ea | 2912 | |
a262aec2 | 2913 | return 0; |
909cf6ea DJ |
2914 | } |
2915 | ||
a262aec2 DJ |
2916 | struct frame_unwind arm_stub_unwind = { |
2917 | NORMAL_FRAME, | |
8fbca658 | 2918 | default_frame_unwind_stop_reason, |
a262aec2 DJ |
2919 | arm_stub_this_id, |
2920 | arm_prologue_prev_register, | |
2921 | NULL, | |
2922 | arm_stub_unwind_sniffer | |
2923 | }; | |
2924 | ||
2ae28aa9 YQ |
2925 | /* Put here the code to store, into CACHE->saved_regs, the addresses |
2926 | of the saved registers of frame described by THIS_FRAME. CACHE is | |
2927 | returned. */ | |
2928 | ||
2929 | static struct arm_prologue_cache * | |
2930 | arm_m_exception_cache (struct frame_info *this_frame) | |
2931 | { | |
2932 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2933 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2934 | struct arm_prologue_cache *cache; | |
2935 | CORE_ADDR unwound_sp; | |
2936 | LONGEST xpsr; | |
2937 | ||
2938 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2939 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2940 | ||
2941 | unwound_sp = get_frame_register_unsigned (this_frame, | |
2942 | ARM_SP_REGNUM); | |
2943 | ||
2944 | /* The hardware saves eight 32-bit words, comprising xPSR, | |
2945 | ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in | |
2946 | "B1.5.6 Exception entry behavior" in | |
2947 | "ARMv7-M Architecture Reference Manual". */ | |
2948 | cache->saved_regs[0].addr = unwound_sp; | |
2949 | cache->saved_regs[1].addr = unwound_sp + 4; | |
2950 | cache->saved_regs[2].addr = unwound_sp + 8; | |
2951 | cache->saved_regs[3].addr = unwound_sp + 12; | |
2952 | cache->saved_regs[12].addr = unwound_sp + 16; | |
2953 | cache->saved_regs[14].addr = unwound_sp + 20; | |
2954 | cache->saved_regs[15].addr = unwound_sp + 24; | |
2955 | cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28; | |
2956 | ||
2957 | /* If bit 9 of the saved xPSR is set, then there is a four-byte | |
2958 | aligner between the top of the 32-byte stack frame and the | |
2959 | previous context's stack pointer. */ | |
2960 | cache->prev_sp = unwound_sp + 32; | |
2961 | if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr) | |
2962 | && (xpsr & (1 << 9)) != 0) | |
2963 | cache->prev_sp += 4; | |
2964 | ||
2965 | return cache; | |
2966 | } | |
2967 | ||
2968 | /* Implementation of function hook 'this_id' in | |
2969 | 'struct frame_uwnind'. */ | |
2970 | ||
2971 | static void | |
2972 | arm_m_exception_this_id (struct frame_info *this_frame, | |
2973 | void **this_cache, | |
2974 | struct frame_id *this_id) | |
2975 | { | |
2976 | struct arm_prologue_cache *cache; | |
2977 | ||
2978 | if (*this_cache == NULL) | |
2979 | *this_cache = arm_m_exception_cache (this_frame); | |
9a3c8263 | 2980 | cache = (struct arm_prologue_cache *) *this_cache; |
2ae28aa9 YQ |
2981 | |
2982 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2983 | *this_id = frame_id_build (cache->prev_sp, | |
2984 | get_frame_pc (this_frame)); | |
2985 | } | |
2986 | ||
2987 | /* Implementation of function hook 'prev_register' in | |
2988 | 'struct frame_uwnind'. */ | |
2989 | ||
2990 | static struct value * | |
2991 | arm_m_exception_prev_register (struct frame_info *this_frame, | |
2992 | void **this_cache, | |
2993 | int prev_regnum) | |
2994 | { | |
2ae28aa9 YQ |
2995 | struct arm_prologue_cache *cache; |
2996 | ||
2997 | if (*this_cache == NULL) | |
2998 | *this_cache = arm_m_exception_cache (this_frame); | |
9a3c8263 | 2999 | cache = (struct arm_prologue_cache *) *this_cache; |
2ae28aa9 YQ |
3000 | |
3001 | /* The value was already reconstructed into PREV_SP. */ | |
3002 | if (prev_regnum == ARM_SP_REGNUM) | |
3003 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
3004 | cache->prev_sp); | |
3005 | ||
3006 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | |
3007 | prev_regnum); | |
3008 | } | |
3009 | ||
3010 | /* Implementation of function hook 'sniffer' in | |
3011 | 'struct frame_uwnind'. */ | |
3012 | ||
3013 | static int | |
3014 | arm_m_exception_unwind_sniffer (const struct frame_unwind *self, | |
3015 | struct frame_info *this_frame, | |
3016 | void **this_prologue_cache) | |
3017 | { | |
3018 | CORE_ADDR this_pc = get_frame_pc (this_frame); | |
3019 | ||
3020 | /* No need to check is_m; this sniffer is only registered for | |
3021 | M-profile architectures. */ | |
3022 | ||
ca90e760 FH |
3023 | /* Check if exception frame returns to a magic PC value. */ |
3024 | return arm_m_addr_is_magic (this_pc); | |
2ae28aa9 YQ |
3025 | } |
3026 | ||
3027 | /* Frame unwinder for M-profile exceptions. */ | |
3028 | ||
3029 | struct frame_unwind arm_m_exception_unwind = | |
3030 | { | |
3031 | SIGTRAMP_FRAME, | |
3032 | default_frame_unwind_stop_reason, | |
3033 | arm_m_exception_this_id, | |
3034 | arm_m_exception_prev_register, | |
3035 | NULL, | |
3036 | arm_m_exception_unwind_sniffer | |
3037 | }; | |
3038 | ||
24de872b | 3039 | static CORE_ADDR |
a262aec2 | 3040 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
3041 | { |
3042 | struct arm_prologue_cache *cache; | |
3043 | ||
eb5492fa | 3044 | if (*this_cache == NULL) |
a262aec2 | 3045 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 3046 | cache = (struct arm_prologue_cache *) *this_cache; |
eb5492fa | 3047 | |
4be43953 | 3048 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
3049 | } |
3050 | ||
eb5492fa DJ |
3051 | struct frame_base arm_normal_base = { |
3052 | &arm_prologue_unwind, | |
3053 | arm_normal_frame_base, | |
3054 | arm_normal_frame_base, | |
3055 | arm_normal_frame_base | |
3056 | }; | |
3057 | ||
a262aec2 | 3058 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
3059 | dummy frame. The frame ID's base needs to match the TOS value |
3060 | saved by save_dummy_frame_tos() and returned from | |
3061 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
3062 | breakpoint. */ | |
c906108c | 3063 | |
eb5492fa | 3064 | static struct frame_id |
a262aec2 | 3065 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 3066 | { |
0963b4bd MS |
3067 | return frame_id_build (get_frame_register_unsigned (this_frame, |
3068 | ARM_SP_REGNUM), | |
a262aec2 | 3069 | get_frame_pc (this_frame)); |
eb5492fa | 3070 | } |
c3b4394c | 3071 | |
eb5492fa DJ |
3072 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
3073 | be used to construct the previous frame's ID, after looking up the | |
3074 | containing function). */ | |
c3b4394c | 3075 | |
eb5492fa DJ |
3076 | static CORE_ADDR |
3077 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3078 | { | |
3079 | CORE_ADDR pc; | |
3080 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 3081 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
3082 | } |
3083 | ||
3084 | static CORE_ADDR | |
3085 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3086 | { | |
3087 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
3088 | } |
3089 | ||
b39cc962 DJ |
3090 | static struct value * |
3091 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
3092 | int regnum) | |
3093 | { | |
24568a2c | 3094 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 | 3095 | CORE_ADDR lr, cpsr; |
9779414d | 3096 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
3097 | |
3098 | switch (regnum) | |
3099 | { | |
3100 | case ARM_PC_REGNUM: | |
3101 | /* The PC is normally copied from the return column, which | |
3102 | describes saves of LR. However, that version may have an | |
3103 | extra bit set to indicate Thumb state. The bit is not | |
3104 | part of the PC. */ | |
3105 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
3106 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 3107 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
3108 | |
3109 | case ARM_PS_REGNUM: | |
3110 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 3111 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
3112 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
3113 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 3114 | cpsr |= t_bit; |
b39cc962 | 3115 | else |
9779414d | 3116 | cpsr &= ~t_bit; |
ca38c58e | 3117 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
3118 | |
3119 | default: | |
3120 | internal_error (__FILE__, __LINE__, | |
3121 | _("Unexpected register %d"), regnum); | |
3122 | } | |
3123 | } | |
3124 | ||
3125 | static void | |
3126 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3127 | struct dwarf2_frame_state_reg *reg, | |
3128 | struct frame_info *this_frame) | |
3129 | { | |
3130 | switch (regnum) | |
3131 | { | |
3132 | case ARM_PC_REGNUM: | |
3133 | case ARM_PS_REGNUM: | |
3134 | reg->how = DWARF2_FRAME_REG_FN; | |
3135 | reg->loc.fn = arm_dwarf2_prev_register; | |
3136 | break; | |
3137 | case ARM_SP_REGNUM: | |
3138 | reg->how = DWARF2_FRAME_REG_CFA; | |
3139 | break; | |
3140 | } | |
3141 | } | |
3142 | ||
c9cf6e20 | 3143 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
4024ca99 UW |
3144 | |
3145 | static int | |
c9cf6e20 | 3146 | thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
4024ca99 UW |
3147 | { |
3148 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3149 | unsigned int insn, insn2; | |
3150 | int found_return = 0, found_stack_adjust = 0; | |
3151 | CORE_ADDR func_start, func_end; | |
3152 | CORE_ADDR scan_pc; | |
3153 | gdb_byte buf[4]; | |
3154 | ||
3155 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3156 | return 0; | |
3157 | ||
3158 | /* The epilogue is a sequence of instructions along the following lines: | |
3159 | ||
3160 | - add stack frame size to SP or FP | |
3161 | - [if frame pointer used] restore SP from FP | |
3162 | - restore registers from SP [may include PC] | |
3163 | - a return-type instruction [if PC wasn't already restored] | |
3164 | ||
3165 | In a first pass, we scan forward from the current PC and verify the | |
3166 | instructions we find as compatible with this sequence, ending in a | |
3167 | return instruction. | |
3168 | ||
3169 | However, this is not sufficient to distinguish indirect function calls | |
3170 | within a function from indirect tail calls in the epilogue in some cases. | |
3171 | Therefore, if we didn't already find any SP-changing instruction during | |
3172 | forward scan, we add a backward scanning heuristic to ensure we actually | |
3173 | are in the epilogue. */ | |
3174 | ||
3175 | scan_pc = pc; | |
3176 | while (scan_pc < func_end && !found_return) | |
3177 | { | |
3178 | if (target_read_memory (scan_pc, buf, 2)) | |
3179 | break; | |
3180 | ||
3181 | scan_pc += 2; | |
3182 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3183 | ||
3184 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
3185 | found_return = 1; | |
3186 | else if (insn == 0x46f7) /* mov pc, lr */ | |
3187 | found_return = 1; | |
540314bd | 3188 | else if (thumb_instruction_restores_sp (insn)) |
4024ca99 | 3189 | { |
b7576e5c | 3190 | if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */ |
4024ca99 UW |
3191 | found_return = 1; |
3192 | } | |
db24da6d | 3193 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */ |
4024ca99 UW |
3194 | { |
3195 | if (target_read_memory (scan_pc, buf, 2)) | |
3196 | break; | |
3197 | ||
3198 | scan_pc += 2; | |
3199 | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3200 | ||
3201 | if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3202 | { | |
4024ca99 UW |
3203 | if (insn2 & 0x8000) /* <registers> include PC. */ |
3204 | found_return = 1; | |
3205 | } | |
3206 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3207 | && (insn2 & 0x0fff) == 0x0b04) | |
3208 | { | |
4024ca99 UW |
3209 | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ |
3210 | found_return = 1; | |
3211 | } | |
3212 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3213 | && (insn2 & 0x0e00) == 0x0a00) | |
6b65d1b6 | 3214 | ; |
4024ca99 UW |
3215 | else |
3216 | break; | |
3217 | } | |
3218 | else | |
3219 | break; | |
3220 | } | |
3221 | ||
3222 | if (!found_return) | |
3223 | return 0; | |
3224 | ||
3225 | /* Since any instruction in the epilogue sequence, with the possible | |
3226 | exception of return itself, updates the stack pointer, we need to | |
3227 | scan backwards for at most one instruction. Try either a 16-bit or | |
3228 | a 32-bit instruction. This is just a heuristic, so we do not worry | |
0963b4bd | 3229 | too much about false positives. */ |
4024ca99 | 3230 | |
6b65d1b6 YQ |
3231 | if (pc - 4 < func_start) |
3232 | return 0; | |
3233 | if (target_read_memory (pc - 4, buf, 4)) | |
3234 | return 0; | |
4024ca99 | 3235 | |
6b65d1b6 YQ |
3236 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); |
3237 | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | |
3238 | ||
3239 | if (thumb_instruction_restores_sp (insn2)) | |
3240 | found_stack_adjust = 1; | |
3241 | else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3242 | found_stack_adjust = 1; | |
3243 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3244 | && (insn2 & 0x0fff) == 0x0b04) | |
3245 | found_stack_adjust = 1; | |
3246 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3247 | && (insn2 & 0x0e00) == 0x0a00) | |
3248 | found_stack_adjust = 1; | |
4024ca99 UW |
3249 | |
3250 | return found_stack_adjust; | |
3251 | } | |
3252 | ||
4024ca99 | 3253 | static int |
c58b006a | 3254 | arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) |
4024ca99 UW |
3255 | { |
3256 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3257 | unsigned int insn; | |
f303bc3e | 3258 | int found_return; |
4024ca99 UW |
3259 | CORE_ADDR func_start, func_end; |
3260 | ||
4024ca99 UW |
3261 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
3262 | return 0; | |
3263 | ||
3264 | /* We are in the epilogue if the previous instruction was a stack | |
3265 | adjustment and the next instruction is a possible return (bx, mov | |
3266 | pc, or pop). We could have to scan backwards to find the stack | |
3267 | adjustment, or forwards to find the return, but this is a decent | |
3268 | approximation. First scan forwards. */ | |
3269 | ||
3270 | found_return = 0; | |
3271 | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
3272 | if (bits (insn, 28, 31) != INST_NV) | |
3273 | { | |
3274 | if ((insn & 0x0ffffff0) == 0x012fff10) | |
3275 | /* BX. */ | |
3276 | found_return = 1; | |
3277 | else if ((insn & 0x0ffffff0) == 0x01a0f000) | |
3278 | /* MOV PC. */ | |
3279 | found_return = 1; | |
3280 | else if ((insn & 0x0fff0000) == 0x08bd0000 | |
3281 | && (insn & 0x0000c000) != 0) | |
3282 | /* POP (LDMIA), including PC or LR. */ | |
3283 | found_return = 1; | |
3284 | } | |
3285 | ||
3286 | if (!found_return) | |
3287 | return 0; | |
3288 | ||
3289 | /* Scan backwards. This is just a heuristic, so do not worry about | |
3290 | false positives from mode changes. */ | |
3291 | ||
3292 | if (pc < func_start + 4) | |
3293 | return 0; | |
3294 | ||
3295 | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); | |
f303bc3e | 3296 | if (arm_instruction_restores_sp (insn)) |
4024ca99 UW |
3297 | return 1; |
3298 | ||
3299 | return 0; | |
3300 | } | |
3301 | ||
c58b006a YQ |
3302 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
3303 | ||
3304 | static int | |
3305 | arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3306 | { | |
3307 | if (arm_pc_is_thumb (gdbarch, pc)) | |
3308 | return thumb_stack_frame_destroyed_p (gdbarch, pc); | |
3309 | else | |
3310 | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | |
3311 | } | |
4024ca99 | 3312 | |
2dd604e7 RE |
3313 | /* When arguments must be pushed onto the stack, they go on in reverse |
3314 | order. The code below implements a FILO (stack) to do this. */ | |
3315 | ||
3316 | struct stack_item | |
3317 | { | |
3318 | int len; | |
3319 | struct stack_item *prev; | |
7c543f7b | 3320 | gdb_byte *data; |
2dd604e7 RE |
3321 | }; |
3322 | ||
3323 | static struct stack_item * | |
df3b6708 | 3324 | push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len) |
2dd604e7 RE |
3325 | { |
3326 | struct stack_item *si; | |
8d749320 | 3327 | si = XNEW (struct stack_item); |
7c543f7b | 3328 | si->data = (gdb_byte *) xmalloc (len); |
2dd604e7 RE |
3329 | si->len = len; |
3330 | si->prev = prev; | |
3331 | memcpy (si->data, contents, len); | |
3332 | return si; | |
3333 | } | |
3334 | ||
3335 | static struct stack_item * | |
3336 | pop_stack_item (struct stack_item *si) | |
3337 | { | |
3338 | struct stack_item *dead = si; | |
3339 | si = si->prev; | |
3340 | xfree (dead->data); | |
3341 | xfree (dead); | |
3342 | return si; | |
3343 | } | |
3344 | ||
2af48f68 PB |
3345 | |
3346 | /* Return the alignment (in bytes) of the given type. */ | |
3347 | ||
3348 | static int | |
3349 | arm_type_align (struct type *t) | |
3350 | { | |
3351 | int n; | |
3352 | int align; | |
3353 | int falign; | |
3354 | ||
3355 | t = check_typedef (t); | |
3356 | switch (TYPE_CODE (t)) | |
3357 | { | |
3358 | default: | |
3359 | /* Should never happen. */ | |
3360 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
3361 | return 4; | |
3362 | ||
3363 | case TYPE_CODE_PTR: | |
3364 | case TYPE_CODE_ENUM: | |
3365 | case TYPE_CODE_INT: | |
3366 | case TYPE_CODE_FLT: | |
3367 | case TYPE_CODE_SET: | |
3368 | case TYPE_CODE_RANGE: | |
2af48f68 | 3369 | case TYPE_CODE_REF: |
aa006118 | 3370 | case TYPE_CODE_RVALUE_REF: |
2af48f68 PB |
3371 | case TYPE_CODE_CHAR: |
3372 | case TYPE_CODE_BOOL: | |
3373 | return TYPE_LENGTH (t); | |
3374 | ||
3375 | case TYPE_CODE_ARRAY: | |
c4312b19 YQ |
3376 | if (TYPE_VECTOR (t)) |
3377 | { | |
3378 | /* Use the natural alignment for vector types (the same for | |
3379 | scalar type), but the maximum alignment is 64-bit. */ | |
3380 | if (TYPE_LENGTH (t) > 8) | |
3381 | return 8; | |
3382 | else | |
3383 | return TYPE_LENGTH (t); | |
3384 | } | |
3385 | else | |
3386 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
2af48f68 | 3387 | case TYPE_CODE_COMPLEX: |
2af48f68 PB |
3388 | return arm_type_align (TYPE_TARGET_TYPE (t)); |
3389 | ||
3390 | case TYPE_CODE_STRUCT: | |
3391 | case TYPE_CODE_UNION: | |
3392 | align = 1; | |
3393 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
3394 | { | |
3395 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
3396 | if (falign > align) | |
3397 | align = falign; | |
3398 | } | |
3399 | return align; | |
3400 | } | |
3401 | } | |
3402 | ||
90445bd3 DJ |
3403 | /* Possible base types for a candidate for passing and returning in |
3404 | VFP registers. */ | |
3405 | ||
3406 | enum arm_vfp_cprc_base_type | |
3407 | { | |
3408 | VFP_CPRC_UNKNOWN, | |
3409 | VFP_CPRC_SINGLE, | |
3410 | VFP_CPRC_DOUBLE, | |
3411 | VFP_CPRC_VEC64, | |
3412 | VFP_CPRC_VEC128 | |
3413 | }; | |
3414 | ||
3415 | /* The length of one element of base type B. */ | |
3416 | ||
3417 | static unsigned | |
3418 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
3419 | { | |
3420 | switch (b) | |
3421 | { | |
3422 | case VFP_CPRC_SINGLE: | |
3423 | return 4; | |
3424 | case VFP_CPRC_DOUBLE: | |
3425 | return 8; | |
3426 | case VFP_CPRC_VEC64: | |
3427 | return 8; | |
3428 | case VFP_CPRC_VEC128: | |
3429 | return 16; | |
3430 | default: | |
3431 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3432 | (int) b); | |
3433 | } | |
3434 | } | |
3435 | ||
3436 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
3437 | for passing base type B. */ | |
3438 | ||
3439 | static int | |
3440 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
3441 | { | |
3442 | switch (b) | |
3443 | { | |
3444 | case VFP_CPRC_SINGLE: | |
3445 | return 's'; | |
3446 | case VFP_CPRC_DOUBLE: | |
3447 | return 'd'; | |
3448 | case VFP_CPRC_VEC64: | |
3449 | return 'd'; | |
3450 | case VFP_CPRC_VEC128: | |
3451 | return 'q'; | |
3452 | default: | |
3453 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3454 | (int) b); | |
3455 | } | |
3456 | } | |
3457 | ||
3458 | /* Determine whether T may be part of a candidate for passing and | |
3459 | returning in VFP registers, ignoring the limit on the total number | |
3460 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
3461 | classification of the first valid component found; if it is not | |
3462 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
3463 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
3464 | for passing and returning in VFP registers, a type differently | |
3465 | classified from *BASE_TYPE, or two types differently classified | |
3466 | from each other, return -1, otherwise return the total number of | |
3467 | base-type elements found (possibly 0 in an empty structure or | |
817e0957 YQ |
3468 | array). Vector types are not currently supported, matching the |
3469 | generic AAPCS support. */ | |
90445bd3 DJ |
3470 | |
3471 | static int | |
3472 | arm_vfp_cprc_sub_candidate (struct type *t, | |
3473 | enum arm_vfp_cprc_base_type *base_type) | |
3474 | { | |
3475 | t = check_typedef (t); | |
3476 | switch (TYPE_CODE (t)) | |
3477 | { | |
3478 | case TYPE_CODE_FLT: | |
3479 | switch (TYPE_LENGTH (t)) | |
3480 | { | |
3481 | case 4: | |
3482 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3483 | *base_type = VFP_CPRC_SINGLE; | |
3484 | else if (*base_type != VFP_CPRC_SINGLE) | |
3485 | return -1; | |
3486 | return 1; | |
3487 | ||
3488 | case 8: | |
3489 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3490 | *base_type = VFP_CPRC_DOUBLE; | |
3491 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3492 | return -1; | |
3493 | return 1; | |
3494 | ||
3495 | default: | |
3496 | return -1; | |
3497 | } | |
3498 | break; | |
3499 | ||
817e0957 YQ |
3500 | case TYPE_CODE_COMPLEX: |
3501 | /* Arguments of complex T where T is one of the types float or | |
3502 | double get treated as if they are implemented as: | |
3503 | ||
3504 | struct complexT | |
3505 | { | |
3506 | T real; | |
3507 | T imag; | |
5f52445b YQ |
3508 | }; |
3509 | ||
3510 | */ | |
817e0957 YQ |
3511 | switch (TYPE_LENGTH (t)) |
3512 | { | |
3513 | case 8: | |
3514 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3515 | *base_type = VFP_CPRC_SINGLE; | |
3516 | else if (*base_type != VFP_CPRC_SINGLE) | |
3517 | return -1; | |
3518 | return 2; | |
3519 | ||
3520 | case 16: | |
3521 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3522 | *base_type = VFP_CPRC_DOUBLE; | |
3523 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3524 | return -1; | |
3525 | return 2; | |
3526 | ||
3527 | default: | |
3528 | return -1; | |
3529 | } | |
3530 | break; | |
3531 | ||
90445bd3 DJ |
3532 | case TYPE_CODE_ARRAY: |
3533 | { | |
c4312b19 | 3534 | if (TYPE_VECTOR (t)) |
90445bd3 | 3535 | { |
c4312b19 YQ |
3536 | /* A 64-bit or 128-bit containerized vector type are VFP |
3537 | CPRCs. */ | |
3538 | switch (TYPE_LENGTH (t)) | |
3539 | { | |
3540 | case 8: | |
3541 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3542 | *base_type = VFP_CPRC_VEC64; | |
3543 | return 1; | |
3544 | case 16: | |
3545 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3546 | *base_type = VFP_CPRC_VEC128; | |
3547 | return 1; | |
3548 | default: | |
3549 | return -1; | |
3550 | } | |
3551 | } | |
3552 | else | |
3553 | { | |
3554 | int count; | |
3555 | unsigned unitlen; | |
3556 | ||
3557 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), | |
3558 | base_type); | |
3559 | if (count == -1) | |
3560 | return -1; | |
3561 | if (TYPE_LENGTH (t) == 0) | |
3562 | { | |
3563 | gdb_assert (count == 0); | |
3564 | return 0; | |
3565 | } | |
3566 | else if (count == 0) | |
3567 | return -1; | |
3568 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3569 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
3570 | return TYPE_LENGTH (t) / unitlen; | |
90445bd3 | 3571 | } |
90445bd3 DJ |
3572 | } |
3573 | break; | |
3574 | ||
3575 | case TYPE_CODE_STRUCT: | |
3576 | { | |
3577 | int count = 0; | |
3578 | unsigned unitlen; | |
3579 | int i; | |
3580 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3581 | { | |
1040b979 YQ |
3582 | int sub_count = 0; |
3583 | ||
3584 | if (!field_is_static (&TYPE_FIELD (t, i))) | |
3585 | sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3586 | base_type); | |
90445bd3 DJ |
3587 | if (sub_count == -1) |
3588 | return -1; | |
3589 | count += sub_count; | |
3590 | } | |
3591 | if (TYPE_LENGTH (t) == 0) | |
3592 | { | |
3593 | gdb_assert (count == 0); | |
3594 | return 0; | |
3595 | } | |
3596 | else if (count == 0) | |
3597 | return -1; | |
3598 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3599 | if (TYPE_LENGTH (t) != unitlen * count) | |
3600 | return -1; | |
3601 | return count; | |
3602 | } | |
3603 | ||
3604 | case TYPE_CODE_UNION: | |
3605 | { | |
3606 | int count = 0; | |
3607 | unsigned unitlen; | |
3608 | int i; | |
3609 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3610 | { | |
3611 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3612 | base_type); | |
3613 | if (sub_count == -1) | |
3614 | return -1; | |
3615 | count = (count > sub_count ? count : sub_count); | |
3616 | } | |
3617 | if (TYPE_LENGTH (t) == 0) | |
3618 | { | |
3619 | gdb_assert (count == 0); | |
3620 | return 0; | |
3621 | } | |
3622 | else if (count == 0) | |
3623 | return -1; | |
3624 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3625 | if (TYPE_LENGTH (t) != unitlen * count) | |
3626 | return -1; | |
3627 | return count; | |
3628 | } | |
3629 | ||
3630 | default: | |
3631 | break; | |
3632 | } | |
3633 | ||
3634 | return -1; | |
3635 | } | |
3636 | ||
3637 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
3638 | if passed to or returned from a non-variadic function with the VFP | |
3639 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
3640 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
3641 | elements of that base type before returning. */ | |
3642 | ||
3643 | static int | |
3644 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
3645 | int *count) | |
3646 | { | |
3647 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
3648 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
3649 | if (c <= 0 || c > 4) | |
3650 | return 0; | |
3651 | *base_type = b; | |
3652 | *count = c; | |
3653 | return 1; | |
3654 | } | |
3655 | ||
3656 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
3657 | returning values from a function of type FUNC_TYPE, 0 | |
3658 | otherwise. */ | |
3659 | ||
3660 | static int | |
3661 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
3662 | { | |
3663 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3664 | /* Variadic functions always use the base ABI. Assume that functions | |
3665 | without debug info are not variadic. */ | |
3666 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
3667 | return 0; | |
3668 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
3669 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
3670 | return 0; | |
3671 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
3672 | } | |
3673 | ||
3674 | /* We currently only support passing parameters in integer registers, which | |
3675 | conforms with GCC's default model, and VFP argument passing following | |
3676 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
3677 | we should probably support some of them based on the selected ABI. */ |
3678 | ||
3679 | static CORE_ADDR | |
7d9b040b | 3680 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
3681 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
3682 | struct value **args, CORE_ADDR sp, int struct_return, | |
3683 | CORE_ADDR struct_addr) | |
2dd604e7 | 3684 | { |
e17a4113 | 3685 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
3686 | int argnum; |
3687 | int argreg; | |
3688 | int nstack; | |
3689 | struct stack_item *si = NULL; | |
90445bd3 DJ |
3690 | int use_vfp_abi; |
3691 | struct type *ftype; | |
3692 | unsigned vfp_regs_free = (1 << 16) - 1; | |
3693 | ||
3694 | /* Determine the type of this function and whether the VFP ABI | |
3695 | applies. */ | |
3696 | ftype = check_typedef (value_type (function)); | |
3697 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
3698 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
3699 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 3700 | |
6a65450a AC |
3701 | /* Set the return address. For the ARM, the return breakpoint is |
3702 | always at BP_ADDR. */ | |
9779414d | 3703 | if (arm_pc_is_thumb (gdbarch, bp_addr)) |
9dca5578 | 3704 | bp_addr |= 1; |
6a65450a | 3705 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
3706 | |
3707 | /* Walk through the list of args and determine how large a temporary | |
3708 | stack is required. Need to take care here as structs may be | |
7a9dd1b2 | 3709 | passed on the stack, and we have to push them. */ |
2dd604e7 RE |
3710 | nstack = 0; |
3711 | ||
3712 | argreg = ARM_A1_REGNUM; | |
3713 | nstack = 0; | |
3714 | ||
2dd604e7 RE |
3715 | /* The struct_return pointer occupies the first parameter |
3716 | passing register. */ | |
3717 | if (struct_return) | |
3718 | { | |
3719 | if (arm_debug) | |
5af949e3 | 3720 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 3721 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 3722 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
3723 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
3724 | argreg++; | |
3725 | } | |
3726 | ||
3727 | for (argnum = 0; argnum < nargs; argnum++) | |
3728 | { | |
3729 | int len; | |
3730 | struct type *arg_type; | |
3731 | struct type *target_type; | |
3732 | enum type_code typecode; | |
8c6363cf | 3733 | const bfd_byte *val; |
2af48f68 | 3734 | int align; |
90445bd3 DJ |
3735 | enum arm_vfp_cprc_base_type vfp_base_type; |
3736 | int vfp_base_count; | |
3737 | int may_use_core_reg = 1; | |
2dd604e7 | 3738 | |
df407dfe | 3739 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
3740 | len = TYPE_LENGTH (arg_type); |
3741 | target_type = TYPE_TARGET_TYPE (arg_type); | |
3742 | typecode = TYPE_CODE (arg_type); | |
8c6363cf | 3743 | val = value_contents (args[argnum]); |
2dd604e7 | 3744 | |
2af48f68 PB |
3745 | align = arm_type_align (arg_type); |
3746 | /* Round alignment up to a whole number of words. */ | |
3747 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
3748 | /* Different ABIs have different maximum alignments. */ | |
3749 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
3750 | { | |
3751 | /* The APCS ABI only requires word alignment. */ | |
3752 | align = INT_REGISTER_SIZE; | |
3753 | } | |
3754 | else | |
3755 | { | |
3756 | /* The AAPCS requires at most doubleword alignment. */ | |
3757 | if (align > INT_REGISTER_SIZE * 2) | |
3758 | align = INT_REGISTER_SIZE * 2; | |
3759 | } | |
3760 | ||
90445bd3 DJ |
3761 | if (use_vfp_abi |
3762 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
3763 | &vfp_base_count)) | |
3764 | { | |
3765 | int regno; | |
3766 | int unit_length; | |
3767 | int shift; | |
3768 | unsigned mask; | |
3769 | ||
3770 | /* Because this is a CPRC it cannot go in a core register or | |
3771 | cause a core register to be skipped for alignment. | |
3772 | Either it goes in VFP registers and the rest of this loop | |
3773 | iteration is skipped for this argument, or it goes on the | |
3774 | stack (and the stack alignment code is correct for this | |
3775 | case). */ | |
3776 | may_use_core_reg = 0; | |
3777 | ||
3778 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
3779 | shift = unit_length / 4; | |
3780 | mask = (1 << (shift * vfp_base_count)) - 1; | |
3781 | for (regno = 0; regno < 16; regno += shift) | |
3782 | if (((vfp_regs_free >> regno) & mask) == mask) | |
3783 | break; | |
3784 | ||
3785 | if (regno < 16) | |
3786 | { | |
3787 | int reg_char; | |
3788 | int reg_scaled; | |
3789 | int i; | |
3790 | ||
3791 | vfp_regs_free &= ~(mask << regno); | |
3792 | reg_scaled = regno / shift; | |
3793 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
3794 | for (i = 0; i < vfp_base_count; i++) | |
3795 | { | |
3796 | char name_buf[4]; | |
3797 | int regnum; | |
58d6951d DJ |
3798 | if (reg_char == 'q') |
3799 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 3800 | val + i * unit_length); |
58d6951d DJ |
3801 | else |
3802 | { | |
8c042590 PM |
3803 | xsnprintf (name_buf, sizeof (name_buf), "%c%d", |
3804 | reg_char, reg_scaled + i); | |
58d6951d DJ |
3805 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
3806 | strlen (name_buf)); | |
3807 | regcache_cooked_write (regcache, regnum, | |
3808 | val + i * unit_length); | |
3809 | } | |
90445bd3 DJ |
3810 | } |
3811 | continue; | |
3812 | } | |
3813 | else | |
3814 | { | |
3815 | /* This CPRC could not go in VFP registers, so all VFP | |
3816 | registers are now marked as used. */ | |
3817 | vfp_regs_free = 0; | |
3818 | } | |
3819 | } | |
3820 | ||
2af48f68 PB |
3821 | /* Push stack padding for dowubleword alignment. */ |
3822 | if (nstack & (align - 1)) | |
3823 | { | |
3824 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
3825 | nstack += INT_REGISTER_SIZE; | |
3826 | } | |
3827 | ||
3828 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
3829 | if (may_use_core_reg |
3830 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
3831 | && align > INT_REGISTER_SIZE |
3832 | && argreg & 1) | |
3833 | argreg++; | |
3834 | ||
2dd604e7 RE |
3835 | /* If the argument is a pointer to a function, and it is a |
3836 | Thumb function, create a LOCAL copy of the value and set | |
3837 | the THUMB bit in it. */ | |
3838 | if (TYPE_CODE_PTR == typecode | |
3839 | && target_type != NULL | |
f96b8fa0 | 3840 | && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type))) |
2dd604e7 | 3841 | { |
e17a4113 | 3842 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
9779414d | 3843 | if (arm_pc_is_thumb (gdbarch, regval)) |
2dd604e7 | 3844 | { |
224c3ddb | 3845 | bfd_byte *copy = (bfd_byte *) alloca (len); |
8c6363cf | 3846 | store_unsigned_integer (copy, len, byte_order, |
e17a4113 | 3847 | MAKE_THUMB_ADDR (regval)); |
8c6363cf | 3848 | val = copy; |
2dd604e7 RE |
3849 | } |
3850 | } | |
3851 | ||
3852 | /* Copy the argument to general registers or the stack in | |
3853 | register-sized pieces. Large arguments are split between | |
3854 | registers and stack. */ | |
3855 | while (len > 0) | |
3856 | { | |
f0c9063c | 3857 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
ef9bd0b8 YQ |
3858 | CORE_ADDR regval |
3859 | = extract_unsigned_integer (val, partial_len, byte_order); | |
2dd604e7 | 3860 | |
90445bd3 | 3861 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
3862 | { |
3863 | /* The argument is being passed in a general purpose | |
3864 | register. */ | |
e17a4113 | 3865 | if (byte_order == BFD_ENDIAN_BIG) |
8bf8793c | 3866 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
3867 | if (arm_debug) |
3868 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
3869 | argnum, |
3870 | gdbarch_register_name | |
2af46ca0 | 3871 | (gdbarch, argreg), |
f0c9063c | 3872 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
3873 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
3874 | argreg++; | |
3875 | } | |
3876 | else | |
3877 | { | |
ef9bd0b8 YQ |
3878 | gdb_byte buf[INT_REGISTER_SIZE]; |
3879 | ||
3880 | memset (buf, 0, sizeof (buf)); | |
3881 | store_unsigned_integer (buf, partial_len, byte_order, regval); | |
3882 | ||
2dd604e7 RE |
3883 | /* Push the arguments onto the stack. */ |
3884 | if (arm_debug) | |
3885 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
3886 | argnum, nstack); | |
ef9bd0b8 | 3887 | si = push_stack_item (si, buf, INT_REGISTER_SIZE); |
f0c9063c | 3888 | nstack += INT_REGISTER_SIZE; |
2dd604e7 RE |
3889 | } |
3890 | ||
3891 | len -= partial_len; | |
3892 | val += partial_len; | |
3893 | } | |
3894 | } | |
3895 | /* If we have an odd number of words to push, then decrement the stack | |
3896 | by one word now, so first stack argument will be dword aligned. */ | |
3897 | if (nstack & 4) | |
3898 | sp -= 4; | |
3899 | ||
3900 | while (si) | |
3901 | { | |
3902 | sp -= si->len; | |
3903 | write_memory (sp, si->data, si->len); | |
3904 | si = pop_stack_item (si); | |
3905 | } | |
3906 | ||
3907 | /* Finally, update teh SP register. */ | |
3908 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
3909 | ||
3910 | return sp; | |
3911 | } | |
3912 | ||
f53f0d0b PB |
3913 | |
3914 | /* Always align the frame to an 8-byte boundary. This is required on | |
3915 | some platforms and harmless on the rest. */ | |
3916 | ||
3917 | static CORE_ADDR | |
3918 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
3919 | { | |
3920 | /* Align the stack to eight bytes. */ | |
3921 | return sp & ~ (CORE_ADDR) 7; | |
3922 | } | |
3923 | ||
c906108c | 3924 | static void |
12b27276 | 3925 | print_fpu_flags (struct ui_file *file, int flags) |
c906108c | 3926 | { |
c5aa993b | 3927 | if (flags & (1 << 0)) |
12b27276 | 3928 | fputs_filtered ("IVO ", file); |
c5aa993b | 3929 | if (flags & (1 << 1)) |
12b27276 | 3930 | fputs_filtered ("DVZ ", file); |
c5aa993b | 3931 | if (flags & (1 << 2)) |
12b27276 | 3932 | fputs_filtered ("OFL ", file); |
c5aa993b | 3933 | if (flags & (1 << 3)) |
12b27276 | 3934 | fputs_filtered ("UFL ", file); |
c5aa993b | 3935 | if (flags & (1 << 4)) |
12b27276 WN |
3936 | fputs_filtered ("INX ", file); |
3937 | fputc_filtered ('\n', file); | |
c906108c SS |
3938 | } |
3939 | ||
5e74b15c RE |
3940 | /* Print interesting information about the floating point processor |
3941 | (if present) or emulator. */ | |
34e8f22d | 3942 | static void |
d855c300 | 3943 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 3944 | struct frame_info *frame, const char *args) |
c906108c | 3945 | { |
9c9acae0 | 3946 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
3947 | int type; |
3948 | ||
3949 | type = (status >> 24) & 127; | |
edefbb7c | 3950 | if (status & (1 << 31)) |
12b27276 | 3951 | fprintf_filtered (file, _("Hardware FPU type %d\n"), type); |
edefbb7c | 3952 | else |
12b27276 | 3953 | fprintf_filtered (file, _("Software FPU type %d\n"), type); |
edefbb7c | 3954 | /* i18n: [floating point unit] mask */ |
12b27276 WN |
3955 | fputs_filtered (_("mask: "), file); |
3956 | print_fpu_flags (file, status >> 16); | |
edefbb7c | 3957 | /* i18n: [floating point unit] flags */ |
12b27276 WN |
3958 | fputs_filtered (_("flags: "), file); |
3959 | print_fpu_flags (file, status); | |
c906108c SS |
3960 | } |
3961 | ||
27067745 UW |
3962 | /* Construct the ARM extended floating point type. */ |
3963 | static struct type * | |
3964 | arm_ext_type (struct gdbarch *gdbarch) | |
3965 | { | |
3966 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3967 | ||
3968 | if (!tdep->arm_ext_type) | |
3969 | tdep->arm_ext_type | |
e9bb382b | 3970 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
3971 | floatformats_arm_ext); |
3972 | ||
3973 | return tdep->arm_ext_type; | |
3974 | } | |
3975 | ||
58d6951d DJ |
3976 | static struct type * |
3977 | arm_neon_double_type (struct gdbarch *gdbarch) | |
3978 | { | |
3979 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3980 | ||
3981 | if (tdep->neon_double_type == NULL) | |
3982 | { | |
3983 | struct type *t, *elem; | |
3984 | ||
3985 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
3986 | TYPE_CODE_UNION); | |
3987 | elem = builtin_type (gdbarch)->builtin_uint8; | |
3988 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
3989 | elem = builtin_type (gdbarch)->builtin_uint16; | |
3990 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
3991 | elem = builtin_type (gdbarch)->builtin_uint32; | |
3992 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
3993 | elem = builtin_type (gdbarch)->builtin_uint64; | |
3994 | append_composite_type_field (t, "u64", elem); | |
3995 | elem = builtin_type (gdbarch)->builtin_float; | |
3996 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
3997 | elem = builtin_type (gdbarch)->builtin_double; | |
3998 | append_composite_type_field (t, "f64", elem); | |
3999 | ||
4000 | TYPE_VECTOR (t) = 1; | |
4001 | TYPE_NAME (t) = "neon_d"; | |
4002 | tdep->neon_double_type = t; | |
4003 | } | |
4004 | ||
4005 | return tdep->neon_double_type; | |
4006 | } | |
4007 | ||
4008 | /* FIXME: The vector types are not correctly ordered on big-endian | |
4009 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
4010 | bits of d0 - regardless of what unit size is being held in d0. So | |
4011 | the offset of the first uint8 in d0 is 7, but the offset of the | |
4012 | first float is 4. This code works as-is for little-endian | |
4013 | targets. */ | |
4014 | ||
4015 | static struct type * | |
4016 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
4017 | { | |
4018 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4019 | ||
4020 | if (tdep->neon_quad_type == NULL) | |
4021 | { | |
4022 | struct type *t, *elem; | |
4023 | ||
4024 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
4025 | TYPE_CODE_UNION); | |
4026 | elem = builtin_type (gdbarch)->builtin_uint8; | |
4027 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
4028 | elem = builtin_type (gdbarch)->builtin_uint16; | |
4029 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
4030 | elem = builtin_type (gdbarch)->builtin_uint32; | |
4031 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
4032 | elem = builtin_type (gdbarch)->builtin_uint64; | |
4033 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
4034 | elem = builtin_type (gdbarch)->builtin_float; | |
4035 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
4036 | elem = builtin_type (gdbarch)->builtin_double; | |
4037 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
4038 | ||
4039 | TYPE_VECTOR (t) = 1; | |
4040 | TYPE_NAME (t) = "neon_q"; | |
4041 | tdep->neon_quad_type = t; | |
4042 | } | |
4043 | ||
4044 | return tdep->neon_quad_type; | |
4045 | } | |
4046 | ||
34e8f22d RE |
4047 | /* Return the GDB type object for the "standard" data type of data in |
4048 | register N. */ | |
4049 | ||
4050 | static struct type * | |
7a5ea0d4 | 4051 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 4052 | { |
58d6951d DJ |
4053 | int num_regs = gdbarch_num_regs (gdbarch); |
4054 | ||
4055 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
4056 | && regnum >= num_regs && regnum < num_regs + 32) | |
4057 | return builtin_type (gdbarch)->builtin_float; | |
4058 | ||
4059 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
4060 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
4061 | return arm_neon_quad_type (gdbarch); | |
4062 | ||
4063 | /* If the target description has register information, we are only | |
4064 | in this function so that we can override the types of | |
4065 | double-precision registers for NEON. */ | |
4066 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
4067 | { | |
4068 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
4069 | ||
4070 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
4071 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
4072 | && gdbarch_tdep (gdbarch)->have_neon) | |
4073 | return arm_neon_double_type (gdbarch); | |
4074 | else | |
4075 | return t; | |
4076 | } | |
4077 | ||
34e8f22d | 4078 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
4079 | { |
4080 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
4081 | return builtin_type (gdbarch)->builtin_void; | |
4082 | ||
4083 | return arm_ext_type (gdbarch); | |
4084 | } | |
e4c16157 | 4085 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 4086 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 4087 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 4088 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
4089 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
4090 | /* These registers are only supported on targets which supply | |
4091 | an XML description. */ | |
df4df182 | 4092 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 4093 | else |
df4df182 | 4094 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
4095 | } |
4096 | ||
ff6f572f DJ |
4097 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
4098 | number. */ | |
4099 | ||
4100 | static int | |
d3f73121 | 4101 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
4102 | { |
4103 | /* Core integer regs. */ | |
4104 | if (reg >= 0 && reg <= 15) | |
4105 | return reg; | |
4106 | ||
4107 | /* Legacy FPA encoding. These were once used in a way which | |
4108 | overlapped with VFP register numbering, so their use is | |
4109 | discouraged, but GDB doesn't support the ARM toolchain | |
4110 | which used them for VFP. */ | |
4111 | if (reg >= 16 && reg <= 23) | |
4112 | return ARM_F0_REGNUM + reg - 16; | |
4113 | ||
4114 | /* New assignments for the FPA registers. */ | |
4115 | if (reg >= 96 && reg <= 103) | |
4116 | return ARM_F0_REGNUM + reg - 96; | |
4117 | ||
4118 | /* WMMX register assignments. */ | |
4119 | if (reg >= 104 && reg <= 111) | |
4120 | return ARM_WCGR0_REGNUM + reg - 104; | |
4121 | ||
4122 | if (reg >= 112 && reg <= 127) | |
4123 | return ARM_WR0_REGNUM + reg - 112; | |
4124 | ||
4125 | if (reg >= 192 && reg <= 199) | |
4126 | return ARM_WC0_REGNUM + reg - 192; | |
4127 | ||
58d6951d DJ |
4128 | /* VFP v2 registers. A double precision value is actually |
4129 | in d1 rather than s2, but the ABI only defines numbering | |
4130 | for the single precision registers. This will "just work" | |
4131 | in GDB for little endian targets (we'll read eight bytes, | |
4132 | starting in s0 and then progressing to s1), but will be | |
4133 | reversed on big endian targets with VFP. This won't | |
4134 | be a problem for the new Neon quad registers; you're supposed | |
4135 | to use DW_OP_piece for those. */ | |
4136 | if (reg >= 64 && reg <= 95) | |
4137 | { | |
4138 | char name_buf[4]; | |
4139 | ||
8c042590 | 4140 | xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64); |
58d6951d DJ |
4141 | return user_reg_map_name_to_regnum (gdbarch, name_buf, |
4142 | strlen (name_buf)); | |
4143 | } | |
4144 | ||
4145 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
4146 | registers, except that it now describes d0 instead of s0. */ | |
4147 | if (reg >= 256 && reg <= 287) | |
4148 | { | |
4149 | char name_buf[4]; | |
4150 | ||
8c042590 | 4151 | xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256); |
58d6951d DJ |
4152 | return user_reg_map_name_to_regnum (gdbarch, name_buf, |
4153 | strlen (name_buf)); | |
4154 | } | |
4155 | ||
ff6f572f DJ |
4156 | return -1; |
4157 | } | |
4158 | ||
26216b98 AC |
4159 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
4160 | static int | |
e7faf938 | 4161 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
4162 | { |
4163 | int reg = regnum; | |
e7faf938 | 4164 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 4165 | |
ff6f572f DJ |
4166 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
4167 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
4168 | ||
4169 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
4170 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
4171 | ||
4172 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
4173 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
4174 | ||
26216b98 AC |
4175 | if (reg < NUM_GREGS) |
4176 | return SIM_ARM_R0_REGNUM + reg; | |
4177 | reg -= NUM_GREGS; | |
4178 | ||
4179 | if (reg < NUM_FREGS) | |
4180 | return SIM_ARM_FP0_REGNUM + reg; | |
4181 | reg -= NUM_FREGS; | |
4182 | ||
4183 | if (reg < NUM_SREGS) | |
4184 | return SIM_ARM_FPS_REGNUM + reg; | |
4185 | reg -= NUM_SREGS; | |
4186 | ||
edefbb7c | 4187 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 4188 | } |
34e8f22d | 4189 | |
d9311bfa AT |
4190 | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
4191 | the buffer to be NEW_LEN bytes ending at ENDADDR. Return | |
4192 | NULL if an error occurs. BUF is freed. */ | |
c906108c | 4193 | |
d9311bfa AT |
4194 | static gdb_byte * |
4195 | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | |
4196 | int old_len, int new_len) | |
4197 | { | |
4198 | gdb_byte *new_buf; | |
4199 | int bytes_to_read = new_len - old_len; | |
c906108c | 4200 | |
d9311bfa AT |
4201 | new_buf = (gdb_byte *) xmalloc (new_len); |
4202 | memcpy (new_buf + bytes_to_read, buf, old_len); | |
4203 | xfree (buf); | |
198cd59d | 4204 | if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0) |
d9311bfa AT |
4205 | { |
4206 | xfree (new_buf); | |
4207 | return NULL; | |
c906108c | 4208 | } |
d9311bfa | 4209 | return new_buf; |
c906108c SS |
4210 | } |
4211 | ||
d9311bfa AT |
4212 | /* An IT block is at most the 2-byte IT instruction followed by |
4213 | four 4-byte instructions. The furthest back we must search to | |
4214 | find an IT block that affects the current instruction is thus | |
4215 | 2 + 3 * 4 == 14 bytes. */ | |
4216 | #define MAX_IT_BLOCK_PREFIX 14 | |
177321bd | 4217 | |
d9311bfa AT |
4218 | /* Use a quick scan if there are more than this many bytes of |
4219 | code. */ | |
4220 | #define IT_SCAN_THRESHOLD 32 | |
177321bd | 4221 | |
d9311bfa AT |
4222 | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. |
4223 | A breakpoint in an IT block may not be hit, depending on the | |
4224 | condition flags. */ | |
ad527d2e | 4225 | static CORE_ADDR |
d9311bfa | 4226 | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) |
c906108c | 4227 | { |
d9311bfa AT |
4228 | gdb_byte *buf; |
4229 | char map_type; | |
4230 | CORE_ADDR boundary, func_start; | |
4231 | int buf_len; | |
4232 | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); | |
4233 | int i, any, last_it, last_it_count; | |
177321bd | 4234 | |
d9311bfa AT |
4235 | /* If we are using BKPT breakpoints, none of this is necessary. */ |
4236 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL) | |
4237 | return bpaddr; | |
177321bd | 4238 | |
d9311bfa AT |
4239 | /* ARM mode does not have this problem. */ |
4240 | if (!arm_pc_is_thumb (gdbarch, bpaddr)) | |
4241 | return bpaddr; | |
177321bd | 4242 | |
d9311bfa AT |
4243 | /* We are setting a breakpoint in Thumb code that could potentially |
4244 | contain an IT block. The first step is to find how much Thumb | |
4245 | code there is; we do not need to read outside of known Thumb | |
4246 | sequences. */ | |
4247 | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | |
4248 | if (map_type == 0) | |
4249 | /* Thumb-2 code must have mapping symbols to have a chance. */ | |
4250 | return bpaddr; | |
9dca5578 | 4251 | |
d9311bfa | 4252 | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); |
177321bd | 4253 | |
d9311bfa AT |
4254 | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) |
4255 | && func_start > boundary) | |
4256 | boundary = func_start; | |
9dca5578 | 4257 | |
d9311bfa AT |
4258 | /* Search for a candidate IT instruction. We have to do some fancy |
4259 | footwork to distinguish a real IT instruction from the second | |
4260 | half of a 32-bit instruction, but there is no need for that if | |
4261 | there's no candidate. */ | |
325fac50 | 4262 | buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX); |
d9311bfa AT |
4263 | if (buf_len == 0) |
4264 | /* No room for an IT instruction. */ | |
4265 | return bpaddr; | |
c906108c | 4266 | |
d9311bfa | 4267 | buf = (gdb_byte *) xmalloc (buf_len); |
198cd59d | 4268 | if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0) |
d9311bfa AT |
4269 | return bpaddr; |
4270 | any = 0; | |
4271 | for (i = 0; i < buf_len; i += 2) | |
c906108c | 4272 | { |
d9311bfa AT |
4273 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); |
4274 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
25b41d01 | 4275 | { |
d9311bfa AT |
4276 | any = 1; |
4277 | break; | |
25b41d01 | 4278 | } |
c906108c | 4279 | } |
d9311bfa AT |
4280 | |
4281 | if (any == 0) | |
c906108c | 4282 | { |
d9311bfa AT |
4283 | xfree (buf); |
4284 | return bpaddr; | |
f9d67f43 DJ |
4285 | } |
4286 | ||
4287 | /* OK, the code bytes before this instruction contain at least one | |
4288 | halfword which resembles an IT instruction. We know that it's | |
4289 | Thumb code, but there are still two possibilities. Either the | |
4290 | halfword really is an IT instruction, or it is the second half of | |
4291 | a 32-bit Thumb instruction. The only way we can tell is to | |
4292 | scan forwards from a known instruction boundary. */ | |
4293 | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | |
4294 | { | |
4295 | int definite; | |
4296 | ||
4297 | /* There's a lot of code before this instruction. Start with an | |
4298 | optimistic search; it's easy to recognize halfwords that can | |
4299 | not be the start of a 32-bit instruction, and use that to | |
4300 | lock on to the instruction boundaries. */ | |
4301 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | |
4302 | if (buf == NULL) | |
4303 | return bpaddr; | |
4304 | buf_len = IT_SCAN_THRESHOLD; | |
4305 | ||
4306 | definite = 0; | |
4307 | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | |
4308 | { | |
4309 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4310 | if (thumb_insn_size (inst1) == 2) | |
4311 | { | |
4312 | definite = 1; | |
4313 | break; | |
4314 | } | |
4315 | } | |
4316 | ||
4317 | /* At this point, if DEFINITE, BUF[I] is the first place we | |
4318 | are sure that we know the instruction boundaries, and it is far | |
4319 | enough from BPADDR that we could not miss an IT instruction | |
4320 | affecting BPADDR. If ! DEFINITE, give up - start from a | |
4321 | known boundary. */ | |
4322 | if (! definite) | |
4323 | { | |
0963b4bd MS |
4324 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
4325 | bpaddr - boundary); | |
f9d67f43 DJ |
4326 | if (buf == NULL) |
4327 | return bpaddr; | |
4328 | buf_len = bpaddr - boundary; | |
4329 | i = 0; | |
4330 | } | |
4331 | } | |
4332 | else | |
4333 | { | |
4334 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | |
4335 | if (buf == NULL) | |
4336 | return bpaddr; | |
4337 | buf_len = bpaddr - boundary; | |
4338 | i = 0; | |
4339 | } | |
4340 | ||
4341 | /* Scan forwards. Find the last IT instruction before BPADDR. */ | |
4342 | last_it = -1; | |
4343 | last_it_count = 0; | |
4344 | while (i < buf_len) | |
4345 | { | |
4346 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4347 | last_it_count--; | |
4348 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4349 | { | |
4350 | last_it = i; | |
4351 | if (inst1 & 0x0001) | |
4352 | last_it_count = 4; | |
4353 | else if (inst1 & 0x0002) | |
4354 | last_it_count = 3; | |
4355 | else if (inst1 & 0x0004) | |
4356 | last_it_count = 2; | |
4357 | else | |
4358 | last_it_count = 1; | |
4359 | } | |
4360 | i += thumb_insn_size (inst1); | |
4361 | } | |
4362 | ||
4363 | xfree (buf); | |
4364 | ||
4365 | if (last_it == -1) | |
4366 | /* There wasn't really an IT instruction after all. */ | |
4367 | return bpaddr; | |
4368 | ||
4369 | if (last_it_count < 1) | |
4370 | /* It was too far away. */ | |
4371 | return bpaddr; | |
4372 | ||
4373 | /* This really is a trouble spot. Move the breakpoint to the IT | |
4374 | instruction. */ | |
4375 | return bpaddr - buf_len + last_it; | |
4376 | } | |
4377 | ||
cca44b1b | 4378 | /* ARM displaced stepping support. |
c906108c | 4379 | |
cca44b1b | 4380 | Generally ARM displaced stepping works as follows: |
c906108c | 4381 | |
cca44b1b | 4382 | 1. When an instruction is to be single-stepped, it is first decoded by |
2ba163c8 SM |
4383 | arm_process_displaced_insn. Depending on the type of instruction, it is |
4384 | then copied to a scratch location, possibly in a modified form. The | |
4385 | copy_* set of functions performs such modification, as necessary. A | |
4386 | breakpoint is placed after the modified instruction in the scratch space | |
4387 | to return control to GDB. Note in particular that instructions which | |
4388 | modify the PC will no longer do so after modification. | |
c5aa993b | 4389 | |
cca44b1b JB |
4390 | 2. The instruction is single-stepped, by setting the PC to the scratch |
4391 | location address, and resuming. Control returns to GDB when the | |
4392 | breakpoint is hit. | |
c5aa993b | 4393 | |
cca44b1b JB |
4394 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
4395 | function used for the current instruction. This function's job is to | |
4396 | put the CPU/memory state back to what it would have been if the | |
4397 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 4398 | |
cca44b1b JB |
4399 | /* NOP instruction (mov r0, r0). */ |
4400 | #define ARM_NOP 0xe1a00000 | |
34518530 | 4401 | #define THUMB_NOP 0x4600 |
cca44b1b JB |
4402 | |
4403 | /* Helper for register reads for displaced stepping. In particular, this | |
4404 | returns the PC as it would be seen by the instruction at its original | |
4405 | location. */ | |
4406 | ||
4407 | ULONGEST | |
cfba9872 | 4408 | displaced_read_reg (struct regcache *regs, arm_displaced_step_closure *dsc, |
36073a92 | 4409 | int regno) |
cca44b1b JB |
4410 | { |
4411 | ULONGEST ret; | |
36073a92 | 4412 | CORE_ADDR from = dsc->insn_addr; |
cca44b1b | 4413 | |
bf9f652a | 4414 | if (regno == ARM_PC_REGNUM) |
cca44b1b | 4415 | { |
4db71c0b YQ |
4416 | /* Compute pipeline offset: |
4417 | - When executing an ARM instruction, PC reads as the address of the | |
4418 | current instruction plus 8. | |
4419 | - When executing a Thumb instruction, PC reads as the address of the | |
4420 | current instruction plus 4. */ | |
4421 | ||
36073a92 | 4422 | if (!dsc->is_thumb) |
4db71c0b YQ |
4423 | from += 8; |
4424 | else | |
4425 | from += 4; | |
4426 | ||
cca44b1b JB |
4427 | if (debug_displaced) |
4428 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
4db71c0b YQ |
4429 | (unsigned long) from); |
4430 | return (ULONGEST) from; | |
cca44b1b | 4431 | } |
c906108c | 4432 | else |
cca44b1b JB |
4433 | { |
4434 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
4435 | if (debug_displaced) | |
4436 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
4437 | regno, (unsigned long) ret); | |
4438 | return ret; | |
4439 | } | |
c906108c SS |
4440 | } |
4441 | ||
cca44b1b JB |
4442 | static int |
4443 | displaced_in_arm_mode (struct regcache *regs) | |
4444 | { | |
4445 | ULONGEST ps; | |
ac7936df | 4446 | ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); |
66e810cd | 4447 | |
cca44b1b | 4448 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 4449 | |
9779414d | 4450 | return (ps & t_bit) == 0; |
cca44b1b | 4451 | } |
66e810cd | 4452 | |
cca44b1b | 4453 | /* Write to the PC as from a branch instruction. */ |
c906108c | 4454 | |
cca44b1b | 4455 | static void |
cfba9872 | 4456 | branch_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc, |
36073a92 | 4457 | ULONGEST val) |
c906108c | 4458 | { |
36073a92 | 4459 | if (!dsc->is_thumb) |
cca44b1b JB |
4460 | /* Note: If bits 0/1 are set, this branch would be unpredictable for |
4461 | architecture versions < 6. */ | |
0963b4bd MS |
4462 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4463 | val & ~(ULONGEST) 0x3); | |
cca44b1b | 4464 | else |
0963b4bd MS |
4465 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4466 | val & ~(ULONGEST) 0x1); | |
cca44b1b | 4467 | } |
66e810cd | 4468 | |
cca44b1b JB |
4469 | /* Write to the PC as from a branch-exchange instruction. */ |
4470 | ||
4471 | static void | |
4472 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
4473 | { | |
4474 | ULONGEST ps; | |
ac7936df | 4475 | ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); |
cca44b1b JB |
4476 | |
4477 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
4478 | ||
4479 | if ((val & 1) == 1) | |
c906108c | 4480 | { |
9779414d | 4481 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
cca44b1b JB |
4482 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
4483 | } | |
4484 | else if ((val & 2) == 0) | |
4485 | { | |
9779414d | 4486 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4487 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
c906108c SS |
4488 | } |
4489 | else | |
4490 | { | |
cca44b1b JB |
4491 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
4492 | mode, align dest to 4 bytes). */ | |
4493 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
9779414d | 4494 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4495 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
c906108c SS |
4496 | } |
4497 | } | |
ed9a39eb | 4498 | |
cca44b1b | 4499 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 4500 | |
34e8f22d | 4501 | static void |
cfba9872 | 4502 | load_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc, |
36073a92 | 4503 | ULONGEST val) |
ed9a39eb | 4504 | { |
cca44b1b JB |
4505 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
4506 | bx_write_pc (regs, val); | |
4507 | else | |
36073a92 | 4508 | branch_write_pc (regs, dsc, val); |
cca44b1b | 4509 | } |
be8626e0 | 4510 | |
cca44b1b JB |
4511 | /* Write to the PC as if from an ALU instruction. */ |
4512 | ||
4513 | static void | |
cfba9872 | 4514 | alu_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc, |
36073a92 | 4515 | ULONGEST val) |
cca44b1b | 4516 | { |
36073a92 | 4517 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) |
cca44b1b JB |
4518 | bx_write_pc (regs, val); |
4519 | else | |
36073a92 | 4520 | branch_write_pc (regs, dsc, val); |
cca44b1b JB |
4521 | } |
4522 | ||
4523 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
4524 | has a varying effects depending on the instruction which does the write: | |
4525 | this is controlled by the WRITE_PC argument. */ | |
4526 | ||
4527 | void | |
cfba9872 | 4528 | displaced_write_reg (struct regcache *regs, arm_displaced_step_closure *dsc, |
cca44b1b JB |
4529 | int regno, ULONGEST val, enum pc_write_style write_pc) |
4530 | { | |
bf9f652a | 4531 | if (regno == ARM_PC_REGNUM) |
08216dd7 | 4532 | { |
cca44b1b JB |
4533 | if (debug_displaced) |
4534 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
4535 | (unsigned long) val); | |
4536 | switch (write_pc) | |
08216dd7 | 4537 | { |
cca44b1b | 4538 | case BRANCH_WRITE_PC: |
36073a92 | 4539 | branch_write_pc (regs, dsc, val); |
08216dd7 RE |
4540 | break; |
4541 | ||
cca44b1b JB |
4542 | case BX_WRITE_PC: |
4543 | bx_write_pc (regs, val); | |
4544 | break; | |
4545 | ||
4546 | case LOAD_WRITE_PC: | |
36073a92 | 4547 | load_write_pc (regs, dsc, val); |
cca44b1b JB |
4548 | break; |
4549 | ||
4550 | case ALU_WRITE_PC: | |
36073a92 | 4551 | alu_write_pc (regs, dsc, val); |
cca44b1b JB |
4552 | break; |
4553 | ||
4554 | case CANNOT_WRITE_PC: | |
4555 | warning (_("Instruction wrote to PC in an unexpected way when " | |
4556 | "single-stepping")); | |
08216dd7 RE |
4557 | break; |
4558 | ||
4559 | default: | |
97b9747c JB |
4560 | internal_error (__FILE__, __LINE__, |
4561 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 4562 | } |
b508a996 | 4563 | |
cca44b1b | 4564 | dsc->wrote_to_pc = 1; |
b508a996 | 4565 | } |
ed9a39eb | 4566 | else |
b508a996 | 4567 | { |
cca44b1b JB |
4568 | if (debug_displaced) |
4569 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
4570 | regno, (unsigned long) val); | |
4571 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 4572 | } |
34e8f22d RE |
4573 | } |
4574 | ||
cca44b1b JB |
4575 | /* This function is used to concisely determine if an instruction INSN |
4576 | references PC. Register fields of interest in INSN should have the | |
0963b4bd MS |
4577 | corresponding fields of BITMASK set to 0b1111. The function |
4578 | returns return 1 if any of these fields in INSN reference the PC | |
4579 | (also 0b1111, r15), else it returns 0. */ | |
67255d04 RE |
4580 | |
4581 | static int | |
cca44b1b | 4582 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 4583 | { |
cca44b1b | 4584 | uint32_t lowbit = 1; |
67255d04 | 4585 | |
cca44b1b JB |
4586 | while (bitmask != 0) |
4587 | { | |
4588 | uint32_t mask; | |
44e1a9eb | 4589 | |
cca44b1b JB |
4590 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
4591 | ; | |
67255d04 | 4592 | |
cca44b1b JB |
4593 | if (!lowbit) |
4594 | break; | |
67255d04 | 4595 | |
cca44b1b | 4596 | mask = lowbit * 0xf; |
67255d04 | 4597 | |
cca44b1b JB |
4598 | if ((insn & mask) == mask) |
4599 | return 1; | |
4600 | ||
4601 | bitmask &= ~mask; | |
67255d04 RE |
4602 | } |
4603 | ||
cca44b1b JB |
4604 | return 0; |
4605 | } | |
2af48f68 | 4606 | |
cca44b1b JB |
4607 | /* The simplest copy function. Many instructions have the same effect no |
4608 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 4609 | |
cca44b1b | 4610 | static int |
7ff120b4 | 4611 | arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 4612 | const char *iname, arm_displaced_step_closure *dsc) |
cca44b1b JB |
4613 | { |
4614 | if (debug_displaced) | |
4615 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
4616 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
4617 | iname); | |
67255d04 | 4618 | |
cca44b1b | 4619 | dsc->modinsn[0] = insn; |
67255d04 | 4620 | |
cca44b1b JB |
4621 | return 0; |
4622 | } | |
4623 | ||
34518530 YQ |
4624 | static int |
4625 | thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
4626 | uint16_t insn2, const char *iname, | |
cfba9872 | 4627 | arm_displaced_step_closure *dsc) |
34518530 YQ |
4628 | { |
4629 | if (debug_displaced) | |
4630 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, " | |
4631 | "opcode/class '%s' unmodified\n", insn1, insn2, | |
4632 | iname); | |
4633 | ||
4634 | dsc->modinsn[0] = insn1; | |
4635 | dsc->modinsn[1] = insn2; | |
4636 | dsc->numinsns = 2; | |
4637 | ||
4638 | return 0; | |
4639 | } | |
4640 | ||
4641 | /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any | |
4642 | modification. */ | |
4643 | static int | |
615234c1 | 4644 | thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn, |
34518530 | 4645 | const char *iname, |
cfba9872 | 4646 | arm_displaced_step_closure *dsc) |
34518530 YQ |
4647 | { |
4648 | if (debug_displaced) | |
4649 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, " | |
4650 | "opcode/class '%s' unmodified\n", insn, | |
4651 | iname); | |
4652 | ||
4653 | dsc->modinsn[0] = insn; | |
4654 | ||
4655 | return 0; | |
4656 | } | |
4657 | ||
cca44b1b JB |
4658 | /* Preload instructions with immediate offset. */ |
4659 | ||
4660 | static void | |
6e39997a | 4661 | cleanup_preload (struct gdbarch *gdbarch, |
cfba9872 | 4662 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b JB |
4663 | { |
4664 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4665 | if (!dsc->u.preload.immed) | |
4666 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
4667 | } | |
4668 | ||
7ff120b4 YQ |
4669 | static void |
4670 | install_preload (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 4671 | arm_displaced_step_closure *dsc, unsigned int rn) |
cca44b1b | 4672 | { |
cca44b1b | 4673 | ULONGEST rn_val; |
cca44b1b JB |
4674 | /* Preload instructions: |
4675 | ||
4676 | {pli/pld} [rn, #+/-imm] | |
4677 | -> | |
4678 | {pli/pld} [r0, #+/-imm]. */ | |
4679 | ||
36073a92 YQ |
4680 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4681 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 4682 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
cca44b1b JB |
4683 | dsc->u.preload.immed = 1; |
4684 | ||
cca44b1b | 4685 | dsc->cleanup = &cleanup_preload; |
cca44b1b JB |
4686 | } |
4687 | ||
cca44b1b | 4688 | static int |
7ff120b4 | 4689 | arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
cfba9872 | 4690 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
4691 | { |
4692 | unsigned int rn = bits (insn, 16, 19); | |
cca44b1b | 4693 | |
7ff120b4 YQ |
4694 | if (!insn_references_pc (insn, 0x000f0000ul)) |
4695 | return arm_copy_unmodified (gdbarch, insn, "preload", dsc); | |
cca44b1b JB |
4696 | |
4697 | if (debug_displaced) | |
4698 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4699 | (unsigned long) insn); | |
4700 | ||
7ff120b4 YQ |
4701 | dsc->modinsn[0] = insn & 0xfff0ffff; |
4702 | ||
4703 | install_preload (gdbarch, regs, dsc, rn); | |
4704 | ||
4705 | return 0; | |
4706 | } | |
4707 | ||
34518530 YQ |
4708 | static int |
4709 | thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
cfba9872 | 4710 | struct regcache *regs, arm_displaced_step_closure *dsc) |
34518530 YQ |
4711 | { |
4712 | unsigned int rn = bits (insn1, 0, 3); | |
4713 | unsigned int u_bit = bit (insn1, 7); | |
4714 | int imm12 = bits (insn2, 0, 11); | |
4715 | ULONGEST pc_val; | |
4716 | ||
4717 | if (rn != ARM_PC_REGNUM) | |
4718 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); | |
4719 | ||
4720 | /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and | |
4721 | PLD (literal) Encoding T1. */ | |
4722 | if (debug_displaced) | |
4723 | fprintf_unfiltered (gdb_stdlog, | |
4724 | "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n", | |
4725 | (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', | |
4726 | imm12); | |
4727 | ||
4728 | if (!u_bit) | |
4729 | imm12 = -1 * imm12; | |
4730 | ||
4731 | /* Rewrite instruction {pli/pld} PC imm12 into: | |
4732 | Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 | |
4733 | ||
4734 | {pli/pld} [r0, r1] | |
4735 | ||
4736 | Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */ | |
4737 | ||
4738 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
4739 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
4740 | ||
4741 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
4742 | ||
4743 | displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); | |
4744 | displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); | |
4745 | dsc->u.preload.immed = 0; | |
4746 | ||
4747 | /* {pli/pld} [r0, r1] */ | |
4748 | dsc->modinsn[0] = insn1 & 0xfff0; | |
4749 | dsc->modinsn[1] = 0xf001; | |
4750 | dsc->numinsns = 2; | |
4751 | ||
4752 | dsc->cleanup = &cleanup_preload; | |
4753 | return 0; | |
4754 | } | |
4755 | ||
7ff120b4 YQ |
4756 | /* Preload instructions with register offset. */ |
4757 | ||
4758 | static void | |
4759 | install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 4760 | arm_displaced_step_closure *dsc, unsigned int rn, |
7ff120b4 YQ |
4761 | unsigned int rm) |
4762 | { | |
4763 | ULONGEST rn_val, rm_val; | |
4764 | ||
cca44b1b JB |
4765 | /* Preload register-offset instructions: |
4766 | ||
4767 | {pli/pld} [rn, rm {, shift}] | |
4768 | -> | |
4769 | {pli/pld} [r0, r1 {, shift}]. */ | |
4770 | ||
36073a92 YQ |
4771 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4772 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
4773 | rn_val = displaced_read_reg (regs, dsc, rn); | |
4774 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
4775 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
4776 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
cca44b1b JB |
4777 | dsc->u.preload.immed = 0; |
4778 | ||
cca44b1b | 4779 | dsc->cleanup = &cleanup_preload; |
7ff120b4 YQ |
4780 | } |
4781 | ||
4782 | static int | |
4783 | arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, | |
4784 | struct regcache *regs, | |
cfba9872 | 4785 | arm_displaced_step_closure *dsc) |
7ff120b4 YQ |
4786 | { |
4787 | unsigned int rn = bits (insn, 16, 19); | |
4788 | unsigned int rm = bits (insn, 0, 3); | |
4789 | ||
4790 | ||
4791 | if (!insn_references_pc (insn, 0x000f000ful)) | |
4792 | return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
4793 | ||
4794 | if (debug_displaced) | |
4795 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4796 | (unsigned long) insn); | |
4797 | ||
4798 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
cca44b1b | 4799 | |
7ff120b4 | 4800 | install_preload_reg (gdbarch, regs, dsc, rn, rm); |
cca44b1b JB |
4801 | return 0; |
4802 | } | |
4803 | ||
4804 | /* Copy/cleanup coprocessor load and store instructions. */ | |
4805 | ||
4806 | static void | |
6e39997a | 4807 | cleanup_copro_load_store (struct gdbarch *gdbarch, |
cca44b1b | 4808 | struct regcache *regs, |
cfba9872 | 4809 | arm_displaced_step_closure *dsc) |
cca44b1b | 4810 | { |
36073a92 | 4811 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
4812 | |
4813 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4814 | ||
4815 | if (dsc->u.ldst.writeback) | |
4816 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
4817 | } | |
4818 | ||
7ff120b4 YQ |
4819 | static void |
4820 | install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 4821 | arm_displaced_step_closure *dsc, |
7ff120b4 | 4822 | int writeback, unsigned int rn) |
cca44b1b | 4823 | { |
cca44b1b | 4824 | ULONGEST rn_val; |
cca44b1b | 4825 | |
cca44b1b JB |
4826 | /* Coprocessor load/store instructions: |
4827 | ||
4828 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
4829 | -> | |
4830 | {stc/stc2} [r0, #+/-imm]. | |
4831 | ||
4832 | ldc/ldc2 are handled identically. */ | |
4833 | ||
36073a92 YQ |
4834 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4835 | rn_val = displaced_read_reg (regs, dsc, rn); | |
2b16b2e3 YQ |
4836 | /* PC should be 4-byte aligned. */ |
4837 | rn_val = rn_val & 0xfffffffc; | |
cca44b1b JB |
4838 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
4839 | ||
7ff120b4 | 4840 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
4841 | dsc->u.ldst.rn = rn; |
4842 | ||
7ff120b4 YQ |
4843 | dsc->cleanup = &cleanup_copro_load_store; |
4844 | } | |
4845 | ||
4846 | static int | |
4847 | arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
4848 | struct regcache *regs, | |
cfba9872 | 4849 | arm_displaced_step_closure *dsc) |
7ff120b4 YQ |
4850 | { |
4851 | unsigned int rn = bits (insn, 16, 19); | |
4852 | ||
4853 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
4854 | return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
4855 | ||
4856 | if (debug_displaced) | |
4857 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
4858 | "load/store insn %.8lx\n", (unsigned long) insn); | |
4859 | ||
cca44b1b JB |
4860 | dsc->modinsn[0] = insn & 0xfff0ffff; |
4861 | ||
7ff120b4 | 4862 | install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); |
cca44b1b JB |
4863 | |
4864 | return 0; | |
4865 | } | |
4866 | ||
34518530 YQ |
4867 | static int |
4868 | thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, | |
4869 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 4870 | arm_displaced_step_closure *dsc) |
34518530 YQ |
4871 | { |
4872 | unsigned int rn = bits (insn1, 0, 3); | |
4873 | ||
4874 | if (rn != ARM_PC_REGNUM) | |
4875 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
4876 | "copro load/store", dsc); | |
4877 | ||
4878 | if (debug_displaced) | |
4879 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
4880 | "load/store insn %.4x%.4x\n", insn1, insn2); | |
4881 | ||
4882 | dsc->modinsn[0] = insn1 & 0xfff0; | |
4883 | dsc->modinsn[1] = insn2; | |
4884 | dsc->numinsns = 2; | |
4885 | ||
4886 | /* This function is called for copying instruction LDC/LDC2/VLDR, which | |
4887 | doesn't support writeback, so pass 0. */ | |
4888 | install_copro_load_store (gdbarch, regs, dsc, 0, rn); | |
4889 | ||
4890 | return 0; | |
4891 | } | |
4892 | ||
cca44b1b JB |
4893 | /* Clean up branch instructions (actually perform the branch, by setting |
4894 | PC). */ | |
4895 | ||
4896 | static void | |
6e39997a | 4897 | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
cfba9872 | 4898 | arm_displaced_step_closure *dsc) |
cca44b1b | 4899 | { |
36073a92 | 4900 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
4901 | int branch_taken = condition_true (dsc->u.branch.cond, status); |
4902 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
4903 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
4904 | ||
4905 | if (!branch_taken) | |
4906 | return; | |
4907 | ||
4908 | if (dsc->u.branch.link) | |
4909 | { | |
8c8dba6d YQ |
4910 | /* The value of LR should be the next insn of current one. In order |
4911 | not to confuse logic hanlding later insn `bx lr', if current insn mode | |
4912 | is Thumb, the bit 0 of LR value should be set to 1. */ | |
4913 | ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; | |
4914 | ||
4915 | if (dsc->is_thumb) | |
4916 | next_insn_addr |= 0x1; | |
4917 | ||
4918 | displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, | |
4919 | CANNOT_WRITE_PC); | |
cca44b1b JB |
4920 | } |
4921 | ||
bf9f652a | 4922 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); |
cca44b1b JB |
4923 | } |
4924 | ||
4925 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
4926 | ||
7ff120b4 YQ |
4927 | static void |
4928 | install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 4929 | arm_displaced_step_closure *dsc, |
7ff120b4 YQ |
4930 | unsigned int cond, int exchange, int link, long offset) |
4931 | { | |
4932 | /* Implement "BL<cond> <label>" as: | |
4933 | ||
4934 | Preparation: cond <- instruction condition | |
4935 | Insn: mov r0, r0 (nop) | |
4936 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
4937 | ||
4938 | B<cond> similar, but don't set r14 in cleanup. */ | |
4939 | ||
4940 | dsc->u.branch.cond = cond; | |
4941 | dsc->u.branch.link = link; | |
4942 | dsc->u.branch.exchange = exchange; | |
4943 | ||
2b16b2e3 YQ |
4944 | dsc->u.branch.dest = dsc->insn_addr; |
4945 | if (link && exchange) | |
4946 | /* For BLX, offset is computed from the Align (PC, 4). */ | |
4947 | dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; | |
4948 | ||
7ff120b4 | 4949 | if (dsc->is_thumb) |
2b16b2e3 | 4950 | dsc->u.branch.dest += 4 + offset; |
7ff120b4 | 4951 | else |
2b16b2e3 | 4952 | dsc->u.branch.dest += 8 + offset; |
7ff120b4 YQ |
4953 | |
4954 | dsc->cleanup = &cleanup_branch; | |
4955 | } | |
cca44b1b | 4956 | static int |
7ff120b4 | 4957 | arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 4958 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b JB |
4959 | { |
4960 | unsigned int cond = bits (insn, 28, 31); | |
4961 | int exchange = (cond == 0xf); | |
4962 | int link = exchange || bit (insn, 24); | |
cca44b1b JB |
4963 | long offset; |
4964 | ||
4965 | if (debug_displaced) | |
4966 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
4967 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
4968 | (unsigned long) insn); | |
cca44b1b JB |
4969 | if (exchange) |
4970 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
4971 | then arrange the switch into Thumb mode. */ | |
4972 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
4973 | else | |
4974 | offset = bits (insn, 0, 23) << 2; | |
4975 | ||
4976 | if (bit (offset, 25)) | |
4977 | offset = offset | ~0x3ffffff; | |
4978 | ||
cca44b1b JB |
4979 | dsc->modinsn[0] = ARM_NOP; |
4980 | ||
7ff120b4 | 4981 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
cca44b1b JB |
4982 | return 0; |
4983 | } | |
4984 | ||
34518530 YQ |
4985 | static int |
4986 | thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, | |
4987 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 4988 | arm_displaced_step_closure *dsc) |
34518530 YQ |
4989 | { |
4990 | int link = bit (insn2, 14); | |
4991 | int exchange = link && !bit (insn2, 12); | |
4992 | int cond = INST_AL; | |
4993 | long offset = 0; | |
4994 | int j1 = bit (insn2, 13); | |
4995 | int j2 = bit (insn2, 11); | |
4996 | int s = sbits (insn1, 10, 10); | |
4997 | int i1 = !(j1 ^ bit (insn1, 10)); | |
4998 | int i2 = !(j2 ^ bit (insn1, 10)); | |
4999 | ||
5000 | if (!link && !exchange) /* B */ | |
5001 | { | |
5002 | offset = (bits (insn2, 0, 10) << 1); | |
5003 | if (bit (insn2, 12)) /* Encoding T4 */ | |
5004 | { | |
5005 | offset |= (bits (insn1, 0, 9) << 12) | |
5006 | | (i2 << 22) | |
5007 | | (i1 << 23) | |
5008 | | (s << 24); | |
5009 | cond = INST_AL; | |
5010 | } | |
5011 | else /* Encoding T3 */ | |
5012 | { | |
5013 | offset |= (bits (insn1, 0, 5) << 12) | |
5014 | | (j1 << 18) | |
5015 | | (j2 << 19) | |
5016 | | (s << 20); | |
5017 | cond = bits (insn1, 6, 9); | |
5018 | } | |
5019 | } | |
5020 | else | |
5021 | { | |
5022 | offset = (bits (insn1, 0, 9) << 12); | |
5023 | offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); | |
5024 | offset |= exchange ? | |
5025 | (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); | |
5026 | } | |
5027 | ||
5028 | if (debug_displaced) | |
5029 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn " | |
5030 | "%.4x %.4x with offset %.8lx\n", | |
5031 | link ? (exchange) ? "blx" : "bl" : "b", | |
5032 | insn1, insn2, offset); | |
5033 | ||
5034 | dsc->modinsn[0] = THUMB_NOP; | |
5035 | ||
5036 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | |
5037 | return 0; | |
5038 | } | |
5039 | ||
5040 | /* Copy B Thumb instructions. */ | |
5041 | static int | |
615234c1 | 5042 | thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn, |
cfba9872 | 5043 | arm_displaced_step_closure *dsc) |
34518530 YQ |
5044 | { |
5045 | unsigned int cond = 0; | |
5046 | int offset = 0; | |
5047 | unsigned short bit_12_15 = bits (insn, 12, 15); | |
5048 | CORE_ADDR from = dsc->insn_addr; | |
5049 | ||
5050 | if (bit_12_15 == 0xd) | |
5051 | { | |
5052 | /* offset = SignExtend (imm8:0, 32) */ | |
5053 | offset = sbits ((insn << 1), 0, 8); | |
5054 | cond = bits (insn, 8, 11); | |
5055 | } | |
5056 | else if (bit_12_15 == 0xe) /* Encoding T2 */ | |
5057 | { | |
5058 | offset = sbits ((insn << 1), 0, 11); | |
5059 | cond = INST_AL; | |
5060 | } | |
5061 | ||
5062 | if (debug_displaced) | |
5063 | fprintf_unfiltered (gdb_stdlog, | |
5064 | "displaced: copying b immediate insn %.4x " | |
5065 | "with offset %d\n", insn, offset); | |
5066 | ||
5067 | dsc->u.branch.cond = cond; | |
5068 | dsc->u.branch.link = 0; | |
5069 | dsc->u.branch.exchange = 0; | |
5070 | dsc->u.branch.dest = from + 4 + offset; | |
5071 | ||
5072 | dsc->modinsn[0] = THUMB_NOP; | |
5073 | ||
5074 | dsc->cleanup = &cleanup_branch; | |
5075 | ||
5076 | return 0; | |
5077 | } | |
5078 | ||
cca44b1b JB |
5079 | /* Copy BX/BLX with register-specified destinations. */ |
5080 | ||
7ff120b4 YQ |
5081 | static void |
5082 | install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 5083 | arm_displaced_step_closure *dsc, int link, |
7ff120b4 | 5084 | unsigned int cond, unsigned int rm) |
cca44b1b | 5085 | { |
cca44b1b JB |
5086 | /* Implement {BX,BLX}<cond> <reg>" as: |
5087 | ||
5088 | Preparation: cond <- instruction condition | |
5089 | Insn: mov r0, r0 (nop) | |
5090 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
5091 | ||
5092 | Don't set r14 in cleanup for BX. */ | |
5093 | ||
36073a92 | 5094 | dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5095 | |
5096 | dsc->u.branch.cond = cond; | |
5097 | dsc->u.branch.link = link; | |
cca44b1b | 5098 | |
7ff120b4 | 5099 | dsc->u.branch.exchange = 1; |
cca44b1b JB |
5100 | |
5101 | dsc->cleanup = &cleanup_branch; | |
7ff120b4 | 5102 | } |
cca44b1b | 5103 | |
7ff120b4 YQ |
5104 | static int |
5105 | arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, | |
cfba9872 | 5106 | struct regcache *regs, arm_displaced_step_closure *dsc) |
7ff120b4 YQ |
5107 | { |
5108 | unsigned int cond = bits (insn, 28, 31); | |
5109 | /* BX: x12xxx1x | |
5110 | BLX: x12xxx3x. */ | |
5111 | int link = bit (insn, 5); | |
5112 | unsigned int rm = bits (insn, 0, 3); | |
5113 | ||
5114 | if (debug_displaced) | |
5115 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx", | |
5116 | (unsigned long) insn); | |
5117 | ||
5118 | dsc->modinsn[0] = ARM_NOP; | |
5119 | ||
5120 | install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); | |
cca44b1b JB |
5121 | return 0; |
5122 | } | |
5123 | ||
34518530 YQ |
5124 | static int |
5125 | thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, | |
5126 | struct regcache *regs, | |
cfba9872 | 5127 | arm_displaced_step_closure *dsc) |
34518530 YQ |
5128 | { |
5129 | int link = bit (insn, 7); | |
5130 | unsigned int rm = bits (insn, 3, 6); | |
5131 | ||
5132 | if (debug_displaced) | |
5133 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x", | |
5134 | (unsigned short) insn); | |
5135 | ||
5136 | dsc->modinsn[0] = THUMB_NOP; | |
5137 | ||
5138 | install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); | |
5139 | ||
5140 | return 0; | |
5141 | } | |
5142 | ||
5143 | ||
0963b4bd | 5144 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
cca44b1b JB |
5145 | |
5146 | static void | |
6e39997a | 5147 | cleanup_alu_imm (struct gdbarch *gdbarch, |
cfba9872 | 5148 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b | 5149 | { |
36073a92 | 5150 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5151 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
5152 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5153 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5154 | } | |
5155 | ||
5156 | static int | |
7ff120b4 | 5157 | arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
cfba9872 | 5158 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
5159 | { |
5160 | unsigned int rn = bits (insn, 16, 19); | |
5161 | unsigned int rd = bits (insn, 12, 15); | |
5162 | unsigned int op = bits (insn, 21, 24); | |
5163 | int is_mov = (op == 0xd); | |
5164 | ULONGEST rd_val, rn_val; | |
cca44b1b JB |
5165 | |
5166 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
7ff120b4 | 5167 | return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); |
cca44b1b JB |
5168 | |
5169 | if (debug_displaced) | |
5170 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
5171 | "%.8lx\n", is_mov ? "move" : "ALU", | |
5172 | (unsigned long) insn); | |
5173 | ||
5174 | /* Instruction is of form: | |
5175 | ||
5176 | <op><cond> rd, [rn,] #imm | |
5177 | ||
5178 | Rewrite as: | |
5179 | ||
5180 | Preparation: tmp1, tmp2 <- r0, r1; | |
5181 | r0, r1 <- rd, rn | |
5182 | Insn: <op><cond> r0, r1, #imm | |
5183 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
5184 | */ | |
5185 | ||
36073a92 YQ |
5186 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5187 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5188 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5189 | rd_val = displaced_read_reg (regs, dsc, rd); | |
cca44b1b JB |
5190 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5191 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5192 | dsc->rd = rd; | |
5193 | ||
5194 | if (is_mov) | |
5195 | dsc->modinsn[0] = insn & 0xfff00fff; | |
5196 | else | |
5197 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
5198 | ||
5199 | dsc->cleanup = &cleanup_alu_imm; | |
5200 | ||
5201 | return 0; | |
5202 | } | |
5203 | ||
34518530 YQ |
5204 | static int |
5205 | thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
5206 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 5207 | arm_displaced_step_closure *dsc) |
34518530 YQ |
5208 | { |
5209 | unsigned int op = bits (insn1, 5, 8); | |
5210 | unsigned int rn, rm, rd; | |
5211 | ULONGEST rd_val, rn_val; | |
5212 | ||
5213 | rn = bits (insn1, 0, 3); /* Rn */ | |
5214 | rm = bits (insn2, 0, 3); /* Rm */ | |
5215 | rd = bits (insn2, 8, 11); /* Rd */ | |
5216 | ||
5217 | /* This routine is only called for instruction MOV. */ | |
5218 | gdb_assert (op == 0x2 && rn == 0xf); | |
5219 | ||
5220 | if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) | |
5221 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); | |
5222 | ||
5223 | if (debug_displaced) | |
5224 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n", | |
5225 | "ALU", insn1, insn2); | |
5226 | ||
5227 | /* Instruction is of form: | |
5228 | ||
5229 | <op><cond> rd, [rn,] #imm | |
5230 | ||
5231 | Rewrite as: | |
5232 | ||
5233 | Preparation: tmp1, tmp2 <- r0, r1; | |
5234 | r0, r1 <- rd, rn | |
5235 | Insn: <op><cond> r0, r1, #imm | |
5236 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
5237 | */ | |
5238 | ||
5239 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5240 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5241 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5242 | rd_val = displaced_read_reg (regs, dsc, rd); | |
5243 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
5244 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5245 | dsc->rd = rd; | |
5246 | ||
5247 | dsc->modinsn[0] = insn1; | |
5248 | dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); | |
5249 | dsc->numinsns = 2; | |
5250 | ||
5251 | dsc->cleanup = &cleanup_alu_imm; | |
5252 | ||
5253 | return 0; | |
5254 | } | |
5255 | ||
cca44b1b JB |
5256 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ |
5257 | ||
5258 | static void | |
6e39997a | 5259 | cleanup_alu_reg (struct gdbarch *gdbarch, |
cfba9872 | 5260 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b JB |
5261 | { |
5262 | ULONGEST rd_val; | |
5263 | int i; | |
5264 | ||
36073a92 | 5265 | rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5266 | |
5267 | for (i = 0; i < 3; i++) | |
5268 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
5269 | ||
5270 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5271 | } | |
5272 | ||
7ff120b4 YQ |
5273 | static void |
5274 | install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 5275 | arm_displaced_step_closure *dsc, |
7ff120b4 | 5276 | unsigned int rd, unsigned int rn, unsigned int rm) |
cca44b1b | 5277 | { |
cca44b1b | 5278 | ULONGEST rd_val, rn_val, rm_val; |
cca44b1b | 5279 | |
cca44b1b JB |
5280 | /* Instruction is of form: |
5281 | ||
5282 | <op><cond> rd, [rn,] rm [, <shift>] | |
5283 | ||
5284 | Rewrite as: | |
5285 | ||
5286 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
5287 | r0, r1, r2 <- rd, rn, rm | |
ef713951 | 5288 | Insn: <op><cond> r0, [r1,] r2 [, <shift>] |
cca44b1b JB |
5289 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 |
5290 | */ | |
5291 | ||
36073a92 YQ |
5292 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5293 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5294 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
5295 | rd_val = displaced_read_reg (regs, dsc, rd); | |
5296 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5297 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
5298 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5299 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5300 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
5301 | dsc->rd = rd; | |
5302 | ||
7ff120b4 YQ |
5303 | dsc->cleanup = &cleanup_alu_reg; |
5304 | } | |
5305 | ||
5306 | static int | |
5307 | arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
cfba9872 | 5308 | arm_displaced_step_closure *dsc) |
7ff120b4 YQ |
5309 | { |
5310 | unsigned int op = bits (insn, 21, 24); | |
5311 | int is_mov = (op == 0xd); | |
5312 | ||
5313 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5314 | return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
5315 | ||
5316 | if (debug_displaced) | |
5317 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
5318 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
5319 | ||
cca44b1b JB |
5320 | if (is_mov) |
5321 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
5322 | else | |
5323 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
5324 | ||
7ff120b4 YQ |
5325 | install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), |
5326 | bits (insn, 0, 3)); | |
cca44b1b JB |
5327 | return 0; |
5328 | } | |
5329 | ||
34518530 YQ |
5330 | static int |
5331 | thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, | |
5332 | struct regcache *regs, | |
cfba9872 | 5333 | arm_displaced_step_closure *dsc) |
34518530 | 5334 | { |
ef713951 | 5335 | unsigned rm, rd; |
34518530 | 5336 | |
ef713951 YQ |
5337 | rm = bits (insn, 3, 6); |
5338 | rd = (bit (insn, 7) << 3) | bits (insn, 0, 2); | |
34518530 | 5339 | |
ef713951 | 5340 | if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM) |
34518530 YQ |
5341 | return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); |
5342 | ||
5343 | if (debug_displaced) | |
ef713951 YQ |
5344 | fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n", |
5345 | (unsigned short) insn); | |
34518530 | 5346 | |
ef713951 | 5347 | dsc->modinsn[0] = ((insn & 0xff00) | 0x10); |
34518530 | 5348 | |
ef713951 | 5349 | install_alu_reg (gdbarch, regs, dsc, rd, rd, rm); |
34518530 YQ |
5350 | |
5351 | return 0; | |
5352 | } | |
5353 | ||
cca44b1b JB |
5354 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ |
5355 | ||
5356 | static void | |
6e39997a | 5357 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
cca44b1b | 5358 | struct regcache *regs, |
cfba9872 | 5359 | arm_displaced_step_closure *dsc) |
cca44b1b | 5360 | { |
36073a92 | 5361 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5362 | int i; |
5363 | ||
5364 | for (i = 0; i < 4; i++) | |
5365 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
5366 | ||
5367 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5368 | } | |
5369 | ||
7ff120b4 YQ |
5370 | static void |
5371 | install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 5372 | arm_displaced_step_closure *dsc, |
7ff120b4 YQ |
5373 | unsigned int rd, unsigned int rn, unsigned int rm, |
5374 | unsigned rs) | |
cca44b1b | 5375 | { |
7ff120b4 | 5376 | int i; |
cca44b1b | 5377 | ULONGEST rd_val, rn_val, rm_val, rs_val; |
cca44b1b | 5378 | |
cca44b1b JB |
5379 | /* Instruction is of form: |
5380 | ||
5381 | <op><cond> rd, [rn,] rm, <shift> rs | |
5382 | ||
5383 | Rewrite as: | |
5384 | ||
5385 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
5386 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
5387 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
5388 | Cleanup: tmp5 <- r0 | |
5389 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
5390 | rd <- tmp5 | |
5391 | */ | |
5392 | ||
5393 | for (i = 0; i < 4; i++) | |
36073a92 | 5394 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b | 5395 | |
36073a92 YQ |
5396 | rd_val = displaced_read_reg (regs, dsc, rd); |
5397 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5398 | rm_val = displaced_read_reg (regs, dsc, rm); | |
5399 | rs_val = displaced_read_reg (regs, dsc, rs); | |
cca44b1b JB |
5400 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5401 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5402 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
5403 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
5404 | dsc->rd = rd; | |
7ff120b4 YQ |
5405 | dsc->cleanup = &cleanup_alu_shifted_reg; |
5406 | } | |
5407 | ||
5408 | static int | |
5409 | arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
5410 | struct regcache *regs, | |
cfba9872 | 5411 | arm_displaced_step_closure *dsc) |
7ff120b4 YQ |
5412 | { |
5413 | unsigned int op = bits (insn, 21, 24); | |
5414 | int is_mov = (op == 0xd); | |
5415 | unsigned int rd, rn, rm, rs; | |
5416 | ||
5417 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
5418 | return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
5419 | ||
5420 | if (debug_displaced) | |
5421 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
5422 | "%.8lx\n", is_mov ? "move" : "ALU", | |
5423 | (unsigned long) insn); | |
5424 | ||
5425 | rn = bits (insn, 16, 19); | |
5426 | rm = bits (insn, 0, 3); | |
5427 | rs = bits (insn, 8, 11); | |
5428 | rd = bits (insn, 12, 15); | |
cca44b1b JB |
5429 | |
5430 | if (is_mov) | |
5431 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
5432 | else | |
5433 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
5434 | ||
7ff120b4 | 5435 | install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); |
cca44b1b JB |
5436 | |
5437 | return 0; | |
5438 | } | |
5439 | ||
5440 | /* Clean up load instructions. */ | |
5441 | ||
5442 | static void | |
6e39997a | 5443 | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
cfba9872 | 5444 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
5445 | { |
5446 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
cca44b1b | 5447 | |
36073a92 | 5448 | rt_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b | 5449 | if (dsc->u.ldst.xfersize == 8) |
36073a92 YQ |
5450 | rt_val2 = displaced_read_reg (regs, dsc, 1); |
5451 | rn_val = displaced_read_reg (regs, dsc, 2); | |
cca44b1b JB |
5452 | |
5453 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5454 | if (dsc->u.ldst.xfersize > 4) | |
5455 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5456 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5457 | if (!dsc->u.ldst.immed) | |
5458 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5459 | ||
5460 | /* Handle register writeback. */ | |
5461 | if (dsc->u.ldst.writeback) | |
5462 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5463 | /* Put result in right place. */ | |
5464 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
5465 | if (dsc->u.ldst.xfersize == 8) | |
5466 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
5467 | } | |
5468 | ||
5469 | /* Clean up store instructions. */ | |
5470 | ||
5471 | static void | |
6e39997a | 5472 | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
cfba9872 | 5473 | arm_displaced_step_closure *dsc) |
cca44b1b | 5474 | { |
36073a92 | 5475 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); |
cca44b1b JB |
5476 | |
5477 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5478 | if (dsc->u.ldst.xfersize > 4) | |
5479 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5480 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5481 | if (!dsc->u.ldst.immed) | |
5482 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5483 | if (!dsc->u.ldst.restore_r4) | |
5484 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
5485 | ||
5486 | /* Writeback. */ | |
5487 | if (dsc->u.ldst.writeback) | |
5488 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5489 | } | |
5490 | ||
5491 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
5492 | transfers, which have a different encoding to byte/word transfers. */ | |
5493 | ||
5494 | static int | |
550dc4e2 | 5495 | arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged, |
cfba9872 | 5496 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b JB |
5497 | { |
5498 | unsigned int op1 = bits (insn, 20, 24); | |
5499 | unsigned int op2 = bits (insn, 5, 6); | |
5500 | unsigned int rt = bits (insn, 12, 15); | |
5501 | unsigned int rn = bits (insn, 16, 19); | |
5502 | unsigned int rm = bits (insn, 0, 3); | |
5503 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
5504 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
5505 | int immed = (op1 & 0x4) != 0; | |
5506 | int opcode; | |
5507 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
cca44b1b JB |
5508 | |
5509 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
7ff120b4 | 5510 | return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); |
cca44b1b JB |
5511 | |
5512 | if (debug_displaced) | |
5513 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
550dc4e2 | 5514 | "insn %.8lx\n", unprivileged ? "unprivileged " : "", |
cca44b1b JB |
5515 | (unsigned long) insn); |
5516 | ||
5517 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
5518 | ||
5519 | if (opcode < 0) | |
5520 | internal_error (__FILE__, __LINE__, | |
5521 | _("copy_extra_ld_st: instruction decode error")); | |
5522 | ||
36073a92 YQ |
5523 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5524 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5525 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 5526 | if (!immed) |
36073a92 | 5527 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 5528 | |
36073a92 | 5529 | rt_val = displaced_read_reg (regs, dsc, rt); |
cca44b1b | 5530 | if (bytesize[opcode] == 8) |
36073a92 YQ |
5531 | rt_val2 = displaced_read_reg (regs, dsc, rt + 1); |
5532 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5533 | if (!immed) |
36073a92 | 5534 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5535 | |
5536 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5537 | if (bytesize[opcode] == 8) | |
5538 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
5539 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5540 | if (!immed) | |
5541 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
5542 | ||
5543 | dsc->rd = rt; | |
5544 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
5545 | dsc->u.ldst.rn = rn; | |
5546 | dsc->u.ldst.immed = immed; | |
5547 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
5548 | dsc->u.ldst.restore_r4 = 0; | |
5549 | ||
5550 | if (immed) | |
5551 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
5552 | -> | |
5553 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
5554 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5555 | else | |
5556 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
5557 | -> | |
5558 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
5559 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5560 | ||
5561 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
5562 | ||
5563 | return 0; | |
5564 | } | |
5565 | ||
0f6f04ba | 5566 | /* Copy byte/half word/word loads and stores. */ |
cca44b1b | 5567 | |
7ff120b4 | 5568 | static void |
0f6f04ba | 5569 | install_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
cfba9872 | 5570 | arm_displaced_step_closure *dsc, int load, |
0f6f04ba YQ |
5571 | int immed, int writeback, int size, int usermode, |
5572 | int rt, int rm, int rn) | |
cca44b1b | 5573 | { |
cca44b1b | 5574 | ULONGEST rt_val, rn_val, rm_val = 0; |
cca44b1b | 5575 | |
36073a92 YQ |
5576 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5577 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 5578 | if (!immed) |
36073a92 | 5579 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 5580 | if (!load) |
36073a92 | 5581 | dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); |
cca44b1b | 5582 | |
36073a92 YQ |
5583 | rt_val = displaced_read_reg (regs, dsc, rt); |
5584 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5585 | if (!immed) |
36073a92 | 5586 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5587 | |
5588 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5589 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5590 | if (!immed) | |
5591 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
cca44b1b | 5592 | dsc->rd = rt; |
0f6f04ba | 5593 | dsc->u.ldst.xfersize = size; |
cca44b1b JB |
5594 | dsc->u.ldst.rn = rn; |
5595 | dsc->u.ldst.immed = immed; | |
7ff120b4 | 5596 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
5597 | |
5598 | /* To write PC we can do: | |
5599 | ||
494e194e YQ |
5600 | Before this sequence of instructions: |
5601 | r0 is the PC value got from displaced_read_reg, so r0 = from + 8; | |
5602 | r2 is the Rn value got from dispalced_read_reg. | |
5603 | ||
5604 | Insn1: push {pc} Write address of STR instruction + offset on stack | |
5605 | Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset | |
5606 | Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc | |
5607 | = addr(Insn1) + offset - addr(Insn3) - 8 | |
5608 | = offset - 16 | |
5609 | Insn4: add r4, r4, #8 r4 = offset - 8 | |
5610 | Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8 | |
5611 | = from + offset | |
5612 | Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
cca44b1b JB |
5613 | |
5614 | Otherwise we don't know what value to write for PC, since the offset is | |
494e194e YQ |
5615 | architecture-dependent (sometimes PC+8, sometimes PC+12). More details |
5616 | of this can be found in Section "Saving from r15" in | |
5617 | http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ | |
cca44b1b | 5618 | |
7ff120b4 YQ |
5619 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
5620 | } | |
5621 | ||
34518530 YQ |
5622 | |
5623 | static int | |
5624 | thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, | |
5625 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 5626 | arm_displaced_step_closure *dsc, int size) |
34518530 YQ |
5627 | { |
5628 | unsigned int u_bit = bit (insn1, 7); | |
5629 | unsigned int rt = bits (insn2, 12, 15); | |
5630 | int imm12 = bits (insn2, 0, 11); | |
5631 | ULONGEST pc_val; | |
5632 | ||
5633 | if (debug_displaced) | |
5634 | fprintf_unfiltered (gdb_stdlog, | |
5635 | "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n", | |
5636 | (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', | |
5637 | imm12); | |
5638 | ||
5639 | if (!u_bit) | |
5640 | imm12 = -1 * imm12; | |
5641 | ||
5642 | /* Rewrite instruction LDR Rt imm12 into: | |
5643 | ||
5644 | Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 | |
5645 | ||
5646 | LDR R0, R2, R3, | |
5647 | ||
5648 | Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */ | |
5649 | ||
5650 | ||
5651 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5652 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
5653 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
5654 | ||
5655 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
5656 | ||
5657 | pc_val = pc_val & 0xfffffffc; | |
5658 | ||
5659 | displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); | |
5660 | displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); | |
5661 | ||
5662 | dsc->rd = rt; | |
5663 | ||
5664 | dsc->u.ldst.xfersize = size; | |
5665 | dsc->u.ldst.immed = 0; | |
5666 | dsc->u.ldst.writeback = 0; | |
5667 | dsc->u.ldst.restore_r4 = 0; | |
5668 | ||
5669 | /* LDR R0, R2, R3 */ | |
5670 | dsc->modinsn[0] = 0xf852; | |
5671 | dsc->modinsn[1] = 0x3; | |
5672 | dsc->numinsns = 2; | |
5673 | ||
5674 | dsc->cleanup = &cleanup_load; | |
5675 | ||
5676 | return 0; | |
5677 | } | |
5678 | ||
5679 | static int | |
5680 | thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
5681 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 5682 | arm_displaced_step_closure *dsc, |
34518530 YQ |
5683 | int writeback, int immed) |
5684 | { | |
5685 | unsigned int rt = bits (insn2, 12, 15); | |
5686 | unsigned int rn = bits (insn1, 0, 3); | |
5687 | unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */ | |
5688 | /* In LDR (register), there is also a register Rm, which is not allowed to | |
5689 | be PC, so we don't have to check it. */ | |
5690 | ||
5691 | if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
5692 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", | |
5693 | dsc); | |
5694 | ||
5695 | if (debug_displaced) | |
5696 | fprintf_unfiltered (gdb_stdlog, | |
5697 | "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n", | |
5698 | rt, rn, insn1, insn2); | |
5699 | ||
5700 | install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, | |
5701 | 0, rt, rm, rn); | |
5702 | ||
5703 | dsc->u.ldst.restore_r4 = 0; | |
5704 | ||
5705 | if (immed) | |
5706 | /* ldr[b]<cond> rt, [rn, #imm], etc. | |
5707 | -> | |
5708 | ldr[b]<cond> r0, [r2, #imm]. */ | |
5709 | { | |
5710 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
5711 | dsc->modinsn[1] = insn2 & 0x0fff; | |
5712 | } | |
5713 | else | |
5714 | /* ldr[b]<cond> rt, [rn, rm], etc. | |
5715 | -> | |
5716 | ldr[b]<cond> r0, [r2, r3]. */ | |
5717 | { | |
5718 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
5719 | dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; | |
5720 | } | |
5721 | ||
5722 | dsc->numinsns = 2; | |
5723 | ||
5724 | return 0; | |
5725 | } | |
5726 | ||
5727 | ||
7ff120b4 YQ |
5728 | static int |
5729 | arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
5730 | struct regcache *regs, | |
cfba9872 | 5731 | arm_displaced_step_closure *dsc, |
0f6f04ba | 5732 | int load, int size, int usermode) |
7ff120b4 YQ |
5733 | { |
5734 | int immed = !bit (insn, 25); | |
5735 | int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); | |
5736 | unsigned int rt = bits (insn, 12, 15); | |
5737 | unsigned int rn = bits (insn, 16, 19); | |
5738 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
5739 | ||
5740 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5741 | return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); | |
5742 | ||
5743 | if (debug_displaced) | |
5744 | fprintf_unfiltered (gdb_stdlog, | |
5745 | "displaced: copying %s%s r%d [r%d] insn %.8lx\n", | |
0f6f04ba YQ |
5746 | load ? (size == 1 ? "ldrb" : "ldr") |
5747 | : (size == 1 ? "strb" : "str"), usermode ? "t" : "", | |
7ff120b4 YQ |
5748 | rt, rn, |
5749 | (unsigned long) insn); | |
5750 | ||
0f6f04ba YQ |
5751 | install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, |
5752 | usermode, rt, rm, rn); | |
7ff120b4 | 5753 | |
bf9f652a | 5754 | if (load || rt != ARM_PC_REGNUM) |
cca44b1b JB |
5755 | { |
5756 | dsc->u.ldst.restore_r4 = 0; | |
5757 | ||
5758 | if (immed) | |
5759 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
5760 | -> | |
5761 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
5762 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5763 | else | |
5764 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
5765 | -> | |
5766 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
5767 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5768 | } | |
5769 | else | |
5770 | { | |
5771 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
5772 | dsc->u.ldst.restore_r4 = 1; | |
494e194e YQ |
5773 | dsc->modinsn[0] = 0xe92d8000; /* push {pc} */ |
5774 | dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */ | |
cca44b1b JB |
5775 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ |
5776 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
5777 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
5778 | ||
5779 | /* As above. */ | |
5780 | if (immed) | |
5781 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
5782 | else | |
5783 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
5784 | ||
cca44b1b JB |
5785 | dsc->numinsns = 6; |
5786 | } | |
5787 | ||
5788 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
5789 | ||
5790 | return 0; | |
5791 | } | |
5792 | ||
5793 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
5794 | unfortunate corner case: it's impossible to implement correctly by modifying | |
5795 | the instruction. The issue is as follows: we have an instruction, | |
5796 | ||
5797 | ldm rN, {r0-r15} | |
5798 | ||
5799 | which we must rewrite to avoid loading PC. A possible solution would be to | |
5800 | do the load in two halves, something like (with suitable cleanup | |
5801 | afterwards): | |
5802 | ||
5803 | mov r8, rN | |
5804 | ldm[id][ab] r8!, {r0-r7} | |
5805 | str r7, <temp> | |
5806 | ldm[id][ab] r8, {r7-r14} | |
5807 | <bkpt> | |
5808 | ||
5809 | but at present there's no suitable place for <temp>, since the scratch space | |
5810 | is overwritten before the cleanup routine is called. For now, we simply | |
5811 | emulate the instruction. */ | |
5812 | ||
5813 | static void | |
5814 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 5815 | arm_displaced_step_closure *dsc) |
cca44b1b | 5816 | { |
cca44b1b JB |
5817 | int inc = dsc->u.block.increment; |
5818 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
5819 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
5820 | uint32_t regmask = dsc->u.block.regmask; | |
5821 | int regno = inc ? 0 : 15; | |
5822 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
5823 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
5824 | && (regmask & 0x8000) != 0; | |
36073a92 | 5825 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5826 | int do_transfer = condition_true (dsc->u.block.cond, status); |
5827 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5828 | ||
5829 | if (!do_transfer) | |
5830 | return; | |
5831 | ||
5832 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
5833 | sensible we can do here. Complain loudly. */ | |
5834 | if (exception_return) | |
5835 | error (_("Cannot single-step exception return")); | |
5836 | ||
5837 | /* We don't handle any stores here for now. */ | |
5838 | gdb_assert (dsc->u.block.load != 0); | |
5839 | ||
5840 | if (debug_displaced) | |
5841 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
5842 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
5843 | dsc->u.block.increment ? "inc" : "dec", | |
5844 | dsc->u.block.before ? "before" : "after"); | |
5845 | ||
5846 | while (regmask) | |
5847 | { | |
5848 | uint32_t memword; | |
5849 | ||
5850 | if (inc) | |
bf9f652a | 5851 | while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) |
cca44b1b JB |
5852 | regno++; |
5853 | else | |
5854 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
5855 | regno--; | |
5856 | ||
5857 | xfer_addr += bump_before; | |
5858 | ||
5859 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
5860 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
5861 | ||
5862 | xfer_addr += bump_after; | |
5863 | ||
5864 | regmask &= ~(1 << regno); | |
5865 | } | |
5866 | ||
5867 | if (dsc->u.block.writeback) | |
5868 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
5869 | CANNOT_WRITE_PC); | |
5870 | } | |
5871 | ||
5872 | /* Clean up an STM which included the PC in the register list. */ | |
5873 | ||
5874 | static void | |
5875 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 5876 | arm_displaced_step_closure *dsc) |
cca44b1b | 5877 | { |
36073a92 | 5878 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5879 | int store_executed = condition_true (dsc->u.block.cond, status); |
5880 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
5881 | CORE_ADDR stm_insn_addr; | |
5882 | uint32_t pc_val; | |
5883 | long offset; | |
5884 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5885 | ||
5886 | /* If condition code fails, there's nothing else to do. */ | |
5887 | if (!store_executed) | |
5888 | return; | |
5889 | ||
5890 | if (dsc->u.block.increment) | |
5891 | { | |
5892 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
5893 | ||
5894 | if (dsc->u.block.before) | |
5895 | pc_stored_at += 4; | |
5896 | } | |
5897 | else | |
5898 | { | |
5899 | pc_stored_at = dsc->u.block.xfer_addr; | |
5900 | ||
5901 | if (dsc->u.block.before) | |
5902 | pc_stored_at -= 4; | |
5903 | } | |
5904 | ||
5905 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
5906 | stm_insn_addr = dsc->scratch_base; | |
5907 | offset = pc_val - stm_insn_addr; | |
5908 | ||
5909 | if (debug_displaced) | |
5910 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
5911 | "STM instruction\n", offset); | |
5912 | ||
5913 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
5914 | instruction. */ | |
5915 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
5916 | dsc->insn_addr + offset); | |
5917 | } | |
5918 | ||
5919 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
5920 | the registers in the transferred list into a contiguous range r0...rX (to | |
5921 | avoid loading PC directly and losing control of the debugged program), so we | |
5922 | must undo that here. */ | |
5923 | ||
5924 | static void | |
6e39997a | 5925 | cleanup_block_load_pc (struct gdbarch *gdbarch, |
cca44b1b | 5926 | struct regcache *regs, |
cfba9872 | 5927 | arm_displaced_step_closure *dsc) |
cca44b1b | 5928 | { |
36073a92 | 5929 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
22e048c9 | 5930 | int load_executed = condition_true (dsc->u.block.cond, status); |
bf9f652a | 5931 | unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; |
cca44b1b JB |
5932 | unsigned int regs_loaded = bitcount (mask); |
5933 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
5934 | ||
5935 | /* The method employed here will fail if the register list is fully populated | |
5936 | (we need to avoid loading PC directly). */ | |
5937 | gdb_assert (num_to_shuffle < 16); | |
5938 | ||
5939 | if (!load_executed) | |
5940 | return; | |
5941 | ||
5942 | clobbered = (1 << num_to_shuffle) - 1; | |
5943 | ||
5944 | while (num_to_shuffle > 0) | |
5945 | { | |
5946 | if ((mask & (1 << write_reg)) != 0) | |
5947 | { | |
5948 | unsigned int read_reg = num_to_shuffle - 1; | |
5949 | ||
5950 | if (read_reg != write_reg) | |
5951 | { | |
36073a92 | 5952 | ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); |
cca44b1b JB |
5953 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); |
5954 | if (debug_displaced) | |
5955 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
5956 | "loaded register r%d to r%d\n"), read_reg, | |
5957 | write_reg); | |
5958 | } | |
5959 | else if (debug_displaced) | |
5960 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
5961 | "r%d already in the right place\n"), | |
5962 | write_reg); | |
5963 | ||
5964 | clobbered &= ~(1 << write_reg); | |
5965 | ||
5966 | num_to_shuffle--; | |
5967 | } | |
5968 | ||
5969 | write_reg--; | |
5970 | } | |
5971 | ||
5972 | /* Restore any registers we scribbled over. */ | |
5973 | for (write_reg = 0; clobbered != 0; write_reg++) | |
5974 | { | |
5975 | if ((clobbered & (1 << write_reg)) != 0) | |
5976 | { | |
5977 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
5978 | CANNOT_WRITE_PC); | |
5979 | if (debug_displaced) | |
5980 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
5981 | "clobbered register r%d\n"), write_reg); | |
5982 | clobbered &= ~(1 << write_reg); | |
5983 | } | |
5984 | } | |
5985 | ||
5986 | /* Perform register writeback manually. */ | |
5987 | if (dsc->u.block.writeback) | |
5988 | { | |
5989 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
5990 | ||
5991 | if (dsc->u.block.increment) | |
5992 | new_rn_val += regs_loaded * 4; | |
5993 | else | |
5994 | new_rn_val -= regs_loaded * 4; | |
5995 | ||
5996 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
5997 | CANNOT_WRITE_PC); | |
5998 | } | |
5999 | } | |
6000 | ||
6001 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
6002 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
6003 | ||
6004 | static int | |
7ff120b4 YQ |
6005 | arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, |
6006 | struct regcache *regs, | |
cfba9872 | 6007 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6008 | { |
6009 | int load = bit (insn, 20); | |
6010 | int user = bit (insn, 22); | |
6011 | int increment = bit (insn, 23); | |
6012 | int before = bit (insn, 24); | |
6013 | int writeback = bit (insn, 21); | |
6014 | int rn = bits (insn, 16, 19); | |
cca44b1b | 6015 | |
0963b4bd MS |
6016 | /* Block transfers which don't mention PC can be run directly |
6017 | out-of-line. */ | |
bf9f652a | 6018 | if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) |
7ff120b4 | 6019 | return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); |
cca44b1b | 6020 | |
bf9f652a | 6021 | if (rn == ARM_PC_REGNUM) |
cca44b1b | 6022 | { |
0963b4bd MS |
6023 | warning (_("displaced: Unpredictable LDM or STM with " |
6024 | "base register r15")); | |
7ff120b4 | 6025 | return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
cca44b1b JB |
6026 | } |
6027 | ||
6028 | if (debug_displaced) | |
6029 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
6030 | "%.8lx\n", (unsigned long) insn); | |
6031 | ||
36073a92 | 6032 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
cca44b1b JB |
6033 | dsc->u.block.rn = rn; |
6034 | ||
6035 | dsc->u.block.load = load; | |
6036 | dsc->u.block.user = user; | |
6037 | dsc->u.block.increment = increment; | |
6038 | dsc->u.block.before = before; | |
6039 | dsc->u.block.writeback = writeback; | |
6040 | dsc->u.block.cond = bits (insn, 28, 31); | |
6041 | ||
6042 | dsc->u.block.regmask = insn & 0xffff; | |
6043 | ||
6044 | if (load) | |
6045 | { | |
6046 | if ((insn & 0xffff) == 0xffff) | |
6047 | { | |
6048 | /* LDM with a fully-populated register list. This case is | |
6049 | particularly tricky. Implement for now by fully emulating the | |
6050 | instruction (which might not behave perfectly in all cases, but | |
6051 | these instructions should be rare enough for that not to matter | |
6052 | too much). */ | |
6053 | dsc->modinsn[0] = ARM_NOP; | |
6054 | ||
6055 | dsc->cleanup = &cleanup_block_load_all; | |
6056 | } | |
6057 | else | |
6058 | { | |
6059 | /* LDM of a list of registers which includes PC. Implement by | |
6060 | rewriting the list of registers to be transferred into a | |
6061 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
6062 | registers into the correct places in the cleanup routine. */ | |
6063 | unsigned int regmask = insn & 0xffff; | |
bec2ab5a SM |
6064 | unsigned int num_in_list = bitcount (regmask), new_regmask; |
6065 | unsigned int i; | |
cca44b1b JB |
6066 | |
6067 | for (i = 0; i < num_in_list; i++) | |
36073a92 | 6068 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b JB |
6069 | |
6070 | /* Writeback makes things complicated. We need to avoid clobbering | |
6071 | the base register with one of the registers in our modified | |
6072 | register list, but just using a different register can't work in | |
6073 | all cases, e.g.: | |
6074 | ||
6075 | ldm r14!, {r0-r13,pc} | |
6076 | ||
6077 | which would need to be rewritten as: | |
6078 | ||
6079 | ldm rN!, {r0-r14} | |
6080 | ||
6081 | but that can't work, because there's no free register for N. | |
6082 | ||
6083 | Solve this by turning off the writeback bit, and emulating | |
6084 | writeback manually in the cleanup routine. */ | |
6085 | ||
6086 | if (writeback) | |
6087 | insn &= ~(1 << 21); | |
6088 | ||
6089 | new_regmask = (1 << num_in_list) - 1; | |
6090 | ||
6091 | if (debug_displaced) | |
6092 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
6093 | "{..., pc}: original reg list %.4x, modified " | |
6094 | "list %.4x\n"), rn, writeback ? "!" : "", | |
6095 | (int) insn & 0xffff, new_regmask); | |
6096 | ||
6097 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
6098 | ||
6099 | dsc->cleanup = &cleanup_block_load_pc; | |
6100 | } | |
6101 | } | |
6102 | else | |
6103 | { | |
6104 | /* STM of a list of registers which includes PC. Run the instruction | |
6105 | as-is, but out of line: this will store the wrong value for the PC, | |
6106 | so we must manually fix up the memory in the cleanup routine. | |
6107 | Doing things this way has the advantage that we can auto-detect | |
6108 | the offset of the PC write (which is architecture-dependent) in | |
6109 | the cleanup routine. */ | |
6110 | dsc->modinsn[0] = insn; | |
6111 | ||
6112 | dsc->cleanup = &cleanup_block_store_pc; | |
6113 | } | |
6114 | ||
6115 | return 0; | |
6116 | } | |
6117 | ||
34518530 YQ |
6118 | static int |
6119 | thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
6120 | struct regcache *regs, | |
cfba9872 | 6121 | arm_displaced_step_closure *dsc) |
cca44b1b | 6122 | { |
34518530 YQ |
6123 | int rn = bits (insn1, 0, 3); |
6124 | int load = bit (insn1, 4); | |
6125 | int writeback = bit (insn1, 5); | |
cca44b1b | 6126 | |
34518530 YQ |
6127 | /* Block transfers which don't mention PC can be run directly |
6128 | out-of-line. */ | |
6129 | if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) | |
6130 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); | |
7ff120b4 | 6131 | |
34518530 YQ |
6132 | if (rn == ARM_PC_REGNUM) |
6133 | { | |
6134 | warning (_("displaced: Unpredictable LDM or STM with " | |
6135 | "base register r15")); | |
6136 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6137 | "unpredictable ldm/stm", dsc); | |
6138 | } | |
cca44b1b JB |
6139 | |
6140 | if (debug_displaced) | |
34518530 YQ |
6141 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " |
6142 | "%.4x%.4x\n", insn1, insn2); | |
cca44b1b | 6143 | |
34518530 YQ |
6144 | /* Clear bit 13, since it should be always zero. */ |
6145 | dsc->u.block.regmask = (insn2 & 0xdfff); | |
6146 | dsc->u.block.rn = rn; | |
cca44b1b | 6147 | |
34518530 YQ |
6148 | dsc->u.block.load = load; |
6149 | dsc->u.block.user = 0; | |
6150 | dsc->u.block.increment = bit (insn1, 7); | |
6151 | dsc->u.block.before = bit (insn1, 8); | |
6152 | dsc->u.block.writeback = writeback; | |
6153 | dsc->u.block.cond = INST_AL; | |
6154 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6155 | |
34518530 YQ |
6156 | if (load) |
6157 | { | |
6158 | if (dsc->u.block.regmask == 0xffff) | |
6159 | { | |
6160 | /* This branch is impossible to happen. */ | |
6161 | gdb_assert (0); | |
6162 | } | |
6163 | else | |
6164 | { | |
6165 | unsigned int regmask = dsc->u.block.regmask; | |
bec2ab5a SM |
6166 | unsigned int num_in_list = bitcount (regmask), new_regmask; |
6167 | unsigned int i; | |
34518530 YQ |
6168 | |
6169 | for (i = 0; i < num_in_list; i++) | |
6170 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
6171 | ||
6172 | if (writeback) | |
6173 | insn1 &= ~(1 << 5); | |
6174 | ||
6175 | new_regmask = (1 << num_in_list) - 1; | |
6176 | ||
6177 | if (debug_displaced) | |
6178 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
6179 | "{..., pc}: original reg list %.4x, modified " | |
6180 | "list %.4x\n"), rn, writeback ? "!" : "", | |
6181 | (int) dsc->u.block.regmask, new_regmask); | |
6182 | ||
6183 | dsc->modinsn[0] = insn1; | |
6184 | dsc->modinsn[1] = (new_regmask & 0xffff); | |
6185 | dsc->numinsns = 2; | |
6186 | ||
6187 | dsc->cleanup = &cleanup_block_load_pc; | |
6188 | } | |
6189 | } | |
6190 | else | |
6191 | { | |
6192 | dsc->modinsn[0] = insn1; | |
6193 | dsc->modinsn[1] = insn2; | |
6194 | dsc->numinsns = 2; | |
6195 | dsc->cleanup = &cleanup_block_store_pc; | |
6196 | } | |
6197 | return 0; | |
6198 | } | |
6199 | ||
d9311bfa AT |
6200 | /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs. |
6201 | This is used to avoid a dependency on BFD's bfd_endian enum. */ | |
6202 | ||
6203 | ULONGEST | |
6204 | arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, | |
6205 | int byte_order) | |
6206 | { | |
5f2dfcfd AT |
6207 | return read_memory_unsigned_integer (memaddr, len, |
6208 | (enum bfd_endian) byte_order); | |
d9311bfa AT |
6209 | } |
6210 | ||
6211 | /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */ | |
6212 | ||
6213 | CORE_ADDR | |
6214 | arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self, | |
6215 | CORE_ADDR val) | |
6216 | { | |
ac7936df | 6217 | return gdbarch_addr_bits_remove (self->regcache->arch (), val); |
d9311bfa AT |
6218 | } |
6219 | ||
6220 | /* Wrapper over syscall_next_pc for use in get_next_pcs. */ | |
6221 | ||
e7cf25a8 | 6222 | static CORE_ADDR |
553cb527 | 6223 | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self) |
d9311bfa | 6224 | { |
d9311bfa AT |
6225 | return 0; |
6226 | } | |
6227 | ||
6228 | /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */ | |
6229 | ||
6230 | int | |
6231 | arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self) | |
6232 | { | |
6233 | return arm_is_thumb (self->regcache); | |
6234 | } | |
6235 | ||
6236 | /* single_step() is called just before we want to resume the inferior, | |
6237 | if we want to single-step it but there is no hardware or kernel | |
6238 | single-step support. We find the target of the coming instructions | |
6239 | and breakpoint them. */ | |
6240 | ||
a0ff9e1a | 6241 | std::vector<CORE_ADDR> |
f5ea389a | 6242 | arm_software_single_step (struct regcache *regcache) |
d9311bfa | 6243 | { |
ac7936df | 6244 | struct gdbarch *gdbarch = regcache->arch (); |
d9311bfa | 6245 | struct arm_get_next_pcs next_pcs_ctx; |
d9311bfa AT |
6246 | |
6247 | arm_get_next_pcs_ctor (&next_pcs_ctx, | |
6248 | &arm_get_next_pcs_ops, | |
6249 | gdbarch_byte_order (gdbarch), | |
6250 | gdbarch_byte_order_for_code (gdbarch), | |
1b451dda | 6251 | 0, |
d9311bfa AT |
6252 | regcache); |
6253 | ||
a0ff9e1a | 6254 | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
d9311bfa | 6255 | |
a0ff9e1a SM |
6256 | for (CORE_ADDR &pc_ref : next_pcs) |
6257 | pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref); | |
d9311bfa | 6258 | |
93f9a11f | 6259 | return next_pcs; |
d9311bfa AT |
6260 | } |
6261 | ||
34518530 YQ |
6262 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden |
6263 | for Linux, where some SVC instructions must be treated specially. */ | |
6264 | ||
6265 | static void | |
6266 | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 6267 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6268 | { |
6269 | CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; | |
6270 | ||
6271 | if (debug_displaced) | |
6272 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
6273 | "%.8lx\n", (unsigned long) resume_addr); | |
6274 | ||
6275 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
6276 | } | |
6277 | ||
6278 | ||
6279 | /* Common copy routine for svc instruciton. */ | |
6280 | ||
6281 | static int | |
6282 | install_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 6283 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6284 | { |
6285 | /* Preparation: none. | |
6286 | Insn: unmodified svc. | |
6287 | Cleanup: pc <- insn_addr + insn_size. */ | |
6288 | ||
6289 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
6290 | instruction. */ | |
6291 | dsc->wrote_to_pc = 1; | |
6292 | ||
6293 | /* Allow OS-specific code to override SVC handling. */ | |
bd18283a YQ |
6294 | if (dsc->u.svc.copy_svc_os) |
6295 | return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); | |
6296 | else | |
6297 | { | |
6298 | dsc->cleanup = &cleanup_svc; | |
6299 | return 0; | |
6300 | } | |
34518530 YQ |
6301 | } |
6302 | ||
6303 | static int | |
6304 | arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, | |
cfba9872 | 6305 | struct regcache *regs, arm_displaced_step_closure *dsc) |
34518530 YQ |
6306 | { |
6307 | ||
6308 | if (debug_displaced) | |
6309 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
6310 | (unsigned long) insn); | |
6311 | ||
6312 | dsc->modinsn[0] = insn; | |
6313 | ||
6314 | return install_svc (gdbarch, regs, dsc); | |
6315 | } | |
6316 | ||
6317 | static int | |
6318 | thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, | |
cfba9872 | 6319 | struct regcache *regs, arm_displaced_step_closure *dsc) |
34518530 YQ |
6320 | { |
6321 | ||
6322 | if (debug_displaced) | |
6323 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n", | |
6324 | insn); | |
bd18283a | 6325 | |
34518530 YQ |
6326 | dsc->modinsn[0] = insn; |
6327 | ||
6328 | return install_svc (gdbarch, regs, dsc); | |
cca44b1b JB |
6329 | } |
6330 | ||
6331 | /* Copy undefined instructions. */ | |
6332 | ||
6333 | static int | |
7ff120b4 | 6334 | arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 6335 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6336 | { |
6337 | if (debug_displaced) | |
0963b4bd MS |
6338 | fprintf_unfiltered (gdb_stdlog, |
6339 | "displaced: copying undefined insn %.8lx\n", | |
cca44b1b JB |
6340 | (unsigned long) insn); |
6341 | ||
6342 | dsc->modinsn[0] = insn; | |
6343 | ||
6344 | return 0; | |
6345 | } | |
6346 | ||
34518530 YQ |
6347 | static int |
6348 | thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
cfba9872 | 6349 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6350 | { |
6351 | ||
6352 | if (debug_displaced) | |
6353 | fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn " | |
6354 | "%.4x %.4x\n", (unsigned short) insn1, | |
6355 | (unsigned short) insn2); | |
6356 | ||
6357 | dsc->modinsn[0] = insn1; | |
6358 | dsc->modinsn[1] = insn2; | |
6359 | dsc->numinsns = 2; | |
6360 | ||
6361 | return 0; | |
6362 | } | |
6363 | ||
cca44b1b JB |
6364 | /* Copy unpredictable instructions. */ |
6365 | ||
6366 | static int | |
7ff120b4 | 6367 | arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 6368 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6369 | { |
6370 | if (debug_displaced) | |
6371 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
6372 | "%.8lx\n", (unsigned long) insn); | |
6373 | ||
6374 | dsc->modinsn[0] = insn; | |
6375 | ||
6376 | return 0; | |
6377 | } | |
6378 | ||
6379 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
6380 | the presentation in the ARM ARM. */ | |
6381 | ||
6382 | static int | |
7ff120b4 YQ |
6383 | arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, |
6384 | struct regcache *regs, | |
cfba9872 | 6385 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6386 | { |
6387 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
6388 | unsigned int rn = bits (insn, 16, 19); | |
6389 | ||
2f924de6 | 6390 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0) |
7ff120b4 | 6391 | return arm_copy_unmodified (gdbarch, insn, "cps", dsc); |
2f924de6 | 6392 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1) |
7ff120b4 | 6393 | return arm_copy_unmodified (gdbarch, insn, "setend", dsc); |
cca44b1b | 6394 | else if ((op1 & 0x60) == 0x20) |
7ff120b4 | 6395 | return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); |
cca44b1b | 6396 | else if ((op1 & 0x71) == 0x40) |
7ff120b4 YQ |
6397 | return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", |
6398 | dsc); | |
cca44b1b | 6399 | else if ((op1 & 0x77) == 0x41) |
7ff120b4 | 6400 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 6401 | else if ((op1 & 0x77) == 0x45) |
7ff120b4 | 6402 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */ |
cca44b1b JB |
6403 | else if ((op1 & 0x77) == 0x51) |
6404 | { | |
6405 | if (rn != 0xf) | |
7ff120b4 | 6406 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b | 6407 | else |
7ff120b4 | 6408 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
6409 | } |
6410 | else if ((op1 & 0x77) == 0x55) | |
7ff120b4 | 6411 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b JB |
6412 | else if (op1 == 0x57) |
6413 | switch (op2) | |
6414 | { | |
7ff120b4 YQ |
6415 | case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); |
6416 | case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); | |
6417 | case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); | |
6418 | case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); | |
6419 | default: return arm_copy_unpred (gdbarch, insn, dsc); | |
cca44b1b JB |
6420 | } |
6421 | else if ((op1 & 0x63) == 0x43) | |
7ff120b4 | 6422 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
6423 | else if ((op2 & 0x1) == 0x0) |
6424 | switch (op1 & ~0x80) | |
6425 | { | |
6426 | case 0x61: | |
7ff120b4 | 6427 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 6428 | case 0x65: |
7ff120b4 | 6429 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ |
cca44b1b JB |
6430 | case 0x71: case 0x75: |
6431 | /* pld/pldw reg. */ | |
7ff120b4 | 6432 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6433 | case 0x63: case 0x67: case 0x73: case 0x77: |
7ff120b4 | 6434 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b | 6435 | default: |
7ff120b4 | 6436 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6437 | } |
6438 | else | |
7ff120b4 | 6439 | return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ |
cca44b1b JB |
6440 | } |
6441 | ||
6442 | static int | |
7ff120b4 YQ |
6443 | arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, |
6444 | struct regcache *regs, | |
cfba9872 | 6445 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6446 | { |
6447 | if (bit (insn, 27) == 0) | |
7ff120b4 | 6448 | return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6449 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ |
6450 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
6451 | { | |
6452 | case 0x0: case 0x2: | |
7ff120b4 | 6453 | return arm_copy_unmodified (gdbarch, insn, "srs", dsc); |
cca44b1b JB |
6454 | |
6455 | case 0x1: case 0x3: | |
7ff120b4 | 6456 | return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); |
cca44b1b JB |
6457 | |
6458 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7ff120b4 | 6459 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6460 | |
6461 | case 0x8: | |
6462 | switch ((insn & 0xe00000) >> 21) | |
6463 | { | |
6464 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
6465 | /* stc/stc2. */ | |
7ff120b4 | 6466 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6467 | |
6468 | case 0x2: | |
7ff120b4 | 6469 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b JB |
6470 | |
6471 | default: | |
7ff120b4 | 6472 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6473 | } |
6474 | ||
6475 | case 0x9: | |
6476 | { | |
6477 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
6478 | switch ((insn & 0xe00000) >> 21) | |
6479 | { | |
6480 | case 0x1: case 0x3: | |
6481 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
7ff120b4 YQ |
6482 | return rn_f ? arm_copy_undef (gdbarch, insn, dsc) |
6483 | : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | |
cca44b1b JB |
6484 | |
6485 | case 0x2: | |
7ff120b4 | 6486 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
6487 | |
6488 | case 0x4: case 0x5: case 0x6: case 0x7: | |
6489 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
7ff120b4 YQ |
6490 | return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) |
6491 | : arm_copy_undef (gdbarch, insn, dsc); | |
cca44b1b JB |
6492 | |
6493 | default: | |
7ff120b4 | 6494 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6495 | } |
6496 | } | |
6497 | ||
6498 | case 0xa: | |
7ff120b4 | 6499 | return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); |
cca44b1b JB |
6500 | |
6501 | case 0xb: | |
6502 | if (bits (insn, 16, 19) == 0xf) | |
6503 | /* ldc/ldc2 lit. */ | |
7ff120b4 | 6504 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 6505 | else |
7ff120b4 | 6506 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6507 | |
6508 | case 0xc: | |
6509 | if (bit (insn, 4)) | |
7ff120b4 | 6510 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 6511 | else |
7ff120b4 | 6512 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6513 | |
6514 | case 0xd: | |
6515 | if (bit (insn, 4)) | |
7ff120b4 | 6516 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 6517 | else |
7ff120b4 | 6518 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6519 | |
6520 | default: | |
7ff120b4 | 6521 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6522 | } |
6523 | } | |
6524 | ||
6525 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
6526 | ||
6527 | static int | |
7ff120b4 YQ |
6528 | arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, |
6529 | struct regcache *regs, | |
cfba9872 | 6530 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6531 | { |
6532 | unsigned int op2 = bits (insn, 4, 6); | |
6533 | unsigned int op = bits (insn, 21, 22); | |
cca44b1b JB |
6534 | |
6535 | switch (op2) | |
6536 | { | |
6537 | case 0x0: | |
7ff120b4 | 6538 | return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); |
cca44b1b JB |
6539 | |
6540 | case 0x1: | |
6541 | if (op == 0x1) /* bx. */ | |
7ff120b4 | 6542 | return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6543 | else if (op == 0x3) |
7ff120b4 | 6544 | return arm_copy_unmodified (gdbarch, insn, "clz", dsc); |
cca44b1b | 6545 | else |
7ff120b4 | 6546 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6547 | |
6548 | case 0x2: | |
6549 | if (op == 0x1) | |
6550 | /* Not really supported. */ | |
7ff120b4 | 6551 | return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); |
cca44b1b | 6552 | else |
7ff120b4 | 6553 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6554 | |
6555 | case 0x3: | |
6556 | if (op == 0x1) | |
7ff120b4 | 6557 | return arm_copy_bx_blx_reg (gdbarch, insn, |
0963b4bd | 6558 | regs, dsc); /* blx register. */ |
cca44b1b | 6559 | else |
7ff120b4 | 6560 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6561 | |
6562 | case 0x5: | |
7ff120b4 | 6563 | return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); |
cca44b1b JB |
6564 | |
6565 | case 0x7: | |
6566 | if (op == 0x1) | |
7ff120b4 | 6567 | return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); |
cca44b1b JB |
6568 | else if (op == 0x3) |
6569 | /* Not really supported. */ | |
7ff120b4 | 6570 | return arm_copy_unmodified (gdbarch, insn, "smc", dsc); |
cca44b1b JB |
6571 | |
6572 | default: | |
7ff120b4 | 6573 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6574 | } |
6575 | } | |
6576 | ||
6577 | static int | |
7ff120b4 YQ |
6578 | arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, |
6579 | struct regcache *regs, | |
cfba9872 | 6580 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6581 | { |
6582 | if (bit (insn, 25)) | |
6583 | switch (bits (insn, 20, 24)) | |
6584 | { | |
6585 | case 0x10: | |
7ff120b4 | 6586 | return arm_copy_unmodified (gdbarch, insn, "movw", dsc); |
cca44b1b JB |
6587 | |
6588 | case 0x14: | |
7ff120b4 | 6589 | return arm_copy_unmodified (gdbarch, insn, "movt", dsc); |
cca44b1b JB |
6590 | |
6591 | case 0x12: case 0x16: | |
7ff120b4 | 6592 | return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); |
cca44b1b JB |
6593 | |
6594 | default: | |
7ff120b4 | 6595 | return arm_copy_alu_imm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6596 | } |
6597 | else | |
6598 | { | |
6599 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
6600 | ||
6601 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
7ff120b4 | 6602 | return arm_copy_alu_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6603 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) |
7ff120b4 | 6604 | return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6605 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) |
7ff120b4 | 6606 | return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); |
cca44b1b | 6607 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) |
7ff120b4 | 6608 | return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); |
cca44b1b | 6609 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) |
7ff120b4 | 6610 | return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); |
cca44b1b | 6611 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) |
7ff120b4 | 6612 | return arm_copy_unmodified (gdbarch, insn, "synch", dsc); |
cca44b1b | 6613 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) |
550dc4e2 | 6614 | /* 2nd arg means "unprivileged". */ |
7ff120b4 YQ |
6615 | return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, |
6616 | dsc); | |
cca44b1b JB |
6617 | } |
6618 | ||
6619 | /* Should be unreachable. */ | |
6620 | return 1; | |
6621 | } | |
6622 | ||
6623 | static int | |
7ff120b4 YQ |
6624 | arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, |
6625 | struct regcache *regs, | |
cfba9872 | 6626 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6627 | { |
6628 | int a = bit (insn, 25), b = bit (insn, 4); | |
6629 | uint32_t op1 = bits (insn, 20, 24); | |
cca44b1b JB |
6630 | |
6631 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
6632 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
0f6f04ba | 6633 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); |
cca44b1b JB |
6634 | else if ((!a && (op1 & 0x17) == 0x02) |
6635 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
0f6f04ba | 6636 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); |
cca44b1b JB |
6637 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) |
6638 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
0f6f04ba | 6639 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); |
cca44b1b JB |
6640 | else if ((!a && (op1 & 0x17) == 0x03) |
6641 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
0f6f04ba | 6642 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); |
cca44b1b JB |
6643 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) |
6644 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
7ff120b4 | 6645 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); |
cca44b1b JB |
6646 | else if ((!a && (op1 & 0x17) == 0x06) |
6647 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
7ff120b4 | 6648 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); |
cca44b1b JB |
6649 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) |
6650 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
7ff120b4 | 6651 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); |
cca44b1b JB |
6652 | else if ((!a && (op1 & 0x17) == 0x07) |
6653 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
7ff120b4 | 6654 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); |
cca44b1b JB |
6655 | |
6656 | /* Should be unreachable. */ | |
6657 | return 1; | |
6658 | } | |
6659 | ||
6660 | static int | |
7ff120b4 | 6661 | arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 6662 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6663 | { |
6664 | switch (bits (insn, 20, 24)) | |
6665 | { | |
6666 | case 0x00: case 0x01: case 0x02: case 0x03: | |
7ff120b4 | 6667 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); |
cca44b1b JB |
6668 | |
6669 | case 0x04: case 0x05: case 0x06: case 0x07: | |
7ff120b4 | 6670 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); |
cca44b1b JB |
6671 | |
6672 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
6673 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
7ff120b4 | 6674 | return arm_copy_unmodified (gdbarch, insn, |
cca44b1b JB |
6675 | "decode/pack/unpack/saturate/reverse", dsc); |
6676 | ||
6677 | case 0x18: | |
6678 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
6679 | { | |
6680 | if (bits (insn, 12, 15) == 0xf) | |
7ff120b4 | 6681 | return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); |
cca44b1b | 6682 | else |
7ff120b4 | 6683 | return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); |
cca44b1b JB |
6684 | } |
6685 | else | |
7ff120b4 | 6686 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6687 | |
6688 | case 0x1a: case 0x1b: | |
6689 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 6690 | return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); |
cca44b1b | 6691 | else |
7ff120b4 | 6692 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6693 | |
6694 | case 0x1c: case 0x1d: | |
6695 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
6696 | { | |
6697 | if (bits (insn, 0, 3) == 0xf) | |
7ff120b4 | 6698 | return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); |
cca44b1b | 6699 | else |
7ff120b4 | 6700 | return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); |
cca44b1b JB |
6701 | } |
6702 | else | |
7ff120b4 | 6703 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6704 | |
6705 | case 0x1e: case 0x1f: | |
6706 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 6707 | return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); |
cca44b1b | 6708 | else |
7ff120b4 | 6709 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6710 | } |
6711 | ||
6712 | /* Should be unreachable. */ | |
6713 | return 1; | |
6714 | } | |
6715 | ||
6716 | static int | |
615234c1 | 6717 | arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn, |
7ff120b4 | 6718 | struct regcache *regs, |
cfba9872 | 6719 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6720 | { |
6721 | if (bit (insn, 25)) | |
7ff120b4 | 6722 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b | 6723 | else |
7ff120b4 | 6724 | return arm_copy_block_xfer (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6725 | } |
6726 | ||
6727 | static int | |
7ff120b4 YQ |
6728 | arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, |
6729 | struct regcache *regs, | |
cfba9872 | 6730 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
6731 | { |
6732 | unsigned int opcode = bits (insn, 20, 24); | |
6733 | ||
6734 | switch (opcode) | |
6735 | { | |
6736 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
7ff120b4 | 6737 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); |
cca44b1b JB |
6738 | |
6739 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
6740 | case 0x12: case 0x16: | |
7ff120b4 | 6741 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); |
cca44b1b JB |
6742 | |
6743 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
6744 | case 0x13: case 0x17: | |
7ff120b4 | 6745 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); |
cca44b1b JB |
6746 | |
6747 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
6748 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
6749 | /* Note: no writeback for these instructions. Bit 25 will always be | |
6750 | zero though (via caller), so the following works OK. */ | |
7ff120b4 | 6751 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6752 | } |
6753 | ||
6754 | /* Should be unreachable. */ | |
6755 | return 1; | |
6756 | } | |
6757 | ||
34518530 YQ |
6758 | /* Decode shifted register instructions. */ |
6759 | ||
6760 | static int | |
6761 | thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, | |
6762 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 6763 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6764 | { |
6765 | /* PC is only allowed to be used in instruction MOV. */ | |
6766 | ||
6767 | unsigned int op = bits (insn1, 5, 8); | |
6768 | unsigned int rn = bits (insn1, 0, 3); | |
6769 | ||
6770 | if (op == 0x2 && rn == 0xf) /* MOV */ | |
6771 | return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); | |
6772 | else | |
6773 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6774 | "dp (shift reg)", dsc); | |
6775 | } | |
6776 | ||
6777 | ||
6778 | /* Decode extension register load/store. Exactly the same as | |
6779 | arm_decode_ext_reg_ld_st. */ | |
6780 | ||
6781 | static int | |
6782 | thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, | |
6783 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 6784 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6785 | { |
6786 | unsigned int opcode = bits (insn1, 4, 8); | |
6787 | ||
6788 | switch (opcode) | |
6789 | { | |
6790 | case 0x04: case 0x05: | |
6791 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6792 | "vfp/neon vmov", dsc); | |
6793 | ||
6794 | case 0x08: case 0x0c: /* 01x00 */ | |
6795 | case 0x0a: case 0x0e: /* 01x10 */ | |
6796 | case 0x12: case 0x16: /* 10x10 */ | |
6797 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6798 | "vfp/neon vstm/vpush", dsc); | |
6799 | ||
6800 | case 0x09: case 0x0d: /* 01x01 */ | |
6801 | case 0x0b: case 0x0f: /* 01x11 */ | |
6802 | case 0x13: case 0x17: /* 10x11 */ | |
6803 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6804 | "vfp/neon vldm/vpop", dsc); | |
6805 | ||
6806 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
6807 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6808 | "vstr", dsc); | |
6809 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
6810 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); | |
6811 | } | |
6812 | ||
6813 | /* Should be unreachable. */ | |
6814 | return 1; | |
6815 | } | |
6816 | ||
cca44b1b | 6817 | static int |
12545665 | 6818 | arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, |
cfba9872 | 6819 | struct regcache *regs, arm_displaced_step_closure *dsc) |
cca44b1b JB |
6820 | { |
6821 | unsigned int op1 = bits (insn, 20, 25); | |
6822 | int op = bit (insn, 4); | |
6823 | unsigned int coproc = bits (insn, 8, 11); | |
cca44b1b JB |
6824 | |
6825 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
7ff120b4 | 6826 | return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6827 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 |
6828 | && (coproc & 0xe) != 0xa) | |
6829 | /* stc/stc2. */ | |
7ff120b4 | 6830 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6831 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 |
6832 | && (coproc & 0xe) != 0xa) | |
6833 | /* ldc/ldc2 imm/lit. */ | |
7ff120b4 | 6834 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 6835 | else if ((op1 & 0x3e) == 0x00) |
7ff120b4 | 6836 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b | 6837 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) |
7ff120b4 | 6838 | return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); |
cca44b1b | 6839 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) |
7ff120b4 | 6840 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b | 6841 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) |
7ff120b4 | 6842 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
6843 | else if ((op1 & 0x30) == 0x20 && !op) |
6844 | { | |
6845 | if ((coproc & 0xe) == 0xa) | |
7ff120b4 | 6846 | return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); |
cca44b1b | 6847 | else |
7ff120b4 | 6848 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6849 | } |
6850 | else if ((op1 & 0x30) == 0x20 && op) | |
7ff120b4 | 6851 | return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); |
cca44b1b | 6852 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 6853 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 6854 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 6855 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 6856 | else if ((op1 & 0x30) == 0x30) |
7ff120b4 | 6857 | return arm_copy_svc (gdbarch, insn, regs, dsc); |
cca44b1b | 6858 | else |
7ff120b4 | 6859 | return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ |
cca44b1b JB |
6860 | } |
6861 | ||
34518530 YQ |
6862 | static int |
6863 | thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, | |
6864 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 6865 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6866 | { |
6867 | unsigned int coproc = bits (insn2, 8, 11); | |
34518530 YQ |
6868 | unsigned int bit_5_8 = bits (insn1, 5, 8); |
6869 | unsigned int bit_9 = bit (insn1, 9); | |
6870 | unsigned int bit_4 = bit (insn1, 4); | |
34518530 YQ |
6871 | |
6872 | if (bit_9 == 0) | |
6873 | { | |
6874 | if (bit_5_8 == 2) | |
6875 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6876 | "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", | |
6877 | dsc); | |
6878 | else if (bit_5_8 == 0) /* UNDEFINED. */ | |
6879 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
6880 | else | |
6881 | { | |
6882 | /*coproc is 101x. SIMD/VFP, ext registers load/store. */ | |
6883 | if ((coproc & 0xe) == 0xa) | |
6884 | return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, | |
6885 | dsc); | |
6886 | else /* coproc is not 101x. */ | |
6887 | { | |
6888 | if (bit_4 == 0) /* STC/STC2. */ | |
6889 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6890 | "stc/stc2", dsc); | |
6891 | else /* LDC/LDC2 {literal, immeidate}. */ | |
6892 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, | |
6893 | regs, dsc); | |
6894 | } | |
6895 | } | |
6896 | } | |
6897 | else | |
6898 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); | |
6899 | ||
6900 | return 0; | |
6901 | } | |
6902 | ||
6903 | static void | |
6904 | install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 6905 | arm_displaced_step_closure *dsc, int rd) |
34518530 YQ |
6906 | { |
6907 | /* ADR Rd, #imm | |
6908 | ||
6909 | Rewrite as: | |
6910 | ||
6911 | Preparation: Rd <- PC | |
6912 | Insn: ADD Rd, #imm | |
6913 | Cleanup: Null. | |
6914 | */ | |
6915 | ||
6916 | /* Rd <- PC */ | |
6917 | int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
6918 | displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); | |
6919 | } | |
6920 | ||
6921 | static int | |
6922 | thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 6923 | arm_displaced_step_closure *dsc, |
34518530 YQ |
6924 | int rd, unsigned int imm) |
6925 | { | |
6926 | ||
6927 | /* Encoding T2: ADDS Rd, #imm */ | |
6928 | dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); | |
6929 | ||
6930 | install_pc_relative (gdbarch, regs, dsc, rd); | |
6931 | ||
6932 | return 0; | |
6933 | } | |
6934 | ||
6935 | static int | |
6936 | thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, | |
6937 | struct regcache *regs, | |
cfba9872 | 6938 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6939 | { |
6940 | unsigned int rd = bits (insn, 8, 10); | |
6941 | unsigned int imm8 = bits (insn, 0, 7); | |
6942 | ||
6943 | if (debug_displaced) | |
6944 | fprintf_unfiltered (gdb_stdlog, | |
6945 | "displaced: copying thumb adr r%d, #%d insn %.4x\n", | |
6946 | rd, imm8, insn); | |
6947 | ||
6948 | return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); | |
6949 | } | |
6950 | ||
6951 | static int | |
6952 | thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
6953 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 6954 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6955 | { |
6956 | unsigned int rd = bits (insn2, 8, 11); | |
6957 | /* Since immediate has the same encoding in ADR ADD and SUB, so we simply | |
6958 | extract raw immediate encoding rather than computing immediate. When | |
6959 | generating ADD or SUB instruction, we can simply perform OR operation to | |
6960 | set immediate into ADD. */ | |
6961 | unsigned int imm_3_8 = insn2 & 0x70ff; | |
6962 | unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */ | |
6963 | ||
6964 | if (debug_displaced) | |
6965 | fprintf_unfiltered (gdb_stdlog, | |
6966 | "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n", | |
6967 | rd, imm_i, imm_3_8, insn1, insn2); | |
6968 | ||
6969 | if (bit (insn1, 7)) /* Encoding T2 */ | |
6970 | { | |
6971 | /* Encoding T3: SUB Rd, Rd, #imm */ | |
6972 | dsc->modinsn[0] = (0xf1a0 | rd | imm_i); | |
6973 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
6974 | } | |
6975 | else /* Encoding T3 */ | |
6976 | { | |
6977 | /* Encoding T3: ADD Rd, Rd, #imm */ | |
6978 | dsc->modinsn[0] = (0xf100 | rd | imm_i); | |
6979 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
6980 | } | |
6981 | dsc->numinsns = 2; | |
6982 | ||
6983 | install_pc_relative (gdbarch, regs, dsc, rd); | |
6984 | ||
6985 | return 0; | |
6986 | } | |
6987 | ||
6988 | static int | |
615234c1 | 6989 | thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1, |
34518530 | 6990 | struct regcache *regs, |
cfba9872 | 6991 | arm_displaced_step_closure *dsc) |
34518530 YQ |
6992 | { |
6993 | unsigned int rt = bits (insn1, 8, 10); | |
6994 | unsigned int pc; | |
6995 | int imm8 = (bits (insn1, 0, 7) << 2); | |
34518530 YQ |
6996 | |
6997 | /* LDR Rd, #imm8 | |
6998 | ||
6999 | Rwrite as: | |
7000 | ||
7001 | Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; | |
7002 | ||
7003 | Insn: LDR R0, [R2, R3]; | |
7004 | Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ | |
7005 | ||
7006 | if (debug_displaced) | |
7007 | fprintf_unfiltered (gdb_stdlog, | |
7008 | "displaced: copying thumb ldr r%d [pc #%d]\n" | |
7009 | , rt, imm8); | |
7010 | ||
7011 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
7012 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
7013 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
7014 | pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
7015 | /* The assembler calculates the required value of the offset from the | |
7016 | Align(PC,4) value of this instruction to the label. */ | |
7017 | pc = pc & 0xfffffffc; | |
7018 | ||
7019 | displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); | |
7020 | displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); | |
7021 | ||
7022 | dsc->rd = rt; | |
7023 | dsc->u.ldst.xfersize = 4; | |
7024 | dsc->u.ldst.rn = 0; | |
7025 | dsc->u.ldst.immed = 0; | |
7026 | dsc->u.ldst.writeback = 0; | |
7027 | dsc->u.ldst.restore_r4 = 0; | |
7028 | ||
7029 | dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ | |
7030 | ||
7031 | dsc->cleanup = &cleanup_load; | |
7032 | ||
7033 | return 0; | |
7034 | } | |
7035 | ||
7036 | /* Copy Thumb cbnz/cbz insruction. */ | |
7037 | ||
7038 | static int | |
7039 | thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, | |
7040 | struct regcache *regs, | |
cfba9872 | 7041 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7042 | { |
7043 | int non_zero = bit (insn1, 11); | |
7044 | unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); | |
7045 | CORE_ADDR from = dsc->insn_addr; | |
7046 | int rn = bits (insn1, 0, 2); | |
7047 | int rn_val = displaced_read_reg (regs, dsc, rn); | |
7048 | ||
7049 | dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); | |
7050 | /* CBNZ and CBZ do not affect the condition flags. If condition is true, | |
7051 | set it INST_AL, so cleanup_branch will know branch is taken, otherwise, | |
7052 | condition is false, let it be, cleanup_branch will do nothing. */ | |
7053 | if (dsc->u.branch.cond) | |
7054 | { | |
7055 | dsc->u.branch.cond = INST_AL; | |
7056 | dsc->u.branch.dest = from + 4 + imm5; | |
7057 | } | |
7058 | else | |
7059 | dsc->u.branch.dest = from + 2; | |
7060 | ||
7061 | dsc->u.branch.link = 0; | |
7062 | dsc->u.branch.exchange = 0; | |
7063 | ||
7064 | if (debug_displaced) | |
7065 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]" | |
7066 | " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz", | |
7067 | rn, rn_val, insn1, dsc->u.branch.dest); | |
7068 | ||
7069 | dsc->modinsn[0] = THUMB_NOP; | |
7070 | ||
7071 | dsc->cleanup = &cleanup_branch; | |
7072 | return 0; | |
7073 | } | |
7074 | ||
7075 | /* Copy Table Branch Byte/Halfword */ | |
7076 | static int | |
7077 | thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, | |
7078 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 7079 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7080 | { |
7081 | ULONGEST rn_val, rm_val; | |
7082 | int is_tbh = bit (insn2, 4); | |
7083 | CORE_ADDR halfwords = 0; | |
7084 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7085 | ||
7086 | rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); | |
7087 | rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); | |
7088 | ||
7089 | if (is_tbh) | |
7090 | { | |
7091 | gdb_byte buf[2]; | |
7092 | ||
7093 | target_read_memory (rn_val + 2 * rm_val, buf, 2); | |
7094 | halfwords = extract_unsigned_integer (buf, 2, byte_order); | |
7095 | } | |
7096 | else | |
7097 | { | |
7098 | gdb_byte buf[1]; | |
7099 | ||
7100 | target_read_memory (rn_val + rm_val, buf, 1); | |
7101 | halfwords = extract_unsigned_integer (buf, 1, byte_order); | |
7102 | } | |
7103 | ||
7104 | if (debug_displaced) | |
7105 | fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x" | |
7106 | " offset 0x%x\n", is_tbh ? "tbh" : "tbb", | |
7107 | (unsigned int) rn_val, (unsigned int) rm_val, | |
7108 | (unsigned int) halfwords); | |
7109 | ||
7110 | dsc->u.branch.cond = INST_AL; | |
7111 | dsc->u.branch.link = 0; | |
7112 | dsc->u.branch.exchange = 0; | |
7113 | dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; | |
7114 | ||
7115 | dsc->cleanup = &cleanup_branch; | |
7116 | ||
7117 | return 0; | |
7118 | } | |
7119 | ||
7120 | static void | |
7121 | cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, | |
cfba9872 | 7122 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7123 | { |
7124 | /* PC <- r7 */ | |
7125 | int val = displaced_read_reg (regs, dsc, 7); | |
7126 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); | |
7127 | ||
7128 | /* r7 <- r8 */ | |
7129 | val = displaced_read_reg (regs, dsc, 8); | |
7130 | displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); | |
7131 | ||
7132 | /* r8 <- tmp[0] */ | |
7133 | displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); | |
7134 | ||
7135 | } | |
7136 | ||
7137 | static int | |
615234c1 | 7138 | thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1, |
34518530 | 7139 | struct regcache *regs, |
cfba9872 | 7140 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7141 | { |
7142 | dsc->u.block.regmask = insn1 & 0x00ff; | |
7143 | ||
7144 | /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} | |
7145 | to : | |
7146 | ||
7147 | (1) register list is full, that is, r0-r7 are used. | |
7148 | Prepare: tmp[0] <- r8 | |
7149 | ||
7150 | POP {r0, r1, ...., r6, r7}; remove PC from reglist | |
7151 | MOV r8, r7; Move value of r7 to r8; | |
7152 | POP {r7}; Store PC value into r7. | |
7153 | ||
7154 | Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] | |
7155 | ||
7156 | (2) register list is not full, supposing there are N registers in | |
7157 | register list (except PC, 0 <= N <= 7). | |
7158 | Prepare: for each i, 0 - N, tmp[i] <- ri. | |
7159 | ||
7160 | POP {r0, r1, ...., rN}; | |
7161 | ||
7162 | Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN | |
7163 | from tmp[] properly. | |
7164 | */ | |
7165 | if (debug_displaced) | |
7166 | fprintf_unfiltered (gdb_stdlog, | |
7167 | "displaced: copying thumb pop {%.8x, pc} insn %.4x\n", | |
7168 | dsc->u.block.regmask, insn1); | |
7169 | ||
7170 | if (dsc->u.block.regmask == 0xff) | |
7171 | { | |
7172 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); | |
7173 | ||
7174 | dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ | |
7175 | dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ | |
7176 | dsc->modinsn[2] = 0xbc80; /* POP {r7} */ | |
7177 | ||
7178 | dsc->numinsns = 3; | |
7179 | dsc->cleanup = &cleanup_pop_pc_16bit_all; | |
7180 | } | |
7181 | else | |
7182 | { | |
7183 | unsigned int num_in_list = bitcount (dsc->u.block.regmask); | |
bec2ab5a SM |
7184 | unsigned int i; |
7185 | unsigned int new_regmask; | |
34518530 YQ |
7186 | |
7187 | for (i = 0; i < num_in_list + 1; i++) | |
7188 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
7189 | ||
7190 | new_regmask = (1 << (num_in_list + 1)) - 1; | |
7191 | ||
7192 | if (debug_displaced) | |
7193 | fprintf_unfiltered (gdb_stdlog, _("displaced: POP " | |
7194 | "{..., pc}: original reg list %.4x," | |
7195 | " modified list %.4x\n"), | |
7196 | (int) dsc->u.block.regmask, new_regmask); | |
7197 | ||
7198 | dsc->u.block.regmask |= 0x8000; | |
7199 | dsc->u.block.writeback = 0; | |
7200 | dsc->u.block.cond = INST_AL; | |
7201 | ||
7202 | dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); | |
7203 | ||
7204 | dsc->cleanup = &cleanup_block_load_pc; | |
7205 | } | |
7206 | ||
7207 | return 0; | |
7208 | } | |
7209 | ||
7210 | static void | |
7211 | thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
7212 | struct regcache *regs, | |
cfba9872 | 7213 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7214 | { |
7215 | unsigned short op_bit_12_15 = bits (insn1, 12, 15); | |
7216 | unsigned short op_bit_10_11 = bits (insn1, 10, 11); | |
7217 | int err = 0; | |
7218 | ||
7219 | /* 16-bit thumb instructions. */ | |
7220 | switch (op_bit_12_15) | |
7221 | { | |
7222 | /* Shift (imme), add, subtract, move and compare. */ | |
7223 | case 0: case 1: case 2: case 3: | |
7224 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
7225 | "shift/add/sub/mov/cmp", | |
7226 | dsc); | |
7227 | break; | |
7228 | case 4: | |
7229 | switch (op_bit_10_11) | |
7230 | { | |
7231 | case 0: /* Data-processing */ | |
7232 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
7233 | "data-processing", | |
7234 | dsc); | |
7235 | break; | |
7236 | case 1: /* Special data instructions and branch and exchange. */ | |
7237 | { | |
7238 | unsigned short op = bits (insn1, 7, 9); | |
7239 | if (op == 6 || op == 7) /* BX or BLX */ | |
7240 | err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); | |
7241 | else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */ | |
7242 | err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); | |
7243 | else | |
7244 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", | |
7245 | dsc); | |
7246 | } | |
7247 | break; | |
7248 | default: /* LDR (literal) */ | |
7249 | err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); | |
7250 | } | |
7251 | break; | |
7252 | case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ | |
7253 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); | |
7254 | break; | |
7255 | case 10: | |
7256 | if (op_bit_10_11 < 2) /* Generate PC-relative address */ | |
7257 | err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); | |
7258 | else /* Generate SP-relative address */ | |
7259 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); | |
7260 | break; | |
7261 | case 11: /* Misc 16-bit instructions */ | |
7262 | { | |
7263 | switch (bits (insn1, 8, 11)) | |
7264 | { | |
7265 | case 1: case 3: case 9: case 11: /* CBNZ, CBZ */ | |
7266 | err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); | |
7267 | break; | |
7268 | case 12: case 13: /* POP */ | |
7269 | if (bit (insn1, 8)) /* PC is in register list. */ | |
7270 | err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); | |
7271 | else | |
7272 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); | |
7273 | break; | |
7274 | case 15: /* If-Then, and hints */ | |
7275 | if (bits (insn1, 0, 3)) | |
7276 | /* If-Then makes up to four following instructions conditional. | |
7277 | IT instruction itself is not conditional, so handle it as a | |
7278 | common unmodified instruction. */ | |
7279 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", | |
7280 | dsc); | |
7281 | else | |
7282 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); | |
7283 | break; | |
7284 | default: | |
7285 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); | |
7286 | } | |
7287 | } | |
7288 | break; | |
7289 | case 12: | |
7290 | if (op_bit_10_11 < 2) /* Store multiple registers */ | |
7291 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); | |
7292 | else /* Load multiple registers */ | |
7293 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); | |
7294 | break; | |
7295 | case 13: /* Conditional branch and supervisor call */ | |
7296 | if (bits (insn1, 9, 11) != 7) /* conditional branch */ | |
7297 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
7298 | else | |
7299 | err = thumb_copy_svc (gdbarch, insn1, regs, dsc); | |
7300 | break; | |
7301 | case 14: /* Unconditional branch */ | |
7302 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
7303 | break; | |
7304 | default: | |
7305 | err = 1; | |
7306 | } | |
7307 | ||
7308 | if (err) | |
7309 | internal_error (__FILE__, __LINE__, | |
7310 | _("thumb_process_displaced_16bit_insn: Instruction decode error")); | |
7311 | } | |
7312 | ||
7313 | static int | |
7314 | decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, | |
7315 | uint16_t insn1, uint16_t insn2, | |
7316 | struct regcache *regs, | |
cfba9872 | 7317 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7318 | { |
7319 | int rt = bits (insn2, 12, 15); | |
7320 | int rn = bits (insn1, 0, 3); | |
7321 | int op1 = bits (insn1, 7, 8); | |
34518530 YQ |
7322 | |
7323 | switch (bits (insn1, 5, 6)) | |
7324 | { | |
7325 | case 0: /* Load byte and memory hints */ | |
7326 | if (rt == 0xf) /* PLD/PLI */ | |
7327 | { | |
7328 | if (rn == 0xf) | |
7329 | /* PLD literal or Encoding T3 of PLI(immediate, literal). */ | |
7330 | return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); | |
7331 | else | |
7332 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7333 | "pli/pld", dsc); | |
7334 | } | |
7335 | else | |
7336 | { | |
7337 | if (rn == 0xf) /* LDRB/LDRSB (literal) */ | |
7338 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
7339 | 1); | |
7340 | else | |
7341 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7342 | "ldrb{reg, immediate}/ldrbt", | |
7343 | dsc); | |
7344 | } | |
7345 | ||
7346 | break; | |
7347 | case 1: /* Load halfword and memory hints. */ | |
7348 | if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */ | |
7349 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7350 | "pld/unalloc memhint", dsc); | |
7351 | else | |
7352 | { | |
7353 | if (rn == 0xf) | |
7354 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
7355 | 2); | |
7356 | else | |
7357 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7358 | "ldrh/ldrht", dsc); | |
7359 | } | |
7360 | break; | |
7361 | case 2: /* Load word */ | |
7362 | { | |
7363 | int insn2_bit_8_11 = bits (insn2, 8, 11); | |
7364 | ||
7365 | if (rn == 0xf) | |
7366 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); | |
7367 | else if (op1 == 0x1) /* Encoding T3 */ | |
7368 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, | |
7369 | 0, 1); | |
7370 | else /* op1 == 0x0 */ | |
7371 | { | |
7372 | if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) | |
7373 | /* LDR (immediate) */ | |
7374 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
7375 | dsc, bit (insn2, 8), 1); | |
7376 | else if (insn2_bit_8_11 == 0xe) /* LDRT */ | |
7377 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7378 | "ldrt", dsc); | |
7379 | else | |
7380 | /* LDR (register) */ | |
7381 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
7382 | dsc, 0, 0); | |
7383 | } | |
7384 | break; | |
7385 | } | |
7386 | default: | |
7387 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
7388 | break; | |
7389 | } | |
7390 | return 0; | |
7391 | } | |
7392 | ||
7393 | static void | |
7394 | thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
7395 | uint16_t insn2, struct regcache *regs, | |
cfba9872 | 7396 | arm_displaced_step_closure *dsc) |
34518530 YQ |
7397 | { |
7398 | int err = 0; | |
7399 | unsigned short op = bit (insn2, 15); | |
7400 | unsigned int op1 = bits (insn1, 11, 12); | |
7401 | ||
7402 | switch (op1) | |
7403 | { | |
7404 | case 1: | |
7405 | { | |
7406 | switch (bits (insn1, 9, 10)) | |
7407 | { | |
7408 | case 0: | |
7409 | if (bit (insn1, 6)) | |
7410 | { | |
7411 | /* Load/store {dual, execlusive}, table branch. */ | |
7412 | if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 | |
7413 | && bits (insn2, 5, 7) == 0) | |
7414 | err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, | |
7415 | dsc); | |
7416 | else | |
7417 | /* PC is not allowed to use in load/store {dual, exclusive} | |
7418 | instructions. */ | |
7419 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7420 | "load/store dual/ex", dsc); | |
7421 | } | |
7422 | else /* load/store multiple */ | |
7423 | { | |
7424 | switch (bits (insn1, 7, 8)) | |
7425 | { | |
7426 | case 0: case 3: /* SRS, RFE */ | |
7427 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7428 | "srs/rfe", dsc); | |
7429 | break; | |
7430 | case 1: case 2: /* LDM/STM/PUSH/POP */ | |
7431 | err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); | |
7432 | break; | |
7433 | } | |
7434 | } | |
7435 | break; | |
7436 | ||
7437 | case 1: | |
7438 | /* Data-processing (shift register). */ | |
7439 | err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, | |
7440 | dsc); | |
7441 | break; | |
7442 | default: /* Coprocessor instructions. */ | |
7443 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
7444 | break; | |
7445 | } | |
7446 | break; | |
7447 | } | |
7448 | case 2: /* op1 = 2 */ | |
7449 | if (op) /* Branch and misc control. */ | |
7450 | { | |
7451 | if (bit (insn2, 14) /* BLX/BL */ | |
7452 | || bit (insn2, 12) /* Unconditional branch */ | |
7453 | || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ | |
7454 | err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); | |
7455 | else | |
7456 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7457 | "misc ctrl", dsc); | |
7458 | } | |
7459 | else | |
7460 | { | |
7461 | if (bit (insn1, 9)) /* Data processing (plain binary imm). */ | |
7462 | { | |
7463 | int op = bits (insn1, 4, 8); | |
7464 | int rn = bits (insn1, 0, 3); | |
7465 | if ((op == 0 || op == 0xa) && rn == 0xf) | |
7466 | err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, | |
7467 | regs, dsc); | |
7468 | else | |
7469 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7470 | "dp/pb", dsc); | |
7471 | } | |
7472 | else /* Data processing (modified immeidate) */ | |
7473 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7474 | "dp/mi", dsc); | |
7475 | } | |
7476 | break; | |
7477 | case 3: /* op1 = 3 */ | |
7478 | switch (bits (insn1, 9, 10)) | |
7479 | { | |
7480 | case 0: | |
7481 | if (bit (insn1, 4)) | |
7482 | err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, | |
7483 | regs, dsc); | |
7484 | else /* NEON Load/Store and Store single data item */ | |
7485 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7486 | "neon elt/struct load/store", | |
7487 | dsc); | |
7488 | break; | |
7489 | case 1: /* op1 = 3, bits (9, 10) == 1 */ | |
7490 | switch (bits (insn1, 7, 8)) | |
7491 | { | |
7492 | case 0: case 1: /* Data processing (register) */ | |
7493 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7494 | "dp(reg)", dsc); | |
7495 | break; | |
7496 | case 2: /* Multiply and absolute difference */ | |
7497 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7498 | "mul/mua/diff", dsc); | |
7499 | break; | |
7500 | case 3: /* Long multiply and divide */ | |
7501 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7502 | "lmul/lmua", dsc); | |
7503 | break; | |
7504 | } | |
7505 | break; | |
7506 | default: /* Coprocessor instructions */ | |
7507 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
7508 | break; | |
7509 | } | |
7510 | break; | |
7511 | default: | |
7512 | err = 1; | |
7513 | } | |
7514 | ||
7515 | if (err) | |
7516 | internal_error (__FILE__, __LINE__, | |
7517 | _("thumb_process_displaced_32bit_insn: Instruction decode error")); | |
7518 | ||
7519 | } | |
7520 | ||
b434a28f YQ |
7521 | static void |
7522 | thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | |
12545665 | 7523 | struct regcache *regs, |
cfba9872 | 7524 | arm_displaced_step_closure *dsc) |
b434a28f | 7525 | { |
34518530 YQ |
7526 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7527 | uint16_t insn1 | |
7528 | = read_memory_unsigned_integer (from, 2, byte_order_for_code); | |
7529 | ||
7530 | if (debug_displaced) | |
7531 | fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x " | |
7532 | "at %.8lx\n", insn1, (unsigned long) from); | |
7533 | ||
7534 | dsc->is_thumb = 1; | |
7535 | dsc->insn_size = thumb_insn_size (insn1); | |
7536 | if (thumb_insn_size (insn1) == 4) | |
7537 | { | |
7538 | uint16_t insn2 | |
7539 | = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); | |
7540 | thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); | |
7541 | } | |
7542 | else | |
7543 | thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); | |
b434a28f YQ |
7544 | } |
7545 | ||
cca44b1b | 7546 | void |
b434a28f YQ |
7547 | arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
7548 | CORE_ADDR to, struct regcache *regs, | |
cfba9872 | 7549 | arm_displaced_step_closure *dsc) |
cca44b1b JB |
7550 | { |
7551 | int err = 0; | |
b434a28f YQ |
7552 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7553 | uint32_t insn; | |
cca44b1b JB |
7554 | |
7555 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
7556 | here and override below if/when necessary. */ | |
7557 | dsc->numinsns = 1; | |
7558 | dsc->insn_addr = from; | |
7559 | dsc->scratch_base = to; | |
7560 | dsc->cleanup = NULL; | |
7561 | dsc->wrote_to_pc = 0; | |
7562 | ||
b434a28f | 7563 | if (!displaced_in_arm_mode (regs)) |
12545665 | 7564 | return thumb_process_displaced_insn (gdbarch, from, regs, dsc); |
b434a28f | 7565 | |
4db71c0b YQ |
7566 | dsc->is_thumb = 0; |
7567 | dsc->insn_size = 4; | |
b434a28f YQ |
7568 | insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); |
7569 | if (debug_displaced) | |
7570 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
7571 | "at %.8lx\n", (unsigned long) insn, | |
7572 | (unsigned long) from); | |
7573 | ||
cca44b1b | 7574 | if ((insn & 0xf0000000) == 0xf0000000) |
7ff120b4 | 7575 | err = arm_decode_unconditional (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7576 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) |
7577 | { | |
7578 | case 0x0: case 0x1: case 0x2: case 0x3: | |
7ff120b4 | 7579 | err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7580 | break; |
7581 | ||
7582 | case 0x4: case 0x5: case 0x6: | |
7ff120b4 | 7583 | err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7584 | break; |
7585 | ||
7586 | case 0x7: | |
7ff120b4 | 7587 | err = arm_decode_media (gdbarch, insn, dsc); |
cca44b1b JB |
7588 | break; |
7589 | ||
7590 | case 0x8: case 0x9: case 0xa: case 0xb: | |
7ff120b4 | 7591 | err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7592 | break; |
7593 | ||
7594 | case 0xc: case 0xd: case 0xe: case 0xf: | |
12545665 | 7595 | err = arm_decode_svc_copro (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7596 | break; |
7597 | } | |
7598 | ||
7599 | if (err) | |
7600 | internal_error (__FILE__, __LINE__, | |
7601 | _("arm_process_displaced_insn: Instruction decode error")); | |
7602 | } | |
7603 | ||
7604 | /* Actually set up the scratch space for a displaced instruction. */ | |
7605 | ||
7606 | void | |
7607 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
cfba9872 | 7608 | CORE_ADDR to, arm_displaced_step_closure *dsc) |
cca44b1b JB |
7609 | { |
7610 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4db71c0b | 7611 | unsigned int i, len, offset; |
cca44b1b | 7612 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
4db71c0b | 7613 | int size = dsc->is_thumb? 2 : 4; |
948f8e3d | 7614 | const gdb_byte *bkp_insn; |
cca44b1b | 7615 | |
4db71c0b | 7616 | offset = 0; |
cca44b1b JB |
7617 | /* Poke modified instruction(s). */ |
7618 | for (i = 0; i < dsc->numinsns; i++) | |
7619 | { | |
7620 | if (debug_displaced) | |
4db71c0b YQ |
7621 | { |
7622 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn "); | |
7623 | if (size == 4) | |
7624 | fprintf_unfiltered (gdb_stdlog, "%.8lx", | |
7625 | dsc->modinsn[i]); | |
7626 | else if (size == 2) | |
7627 | fprintf_unfiltered (gdb_stdlog, "%.4x", | |
7628 | (unsigned short)dsc->modinsn[i]); | |
7629 | ||
7630 | fprintf_unfiltered (gdb_stdlog, " at %.8lx\n", | |
7631 | (unsigned long) to + offset); | |
7632 | ||
7633 | } | |
7634 | write_memory_unsigned_integer (to + offset, size, | |
7635 | byte_order_for_code, | |
cca44b1b | 7636 | dsc->modinsn[i]); |
4db71c0b YQ |
7637 | offset += size; |
7638 | } | |
7639 | ||
7640 | /* Choose the correct breakpoint instruction. */ | |
7641 | if (dsc->is_thumb) | |
7642 | { | |
7643 | bkp_insn = tdep->thumb_breakpoint; | |
7644 | len = tdep->thumb_breakpoint_size; | |
7645 | } | |
7646 | else | |
7647 | { | |
7648 | bkp_insn = tdep->arm_breakpoint; | |
7649 | len = tdep->arm_breakpoint_size; | |
cca44b1b JB |
7650 | } |
7651 | ||
7652 | /* Put breakpoint afterwards. */ | |
4db71c0b | 7653 | write_memory (to + offset, bkp_insn, len); |
cca44b1b JB |
7654 | |
7655 | if (debug_displaced) | |
7656 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
7657 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
7658 | } | |
7659 | ||
cca44b1b JB |
7660 | /* Entry point for cleaning things up after a displaced instruction has been |
7661 | single-stepped. */ | |
7662 | ||
7663 | void | |
7664 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
cfba9872 | 7665 | struct displaced_step_closure *dsc_, |
cca44b1b JB |
7666 | CORE_ADDR from, CORE_ADDR to, |
7667 | struct regcache *regs) | |
7668 | { | |
cfba9872 SM |
7669 | arm_displaced_step_closure *dsc = (arm_displaced_step_closure *) dsc_; |
7670 | ||
cca44b1b JB |
7671 | if (dsc->cleanup) |
7672 | dsc->cleanup (gdbarch, regs, dsc); | |
7673 | ||
7674 | if (!dsc->wrote_to_pc) | |
4db71c0b YQ |
7675 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
7676 | dsc->insn_addr + dsc->insn_size); | |
7677 | ||
cca44b1b JB |
7678 | } |
7679 | ||
7680 | #include "bfd-in2.h" | |
7681 | #include "libcoff.h" | |
7682 | ||
7683 | static int | |
7684 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
7685 | { | |
e47ad6c0 YQ |
7686 | gdb_disassembler *di |
7687 | = static_cast<gdb_disassembler *>(info->application_data); | |
7688 | struct gdbarch *gdbarch = di->arch (); | |
9779414d DJ |
7689 | |
7690 | if (arm_pc_is_thumb (gdbarch, memaddr)) | |
cca44b1b JB |
7691 | { |
7692 | static asymbol *asym; | |
7693 | static combined_entry_type ce; | |
7694 | static struct coff_symbol_struct csym; | |
7695 | static struct bfd fake_bfd; | |
7696 | static bfd_target fake_target; | |
7697 | ||
7698 | if (csym.native == NULL) | |
7699 | { | |
7700 | /* Create a fake symbol vector containing a Thumb symbol. | |
7701 | This is solely so that the code in print_insn_little_arm() | |
7702 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
7703 | the presence of a Thumb symbol and switch to decoding | |
7704 | Thumb instructions. */ | |
7705 | ||
7706 | fake_target.flavour = bfd_target_coff_flavour; | |
7707 | fake_bfd.xvec = &fake_target; | |
7708 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
7709 | csym.native = &ce; | |
7710 | csym.symbol.the_bfd = &fake_bfd; | |
7711 | csym.symbol.name = "fake"; | |
7712 | asym = (asymbol *) & csym; | |
7713 | } | |
7714 | ||
7715 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
7716 | info->symbols = &asym; | |
7717 | } | |
7718 | else | |
7719 | info->symbols = NULL; | |
7720 | ||
e60eb288 YQ |
7721 | /* GDB is able to get bfd_mach from the exe_bfd, info->mach is |
7722 | accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise, | |
7723 | opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger | |
7724 | the assert on the mismatch of info->mach and bfd_get_mach (exec_bfd) | |
7725 | in default_print_insn. */ | |
7726 | if (exec_bfd != NULL) | |
7727 | info->flags |= USER_SPECIFIED_MACHINE_TYPE; | |
7728 | ||
6394c606 | 7729 | return default_print_insn (memaddr, info); |
cca44b1b JB |
7730 | } |
7731 | ||
7732 | /* The following define instruction sequences that will cause ARM | |
7733 | cpu's to take an undefined instruction trap. These are used to | |
7734 | signal a breakpoint to GDB. | |
7735 | ||
7736 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
7737 | modes. A different instruction is required for each mode. The ARM | |
7738 | cpu's can also be big or little endian. Thus four different | |
7739 | instructions are needed to support all cases. | |
7740 | ||
7741 | Note: ARMv4 defines several new instructions that will take the | |
7742 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
7743 | not in fact add the new instructions. The new undefined | |
7744 | instructions in ARMv4 are all instructions that had no defined | |
7745 | behaviour in earlier chips. There is no guarantee that they will | |
7746 | raise an exception, but may be treated as NOP's. In practice, it | |
7747 | may only safe to rely on instructions matching: | |
7748 | ||
7749 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
7750 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
7751 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
7752 | ||
0963b4bd | 7753 | Even this may only true if the condition predicate is true. The |
cca44b1b JB |
7754 | following use a condition predicate of ALWAYS so it is always TRUE. |
7755 | ||
7756 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
7757 | and NetBSD all use a software interrupt rather than an undefined | |
7758 | instruction to force a trap. This can be handled by by the | |
7759 | abi-specific code during establishment of the gdbarch vector. */ | |
7760 | ||
7761 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
7762 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
7763 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
7764 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
7765 | ||
948f8e3d PA |
7766 | static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; |
7767 | static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
7768 | static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
7769 | static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
cca44b1b | 7770 | |
cd6c3b4f YQ |
7771 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
7772 | ||
d19280ad YQ |
7773 | static int |
7774 | arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
cca44b1b JB |
7775 | { |
7776 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
177321bd | 7777 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
cca44b1b | 7778 | |
9779414d | 7779 | if (arm_pc_is_thumb (gdbarch, *pcptr)) |
cca44b1b JB |
7780 | { |
7781 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
177321bd DJ |
7782 | |
7783 | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | |
7784 | check whether we are replacing a 32-bit instruction. */ | |
7785 | if (tdep->thumb2_breakpoint != NULL) | |
7786 | { | |
7787 | gdb_byte buf[2]; | |
d19280ad | 7788 | |
177321bd DJ |
7789 | if (target_read_memory (*pcptr, buf, 2) == 0) |
7790 | { | |
7791 | unsigned short inst1; | |
d19280ad | 7792 | |
177321bd | 7793 | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); |
db24da6d | 7794 | if (thumb_insn_size (inst1) == 4) |
d19280ad | 7795 | return ARM_BP_KIND_THUMB2; |
177321bd DJ |
7796 | } |
7797 | } | |
7798 | ||
d19280ad | 7799 | return ARM_BP_KIND_THUMB; |
cca44b1b JB |
7800 | } |
7801 | else | |
d19280ad YQ |
7802 | return ARM_BP_KIND_ARM; |
7803 | ||
7804 | } | |
7805 | ||
cd6c3b4f YQ |
7806 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
7807 | ||
d19280ad YQ |
7808 | static const gdb_byte * |
7809 | arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
7810 | { | |
7811 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7812 | ||
7813 | switch (kind) | |
cca44b1b | 7814 | { |
d19280ad YQ |
7815 | case ARM_BP_KIND_ARM: |
7816 | *size = tdep->arm_breakpoint_size; | |
cca44b1b | 7817 | return tdep->arm_breakpoint; |
d19280ad YQ |
7818 | case ARM_BP_KIND_THUMB: |
7819 | *size = tdep->thumb_breakpoint_size; | |
7820 | return tdep->thumb_breakpoint; | |
7821 | case ARM_BP_KIND_THUMB2: | |
7822 | *size = tdep->thumb2_breakpoint_size; | |
7823 | return tdep->thumb2_breakpoint; | |
7824 | default: | |
7825 | gdb_assert_not_reached ("unexpected arm breakpoint kind"); | |
cca44b1b JB |
7826 | } |
7827 | } | |
7828 | ||
833b7ab5 YQ |
7829 | /* Implement the breakpoint_kind_from_current_state gdbarch method. */ |
7830 | ||
7831 | static int | |
7832 | arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch, | |
7833 | struct regcache *regcache, | |
7834 | CORE_ADDR *pcptr) | |
7835 | { | |
7836 | gdb_byte buf[4]; | |
7837 | ||
7838 | /* Check the memory pointed by PC is readable. */ | |
7839 | if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0) | |
7840 | { | |
7841 | struct arm_get_next_pcs next_pcs_ctx; | |
833b7ab5 YQ |
7842 | |
7843 | arm_get_next_pcs_ctor (&next_pcs_ctx, | |
7844 | &arm_get_next_pcs_ops, | |
7845 | gdbarch_byte_order (gdbarch), | |
7846 | gdbarch_byte_order_for_code (gdbarch), | |
7847 | 0, | |
7848 | regcache); | |
7849 | ||
a0ff9e1a | 7850 | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
833b7ab5 YQ |
7851 | |
7852 | /* If MEMADDR is the next instruction of current pc, do the | |
7853 | software single step computation, and get the thumb mode by | |
7854 | the destination address. */ | |
a0ff9e1a | 7855 | for (CORE_ADDR pc : next_pcs) |
833b7ab5 YQ |
7856 | { |
7857 | if (UNMAKE_THUMB_ADDR (pc) == *pcptr) | |
7858 | { | |
833b7ab5 YQ |
7859 | if (IS_THUMB_ADDR (pc)) |
7860 | { | |
7861 | *pcptr = MAKE_THUMB_ADDR (*pcptr); | |
7862 | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | |
7863 | } | |
7864 | else | |
7865 | return ARM_BP_KIND_ARM; | |
7866 | } | |
7867 | } | |
833b7ab5 YQ |
7868 | } |
7869 | ||
7870 | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | |
7871 | } | |
7872 | ||
cca44b1b JB |
7873 | /* Extract from an array REGBUF containing the (raw) register state a |
7874 | function return value of type TYPE, and copy that, in virtual | |
7875 | format, into VALBUF. */ | |
7876 | ||
7877 | static void | |
7878 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
7879 | gdb_byte *valbuf) | |
7880 | { | |
ac7936df | 7881 | struct gdbarch *gdbarch = regs->arch (); |
cca44b1b JB |
7882 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
7883 | ||
7884 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
7885 | { | |
7886 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
7887 | { | |
7888 | case ARM_FLOAT_FPA: | |
7889 | { | |
7890 | /* The value is in register F0 in internal format. We need to | |
7891 | extract the raw value and then convert it to the desired | |
7892 | internal type. */ | |
7893 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
7894 | ||
7895 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
3b2ca824 UW |
7896 | target_float_convert (tmpbuf, arm_ext_type (gdbarch), |
7897 | valbuf, type); | |
cca44b1b JB |
7898 | } |
7899 | break; | |
7900 | ||
7901 | case ARM_FLOAT_SOFT_FPA: | |
7902 | case ARM_FLOAT_SOFT_VFP: | |
7903 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
7904 | not using the VFP ABI code. */ | |
7905 | case ARM_FLOAT_VFP: | |
7906 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
7907 | if (TYPE_LENGTH (type) > 4) | |
7908 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
7909 | valbuf + INT_REGISTER_SIZE); | |
7910 | break; | |
7911 | ||
7912 | default: | |
0963b4bd MS |
7913 | internal_error (__FILE__, __LINE__, |
7914 | _("arm_extract_return_value: " | |
7915 | "Floating point model not supported")); | |
cca44b1b JB |
7916 | break; |
7917 | } | |
7918 | } | |
7919 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
7920 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
7921 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
7922 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 7923 | || TYPE_IS_REFERENCE (type) |
cca44b1b JB |
7924 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
7925 | { | |
b021a221 MS |
7926 | /* If the type is a plain integer, then the access is |
7927 | straight-forward. Otherwise we have to play around a bit | |
7928 | more. */ | |
cca44b1b JB |
7929 | int len = TYPE_LENGTH (type); |
7930 | int regno = ARM_A1_REGNUM; | |
7931 | ULONGEST tmp; | |
7932 | ||
7933 | while (len > 0) | |
7934 | { | |
7935 | /* By using store_unsigned_integer we avoid having to do | |
7936 | anything special for small big-endian values. */ | |
7937 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
7938 | store_unsigned_integer (valbuf, | |
7939 | (len > INT_REGISTER_SIZE | |
7940 | ? INT_REGISTER_SIZE : len), | |
7941 | byte_order, tmp); | |
7942 | len -= INT_REGISTER_SIZE; | |
7943 | valbuf += INT_REGISTER_SIZE; | |
7944 | } | |
7945 | } | |
7946 | else | |
7947 | { | |
7948 | /* For a structure or union the behaviour is as if the value had | |
7949 | been stored to word-aligned memory and then loaded into | |
7950 | registers with 32-bit load instruction(s). */ | |
7951 | int len = TYPE_LENGTH (type); | |
7952 | int regno = ARM_A1_REGNUM; | |
7953 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
7954 | ||
7955 | while (len > 0) | |
7956 | { | |
7957 | regcache_cooked_read (regs, regno++, tmpbuf); | |
7958 | memcpy (valbuf, tmpbuf, | |
7959 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
7960 | len -= INT_REGISTER_SIZE; | |
7961 | valbuf += INT_REGISTER_SIZE; | |
7962 | } | |
7963 | } | |
7964 | } | |
7965 | ||
7966 | ||
7967 | /* Will a function return an aggregate type in memory or in a | |
7968 | register? Return 0 if an aggregate type can be returned in a | |
7969 | register, 1 if it must be returned in memory. */ | |
7970 | ||
7971 | static int | |
7972 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
7973 | { | |
cca44b1b JB |
7974 | enum type_code code; |
7975 | ||
f168693b | 7976 | type = check_typedef (type); |
cca44b1b | 7977 | |
b13c8ab2 YQ |
7978 | /* Simple, non-aggregate types (ie not including vectors and |
7979 | complex) are always returned in a register (or registers). */ | |
7980 | code = TYPE_CODE (type); | |
7981 | if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code | |
7982 | && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code) | |
7983 | return 0; | |
cca44b1b | 7984 | |
c4312b19 YQ |
7985 | if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type)) |
7986 | { | |
7987 | /* Vector values should be returned using ARM registers if they | |
7988 | are not over 16 bytes. */ | |
7989 | return (TYPE_LENGTH (type) > 16); | |
7990 | } | |
7991 | ||
b13c8ab2 | 7992 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) |
cca44b1b | 7993 | { |
b13c8ab2 YQ |
7994 | /* The AAPCS says all aggregates not larger than a word are returned |
7995 | in a register. */ | |
7996 | if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE) | |
7997 | return 0; | |
7998 | ||
cca44b1b JB |
7999 | return 1; |
8000 | } | |
b13c8ab2 YQ |
8001 | else |
8002 | { | |
8003 | int nRc; | |
cca44b1b | 8004 | |
b13c8ab2 YQ |
8005 | /* All aggregate types that won't fit in a register must be returned |
8006 | in memory. */ | |
8007 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
8008 | return 1; | |
cca44b1b | 8009 | |
b13c8ab2 YQ |
8010 | /* In the ARM ABI, "integer" like aggregate types are returned in |
8011 | registers. For an aggregate type to be integer like, its size | |
8012 | must be less than or equal to INT_REGISTER_SIZE and the | |
8013 | offset of each addressable subfield must be zero. Note that bit | |
8014 | fields are not addressable, and all addressable subfields of | |
8015 | unions always start at offset zero. | |
cca44b1b | 8016 | |
b13c8ab2 YQ |
8017 | This function is based on the behaviour of GCC 2.95.1. |
8018 | See: gcc/arm.c: arm_return_in_memory() for details. | |
cca44b1b | 8019 | |
b13c8ab2 YQ |
8020 | Note: All versions of GCC before GCC 2.95.2 do not set up the |
8021 | parameters correctly for a function returning the following | |
8022 | structure: struct { float f;}; This should be returned in memory, | |
8023 | not a register. Richard Earnshaw sent me a patch, but I do not | |
8024 | know of any way to detect if a function like the above has been | |
8025 | compiled with the correct calling convention. */ | |
8026 | ||
8027 | /* Assume all other aggregate types can be returned in a register. | |
8028 | Run a check for structures, unions and arrays. */ | |
8029 | nRc = 0; | |
67255d04 | 8030 | |
b13c8ab2 YQ |
8031 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) |
8032 | { | |
8033 | int i; | |
8034 | /* Need to check if this struct/union is "integer" like. For | |
8035 | this to be true, its size must be less than or equal to | |
8036 | INT_REGISTER_SIZE and the offset of each addressable | |
8037 | subfield must be zero. Note that bit fields are not | |
8038 | addressable, and unions always start at offset zero. If any | |
8039 | of the subfields is a floating point type, the struct/union | |
8040 | cannot be an integer type. */ | |
8041 | ||
8042 | /* For each field in the object, check: | |
8043 | 1) Is it FP? --> yes, nRc = 1; | |
8044 | 2) Is it addressable (bitpos != 0) and | |
8045 | not packed (bitsize == 0)? | |
8046 | --> yes, nRc = 1 | |
8047 | */ | |
8048 | ||
8049 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
67255d04 | 8050 | { |
b13c8ab2 YQ |
8051 | enum type_code field_type_code; |
8052 | ||
8053 | field_type_code | |
8054 | = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, | |
8055 | i))); | |
8056 | ||
8057 | /* Is it a floating point type field? */ | |
8058 | if (field_type_code == TYPE_CODE_FLT) | |
67255d04 RE |
8059 | { |
8060 | nRc = 1; | |
8061 | break; | |
8062 | } | |
b13c8ab2 YQ |
8063 | |
8064 | /* If bitpos != 0, then we have to care about it. */ | |
8065 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
8066 | { | |
8067 | /* Bitfields are not addressable. If the field bitsize is | |
8068 | zero, then the field is not packed. Hence it cannot be | |
8069 | a bitfield or any other packed type. */ | |
8070 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
8071 | { | |
8072 | nRc = 1; | |
8073 | break; | |
8074 | } | |
8075 | } | |
67255d04 RE |
8076 | } |
8077 | } | |
67255d04 | 8078 | |
b13c8ab2 YQ |
8079 | return nRc; |
8080 | } | |
67255d04 RE |
8081 | } |
8082 | ||
34e8f22d RE |
8083 | /* Write into appropriate registers a function return value of type |
8084 | TYPE, given in virtual format. */ | |
8085 | ||
8086 | static void | |
b508a996 | 8087 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 8088 | const gdb_byte *valbuf) |
34e8f22d | 8089 | { |
ac7936df | 8090 | struct gdbarch *gdbarch = regs->arch (); |
e17a4113 | 8091 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 8092 | |
34e8f22d RE |
8093 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
8094 | { | |
64403bd1 | 8095 | gdb_byte buf[FP_REGISTER_SIZE]; |
34e8f22d | 8096 | |
be8626e0 | 8097 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
8098 | { |
8099 | case ARM_FLOAT_FPA: | |
8100 | ||
3b2ca824 | 8101 | target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch)); |
b508a996 | 8102 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
8103 | break; |
8104 | ||
fd50bc42 | 8105 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 8106 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
8107 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
8108 | not using the VFP ABI code. */ | |
8109 | case ARM_FLOAT_VFP: | |
b508a996 RE |
8110 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
8111 | if (TYPE_LENGTH (type) > 4) | |
8112 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 8113 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
8114 | break; |
8115 | ||
8116 | default: | |
9b20d036 MS |
8117 | internal_error (__FILE__, __LINE__, |
8118 | _("arm_store_return_value: Floating " | |
8119 | "point model not supported")); | |
08216dd7 RE |
8120 | break; |
8121 | } | |
34e8f22d | 8122 | } |
b508a996 RE |
8123 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
8124 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
8125 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
8126 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 8127 | || TYPE_IS_REFERENCE (type) |
b508a996 RE |
8128 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
8129 | { | |
8130 | if (TYPE_LENGTH (type) <= 4) | |
8131 | { | |
8132 | /* Values of one word or less are zero/sign-extended and | |
8133 | returned in r0. */ | |
7a5ea0d4 | 8134 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8135 | LONGEST val = unpack_long (type, valbuf); |
8136 | ||
e17a4113 | 8137 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
8138 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
8139 | } | |
8140 | else | |
8141 | { | |
8142 | /* Integral values greater than one word are stored in consecutive | |
8143 | registers starting with r0. This will always be a multiple of | |
8144 | the regiser size. */ | |
8145 | int len = TYPE_LENGTH (type); | |
8146 | int regno = ARM_A1_REGNUM; | |
8147 | ||
8148 | while (len > 0) | |
8149 | { | |
8150 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
8151 | len -= INT_REGISTER_SIZE; |
8152 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
8153 | } |
8154 | } | |
8155 | } | |
34e8f22d | 8156 | else |
b508a996 RE |
8157 | { |
8158 | /* For a structure or union the behaviour is as if the value had | |
8159 | been stored to word-aligned memory and then loaded into | |
8160 | registers with 32-bit load instruction(s). */ | |
8161 | int len = TYPE_LENGTH (type); | |
8162 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 8163 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8164 | |
8165 | while (len > 0) | |
8166 | { | |
8167 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 8168 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 8169 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
8170 | len -= INT_REGISTER_SIZE; |
8171 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
8172 | } |
8173 | } | |
34e8f22d RE |
8174 | } |
8175 | ||
2af48f68 PB |
8176 | |
8177 | /* Handle function return values. */ | |
8178 | ||
8179 | static enum return_value_convention | |
6a3a010b | 8180 | arm_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
8181 | struct type *valtype, struct regcache *regcache, |
8182 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 8183 | { |
7c00367c | 8184 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
6a3a010b | 8185 | struct type *func_type = function ? value_type (function) : NULL; |
90445bd3 DJ |
8186 | enum arm_vfp_cprc_base_type vfp_base_type; |
8187 | int vfp_base_count; | |
8188 | ||
8189 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
8190 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
8191 | { | |
8192 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
8193 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
8194 | int i; | |
8195 | for (i = 0; i < vfp_base_count; i++) | |
8196 | { | |
58d6951d DJ |
8197 | if (reg_char == 'q') |
8198 | { | |
8199 | if (writebuf) | |
8200 | arm_neon_quad_write (gdbarch, regcache, i, | |
8201 | writebuf + i * unit_length); | |
8202 | ||
8203 | if (readbuf) | |
8204 | arm_neon_quad_read (gdbarch, regcache, i, | |
8205 | readbuf + i * unit_length); | |
8206 | } | |
8207 | else | |
8208 | { | |
8209 | char name_buf[4]; | |
8210 | int regnum; | |
8211 | ||
8c042590 | 8212 | xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i); |
58d6951d DJ |
8213 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8214 | strlen (name_buf)); | |
8215 | if (writebuf) | |
8216 | regcache_cooked_write (regcache, regnum, | |
8217 | writebuf + i * unit_length); | |
8218 | if (readbuf) | |
8219 | regcache_cooked_read (regcache, regnum, | |
8220 | readbuf + i * unit_length); | |
8221 | } | |
90445bd3 DJ |
8222 | } |
8223 | return RETURN_VALUE_REGISTER_CONVENTION; | |
8224 | } | |
7c00367c | 8225 | |
2af48f68 PB |
8226 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
8227 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
8228 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
8229 | { | |
7c00367c MK |
8230 | if (tdep->struct_return == pcc_struct_return |
8231 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
8232 | return RETURN_VALUE_STRUCT_CONVENTION; |
8233 | } | |
b13c8ab2 YQ |
8234 | else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX) |
8235 | { | |
8236 | if (arm_return_in_memory (gdbarch, valtype)) | |
8237 | return RETURN_VALUE_STRUCT_CONVENTION; | |
8238 | } | |
7052e42c | 8239 | |
2af48f68 PB |
8240 | if (writebuf) |
8241 | arm_store_return_value (valtype, regcache, writebuf); | |
8242 | ||
8243 | if (readbuf) | |
8244 | arm_extract_return_value (valtype, regcache, readbuf); | |
8245 | ||
8246 | return RETURN_VALUE_REGISTER_CONVENTION; | |
8247 | } | |
8248 | ||
8249 | ||
9df628e0 | 8250 | static int |
60ade65d | 8251 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 8252 | { |
e17a4113 UW |
8253 | struct gdbarch *gdbarch = get_frame_arch (frame); |
8254 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8255 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 8256 | CORE_ADDR jb_addr; |
e362b510 | 8257 | gdb_byte buf[INT_REGISTER_SIZE]; |
9df628e0 | 8258 | |
60ade65d | 8259 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
8260 | |
8261 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 8262 | INT_REGISTER_SIZE)) |
9df628e0 RE |
8263 | return 0; |
8264 | ||
e17a4113 | 8265 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
8266 | return 1; |
8267 | } | |
8268 | ||
faa95490 DJ |
8269 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
8270 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
8271 | |
8272 | CORE_ADDR | |
52f729a7 | 8273 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 8274 | { |
2c02bd72 | 8275 | const char *name; |
faa95490 | 8276 | int namelen; |
c906108c SS |
8277 | CORE_ADDR start_addr; |
8278 | ||
8279 | /* Find the starting address and name of the function containing the PC. */ | |
8280 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
80d8d390 YQ |
8281 | { |
8282 | /* Trampoline 'bx reg' doesn't belong to any functions. Do the | |
8283 | check here. */ | |
8284 | start_addr = arm_skip_bx_reg (frame, pc); | |
8285 | if (start_addr != 0) | |
8286 | return start_addr; | |
8287 | ||
8288 | return 0; | |
8289 | } | |
c906108c | 8290 | |
faa95490 DJ |
8291 | /* If PC is in a Thumb call or return stub, return the address of the |
8292 | target PC, which is in a register. The thunk functions are called | |
8293 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
8294 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
8295 | functions, named __ARM_call_via_r[0-7]. */ | |
61012eef GB |
8296 | if (startswith (name, "_call_via_") |
8297 | || startswith (name, "__ARM_call_via_")) | |
c906108c | 8298 | { |
ed9a39eb JM |
8299 | /* Use the name suffix to determine which register contains the |
8300 | target PC. */ | |
a121b7c1 | 8301 | static const char *table[15] = |
c5aa993b JM |
8302 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
8303 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
8304 | }; | |
c906108c | 8305 | int regno; |
faa95490 | 8306 | int offset = strlen (name) - 2; |
c906108c SS |
8307 | |
8308 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 8309 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 8310 | return get_frame_register_unsigned (frame, regno); |
c906108c | 8311 | } |
ed9a39eb | 8312 | |
faa95490 DJ |
8313 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
8314 | non-interworking calls to foo. We could decode the stubs | |
8315 | to find the target but it's easier to use the symbol table. */ | |
8316 | namelen = strlen (name); | |
8317 | if (name[0] == '_' && name[1] == '_' | |
8318 | && ((namelen > 2 + strlen ("_from_thumb") | |
61012eef | 8319 | && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb")) |
faa95490 | 8320 | || (namelen > 2 + strlen ("_from_arm") |
61012eef | 8321 | && startswith (name + namelen - strlen ("_from_arm"), "_from_arm")))) |
faa95490 DJ |
8322 | { |
8323 | char *target_name; | |
8324 | int target_len = namelen - 2; | |
3b7344d5 | 8325 | struct bound_minimal_symbol minsym; |
faa95490 DJ |
8326 | struct objfile *objfile; |
8327 | struct obj_section *sec; | |
8328 | ||
8329 | if (name[namelen - 1] == 'b') | |
8330 | target_len -= strlen ("_from_thumb"); | |
8331 | else | |
8332 | target_len -= strlen ("_from_arm"); | |
8333 | ||
224c3ddb | 8334 | target_name = (char *) alloca (target_len + 1); |
faa95490 DJ |
8335 | memcpy (target_name, name + 2, target_len); |
8336 | target_name[target_len] = '\0'; | |
8337 | ||
8338 | sec = find_pc_section (pc); | |
8339 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
8340 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
3b7344d5 | 8341 | if (minsym.minsym != NULL) |
77e371c0 | 8342 | return BMSYMBOL_VALUE_ADDRESS (minsym); |
faa95490 DJ |
8343 | else |
8344 | return 0; | |
8345 | } | |
8346 | ||
c5aa993b | 8347 | return 0; /* not a stub */ |
c906108c SS |
8348 | } |
8349 | ||
afd7eef0 | 8350 | static void |
981a3fb3 | 8351 | set_arm_command (const char *args, int from_tty) |
afd7eef0 | 8352 | { |
edefbb7c AC |
8353 | printf_unfiltered (_("\ |
8354 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
8355 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
8356 | } | |
8357 | ||
8358 | static void | |
981a3fb3 | 8359 | show_arm_command (const char *args, int from_tty) |
afd7eef0 | 8360 | { |
26304000 | 8361 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
8362 | } |
8363 | ||
28e97307 DJ |
8364 | static void |
8365 | arm_update_current_architecture (void) | |
fd50bc42 | 8366 | { |
28e97307 | 8367 | struct gdbarch_info info; |
fd50bc42 | 8368 | |
28e97307 | 8369 | /* If the current architecture is not ARM, we have nothing to do. */ |
f5656ead | 8370 | if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm) |
28e97307 | 8371 | return; |
fd50bc42 | 8372 | |
28e97307 DJ |
8373 | /* Update the architecture. */ |
8374 | gdbarch_info_init (&info); | |
fd50bc42 | 8375 | |
28e97307 | 8376 | if (!gdbarch_update_p (info)) |
9b20d036 | 8377 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
fd50bc42 RE |
8378 | } |
8379 | ||
8380 | static void | |
eb4c3f4a | 8381 | set_fp_model_sfunc (const char *args, int from_tty, |
fd50bc42 RE |
8382 | struct cmd_list_element *c) |
8383 | { | |
570dc176 | 8384 | int fp_model; |
fd50bc42 RE |
8385 | |
8386 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
8387 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
8388 | { | |
aead7601 | 8389 | arm_fp_model = (enum arm_float_model) fp_model; |
fd50bc42 RE |
8390 | break; |
8391 | } | |
8392 | ||
8393 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 8394 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
8395 | current_fp_model); |
8396 | ||
28e97307 | 8397 | arm_update_current_architecture (); |
fd50bc42 RE |
8398 | } |
8399 | ||
8400 | static void | |
08546159 AC |
8401 | show_fp_model (struct ui_file *file, int from_tty, |
8402 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 8403 | { |
f5656ead | 8404 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
fd50bc42 | 8405 | |
28e97307 | 8406 | if (arm_fp_model == ARM_FLOAT_AUTO |
f5656ead | 8407 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
8408 | fprintf_filtered (file, _("\ |
8409 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
8410 | fp_model_strings[tdep->fp_model]); | |
8411 | else | |
8412 | fprintf_filtered (file, _("\ | |
8413 | The current ARM floating point model is \"%s\".\n"), | |
8414 | fp_model_strings[arm_fp_model]); | |
8415 | } | |
8416 | ||
8417 | static void | |
eb4c3f4a | 8418 | arm_set_abi (const char *args, int from_tty, |
28e97307 DJ |
8419 | struct cmd_list_element *c) |
8420 | { | |
570dc176 | 8421 | int arm_abi; |
28e97307 DJ |
8422 | |
8423 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
8424 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
8425 | { | |
aead7601 | 8426 | arm_abi_global = (enum arm_abi_kind) arm_abi; |
28e97307 DJ |
8427 | break; |
8428 | } | |
8429 | ||
8430 | if (arm_abi == ARM_ABI_LAST) | |
8431 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
8432 | arm_abi_string); | |
8433 | ||
8434 | arm_update_current_architecture (); | |
8435 | } | |
8436 | ||
8437 | static void | |
8438 | arm_show_abi (struct ui_file *file, int from_tty, | |
8439 | struct cmd_list_element *c, const char *value) | |
8440 | { | |
f5656ead | 8441 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
28e97307 DJ |
8442 | |
8443 | if (arm_abi_global == ARM_ABI_AUTO | |
f5656ead | 8444 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
8445 | fprintf_filtered (file, _("\ |
8446 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
8447 | arm_abi_strings[tdep->arm_abi]); | |
8448 | else | |
8449 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
8450 | arm_abi_string); | |
fd50bc42 RE |
8451 | } |
8452 | ||
0428b8f5 DJ |
8453 | static void |
8454 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
8455 | struct cmd_list_element *c, const char *value) | |
8456 | { | |
0963b4bd MS |
8457 | fprintf_filtered (file, |
8458 | _("The current execution mode assumed " | |
8459 | "(when symbols are unavailable) is \"%s\".\n"), | |
0428b8f5 DJ |
8460 | arm_fallback_mode_string); |
8461 | } | |
8462 | ||
8463 | static void | |
8464 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
8465 | struct cmd_list_element *c, const char *value) | |
8466 | { | |
0963b4bd MS |
8467 | fprintf_filtered (file, |
8468 | _("The current execution mode assumed " | |
8469 | "(even when symbols are available) is \"%s\".\n"), | |
0428b8f5 DJ |
8470 | arm_force_mode_string); |
8471 | } | |
8472 | ||
afd7eef0 RE |
8473 | /* If the user changes the register disassembly style used for info |
8474 | register and other commands, we have to also switch the style used | |
8475 | in opcodes for disassembly output. This function is run in the "set | |
8476 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
8477 | |
8478 | static void | |
eb4c3f4a | 8479 | set_disassembly_style_sfunc (const char *args, int from_tty, |
65b48a81 | 8480 | struct cmd_list_element *c) |
bc90b915 | 8481 | { |
65b48a81 PB |
8482 | /* Convert the short style name into the long style name (eg, reg-names-*) |
8483 | before calling the generic set_disassembler_options() function. */ | |
8484 | std::string long_name = std::string ("reg-names-") + disassembly_style; | |
8485 | set_disassembler_options (&long_name[0]); | |
8486 | } | |
8487 | ||
8488 | static void | |
8489 | show_disassembly_style_sfunc (struct ui_file *file, int from_tty, | |
8490 | struct cmd_list_element *c, const char *value) | |
8491 | { | |
8492 | struct gdbarch *gdbarch = get_current_arch (); | |
8493 | char *options = get_disassembler_options (gdbarch); | |
8494 | const char *style = ""; | |
8495 | int len = 0; | |
f995bbe8 | 8496 | const char *opt; |
65b48a81 PB |
8497 | |
8498 | FOR_EACH_DISASSEMBLER_OPTION (opt, options) | |
8499 | if (CONST_STRNEQ (opt, "reg-names-")) | |
8500 | { | |
8501 | style = &opt[strlen ("reg-names-")]; | |
8502 | len = strcspn (style, ","); | |
8503 | } | |
8504 | ||
8505 | fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style); | |
bc90b915 FN |
8506 | } |
8507 | \f | |
966fbf70 | 8508 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 8509 | static const char * |
d93859e2 | 8510 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 8511 | { |
58d6951d DJ |
8512 | const int num_regs = gdbarch_num_regs (gdbarch); |
8513 | ||
8514 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
8515 | && i >= num_regs && i < num_regs + 32) | |
8516 | { | |
8517 | static const char *const vfp_pseudo_names[] = { | |
8518 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
8519 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
8520 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
8521 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
8522 | }; | |
8523 | ||
8524 | return vfp_pseudo_names[i - num_regs]; | |
8525 | } | |
8526 | ||
8527 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
8528 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
8529 | { | |
8530 | static const char *const neon_pseudo_names[] = { | |
8531 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
8532 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
8533 | }; | |
8534 | ||
8535 | return neon_pseudo_names[i - num_regs - 32]; | |
8536 | } | |
8537 | ||
ff6f572f DJ |
8538 | if (i >= ARRAY_SIZE (arm_register_names)) |
8539 | /* These registers are only supported on targets which supply | |
8540 | an XML description. */ | |
8541 | return ""; | |
8542 | ||
966fbf70 RE |
8543 | return arm_register_names[i]; |
8544 | } | |
8545 | ||
082fc60d RE |
8546 | /* Test whether the coff symbol specific value corresponds to a Thumb |
8547 | function. */ | |
8548 | ||
8549 | static int | |
8550 | coff_sym_is_thumb (int val) | |
8551 | { | |
f8bf5763 PM |
8552 | return (val == C_THUMBEXT |
8553 | || val == C_THUMBSTAT | |
8554 | || val == C_THUMBEXTFUNC | |
8555 | || val == C_THUMBSTATFUNC | |
8556 | || val == C_THUMBLABEL); | |
082fc60d RE |
8557 | } |
8558 | ||
8559 | /* arm_coff_make_msymbol_special() | |
8560 | arm_elf_make_msymbol_special() | |
8561 | ||
8562 | These functions test whether the COFF or ELF symbol corresponds to | |
8563 | an address in thumb code, and set a "special" bit in a minimal | |
8564 | symbol to indicate that it does. */ | |
8565 | ||
34e8f22d | 8566 | static void |
082fc60d RE |
8567 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
8568 | { | |
39d911fc TP |
8569 | elf_symbol_type *elfsym = (elf_symbol_type *) sym; |
8570 | ||
8571 | if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal) | |
467d42c4 | 8572 | == ST_BRANCH_TO_THUMB) |
082fc60d RE |
8573 | MSYMBOL_SET_SPECIAL (msym); |
8574 | } | |
8575 | ||
34e8f22d | 8576 | static void |
082fc60d RE |
8577 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
8578 | { | |
8579 | if (coff_sym_is_thumb (val)) | |
8580 | MSYMBOL_SET_SPECIAL (msym); | |
8581 | } | |
8582 | ||
60c5725c | 8583 | static void |
c1bd65d0 | 8584 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c | 8585 | { |
9a3c8263 | 8586 | struct arm_per_objfile *data = (struct arm_per_objfile *) arg; |
60c5725c DJ |
8587 | unsigned int i; |
8588 | ||
8589 | for (i = 0; i < objfile->obfd->section_count; i++) | |
8590 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
8591 | } | |
8592 | ||
8593 | static void | |
8594 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
8595 | asymbol *sym) | |
8596 | { | |
8597 | const char *name = bfd_asymbol_name (sym); | |
8598 | struct arm_per_objfile *data; | |
8599 | VEC(arm_mapping_symbol_s) **map_p; | |
8600 | struct arm_mapping_symbol new_map_sym; | |
8601 | ||
8602 | gdb_assert (name[0] == '$'); | |
8603 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
8604 | return; | |
8605 | ||
9a3c8263 SM |
8606 | data = (struct arm_per_objfile *) objfile_data (objfile, |
8607 | arm_objfile_data_key); | |
60c5725c DJ |
8608 | if (data == NULL) |
8609 | { | |
8610 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
8611 | struct arm_per_objfile); | |
8612 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
8613 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
8614 | objfile->obfd->section_count, | |
8615 | VEC(arm_mapping_symbol_s) *); | |
8616 | } | |
8617 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
8618 | ||
8619 | new_map_sym.value = sym->value; | |
8620 | new_map_sym.type = name[1]; | |
8621 | ||
8622 | /* Assume that most mapping symbols appear in order of increasing | |
8623 | value. If they were randomly distributed, it would be faster to | |
8624 | always push here and then sort at first use. */ | |
8625 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
8626 | { | |
8627 | struct arm_mapping_symbol *prev_map_sym; | |
8628 | ||
8629 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
8630 | if (prev_map_sym->value >= sym->value) | |
8631 | { | |
8632 | unsigned int idx; | |
8633 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
8634 | arm_compare_mapping_symbols); | |
8635 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
8636 | return; | |
8637 | } | |
8638 | } | |
8639 | ||
8640 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
8641 | } | |
8642 | ||
756fe439 | 8643 | static void |
61a1198a | 8644 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 8645 | { |
ac7936df | 8646 | struct gdbarch *gdbarch = regcache->arch (); |
61a1198a | 8647 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
8648 | |
8649 | /* If necessary, set the T bit. */ | |
8650 | if (arm_apcs_32) | |
8651 | { | |
9779414d | 8652 | ULONGEST val, t_bit; |
61a1198a | 8653 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
9779414d DJ |
8654 | t_bit = arm_psr_thumb_bit (gdbarch); |
8655 | if (arm_pc_is_thumb (gdbarch, pc)) | |
8656 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | |
8657 | val | t_bit); | |
756fe439 | 8658 | else |
61a1198a | 8659 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
9779414d | 8660 | val & ~t_bit); |
756fe439 DJ |
8661 | } |
8662 | } | |
123dc839 | 8663 | |
58d6951d DJ |
8664 | /* Read the contents of a NEON quad register, by reading from two |
8665 | double registers. This is used to implement the quad pseudo | |
8666 | registers, and for argument passing in case the quad registers are | |
8667 | missing; vectors are passed in quad registers when using the VFP | |
8668 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
8669 | the quad register, in [0, 15]. */ | |
8670 | ||
05d1431c | 8671 | static enum register_status |
849d0ba8 | 8672 | arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
58d6951d DJ |
8673 | int regnum, gdb_byte *buf) |
8674 | { | |
8675 | char name_buf[4]; | |
8676 | gdb_byte reg_buf[8]; | |
8677 | int offset, double_regnum; | |
05d1431c | 8678 | enum register_status status; |
58d6951d | 8679 | |
8c042590 | 8680 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
58d6951d DJ |
8681 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8682 | strlen (name_buf)); | |
8683 | ||
8684 | /* d0 is always the least significant half of q0. */ | |
8685 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8686 | offset = 8; | |
8687 | else | |
8688 | offset = 0; | |
8689 | ||
03f50fc8 | 8690 | status = regcache->raw_read (double_regnum, reg_buf); |
05d1431c PA |
8691 | if (status != REG_VALID) |
8692 | return status; | |
58d6951d DJ |
8693 | memcpy (buf + offset, reg_buf, 8); |
8694 | ||
8695 | offset = 8 - offset; | |
03f50fc8 | 8696 | status = regcache->raw_read (double_regnum + 1, reg_buf); |
05d1431c PA |
8697 | if (status != REG_VALID) |
8698 | return status; | |
58d6951d | 8699 | memcpy (buf + offset, reg_buf, 8); |
05d1431c PA |
8700 | |
8701 | return REG_VALID; | |
58d6951d DJ |
8702 | } |
8703 | ||
05d1431c | 8704 | static enum register_status |
849d0ba8 | 8705 | arm_pseudo_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
58d6951d DJ |
8706 | int regnum, gdb_byte *buf) |
8707 | { | |
8708 | const int num_regs = gdbarch_num_regs (gdbarch); | |
8709 | char name_buf[4]; | |
8710 | gdb_byte reg_buf[8]; | |
8711 | int offset, double_regnum; | |
8712 | ||
8713 | gdb_assert (regnum >= num_regs); | |
8714 | regnum -= num_regs; | |
8715 | ||
8716 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
8717 | /* Quad-precision register. */ | |
05d1431c | 8718 | return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); |
58d6951d DJ |
8719 | else |
8720 | { | |
05d1431c PA |
8721 | enum register_status status; |
8722 | ||
58d6951d DJ |
8723 | /* Single-precision register. */ |
8724 | gdb_assert (regnum < 32); | |
8725 | ||
8726 | /* s0 is always the least significant half of d0. */ | |
8727 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8728 | offset = (regnum & 1) ? 0 : 4; | |
8729 | else | |
8730 | offset = (regnum & 1) ? 4 : 0; | |
8731 | ||
8c042590 | 8732 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
58d6951d DJ |
8733 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8734 | strlen (name_buf)); | |
8735 | ||
03f50fc8 | 8736 | status = regcache->raw_read (double_regnum, reg_buf); |
05d1431c PA |
8737 | if (status == REG_VALID) |
8738 | memcpy (buf, reg_buf + offset, 4); | |
8739 | return status; | |
58d6951d DJ |
8740 | } |
8741 | } | |
8742 | ||
8743 | /* Store the contents of BUF to a NEON quad register, by writing to | |
8744 | two double registers. This is used to implement the quad pseudo | |
8745 | registers, and for argument passing in case the quad registers are | |
8746 | missing; vectors are passed in quad registers when using the VFP | |
8747 | ABI, even if a NEON unit is not present. REGNUM is the index | |
8748 | of the quad register, in [0, 15]. */ | |
8749 | ||
8750 | static void | |
8751 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
8752 | int regnum, const gdb_byte *buf) | |
8753 | { | |
8754 | char name_buf[4]; | |
58d6951d DJ |
8755 | int offset, double_regnum; |
8756 | ||
8c042590 | 8757 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
58d6951d DJ |
8758 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8759 | strlen (name_buf)); | |
8760 | ||
8761 | /* d0 is always the least significant half of q0. */ | |
8762 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8763 | offset = 8; | |
8764 | else | |
8765 | offset = 0; | |
8766 | ||
8767 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
8768 | offset = 8 - offset; | |
8769 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
8770 | } | |
8771 | ||
8772 | static void | |
8773 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
8774 | int regnum, const gdb_byte *buf) | |
8775 | { | |
8776 | const int num_regs = gdbarch_num_regs (gdbarch); | |
8777 | char name_buf[4]; | |
8778 | gdb_byte reg_buf[8]; | |
8779 | int offset, double_regnum; | |
8780 | ||
8781 | gdb_assert (regnum >= num_regs); | |
8782 | regnum -= num_regs; | |
8783 | ||
8784 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
8785 | /* Quad-precision register. */ | |
8786 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
8787 | else | |
8788 | { | |
8789 | /* Single-precision register. */ | |
8790 | gdb_assert (regnum < 32); | |
8791 | ||
8792 | /* s0 is always the least significant half of d0. */ | |
8793 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8794 | offset = (regnum & 1) ? 0 : 4; | |
8795 | else | |
8796 | offset = (regnum & 1) ? 4 : 0; | |
8797 | ||
8c042590 | 8798 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
58d6951d DJ |
8799 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8800 | strlen (name_buf)); | |
8801 | ||
8802 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
8803 | memcpy (reg_buf + offset, buf, 4); | |
8804 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
8805 | } | |
8806 | } | |
8807 | ||
123dc839 DJ |
8808 | static struct value * |
8809 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
8810 | { | |
9a3c8263 | 8811 | const int *reg_p = (const int *) baton; |
123dc839 DJ |
8812 | return value_of_register (*reg_p, frame); |
8813 | } | |
97e03143 | 8814 | \f |
70f80edf JT |
8815 | static enum gdb_osabi |
8816 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 8817 | { |
2af48f68 | 8818 | unsigned int elfosabi; |
70f80edf | 8819 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 8820 | |
70f80edf | 8821 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 8822 | |
28e97307 DJ |
8823 | if (elfosabi == ELFOSABI_ARM) |
8824 | /* GNU tools use this value. Check note sections in this case, | |
8825 | as well. */ | |
8826 | bfd_map_over_sections (abfd, | |
8827 | generic_elf_osabi_sniff_abi_tag_sections, | |
8828 | &osabi); | |
97e03143 | 8829 | |
28e97307 | 8830 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 8831 | return osabi; |
97e03143 RE |
8832 | } |
8833 | ||
54483882 YQ |
8834 | static int |
8835 | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
8836 | struct reggroup *group) | |
8837 | { | |
2c291032 YQ |
8838 | /* FPS register's type is INT, but belongs to float_reggroup. Beside |
8839 | this, FPS register belongs to save_regroup, restore_reggroup, and | |
8840 | all_reggroup, of course. */ | |
54483882 | 8841 | if (regnum == ARM_FPS_REGNUM) |
2c291032 YQ |
8842 | return (group == float_reggroup |
8843 | || group == save_reggroup | |
8844 | || group == restore_reggroup | |
8845 | || group == all_reggroup); | |
54483882 YQ |
8846 | else |
8847 | return default_register_reggroup_p (gdbarch, regnum, group); | |
8848 | } | |
8849 | ||
25f8c692 JL |
8850 | \f |
8851 | /* For backward-compatibility we allow two 'g' packet lengths with | |
8852 | the remote protocol depending on whether FPA registers are | |
8853 | supplied. M-profile targets do not have FPA registers, but some | |
8854 | stubs already exist in the wild which use a 'g' packet which | |
8855 | supplies them albeit with dummy values. The packet format which | |
8856 | includes FPA registers should be considered deprecated for | |
8857 | M-profile targets. */ | |
8858 | ||
8859 | static void | |
8860 | arm_register_g_packet_guesses (struct gdbarch *gdbarch) | |
8861 | { | |
8862 | if (gdbarch_tdep (gdbarch)->is_m) | |
8863 | { | |
8864 | /* If we know from the executable this is an M-profile target, | |
8865 | cater for remote targets whose register set layout is the | |
8866 | same as the FPA layout. */ | |
8867 | register_remote_g_packet_guess (gdbarch, | |
03145bf4 | 8868 | /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */ |
25f8c692 JL |
8869 | (16 * INT_REGISTER_SIZE) |
8870 | + (8 * FP_REGISTER_SIZE) | |
8871 | + (2 * INT_REGISTER_SIZE), | |
8872 | tdesc_arm_with_m_fpa_layout); | |
8873 | ||
8874 | /* The regular M-profile layout. */ | |
8875 | register_remote_g_packet_guess (gdbarch, | |
8876 | /* r0-r12,sp,lr,pc; xpsr */ | |
8877 | (16 * INT_REGISTER_SIZE) | |
8878 | + INT_REGISTER_SIZE, | |
8879 | tdesc_arm_with_m); | |
3184d3f9 JL |
8880 | |
8881 | /* M-profile plus M4F VFP. */ | |
8882 | register_remote_g_packet_guess (gdbarch, | |
8883 | /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */ | |
8884 | (16 * INT_REGISTER_SIZE) | |
8885 | + (16 * VFP_REGISTER_SIZE) | |
8886 | + (2 * INT_REGISTER_SIZE), | |
8887 | tdesc_arm_with_m_vfp_d16); | |
25f8c692 JL |
8888 | } |
8889 | ||
8890 | /* Otherwise we don't have a useful guess. */ | |
8891 | } | |
8892 | ||
7eb89530 YQ |
8893 | /* Implement the code_of_frame_writable gdbarch method. */ |
8894 | ||
8895 | static int | |
8896 | arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame) | |
8897 | { | |
8898 | if (gdbarch_tdep (gdbarch)->is_m | |
8899 | && get_frame_type (frame) == SIGTRAMP_FRAME) | |
8900 | { | |
8901 | /* M-profile exception frames return to some magic PCs, where | |
8902 | isn't writable at all. */ | |
8903 | return 0; | |
8904 | } | |
8905 | else | |
8906 | return 1; | |
8907 | } | |
8908 | ||
70f80edf | 8909 | \f |
da3c6d4a MS |
8910 | /* Initialize the current architecture based on INFO. If possible, |
8911 | re-use an architecture from ARCHES, which is a list of | |
8912 | architectures already created during this debugging session. | |
97e03143 | 8913 | |
da3c6d4a MS |
8914 | Called e.g. at program startup, when reading a core file, and when |
8915 | reading a binary file. */ | |
97e03143 | 8916 | |
39bbf761 RE |
8917 | static struct gdbarch * |
8918 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
8919 | { | |
97e03143 | 8920 | struct gdbarch_tdep *tdep; |
39bbf761 | 8921 | struct gdbarch *gdbarch; |
28e97307 DJ |
8922 | struct gdbarch_list *best_arch; |
8923 | enum arm_abi_kind arm_abi = arm_abi_global; | |
8924 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 | 8925 | struct tdesc_arch_data *tdesc_data = NULL; |
9779414d | 8926 | int i, is_m = 0; |
330c6ca9 | 8927 | int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
a56cc1ce | 8928 | int have_wmmx_registers = 0; |
58d6951d | 8929 | int have_neon = 0; |
ff6f572f | 8930 | int have_fpa_registers = 1; |
9779414d DJ |
8931 | const struct target_desc *tdesc = info.target_desc; |
8932 | ||
8933 | /* If we have an object to base this architecture on, try to determine | |
8934 | its ABI. */ | |
8935 | ||
8936 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | |
8937 | { | |
8938 | int ei_osabi, e_flags; | |
8939 | ||
8940 | switch (bfd_get_flavour (info.abfd)) | |
8941 | { | |
9779414d DJ |
8942 | case bfd_target_coff_flavour: |
8943 | /* Assume it's an old APCS-style ABI. */ | |
8944 | /* XXX WinCE? */ | |
8945 | arm_abi = ARM_ABI_APCS; | |
8946 | break; | |
8947 | ||
8948 | case bfd_target_elf_flavour: | |
8949 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
8950 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
8951 | ||
8952 | if (ei_osabi == ELFOSABI_ARM) | |
8953 | { | |
8954 | /* GNU tools used to use this value, but do not for EABI | |
8955 | objects. There's nowhere to tag an EABI version | |
8956 | anyway, so assume APCS. */ | |
8957 | arm_abi = ARM_ABI_APCS; | |
8958 | } | |
d403db27 | 8959 | else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU) |
9779414d DJ |
8960 | { |
8961 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | |
8962 | int attr_arch, attr_profile; | |
8963 | ||
8964 | switch (eabi_ver) | |
8965 | { | |
8966 | case EF_ARM_EABI_UNKNOWN: | |
8967 | /* Assume GNU tools. */ | |
8968 | arm_abi = ARM_ABI_APCS; | |
8969 | break; | |
8970 | ||
8971 | case EF_ARM_EABI_VER4: | |
8972 | case EF_ARM_EABI_VER5: | |
8973 | arm_abi = ARM_ABI_AAPCS; | |
8974 | /* EABI binaries default to VFP float ordering. | |
8975 | They may also contain build attributes that can | |
8976 | be used to identify if the VFP argument-passing | |
8977 | ABI is in use. */ | |
8978 | if (fp_model == ARM_FLOAT_AUTO) | |
8979 | { | |
8980 | #ifdef HAVE_ELF | |
8981 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
8982 | OBJ_ATTR_PROC, | |
8983 | Tag_ABI_VFP_args)) | |
8984 | { | |
b35b0298 | 8985 | case AEABI_VFP_args_base: |
9779414d DJ |
8986 | /* "The user intended FP parameter/result |
8987 | passing to conform to AAPCS, base | |
8988 | variant". */ | |
8989 | fp_model = ARM_FLOAT_SOFT_VFP; | |
8990 | break; | |
b35b0298 | 8991 | case AEABI_VFP_args_vfp: |
9779414d DJ |
8992 | /* "The user intended FP parameter/result |
8993 | passing to conform to AAPCS, VFP | |
8994 | variant". */ | |
8995 | fp_model = ARM_FLOAT_VFP; | |
8996 | break; | |
b35b0298 | 8997 | case AEABI_VFP_args_toolchain: |
9779414d DJ |
8998 | /* "The user intended FP parameter/result |
8999 | passing to conform to tool chain-specific | |
9000 | conventions" - we don't know any such | |
9001 | conventions, so leave it as "auto". */ | |
9002 | break; | |
b35b0298 | 9003 | case AEABI_VFP_args_compatible: |
5c294fee TG |
9004 | /* "Code is compatible with both the base |
9005 | and VFP variants; the user did not permit | |
9006 | non-variadic functions to pass FP | |
9007 | parameters/results" - leave it as | |
9008 | "auto". */ | |
9009 | break; | |
9779414d DJ |
9010 | default: |
9011 | /* Attribute value not mentioned in the | |
5c294fee | 9012 | November 2012 ABI, so leave it as |
9779414d DJ |
9013 | "auto". */ |
9014 | break; | |
9015 | } | |
9016 | #else | |
9017 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9018 | #endif | |
9019 | } | |
9020 | break; | |
9021 | ||
9022 | default: | |
9023 | /* Leave it as "auto". */ | |
9024 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | |
9025 | break; | |
9026 | } | |
9027 | ||
9028 | #ifdef HAVE_ELF | |
9029 | /* Detect M-profile programs. This only works if the | |
9030 | executable file includes build attributes; GCC does | |
9031 | copy them to the executable, but e.g. RealView does | |
9032 | not. */ | |
9033 | attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | |
9034 | Tag_CPU_arch); | |
0963b4bd MS |
9035 | attr_profile = bfd_elf_get_obj_attr_int (info.abfd, |
9036 | OBJ_ATTR_PROC, | |
9779414d DJ |
9037 | Tag_CPU_arch_profile); |
9038 | /* GCC specifies the profile for v6-M; RealView only | |
9039 | specifies the profile for architectures starting with | |
9040 | V7 (as opposed to architectures with a tag | |
9041 | numerically greater than TAG_CPU_ARCH_V7). */ | |
9042 | if (!tdesc_has_registers (tdesc) | |
9043 | && (attr_arch == TAG_CPU_ARCH_V6_M | |
9044 | || attr_arch == TAG_CPU_ARCH_V6S_M | |
9045 | || attr_profile == 'M')) | |
25f8c692 | 9046 | is_m = 1; |
9779414d DJ |
9047 | #endif |
9048 | } | |
9049 | ||
9050 | if (fp_model == ARM_FLOAT_AUTO) | |
9051 | { | |
9052 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
9053 | ||
9054 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
9055 | { | |
9056 | case 0: | |
9057 | /* Leave it as "auto". Strictly speaking this case | |
9058 | means FPA, but almost nobody uses that now, and | |
9059 | many toolchains fail to set the appropriate bits | |
9060 | for the floating-point model they use. */ | |
9061 | break; | |
9062 | case EF_ARM_SOFT_FLOAT: | |
9063 | fp_model = ARM_FLOAT_SOFT_FPA; | |
9064 | break; | |
9065 | case EF_ARM_VFP_FLOAT: | |
9066 | fp_model = ARM_FLOAT_VFP; | |
9067 | break; | |
9068 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
9069 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9070 | break; | |
9071 | } | |
9072 | } | |
9073 | ||
9074 | if (e_flags & EF_ARM_BE8) | |
9075 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
9076 | ||
9077 | break; | |
9078 | ||
9079 | default: | |
9080 | /* Leave it as "auto". */ | |
9081 | break; | |
9082 | } | |
9083 | } | |
123dc839 DJ |
9084 | |
9085 | /* Check any target description for validity. */ | |
9779414d | 9086 | if (tdesc_has_registers (tdesc)) |
123dc839 DJ |
9087 | { |
9088 | /* For most registers we require GDB's default names; but also allow | |
9089 | the numeric names for sp / lr / pc, as a convenience. */ | |
9090 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
9091 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
9092 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
9093 | ||
9094 | const struct tdesc_feature *feature; | |
58d6951d | 9095 | int valid_p; |
123dc839 | 9096 | |
9779414d | 9097 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9098 | "org.gnu.gdb.arm.core"); |
9099 | if (feature == NULL) | |
9779414d DJ |
9100 | { |
9101 | feature = tdesc_find_feature (tdesc, | |
9102 | "org.gnu.gdb.arm.m-profile"); | |
9103 | if (feature == NULL) | |
9104 | return NULL; | |
9105 | else | |
9106 | is_m = 1; | |
9107 | } | |
123dc839 DJ |
9108 | |
9109 | tdesc_data = tdesc_data_alloc (); | |
9110 | ||
9111 | valid_p = 1; | |
9112 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
9113 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9114 | arm_register_names[i]); | |
9115 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9116 | ARM_SP_REGNUM, | |
9117 | arm_sp_names); | |
9118 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9119 | ARM_LR_REGNUM, | |
9120 | arm_lr_names); | |
9121 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9122 | ARM_PC_REGNUM, | |
9123 | arm_pc_names); | |
9779414d DJ |
9124 | if (is_m) |
9125 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9126 | ARM_PS_REGNUM, "xpsr"); | |
9127 | else | |
9128 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9129 | ARM_PS_REGNUM, "cpsr"); | |
123dc839 DJ |
9130 | |
9131 | if (!valid_p) | |
9132 | { | |
9133 | tdesc_data_cleanup (tdesc_data); | |
9134 | return NULL; | |
9135 | } | |
9136 | ||
9779414d | 9137 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9138 | "org.gnu.gdb.arm.fpa"); |
9139 | if (feature != NULL) | |
9140 | { | |
9141 | valid_p = 1; | |
9142 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
9143 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9144 | arm_register_names[i]); | |
9145 | if (!valid_p) | |
9146 | { | |
9147 | tdesc_data_cleanup (tdesc_data); | |
9148 | return NULL; | |
9149 | } | |
9150 | } | |
ff6f572f DJ |
9151 | else |
9152 | have_fpa_registers = 0; | |
9153 | ||
9779414d | 9154 | feature = tdesc_find_feature (tdesc, |
ff6f572f DJ |
9155 | "org.gnu.gdb.xscale.iwmmxt"); |
9156 | if (feature != NULL) | |
9157 | { | |
9158 | static const char *const iwmmxt_names[] = { | |
9159 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
9160 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
9161 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
9162 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
9163 | }; | |
9164 | ||
9165 | valid_p = 1; | |
9166 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
9167 | valid_p | |
9168 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9169 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9170 | ||
9171 | /* Check for the control registers, but do not fail if they | |
9172 | are missing. */ | |
9173 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
9174 | tdesc_numbered_register (feature, tdesc_data, i, | |
9175 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9176 | ||
9177 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
9178 | valid_p | |
9179 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9180 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9181 | ||
9182 | if (!valid_p) | |
9183 | { | |
9184 | tdesc_data_cleanup (tdesc_data); | |
9185 | return NULL; | |
9186 | } | |
a56cc1ce YQ |
9187 | |
9188 | have_wmmx_registers = 1; | |
ff6f572f | 9189 | } |
58d6951d DJ |
9190 | |
9191 | /* If we have a VFP unit, check whether the single precision registers | |
9192 | are present. If not, then we will synthesize them as pseudo | |
9193 | registers. */ | |
9779414d | 9194 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9195 | "org.gnu.gdb.arm.vfp"); |
9196 | if (feature != NULL) | |
9197 | { | |
9198 | static const char *const vfp_double_names[] = { | |
9199 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
9200 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
9201 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
9202 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
9203 | }; | |
9204 | ||
9205 | /* Require the double precision registers. There must be either | |
9206 | 16 or 32. */ | |
9207 | valid_p = 1; | |
9208 | for (i = 0; i < 32; i++) | |
9209 | { | |
9210 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9211 | ARM_D0_REGNUM + i, | |
9212 | vfp_double_names[i]); | |
9213 | if (!valid_p) | |
9214 | break; | |
9215 | } | |
2b9e5ea6 UW |
9216 | if (!valid_p && i == 16) |
9217 | valid_p = 1; | |
58d6951d | 9218 | |
2b9e5ea6 UW |
9219 | /* Also require FPSCR. */ |
9220 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9221 | ARM_FPSCR_REGNUM, "fpscr"); | |
9222 | if (!valid_p) | |
58d6951d DJ |
9223 | { |
9224 | tdesc_data_cleanup (tdesc_data); | |
9225 | return NULL; | |
9226 | } | |
9227 | ||
9228 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
9229 | have_vfp_pseudos = 1; | |
9230 | ||
330c6ca9 | 9231 | vfp_register_count = i; |
58d6951d DJ |
9232 | |
9233 | /* If we have VFP, also check for NEON. The architecture allows | |
9234 | NEON without VFP (integer vector operations only), but GDB | |
9235 | does not support that. */ | |
9779414d | 9236 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9237 | "org.gnu.gdb.arm.neon"); |
9238 | if (feature != NULL) | |
9239 | { | |
9240 | /* NEON requires 32 double-precision registers. */ | |
9241 | if (i != 32) | |
9242 | { | |
9243 | tdesc_data_cleanup (tdesc_data); | |
9244 | return NULL; | |
9245 | } | |
9246 | ||
9247 | /* If there are quad registers defined by the stub, use | |
9248 | their type; otherwise (normally) provide them with | |
9249 | the default type. */ | |
9250 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
9251 | have_neon_pseudos = 1; | |
9252 | ||
9253 | have_neon = 1; | |
9254 | } | |
9255 | } | |
123dc839 | 9256 | } |
39bbf761 | 9257 | |
28e97307 DJ |
9258 | /* If there is already a candidate, use it. */ |
9259 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
9260 | best_arch != NULL; | |
9261 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
9262 | { | |
b8926edc DJ |
9263 | if (arm_abi != ARM_ABI_AUTO |
9264 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
9265 | continue; |
9266 | ||
b8926edc DJ |
9267 | if (fp_model != ARM_FLOAT_AUTO |
9268 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
9269 | continue; |
9270 | ||
58d6951d DJ |
9271 | /* There are various other properties in tdep that we do not |
9272 | need to check here: those derived from a target description, | |
9273 | since gdbarches with a different target description are | |
9274 | automatically disqualified. */ | |
9275 | ||
9779414d DJ |
9276 | /* Do check is_m, though, since it might come from the binary. */ |
9277 | if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m) | |
9278 | continue; | |
9279 | ||
28e97307 DJ |
9280 | /* Found a match. */ |
9281 | break; | |
9282 | } | |
97e03143 | 9283 | |
28e97307 | 9284 | if (best_arch != NULL) |
123dc839 DJ |
9285 | { |
9286 | if (tdesc_data != NULL) | |
9287 | tdesc_data_cleanup (tdesc_data); | |
9288 | return best_arch->gdbarch; | |
9289 | } | |
28e97307 | 9290 | |
8d749320 | 9291 | tdep = XCNEW (struct gdbarch_tdep); |
97e03143 RE |
9292 | gdbarch = gdbarch_alloc (&info, tdep); |
9293 | ||
28e97307 DJ |
9294 | /* Record additional information about the architecture we are defining. |
9295 | These are gdbarch discriminators, like the OSABI. */ | |
9296 | tdep->arm_abi = arm_abi; | |
9297 | tdep->fp_model = fp_model; | |
9779414d | 9298 | tdep->is_m = is_m; |
ff6f572f | 9299 | tdep->have_fpa_registers = have_fpa_registers; |
a56cc1ce | 9300 | tdep->have_wmmx_registers = have_wmmx_registers; |
330c6ca9 YQ |
9301 | gdb_assert (vfp_register_count == 0 |
9302 | || vfp_register_count == 16 | |
9303 | || vfp_register_count == 32); | |
9304 | tdep->vfp_register_count = vfp_register_count; | |
58d6951d DJ |
9305 | tdep->have_vfp_pseudos = have_vfp_pseudos; |
9306 | tdep->have_neon_pseudos = have_neon_pseudos; | |
9307 | tdep->have_neon = have_neon; | |
08216dd7 | 9308 | |
25f8c692 JL |
9309 | arm_register_g_packet_guesses (gdbarch); |
9310 | ||
08216dd7 | 9311 | /* Breakpoints. */ |
9d4fde75 | 9312 | switch (info.byte_order_for_code) |
67255d04 RE |
9313 | { |
9314 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
9315 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
9316 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
9317 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
9318 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
9319 | ||
67255d04 RE |
9320 | break; |
9321 | ||
9322 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
9323 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
9324 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
9325 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
9326 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
9327 | ||
67255d04 RE |
9328 | break; |
9329 | ||
9330 | default: | |
9331 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 9332 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
9333 | } |
9334 | ||
d7b486e7 RE |
9335 | /* On ARM targets char defaults to unsigned. */ |
9336 | set_gdbarch_char_signed (gdbarch, 0); | |
9337 | ||
53375380 PA |
9338 | /* wchar_t is unsigned under the AAPCS. */ |
9339 | if (tdep->arm_abi == ARM_ABI_AAPCS) | |
9340 | set_gdbarch_wchar_signed (gdbarch, 0); | |
9341 | else | |
9342 | set_gdbarch_wchar_signed (gdbarch, 1); | |
53375380 | 9343 | |
cca44b1b JB |
9344 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
9345 | of additional scratch space. This setting isn't used for anything beside | |
9346 | displaced stepping at present. */ | |
9347 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
9348 | ||
9df628e0 | 9349 | /* This should be low enough for everything. */ |
97e03143 | 9350 | tdep->lowest_pc = 0x20; |
94c30b78 | 9351 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 9352 | |
7c00367c MK |
9353 | /* The default, for both APCS and AAPCS, is to return small |
9354 | structures in registers. */ | |
9355 | tdep->struct_return = reg_struct_return; | |
9356 | ||
2dd604e7 | 9357 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 9358 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 9359 | |
7eb89530 YQ |
9360 | if (is_m) |
9361 | set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable); | |
9362 | ||
756fe439 DJ |
9363 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
9364 | ||
148754e5 | 9365 | /* Frame handling. */ |
a262aec2 | 9366 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
9367 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
9368 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
9369 | ||
eb5492fa | 9370 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 9371 | |
34e8f22d | 9372 | /* Address manipulation. */ |
34e8f22d RE |
9373 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); |
9374 | ||
34e8f22d RE |
9375 | /* Advance PC across function entry code. */ |
9376 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
9377 | ||
c9cf6e20 MG |
9378 | /* Detect whether PC is at a point where the stack has been destroyed. */ |
9379 | set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p); | |
4024ca99 | 9380 | |
190dce09 UW |
9381 | /* Skip trampolines. */ |
9382 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
9383 | ||
34e8f22d RE |
9384 | /* The stack grows downward. */ |
9385 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
9386 | ||
9387 | /* Breakpoint manipulation. */ | |
04180708 YQ |
9388 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc); |
9389 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind); | |
833b7ab5 YQ |
9390 | set_gdbarch_breakpoint_kind_from_current_state (gdbarch, |
9391 | arm_breakpoint_kind_from_current_state); | |
34e8f22d RE |
9392 | |
9393 | /* Information about registers, etc. */ | |
34e8f22d RE |
9394 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
9395 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 9396 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 9397 | set_gdbarch_register_type (gdbarch, arm_register_type); |
54483882 | 9398 | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
34e8f22d | 9399 | |
ff6f572f DJ |
9400 | /* This "info float" is FPA-specific. Use the generic version if we |
9401 | do not have FPA. */ | |
9402 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
9403 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
9404 | ||
26216b98 | 9405 | /* Internal <-> external register number maps. */ |
ff6f572f | 9406 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
9407 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
9408 | ||
34e8f22d RE |
9409 | set_gdbarch_register_name (gdbarch, arm_register_name); |
9410 | ||
9411 | /* Returning results. */ | |
2af48f68 | 9412 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 9413 | |
03d48a7d RE |
9414 | /* Disassembly. */ |
9415 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
9416 | ||
34e8f22d RE |
9417 | /* Minsymbol frobbing. */ |
9418 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
9419 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
9420 | arm_coff_make_msymbol_special); | |
60c5725c | 9421 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 9422 | |
f9d67f43 DJ |
9423 | /* Thumb-2 IT block support. */ |
9424 | set_gdbarch_adjust_breakpoint_address (gdbarch, | |
9425 | arm_adjust_breakpoint_address); | |
9426 | ||
0d5de010 DJ |
9427 | /* Virtual tables. */ |
9428 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
9429 | ||
97e03143 | 9430 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 9431 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 9432 | |
b39cc962 DJ |
9433 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
9434 | ||
eb5492fa | 9435 | /* Add some default predicates. */ |
2ae28aa9 YQ |
9436 | if (is_m) |
9437 | frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind); | |
a262aec2 DJ |
9438 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
9439 | dwarf2_append_unwinders (gdbarch); | |
0e9e9abd | 9440 | frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); |
779aa56f | 9441 | frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind); |
a262aec2 | 9442 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); |
eb5492fa | 9443 | |
97e03143 RE |
9444 | /* Now we have tuned the configuration, set a few final things, |
9445 | based on what the OS ABI has told us. */ | |
9446 | ||
b8926edc DJ |
9447 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
9448 | binaries are always marked. */ | |
9449 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
9450 | tdep->arm_abi = ARM_ABI_APCS; | |
9451 | ||
e3039479 UW |
9452 | /* Watchpoints are not steppable. */ |
9453 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
9454 | ||
b8926edc DJ |
9455 | /* We used to default to FPA for generic ARM, but almost nobody |
9456 | uses that now, and we now provide a way for the user to force | |
9457 | the model. So default to the most useful variant. */ | |
9458 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
9459 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
9460 | ||
9df628e0 RE |
9461 | if (tdep->jb_pc >= 0) |
9462 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
9463 | ||
08216dd7 | 9464 | /* Floating point sizes and format. */ |
8da61cc4 | 9465 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 9466 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 9467 | { |
8da61cc4 DJ |
9468 | set_gdbarch_double_format |
9469 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
9470 | set_gdbarch_long_double_format | |
9471 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
9472 | } | |
9473 | else | |
9474 | { | |
9475 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
9476 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
9477 | } |
9478 | ||
58d6951d DJ |
9479 | if (have_vfp_pseudos) |
9480 | { | |
9481 | /* NOTE: These are the only pseudo registers used by | |
9482 | the ARM target at the moment. If more are added, a | |
9483 | little more care in numbering will be needed. */ | |
9484 | ||
9485 | int num_pseudos = 32; | |
9486 | if (have_neon_pseudos) | |
9487 | num_pseudos += 16; | |
9488 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
9489 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
9490 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
9491 | } | |
9492 | ||
123dc839 | 9493 | if (tdesc_data) |
58d6951d DJ |
9494 | { |
9495 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
9496 | ||
9779414d | 9497 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
58d6951d DJ |
9498 | |
9499 | /* Override tdesc_register_type to adjust the types of VFP | |
9500 | registers for NEON. */ | |
9501 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
9502 | } | |
123dc839 DJ |
9503 | |
9504 | /* Add standard register aliases. We add aliases even for those | |
9505 | nanes which are used by the current architecture - it's simpler, | |
9506 | and does no harm, since nothing ever lists user registers. */ | |
9507 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
9508 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
9509 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
9510 | ||
65b48a81 PB |
9511 | set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options); |
9512 | set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ()); | |
9513 | ||
39bbf761 RE |
9514 | return gdbarch; |
9515 | } | |
9516 | ||
97e03143 | 9517 | static void |
2af46ca0 | 9518 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 9519 | { |
2af46ca0 | 9520 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
9521 | |
9522 | if (tdep == NULL) | |
9523 | return; | |
9524 | ||
edefbb7c | 9525 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
9526 | (unsigned long) tdep->lowest_pc); |
9527 | } | |
9528 | ||
0d4c07af | 9529 | #if GDB_SELF_TEST |
b121eeb9 YQ |
9530 | namespace selftests |
9531 | { | |
9532 | static void arm_record_test (void); | |
9533 | } | |
0d4c07af | 9534 | #endif |
b121eeb9 | 9535 | |
c906108c | 9536 | void |
ed9a39eb | 9537 | _initialize_arm_tdep (void) |
c906108c | 9538 | { |
bc90b915 | 9539 | long length; |
65b48a81 | 9540 | int i, j; |
edefbb7c AC |
9541 | char regdesc[1024], *rdptr = regdesc; |
9542 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 9543 | |
42cf1509 | 9544 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 9545 | |
60c5725c | 9546 | arm_objfile_data_key |
c1bd65d0 | 9547 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 9548 | |
0e9e9abd | 9549 | /* Add ourselves to objfile event chain. */ |
76727919 | 9550 | gdb::observers::new_objfile.attach (arm_exidx_new_objfile); |
0e9e9abd UW |
9551 | arm_exidx_data_key |
9552 | = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free); | |
9553 | ||
70f80edf JT |
9554 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
9555 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
9556 | bfd_target_elf_flavour, | |
9557 | arm_elf_osabi_sniffer); | |
9558 | ||
9779414d DJ |
9559 | /* Initialize the standard target descriptions. */ |
9560 | initialize_tdesc_arm_with_m (); | |
25f8c692 | 9561 | initialize_tdesc_arm_with_m_fpa_layout (); |
3184d3f9 | 9562 | initialize_tdesc_arm_with_m_vfp_d16 (); |
ef7e8358 UW |
9563 | initialize_tdesc_arm_with_iwmmxt (); |
9564 | initialize_tdesc_arm_with_vfpv2 (); | |
9565 | initialize_tdesc_arm_with_vfpv3 (); | |
9566 | initialize_tdesc_arm_with_neon (); | |
9779414d | 9567 | |
afd7eef0 RE |
9568 | /* Add root prefix command for all "set arm"/"show arm" commands. */ |
9569 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 9570 | _("Various ARM-specific commands."), |
afd7eef0 RE |
9571 | &setarmcmdlist, "set arm ", 0, &setlist); |
9572 | ||
9573 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 9574 | _("Various ARM-specific commands."), |
afd7eef0 | 9575 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 9576 | |
c5aa993b | 9577 | |
65b48a81 PB |
9578 | arm_disassembler_options = xstrdup ("reg-names-std"); |
9579 | const disasm_options_t *disasm_options = disassembler_options_arm (); | |
9580 | int num_disassembly_styles = 0; | |
9581 | for (i = 0; disasm_options->name[i] != NULL; i++) | |
9582 | if (CONST_STRNEQ (disasm_options->name[i], "reg-names-")) | |
9583 | num_disassembly_styles++; | |
9584 | ||
9585 | /* Initialize the array that will be passed to add_setshow_enum_cmd(). */ | |
8d749320 | 9586 | valid_disassembly_styles = XNEWVEC (const char *, |
65b48a81 PB |
9587 | num_disassembly_styles + 1); |
9588 | for (i = j = 0; disasm_options->name[i] != NULL; i++) | |
9589 | if (CONST_STRNEQ (disasm_options->name[i], "reg-names-")) | |
9590 | { | |
9591 | size_t offset = strlen ("reg-names-"); | |
9592 | const char *style = disasm_options->name[i]; | |
9593 | valid_disassembly_styles[j++] = &style[offset]; | |
9594 | length = snprintf (rdptr, rest, "%s - %s\n", &style[offset], | |
9595 | disasm_options->description[i]); | |
9596 | rdptr += length; | |
9597 | rest -= length; | |
9598 | } | |
94c30b78 | 9599 | /* Mark the end of valid options. */ |
65b48a81 | 9600 | valid_disassembly_styles[num_disassembly_styles] = NULL; |
c906108c | 9601 | |
edefbb7c | 9602 | /* Create the help text. */ |
d7e74731 PA |
9603 | std::string helptext = string_printf ("%s%s%s", |
9604 | _("The valid values are:\n"), | |
9605 | regdesc, | |
9606 | _("The default is \"std\".")); | |
ed9a39eb | 9607 | |
edefbb7c AC |
9608 | add_setshow_enum_cmd("disassembler", no_class, |
9609 | valid_disassembly_styles, &disassembly_style, | |
9610 | _("Set the disassembly style."), | |
9611 | _("Show the disassembly style."), | |
09b0e4b0 | 9612 | helptext.c_str (), |
2c5b56ce | 9613 | set_disassembly_style_sfunc, |
65b48a81 | 9614 | show_disassembly_style_sfunc, |
7376b4c2 | 9615 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
9616 | |
9617 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
9618 | _("Set usage of ARM 32-bit mode."), | |
9619 | _("Show usage of ARM 32-bit mode."), | |
9620 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 9621 | NULL, |
0963b4bd MS |
9622 | NULL, /* FIXME: i18n: Usage of ARM 32-bit |
9623 | mode is %s. */ | |
26304000 | 9624 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 9625 | |
fd50bc42 | 9626 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
9627 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
9628 | _("Set the floating point type."), | |
9629 | _("Show the floating point type."), | |
9630 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
9631 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
9632 | fpa - FPA co-processor (GCC compiled).\n\ | |
9633 | softvfp - Software FP with pure-endian doubles.\n\ | |
9634 | vfp - VFP co-processor."), | |
edefbb7c | 9635 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 9636 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 9637 | |
28e97307 DJ |
9638 | /* Add a command to allow the user to force the ABI. */ |
9639 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
9640 | _("Set the ABI."), | |
9641 | _("Show the ABI."), | |
9642 | NULL, arm_set_abi, arm_show_abi, | |
9643 | &setarmcmdlist, &showarmcmdlist); | |
9644 | ||
0428b8f5 DJ |
9645 | /* Add two commands to allow the user to force the assumed |
9646 | execution mode. */ | |
9647 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
9648 | arm_mode_strings, &arm_fallback_mode_string, | |
9649 | _("Set the mode assumed when symbols are unavailable."), | |
9650 | _("Show the mode assumed when symbols are unavailable."), | |
9651 | NULL, NULL, arm_show_fallback_mode, | |
9652 | &setarmcmdlist, &showarmcmdlist); | |
9653 | add_setshow_enum_cmd ("force-mode", class_support, | |
9654 | arm_mode_strings, &arm_force_mode_string, | |
9655 | _("Set the mode assumed even when symbols are available."), | |
9656 | _("Show the mode assumed even when symbols are available."), | |
9657 | NULL, NULL, arm_show_force_mode, | |
9658 | &setarmcmdlist, &showarmcmdlist); | |
9659 | ||
6529d2dd | 9660 | /* Debugging flag. */ |
edefbb7c AC |
9661 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
9662 | _("Set ARM debugging."), | |
9663 | _("Show ARM debugging."), | |
9664 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 9665 | NULL, |
7915a72c | 9666 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 9667 | &setdebuglist, &showdebuglist); |
b121eeb9 YQ |
9668 | |
9669 | #if GDB_SELF_TEST | |
1526853e | 9670 | selftests::register_test ("arm-record", selftests::arm_record_test); |
b121eeb9 YQ |
9671 | #endif |
9672 | ||
c906108c | 9673 | } |
72508ac0 PO |
9674 | |
9675 | /* ARM-reversible process record data structures. */ | |
9676 | ||
9677 | #define ARM_INSN_SIZE_BYTES 4 | |
9678 | #define THUMB_INSN_SIZE_BYTES 2 | |
9679 | #define THUMB2_INSN_SIZE_BYTES 4 | |
9680 | ||
9681 | ||
71e396f9 LM |
9682 | /* Position of the bit within a 32-bit ARM instruction |
9683 | that defines whether the instruction is a load or store. */ | |
72508ac0 PO |
9684 | #define INSN_S_L_BIT_NUM 20 |
9685 | ||
9686 | #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ | |
9687 | do \ | |
9688 | { \ | |
9689 | unsigned int reg_len = LENGTH; \ | |
9690 | if (reg_len) \ | |
9691 | { \ | |
9692 | REGS = XNEWVEC (uint32_t, reg_len); \ | |
9693 | memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ | |
9694 | } \ | |
9695 | } \ | |
9696 | while (0) | |
9697 | ||
9698 | #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ | |
9699 | do \ | |
9700 | { \ | |
9701 | unsigned int mem_len = LENGTH; \ | |
9702 | if (mem_len) \ | |
9703 | { \ | |
9704 | MEMS = XNEWVEC (struct arm_mem_r, mem_len); \ | |
9705 | memcpy(&MEMS->len, &RECORD_BUF[0], \ | |
9706 | sizeof(struct arm_mem_r) * LENGTH); \ | |
9707 | } \ | |
9708 | } \ | |
9709 | while (0) | |
9710 | ||
9711 | /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */ | |
9712 | #define INSN_RECORDED(ARM_RECORD) \ | |
9713 | (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count) | |
9714 | ||
9715 | /* ARM memory record structure. */ | |
9716 | struct arm_mem_r | |
9717 | { | |
9718 | uint32_t len; /* Record length. */ | |
bfbbec00 | 9719 | uint32_t addr; /* Memory address. */ |
72508ac0 PO |
9720 | }; |
9721 | ||
9722 | /* ARM instruction record contains opcode of current insn | |
9723 | and execution state (before entry to decode_insn()), | |
9724 | contains list of to-be-modified registers and | |
9725 | memory blocks (on return from decode_insn()). */ | |
9726 | ||
9727 | typedef struct insn_decode_record_t | |
9728 | { | |
9729 | struct gdbarch *gdbarch; | |
9730 | struct regcache *regcache; | |
9731 | CORE_ADDR this_addr; /* Address of the insn being decoded. */ | |
9732 | uint32_t arm_insn; /* Should accommodate thumb. */ | |
9733 | uint32_t cond; /* Condition code. */ | |
9734 | uint32_t opcode; /* Insn opcode. */ | |
9735 | uint32_t decode; /* Insn decode bits. */ | |
9736 | uint32_t mem_rec_count; /* No of mem records. */ | |
9737 | uint32_t reg_rec_count; /* No of reg records. */ | |
9738 | uint32_t *arm_regs; /* Registers to be saved for this record. */ | |
9739 | struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */ | |
9740 | } insn_decode_record; | |
9741 | ||
9742 | ||
9743 | /* Checks ARM SBZ and SBO mandatory fields. */ | |
9744 | ||
9745 | static int | |
9746 | sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo) | |
9747 | { | |
9748 | uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1)); | |
9749 | ||
9750 | if (!len) | |
9751 | return 1; | |
9752 | ||
9753 | if (!sbo) | |
9754 | ones = ~ones; | |
9755 | ||
9756 | while (ones) | |
9757 | { | |
9758 | if (!(ones & sbo)) | |
9759 | { | |
9760 | return 0; | |
9761 | } | |
9762 | ones = ones >> 1; | |
9763 | } | |
9764 | return 1; | |
9765 | } | |
9766 | ||
c6ec2b30 OJ |
9767 | enum arm_record_result |
9768 | { | |
9769 | ARM_RECORD_SUCCESS = 0, | |
9770 | ARM_RECORD_FAILURE = 1 | |
9771 | }; | |
9772 | ||
72508ac0 PO |
9773 | typedef enum |
9774 | { | |
9775 | ARM_RECORD_STRH=1, | |
9776 | ARM_RECORD_STRD | |
9777 | } arm_record_strx_t; | |
9778 | ||
9779 | typedef enum | |
9780 | { | |
9781 | ARM_RECORD=1, | |
9782 | THUMB_RECORD, | |
9783 | THUMB2_RECORD | |
9784 | } record_type_t; | |
9785 | ||
9786 | ||
9787 | static int | |
9788 | arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf, | |
9789 | uint32_t *record_buf_mem, arm_record_strx_t str_type) | |
9790 | { | |
9791 | ||
9792 | struct regcache *reg_cache = arm_insn_r->regcache; | |
9793 | ULONGEST u_regval[2]= {0}; | |
9794 | ||
9795 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
9796 | uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; | |
72508ac0 PO |
9797 | |
9798 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
9799 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
72508ac0 PO |
9800 | |
9801 | if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
9802 | { | |
9803 | /* 1) Handle misc store, immediate offset. */ | |
9804 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
9805 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
9806 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
9807 | regcache_raw_read_unsigned (reg_cache, reg_src1, | |
9808 | &u_regval[0]); | |
9809 | if (ARM_PC_REGNUM == reg_src1) | |
9810 | { | |
9811 | /* If R15 was used as Rn, hence current PC+8. */ | |
9812 | u_regval[0] = u_regval[0] + 8; | |
9813 | } | |
9814 | offset_8 = (immed_high << 4) | immed_low; | |
9815 | /* Calculate target store address. */ | |
9816 | if (14 == arm_insn_r->opcode) | |
9817 | { | |
9818 | tgt_mem_addr = u_regval[0] + offset_8; | |
9819 | } | |
9820 | else | |
9821 | { | |
9822 | tgt_mem_addr = u_regval[0] - offset_8; | |
9823 | } | |
9824 | if (ARM_RECORD_STRH == str_type) | |
9825 | { | |
9826 | record_buf_mem[0] = 2; | |
9827 | record_buf_mem[1] = tgt_mem_addr; | |
9828 | arm_insn_r->mem_rec_count = 1; | |
9829 | } | |
9830 | else if (ARM_RECORD_STRD == str_type) | |
9831 | { | |
9832 | record_buf_mem[0] = 4; | |
9833 | record_buf_mem[1] = tgt_mem_addr; | |
9834 | record_buf_mem[2] = 4; | |
9835 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9836 | arm_insn_r->mem_rec_count = 2; | |
9837 | } | |
9838 | } | |
9839 | else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode) | |
9840 | { | |
9841 | /* 2) Store, register offset. */ | |
9842 | /* Get Rm. */ | |
9843 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
9844 | /* Get Rn. */ | |
9845 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
9846 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9847 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
9848 | if (15 == reg_src2) | |
9849 | { | |
9850 | /* If R15 was used as Rn, hence current PC+8. */ | |
9851 | u_regval[0] = u_regval[0] + 8; | |
9852 | } | |
9853 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9854 | if (12 == arm_insn_r->opcode) | |
9855 | { | |
9856 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
9857 | } | |
9858 | else | |
9859 | { | |
9860 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
9861 | } | |
9862 | if (ARM_RECORD_STRH == str_type) | |
9863 | { | |
9864 | record_buf_mem[0] = 2; | |
9865 | record_buf_mem[1] = tgt_mem_addr; | |
9866 | arm_insn_r->mem_rec_count = 1; | |
9867 | } | |
9868 | else if (ARM_RECORD_STRD == str_type) | |
9869 | { | |
9870 | record_buf_mem[0] = 4; | |
9871 | record_buf_mem[1] = tgt_mem_addr; | |
9872 | record_buf_mem[2] = 4; | |
9873 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9874 | arm_insn_r->mem_rec_count = 2; | |
9875 | } | |
9876 | } | |
9877 | else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
9878 | || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
9879 | { | |
9880 | /* 3) Store, immediate pre-indexed. */ | |
9881 | /* 5) Store, immediate post-indexed. */ | |
9882 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
9883 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
9884 | offset_8 = (immed_high << 4) | immed_low; | |
9885 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
9886 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9887 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9888 | if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
9889 | { | |
9890 | tgt_mem_addr = u_regval[0] + offset_8; | |
9891 | } | |
9892 | else | |
9893 | { | |
9894 | tgt_mem_addr = u_regval[0] - offset_8; | |
9895 | } | |
9896 | if (ARM_RECORD_STRH == str_type) | |
9897 | { | |
9898 | record_buf_mem[0] = 2; | |
9899 | record_buf_mem[1] = tgt_mem_addr; | |
9900 | arm_insn_r->mem_rec_count = 1; | |
9901 | } | |
9902 | else if (ARM_RECORD_STRD == str_type) | |
9903 | { | |
9904 | record_buf_mem[0] = 4; | |
9905 | record_buf_mem[1] = tgt_mem_addr; | |
9906 | record_buf_mem[2] = 4; | |
9907 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9908 | arm_insn_r->mem_rec_count = 2; | |
9909 | } | |
9910 | /* Record Rn also as it changes. */ | |
9911 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
9912 | arm_insn_r->reg_rec_count = 1; | |
9913 | } | |
9914 | else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode | |
9915 | || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
9916 | { | |
9917 | /* 4) Store, register pre-indexed. */ | |
9918 | /* 6) Store, register post -indexed. */ | |
9919 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
9920 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
9921 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9922 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
9923 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9924 | if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
9925 | { | |
9926 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
9927 | } | |
9928 | else | |
9929 | { | |
9930 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
9931 | } | |
9932 | if (ARM_RECORD_STRH == str_type) | |
9933 | { | |
9934 | record_buf_mem[0] = 2; | |
9935 | record_buf_mem[1] = tgt_mem_addr; | |
9936 | arm_insn_r->mem_rec_count = 1; | |
9937 | } | |
9938 | else if (ARM_RECORD_STRD == str_type) | |
9939 | { | |
9940 | record_buf_mem[0] = 4; | |
9941 | record_buf_mem[1] = tgt_mem_addr; | |
9942 | record_buf_mem[2] = 4; | |
9943 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9944 | arm_insn_r->mem_rec_count = 2; | |
9945 | } | |
9946 | /* Record Rn also as it changes. */ | |
9947 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
9948 | arm_insn_r->reg_rec_count = 1; | |
9949 | } | |
9950 | return 0; | |
9951 | } | |
9952 | ||
9953 | /* Handling ARM extension space insns. */ | |
9954 | ||
9955 | static int | |
9956 | arm_record_extension_space (insn_decode_record *arm_insn_r) | |
9957 | { | |
df95a9cf | 9958 | int ret = 0; /* Return value: -1:record failure ; 0:success */ |
72508ac0 PO |
9959 | uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0; |
9960 | uint32_t record_buf[8], record_buf_mem[8]; | |
9961 | uint32_t reg_src1 = 0; | |
72508ac0 PO |
9962 | struct regcache *reg_cache = arm_insn_r->regcache; |
9963 | ULONGEST u_regval = 0; | |
9964 | ||
9965 | gdb_assert (!INSN_RECORDED(arm_insn_r)); | |
9966 | /* Handle unconditional insn extension space. */ | |
9967 | ||
9968 | opcode1 = bits (arm_insn_r->arm_insn, 20, 27); | |
9969 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
9970 | if (arm_insn_r->cond) | |
9971 | { | |
9972 | /* PLD has no affect on architectural state, it just affects | |
9973 | the caches. */ | |
9974 | if (5 == ((opcode1 & 0xE0) >> 5)) | |
9975 | { | |
9976 | /* BLX(1) */ | |
9977 | record_buf[0] = ARM_PS_REGNUM; | |
9978 | record_buf[1] = ARM_LR_REGNUM; | |
9979 | arm_insn_r->reg_rec_count = 2; | |
9980 | } | |
9981 | /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */ | |
9982 | } | |
9983 | ||
9984 | ||
9985 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
9986 | if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4)) | |
9987 | { | |
9988 | ret = -1; | |
9989 | /* Undefined instruction on ARM V5; need to handle if later | |
9990 | versions define it. */ | |
9991 | } | |
9992 | ||
9993 | opcode1 = bits (arm_insn_r->arm_insn, 24, 27); | |
9994 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
9995 | insn_op1 = bits (arm_insn_r->arm_insn, 20, 23); | |
9996 | ||
9997 | /* Handle arithmetic insn extension space. */ | |
9998 | if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond | |
9999 | && !INSN_RECORDED(arm_insn_r)) | |
10000 | { | |
10001 | /* Handle MLA(S) and MUL(S). */ | |
b020ff80 | 10002 | if (in_inclusive_range (insn_op1, 0U, 3U)) |
72508ac0 PO |
10003 | { |
10004 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10005 | record_buf[1] = ARM_PS_REGNUM; | |
10006 | arm_insn_r->reg_rec_count = 2; | |
10007 | } | |
b020ff80 | 10008 | else if (in_inclusive_range (insn_op1, 4U, 15U)) |
72508ac0 PO |
10009 | { |
10010 | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ | |
10011 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10012 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10013 | record_buf[2] = ARM_PS_REGNUM; | |
10014 | arm_insn_r->reg_rec_count = 3; | |
10015 | } | |
10016 | } | |
10017 | ||
10018 | opcode1 = bits (arm_insn_r->arm_insn, 26, 27); | |
10019 | opcode2 = bits (arm_insn_r->arm_insn, 23, 24); | |
10020 | insn_op1 = bits (arm_insn_r->arm_insn, 21, 22); | |
10021 | ||
10022 | /* Handle control insn extension space. */ | |
10023 | ||
10024 | if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20) | |
10025 | && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r)) | |
10026 | { | |
10027 | if (!bit (arm_insn_r->arm_insn,25)) | |
10028 | { | |
10029 | if (!bits (arm_insn_r->arm_insn, 4, 7)) | |
10030 | { | |
10031 | if ((0 == insn_op1) || (2 == insn_op1)) | |
10032 | { | |
10033 | /* MRS. */ | |
10034 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10035 | arm_insn_r->reg_rec_count = 1; | |
10036 | } | |
10037 | else if (1 == insn_op1) | |
10038 | { | |
10039 | /* CSPR is going to be changed. */ | |
10040 | record_buf[0] = ARM_PS_REGNUM; | |
10041 | arm_insn_r->reg_rec_count = 1; | |
10042 | } | |
10043 | else if (3 == insn_op1) | |
10044 | { | |
10045 | /* SPSR is going to be changed. */ | |
10046 | /* We need to get SPSR value, which is yet to be done. */ | |
72508ac0 PO |
10047 | return -1; |
10048 | } | |
10049 | } | |
10050 | else if (1 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10051 | { | |
10052 | if (1 == insn_op1) | |
10053 | { | |
10054 | /* BX. */ | |
10055 | record_buf[0] = ARM_PS_REGNUM; | |
10056 | arm_insn_r->reg_rec_count = 1; | |
10057 | } | |
10058 | else if (3 == insn_op1) | |
10059 | { | |
10060 | /* CLZ. */ | |
10061 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10062 | arm_insn_r->reg_rec_count = 1; | |
10063 | } | |
10064 | } | |
10065 | else if (3 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10066 | { | |
10067 | /* BLX. */ | |
10068 | record_buf[0] = ARM_PS_REGNUM; | |
10069 | record_buf[1] = ARM_LR_REGNUM; | |
10070 | arm_insn_r->reg_rec_count = 2; | |
10071 | } | |
10072 | else if (5 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10073 | { | |
10074 | /* QADD, QSUB, QDADD, QDSUB */ | |
10075 | record_buf[0] = ARM_PS_REGNUM; | |
10076 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10077 | arm_insn_r->reg_rec_count = 2; | |
10078 | } | |
10079 | else if (7 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10080 | { | |
10081 | /* BKPT. */ | |
10082 | record_buf[0] = ARM_PS_REGNUM; | |
10083 | record_buf[1] = ARM_LR_REGNUM; | |
10084 | arm_insn_r->reg_rec_count = 2; | |
10085 | ||
10086 | /* Save SPSR also;how? */ | |
72508ac0 PO |
10087 | return -1; |
10088 | } | |
10089 | else if(8 == bits (arm_insn_r->arm_insn, 4, 7) | |
10090 | || 10 == bits (arm_insn_r->arm_insn, 4, 7) | |
10091 | || 12 == bits (arm_insn_r->arm_insn, 4, 7) | |
10092 | || 14 == bits (arm_insn_r->arm_insn, 4, 7) | |
10093 | ) | |
10094 | { | |
10095 | if (0 == insn_op1 || 1 == insn_op1) | |
10096 | { | |
10097 | /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */ | |
10098 | /* We dont do optimization for SMULW<y> where we | |
10099 | need only Rd. */ | |
10100 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10101 | record_buf[1] = ARM_PS_REGNUM; | |
10102 | arm_insn_r->reg_rec_count = 2; | |
10103 | } | |
10104 | else if (2 == insn_op1) | |
10105 | { | |
10106 | /* SMLAL<x><y>. */ | |
10107 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10108 | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
10109 | arm_insn_r->reg_rec_count = 2; | |
10110 | } | |
10111 | else if (3 == insn_op1) | |
10112 | { | |
10113 | /* SMUL<x><y>. */ | |
10114 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10115 | arm_insn_r->reg_rec_count = 1; | |
10116 | } | |
10117 | } | |
10118 | } | |
10119 | else | |
10120 | { | |
10121 | /* MSR : immediate form. */ | |
10122 | if (1 == insn_op1) | |
10123 | { | |
10124 | /* CSPR is going to be changed. */ | |
10125 | record_buf[0] = ARM_PS_REGNUM; | |
10126 | arm_insn_r->reg_rec_count = 1; | |
10127 | } | |
10128 | else if (3 == insn_op1) | |
10129 | { | |
10130 | /* SPSR is going to be changed. */ | |
10131 | /* we need to get SPSR value, which is yet to be done */ | |
72508ac0 PO |
10132 | return -1; |
10133 | } | |
10134 | } | |
10135 | } | |
10136 | ||
10137 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
10138 | opcode2 = bits (arm_insn_r->arm_insn, 20, 24); | |
10139 | insn_op1 = bits (arm_insn_r->arm_insn, 5, 6); | |
10140 | ||
10141 | /* Handle load/store insn extension space. */ | |
10142 | ||
10143 | if (!opcode1 && bit (arm_insn_r->arm_insn, 7) | |
10144 | && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond | |
10145 | && !INSN_RECORDED(arm_insn_r)) | |
10146 | { | |
10147 | /* SWP/SWPB. */ | |
10148 | if (0 == insn_op1) | |
10149 | { | |
10150 | /* These insn, changes register and memory as well. */ | |
10151 | /* SWP or SWPB insn. */ | |
10152 | /* Get memory address given by Rn. */ | |
10153 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10154 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
10155 | /* SWP insn ?, swaps word. */ | |
10156 | if (8 == arm_insn_r->opcode) | |
10157 | { | |
10158 | record_buf_mem[0] = 4; | |
10159 | } | |
10160 | else | |
10161 | { | |
10162 | /* SWPB insn, swaps only byte. */ | |
10163 | record_buf_mem[0] = 1; | |
10164 | } | |
10165 | record_buf_mem[1] = u_regval; | |
10166 | arm_insn_r->mem_rec_count = 1; | |
10167 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10168 | arm_insn_r->reg_rec_count = 1; | |
10169 | } | |
10170 | else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10171 | { | |
10172 | /* STRH. */ | |
10173 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
10174 | ARM_RECORD_STRH); | |
10175 | } | |
10176 | else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10177 | { | |
10178 | /* LDRD. */ | |
10179 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10180 | record_buf[1] = record_buf[0] + 1; | |
10181 | arm_insn_r->reg_rec_count = 2; | |
10182 | } | |
10183 | else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10184 | { | |
10185 | /* STRD. */ | |
10186 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
10187 | ARM_RECORD_STRD); | |
10188 | } | |
10189 | else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3) | |
10190 | { | |
10191 | /* LDRH, LDRSB, LDRSH. */ | |
10192 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10193 | arm_insn_r->reg_rec_count = 1; | |
10194 | } | |
10195 | ||
10196 | } | |
10197 | ||
10198 | opcode1 = bits (arm_insn_r->arm_insn, 23, 27); | |
10199 | if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21) | |
10200 | && !INSN_RECORDED(arm_insn_r)) | |
10201 | { | |
10202 | ret = -1; | |
10203 | /* Handle coprocessor insn extension space. */ | |
10204 | } | |
10205 | ||
10206 | /* To be done for ARMv5 and later; as of now we return -1. */ | |
10207 | if (-1 == ret) | |
ca92db2d | 10208 | return ret; |
72508ac0 PO |
10209 | |
10210 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10211 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10212 | ||
10213 | return ret; | |
10214 | } | |
10215 | ||
10216 | /* Handling opcode 000 insns. */ | |
10217 | ||
10218 | static int | |
10219 | arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r) | |
10220 | { | |
10221 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10222 | uint32_t record_buf[8], record_buf_mem[8]; | |
10223 | ULONGEST u_regval[2] = {0}; | |
10224 | ||
bec2ab5a | 10225 | uint32_t reg_src1 = 0, reg_dest = 0; |
72508ac0 PO |
10226 | uint32_t opcode1 = 0; |
10227 | ||
10228 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
10229 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10230 | opcode1 = bits (arm_insn_r->arm_insn, 20, 24); | |
10231 | ||
2d9e6acb | 10232 | if (!((opcode1 & 0x19) == 0x10)) |
72508ac0 | 10233 | { |
2d9e6acb YQ |
10234 | /* Data-processing (register) and Data-processing (register-shifted |
10235 | register */ | |
10236 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
10237 | register, which is specified by 13-16 decode. */ | |
10238 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10239 | record_buf[1] = ARM_PS_REGNUM; | |
10240 | arm_insn_r->reg_rec_count = 2; | |
72508ac0 | 10241 | } |
2d9e6acb | 10242 | else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10)) |
72508ac0 | 10243 | { |
2d9e6acb YQ |
10244 | /* Miscellaneous instructions */ |
10245 | ||
10246 | if (3 == arm_insn_r->decode && 0x12 == opcode1 | |
10247 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
10248 | { | |
10249 | /* Handle BLX, branch and link/exchange. */ | |
10250 | if (9 == arm_insn_r->opcode) | |
10251 | { | |
10252 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm, | |
10253 | and R14 stores the return address. */ | |
10254 | record_buf[0] = ARM_PS_REGNUM; | |
10255 | record_buf[1] = ARM_LR_REGNUM; | |
10256 | arm_insn_r->reg_rec_count = 2; | |
10257 | } | |
10258 | } | |
10259 | else if (7 == arm_insn_r->decode && 0x12 == opcode1) | |
10260 | { | |
10261 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
10262 | /* CPSR is changed to be executed in ARM state, disabling normal | |
10263 | interrupts, entering abort mode. */ | |
10264 | /* According to high vector configuration PC is set. */ | |
10265 | /* user hit breakpoint and type reverse, in | |
10266 | that case, we need to go back with previous CPSR and | |
10267 | Program Counter. */ | |
10268 | record_buf[0] = ARM_PS_REGNUM; | |
10269 | record_buf[1] = ARM_LR_REGNUM; | |
10270 | arm_insn_r->reg_rec_count = 2; | |
10271 | ||
10272 | /* Save SPSR also; how? */ | |
10273 | return -1; | |
10274 | } | |
10275 | else if (1 == arm_insn_r->decode && 0x12 == opcode1 | |
10276 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
10277 | { | |
10278 | /* Handle BX, branch and link/exchange. */ | |
10279 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */ | |
10280 | record_buf[0] = ARM_PS_REGNUM; | |
10281 | arm_insn_r->reg_rec_count = 1; | |
10282 | } | |
10283 | else if (1 == arm_insn_r->decode && 0x16 == opcode1 | |
10284 | && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1) | |
10285 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)) | |
10286 | { | |
10287 | /* Count leading zeros: CLZ. */ | |
10288 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10289 | arm_insn_r->reg_rec_count = 1; | |
10290 | } | |
10291 | else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | |
10292 | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
10293 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1) | |
10294 | && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)) | |
10295 | { | |
10296 | /* Handle MRS insn. */ | |
10297 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10298 | arm_insn_r->reg_rec_count = 1; | |
10299 | } | |
72508ac0 | 10300 | } |
2d9e6acb | 10301 | else if (9 == arm_insn_r->decode && opcode1 < 0x10) |
72508ac0 | 10302 | { |
2d9e6acb YQ |
10303 | /* Multiply and multiply-accumulate */ |
10304 | ||
10305 | /* Handle multiply instructions. */ | |
10306 | /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */ | |
10307 | if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode) | |
10308 | { | |
10309 | /* Handle MLA and MUL. */ | |
10310 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10311 | record_buf[1] = ARM_PS_REGNUM; | |
10312 | arm_insn_r->reg_rec_count = 2; | |
10313 | } | |
10314 | else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | |
10315 | { | |
10316 | /* Handle SMLAL, SMULL, UMLAL, UMULL. */ | |
10317 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10318 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10319 | record_buf[2] = ARM_PS_REGNUM; | |
10320 | arm_insn_r->reg_rec_count = 3; | |
10321 | } | |
10322 | } | |
10323 | else if (9 == arm_insn_r->decode && opcode1 > 0x10) | |
10324 | { | |
10325 | /* Synchronization primitives */ | |
10326 | ||
72508ac0 PO |
10327 | /* Handling SWP, SWPB. */ |
10328 | /* These insn, changes register and memory as well. */ | |
10329 | /* SWP or SWPB insn. */ | |
10330 | ||
10331 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10332 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10333 | /* SWP insn ?, swaps word. */ | |
10334 | if (8 == arm_insn_r->opcode) | |
2d9e6acb YQ |
10335 | { |
10336 | record_buf_mem[0] = 4; | |
10337 | } | |
10338 | else | |
10339 | { | |
10340 | /* SWPB insn, swaps only byte. */ | |
10341 | record_buf_mem[0] = 1; | |
10342 | } | |
72508ac0 PO |
10343 | record_buf_mem[1] = u_regval[0]; |
10344 | arm_insn_r->mem_rec_count = 1; | |
10345 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10346 | arm_insn_r->reg_rec_count = 1; | |
10347 | } | |
2d9e6acb YQ |
10348 | else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode |
10349 | || 15 == arm_insn_r->decode) | |
72508ac0 | 10350 | { |
2d9e6acb YQ |
10351 | if ((opcode1 & 0x12) == 2) |
10352 | { | |
10353 | /* Extra load/store (unprivileged) */ | |
10354 | return -1; | |
10355 | } | |
10356 | else | |
10357 | { | |
10358 | /* Extra load/store */ | |
10359 | switch (bits (arm_insn_r->arm_insn, 5, 6)) | |
10360 | { | |
10361 | case 1: | |
10362 | if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4) | |
10363 | { | |
10364 | /* STRH (register), STRH (immediate) */ | |
10365 | arm_record_strx (arm_insn_r, &record_buf[0], | |
10366 | &record_buf_mem[0], ARM_RECORD_STRH); | |
10367 | } | |
10368 | else if ((opcode1 & 0x05) == 0x1) | |
10369 | { | |
10370 | /* LDRH (register) */ | |
10371 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10372 | arm_insn_r->reg_rec_count = 1; | |
72508ac0 | 10373 | |
2d9e6acb YQ |
10374 | if (bit (arm_insn_r->arm_insn, 21)) |
10375 | { | |
10376 | /* Write back to Rn. */ | |
10377 | record_buf[arm_insn_r->reg_rec_count++] | |
10378 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10379 | } | |
10380 | } | |
10381 | else if ((opcode1 & 0x05) == 0x5) | |
10382 | { | |
10383 | /* LDRH (immediate), LDRH (literal) */ | |
10384 | int rn = bits (arm_insn_r->arm_insn, 16, 19); | |
72508ac0 | 10385 | |
2d9e6acb YQ |
10386 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
10387 | arm_insn_r->reg_rec_count = 1; | |
10388 | ||
10389 | if (rn != 15) | |
10390 | { | |
10391 | /*LDRH (immediate) */ | |
10392 | if (bit (arm_insn_r->arm_insn, 21)) | |
10393 | { | |
10394 | /* Write back to Rn. */ | |
10395 | record_buf[arm_insn_r->reg_rec_count++] = rn; | |
10396 | } | |
10397 | } | |
10398 | } | |
10399 | else | |
10400 | return -1; | |
10401 | break; | |
10402 | case 2: | |
10403 | if ((opcode1 & 0x05) == 0x0) | |
10404 | { | |
10405 | /* LDRD (register) */ | |
10406 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10407 | record_buf[1] = record_buf[0] + 1; | |
10408 | arm_insn_r->reg_rec_count = 2; | |
10409 | ||
10410 | if (bit (arm_insn_r->arm_insn, 21)) | |
10411 | { | |
10412 | /* Write back to Rn. */ | |
10413 | record_buf[arm_insn_r->reg_rec_count++] | |
10414 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10415 | } | |
10416 | } | |
10417 | else if ((opcode1 & 0x05) == 0x1) | |
10418 | { | |
10419 | /* LDRSB (register) */ | |
10420 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10421 | arm_insn_r->reg_rec_count = 1; | |
10422 | ||
10423 | if (bit (arm_insn_r->arm_insn, 21)) | |
10424 | { | |
10425 | /* Write back to Rn. */ | |
10426 | record_buf[arm_insn_r->reg_rec_count++] | |
10427 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10428 | } | |
10429 | } | |
10430 | else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5) | |
10431 | { | |
10432 | /* LDRD (immediate), LDRD (literal), LDRSB (immediate), | |
10433 | LDRSB (literal) */ | |
10434 | int rn = bits (arm_insn_r->arm_insn, 16, 19); | |
10435 | ||
10436 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10437 | arm_insn_r->reg_rec_count = 1; | |
10438 | ||
10439 | if (rn != 15) | |
10440 | { | |
10441 | /*LDRD (immediate), LDRSB (immediate) */ | |
10442 | if (bit (arm_insn_r->arm_insn, 21)) | |
10443 | { | |
10444 | /* Write back to Rn. */ | |
10445 | record_buf[arm_insn_r->reg_rec_count++] = rn; | |
10446 | } | |
10447 | } | |
10448 | } | |
10449 | else | |
10450 | return -1; | |
10451 | break; | |
10452 | case 3: | |
10453 | if ((opcode1 & 0x05) == 0x0) | |
10454 | { | |
10455 | /* STRD (register) */ | |
10456 | arm_record_strx (arm_insn_r, &record_buf[0], | |
10457 | &record_buf_mem[0], ARM_RECORD_STRD); | |
10458 | } | |
10459 | else if ((opcode1 & 0x05) == 0x1) | |
10460 | { | |
10461 | /* LDRSH (register) */ | |
10462 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10463 | arm_insn_r->reg_rec_count = 1; | |
10464 | ||
10465 | if (bit (arm_insn_r->arm_insn, 21)) | |
10466 | { | |
10467 | /* Write back to Rn. */ | |
10468 | record_buf[arm_insn_r->reg_rec_count++] | |
10469 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10470 | } | |
10471 | } | |
10472 | else if ((opcode1 & 0x05) == 0x4) | |
10473 | { | |
10474 | /* STRD (immediate) */ | |
10475 | arm_record_strx (arm_insn_r, &record_buf[0], | |
10476 | &record_buf_mem[0], ARM_RECORD_STRD); | |
10477 | } | |
10478 | else if ((opcode1 & 0x05) == 0x5) | |
10479 | { | |
10480 | /* LDRSH (immediate), LDRSH (literal) */ | |
10481 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10482 | arm_insn_r->reg_rec_count = 1; | |
10483 | ||
10484 | if (bit (arm_insn_r->arm_insn, 21)) | |
10485 | { | |
10486 | /* Write back to Rn. */ | |
10487 | record_buf[arm_insn_r->reg_rec_count++] | |
10488 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10489 | } | |
10490 | } | |
10491 | else | |
10492 | return -1; | |
10493 | break; | |
10494 | default: | |
10495 | return -1; | |
10496 | } | |
10497 | } | |
72508ac0 PO |
10498 | } |
10499 | else | |
10500 | { | |
10501 | return -1; | |
10502 | } | |
10503 | ||
10504 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10505 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10506 | return 0; | |
10507 | } | |
10508 | ||
10509 | /* Handling opcode 001 insns. */ | |
10510 | ||
10511 | static int | |
10512 | arm_record_data_proc_imm (insn_decode_record *arm_insn_r) | |
10513 | { | |
10514 | uint32_t record_buf[8], record_buf_mem[8]; | |
10515 | ||
10516 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
10517 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10518 | ||
10519 | if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | |
10520 | && 2 == bits (arm_insn_r->arm_insn, 20, 21) | |
10521 | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | |
10522 | ) | |
10523 | { | |
10524 | /* Handle MSR insn. */ | |
10525 | if (9 == arm_insn_r->opcode) | |
10526 | { | |
10527 | /* CSPR is going to be changed. */ | |
10528 | record_buf[0] = ARM_PS_REGNUM; | |
10529 | arm_insn_r->reg_rec_count = 1; | |
10530 | } | |
10531 | else | |
10532 | { | |
10533 | /* SPSR is going to be changed. */ | |
10534 | } | |
10535 | } | |
10536 | else if (arm_insn_r->opcode <= 15) | |
10537 | { | |
10538 | /* Normal data processing insns. */ | |
10539 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
10540 | register, which is specified by 13-16 decode. */ | |
10541 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10542 | record_buf[1] = ARM_PS_REGNUM; | |
10543 | arm_insn_r->reg_rec_count = 2; | |
10544 | } | |
10545 | else | |
10546 | { | |
10547 | return -1; | |
10548 | } | |
10549 | ||
10550 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10551 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10552 | return 0; | |
10553 | } | |
10554 | ||
c55978a6 YQ |
10555 | static int |
10556 | arm_record_media (insn_decode_record *arm_insn_r) | |
10557 | { | |
10558 | uint32_t record_buf[8]; | |
10559 | ||
10560 | switch (bits (arm_insn_r->arm_insn, 22, 24)) | |
10561 | { | |
10562 | case 0: | |
10563 | /* Parallel addition and subtraction, signed */ | |
10564 | case 1: | |
10565 | /* Parallel addition and subtraction, unsigned */ | |
10566 | case 2: | |
10567 | case 3: | |
10568 | /* Packing, unpacking, saturation and reversal */ | |
10569 | { | |
10570 | int rd = bits (arm_insn_r->arm_insn, 12, 15); | |
10571 | ||
10572 | record_buf[arm_insn_r->reg_rec_count++] = rd; | |
10573 | } | |
10574 | break; | |
10575 | ||
10576 | case 4: | |
10577 | case 5: | |
10578 | /* Signed multiplies */ | |
10579 | { | |
10580 | int rd = bits (arm_insn_r->arm_insn, 16, 19); | |
10581 | unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22); | |
10582 | ||
10583 | record_buf[arm_insn_r->reg_rec_count++] = rd; | |
10584 | if (op1 == 0x0) | |
10585 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
10586 | else if (op1 == 0x4) | |
10587 | record_buf[arm_insn_r->reg_rec_count++] | |
10588 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10589 | } | |
10590 | break; | |
10591 | ||
10592 | case 6: | |
10593 | { | |
10594 | if (bit (arm_insn_r->arm_insn, 21) | |
10595 | && bits (arm_insn_r->arm_insn, 5, 6) == 0x2) | |
10596 | { | |
10597 | /* SBFX */ | |
10598 | record_buf[arm_insn_r->reg_rec_count++] | |
10599 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10600 | } | |
10601 | else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0 | |
10602 | && bits (arm_insn_r->arm_insn, 5, 7) == 0x0) | |
10603 | { | |
10604 | /* USAD8 and USADA8 */ | |
10605 | record_buf[arm_insn_r->reg_rec_count++] | |
10606 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10607 | } | |
10608 | } | |
10609 | break; | |
10610 | ||
10611 | case 7: | |
10612 | { | |
10613 | if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3 | |
10614 | && bits (arm_insn_r->arm_insn, 5, 7) == 0x7) | |
10615 | { | |
10616 | /* Permanently UNDEFINED */ | |
10617 | return -1; | |
10618 | } | |
10619 | else | |
10620 | { | |
10621 | /* BFC, BFI and UBFX */ | |
10622 | record_buf[arm_insn_r->reg_rec_count++] | |
10623 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10624 | } | |
10625 | } | |
10626 | break; | |
10627 | ||
10628 | default: | |
10629 | return -1; | |
10630 | } | |
10631 | ||
10632 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10633 | ||
10634 | return 0; | |
10635 | } | |
10636 | ||
71e396f9 | 10637 | /* Handle ARM mode instructions with opcode 010. */ |
72508ac0 PO |
10638 | |
10639 | static int | |
10640 | arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r) | |
10641 | { | |
10642 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10643 | ||
71e396f9 LM |
10644 | uint32_t reg_base , reg_dest; |
10645 | uint32_t offset_12, tgt_mem_addr; | |
72508ac0 | 10646 | uint32_t record_buf[8], record_buf_mem[8]; |
71e396f9 LM |
10647 | unsigned char wback; |
10648 | ULONGEST u_regval; | |
72508ac0 | 10649 | |
71e396f9 LM |
10650 | /* Calculate wback. */ |
10651 | wback = (bit (arm_insn_r->arm_insn, 24) == 0) | |
10652 | || (bit (arm_insn_r->arm_insn, 21) == 1); | |
72508ac0 | 10653 | |
71e396f9 LM |
10654 | arm_insn_r->reg_rec_count = 0; |
10655 | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | |
72508ac0 PO |
10656 | |
10657 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10658 | { | |
71e396f9 LM |
10659 | /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT |
10660 | and LDRT. */ | |
10661 | ||
72508ac0 | 10662 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); |
71e396f9 LM |
10663 | record_buf[arm_insn_r->reg_rec_count++] = reg_dest; |
10664 | ||
10665 | /* The LDR instruction is capable of doing branching. If MOV LR, PC | |
10666 | preceeds a LDR instruction having R15 as reg_base, it | |
10667 | emulates a branch and link instruction, and hence we need to save | |
10668 | CPSR and PC as well. */ | |
10669 | if (ARM_PC_REGNUM == reg_dest) | |
10670 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
10671 | ||
10672 | /* If wback is true, also save the base register, which is going to be | |
10673 | written to. */ | |
10674 | if (wback) | |
10675 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
10676 | } |
10677 | else | |
10678 | { | |
71e396f9 LM |
10679 | /* STR (immediate), STRB (immediate), STRBT and STRT. */ |
10680 | ||
72508ac0 | 10681 | offset_12 = bits (arm_insn_r->arm_insn, 0, 11); |
71e396f9 LM |
10682 | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); |
10683 | ||
10684 | /* Handle bit U. */ | |
72508ac0 | 10685 | if (bit (arm_insn_r->arm_insn, 23)) |
71e396f9 LM |
10686 | { |
10687 | /* U == 1: Add the offset. */ | |
10688 | tgt_mem_addr = (uint32_t) u_regval + offset_12; | |
10689 | } | |
72508ac0 | 10690 | else |
71e396f9 LM |
10691 | { |
10692 | /* U == 0: subtract the offset. */ | |
10693 | tgt_mem_addr = (uint32_t) u_regval - offset_12; | |
10694 | } | |
10695 | ||
10696 | /* Bit 22 tells us whether the store instruction writes 1 byte or 4 | |
10697 | bytes. */ | |
10698 | if (bit (arm_insn_r->arm_insn, 22)) | |
10699 | { | |
10700 | /* STRB and STRBT: 1 byte. */ | |
10701 | record_buf_mem[0] = 1; | |
10702 | } | |
10703 | else | |
10704 | { | |
10705 | /* STR and STRT: 4 bytes. */ | |
10706 | record_buf_mem[0] = 4; | |
10707 | } | |
10708 | ||
10709 | /* Handle bit P. */ | |
10710 | if (bit (arm_insn_r->arm_insn, 24)) | |
10711 | record_buf_mem[1] = tgt_mem_addr; | |
10712 | else | |
10713 | record_buf_mem[1] = (uint32_t) u_regval; | |
72508ac0 | 10714 | |
72508ac0 PO |
10715 | arm_insn_r->mem_rec_count = 1; |
10716 | ||
71e396f9 LM |
10717 | /* If wback is true, also save the base register, which is going to be |
10718 | written to. */ | |
10719 | if (wback) | |
10720 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
10721 | } |
10722 | ||
10723 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10724 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10725 | return 0; | |
10726 | } | |
10727 | ||
10728 | /* Handling opcode 011 insns. */ | |
10729 | ||
10730 | static int | |
10731 | arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r) | |
10732 | { | |
10733 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10734 | ||
10735 | uint32_t shift_imm = 0; | |
10736 | uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; | |
10737 | uint32_t offset_12 = 0, tgt_mem_addr = 0; | |
10738 | uint32_t record_buf[8], record_buf_mem[8]; | |
10739 | ||
10740 | LONGEST s_word; | |
10741 | ULONGEST u_regval[2]; | |
10742 | ||
c55978a6 YQ |
10743 | if (bit (arm_insn_r->arm_insn, 4)) |
10744 | return arm_record_media (arm_insn_r); | |
10745 | ||
72508ac0 PO |
10746 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
10747 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10748 | ||
10749 | /* Handle enhanced store insns and LDRD DSP insn, | |
10750 | order begins according to addressing modes for store insns | |
10751 | STRH insn. */ | |
10752 | ||
10753 | /* LDR or STR? */ | |
10754 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10755 | { | |
10756 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
10757 | /* LDR insn has a capability to do branching, if | |
10758 | MOV LR, PC is precedded by LDR insn having Rn as R15 | |
10759 | in that case, it emulates branch and link insn, and hence we | |
10760 | need to save CSPR and PC as well. */ | |
10761 | if (15 != reg_dest) | |
10762 | { | |
10763 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10764 | arm_insn_r->reg_rec_count = 1; | |
10765 | } | |
10766 | else | |
10767 | { | |
10768 | record_buf[0] = reg_dest; | |
10769 | record_buf[1] = ARM_PS_REGNUM; | |
10770 | arm_insn_r->reg_rec_count = 2; | |
10771 | } | |
10772 | } | |
10773 | else | |
10774 | { | |
10775 | if (! bits (arm_insn_r->arm_insn, 4, 11)) | |
10776 | { | |
10777 | /* Store insn, register offset and register pre-indexed, | |
10778 | register post-indexed. */ | |
10779 | /* Get Rm. */ | |
10780 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10781 | /* Get Rn. */ | |
10782 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10783 | regcache_raw_read_unsigned (reg_cache, reg_src1 | |
10784 | , &u_regval[0]); | |
10785 | regcache_raw_read_unsigned (reg_cache, reg_src2 | |
10786 | , &u_regval[1]); | |
10787 | if (15 == reg_src2) | |
10788 | { | |
10789 | /* If R15 was used as Rn, hence current PC+8. */ | |
10790 | /* Pre-indexed mode doesnt reach here ; illegal insn. */ | |
10791 | u_regval[0] = u_regval[0] + 8; | |
10792 | } | |
10793 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
10794 | /* U == 1. */ | |
10795 | if (bit (arm_insn_r->arm_insn, 23)) | |
10796 | { | |
10797 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
10798 | } | |
10799 | else | |
10800 | { | |
10801 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
10802 | } | |
10803 | ||
10804 | switch (arm_insn_r->opcode) | |
10805 | { | |
10806 | /* STR. */ | |
10807 | case 8: | |
10808 | case 12: | |
10809 | /* STR. */ | |
10810 | case 9: | |
10811 | case 13: | |
10812 | /* STRT. */ | |
10813 | case 1: | |
10814 | case 5: | |
10815 | /* STR. */ | |
10816 | case 0: | |
10817 | case 4: | |
10818 | record_buf_mem[0] = 4; | |
10819 | break; | |
10820 | ||
10821 | /* STRB. */ | |
10822 | case 10: | |
10823 | case 14: | |
10824 | /* STRB. */ | |
10825 | case 11: | |
10826 | case 15: | |
10827 | /* STRBT. */ | |
10828 | case 3: | |
10829 | case 7: | |
10830 | /* STRB. */ | |
10831 | case 2: | |
10832 | case 6: | |
10833 | record_buf_mem[0] = 1; | |
10834 | break; | |
10835 | ||
10836 | default: | |
10837 | gdb_assert_not_reached ("no decoding pattern found"); | |
10838 | break; | |
10839 | } | |
10840 | record_buf_mem[1] = tgt_mem_addr; | |
10841 | arm_insn_r->mem_rec_count = 1; | |
10842 | ||
10843 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
10844 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
10845 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
10846 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
10847 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
10848 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
10849 | ) | |
10850 | { | |
10851 | /* Rn is going to be changed in pre-indexed mode and | |
10852 | post-indexed mode as well. */ | |
10853 | record_buf[0] = reg_src2; | |
10854 | arm_insn_r->reg_rec_count = 1; | |
10855 | } | |
10856 | } | |
10857 | else | |
10858 | { | |
10859 | /* Store insn, scaled register offset; scaled pre-indexed. */ | |
10860 | offset_12 = bits (arm_insn_r->arm_insn, 5, 6); | |
10861 | /* Get Rm. */ | |
10862 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10863 | /* Get Rn. */ | |
10864 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10865 | /* Get shift_imm. */ | |
10866 | shift_imm = bits (arm_insn_r->arm_insn, 7, 11); | |
10867 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10868 | regcache_raw_read_signed (reg_cache, reg_src1, &s_word); | |
10869 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10870 | /* Offset_12 used as shift. */ | |
10871 | switch (offset_12) | |
10872 | { | |
10873 | case 0: | |
10874 | /* Offset_12 used as index. */ | |
10875 | offset_12 = u_regval[0] << shift_imm; | |
10876 | break; | |
10877 | ||
10878 | case 1: | |
10879 | offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm; | |
10880 | break; | |
10881 | ||
10882 | case 2: | |
10883 | if (!shift_imm) | |
10884 | { | |
10885 | if (bit (u_regval[0], 31)) | |
10886 | { | |
10887 | offset_12 = 0xFFFFFFFF; | |
10888 | } | |
10889 | else | |
10890 | { | |
10891 | offset_12 = 0; | |
10892 | } | |
10893 | } | |
10894 | else | |
10895 | { | |
10896 | /* This is arithmetic shift. */ | |
10897 | offset_12 = s_word >> shift_imm; | |
10898 | } | |
10899 | break; | |
10900 | ||
10901 | case 3: | |
10902 | if (!shift_imm) | |
10903 | { | |
10904 | regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM, | |
10905 | &u_regval[1]); | |
10906 | /* Get C flag value and shift it by 31. */ | |
10907 | offset_12 = (((bit (u_regval[1], 29)) << 31) \ | |
10908 | | (u_regval[0]) >> 1); | |
10909 | } | |
10910 | else | |
10911 | { | |
10912 | offset_12 = (u_regval[0] >> shift_imm) \ | |
10913 | | (u_regval[0] << | |
10914 | (sizeof(uint32_t) - shift_imm)); | |
10915 | } | |
10916 | break; | |
10917 | ||
10918 | default: | |
10919 | gdb_assert_not_reached ("no decoding pattern found"); | |
10920 | break; | |
10921 | } | |
10922 | ||
10923 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10924 | /* bit U set. */ | |
10925 | if (bit (arm_insn_r->arm_insn, 23)) | |
10926 | { | |
10927 | tgt_mem_addr = u_regval[1] + offset_12; | |
10928 | } | |
10929 | else | |
10930 | { | |
10931 | tgt_mem_addr = u_regval[1] - offset_12; | |
10932 | } | |
10933 | ||
10934 | switch (arm_insn_r->opcode) | |
10935 | { | |
10936 | /* STR. */ | |
10937 | case 8: | |
10938 | case 12: | |
10939 | /* STR. */ | |
10940 | case 9: | |
10941 | case 13: | |
10942 | /* STRT. */ | |
10943 | case 1: | |
10944 | case 5: | |
10945 | /* STR. */ | |
10946 | case 0: | |
10947 | case 4: | |
10948 | record_buf_mem[0] = 4; | |
10949 | break; | |
10950 | ||
10951 | /* STRB. */ | |
10952 | case 10: | |
10953 | case 14: | |
10954 | /* STRB. */ | |
10955 | case 11: | |
10956 | case 15: | |
10957 | /* STRBT. */ | |
10958 | case 3: | |
10959 | case 7: | |
10960 | /* STRB. */ | |
10961 | case 2: | |
10962 | case 6: | |
10963 | record_buf_mem[0] = 1; | |
10964 | break; | |
10965 | ||
10966 | default: | |
10967 | gdb_assert_not_reached ("no decoding pattern found"); | |
10968 | break; | |
10969 | } | |
10970 | record_buf_mem[1] = tgt_mem_addr; | |
10971 | arm_insn_r->mem_rec_count = 1; | |
10972 | ||
10973 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
10974 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
10975 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
10976 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
10977 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
10978 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
10979 | ) | |
10980 | { | |
10981 | /* Rn is going to be changed in register scaled pre-indexed | |
10982 | mode,and scaled post indexed mode. */ | |
10983 | record_buf[0] = reg_src2; | |
10984 | arm_insn_r->reg_rec_count = 1; | |
10985 | } | |
10986 | } | |
10987 | } | |
10988 | ||
10989 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10990 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10991 | return 0; | |
10992 | } | |
10993 | ||
71e396f9 | 10994 | /* Handle ARM mode instructions with opcode 100. */ |
72508ac0 PO |
10995 | |
10996 | static int | |
10997 | arm_record_ld_st_multiple (insn_decode_record *arm_insn_r) | |
10998 | { | |
10999 | struct regcache *reg_cache = arm_insn_r->regcache; | |
71e396f9 LM |
11000 | uint32_t register_count = 0, register_bits; |
11001 | uint32_t reg_base, addr_mode; | |
72508ac0 | 11002 | uint32_t record_buf[24], record_buf_mem[48]; |
71e396f9 LM |
11003 | uint32_t wback; |
11004 | ULONGEST u_regval; | |
72508ac0 | 11005 | |
71e396f9 LM |
11006 | /* Fetch the list of registers. */ |
11007 | register_bits = bits (arm_insn_r->arm_insn, 0, 15); | |
11008 | arm_insn_r->reg_rec_count = 0; | |
11009 | ||
11010 | /* Fetch the base register that contains the address we are loading data | |
11011 | to. */ | |
11012 | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | |
72508ac0 | 11013 | |
71e396f9 LM |
11014 | /* Calculate wback. */ |
11015 | wback = (bit (arm_insn_r->arm_insn, 21) == 1); | |
72508ac0 PO |
11016 | |
11017 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
11018 | { | |
71e396f9 | 11019 | /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */ |
72508ac0 | 11020 | |
71e396f9 | 11021 | /* Find out which registers are going to be loaded from memory. */ |
72508ac0 | 11022 | while (register_bits) |
71e396f9 LM |
11023 | { |
11024 | if (register_bits & 0x00000001) | |
11025 | record_buf[arm_insn_r->reg_rec_count++] = register_count; | |
11026 | register_bits = register_bits >> 1; | |
11027 | register_count++; | |
11028 | } | |
72508ac0 | 11029 | |
71e396f9 LM |
11030 | |
11031 | /* If wback is true, also save the base register, which is going to be | |
11032 | written to. */ | |
11033 | if (wback) | |
11034 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
11035 | ||
11036 | /* Save the CPSR register. */ | |
11037 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
72508ac0 PO |
11038 | } |
11039 | else | |
11040 | { | |
71e396f9 | 11041 | /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */ |
72508ac0 | 11042 | |
71e396f9 LM |
11043 | addr_mode = bits (arm_insn_r->arm_insn, 23, 24); |
11044 | ||
11045 | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); | |
11046 | ||
11047 | /* Find out how many registers are going to be stored to memory. */ | |
72508ac0 | 11048 | while (register_bits) |
71e396f9 LM |
11049 | { |
11050 | if (register_bits & 0x00000001) | |
11051 | register_count++; | |
11052 | register_bits = register_bits >> 1; | |
11053 | } | |
72508ac0 PO |
11054 | |
11055 | switch (addr_mode) | |
71e396f9 LM |
11056 | { |
11057 | /* STMDA (STMED): Decrement after. */ | |
11058 | case 0: | |
11059 | record_buf_mem[1] = (uint32_t) u_regval | |
11060 | - register_count * INT_REGISTER_SIZE + 4; | |
11061 | break; | |
11062 | /* STM (STMIA, STMEA): Increment after. */ | |
11063 | case 1: | |
11064 | record_buf_mem[1] = (uint32_t) u_regval; | |
11065 | break; | |
11066 | /* STMDB (STMFD): Decrement before. */ | |
11067 | case 2: | |
11068 | record_buf_mem[1] = (uint32_t) u_regval | |
11069 | - register_count * INT_REGISTER_SIZE; | |
11070 | break; | |
11071 | /* STMIB (STMFA): Increment before. */ | |
11072 | case 3: | |
11073 | record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE; | |
11074 | break; | |
11075 | default: | |
11076 | gdb_assert_not_reached ("no decoding pattern found"); | |
11077 | break; | |
11078 | } | |
72508ac0 | 11079 | |
71e396f9 LM |
11080 | record_buf_mem[0] = register_count * INT_REGISTER_SIZE; |
11081 | arm_insn_r->mem_rec_count = 1; | |
11082 | ||
11083 | /* If wback is true, also save the base register, which is going to be | |
11084 | written to. */ | |
11085 | if (wback) | |
11086 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
11087 | } |
11088 | ||
11089 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11090 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11091 | return 0; | |
11092 | } | |
11093 | ||
11094 | /* Handling opcode 101 insns. */ | |
11095 | ||
11096 | static int | |
11097 | arm_record_b_bl (insn_decode_record *arm_insn_r) | |
11098 | { | |
11099 | uint32_t record_buf[8]; | |
11100 | ||
11101 | /* Handle B, BL, BLX(1) insns. */ | |
11102 | /* B simply branches so we do nothing here. */ | |
11103 | /* Note: BLX(1) doesnt fall here but instead it falls into | |
11104 | extension space. */ | |
11105 | if (bit (arm_insn_r->arm_insn, 24)) | |
11106 | { | |
11107 | record_buf[0] = ARM_LR_REGNUM; | |
11108 | arm_insn_r->reg_rec_count = 1; | |
11109 | } | |
11110 | ||
11111 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11112 | ||
11113 | return 0; | |
11114 | } | |
11115 | ||
72508ac0 | 11116 | static int |
c6ec2b30 | 11117 | arm_record_unsupported_insn (insn_decode_record *arm_insn_r) |
72508ac0 PO |
11118 | { |
11119 | printf_unfiltered (_("Process record does not support instruction " | |
01e57735 YQ |
11120 | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, |
11121 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
72508ac0 PO |
11122 | |
11123 | return -1; | |
11124 | } | |
11125 | ||
5a578da5 OJ |
11126 | /* Record handler for vector data transfer instructions. */ |
11127 | ||
11128 | static int | |
11129 | arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r) | |
11130 | { | |
11131 | uint32_t bits_a, bit_c, bit_l, reg_t, reg_v; | |
11132 | uint32_t record_buf[4]; | |
11133 | ||
5a578da5 OJ |
11134 | reg_t = bits (arm_insn_r->arm_insn, 12, 15); |
11135 | reg_v = bits (arm_insn_r->arm_insn, 21, 23); | |
11136 | bits_a = bits (arm_insn_r->arm_insn, 21, 23); | |
11137 | bit_l = bit (arm_insn_r->arm_insn, 20); | |
11138 | bit_c = bit (arm_insn_r->arm_insn, 8); | |
11139 | ||
11140 | /* Handle VMOV instruction. */ | |
11141 | if (bit_l && bit_c) | |
11142 | { | |
11143 | record_buf[0] = reg_t; | |
11144 | arm_insn_r->reg_rec_count = 1; | |
11145 | } | |
11146 | else if (bit_l && !bit_c) | |
11147 | { | |
11148 | /* Handle VMOV instruction. */ | |
11149 | if (bits_a == 0x00) | |
11150 | { | |
f1771dce | 11151 | record_buf[0] = reg_t; |
5a578da5 OJ |
11152 | arm_insn_r->reg_rec_count = 1; |
11153 | } | |
11154 | /* Handle VMRS instruction. */ | |
11155 | else if (bits_a == 0x07) | |
11156 | { | |
11157 | if (reg_t == 15) | |
11158 | reg_t = ARM_PS_REGNUM; | |
11159 | ||
11160 | record_buf[0] = reg_t; | |
11161 | arm_insn_r->reg_rec_count = 1; | |
11162 | } | |
11163 | } | |
11164 | else if (!bit_l && !bit_c) | |
11165 | { | |
11166 | /* Handle VMOV instruction. */ | |
11167 | if (bits_a == 0x00) | |
11168 | { | |
f1771dce | 11169 | record_buf[0] = ARM_D0_REGNUM + reg_v; |
5a578da5 OJ |
11170 | |
11171 | arm_insn_r->reg_rec_count = 1; | |
11172 | } | |
11173 | /* Handle VMSR instruction. */ | |
11174 | else if (bits_a == 0x07) | |
11175 | { | |
11176 | record_buf[0] = ARM_FPSCR_REGNUM; | |
11177 | arm_insn_r->reg_rec_count = 1; | |
11178 | } | |
11179 | } | |
11180 | else if (!bit_l && bit_c) | |
11181 | { | |
11182 | /* Handle VMOV instruction. */ | |
11183 | if (!(bits_a & 0x04)) | |
11184 | { | |
11185 | record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4)) | |
11186 | + ARM_D0_REGNUM; | |
11187 | arm_insn_r->reg_rec_count = 1; | |
11188 | } | |
11189 | /* Handle VDUP instruction. */ | |
11190 | else | |
11191 | { | |
11192 | if (bit (arm_insn_r->arm_insn, 21)) | |
11193 | { | |
11194 | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | |
11195 | record_buf[0] = reg_v + ARM_D0_REGNUM; | |
11196 | record_buf[1] = reg_v + ARM_D0_REGNUM + 1; | |
11197 | arm_insn_r->reg_rec_count = 2; | |
11198 | } | |
11199 | else | |
11200 | { | |
11201 | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | |
11202 | record_buf[0] = reg_v + ARM_D0_REGNUM; | |
11203 | arm_insn_r->reg_rec_count = 1; | |
11204 | } | |
11205 | } | |
11206 | } | |
11207 | ||
11208 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11209 | return 0; | |
11210 | } | |
11211 | ||
f20f80dd OJ |
11212 | /* Record handler for extension register load/store instructions. */ |
11213 | ||
11214 | static int | |
11215 | arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r) | |
11216 | { | |
11217 | uint32_t opcode, single_reg; | |
11218 | uint8_t op_vldm_vstm; | |
11219 | uint32_t record_buf[8], record_buf_mem[128]; | |
11220 | ULONGEST u_regval = 0; | |
11221 | ||
11222 | struct regcache *reg_cache = arm_insn_r->regcache; | |
f20f80dd OJ |
11223 | |
11224 | opcode = bits (arm_insn_r->arm_insn, 20, 24); | |
9fde51ed | 11225 | single_reg = !bit (arm_insn_r->arm_insn, 8); |
f20f80dd OJ |
11226 | op_vldm_vstm = opcode & 0x1b; |
11227 | ||
11228 | /* Handle VMOV instructions. */ | |
11229 | if ((opcode & 0x1e) == 0x04) | |
11230 | { | |
9fde51ed | 11231 | if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */ |
01e57735 YQ |
11232 | { |
11233 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11234 | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
11235 | arm_insn_r->reg_rec_count = 2; | |
11236 | } | |
f20f80dd | 11237 | else |
01e57735 | 11238 | { |
9fde51ed YQ |
11239 | uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3); |
11240 | uint8_t bit_m = bit (arm_insn_r->arm_insn, 5); | |
f20f80dd | 11241 | |
9fde51ed | 11242 | if (single_reg) |
01e57735 | 11243 | { |
9fde51ed YQ |
11244 | /* The first S register number m is REG_M:M (M is bit 5), |
11245 | the corresponding D register number is REG_M:M / 2, which | |
11246 | is REG_M. */ | |
11247 | record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m; | |
11248 | /* The second S register number is REG_M:M + 1, the | |
11249 | corresponding D register number is (REG_M:M + 1) / 2. | |
11250 | IOW, if bit M is 1, the first and second S registers | |
11251 | are mapped to different D registers, otherwise, they are | |
11252 | in the same D register. */ | |
11253 | if (bit_m) | |
11254 | { | |
11255 | record_buf[arm_insn_r->reg_rec_count++] | |
11256 | = ARM_D0_REGNUM + reg_m + 1; | |
11257 | } | |
01e57735 YQ |
11258 | } |
11259 | else | |
11260 | { | |
9fde51ed | 11261 | record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM); |
01e57735 YQ |
11262 | arm_insn_r->reg_rec_count = 1; |
11263 | } | |
11264 | } | |
f20f80dd OJ |
11265 | } |
11266 | /* Handle VSTM and VPUSH instructions. */ | |
11267 | else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a | |
01e57735 | 11268 | || op_vldm_vstm == 0x12) |
f20f80dd OJ |
11269 | { |
11270 | uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count; | |
11271 | uint32_t memory_index = 0; | |
11272 | ||
11273 | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | |
11274 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
11275 | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | |
9fde51ed | 11276 | imm_off32 = imm_off8 << 2; |
f20f80dd OJ |
11277 | memory_count = imm_off8; |
11278 | ||
11279 | if (bit (arm_insn_r->arm_insn, 23)) | |
01e57735 | 11280 | start_address = u_regval; |
f20f80dd | 11281 | else |
01e57735 | 11282 | start_address = u_regval - imm_off32; |
f20f80dd OJ |
11283 | |
11284 | if (bit (arm_insn_r->arm_insn, 21)) | |
01e57735 YQ |
11285 | { |
11286 | record_buf[0] = reg_rn; | |
11287 | arm_insn_r->reg_rec_count = 1; | |
11288 | } | |
f20f80dd OJ |
11289 | |
11290 | while (memory_count > 0) | |
01e57735 | 11291 | { |
9fde51ed | 11292 | if (single_reg) |
01e57735 | 11293 | { |
9fde51ed YQ |
11294 | record_buf_mem[memory_index] = 4; |
11295 | record_buf_mem[memory_index + 1] = start_address; | |
01e57735 YQ |
11296 | start_address = start_address + 4; |
11297 | memory_index = memory_index + 2; | |
11298 | } | |
11299 | else | |
11300 | { | |
9fde51ed YQ |
11301 | record_buf_mem[memory_index] = 4; |
11302 | record_buf_mem[memory_index + 1] = start_address; | |
11303 | record_buf_mem[memory_index + 2] = 4; | |
11304 | record_buf_mem[memory_index + 3] = start_address + 4; | |
01e57735 YQ |
11305 | start_address = start_address + 8; |
11306 | memory_index = memory_index + 4; | |
11307 | } | |
11308 | memory_count--; | |
11309 | } | |
f20f80dd OJ |
11310 | arm_insn_r->mem_rec_count = (memory_index >> 1); |
11311 | } | |
11312 | /* Handle VLDM instructions. */ | |
11313 | else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b | |
01e57735 | 11314 | || op_vldm_vstm == 0x13) |
f20f80dd OJ |
11315 | { |
11316 | uint32_t reg_count, reg_vd; | |
11317 | uint32_t reg_index = 0; | |
9fde51ed | 11318 | uint32_t bit_d = bit (arm_insn_r->arm_insn, 22); |
f20f80dd OJ |
11319 | |
11320 | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11321 | reg_count = bits (arm_insn_r->arm_insn, 0, 7); | |
11322 | ||
9fde51ed YQ |
11323 | /* REG_VD is the first D register number. If the instruction |
11324 | loads memory to S registers (SINGLE_REG is TRUE), the register | |
11325 | number is (REG_VD << 1 | bit D), so the corresponding D | |
11326 | register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */ | |
11327 | if (!single_reg) | |
11328 | reg_vd = reg_vd | (bit_d << 4); | |
f20f80dd | 11329 | |
9fde51ed | 11330 | if (bit (arm_insn_r->arm_insn, 21) /* write back */) |
01e57735 | 11331 | record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19); |
f20f80dd | 11332 | |
9fde51ed YQ |
11333 | /* If the instruction loads memory to D register, REG_COUNT should |
11334 | be divided by 2, according to the ARM Architecture Reference | |
11335 | Manual. If the instruction loads memory to S register, divide by | |
11336 | 2 as well because two S registers are mapped to D register. */ | |
11337 | reg_count = reg_count / 2; | |
11338 | if (single_reg && bit_d) | |
01e57735 | 11339 | { |
9fde51ed YQ |
11340 | /* Increase the register count if S register list starts from |
11341 | an odd number (bit d is one). */ | |
11342 | reg_count++; | |
11343 | } | |
f20f80dd | 11344 | |
9fde51ed YQ |
11345 | while (reg_count > 0) |
11346 | { | |
11347 | record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1; | |
01e57735 YQ |
11348 | reg_count--; |
11349 | } | |
f20f80dd OJ |
11350 | arm_insn_r->reg_rec_count = reg_index; |
11351 | } | |
11352 | /* VSTR Vector store register. */ | |
11353 | else if ((opcode & 0x13) == 0x10) | |
11354 | { | |
bec2ab5a | 11355 | uint32_t start_address, reg_rn, imm_off32, imm_off8; |
f20f80dd OJ |
11356 | uint32_t memory_index = 0; |
11357 | ||
11358 | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | |
11359 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
11360 | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | |
9fde51ed | 11361 | imm_off32 = imm_off8 << 2; |
f20f80dd OJ |
11362 | |
11363 | if (bit (arm_insn_r->arm_insn, 23)) | |
01e57735 | 11364 | start_address = u_regval + imm_off32; |
f20f80dd | 11365 | else |
01e57735 | 11366 | start_address = u_regval - imm_off32; |
f20f80dd OJ |
11367 | |
11368 | if (single_reg) | |
01e57735 | 11369 | { |
9fde51ed YQ |
11370 | record_buf_mem[memory_index] = 4; |
11371 | record_buf_mem[memory_index + 1] = start_address; | |
01e57735 YQ |
11372 | arm_insn_r->mem_rec_count = 1; |
11373 | } | |
f20f80dd | 11374 | else |
01e57735 | 11375 | { |
9fde51ed YQ |
11376 | record_buf_mem[memory_index] = 4; |
11377 | record_buf_mem[memory_index + 1] = start_address; | |
11378 | record_buf_mem[memory_index + 2] = 4; | |
11379 | record_buf_mem[memory_index + 3] = start_address + 4; | |
01e57735 YQ |
11380 | arm_insn_r->mem_rec_count = 2; |
11381 | } | |
f20f80dd OJ |
11382 | } |
11383 | /* VLDR Vector load register. */ | |
11384 | else if ((opcode & 0x13) == 0x11) | |
11385 | { | |
11386 | uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11387 | ||
11388 | if (!single_reg) | |
01e57735 YQ |
11389 | { |
11390 | reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4); | |
11391 | record_buf[0] = ARM_D0_REGNUM + reg_vd; | |
11392 | } | |
f20f80dd | 11393 | else |
01e57735 YQ |
11394 | { |
11395 | reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22); | |
9fde51ed YQ |
11396 | /* Record register D rather than pseudo register S. */ |
11397 | record_buf[0] = ARM_D0_REGNUM + reg_vd / 2; | |
01e57735 | 11398 | } |
f20f80dd OJ |
11399 | arm_insn_r->reg_rec_count = 1; |
11400 | } | |
11401 | ||
11402 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11403 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11404 | return 0; | |
11405 | } | |
11406 | ||
851f26ae OJ |
11407 | /* Record handler for arm/thumb mode VFP data processing instructions. */ |
11408 | ||
11409 | static int | |
11410 | arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r) | |
11411 | { | |
11412 | uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd; | |
11413 | uint32_t record_buf[4]; | |
11414 | enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV}; | |
11415 | enum insn_types curr_insn_type = INSN_INV; | |
11416 | ||
11417 | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11418 | opc1 = bits (arm_insn_r->arm_insn, 20, 23); | |
11419 | opc2 = bits (arm_insn_r->arm_insn, 16, 19); | |
11420 | opc3 = bits (arm_insn_r->arm_insn, 6, 7); | |
11421 | dp_op_sz = bit (arm_insn_r->arm_insn, 8); | |
11422 | bit_d = bit (arm_insn_r->arm_insn, 22); | |
11423 | opc1 = opc1 & 0x04; | |
11424 | ||
11425 | /* Handle VMLA, VMLS. */ | |
11426 | if (opc1 == 0x00) | |
11427 | { | |
11428 | if (bit (arm_insn_r->arm_insn, 10)) | |
11429 | { | |
11430 | if (bit (arm_insn_r->arm_insn, 6)) | |
11431 | curr_insn_type = INSN_T0; | |
11432 | else | |
11433 | curr_insn_type = INSN_T1; | |
11434 | } | |
11435 | else | |
11436 | { | |
11437 | if (dp_op_sz) | |
11438 | curr_insn_type = INSN_T1; | |
11439 | else | |
11440 | curr_insn_type = INSN_T2; | |
11441 | } | |
11442 | } | |
11443 | /* Handle VNMLA, VNMLS, VNMUL. */ | |
11444 | else if (opc1 == 0x01) | |
11445 | { | |
11446 | if (dp_op_sz) | |
11447 | curr_insn_type = INSN_T1; | |
11448 | else | |
11449 | curr_insn_type = INSN_T2; | |
11450 | } | |
11451 | /* Handle VMUL. */ | |
11452 | else if (opc1 == 0x02 && !(opc3 & 0x01)) | |
11453 | { | |
11454 | if (bit (arm_insn_r->arm_insn, 10)) | |
11455 | { | |
11456 | if (bit (arm_insn_r->arm_insn, 6)) | |
11457 | curr_insn_type = INSN_T0; | |
11458 | else | |
11459 | curr_insn_type = INSN_T1; | |
11460 | } | |
11461 | else | |
11462 | { | |
11463 | if (dp_op_sz) | |
11464 | curr_insn_type = INSN_T1; | |
11465 | else | |
11466 | curr_insn_type = INSN_T2; | |
11467 | } | |
11468 | } | |
11469 | /* Handle VADD, VSUB. */ | |
11470 | else if (opc1 == 0x03) | |
11471 | { | |
11472 | if (!bit (arm_insn_r->arm_insn, 9)) | |
11473 | { | |
11474 | if (bit (arm_insn_r->arm_insn, 6)) | |
11475 | curr_insn_type = INSN_T0; | |
11476 | else | |
11477 | curr_insn_type = INSN_T1; | |
11478 | } | |
11479 | else | |
11480 | { | |
11481 | if (dp_op_sz) | |
11482 | curr_insn_type = INSN_T1; | |
11483 | else | |
11484 | curr_insn_type = INSN_T2; | |
11485 | } | |
11486 | } | |
11487 | /* Handle VDIV. */ | |
11488 | else if (opc1 == 0x0b) | |
11489 | { | |
11490 | if (dp_op_sz) | |
11491 | curr_insn_type = INSN_T1; | |
11492 | else | |
11493 | curr_insn_type = INSN_T2; | |
11494 | } | |
11495 | /* Handle all other vfp data processing instructions. */ | |
11496 | else if (opc1 == 0x0b) | |
11497 | { | |
11498 | /* Handle VMOV. */ | |
11499 | if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01)) | |
11500 | { | |
11501 | if (bit (arm_insn_r->arm_insn, 4)) | |
11502 | { | |
11503 | if (bit (arm_insn_r->arm_insn, 6)) | |
11504 | curr_insn_type = INSN_T0; | |
11505 | else | |
11506 | curr_insn_type = INSN_T1; | |
11507 | } | |
11508 | else | |
11509 | { | |
11510 | if (dp_op_sz) | |
11511 | curr_insn_type = INSN_T1; | |
11512 | else | |
11513 | curr_insn_type = INSN_T2; | |
11514 | } | |
11515 | } | |
11516 | /* Handle VNEG and VABS. */ | |
11517 | else if ((opc2 == 0x01 && opc3 == 0x01) | |
11518 | || (opc2 == 0x00 && opc3 == 0x03)) | |
11519 | { | |
11520 | if (!bit (arm_insn_r->arm_insn, 11)) | |
11521 | { | |
11522 | if (bit (arm_insn_r->arm_insn, 6)) | |
11523 | curr_insn_type = INSN_T0; | |
11524 | else | |
11525 | curr_insn_type = INSN_T1; | |
11526 | } | |
11527 | else | |
11528 | { | |
11529 | if (dp_op_sz) | |
11530 | curr_insn_type = INSN_T1; | |
11531 | else | |
11532 | curr_insn_type = INSN_T2; | |
11533 | } | |
11534 | } | |
11535 | /* Handle VSQRT. */ | |
11536 | else if (opc2 == 0x01 && opc3 == 0x03) | |
11537 | { | |
11538 | if (dp_op_sz) | |
11539 | curr_insn_type = INSN_T1; | |
11540 | else | |
11541 | curr_insn_type = INSN_T2; | |
11542 | } | |
11543 | /* Handle VCVT. */ | |
11544 | else if (opc2 == 0x07 && opc3 == 0x03) | |
11545 | { | |
11546 | if (!dp_op_sz) | |
11547 | curr_insn_type = INSN_T1; | |
11548 | else | |
11549 | curr_insn_type = INSN_T2; | |
11550 | } | |
11551 | else if (opc3 & 0x01) | |
11552 | { | |
11553 | /* Handle VCVT. */ | |
11554 | if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c) | |
11555 | { | |
11556 | if (!bit (arm_insn_r->arm_insn, 18)) | |
11557 | curr_insn_type = INSN_T2; | |
11558 | else | |
11559 | { | |
11560 | if (dp_op_sz) | |
11561 | curr_insn_type = INSN_T1; | |
11562 | else | |
11563 | curr_insn_type = INSN_T2; | |
11564 | } | |
11565 | } | |
11566 | /* Handle VCVT. */ | |
11567 | else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e) | |
11568 | { | |
11569 | if (dp_op_sz) | |
11570 | curr_insn_type = INSN_T1; | |
11571 | else | |
11572 | curr_insn_type = INSN_T2; | |
11573 | } | |
11574 | /* Handle VCVTB, VCVTT. */ | |
11575 | else if ((opc2 & 0x0e) == 0x02) | |
11576 | curr_insn_type = INSN_T2; | |
11577 | /* Handle VCMP, VCMPE. */ | |
11578 | else if ((opc2 & 0x0e) == 0x04) | |
11579 | curr_insn_type = INSN_T3; | |
11580 | } | |
11581 | } | |
11582 | ||
11583 | switch (curr_insn_type) | |
11584 | { | |
11585 | case INSN_T0: | |
11586 | reg_vd = reg_vd | (bit_d << 4); | |
11587 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11588 | record_buf[1] = reg_vd + ARM_D0_REGNUM + 1; | |
11589 | arm_insn_r->reg_rec_count = 2; | |
11590 | break; | |
11591 | ||
11592 | case INSN_T1: | |
11593 | reg_vd = reg_vd | (bit_d << 4); | |
11594 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11595 | arm_insn_r->reg_rec_count = 1; | |
11596 | break; | |
11597 | ||
11598 | case INSN_T2: | |
11599 | reg_vd = (reg_vd << 1) | bit_d; | |
11600 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11601 | arm_insn_r->reg_rec_count = 1; | |
11602 | break; | |
11603 | ||
11604 | case INSN_T3: | |
11605 | record_buf[0] = ARM_FPSCR_REGNUM; | |
11606 | arm_insn_r->reg_rec_count = 1; | |
11607 | break; | |
11608 | ||
11609 | default: | |
11610 | gdb_assert_not_reached ("no decoding pattern found"); | |
11611 | break; | |
11612 | } | |
11613 | ||
11614 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11615 | return 0; | |
11616 | } | |
11617 | ||
60cc5e93 OJ |
11618 | /* Handling opcode 110 insns. */ |
11619 | ||
11620 | static int | |
11621 | arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r) | |
11622 | { | |
bec2ab5a | 11623 | uint32_t op1, op1_ebit, coproc; |
60cc5e93 OJ |
11624 | |
11625 | coproc = bits (arm_insn_r->arm_insn, 8, 11); | |
11626 | op1 = bits (arm_insn_r->arm_insn, 20, 25); | |
11627 | op1_ebit = bit (arm_insn_r->arm_insn, 20); | |
11628 | ||
11629 | if ((coproc & 0x0e) == 0x0a) | |
11630 | { | |
11631 | /* Handle extension register ld/st instructions. */ | |
11632 | if (!(op1 & 0x20)) | |
f20f80dd | 11633 | return arm_record_exreg_ld_st_insn (arm_insn_r); |
60cc5e93 OJ |
11634 | |
11635 | /* 64-bit transfers between arm core and extension registers. */ | |
11636 | if ((op1 & 0x3e) == 0x04) | |
f20f80dd | 11637 | return arm_record_exreg_ld_st_insn (arm_insn_r); |
60cc5e93 OJ |
11638 | } |
11639 | else | |
11640 | { | |
11641 | /* Handle coprocessor ld/st instructions. */ | |
11642 | if (!(op1 & 0x3a)) | |
11643 | { | |
11644 | /* Store. */ | |
11645 | if (!op1_ebit) | |
11646 | return arm_record_unsupported_insn (arm_insn_r); | |
11647 | else | |
11648 | /* Load. */ | |
11649 | return arm_record_unsupported_insn (arm_insn_r); | |
11650 | } | |
11651 | ||
11652 | /* Move to coprocessor from two arm core registers. */ | |
11653 | if (op1 == 0x4) | |
11654 | return arm_record_unsupported_insn (arm_insn_r); | |
11655 | ||
11656 | /* Move to two arm core registers from coprocessor. */ | |
11657 | if (op1 == 0x5) | |
11658 | { | |
11659 | uint32_t reg_t[2]; | |
11660 | ||
11661 | reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11662 | reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
11663 | arm_insn_r->reg_rec_count = 2; | |
11664 | ||
11665 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t); | |
11666 | return 0; | |
11667 | } | |
11668 | } | |
11669 | return arm_record_unsupported_insn (arm_insn_r); | |
11670 | } | |
11671 | ||
72508ac0 PO |
11672 | /* Handling opcode 111 insns. */ |
11673 | ||
11674 | static int | |
11675 | arm_record_coproc_data_proc (insn_decode_record *arm_insn_r) | |
11676 | { | |
2d9e6acb | 11677 | uint32_t op, op1_ebit, coproc, bits_24_25; |
72508ac0 PO |
11678 | struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch); |
11679 | struct regcache *reg_cache = arm_insn_r->regcache; | |
72508ac0 PO |
11680 | |
11681 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27); | |
60cc5e93 | 11682 | coproc = bits (arm_insn_r->arm_insn, 8, 11); |
60cc5e93 OJ |
11683 | op1_ebit = bit (arm_insn_r->arm_insn, 20); |
11684 | op = bit (arm_insn_r->arm_insn, 4); | |
2d9e6acb | 11685 | bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25); |
97dfe206 OJ |
11686 | |
11687 | /* Handle arm SWI/SVC system call instructions. */ | |
2d9e6acb | 11688 | if (bits_24_25 == 0x3) |
97dfe206 OJ |
11689 | { |
11690 | if (tdep->arm_syscall_record != NULL) | |
11691 | { | |
11692 | ULONGEST svc_operand, svc_number; | |
11693 | ||
11694 | svc_operand = (0x00ffffff & arm_insn_r->arm_insn); | |
11695 | ||
11696 | if (svc_operand) /* OABI. */ | |
11697 | svc_number = svc_operand - 0x900000; | |
11698 | else /* EABI. */ | |
11699 | regcache_raw_read_unsigned (reg_cache, 7, &svc_number); | |
11700 | ||
60cc5e93 | 11701 | return tdep->arm_syscall_record (reg_cache, svc_number); |
97dfe206 OJ |
11702 | } |
11703 | else | |
11704 | { | |
11705 | printf_unfiltered (_("no syscall record support\n")); | |
60cc5e93 | 11706 | return -1; |
97dfe206 OJ |
11707 | } |
11708 | } | |
2d9e6acb | 11709 | else if (bits_24_25 == 0x02) |
60cc5e93 | 11710 | { |
2d9e6acb YQ |
11711 | if (op) |
11712 | { | |
11713 | if ((coproc & 0x0e) == 0x0a) | |
11714 | { | |
11715 | /* 8, 16, and 32-bit transfer */ | |
11716 | return arm_record_vdata_transfer_insn (arm_insn_r); | |
11717 | } | |
11718 | else | |
11719 | { | |
11720 | if (op1_ebit) | |
11721 | { | |
11722 | /* MRC, MRC2 */ | |
11723 | uint32_t record_buf[1]; | |
11724 | ||
11725 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11726 | if (record_buf[0] == 15) | |
11727 | record_buf[0] = ARM_PS_REGNUM; | |
60cc5e93 | 11728 | |
2d9e6acb YQ |
11729 | arm_insn_r->reg_rec_count = 1; |
11730 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, | |
11731 | record_buf); | |
11732 | return 0; | |
11733 | } | |
11734 | else | |
11735 | { | |
11736 | /* MCR, MCR2 */ | |
11737 | return -1; | |
11738 | } | |
11739 | } | |
11740 | } | |
11741 | else | |
11742 | { | |
11743 | if ((coproc & 0x0e) == 0x0a) | |
11744 | { | |
11745 | /* VFP data-processing instructions. */ | |
11746 | return arm_record_vfp_data_proc_insn (arm_insn_r); | |
11747 | } | |
11748 | else | |
11749 | { | |
11750 | /* CDP, CDP2 */ | |
11751 | return -1; | |
11752 | } | |
11753 | } | |
60cc5e93 | 11754 | } |
97dfe206 OJ |
11755 | else |
11756 | { | |
2d9e6acb | 11757 | unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25); |
60cc5e93 | 11758 | |
2d9e6acb YQ |
11759 | if (op1 == 5) |
11760 | { | |
11761 | if ((coproc & 0x0e) != 0x0a) | |
11762 | { | |
11763 | /* MRRC, MRRC2 */ | |
11764 | return -1; | |
11765 | } | |
11766 | } | |
11767 | else if (op1 == 4 || op1 == 5) | |
11768 | { | |
11769 | if ((coproc & 0x0e) == 0x0a) | |
11770 | { | |
11771 | /* 64-bit transfers between ARM core and extension */ | |
11772 | return -1; | |
11773 | } | |
11774 | else if (op1 == 4) | |
11775 | { | |
11776 | /* MCRR, MCRR2 */ | |
11777 | return -1; | |
11778 | } | |
11779 | } | |
11780 | else if (op1 == 0 || op1 == 1) | |
11781 | { | |
11782 | /* UNDEFINED */ | |
11783 | return -1; | |
11784 | } | |
11785 | else | |
11786 | { | |
11787 | if ((coproc & 0x0e) == 0x0a) | |
11788 | { | |
11789 | /* Extension register load/store */ | |
11790 | } | |
11791 | else | |
11792 | { | |
11793 | /* STC, STC2, LDC, LDC2 */ | |
11794 | } | |
11795 | return -1; | |
11796 | } | |
97dfe206 | 11797 | } |
72508ac0 | 11798 | |
2d9e6acb | 11799 | return -1; |
72508ac0 PO |
11800 | } |
11801 | ||
11802 | /* Handling opcode 000 insns. */ | |
11803 | ||
11804 | static int | |
11805 | thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r) | |
11806 | { | |
11807 | uint32_t record_buf[8]; | |
11808 | uint32_t reg_src1 = 0; | |
11809 | ||
11810 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11811 | ||
11812 | record_buf[0] = ARM_PS_REGNUM; | |
11813 | record_buf[1] = reg_src1; | |
11814 | thumb_insn_r->reg_rec_count = 2; | |
11815 | ||
11816 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11817 | ||
11818 | return 0; | |
11819 | } | |
11820 | ||
11821 | ||
11822 | /* Handling opcode 001 insns. */ | |
11823 | ||
11824 | static int | |
11825 | thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r) | |
11826 | { | |
11827 | uint32_t record_buf[8]; | |
11828 | uint32_t reg_src1 = 0; | |
11829 | ||
11830 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11831 | ||
11832 | record_buf[0] = ARM_PS_REGNUM; | |
11833 | record_buf[1] = reg_src1; | |
11834 | thumb_insn_r->reg_rec_count = 2; | |
11835 | ||
11836 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11837 | ||
11838 | return 0; | |
11839 | } | |
11840 | ||
11841 | /* Handling opcode 010 insns. */ | |
11842 | ||
11843 | static int | |
11844 | thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r) | |
11845 | { | |
11846 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11847 | uint32_t record_buf[8], record_buf_mem[8]; | |
11848 | ||
11849 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
11850 | uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0; | |
11851 | ||
11852 | ULONGEST u_regval[2] = {0}; | |
11853 | ||
11854 | opcode1 = bits (thumb_insn_r->arm_insn, 10, 12); | |
11855 | ||
11856 | if (bit (thumb_insn_r->arm_insn, 12)) | |
11857 | { | |
11858 | /* Handle load/store register offset. */ | |
b121eeb9 YQ |
11859 | uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11); |
11860 | ||
b020ff80 | 11861 | if (in_inclusive_range (opB, 4U, 7U)) |
72508ac0 PO |
11862 | { |
11863 | /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */ | |
11864 | reg_src1 = bits (thumb_insn_r->arm_insn,0, 2); | |
11865 | record_buf[0] = reg_src1; | |
11866 | thumb_insn_r->reg_rec_count = 1; | |
11867 | } | |
b020ff80 | 11868 | else if (in_inclusive_range (opB, 0U, 2U)) |
72508ac0 PO |
11869 | { |
11870 | /* STR(2), STRB(2), STRH(2) . */ | |
11871 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
11872 | reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8); | |
11873 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
11874 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
b121eeb9 | 11875 | if (0 == opB) |
72508ac0 | 11876 | record_buf_mem[0] = 4; /* STR (2). */ |
b121eeb9 | 11877 | else if (2 == opB) |
72508ac0 | 11878 | record_buf_mem[0] = 1; /* STRB (2). */ |
b121eeb9 | 11879 | else if (1 == opB) |
72508ac0 PO |
11880 | record_buf_mem[0] = 2; /* STRH (2). */ |
11881 | record_buf_mem[1] = u_regval[0] + u_regval[1]; | |
11882 | thumb_insn_r->mem_rec_count = 1; | |
11883 | } | |
11884 | } | |
11885 | else if (bit (thumb_insn_r->arm_insn, 11)) | |
11886 | { | |
11887 | /* Handle load from literal pool. */ | |
11888 | /* LDR(3). */ | |
11889 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11890 | record_buf[0] = reg_src1; | |
11891 | thumb_insn_r->reg_rec_count = 1; | |
11892 | } | |
11893 | else if (opcode1) | |
11894 | { | |
b121eeb9 | 11895 | /* Special data instructions and branch and exchange */ |
72508ac0 PO |
11896 | opcode2 = bits (thumb_insn_r->arm_insn, 8, 9); |
11897 | opcode3 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11898 | if ((3 == opcode2) && (!opcode3)) | |
11899 | { | |
11900 | /* Branch with exchange. */ | |
11901 | record_buf[0] = ARM_PS_REGNUM; | |
11902 | thumb_insn_r->reg_rec_count = 1; | |
11903 | } | |
11904 | else | |
11905 | { | |
1f33efec YQ |
11906 | /* Format 8; special data processing insns. */ |
11907 | record_buf[0] = ARM_PS_REGNUM; | |
11908 | record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3 | |
11909 | | bits (thumb_insn_r->arm_insn, 0, 2)); | |
72508ac0 PO |
11910 | thumb_insn_r->reg_rec_count = 2; |
11911 | } | |
11912 | } | |
11913 | else | |
11914 | { | |
11915 | /* Format 5; data processing insns. */ | |
11916 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11917 | if (bit (thumb_insn_r->arm_insn, 7)) | |
11918 | { | |
11919 | reg_src1 = reg_src1 + 8; | |
11920 | } | |
11921 | record_buf[0] = ARM_PS_REGNUM; | |
11922 | record_buf[1] = reg_src1; | |
11923 | thumb_insn_r->reg_rec_count = 2; | |
11924 | } | |
11925 | ||
11926 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11927 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
11928 | record_buf_mem); | |
11929 | ||
11930 | return 0; | |
11931 | } | |
11932 | ||
11933 | /* Handling opcode 001 insns. */ | |
11934 | ||
11935 | static int | |
11936 | thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r) | |
11937 | { | |
11938 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11939 | uint32_t record_buf[8], record_buf_mem[8]; | |
11940 | ||
11941 | uint32_t reg_src1 = 0; | |
11942 | uint32_t opcode = 0, immed_5 = 0; | |
11943 | ||
11944 | ULONGEST u_regval = 0; | |
11945 | ||
11946 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
11947 | ||
11948 | if (opcode) | |
11949 | { | |
11950 | /* LDR(1). */ | |
11951 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11952 | record_buf[0] = reg_src1; | |
11953 | thumb_insn_r->reg_rec_count = 1; | |
11954 | } | |
11955 | else | |
11956 | { | |
11957 | /* STR(1). */ | |
11958 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
11959 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
11960 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
11961 | record_buf_mem[0] = 4; | |
11962 | record_buf_mem[1] = u_regval + (immed_5 * 4); | |
11963 | thumb_insn_r->mem_rec_count = 1; | |
11964 | } | |
11965 | ||
11966 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11967 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
11968 | record_buf_mem); | |
11969 | ||
11970 | return 0; | |
11971 | } | |
11972 | ||
11973 | /* Handling opcode 100 insns. */ | |
11974 | ||
11975 | static int | |
11976 | thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r) | |
11977 | { | |
11978 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11979 | uint32_t record_buf[8], record_buf_mem[8]; | |
11980 | ||
11981 | uint32_t reg_src1 = 0; | |
11982 | uint32_t opcode = 0, immed_8 = 0, immed_5 = 0; | |
11983 | ||
11984 | ULONGEST u_regval = 0; | |
11985 | ||
11986 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
11987 | ||
11988 | if (3 == opcode) | |
11989 | { | |
11990 | /* LDR(4). */ | |
11991 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11992 | record_buf[0] = reg_src1; | |
11993 | thumb_insn_r->reg_rec_count = 1; | |
11994 | } | |
11995 | else if (1 == opcode) | |
11996 | { | |
11997 | /* LDRH(1). */ | |
11998 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11999 | record_buf[0] = reg_src1; | |
12000 | thumb_insn_r->reg_rec_count = 1; | |
12001 | } | |
12002 | else if (2 == opcode) | |
12003 | { | |
12004 | /* STR(3). */ | |
12005 | immed_8 = bits (thumb_insn_r->arm_insn, 0, 7); | |
12006 | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | |
12007 | record_buf_mem[0] = 4; | |
12008 | record_buf_mem[1] = u_regval + (immed_8 * 4); | |
12009 | thumb_insn_r->mem_rec_count = 1; | |
12010 | } | |
12011 | else if (0 == opcode) | |
12012 | { | |
12013 | /* STRH(1). */ | |
12014 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
12015 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
12016 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12017 | record_buf_mem[0] = 2; | |
12018 | record_buf_mem[1] = u_regval + (immed_5 * 2); | |
12019 | thumb_insn_r->mem_rec_count = 1; | |
12020 | } | |
12021 | ||
12022 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12023 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12024 | record_buf_mem); | |
12025 | ||
12026 | return 0; | |
12027 | } | |
12028 | ||
12029 | /* Handling opcode 101 insns. */ | |
12030 | ||
12031 | static int | |
12032 | thumb_record_misc (insn_decode_record *thumb_insn_r) | |
12033 | { | |
12034 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12035 | ||
b121eeb9 | 12036 | uint32_t opcode = 0; |
72508ac0 | 12037 | uint32_t register_bits = 0, register_count = 0; |
bec2ab5a | 12038 | uint32_t index = 0, start_address = 0; |
72508ac0 PO |
12039 | uint32_t record_buf[24], record_buf_mem[48]; |
12040 | uint32_t reg_src1; | |
12041 | ||
12042 | ULONGEST u_regval = 0; | |
12043 | ||
12044 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
72508ac0 | 12045 | |
b121eeb9 | 12046 | if (opcode == 0 || opcode == 1) |
72508ac0 | 12047 | { |
b121eeb9 YQ |
12048 | /* ADR and ADD (SP plus immediate) */ |
12049 | ||
72508ac0 PO |
12050 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
12051 | record_buf[0] = reg_src1; | |
12052 | thumb_insn_r->reg_rec_count = 1; | |
12053 | } | |
b121eeb9 | 12054 | else |
72508ac0 | 12055 | { |
b121eeb9 YQ |
12056 | /* Miscellaneous 16-bit instructions */ |
12057 | uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11); | |
12058 | ||
12059 | switch (opcode2) | |
12060 | { | |
12061 | case 6: | |
12062 | /* SETEND and CPS */ | |
12063 | break; | |
12064 | case 0: | |
12065 | /* ADD/SUB (SP plus immediate) */ | |
12066 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12067 | record_buf[0] = ARM_SP_REGNUM; | |
12068 | thumb_insn_r->reg_rec_count = 1; | |
12069 | break; | |
12070 | case 1: /* fall through */ | |
12071 | case 3: /* fall through */ | |
12072 | case 9: /* fall through */ | |
12073 | case 11: | |
12074 | /* CBNZ, CBZ */ | |
b121eeb9 YQ |
12075 | break; |
12076 | case 2: | |
12077 | /* SXTH, SXTB, UXTH, UXTB */ | |
12078 | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); | |
12079 | thumb_insn_r->reg_rec_count = 1; | |
12080 | break; | |
12081 | case 4: /* fall through */ | |
12082 | case 5: | |
12083 | /* PUSH. */ | |
12084 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12085 | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | |
12086 | while (register_bits) | |
12087 | { | |
12088 | if (register_bits & 0x00000001) | |
12089 | register_count++; | |
12090 | register_bits = register_bits >> 1; | |
12091 | } | |
12092 | start_address = u_regval - \ | |
12093 | (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count)); | |
12094 | thumb_insn_r->mem_rec_count = register_count; | |
12095 | while (register_count) | |
12096 | { | |
12097 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
12098 | record_buf_mem[(register_count * 2) - 2] = 4; | |
12099 | start_address = start_address + 4; | |
12100 | register_count--; | |
12101 | } | |
12102 | record_buf[0] = ARM_SP_REGNUM; | |
12103 | thumb_insn_r->reg_rec_count = 1; | |
12104 | break; | |
12105 | case 10: | |
12106 | /* REV, REV16, REVSH */ | |
ba14f379 YQ |
12107 | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); |
12108 | thumb_insn_r->reg_rec_count = 1; | |
b121eeb9 YQ |
12109 | break; |
12110 | case 12: /* fall through */ | |
12111 | case 13: | |
12112 | /* POP. */ | |
12113 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12114 | while (register_bits) | |
12115 | { | |
12116 | if (register_bits & 0x00000001) | |
12117 | record_buf[index++] = register_count; | |
12118 | register_bits = register_bits >> 1; | |
12119 | register_count++; | |
12120 | } | |
12121 | record_buf[index++] = ARM_PS_REGNUM; | |
12122 | record_buf[index++] = ARM_SP_REGNUM; | |
12123 | thumb_insn_r->reg_rec_count = index; | |
12124 | break; | |
12125 | case 0xe: | |
12126 | /* BKPT insn. */ | |
12127 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
12128 | /* CPSR is changed to be executed in ARM state, disabling normal | |
12129 | interrupts, entering abort mode. */ | |
12130 | /* According to high vector configuration PC is set. */ | |
12131 | /* User hits breakpoint and type reverse, in that case, we need to go back with | |
12132 | previous CPSR and Program Counter. */ | |
12133 | record_buf[0] = ARM_PS_REGNUM; | |
12134 | record_buf[1] = ARM_LR_REGNUM; | |
12135 | thumb_insn_r->reg_rec_count = 2; | |
12136 | /* We need to save SPSR value, which is not yet done. */ | |
12137 | printf_unfiltered (_("Process record does not support instruction " | |
12138 | "0x%0x at address %s.\n"), | |
12139 | thumb_insn_r->arm_insn, | |
12140 | paddress (thumb_insn_r->gdbarch, | |
12141 | thumb_insn_r->this_addr)); | |
12142 | return -1; | |
12143 | ||
12144 | case 0xf: | |
12145 | /* If-Then, and hints */ | |
12146 | break; | |
12147 | default: | |
12148 | return -1; | |
12149 | }; | |
72508ac0 PO |
12150 | } |
12151 | ||
12152 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12153 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12154 | record_buf_mem); | |
12155 | ||
12156 | return 0; | |
12157 | } | |
12158 | ||
12159 | /* Handling opcode 110 insns. */ | |
12160 | ||
12161 | static int | |
12162 | thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r) | |
12163 | { | |
12164 | struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch); | |
12165 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12166 | ||
12167 | uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */ | |
12168 | uint32_t reg_src1 = 0; | |
12169 | uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0; | |
bec2ab5a | 12170 | uint32_t index = 0, start_address = 0; |
72508ac0 PO |
12171 | uint32_t record_buf[24], record_buf_mem[48]; |
12172 | ||
12173 | ULONGEST u_regval = 0; | |
12174 | ||
12175 | opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); | |
12176 | opcode2 = bits (thumb_insn_r->arm_insn, 11, 12); | |
12177 | ||
12178 | if (1 == opcode2) | |
12179 | { | |
12180 | ||
12181 | /* LDMIA. */ | |
12182 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12183 | /* Get Rn. */ | |
12184 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12185 | while (register_bits) | |
12186 | { | |
12187 | if (register_bits & 0x00000001) | |
f969241e | 12188 | record_buf[index++] = register_count; |
72508ac0 | 12189 | register_bits = register_bits >> 1; |
f969241e | 12190 | register_count++; |
72508ac0 | 12191 | } |
f969241e OJ |
12192 | record_buf[index++] = reg_src1; |
12193 | thumb_insn_r->reg_rec_count = index; | |
72508ac0 PO |
12194 | } |
12195 | else if (0 == opcode2) | |
12196 | { | |
12197 | /* It handles both STMIA. */ | |
12198 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12199 | /* Get Rn. */ | |
12200 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12201 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12202 | while (register_bits) | |
12203 | { | |
12204 | if (register_bits & 0x00000001) | |
12205 | register_count++; | |
12206 | register_bits = register_bits >> 1; | |
12207 | } | |
12208 | start_address = u_regval; | |
12209 | thumb_insn_r->mem_rec_count = register_count; | |
12210 | while (register_count) | |
12211 | { | |
12212 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
12213 | record_buf_mem[(register_count * 2) - 2] = 4; | |
12214 | start_address = start_address + 4; | |
12215 | register_count--; | |
12216 | } | |
12217 | } | |
12218 | else if (0x1F == opcode1) | |
12219 | { | |
12220 | /* Handle arm syscall insn. */ | |
97dfe206 | 12221 | if (tdep->arm_syscall_record != NULL) |
72508ac0 | 12222 | { |
97dfe206 OJ |
12223 | regcache_raw_read_unsigned (reg_cache, 7, &u_regval); |
12224 | ret = tdep->arm_syscall_record (reg_cache, u_regval); | |
72508ac0 PO |
12225 | } |
12226 | else | |
12227 | { | |
12228 | printf_unfiltered (_("no syscall record support\n")); | |
12229 | return -1; | |
12230 | } | |
12231 | } | |
12232 | ||
12233 | /* B (1), conditional branch is automatically taken care in process_record, | |
12234 | as PC is saved there. */ | |
12235 | ||
12236 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12237 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12238 | record_buf_mem); | |
12239 | ||
12240 | return ret; | |
12241 | } | |
12242 | ||
12243 | /* Handling opcode 111 insns. */ | |
12244 | ||
12245 | static int | |
12246 | thumb_record_branch (insn_decode_record *thumb_insn_r) | |
12247 | { | |
12248 | uint32_t record_buf[8]; | |
12249 | uint32_t bits_h = 0; | |
12250 | ||
12251 | bits_h = bits (thumb_insn_r->arm_insn, 11, 12); | |
12252 | ||
12253 | if (2 == bits_h || 3 == bits_h) | |
12254 | { | |
12255 | /* BL */ | |
12256 | record_buf[0] = ARM_LR_REGNUM; | |
12257 | thumb_insn_r->reg_rec_count = 1; | |
12258 | } | |
12259 | else if (1 == bits_h) | |
12260 | { | |
12261 | /* BLX(1). */ | |
12262 | record_buf[0] = ARM_PS_REGNUM; | |
12263 | record_buf[1] = ARM_LR_REGNUM; | |
12264 | thumb_insn_r->reg_rec_count = 2; | |
12265 | } | |
12266 | ||
12267 | /* B(2) is automatically taken care in process_record, as PC is | |
12268 | saved there. */ | |
12269 | ||
12270 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12271 | ||
12272 | return 0; | |
12273 | } | |
12274 | ||
c6ec2b30 OJ |
12275 | /* Handler for thumb2 load/store multiple instructions. */ |
12276 | ||
12277 | static int | |
12278 | thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r) | |
12279 | { | |
12280 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12281 | ||
12282 | uint32_t reg_rn, op; | |
12283 | uint32_t register_bits = 0, register_count = 0; | |
12284 | uint32_t index = 0, start_address = 0; | |
12285 | uint32_t record_buf[24], record_buf_mem[48]; | |
12286 | ||
12287 | ULONGEST u_regval = 0; | |
12288 | ||
12289 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12290 | op = bits (thumb2_insn_r->arm_insn, 23, 24); | |
12291 | ||
12292 | if (0 == op || 3 == op) | |
12293 | { | |
12294 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12295 | { | |
12296 | /* Handle RFE instruction. */ | |
12297 | record_buf[0] = ARM_PS_REGNUM; | |
12298 | thumb2_insn_r->reg_rec_count = 1; | |
12299 | } | |
12300 | else | |
12301 | { | |
12302 | /* Handle SRS instruction after reading banked SP. */ | |
12303 | return arm_record_unsupported_insn (thumb2_insn_r); | |
12304 | } | |
12305 | } | |
12306 | else if (1 == op || 2 == op) | |
12307 | { | |
12308 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12309 | { | |
12310 | /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */ | |
12311 | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | |
12312 | while (register_bits) | |
12313 | { | |
12314 | if (register_bits & 0x00000001) | |
12315 | record_buf[index++] = register_count; | |
12316 | ||
12317 | register_count++; | |
12318 | register_bits = register_bits >> 1; | |
12319 | } | |
12320 | record_buf[index++] = reg_rn; | |
12321 | record_buf[index++] = ARM_PS_REGNUM; | |
12322 | thumb2_insn_r->reg_rec_count = index; | |
12323 | } | |
12324 | else | |
12325 | { | |
12326 | /* Handle STM/STMIA/STMEA and STMDB/STMFD. */ | |
12327 | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | |
12328 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
12329 | while (register_bits) | |
12330 | { | |
12331 | if (register_bits & 0x00000001) | |
12332 | register_count++; | |
12333 | ||
12334 | register_bits = register_bits >> 1; | |
12335 | } | |
12336 | ||
12337 | if (1 == op) | |
12338 | { | |
12339 | /* Start address calculation for LDMDB/LDMEA. */ | |
12340 | start_address = u_regval; | |
12341 | } | |
12342 | else if (2 == op) | |
12343 | { | |
12344 | /* Start address calculation for LDMDB/LDMEA. */ | |
12345 | start_address = u_regval - register_count * 4; | |
12346 | } | |
12347 | ||
12348 | thumb2_insn_r->mem_rec_count = register_count; | |
12349 | while (register_count) | |
12350 | { | |
12351 | record_buf_mem[register_count * 2 - 1] = start_address; | |
12352 | record_buf_mem[register_count * 2 - 2] = 4; | |
12353 | start_address = start_address + 4; | |
12354 | register_count--; | |
12355 | } | |
12356 | record_buf[0] = reg_rn; | |
12357 | record_buf[1] = ARM_PS_REGNUM; | |
12358 | thumb2_insn_r->reg_rec_count = 2; | |
12359 | } | |
12360 | } | |
12361 | ||
12362 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12363 | record_buf_mem); | |
12364 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12365 | record_buf); | |
12366 | return ARM_RECORD_SUCCESS; | |
12367 | } | |
12368 | ||
12369 | /* Handler for thumb2 load/store (dual/exclusive) and table branch | |
12370 | instructions. */ | |
12371 | ||
12372 | static int | |
12373 | thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r) | |
12374 | { | |
12375 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12376 | ||
12377 | uint32_t reg_rd, reg_rn, offset_imm; | |
12378 | uint32_t reg_dest1, reg_dest2; | |
12379 | uint32_t address, offset_addr; | |
12380 | uint32_t record_buf[8], record_buf_mem[8]; | |
12381 | uint32_t op1, op2, op3; | |
c6ec2b30 OJ |
12382 | |
12383 | ULONGEST u_regval[2]; | |
12384 | ||
12385 | op1 = bits (thumb2_insn_r->arm_insn, 23, 24); | |
12386 | op2 = bits (thumb2_insn_r->arm_insn, 20, 21); | |
12387 | op3 = bits (thumb2_insn_r->arm_insn, 4, 7); | |
12388 | ||
12389 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12390 | { | |
12391 | if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3))) | |
12392 | { | |
12393 | reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12394 | record_buf[0] = reg_dest1; | |
12395 | record_buf[1] = ARM_PS_REGNUM; | |
12396 | thumb2_insn_r->reg_rec_count = 2; | |
12397 | } | |
12398 | ||
12399 | if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3)) | |
12400 | { | |
12401 | reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12402 | record_buf[2] = reg_dest2; | |
12403 | thumb2_insn_r->reg_rec_count = 3; | |
12404 | } | |
12405 | } | |
12406 | else | |
12407 | { | |
12408 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12409 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | |
12410 | ||
12411 | if (0 == op1 && 0 == op2) | |
12412 | { | |
12413 | /* Handle STREX. */ | |
12414 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12415 | address = u_regval[0] + (offset_imm * 4); | |
12416 | record_buf_mem[0] = 4; | |
12417 | record_buf_mem[1] = address; | |
12418 | thumb2_insn_r->mem_rec_count = 1; | |
12419 | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12420 | record_buf[0] = reg_rd; | |
12421 | thumb2_insn_r->reg_rec_count = 1; | |
12422 | } | |
12423 | else if (1 == op1 && 0 == op2) | |
12424 | { | |
12425 | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12426 | record_buf[0] = reg_rd; | |
12427 | thumb2_insn_r->reg_rec_count = 1; | |
12428 | address = u_regval[0]; | |
12429 | record_buf_mem[1] = address; | |
12430 | ||
12431 | if (4 == op3) | |
12432 | { | |
12433 | /* Handle STREXB. */ | |
12434 | record_buf_mem[0] = 1; | |
12435 | thumb2_insn_r->mem_rec_count = 1; | |
12436 | } | |
12437 | else if (5 == op3) | |
12438 | { | |
12439 | /* Handle STREXH. */ | |
12440 | record_buf_mem[0] = 2 ; | |
12441 | thumb2_insn_r->mem_rec_count = 1; | |
12442 | } | |
12443 | else if (7 == op3) | |
12444 | { | |
12445 | /* Handle STREXD. */ | |
12446 | address = u_regval[0]; | |
12447 | record_buf_mem[0] = 4; | |
12448 | record_buf_mem[2] = 4; | |
12449 | record_buf_mem[3] = address + 4; | |
12450 | thumb2_insn_r->mem_rec_count = 2; | |
12451 | } | |
12452 | } | |
12453 | else | |
12454 | { | |
12455 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12456 | ||
12457 | if (bit (thumb2_insn_r->arm_insn, 24)) | |
12458 | { | |
12459 | if (bit (thumb2_insn_r->arm_insn, 23)) | |
12460 | offset_addr = u_regval[0] + (offset_imm * 4); | |
12461 | else | |
12462 | offset_addr = u_regval[0] - (offset_imm * 4); | |
12463 | ||
12464 | address = offset_addr; | |
12465 | } | |
12466 | else | |
12467 | address = u_regval[0]; | |
12468 | ||
12469 | record_buf_mem[0] = 4; | |
12470 | record_buf_mem[1] = address; | |
12471 | record_buf_mem[2] = 4; | |
12472 | record_buf_mem[3] = address + 4; | |
12473 | thumb2_insn_r->mem_rec_count = 2; | |
12474 | record_buf[0] = reg_rn; | |
12475 | thumb2_insn_r->reg_rec_count = 1; | |
12476 | } | |
12477 | } | |
12478 | ||
12479 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12480 | record_buf); | |
12481 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12482 | record_buf_mem); | |
12483 | return ARM_RECORD_SUCCESS; | |
12484 | } | |
12485 | ||
12486 | /* Handler for thumb2 data processing (shift register and modified immediate) | |
12487 | instructions. */ | |
12488 | ||
12489 | static int | |
12490 | thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r) | |
12491 | { | |
12492 | uint32_t reg_rd, op; | |
12493 | uint32_t record_buf[8]; | |
12494 | ||
12495 | op = bits (thumb2_insn_r->arm_insn, 21, 24); | |
12496 | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12497 | ||
12498 | if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd) | |
12499 | { | |
12500 | record_buf[0] = ARM_PS_REGNUM; | |
12501 | thumb2_insn_r->reg_rec_count = 1; | |
12502 | } | |
12503 | else | |
12504 | { | |
12505 | record_buf[0] = reg_rd; | |
12506 | record_buf[1] = ARM_PS_REGNUM; | |
12507 | thumb2_insn_r->reg_rec_count = 2; | |
12508 | } | |
12509 | ||
12510 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12511 | record_buf); | |
12512 | return ARM_RECORD_SUCCESS; | |
12513 | } | |
12514 | ||
12515 | /* Generic handler for thumb2 instructions which effect destination and PS | |
12516 | registers. */ | |
12517 | ||
12518 | static int | |
12519 | thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r) | |
12520 | { | |
12521 | uint32_t reg_rd; | |
12522 | uint32_t record_buf[8]; | |
12523 | ||
12524 | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12525 | ||
12526 | record_buf[0] = reg_rd; | |
12527 | record_buf[1] = ARM_PS_REGNUM; | |
12528 | thumb2_insn_r->reg_rec_count = 2; | |
12529 | ||
12530 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12531 | record_buf); | |
12532 | return ARM_RECORD_SUCCESS; | |
12533 | } | |
12534 | ||
12535 | /* Handler for thumb2 branch and miscellaneous control instructions. */ | |
12536 | ||
12537 | static int | |
12538 | thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r) | |
12539 | { | |
12540 | uint32_t op, op1, op2; | |
12541 | uint32_t record_buf[8]; | |
12542 | ||
12543 | op = bits (thumb2_insn_r->arm_insn, 20, 26); | |
12544 | op1 = bits (thumb2_insn_r->arm_insn, 12, 14); | |
12545 | op2 = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12546 | ||
12547 | /* Handle MSR insn. */ | |
12548 | if (!(op1 & 0x2) && 0x38 == op) | |
12549 | { | |
12550 | if (!(op2 & 0x3)) | |
12551 | { | |
12552 | /* CPSR is going to be changed. */ | |
12553 | record_buf[0] = ARM_PS_REGNUM; | |
12554 | thumb2_insn_r->reg_rec_count = 1; | |
12555 | } | |
12556 | else | |
12557 | { | |
12558 | arm_record_unsupported_insn(thumb2_insn_r); | |
12559 | return -1; | |
12560 | } | |
12561 | } | |
12562 | else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5)) | |
12563 | { | |
12564 | /* BLX. */ | |
12565 | record_buf[0] = ARM_PS_REGNUM; | |
12566 | record_buf[1] = ARM_LR_REGNUM; | |
12567 | thumb2_insn_r->reg_rec_count = 2; | |
12568 | } | |
12569 | ||
12570 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12571 | record_buf); | |
12572 | return ARM_RECORD_SUCCESS; | |
12573 | } | |
12574 | ||
12575 | /* Handler for thumb2 store single data item instructions. */ | |
12576 | ||
12577 | static int | |
12578 | thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r) | |
12579 | { | |
12580 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12581 | ||
12582 | uint32_t reg_rn, reg_rm, offset_imm, shift_imm; | |
12583 | uint32_t address, offset_addr; | |
12584 | uint32_t record_buf[8], record_buf_mem[8]; | |
12585 | uint32_t op1, op2; | |
12586 | ||
12587 | ULONGEST u_regval[2]; | |
12588 | ||
12589 | op1 = bits (thumb2_insn_r->arm_insn, 21, 23); | |
12590 | op2 = bits (thumb2_insn_r->arm_insn, 6, 11); | |
12591 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12592 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | |
12593 | ||
12594 | if (bit (thumb2_insn_r->arm_insn, 23)) | |
12595 | { | |
12596 | /* T2 encoding. */ | |
12597 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11); | |
12598 | offset_addr = u_regval[0] + offset_imm; | |
12599 | address = offset_addr; | |
12600 | } | |
12601 | else | |
12602 | { | |
12603 | /* T3 encoding. */ | |
12604 | if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20)) | |
12605 | { | |
12606 | /* Handle STRB (register). */ | |
12607 | reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12608 | regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]); | |
12609 | shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5); | |
12610 | offset_addr = u_regval[1] << shift_imm; | |
12611 | address = u_regval[0] + offset_addr; | |
12612 | } | |
12613 | else | |
12614 | { | |
12615 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12616 | if (bit (thumb2_insn_r->arm_insn, 10)) | |
12617 | { | |
12618 | if (bit (thumb2_insn_r->arm_insn, 9)) | |
12619 | offset_addr = u_regval[0] + offset_imm; | |
12620 | else | |
12621 | offset_addr = u_regval[0] - offset_imm; | |
12622 | ||
12623 | address = offset_addr; | |
12624 | } | |
12625 | else | |
12626 | address = u_regval[0]; | |
12627 | } | |
12628 | } | |
12629 | ||
12630 | switch (op1) | |
12631 | { | |
12632 | /* Store byte instructions. */ | |
12633 | case 4: | |
12634 | case 0: | |
12635 | record_buf_mem[0] = 1; | |
12636 | break; | |
12637 | /* Store half word instructions. */ | |
12638 | case 1: | |
12639 | case 5: | |
12640 | record_buf_mem[0] = 2; | |
12641 | break; | |
12642 | /* Store word instructions. */ | |
12643 | case 2: | |
12644 | case 6: | |
12645 | record_buf_mem[0] = 4; | |
12646 | break; | |
12647 | ||
12648 | default: | |
12649 | gdb_assert_not_reached ("no decoding pattern found"); | |
12650 | break; | |
12651 | } | |
12652 | ||
12653 | record_buf_mem[1] = address; | |
12654 | thumb2_insn_r->mem_rec_count = 1; | |
12655 | record_buf[0] = reg_rn; | |
12656 | thumb2_insn_r->reg_rec_count = 1; | |
12657 | ||
12658 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12659 | record_buf); | |
12660 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12661 | record_buf_mem); | |
12662 | return ARM_RECORD_SUCCESS; | |
12663 | } | |
12664 | ||
12665 | /* Handler for thumb2 load memory hints instructions. */ | |
12666 | ||
12667 | static int | |
12668 | thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r) | |
12669 | { | |
12670 | uint32_t record_buf[8]; | |
12671 | uint32_t reg_rt, reg_rn; | |
12672 | ||
12673 | reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12674 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12675 | ||
12676 | if (ARM_PC_REGNUM != reg_rt) | |
12677 | { | |
12678 | record_buf[0] = reg_rt; | |
12679 | record_buf[1] = reg_rn; | |
12680 | record_buf[2] = ARM_PS_REGNUM; | |
12681 | thumb2_insn_r->reg_rec_count = 3; | |
12682 | ||
12683 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12684 | record_buf); | |
12685 | return ARM_RECORD_SUCCESS; | |
12686 | } | |
12687 | ||
12688 | return ARM_RECORD_FAILURE; | |
12689 | } | |
12690 | ||
12691 | /* Handler for thumb2 load word instructions. */ | |
12692 | ||
12693 | static int | |
12694 | thumb2_record_ld_word (insn_decode_record *thumb2_insn_r) | |
12695 | { | |
c6ec2b30 OJ |
12696 | uint32_t record_buf[8]; |
12697 | ||
12698 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12699 | record_buf[1] = ARM_PS_REGNUM; | |
12700 | thumb2_insn_r->reg_rec_count = 2; | |
12701 | ||
12702 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12703 | record_buf); | |
12704 | return ARM_RECORD_SUCCESS; | |
12705 | } | |
12706 | ||
12707 | /* Handler for thumb2 long multiply, long multiply accumulate, and | |
12708 | divide instructions. */ | |
12709 | ||
12710 | static int | |
12711 | thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r) | |
12712 | { | |
12713 | uint32_t opcode1 = 0, opcode2 = 0; | |
12714 | uint32_t record_buf[8]; | |
c6ec2b30 OJ |
12715 | |
12716 | opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22); | |
12717 | opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7); | |
12718 | ||
12719 | if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6)) | |
12720 | { | |
12721 | /* Handle SMULL, UMULL, SMULAL. */ | |
12722 | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ | |
12723 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12724 | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12725 | record_buf[2] = ARM_PS_REGNUM; | |
12726 | thumb2_insn_r->reg_rec_count = 3; | |
12727 | } | |
12728 | else if (1 == opcode1 || 3 == opcode2) | |
12729 | { | |
12730 | /* Handle SDIV and UDIV. */ | |
12731 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12732 | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12733 | record_buf[2] = ARM_PS_REGNUM; | |
12734 | thumb2_insn_r->reg_rec_count = 3; | |
12735 | } | |
12736 | else | |
12737 | return ARM_RECORD_FAILURE; | |
12738 | ||
12739 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12740 | record_buf); | |
12741 | return ARM_RECORD_SUCCESS; | |
12742 | } | |
12743 | ||
60cc5e93 OJ |
12744 | /* Record handler for thumb32 coprocessor instructions. */ |
12745 | ||
12746 | static int | |
12747 | thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r) | |
12748 | { | |
12749 | if (bit (thumb2_insn_r->arm_insn, 25)) | |
12750 | return arm_record_coproc_data_proc (thumb2_insn_r); | |
12751 | else | |
12752 | return arm_record_asimd_vfp_coproc (thumb2_insn_r); | |
12753 | } | |
12754 | ||
1e1b6563 OJ |
12755 | /* Record handler for advance SIMD structure load/store instructions. */ |
12756 | ||
12757 | static int | |
12758 | thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r) | |
12759 | { | |
12760 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12761 | uint32_t l_bit, a_bit, b_bits; | |
12762 | uint32_t record_buf[128], record_buf_mem[128]; | |
bec2ab5a | 12763 | uint32_t reg_rn, reg_vd, address, f_elem; |
1e1b6563 OJ |
12764 | uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0; |
12765 | uint8_t f_ebytes; | |
12766 | ||
12767 | l_bit = bit (thumb2_insn_r->arm_insn, 21); | |
12768 | a_bit = bit (thumb2_insn_r->arm_insn, 23); | |
12769 | b_bits = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12770 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12771 | reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12772 | reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd; | |
12773 | f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7)); | |
1e1b6563 OJ |
12774 | f_elem = 8 / f_ebytes; |
12775 | ||
12776 | if (!l_bit) | |
12777 | { | |
12778 | ULONGEST u_regval = 0; | |
12779 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
12780 | address = u_regval; | |
12781 | ||
12782 | if (!a_bit) | |
12783 | { | |
12784 | /* Handle VST1. */ | |
12785 | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | |
12786 | { | |
12787 | if (b_bits == 0x07) | |
12788 | bf_regs = 1; | |
12789 | else if (b_bits == 0x0a) | |
12790 | bf_regs = 2; | |
12791 | else if (b_bits == 0x06) | |
12792 | bf_regs = 3; | |
12793 | else if (b_bits == 0x02) | |
12794 | bf_regs = 4; | |
12795 | else | |
12796 | bf_regs = 0; | |
12797 | ||
12798 | for (index_r = 0; index_r < bf_regs; index_r++) | |
12799 | { | |
12800 | for (index_e = 0; index_e < f_elem; index_e++) | |
12801 | { | |
12802 | record_buf_mem[index_m++] = f_ebytes; | |
12803 | record_buf_mem[index_m++] = address; | |
12804 | address = address + f_ebytes; | |
12805 | thumb2_insn_r->mem_rec_count += 1; | |
12806 | } | |
12807 | } | |
12808 | } | |
12809 | /* Handle VST2. */ | |
12810 | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | |
12811 | { | |
12812 | if (b_bits == 0x09 || b_bits == 0x08) | |
12813 | bf_regs = 1; | |
12814 | else if (b_bits == 0x03) | |
12815 | bf_regs = 2; | |
12816 | else | |
12817 | bf_regs = 0; | |
12818 | ||
12819 | for (index_r = 0; index_r < bf_regs; index_r++) | |
12820 | for (index_e = 0; index_e < f_elem; index_e++) | |
12821 | { | |
12822 | for (loop_t = 0; loop_t < 2; loop_t++) | |
12823 | { | |
12824 | record_buf_mem[index_m++] = f_ebytes; | |
12825 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12826 | thumb2_insn_r->mem_rec_count += 1; | |
12827 | } | |
12828 | address = address + (2 * f_ebytes); | |
12829 | } | |
12830 | } | |
12831 | /* Handle VST3. */ | |
12832 | else if ((b_bits & 0x0e) == 0x04) | |
12833 | { | |
12834 | for (index_e = 0; index_e < f_elem; index_e++) | |
12835 | { | |
12836 | for (loop_t = 0; loop_t < 3; loop_t++) | |
12837 | { | |
12838 | record_buf_mem[index_m++] = f_ebytes; | |
12839 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12840 | thumb2_insn_r->mem_rec_count += 1; | |
12841 | } | |
12842 | address = address + (3 * f_ebytes); | |
12843 | } | |
12844 | } | |
12845 | /* Handle VST4. */ | |
12846 | else if (!(b_bits & 0x0e)) | |
12847 | { | |
12848 | for (index_e = 0; index_e < f_elem; index_e++) | |
12849 | { | |
12850 | for (loop_t = 0; loop_t < 4; loop_t++) | |
12851 | { | |
12852 | record_buf_mem[index_m++] = f_ebytes; | |
12853 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12854 | thumb2_insn_r->mem_rec_count += 1; | |
12855 | } | |
12856 | address = address + (4 * f_ebytes); | |
12857 | } | |
12858 | } | |
12859 | } | |
12860 | else | |
12861 | { | |
12862 | uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11); | |
12863 | ||
12864 | if (bft_size == 0x00) | |
12865 | f_ebytes = 1; | |
12866 | else if (bft_size == 0x01) | |
12867 | f_ebytes = 2; | |
12868 | else if (bft_size == 0x02) | |
12869 | f_ebytes = 4; | |
12870 | else | |
12871 | f_ebytes = 0; | |
12872 | ||
12873 | /* Handle VST1. */ | |
12874 | if (!(b_bits & 0x0b) || b_bits == 0x08) | |
12875 | thumb2_insn_r->mem_rec_count = 1; | |
12876 | /* Handle VST2. */ | |
12877 | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09) | |
12878 | thumb2_insn_r->mem_rec_count = 2; | |
12879 | /* Handle VST3. */ | |
12880 | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a) | |
12881 | thumb2_insn_r->mem_rec_count = 3; | |
12882 | /* Handle VST4. */ | |
12883 | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b) | |
12884 | thumb2_insn_r->mem_rec_count = 4; | |
12885 | ||
12886 | for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++) | |
12887 | { | |
12888 | record_buf_mem[index_m] = f_ebytes; | |
12889 | record_buf_mem[index_m] = address + (index_m * f_ebytes); | |
12890 | } | |
12891 | } | |
12892 | } | |
12893 | else | |
12894 | { | |
12895 | if (!a_bit) | |
12896 | { | |
12897 | /* Handle VLD1. */ | |
12898 | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | |
12899 | thumb2_insn_r->reg_rec_count = 1; | |
12900 | /* Handle VLD2. */ | |
12901 | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | |
12902 | thumb2_insn_r->reg_rec_count = 2; | |
12903 | /* Handle VLD3. */ | |
12904 | else if ((b_bits & 0x0e) == 0x04) | |
12905 | thumb2_insn_r->reg_rec_count = 3; | |
12906 | /* Handle VLD4. */ | |
12907 | else if (!(b_bits & 0x0e)) | |
12908 | thumb2_insn_r->reg_rec_count = 4; | |
12909 | } | |
12910 | else | |
12911 | { | |
12912 | /* Handle VLD1. */ | |
12913 | if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c) | |
12914 | thumb2_insn_r->reg_rec_count = 1; | |
12915 | /* Handle VLD2. */ | |
12916 | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d) | |
12917 | thumb2_insn_r->reg_rec_count = 2; | |
12918 | /* Handle VLD3. */ | |
12919 | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e) | |
12920 | thumb2_insn_r->reg_rec_count = 3; | |
12921 | /* Handle VLD4. */ | |
12922 | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f) | |
12923 | thumb2_insn_r->reg_rec_count = 4; | |
12924 | ||
12925 | for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++) | |
12926 | record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r; | |
12927 | } | |
12928 | } | |
12929 | ||
12930 | if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15) | |
12931 | { | |
12932 | record_buf[index_r] = reg_rn; | |
12933 | thumb2_insn_r->reg_rec_count += 1; | |
12934 | } | |
12935 | ||
12936 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12937 | record_buf); | |
12938 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12939 | record_buf_mem); | |
12940 | return 0; | |
12941 | } | |
12942 | ||
c6ec2b30 OJ |
12943 | /* Decodes thumb2 instruction type and invokes its record handler. */ |
12944 | ||
12945 | static unsigned int | |
12946 | thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r) | |
12947 | { | |
12948 | uint32_t op, op1, op2; | |
12949 | ||
12950 | op = bit (thumb2_insn_r->arm_insn, 15); | |
12951 | op1 = bits (thumb2_insn_r->arm_insn, 27, 28); | |
12952 | op2 = bits (thumb2_insn_r->arm_insn, 20, 26); | |
12953 | ||
12954 | if (op1 == 0x01) | |
12955 | { | |
12956 | if (!(op2 & 0x64 )) | |
12957 | { | |
12958 | /* Load/store multiple instruction. */ | |
12959 | return thumb2_record_ld_st_multiple (thumb2_insn_r); | |
12960 | } | |
b121eeb9 | 12961 | else if ((op2 & 0x64) == 0x4) |
c6ec2b30 OJ |
12962 | { |
12963 | /* Load/store (dual/exclusive) and table branch instruction. */ | |
12964 | return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r); | |
12965 | } | |
b121eeb9 | 12966 | else if ((op2 & 0x60) == 0x20) |
c6ec2b30 OJ |
12967 | { |
12968 | /* Data-processing (shifted register). */ | |
12969 | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | |
12970 | } | |
12971 | else if (op2 & 0x40) | |
12972 | { | |
12973 | /* Co-processor instructions. */ | |
60cc5e93 | 12974 | return thumb2_record_coproc_insn (thumb2_insn_r); |
c6ec2b30 OJ |
12975 | } |
12976 | } | |
12977 | else if (op1 == 0x02) | |
12978 | { | |
12979 | if (op) | |
12980 | { | |
12981 | /* Branches and miscellaneous control instructions. */ | |
12982 | return thumb2_record_branch_misc_cntrl (thumb2_insn_r); | |
12983 | } | |
12984 | else if (op2 & 0x20) | |
12985 | { | |
12986 | /* Data-processing (plain binary immediate) instruction. */ | |
12987 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
12988 | } | |
12989 | else | |
12990 | { | |
12991 | /* Data-processing (modified immediate). */ | |
12992 | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | |
12993 | } | |
12994 | } | |
12995 | else if (op1 == 0x03) | |
12996 | { | |
12997 | if (!(op2 & 0x71 )) | |
12998 | { | |
12999 | /* Store single data item. */ | |
13000 | return thumb2_record_str_single_data (thumb2_insn_r); | |
13001 | } | |
13002 | else if (!((op2 & 0x71) ^ 0x10)) | |
13003 | { | |
13004 | /* Advanced SIMD or structure load/store instructions. */ | |
1e1b6563 | 13005 | return thumb2_record_asimd_struct_ld_st (thumb2_insn_r); |
c6ec2b30 OJ |
13006 | } |
13007 | else if (!((op2 & 0x67) ^ 0x01)) | |
13008 | { | |
13009 | /* Load byte, memory hints instruction. */ | |
13010 | return thumb2_record_ld_mem_hints (thumb2_insn_r); | |
13011 | } | |
13012 | else if (!((op2 & 0x67) ^ 0x03)) | |
13013 | { | |
13014 | /* Load halfword, memory hints instruction. */ | |
13015 | return thumb2_record_ld_mem_hints (thumb2_insn_r); | |
13016 | } | |
13017 | else if (!((op2 & 0x67) ^ 0x05)) | |
13018 | { | |
13019 | /* Load word instruction. */ | |
13020 | return thumb2_record_ld_word (thumb2_insn_r); | |
13021 | } | |
13022 | else if (!((op2 & 0x70) ^ 0x20)) | |
13023 | { | |
13024 | /* Data-processing (register) instruction. */ | |
13025 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
13026 | } | |
13027 | else if (!((op2 & 0x78) ^ 0x30)) | |
13028 | { | |
13029 | /* Multiply, multiply accumulate, abs diff instruction. */ | |
13030 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
13031 | } | |
13032 | else if (!((op2 & 0x78) ^ 0x38)) | |
13033 | { | |
13034 | /* Long multiply, long multiply accumulate, and divide. */ | |
13035 | return thumb2_record_lmul_lmla_div (thumb2_insn_r); | |
13036 | } | |
13037 | else if (op2 & 0x40) | |
13038 | { | |
13039 | /* Co-processor instructions. */ | |
60cc5e93 | 13040 | return thumb2_record_coproc_insn (thumb2_insn_r); |
c6ec2b30 OJ |
13041 | } |
13042 | } | |
13043 | ||
13044 | return -1; | |
13045 | } | |
72508ac0 | 13046 | |
ffdbe864 | 13047 | namespace { |
728a7913 YQ |
13048 | /* Abstract memory reader. */ |
13049 | ||
13050 | class abstract_memory_reader | |
13051 | { | |
13052 | public: | |
13053 | /* Read LEN bytes of target memory at address MEMADDR, placing the | |
13054 | results in GDB's memory at BUF. Return true on success. */ | |
13055 | ||
13056 | virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0; | |
13057 | }; | |
13058 | ||
13059 | /* Instruction reader from real target. */ | |
13060 | ||
13061 | class instruction_reader : public abstract_memory_reader | |
13062 | { | |
13063 | public: | |
632e107b | 13064 | bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override |
728a7913 YQ |
13065 | { |
13066 | if (target_read_memory (memaddr, buf, len)) | |
13067 | return false; | |
13068 | else | |
13069 | return true; | |
13070 | } | |
13071 | }; | |
13072 | ||
ffdbe864 YQ |
13073 | } // namespace |
13074 | ||
72508ac0 PO |
13075 | /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success |
13076 | and positive val on fauilure. */ | |
13077 | ||
13078 | static int | |
728a7913 YQ |
13079 | extract_arm_insn (abstract_memory_reader& reader, |
13080 | insn_decode_record *insn_record, uint32_t insn_size) | |
72508ac0 PO |
13081 | { |
13082 | gdb_byte buf[insn_size]; | |
13083 | ||
13084 | memset (&buf[0], 0, insn_size); | |
13085 | ||
728a7913 | 13086 | if (!reader.read (insn_record->this_addr, buf, insn_size)) |
72508ac0 PO |
13087 | return 1; |
13088 | insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0], | |
13089 | insn_size, | |
2959fed9 | 13090 | gdbarch_byte_order_for_code (insn_record->gdbarch)); |
72508ac0 PO |
13091 | return 0; |
13092 | } | |
13093 | ||
13094 | typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*); | |
13095 | ||
13096 | /* Decode arm/thumb insn depending on condition cods and opcodes; and | |
13097 | dispatch it. */ | |
13098 | ||
13099 | static int | |
728a7913 YQ |
13100 | decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record, |
13101 | record_type_t record_type, uint32_t insn_size) | |
72508ac0 PO |
13102 | { |
13103 | ||
01e57735 YQ |
13104 | /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm |
13105 | instruction. */ | |
0fa9c223 | 13106 | static const sti_arm_hdl_fp_t arm_handle_insn[8] = |
72508ac0 PO |
13107 | { |
13108 | arm_record_data_proc_misc_ld_str, /* 000. */ | |
13109 | arm_record_data_proc_imm, /* 001. */ | |
13110 | arm_record_ld_st_imm_offset, /* 010. */ | |
13111 | arm_record_ld_st_reg_offset, /* 011. */ | |
13112 | arm_record_ld_st_multiple, /* 100. */ | |
13113 | arm_record_b_bl, /* 101. */ | |
60cc5e93 | 13114 | arm_record_asimd_vfp_coproc, /* 110. */ |
72508ac0 PO |
13115 | arm_record_coproc_data_proc /* 111. */ |
13116 | }; | |
13117 | ||
01e57735 YQ |
13118 | /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb |
13119 | instruction. */ | |
0fa9c223 | 13120 | static const sti_arm_hdl_fp_t thumb_handle_insn[8] = |
72508ac0 PO |
13121 | { \ |
13122 | thumb_record_shift_add_sub, /* 000. */ | |
13123 | thumb_record_add_sub_cmp_mov, /* 001. */ | |
13124 | thumb_record_ld_st_reg_offset, /* 010. */ | |
13125 | thumb_record_ld_st_imm_offset, /* 011. */ | |
13126 | thumb_record_ld_st_stack, /* 100. */ | |
13127 | thumb_record_misc, /* 101. */ | |
13128 | thumb_record_ldm_stm_swi, /* 110. */ | |
13129 | thumb_record_branch /* 111. */ | |
13130 | }; | |
13131 | ||
13132 | uint32_t ret = 0; /* return value: negative:failure 0:success. */ | |
13133 | uint32_t insn_id = 0; | |
13134 | ||
728a7913 | 13135 | if (extract_arm_insn (reader, arm_record, insn_size)) |
72508ac0 PO |
13136 | { |
13137 | if (record_debug) | |
01e57735 YQ |
13138 | { |
13139 | printf_unfiltered (_("Process record: error reading memory at " | |
13140 | "addr %s len = %d.\n"), | |
13141 | paddress (arm_record->gdbarch, | |
13142 | arm_record->this_addr), insn_size); | |
13143 | } | |
72508ac0 PO |
13144 | return -1; |
13145 | } | |
13146 | else if (ARM_RECORD == record_type) | |
13147 | { | |
13148 | arm_record->cond = bits (arm_record->arm_insn, 28, 31); | |
13149 | insn_id = bits (arm_record->arm_insn, 25, 27); | |
ca92db2d YQ |
13150 | |
13151 | if (arm_record->cond == 0xf) | |
13152 | ret = arm_record_extension_space (arm_record); | |
13153 | else | |
01e57735 | 13154 | { |
ca92db2d YQ |
13155 | /* If this insn has fallen into extension space |
13156 | then we need not decode it anymore. */ | |
01e57735 YQ |
13157 | ret = arm_handle_insn[insn_id] (arm_record); |
13158 | } | |
ca92db2d YQ |
13159 | if (ret != ARM_RECORD_SUCCESS) |
13160 | { | |
13161 | arm_record_unsupported_insn (arm_record); | |
13162 | ret = -1; | |
13163 | } | |
72508ac0 PO |
13164 | } |
13165 | else if (THUMB_RECORD == record_type) | |
13166 | { | |
13167 | /* As thumb does not have condition codes, we set negative. */ | |
13168 | arm_record->cond = -1; | |
13169 | insn_id = bits (arm_record->arm_insn, 13, 15); | |
13170 | ret = thumb_handle_insn[insn_id] (arm_record); | |
ca92db2d YQ |
13171 | if (ret != ARM_RECORD_SUCCESS) |
13172 | { | |
13173 | arm_record_unsupported_insn (arm_record); | |
13174 | ret = -1; | |
13175 | } | |
72508ac0 PO |
13176 | } |
13177 | else if (THUMB2_RECORD == record_type) | |
13178 | { | |
c6ec2b30 OJ |
13179 | /* As thumb does not have condition codes, we set negative. */ |
13180 | arm_record->cond = -1; | |
13181 | ||
13182 | /* Swap first half of 32bit thumb instruction with second half. */ | |
13183 | arm_record->arm_insn | |
01e57735 | 13184 | = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16); |
c6ec2b30 | 13185 | |
ca92db2d | 13186 | ret = thumb2_record_decode_insn_handler (arm_record); |
c6ec2b30 | 13187 | |
ca92db2d | 13188 | if (ret != ARM_RECORD_SUCCESS) |
01e57735 YQ |
13189 | { |
13190 | arm_record_unsupported_insn (arm_record); | |
13191 | ret = -1; | |
13192 | } | |
72508ac0 PO |
13193 | } |
13194 | else | |
13195 | { | |
13196 | /* Throw assertion. */ | |
13197 | gdb_assert_not_reached ("not a valid instruction, could not decode"); | |
13198 | } | |
13199 | ||
13200 | return ret; | |
13201 | } | |
13202 | ||
b121eeb9 YQ |
13203 | #if GDB_SELF_TEST |
13204 | namespace selftests { | |
13205 | ||
13206 | /* Provide both 16-bit and 32-bit thumb instructions. */ | |
13207 | ||
13208 | class instruction_reader_thumb : public abstract_memory_reader | |
13209 | { | |
13210 | public: | |
13211 | template<size_t SIZE> | |
13212 | instruction_reader_thumb (enum bfd_endian endian, | |
13213 | const uint16_t (&insns)[SIZE]) | |
13214 | : m_endian (endian), m_insns (insns), m_insns_size (SIZE) | |
13215 | {} | |
13216 | ||
632e107b | 13217 | bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override |
b121eeb9 YQ |
13218 | { |
13219 | SELF_CHECK (len == 4 || len == 2); | |
13220 | SELF_CHECK (memaddr % 2 == 0); | |
13221 | SELF_CHECK ((memaddr / 2) < m_insns_size); | |
13222 | ||
13223 | store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]); | |
13224 | if (len == 4) | |
13225 | { | |
13226 | store_unsigned_integer (&buf[2], 2, m_endian, | |
13227 | m_insns[memaddr / 2 + 1]); | |
13228 | } | |
13229 | return true; | |
13230 | } | |
13231 | ||
13232 | private: | |
13233 | enum bfd_endian m_endian; | |
13234 | const uint16_t *m_insns; | |
13235 | size_t m_insns_size; | |
13236 | }; | |
13237 | ||
13238 | static void | |
13239 | arm_record_test (void) | |
13240 | { | |
13241 | struct gdbarch_info info; | |
13242 | gdbarch_info_init (&info); | |
13243 | info.bfd_arch_info = bfd_scan_arch ("arm"); | |
13244 | ||
13245 | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | |
13246 | ||
13247 | SELF_CHECK (gdbarch != NULL); | |
13248 | ||
13249 | /* 16-bit Thumb instructions. */ | |
13250 | { | |
13251 | insn_decode_record arm_record; | |
13252 | ||
13253 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13254 | arm_record.gdbarch = gdbarch; | |
13255 | ||
13256 | static const uint16_t insns[] = { | |
13257 | /* db b2 uxtb r3, r3 */ | |
13258 | 0xb2db, | |
13259 | /* cd 58 ldr r5, [r1, r3] */ | |
13260 | 0x58cd, | |
13261 | }; | |
13262 | ||
13263 | enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); | |
13264 | instruction_reader_thumb reader (endian, insns); | |
13265 | int ret = decode_insn (reader, &arm_record, THUMB_RECORD, | |
13266 | THUMB_INSN_SIZE_BYTES); | |
13267 | ||
13268 | SELF_CHECK (ret == 0); | |
13269 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13270 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13271 | SELF_CHECK (arm_record.arm_regs[0] == 3); | |
13272 | ||
13273 | arm_record.this_addr += 2; | |
13274 | ret = decode_insn (reader, &arm_record, THUMB_RECORD, | |
13275 | THUMB_INSN_SIZE_BYTES); | |
13276 | ||
13277 | SELF_CHECK (ret == 0); | |
13278 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13279 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13280 | SELF_CHECK (arm_record.arm_regs[0] == 5); | |
13281 | } | |
13282 | ||
13283 | /* 32-bit Thumb-2 instructions. */ | |
13284 | { | |
13285 | insn_decode_record arm_record; | |
13286 | ||
13287 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13288 | arm_record.gdbarch = gdbarch; | |
13289 | ||
13290 | static const uint16_t insns[] = { | |
13291 | /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */ | |
13292 | 0xee1d, 0x7f70, | |
13293 | }; | |
13294 | ||
13295 | enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); | |
13296 | instruction_reader_thumb reader (endian, insns); | |
13297 | int ret = decode_insn (reader, &arm_record, THUMB2_RECORD, | |
13298 | THUMB2_INSN_SIZE_BYTES); | |
13299 | ||
13300 | SELF_CHECK (ret == 0); | |
13301 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13302 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13303 | SELF_CHECK (arm_record.arm_regs[0] == 7); | |
13304 | } | |
13305 | } | |
13306 | } // namespace selftests | |
13307 | #endif /* GDB_SELF_TEST */ | |
72508ac0 PO |
13308 | |
13309 | /* Cleans up local record registers and memory allocations. */ | |
13310 | ||
13311 | static void | |
13312 | deallocate_reg_mem (insn_decode_record *record) | |
13313 | { | |
13314 | xfree (record->arm_regs); | |
13315 | xfree (record->arm_mems); | |
13316 | } | |
13317 | ||
13318 | ||
01e57735 | 13319 | /* Parse the current instruction and record the values of the registers and |
72508ac0 PO |
13320 | memory that will be changed in current instruction to record_arch_list". |
13321 | Return -1 if something is wrong. */ | |
13322 | ||
13323 | int | |
01e57735 YQ |
13324 | arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, |
13325 | CORE_ADDR insn_addr) | |
72508ac0 PO |
13326 | { |
13327 | ||
72508ac0 PO |
13328 | uint32_t no_of_rec = 0; |
13329 | uint32_t ret = 0; /* return value: -1:record failure ; 0:success */ | |
13330 | ULONGEST t_bit = 0, insn_id = 0; | |
13331 | ||
13332 | ULONGEST u_regval = 0; | |
13333 | ||
13334 | insn_decode_record arm_record; | |
13335 | ||
13336 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13337 | arm_record.regcache = regcache; | |
13338 | arm_record.this_addr = insn_addr; | |
13339 | arm_record.gdbarch = gdbarch; | |
13340 | ||
13341 | ||
13342 | if (record_debug > 1) | |
13343 | { | |
13344 | fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record " | |
01e57735 | 13345 | "addr = %s\n", |
72508ac0 PO |
13346 | paddress (gdbarch, arm_record.this_addr)); |
13347 | } | |
13348 | ||
728a7913 YQ |
13349 | instruction_reader reader; |
13350 | if (extract_arm_insn (reader, &arm_record, 2)) | |
72508ac0 PO |
13351 | { |
13352 | if (record_debug) | |
01e57735 YQ |
13353 | { |
13354 | printf_unfiltered (_("Process record: error reading memory at " | |
13355 | "addr %s len = %d.\n"), | |
13356 | paddress (arm_record.gdbarch, | |
13357 | arm_record.this_addr), 2); | |
13358 | } | |
72508ac0 PO |
13359 | return -1; |
13360 | } | |
13361 | ||
13362 | /* Check the insn, whether it is thumb or arm one. */ | |
13363 | ||
13364 | t_bit = arm_psr_thumb_bit (arm_record.gdbarch); | |
13365 | regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval); | |
13366 | ||
13367 | ||
13368 | if (!(u_regval & t_bit)) | |
13369 | { | |
13370 | /* We are decoding arm insn. */ | |
728a7913 | 13371 | ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES); |
72508ac0 PO |
13372 | } |
13373 | else | |
13374 | { | |
13375 | insn_id = bits (arm_record.arm_insn, 11, 15); | |
13376 | /* is it thumb2 insn? */ | |
13377 | if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id)) | |
01e57735 | 13378 | { |
728a7913 | 13379 | ret = decode_insn (reader, &arm_record, THUMB2_RECORD, |
01e57735 YQ |
13380 | THUMB2_INSN_SIZE_BYTES); |
13381 | } | |
72508ac0 | 13382 | else |
01e57735 YQ |
13383 | { |
13384 | /* We are decoding thumb insn. */ | |
728a7913 YQ |
13385 | ret = decode_insn (reader, &arm_record, THUMB_RECORD, |
13386 | THUMB_INSN_SIZE_BYTES); | |
01e57735 | 13387 | } |
72508ac0 PO |
13388 | } |
13389 | ||
13390 | if (0 == ret) | |
13391 | { | |
13392 | /* Record registers. */ | |
25ea693b | 13393 | record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM); |
72508ac0 | 13394 | if (arm_record.arm_regs) |
01e57735 YQ |
13395 | { |
13396 | for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++) | |
13397 | { | |
13398 | if (record_full_arch_list_add_reg | |
25ea693b | 13399 | (arm_record.regcache , arm_record.arm_regs[no_of_rec])) |
01e57735 YQ |
13400 | ret = -1; |
13401 | } | |
13402 | } | |
72508ac0 PO |
13403 | /* Record memories. */ |
13404 | if (arm_record.arm_mems) | |
01e57735 YQ |
13405 | { |
13406 | for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++) | |
13407 | { | |
13408 | if (record_full_arch_list_add_mem | |
13409 | ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr, | |
25ea693b | 13410 | arm_record.arm_mems[no_of_rec].len)) |
01e57735 YQ |
13411 | ret = -1; |
13412 | } | |
13413 | } | |
72508ac0 | 13414 | |
25ea693b | 13415 | if (record_full_arch_list_add_end ()) |
01e57735 | 13416 | ret = -1; |
72508ac0 PO |
13417 | } |
13418 | ||
13419 | ||
13420 | deallocate_reg_mem (&arm_record); | |
13421 | ||
13422 | return ret; | |
13423 | } |