* Makefile.in (acconfig_h): Remove incorrect macro.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
1e698235 3 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
4be87837 37#include "osabi.h"
34e8f22d
RE
38
39#include "arm-tdep.h"
26216b98 40#include "gdb/sim-arm.h"
34e8f22d 41
082fc60d
RE
42#include "elf-bfd.h"
43#include "coff/internal.h"
97e03143 44#include "elf/arm.h"
c906108c 45
26216b98
AC
46#include "gdb_assert.h"
47
6529d2dd
AC
48static int arm_debug;
49
2a451106
KB
50/* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
3bb04bdd
AC
71#ifdef SIGCONTEXT_REGISTER_ADDRESS
72#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74#endif
75#else
76#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
78#endif
79
082fc60d
RE
80/* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92#define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96#define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99#define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 101
94c30b78 102/* Number of different reg name sets (options). */
bc90b915
FN
103static int num_flavor_options;
104
105/* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
94c30b78 108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 109
94c30b78 110/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 111static char * arm_register_name_strings[] =
da59e081
JM
112{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 118 "fps", "cpsr" }; /* 24 25 */
966fbf70 119static char **arm_register_names = arm_register_name_strings;
ed9a39eb 120
bc90b915 121/* Valid register name flavors. */
53904c9e 122static const char **valid_flavors;
ed9a39eb 123
94c30b78 124/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 125static const char *disassembly_flavor;
94c30b78 126/* Index to that option in the opcodes table. */
da3c6d4a 127static int current_option;
96baa820 128
ed9a39eb
JM
129/* This is used to keep the bfd arch_info in sync with the disassembly
130 flavor. */
131static void set_disassembly_flavor_sfunc(char *, int,
132 struct cmd_list_element *);
133static void set_disassembly_flavor (void);
134
b508a996
RE
135static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
ed9a39eb
JM
139
140/* Define other aspects of the stack frame. We keep the offsets of
141 all saved registers, 'cause we need 'em a lot! We also keep the
142 current size of the stack frame, and the offset of the frame
143 pointer from the stack pointer (for frameless functions, and when
94c30b78 144 we're still in the prologue of a function with a frame). */
ed9a39eb
JM
145
146struct frame_extra_info
c3b4394c
RE
147{
148 int framesize;
149 int frameoffset;
150 int framereg;
151};
ed9a39eb 152
bc90b915
FN
153/* Addresses for calling Thumb functions have the bit 0 set.
154 Here are some macros to test, set, or clear bit 0 of addresses. */
155#define IS_THUMB_ADDR(addr) ((addr) & 1)
156#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
157#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
158
39bbf761 159static int
ed9a39eb 160arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 161{
c906108c
SS
162 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
163}
164
94c30b78 165/* Set to true if the 32-bit mode is in use. */
c906108c
SS
166
167int arm_apcs_32 = 1;
168
ed9a39eb
JM
169/* Flag set by arm_fix_call_dummy that tells whether the target
170 function is a Thumb function. This flag is checked by
171 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
172 its use in valops.c) to pass the function address as an additional
173 parameter. */
c906108c
SS
174
175static int target_is_thumb;
176
ed9a39eb
JM
177/* Flag set by arm_fix_call_dummy that tells whether the calling
178 function is a Thumb function. This flag is checked by
179 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
180
181static int caller_is_thumb;
182
ed9a39eb
JM
183/* Determine if the program counter specified in MEMADDR is in a Thumb
184 function. */
c906108c 185
34e8f22d 186int
2a451106 187arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 188{
c5aa993b 189 struct minimal_symbol *sym;
c906108c 190
ed9a39eb 191 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
192 if (IS_THUMB_ADDR (memaddr))
193 return 1;
194
ed9a39eb 195 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
196 sym = lookup_minimal_symbol_by_pc (memaddr);
197 if (sym)
198 {
c5aa993b 199 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
200 }
201 else
ed9a39eb
JM
202 {
203 return 0;
204 }
c906108c
SS
205}
206
ed9a39eb
JM
207/* Determine if the program counter specified in MEMADDR is in a call
208 dummy being called from a Thumb function. */
c906108c 209
34e8f22d 210int
2a451106 211arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 212{
c5aa993b 213 CORE_ADDR sp = read_sp ();
c906108c 214
dfcd3bfb
JM
215 /* FIXME: Until we switch for the new call dummy macros, this heuristic
216 is the best we can do. We are trying to determine if the pc is on
217 the stack, which (hopefully) will only happen in a call dummy.
218 We hope the current stack pointer is not so far alway from the dummy
219 frame location (true if we have not pushed large data structures or
220 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 221 code regions as part of the stack (true for most practical purposes). */
ae45cd16 222 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
223 return caller_is_thumb;
224 else
225 return 0;
226}
227
181c1381 228/* Remove useless bits from addresses in a running program. */
34e8f22d 229static CORE_ADDR
ed9a39eb 230arm_addr_bits_remove (CORE_ADDR val)
c906108c 231{
a3a2ee65
JT
232 if (arm_apcs_32)
233 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 234 else
a3a2ee65 235 return (val & 0x03fffffc);
c906108c
SS
236}
237
181c1381
RE
238/* When reading symbols, we need to zap the low bit of the address,
239 which may be set to 1 for Thumb functions. */
34e8f22d 240static CORE_ADDR
181c1381
RE
241arm_smash_text_address (CORE_ADDR val)
242{
243 return val & ~1;
244}
245
34e8f22d
RE
246/* Immediately after a function call, return the saved pc. Can't
247 always go through the frames for this because on some machines the
248 new frame is not set up until the new function executes some
249 instructions. */
250
251static CORE_ADDR
ed9a39eb 252arm_saved_pc_after_call (struct frame_info *frame)
c906108c 253{
34e8f22d 254 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
255}
256
0defa245
RE
257/* Determine whether the function invocation represented by FI has a
258 frame on the stack associated with it. If it does return zero,
259 otherwise return 1. */
260
148754e5 261static int
ed9a39eb 262arm_frameless_function_invocation (struct frame_info *fi)
392a587b 263{
392a587b 264 CORE_ADDR func_start, after_prologue;
96baa820 265 int frameless;
ed9a39eb 266
0defa245
RE
267 /* Sometimes we have functions that do a little setup (like saving the
268 vN registers with the stmdb instruction, but DO NOT set up a frame.
269 The symbol table will report this as a prologue. However, it is
270 important not to try to parse these partial frames as frames, or we
271 will get really confused.
272
273 So I will demand 3 instructions between the start & end of the
274 prologue before I call it a real prologue, i.e. at least
275 mov ip, sp,
276 stmdb sp!, {}
277 sub sp, ip, #4. */
278
50abf9e5 279 func_start = (get_pc_function_start (get_frame_pc (fi)) + FUNCTION_START_OFFSET);
7be570e7 280 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 281
96baa820 282 /* There are some frameless functions whose first two instructions
ed9a39eb 283 follow the standard APCS form, in which case after_prologue will
94c30b78 284 be func_start + 8. */
ed9a39eb 285
96baa820 286 frameless = (after_prologue < func_start + 12);
392a587b
JM
287 return frameless;
288}
289
0defa245 290/* The address of the arguments in the frame. */
148754e5 291static CORE_ADDR
0defa245
RE
292arm_frame_args_address (struct frame_info *fi)
293{
294 return fi->frame;
295}
296
297/* The address of the local variables in the frame. */
148754e5 298static CORE_ADDR
0defa245
RE
299arm_frame_locals_address (struct frame_info *fi)
300{
301 return fi->frame;
302}
303
304/* The number of arguments being passed in the frame. */
148754e5 305static int
0defa245
RE
306arm_frame_num_args (struct frame_info *fi)
307{
308 /* We have no way of knowing. */
309 return -1;
310}
311
c906108c 312/* A typical Thumb prologue looks like this:
c5aa993b
JM
313 push {r7, lr}
314 add sp, sp, #-28
315 add r7, sp, #12
c906108c 316 Sometimes the latter instruction may be replaced by:
da59e081
JM
317 mov r7, sp
318
319 or like this:
320 push {r7, lr}
321 mov r7, sp
322 sub sp, #12
323
324 or, on tpcs, like this:
325 sub sp,#16
326 push {r7, lr}
327 (many instructions)
328 mov r7, sp
329 sub sp, #12
330
331 There is always one instruction of three classes:
332 1 - push
333 2 - setting of r7
334 3 - adjusting of sp
335
336 When we have found at least one of each class we are done with the prolog.
337 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 338 */
c906108c
SS
339
340static CORE_ADDR
c7885828 341thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
342{
343 CORE_ADDR current_pc;
da3c6d4a
MS
344 /* findmask:
345 bit 0 - push { rlist }
346 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
347 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
348 */
349 int findmask = 0;
350
94c30b78
MS
351 for (current_pc = pc;
352 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 353 current_pc += 2)
c906108c
SS
354 {
355 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
356
94c30b78 357 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 358 {
94c30b78 359 findmask |= 1; /* push found */
da59e081 360 }
da3c6d4a
MS
361 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
362 sub sp, #simm */
da59e081 363 {
94c30b78 364 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
365 continue;
366 else
94c30b78 367 findmask |= 4; /* add/sub sp found */
da59e081
JM
368 }
369 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
370 {
94c30b78 371 findmask |= 2; /* setting of r7 found */
da59e081
JM
372 }
373 else if (insn == 0x466f) /* mov r7, sp */
374 {
94c30b78 375 findmask |= 2; /* setting of r7 found */
da59e081 376 }
3d74b771
FF
377 else if (findmask == (4+2+1))
378 {
da3c6d4a
MS
379 /* We have found one of each type of prologue instruction */
380 break;
3d74b771 381 }
da59e081 382 else
94c30b78 383 /* Something in the prolog that we don't care about or some
da3c6d4a 384 instruction from outside the prolog scheduled here for
94c30b78 385 optimization. */
da3c6d4a 386 continue;
c906108c
SS
387 }
388
389 return current_pc;
390}
391
da3c6d4a
MS
392/* Advance the PC across any function entry prologue instructions to
393 reach some "real" code.
34e8f22d
RE
394
395 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 396 prologue:
c906108c 397
c5aa993b
JM
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 406
34e8f22d 407static CORE_ADDR
ed9a39eb 408arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
409{
410 unsigned long inst;
411 CORE_ADDR skip_pc;
b8d5e71d 412 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 413 char *func_name;
c906108c
SS
414 struct symtab_and_line sal;
415
848cfffb 416 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 417 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
418 return pc;
419
96baa820 420 /* See what the symbol table says. */
ed9a39eb 421
50f6fb4b 422 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 423 {
50f6fb4b
CV
424 struct symbol *sym;
425
426 /* Found a function. */
427 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
428 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
429 {
94c30b78 430 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
431 sal = find_pc_line (func_addr, 0);
432 if ((sal.line != 0) && (sal.end < func_end))
433 return sal.end;
434 }
c906108c
SS
435 }
436
437 /* Check if this is Thumb code. */
438 if (arm_pc_is_thumb (pc))
c7885828 439 return thumb_skip_prologue (pc, func_end);
c906108c
SS
440
441 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 442 by disassembling the instructions. */
c906108c 443
b8d5e71d
MS
444 /* Like arm_scan_prologue, stop no later than pc + 64. */
445 if (func_end == 0 || func_end > pc + 64)
446 func_end = pc + 64;
c906108c 447
b8d5e71d 448 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 449 {
f43845b3 450 inst = read_memory_integer (skip_pc, 4);
f43845b3 451
b8d5e71d
MS
452 /* "mov ip, sp" is no longer a required part of the prologue. */
453 if (inst == 0xe1a0c00d) /* mov ip, sp */
454 continue;
c906108c 455
b8d5e71d
MS
456 /* Some prologues begin with "str lr, [sp, #-4]!". */
457 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
458 continue;
c906108c 459
b8d5e71d
MS
460 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
461 continue;
c906108c 462
b8d5e71d
MS
463 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
464 continue;
11d3b27d 465
b8d5e71d
MS
466 /* Any insns after this point may float into the code, if it makes
467 for better instruction scheduling, so we skip them only if we
468 find them, but still consider the function to be frame-ful. */
f43845b3 469
b8d5e71d
MS
470 /* We may have either one sfmfd instruction here, or several stfe
471 insns, depending on the version of floating point code we
472 support. */
473 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
474 continue;
475
476 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
477 continue;
478
479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
480 continue;
481
482 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
483 continue;
484
485 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
486 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
487 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
488 continue;
489
490 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
491 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
492 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
493 continue;
494
495 /* Un-recognized instruction; stop scanning. */
496 break;
f43845b3 497 }
c906108c 498
b8d5e71d 499 return skip_pc; /* End of prologue */
c906108c 500}
94c30b78 501
c5aa993b 502/* *INDENT-OFF* */
c906108c
SS
503/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
504 This function decodes a Thumb function prologue to determine:
505 1) the size of the stack frame
506 2) which registers are saved on it
507 3) the offsets of saved regs
508 4) the offset from the stack pointer to the frame pointer
509 This information is stored in the "extra" fields of the frame_info.
510
da59e081
JM
511 A typical Thumb function prologue would create this stack frame
512 (offsets relative to FP)
c906108c
SS
513 old SP -> 24 stack parameters
514 20 LR
515 16 R7
516 R7 -> 0 local variables (16 bytes)
517 SP -> -12 additional stack space (12 bytes)
518 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
519 12 bytes. The frame register is R7.
520
da3c6d4a
MS
521 The comments for thumb_skip_prolog() describe the algorithm we use
522 to detect the end of the prolog. */
c5aa993b
JM
523/* *INDENT-ON* */
524
c906108c 525static void
ed9a39eb 526thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
527{
528 CORE_ADDR prologue_start;
529 CORE_ADDR prologue_end;
530 CORE_ADDR current_pc;
94c30b78 531 /* Which register has been copied to register n? */
da3c6d4a
MS
532 int saved_reg[16];
533 /* findmask:
534 bit 0 - push { rlist }
535 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
536 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
537 */
538 int findmask = 0;
c5aa993b 539 int i;
c906108c 540
848cfffb 541 /* Don't try to scan dummy frames. */
07555a72 542 if (fi != NULL
50abf9e5 543 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb
AC
544 return;
545
50abf9e5 546 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c
SS
547 {
548 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
549
94c30b78 550 if (sal.line == 0) /* no line info, use current PC */
50abf9e5 551 prologue_end = get_frame_pc (fi);
c906108c 552 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 553 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
554 }
555 else
da3c6d4a
MS
556 /* We're in the boondocks: allow for
557 16 pushes, an add, and "mv fp,sp". */
558 prologue_end = prologue_start + 40;
c906108c 559
50abf9e5 560 prologue_end = min (prologue_end, get_frame_pc (fi));
c906108c
SS
561
562 /* Initialize the saved register map. When register H is copied to
563 register L, we will put H in saved_reg[L]. */
564 for (i = 0; i < 16; i++)
565 saved_reg[i] = i;
566
567 /* Search the prologue looking for instructions that set up the
da59e081
JM
568 frame pointer, adjust the stack pointer, and save registers.
569 Do this until all basic prolog instructions are found. */
c906108c 570
c3b4394c 571 fi->extra_info->framesize = 0;
da59e081
JM
572 for (current_pc = prologue_start;
573 (current_pc < prologue_end) && ((findmask & 7) != 7);
574 current_pc += 2)
c906108c
SS
575 {
576 unsigned short insn;
577 int regno;
578 int offset;
579
580 insn = read_memory_unsigned_integer (current_pc, 2);
581
c5aa993b 582 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 583 {
da59e081 584 int mask;
94c30b78 585 findmask |= 1; /* push found */
c906108c
SS
586 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
587 whether to save LR (R14). */
da59e081 588 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 589
b8d5e71d 590 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 591 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 592 if (mask & (1 << regno))
c5aa993b 593 {
c3b4394c 594 fi->extra_info->framesize += 4;
b2fb4676 595 get_frame_saved_regs (fi)[saved_reg[regno]] =
c3b4394c 596 -(fi->extra_info->framesize);
da3c6d4a
MS
597 /* Reset saved register map. */
598 saved_reg[regno] = regno;
c906108c
SS
599 }
600 }
da3c6d4a
MS
601 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
602 sub sp, #simm */
c906108c 603 {
b8d5e71d 604 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
605 continue;
606 else
94c30b78 607 findmask |= 4; /* add/sub sp found */
da59e081 608
94c30b78
MS
609 offset = (insn & 0x7f) << 2; /* get scaled offset */
610 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 611 {
c3b4394c 612 fi->extra_info->frameoffset += offset;
da59e081
JM
613 offset = -offset;
614 }
c3b4394c 615 fi->extra_info->framesize -= offset;
c906108c
SS
616 }
617 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
618 {
94c30b78 619 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
620 fi->extra_info->framereg = THUMB_FP_REGNUM;
621 /* get scaled offset */
622 fi->extra_info->frameoffset = (insn & 0xff) << 2;
c906108c 623 }
da59e081 624 else if (insn == 0x466f) /* mov r7, sp */
c906108c 625 {
94c30b78 626 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
627 fi->extra_info->framereg = THUMB_FP_REGNUM;
628 fi->extra_info->frameoffset = 0;
34e8f22d 629 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
630 }
631 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
632 {
da3c6d4a 633 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 634 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 635 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
636 }
637 else
da3c6d4a
MS
638 /* Something in the prolog that we don't care about or some
639 instruction from outside the prolog scheduled here for
640 optimization. */
641 continue;
c906108c
SS
642 }
643}
644
ed9a39eb
JM
645/* Check if prologue for this frame's PC has already been scanned. If
646 it has, copy the relevant information about that prologue and
c906108c
SS
647 return non-zero. Otherwise do not copy anything and return zero.
648
649 The information saved in the cache includes:
c5aa993b
JM
650 * the frame register number;
651 * the size of the stack frame;
652 * the offsets of saved regs (relative to the old SP); and
653 * the offset from the stack pointer to the frame pointer
c906108c 654
ed9a39eb
JM
655 The cache contains only one entry, since this is adequate for the
656 typical sequence of prologue scan requests we get. When performing
657 a backtrace, GDB will usually ask to scan the same function twice
658 in a row (once to get the frame chain, and once to fill in the
659 extra frame information). */
c906108c
SS
660
661static struct frame_info prologue_cache;
662
663static int
ed9a39eb 664check_prologue_cache (struct frame_info *fi)
c906108c
SS
665{
666 int i;
667
50abf9e5 668 if (get_frame_pc (fi) == get_frame_pc (&prologue_cache))
c906108c 669 {
c3b4394c
RE
670 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
671 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
672 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
673 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
b2fb4676 674 get_frame_saved_regs (fi)[i] = get_frame_saved_regs (&prologue_cache)[i];
c906108c
SS
675 return 1;
676 }
677 else
678 return 0;
679}
680
681
ed9a39eb 682/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
683
684static void
ed9a39eb 685save_prologue_cache (struct frame_info *fi)
c906108c
SS
686{
687 int i;
688
50abf9e5 689 deprecated_update_frame_pc_hack (&prologue_cache, get_frame_pc (fi));
c3b4394c
RE
690 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
691 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
692 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
c5aa993b 693
c3b4394c 694 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
b2fb4676 695 get_frame_saved_regs (&prologue_cache)[i] = get_frame_saved_regs (fi)[i];
c906108c
SS
696}
697
698
ed9a39eb 699/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
700 1) the size of the stack frame
701 2) which registers are saved on it
702 3) the offsets of saved regs
703 4) the offset from the stack pointer to the frame pointer
c906108c
SS
704 This information is stored in the "extra" fields of the frame_info.
705
96baa820
JM
706 There are two basic forms for the ARM prologue. The fixed argument
707 function call will look like:
ed9a39eb
JM
708
709 mov ip, sp
710 stmfd sp!, {fp, ip, lr, pc}
711 sub fp, ip, #4
712 [sub sp, sp, #4]
96baa820 713
c906108c 714 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
715 IP -> 4 (caller's stack)
716 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
717 -4 LR (return address in caller)
718 -8 IP (copy of caller's SP)
719 -12 FP (caller's FP)
720 SP -> -28 Local variables
721
c906108c 722 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
723 28 bytes. The stmfd call can also save any of the vN registers it
724 plans to use, which increases the frame size accordingly.
725
726 Note: The stored PC is 8 off of the STMFD instruction that stored it
727 because the ARM Store instructions always store PC + 8 when you read
728 the PC register.
ed9a39eb 729
96baa820
JM
730 A variable argument function call will look like:
731
ed9a39eb
JM
732 mov ip, sp
733 stmfd sp!, {a1, a2, a3, a4}
734 stmfd sp!, {fp, ip, lr, pc}
735 sub fp, ip, #20
736
96baa820 737 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
738 IP -> 20 (caller's stack)
739 16 A4
740 12 A3
741 8 A2
742 4 A1
743 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
744 -4 LR (return address in caller)
745 -8 IP (copy of caller's SP)
746 -12 FP (caller's FP)
747 SP -> -28 Local variables
96baa820
JM
748
749 The frame size would thus be 48 bytes, and the frame offset would be
750 28 bytes.
751
752 There is another potential complication, which is that the optimizer
753 will try to separate the store of fp in the "stmfd" instruction from
754 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
755 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
756
757 Also, note, the original version of the ARM toolchain claimed that there
758 should be an
759
760 instruction at the end of the prologue. I have never seen GCC produce
761 this, and the ARM docs don't mention it. We still test for it below in
762 case it happens...
ed9a39eb
JM
763
764 */
c906108c
SS
765
766static void
ed9a39eb 767arm_scan_prologue (struct frame_info *fi)
c906108c
SS
768{
769 int regno, sp_offset, fp_offset;
16a0f3e7 770 LONGEST return_value;
c906108c
SS
771 CORE_ADDR prologue_start, prologue_end, current_pc;
772
94c30b78 773 /* Check if this function is already in the cache of frame information. */
c906108c
SS
774 if (check_prologue_cache (fi))
775 return;
776
777 /* Assume there is no frame until proven otherwise. */
34e8f22d 778 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
779 fi->extra_info->framesize = 0;
780 fi->extra_info->frameoffset = 0;
c906108c
SS
781
782 /* Check for Thumb prologue. */
50abf9e5 783 if (arm_pc_is_thumb (get_frame_pc (fi)))
c906108c
SS
784 {
785 thumb_scan_prologue (fi);
786 save_prologue_cache (fi);
787 return;
788 }
789
790 /* Find the function prologue. If we can't find the function in
791 the symbol table, peek in the stack frame to find the PC. */
50abf9e5 792 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c 793 {
2a451106
KB
794 /* One way to find the end of the prologue (which works well
795 for unoptimized code) is to do the following:
796
797 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
798
799 if (sal.line == 0)
50abf9e5 800 prologue_end = get_frame_pc (fi);
2a451106
KB
801 else if (sal.end < prologue_end)
802 prologue_end = sal.end;
803
804 This mechanism is very accurate so long as the optimizer
805 doesn't move any instructions from the function body into the
806 prologue. If this happens, sal.end will be the last
807 instruction in the first hunk of prologue code just before
808 the first instruction that the scheduler has moved from
809 the body to the prologue.
810
811 In order to make sure that we scan all of the prologue
812 instructions, we use a slightly less accurate mechanism which
813 may scan more than necessary. To help compensate for this
814 lack of accuracy, the prologue scanning loop below contains
815 several clauses which'll cause the loop to terminate early if
816 an implausible prologue instruction is encountered.
817
818 The expression
819
820 prologue_start + 64
821
822 is a suitable endpoint since it accounts for the largest
823 possible prologue plus up to five instructions inserted by
94c30b78 824 the scheduler. */
2a451106
KB
825
826 if (prologue_end > prologue_start + 64)
827 {
94c30b78 828 prologue_end = prologue_start + 64; /* See above. */
2a451106 829 }
c906108c
SS
830 }
831 else
832 {
94c30b78
MS
833 /* Get address of the stmfd in the prologue of the callee;
834 the saved PC is the address of the stmfd + 8. */
16a0f3e7
EZ
835 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
836 return;
837 else
838 {
839 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 840 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 841 }
c906108c
SS
842 }
843
844 /* Now search the prologue looking for instructions that set up the
96baa820 845 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 846
96baa820
JM
847 Be careful, however, and if it doesn't look like a prologue,
848 don't try to scan it. If, for instance, a frameless function
849 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 850 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
851 and other operations that rely on a knowledge of the stack
852 traceback.
853
854 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 855 if we don't see this as the first insn, we will stop.
c906108c 856
f43845b3
MS
857 [Note: This doesn't seem to be true any longer, so it's now an
858 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 859
f43845b3
MS
860 [Note further: The "mov ip,sp" only seems to be missing in
861 frameless functions at optimization level "-O2" or above,
862 in which case it is often (but not always) replaced by
b8d5e71d 863 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 864
f43845b3
MS
865 sp_offset = fp_offset = 0;
866
94c30b78
MS
867 for (current_pc = prologue_start;
868 current_pc < prologue_end;
f43845b3 869 current_pc += 4)
96baa820 870 {
d4473757
KB
871 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
872
94c30b78 873 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3
MS
874 {
875 continue;
876 }
94c30b78 877 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3
MS
878 {
879 /* Function is frameless: extra_info defaults OK? */
880 continue;
881 }
882 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
883 /* stmfd sp!, {..., fp, ip, lr, pc}
884 or
885 stmfd sp!, {a1, a2, a3, a4} */
c906108c 886 {
d4473757 887 int mask = insn & 0xffff;
ed9a39eb 888
94c30b78 889 /* Calculate offsets of saved registers. */
34e8f22d 890 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
891 if (mask & (1 << regno))
892 {
893 sp_offset -= 4;
b2fb4676 894 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
895 }
896 }
b8d5e71d
MS
897 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
898 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
899 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
900 {
901 /* No need to add this to saved_regs -- it's just an arg reg. */
902 continue;
903 }
904 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
905 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
906 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
907 {
908 /* No need to add this to saved_regs -- it's just an arg reg. */
909 continue;
910 }
d4473757
KB
911 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
912 {
94c30b78
MS
913 unsigned imm = insn & 0xff; /* immediate value */
914 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
915 imm = (imm >> rot) | (imm << (32 - rot));
916 fp_offset = -imm;
34e8f22d 917 fi->extra_info->framereg = ARM_FP_REGNUM;
d4473757
KB
918 }
919 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
920 {
94c30b78
MS
921 unsigned imm = insn & 0xff; /* immediate value */
922 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
923 imm = (imm >> rot) | (imm << (32 - rot));
924 sp_offset -= imm;
925 }
926 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
927 {
928 sp_offset -= 12;
34e8f22d 929 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
b2fb4676 930 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
931 }
932 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
933 {
934 int n_saved_fp_regs;
935 unsigned int fp_start_reg, fp_bound_reg;
936
94c30b78 937 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 938 {
d4473757
KB
939 if ((insn & 0x40000) == 0x40000) /* N1 is set */
940 n_saved_fp_regs = 3;
941 else
942 n_saved_fp_regs = 1;
96baa820 943 }
d4473757 944 else
96baa820 945 {
d4473757
KB
946 if ((insn & 0x40000) == 0x40000) /* N1 is set */
947 n_saved_fp_regs = 2;
948 else
949 n_saved_fp_regs = 4;
96baa820 950 }
d4473757 951
34e8f22d 952 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
953 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
954 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
955 {
956 sp_offset -= 12;
b2fb4676 957 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
96baa820 958 }
c906108c 959 }
d4473757 960 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 961 break; /* Condition not true, exit early */
b8d5e71d 962 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 963 break; /* Don't scan past a block load */
d4473757
KB
964 else
965 /* The optimizer might shove anything into the prologue,
94c30b78 966 so we just skip what we don't recognize. */
d4473757 967 continue;
c906108c
SS
968 }
969
94c30b78
MS
970 /* The frame size is just the negative of the offset (from the
971 original SP) of the last thing thing we pushed on the stack.
972 The frame offset is [new FP] - [new SP]. */
c3b4394c 973 fi->extra_info->framesize = -sp_offset;
34e8f22d 974 if (fi->extra_info->framereg == ARM_FP_REGNUM)
c3b4394c 975 fi->extra_info->frameoffset = fp_offset - sp_offset;
d4473757 976 else
c3b4394c 977 fi->extra_info->frameoffset = 0;
ed9a39eb 978
c906108c
SS
979 save_prologue_cache (fi);
980}
981
ed9a39eb
JM
982/* Find REGNUM on the stack. Otherwise, it's in an active register.
983 One thing we might want to do here is to check REGNUM against the
984 clobber mask, and somehow flag it as invalid if it isn't saved on
985 the stack somewhere. This would provide a graceful failure mode
986 when trying to get the value of caller-saves registers for an inner
987 frame. */
c906108c
SS
988
989static CORE_ADDR
ed9a39eb 990arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c 991{
848cfffb
AC
992 /* NOTE: cagney/2002-05-03: This function really shouldn't be
993 needed. Instead the (still being written) register unwind
994 function could be called directly. */
c906108c 995 for (; fi; fi = fi->next)
848cfffb 996 {
50abf9e5 997 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 998 {
50abf9e5 999 return deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, regnum);
848cfffb 1000 }
b2fb4676 1001 else if (get_frame_saved_regs (fi)[regnum] != 0)
848cfffb
AC
1002 {
1003 /* NOTE: cagney/2002-05-03: This would normally need to
1004 handle ARM_SP_REGNUM as a special case as, according to
1005 the frame.h comments, saved_regs[SP_REGNUM] contains the
1006 SP value not its address. It appears that the ARM isn't
1007 doing this though. */
b2fb4676 1008 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
848cfffb
AC
1009 REGISTER_RAW_SIZE (regnum));
1010 }
1011 }
c906108c
SS
1012 return read_register (regnum);
1013}
148754e5
RE
1014/* Function: frame_chain Given a GDB frame, determine the address of
1015 the calling function's frame. This will be used to create a new
a5afb99f
AC
1016 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
1017 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
1018 ARM, we save the frame size when we initialize the frame_info. */
c5aa993b 1019
148754e5 1020static CORE_ADDR
ed9a39eb 1021arm_frame_chain (struct frame_info *fi)
c906108c 1022{
848cfffb 1023 CORE_ADDR caller_pc;
c3b4394c 1024 int framereg = fi->extra_info->framereg;
c906108c 1025
50abf9e5 1026 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb
AC
1027 /* A generic call dummy's frame is the same as caller's. */
1028 return fi->frame;
1029
50abf9e5 1030 if (get_frame_pc (fi) < LOWEST_PC)
c906108c
SS
1031 return 0;
1032
1033 /* If the caller is the startup code, we're at the end of the chain. */
1034 caller_pc = FRAME_SAVED_PC (fi);
c906108c
SS
1035
1036 /* If the caller is Thumb and the caller is ARM, or vice versa,
1037 the frame register of the caller is different from ours.
1038 So we must scan the prologue of the caller to determine its
94c30b78 1039 frame register number. */
c3b4394c
RE
1040 /* XXX Fixme, we should try to do this without creating a temporary
1041 caller_fi. */
50abf9e5 1042 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
c906108c 1043 {
c3b4394c
RE
1044 struct frame_info caller_fi;
1045 struct cleanup *old_chain;
1046
1047 /* Create a temporary frame suitable for scanning the caller's
1048 prologue. (Ugh.) */
c5aa993b 1049 memset (&caller_fi, 0, sizeof (caller_fi));
c3b4394c
RE
1050 caller_fi.extra_info = (struct frame_extra_info *)
1051 xcalloc (1, sizeof (struct frame_extra_info));
1052 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1053 caller_fi.saved_regs = (CORE_ADDR *)
1054 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1055 make_cleanup (xfree, caller_fi.saved_regs);
1056
1057 /* Now, scan the prologue and obtain the frame register. */
50abf9e5 1058 deprecated_update_frame_pc_hack (&caller_fi, caller_pc);
c5aa993b 1059 arm_scan_prologue (&caller_fi);
c3b4394c
RE
1060 framereg = caller_fi.extra_info->framereg;
1061
1062 /* Deallocate the storage associated with the temporary frame
1063 created above. */
1064 do_cleanups (old_chain);
c906108c
SS
1065 }
1066
1067 /* If the caller used a frame register, return its value.
1068 Otherwise, return the caller's stack pointer. */
34e8f22d 1069 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1070 return arm_find_callers_reg (fi, framereg);
1071 else
c3b4394c 1072 return fi->frame + fi->extra_info->framesize;
c906108c
SS
1073}
1074
ed9a39eb
JM
1075/* This function actually figures out the frame address for a given pc
1076 and sp. This is tricky because we sometimes don't use an explicit
1077 frame pointer, and the previous stack pointer isn't necessarily
1078 recorded on the stack. The only reliable way to get this info is
1079 to examine the prologue. FROMLEAF is a little confusing, it means
1080 this is the next frame up the chain AFTER a frameless function. If
1081 this is true, then the frame value for this frame is still in the
1082 fp register. */
c906108c 1083
148754e5 1084static void
ed9a39eb 1085arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1086{
1087 int reg;
f079148d 1088 CORE_ADDR sp;
c906108c 1089
b2fb4676 1090 if (get_frame_saved_regs (fi) == NULL)
c3b4394c
RE
1091 frame_saved_regs_zalloc (fi);
1092
1093 fi->extra_info = (struct frame_extra_info *)
1094 frame_obstack_alloc (sizeof (struct frame_extra_info));
1095
1096 fi->extra_info->framesize = 0;
1097 fi->extra_info->frameoffset = 0;
1098 fi->extra_info->framereg = 0;
1099
c906108c 1100 if (fi->next)
50abf9e5 1101 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (fi->next));
c906108c 1102
b2fb4676 1103 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
c906108c 1104
da3c6d4a
MS
1105 /* Compute stack pointer for this frame. We use this value for both
1106 the sigtramp and call dummy cases. */
f079148d
KB
1107 if (!fi->next)
1108 sp = read_sp();
50abf9e5 1109 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi->next), 0, 0))
848cfffb
AC
1110 /* For generic dummy frames, pull the value direct from the frame.
1111 Having an unwind function to do this would be nice. */
50abf9e5 1112 sp = deprecated_read_register_dummy (get_frame_pc (fi->next), fi->next->frame,
135c175f 1113 ARM_SP_REGNUM);
f079148d 1114 else
c3b4394c
RE
1115 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1116 + fi->next->extra_info->framesize);
f079148d 1117
d7bd68ca 1118 /* Determine whether or not we're in a sigtramp frame.
5a203e44
AC
1119 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1120 == SIGTRAMP_FRAME) because this value is sometimes set after
1121 invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1122 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1123 determine if we need to use the sigcontext addresses for the
1124 saved registers.
2a451106 1125
d7bd68ca
AC
1126 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1127 against the name of the function, the code below will have to be
1128 changed to first fetch the name of the function and then pass
1129 this name to PC_IN_SIGTRAMP. */
2a451106 1130
5a203e44
AC
1131 /* FIXME: cagney/2002-11-18: This problem will go away once
1132 frame.c:get_prev_frame() is modified to set the frame's type
1133 before calling functions like this. */
1134
3bb04bdd 1135 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
50abf9e5 1136 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
2a451106 1137 {
2a451106 1138 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1139 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
2a451106 1140
94c30b78 1141 /* FIXME: What about thumb mode? */
34e8f22d 1142 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c 1143 fi->frame =
b2fb4676 1144 read_memory_integer (get_frame_saved_regs (fi)[fi->extra_info->framereg],
c3b4394c
RE
1145 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1146 fi->extra_info->framesize = 0;
1147 fi->extra_info->frameoffset = 0;
2a451106
KB
1148
1149 }
1150 else
c906108c
SS
1151 {
1152 arm_scan_prologue (fi);
1153
104c1213 1154 if (!fi->next)
94c30b78 1155 /* This is the innermost frame? */
c3b4394c 1156 fi->frame = read_register (fi->extra_info->framereg);
50abf9e5 1157 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi->next), 0, 0))
848cfffb
AC
1158 /* Next inner most frame is a dummy, just grab its frame.
1159 Dummy frames always have the same FP as their caller. */
1160 fi->frame = fi->next->frame;
34e8f22d 1161 else if (fi->extra_info->framereg == ARM_FP_REGNUM
c3b4394c 1162 || fi->extra_info->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1163 {
1164 /* not the innermost frame */
94c30b78 1165 /* If we have an FP, the callee saved it. */
b2fb4676 1166 if (get_frame_saved_regs (get_next_frame (fi))[fi->extra_info->framereg] != 0)
ed9a39eb 1167 fi->frame =
b2fb4676 1168 read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[fi->extra_info->framereg], 4);
ed9a39eb
JM
1169 else if (fromleaf)
1170 /* If we were called by a frameless fn. then our frame is
94c30b78 1171 still in the frame pointer register on the board... */
ed9a39eb
JM
1172 fi->frame = read_fp ();
1173 }
c906108c 1174
ed9a39eb
JM
1175 /* Calculate actual addresses of saved registers using offsets
1176 determined by arm_scan_prologue. */
c906108c 1177 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676
AC
1178 if (get_frame_saved_regs (fi)[reg] != 0)
1179 get_frame_saved_regs (fi)[reg] += (fi->frame + fi->extra_info->framesize
1180 - fi->extra_info->frameoffset);
c906108c
SS
1181 }
1182}
1183
1184
34e8f22d 1185/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1186 is saved in the stack anywhere, otherwise we get it from the
1187 registers.
c906108c
SS
1188
1189 The old definition of this function was a macro:
c5aa993b 1190 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1191 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1192
148754e5 1193static CORE_ADDR
ed9a39eb 1194arm_frame_saved_pc (struct frame_info *fi)
c906108c 1195{
848cfffb 1196 /* If a dummy frame, pull the PC out of the frame's register buffer. */
50abf9e5
AC
1197 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1198 return deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, ARM_PC_REGNUM);
848cfffb 1199
50abf9e5 1200 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame - fi->extra_info->frameoffset,
c3b4394c 1201 fi->frame))
f079148d 1202 {
b2fb4676 1203 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
34e8f22d 1204 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1205 }
1206 else
c906108c 1207 {
34e8f22d 1208 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1209 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1210 }
1211}
1212
c906108c
SS
1213/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1214 Examine the Program Status Register to decide which state we're in. */
1215
148754e5
RE
1216static CORE_ADDR
1217arm_read_fp (void)
c906108c 1218{
34e8f22d 1219 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1220 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1221 else
34e8f22d 1222 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1223}
1224
148754e5
RE
1225/* Store into a struct frame_saved_regs the addresses of the saved
1226 registers of frame described by FRAME_INFO. This includes special
1227 registers such as PC and FP saved in special ways in the stack
1228 frame. SP is even more special: the address we return for it IS
1229 the sp for the next frame. */
c906108c 1230
148754e5 1231static void
c3b4394c 1232arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1233{
c3b4394c 1234
b2fb4676 1235 if (get_frame_saved_regs (fip))
c3b4394c
RE
1236 return;
1237
1238 arm_init_extra_frame_info (0, fip);
c906108c
SS
1239}
1240
848cfffb
AC
1241/* Set the return address for a generic dummy frame. ARM uses the
1242 entry point. */
1243
1244static CORE_ADDR
1245arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1246{
1247 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1248 return sp;
1249}
1250
148754e5
RE
1251/* Push an empty stack frame, to record the current PC, etc. */
1252
1253static void
ed9a39eb 1254arm_push_dummy_frame (void)
c906108c 1255{
34e8f22d 1256 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1257 CORE_ADDR sp = old_sp;
1258 CORE_ADDR fp, prologue_start;
1259 int regnum;
1260
1261 /* Push the two dummy prologue instructions in reverse order,
1262 so that they'll be in the correct low-to-high order in memory. */
1263 /* sub fp, ip, #4 */
1264 sp = push_word (sp, 0xe24cb004);
1265 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1266 prologue_start = sp = push_word (sp, 0xe92ddfff);
1267
ed9a39eb
JM
1268 /* Push a pointer to the dummy prologue + 12, because when stm
1269 instruction stores the PC, it stores the address of the stm
c906108c
SS
1270 instruction itself plus 12. */
1271 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1272
f079148d 1273 /* Push the processor status. */
34e8f22d 1274 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1275
1276 /* Push all 16 registers starting with r15. */
34e8f22d 1277 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1278 sp = push_word (sp, read_register (regnum));
c5aa993b 1279
f079148d 1280 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1281 write_register (ARM_FP_REGNUM, fp);
c906108c 1282 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1283 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1284}
1285
6eb69eab
RE
1286/* CALL_DUMMY_WORDS:
1287 This sequence of words is the instructions
1288
1289 mov lr,pc
1290 mov pc,r4
1291 illegal
1292
1293 Note this is 12 bytes. */
1294
34e8f22d 1295static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1296{
1297 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1298};
1299
3fb4b924
RE
1300/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1301 breakpoint to the proper address in the call dummy, so that
1302 `finish' after a stop in a call dummy works.
1303
d7b486e7
RE
1304 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1305 optimal solution, but the call to arm_fix_call_dummy is immediately
1306 followed by a call to run_stack_dummy, which is the only function
1307 where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1308
1309
1310static void
1311arm_set_call_dummy_breakpoint_offset (void)
1312{
1313 if (caller_is_thumb)
1314 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1315 else
1316 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1317}
1318
c906108c 1319/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1320 in Thumb or ARM mode, and whether the target function is Thumb or
1321 ARM. There are three different situations requiring three
c906108c
SS
1322 different dummies:
1323
1324 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1325 been copied into the dummy parameter to this function.
c906108c 1326 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1327 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1328 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1329 works for calling both ARM and Thumb functions.
c906108c 1330
ed9a39eb
JM
1331 All three call dummies expect to receive the target function
1332 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1333
34e8f22d 1334static void
ed9a39eb 1335arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1336 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1337{
1338 static short thumb_dummy[4] =
1339 {
c5aa993b
JM
1340 0xf000, 0xf801, /* bl label */
1341 0xdf18, /* swi 24 */
1342 0x4720, /* label: bx r4 */
c906108c
SS
1343 };
1344 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1345
94c30b78 1346 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1347 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1348 arm_set_call_dummy_breakpoint_offset ();
c906108c 1349
ed9a39eb
JM
1350 /* If the target function is Thumb, set the low bit of the function
1351 address. And if the CPU is currently in ARM mode, patch the
1352 second instruction of call dummy to use a BX instruction to
1353 switch to Thumb mode. */
c906108c
SS
1354 target_is_thumb = arm_pc_is_thumb (fun);
1355 if (target_is_thumb)
1356 {
1357 fun |= 1;
1358 if (!caller_is_thumb)
1359 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1360 }
1361
1362 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1363 instead of the ARM one that's already been copied. This will
1364 work for both Thumb and ARM target functions. */
1365 if (caller_is_thumb)
1366 {
1367 int i;
1368 char *p = dummy;
1369 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1370
1371 for (i = 0; i < len; i++)
1372 {
1373 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1374 p += sizeof (thumb_dummy[0]);
1375 }
1376 }
1377
ed9a39eb 1378 /* Put the target address in r4; the call dummy will copy this to
94c30b78 1379 the PC. */
c906108c
SS
1380 write_register (4, fun);
1381}
1382
ed9a39eb
JM
1383/* Note: ScottB
1384
1385 This function does not support passing parameters using the FPA
1386 variant of the APCS. It passes any floating point arguments in the
1387 general registers and/or on the stack. */
c906108c 1388
39bbf761 1389static CORE_ADDR
ea7c478f 1390arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1391 int struct_return, CORE_ADDR struct_addr)
c906108c 1392{
6529d2dd
AC
1393 CORE_ADDR fp;
1394 int argnum;
1395 int argreg;
1396 int nstack;
1397 int simd_argreg;
1398 int second_pass;
1399 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
ed9a39eb
JM
1400
1401 /* Walk through the list of args and determine how large a temporary
1402 stack is required. Need to take care here as structs may be
6529d2dd
AC
1403 passed on the stack, and we have to to push them. On the second
1404 pass, do the store. */
1405 nstack = 0;
1406 fp = sp;
1407 for (second_pass = 0; second_pass < 2; second_pass++)
c906108c 1408 {
6529d2dd
AC
1409 /* Compute the FP using the information computed during the
1410 first pass. */
1411 if (second_pass)
1412 fp = sp - nstack;
1413
1414 simd_argreg = 0;
1415 argreg = ARM_A1_REGNUM;
1416 nstack = 0;
1417
1418 /* The struct_return pointer occupies the first parameter
1419 passing register. */
1420 if (struct_return)
c906108c 1421 {
6529d2dd
AC
1422 if (second_pass)
1423 {
1424 if (arm_debug)
1425 fprintf_unfiltered (gdb_stdlog,
1426 "struct return in %s = 0x%s\n",
1427 REGISTER_NAME (argreg),
1428 paddr (struct_addr));
1429 write_register (argreg, struct_addr);
1430 }
1431 argreg++;
c906108c 1432 }
ed9a39eb 1433
6529d2dd
AC
1434 for (argnum = 0; argnum < nargs; argnum++)
1435 {
1436 int len;
1437 struct type *arg_type;
1438 struct type *target_type;
1439 enum type_code typecode;
1440 char *val;
1441
1442 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1443 len = TYPE_LENGTH (arg_type);
1444 target_type = TYPE_TARGET_TYPE (arg_type);
1445 typecode = TYPE_CODE (arg_type);
1446 val = VALUE_CONTENTS (args[argnum]);
1447
1448 /* If the argument is a pointer to a function, and it is a
1449 Thumb function, create a LOCAL copy of the value and set
1450 the THUMB bit in it. */
1451 if (second_pass
1452 && TYPE_CODE_PTR == typecode
1453 && target_type != NULL
1454 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1455 {
6529d2dd
AC
1456 CORE_ADDR regval = extract_address (val, len);
1457 if (arm_pc_is_thumb (regval))
1458 {
1459 val = alloca (len);
1460 store_address (val, len, MAKE_THUMB_ADDR (regval));
1461 }
c906108c 1462 }
6529d2dd
AC
1463
1464 /* Copy the argument to general registers or the stack in
1465 register-sized pieces. Large arguments are split between
1466 registers and stack. */
1467 while (len > 0)
ed9a39eb 1468 {
6529d2dd
AC
1469 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1470
1471 if (argreg <= ARM_LAST_ARG_REGNUM)
1472 {
1473 /* The argument is being passed in a general purpose
1474 register. */
1475 if (second_pass)
1476 {
1477 CORE_ADDR regval = extract_address (val,
1478 partial_len);
1479 if (arm_debug)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "arg %d in %s = 0x%s\n",
1482 argnum,
1483 REGISTER_NAME (argreg),
1484 phex (regval, REGISTER_SIZE));
1485 write_register (argreg, regval);
1486 }
1487 argreg++;
1488 }
1489 else
1490 {
1491 if (second_pass)
1492 {
1493 /* Push the arguments onto the stack. */
1494 if (arm_debug)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "arg %d @ 0x%s + %d\n",
1497 argnum, paddr (fp), nstack);
1498 write_memory (fp + nstack, val, REGISTER_SIZE);
1499 }
1500 nstack += REGISTER_SIZE;
1501 }
1502
1503 len -= partial_len;
1504 val += partial_len;
ed9a39eb
JM
1505 }
1506
c906108c
SS
1507 }
1508 }
c906108c 1509
6529d2dd
AC
1510 /* Return the botom of the argument list (pointed to by fp). */
1511 return fp;
c906108c
SS
1512}
1513
da3c6d4a
MS
1514/* Pop the current frame. So long as the frame info has been
1515 initialized properly (see arm_init_extra_frame_info), this code
1516 works for dummy frames as well as regular frames. I.e, there's no
1517 need to have a special case for dummy frames. */
148754e5 1518static void
ed9a39eb 1519arm_pop_frame (void)
c906108c 1520{
c906108c 1521 int regnum;
8b93c638 1522 struct frame_info *frame = get_current_frame ();
c3b4394c
RE
1523 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1524 + frame->extra_info->framesize);
c906108c 1525
50abf9e5 1526 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
848cfffb
AC
1527 {
1528 generic_pop_dummy_frame ();
1529 flush_cached_frames ();
1530 return;
1531 }
1532
f079148d 1533 for (regnum = 0; regnum < NUM_REGS; regnum++)
b2fb4676 1534 if (get_frame_saved_regs (frame)[regnum] != 0)
f079148d 1535 write_register (regnum,
b2fb4676 1536 read_memory_integer (get_frame_saved_regs (frame)[regnum],
f079148d 1537 REGISTER_RAW_SIZE (regnum)));
8b93c638 1538
34e8f22d
RE
1539 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1540 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1541
1542 flush_cached_frames ();
1543}
1544
1545static void
ed9a39eb 1546print_fpu_flags (int flags)
c906108c 1547{
c5aa993b
JM
1548 if (flags & (1 << 0))
1549 fputs ("IVO ", stdout);
1550 if (flags & (1 << 1))
1551 fputs ("DVZ ", stdout);
1552 if (flags & (1 << 2))
1553 fputs ("OFL ", stdout);
1554 if (flags & (1 << 3))
1555 fputs ("UFL ", stdout);
1556 if (flags & (1 << 4))
1557 fputs ("INX ", stdout);
1558 putchar ('\n');
c906108c
SS
1559}
1560
5e74b15c
RE
1561/* Print interesting information about the floating point processor
1562 (if present) or emulator. */
34e8f22d 1563static void
d855c300 1564arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1565 struct frame_info *frame, const char *args)
c906108c 1566{
34e8f22d 1567 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1568 int type;
1569
1570 type = (status >> 24) & 127;
1571 printf ("%s FPU type %d\n",
ed9a39eb 1572 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1573 type);
1574 fputs ("mask: ", stdout);
1575 print_fpu_flags (status >> 16);
1576 fputs ("flags: ", stdout);
1577 print_fpu_flags (status);
c906108c
SS
1578}
1579
34e8f22d
RE
1580/* Return the GDB type object for the "standard" data type of data in
1581 register N. */
1582
1583static struct type *
032758dc
AC
1584arm_register_type (int regnum)
1585{
34e8f22d 1586 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1587 {
d7449b42 1588 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1589 return builtin_type_arm_ext_big;
1590 else
1591 return builtin_type_arm_ext_littlebyte_bigword;
1592 }
1593 else
1594 return builtin_type_int32;
1595}
1596
34e8f22d
RE
1597/* Index within `registers' of the first byte of the space for
1598 register N. */
1599
1600static int
1601arm_register_byte (int regnum)
1602{
1603 if (regnum < ARM_F0_REGNUM)
1604 return regnum * INT_REGISTER_RAW_SIZE;
1605 else if (regnum < ARM_PS_REGNUM)
1606 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1607 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1608 else
1609 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1610 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1611 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1612}
1613
1614/* Number of bytes of storage in the actual machine representation for
1615 register N. All registers are 4 bytes, except fp0 - fp7, which are
1616 12 bytes in length. */
1617
1618static int
1619arm_register_raw_size (int regnum)
1620{
1621 if (regnum < ARM_F0_REGNUM)
1622 return INT_REGISTER_RAW_SIZE;
1623 else if (regnum < ARM_FPS_REGNUM)
1624 return FP_REGISTER_RAW_SIZE;
1625 else
1626 return STATUS_REGISTER_SIZE;
1627}
1628
1629/* Number of bytes of storage in a program's representation
1630 for register N. */
1631static int
1632arm_register_virtual_size (int regnum)
1633{
1634 if (regnum < ARM_F0_REGNUM)
1635 return INT_REGISTER_VIRTUAL_SIZE;
1636 else if (regnum < ARM_FPS_REGNUM)
1637 return FP_REGISTER_VIRTUAL_SIZE;
1638 else
1639 return STATUS_REGISTER_SIZE;
1640}
1641
26216b98
AC
1642/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1643static int
1644arm_register_sim_regno (int regnum)
1645{
1646 int reg = regnum;
1647 gdb_assert (reg >= 0 && reg < NUM_REGS);
1648
1649 if (reg < NUM_GREGS)
1650 return SIM_ARM_R0_REGNUM + reg;
1651 reg -= NUM_GREGS;
1652
1653 if (reg < NUM_FREGS)
1654 return SIM_ARM_FP0_REGNUM + reg;
1655 reg -= NUM_FREGS;
1656
1657 if (reg < NUM_SREGS)
1658 return SIM_ARM_FPS_REGNUM + reg;
1659 reg -= NUM_SREGS;
1660
1661 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1662}
34e8f22d 1663
a37b3cc0
AC
1664/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1665 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1666 It is thought that this is is the floating-point register format on
1667 little-endian systems. */
c906108c 1668
ed9a39eb 1669static void
b508a996
RE
1670convert_from_extended (const struct floatformat *fmt, const void *ptr,
1671 void *dbl)
c906108c 1672{
a37b3cc0 1673 DOUBLEST d;
d7449b42 1674 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1675 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1676 else
1677 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1678 ptr, &d);
b508a996 1679 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1680}
1681
34e8f22d 1682static void
b508a996 1683convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1684{
a37b3cc0 1685 DOUBLEST d;
b508a996 1686 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1687 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1688 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1689 else
1690 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1691 &d, dbl);
c906108c 1692}
ed9a39eb 1693
c906108c 1694static int
ed9a39eb 1695condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1696{
1697 if (cond == INST_AL || cond == INST_NV)
1698 return 1;
1699
1700 switch (cond)
1701 {
1702 case INST_EQ:
1703 return ((status_reg & FLAG_Z) != 0);
1704 case INST_NE:
1705 return ((status_reg & FLAG_Z) == 0);
1706 case INST_CS:
1707 return ((status_reg & FLAG_C) != 0);
1708 case INST_CC:
1709 return ((status_reg & FLAG_C) == 0);
1710 case INST_MI:
1711 return ((status_reg & FLAG_N) != 0);
1712 case INST_PL:
1713 return ((status_reg & FLAG_N) == 0);
1714 case INST_VS:
1715 return ((status_reg & FLAG_V) != 0);
1716 case INST_VC:
1717 return ((status_reg & FLAG_V) == 0);
1718 case INST_HI:
1719 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1720 case INST_LS:
1721 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1722 case INST_GE:
1723 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1724 case INST_LT:
1725 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1726 case INST_GT:
1727 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1728 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1729 case INST_LE:
1730 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1731 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1732 }
1733 return 1;
1734}
1735
9512d7fd 1736/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1737#define submask(x) ((1L << ((x) + 1)) - 1)
1738#define bit(obj,st) (((obj) >> (st)) & 1)
1739#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1740#define sbits(obj,st,fn) \
1741 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1742#define BranchDest(addr,instr) \
1743 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1744#define ARM_PC_32 1
1745
1746static unsigned long
ed9a39eb
JM
1747shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1748 unsigned long status_reg)
c906108c
SS
1749{
1750 unsigned long res, shift;
1751 int rm = bits (inst, 0, 3);
1752 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1753
1754 if (bit (inst, 4))
c906108c
SS
1755 {
1756 int rs = bits (inst, 8, 11);
1757 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1758 }
1759 else
1760 shift = bits (inst, 7, 11);
c5aa993b
JM
1761
1762 res = (rm == 15
c906108c 1763 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1764 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1765 : read_register (rm));
1766
1767 switch (shifttype)
1768 {
c5aa993b 1769 case 0: /* LSL */
c906108c
SS
1770 res = shift >= 32 ? 0 : res << shift;
1771 break;
c5aa993b
JM
1772
1773 case 1: /* LSR */
c906108c
SS
1774 res = shift >= 32 ? 0 : res >> shift;
1775 break;
1776
c5aa993b
JM
1777 case 2: /* ASR */
1778 if (shift >= 32)
1779 shift = 31;
c906108c
SS
1780 res = ((res & 0x80000000L)
1781 ? ~((~res) >> shift) : res >> shift);
1782 break;
1783
c5aa993b 1784 case 3: /* ROR/RRX */
c906108c
SS
1785 shift &= 31;
1786 if (shift == 0)
1787 res = (res >> 1) | (carry ? 0x80000000L : 0);
1788 else
c5aa993b 1789 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1790 break;
1791 }
1792
1793 return res & 0xffffffff;
1794}
1795
c906108c
SS
1796/* Return number of 1-bits in VAL. */
1797
1798static int
ed9a39eb 1799bitcount (unsigned long val)
c906108c
SS
1800{
1801 int nbits;
1802 for (nbits = 0; val != 0; nbits++)
c5aa993b 1803 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1804 return nbits;
1805}
1806
34e8f22d 1807CORE_ADDR
ed9a39eb 1808thumb_get_next_pc (CORE_ADDR pc)
c906108c 1809{
c5aa993b 1810 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1811 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1812 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1813 unsigned long offset;
1814
1815 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1816 {
1817 CORE_ADDR sp;
1818
1819 /* Fetch the saved PC from the stack. It's stored above
1820 all of the other registers. */
1821 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1822 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1823 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1824 nextpc = ADDR_BITS_REMOVE (nextpc);
1825 if (nextpc == pc)
1826 error ("Infinite loop detected");
1827 }
1828 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1829 {
34e8f22d 1830 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1831 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1832 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1833 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1834 }
1835 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1836 {
1837 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1838 }
1839 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1840 {
1841 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1842 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1843 nextpc = pc_val + offset;
1844 }
1845
1846 return nextpc;
1847}
1848
34e8f22d 1849CORE_ADDR
ed9a39eb 1850arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1851{
1852 unsigned long pc_val;
1853 unsigned long this_instr;
1854 unsigned long status;
1855 CORE_ADDR nextpc;
1856
1857 if (arm_pc_is_thumb (pc))
1858 return thumb_get_next_pc (pc);
1859
1860 pc_val = (unsigned long) pc;
1861 this_instr = read_memory_integer (pc, 4);
34e8f22d 1862 status = read_register (ARM_PS_REGNUM);
c5aa993b 1863 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1864
1865 if (condition_true (bits (this_instr, 28, 31), status))
1866 {
1867 switch (bits (this_instr, 24, 27))
1868 {
c5aa993b 1869 case 0x0:
94c30b78 1870 case 0x1: /* data processing */
c5aa993b
JM
1871 case 0x2:
1872 case 0x3:
c906108c
SS
1873 {
1874 unsigned long operand1, operand2, result = 0;
1875 unsigned long rn;
1876 int c;
c5aa993b 1877
c906108c
SS
1878 if (bits (this_instr, 12, 15) != 15)
1879 break;
1880
1881 if (bits (this_instr, 22, 25) == 0
c5aa993b 1882 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1883 error ("Illegal update to pc in instruction");
1884
1885 /* Multiply into PC */
1886 c = (status & FLAG_C) ? 1 : 0;
1887 rn = bits (this_instr, 16, 19);
1888 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1889
c906108c
SS
1890 if (bit (this_instr, 25))
1891 {
1892 unsigned long immval = bits (this_instr, 0, 7);
1893 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1894 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1895 & 0xffffffff;
c906108c 1896 }
c5aa993b 1897 else /* operand 2 is a shifted register */
c906108c 1898 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1899
c906108c
SS
1900 switch (bits (this_instr, 21, 24))
1901 {
c5aa993b 1902 case 0x0: /*and */
c906108c
SS
1903 result = operand1 & operand2;
1904 break;
1905
c5aa993b 1906 case 0x1: /*eor */
c906108c
SS
1907 result = operand1 ^ operand2;
1908 break;
1909
c5aa993b 1910 case 0x2: /*sub */
c906108c
SS
1911 result = operand1 - operand2;
1912 break;
1913
c5aa993b 1914 case 0x3: /*rsb */
c906108c
SS
1915 result = operand2 - operand1;
1916 break;
1917
c5aa993b 1918 case 0x4: /*add */
c906108c
SS
1919 result = operand1 + operand2;
1920 break;
1921
c5aa993b 1922 case 0x5: /*adc */
c906108c
SS
1923 result = operand1 + operand2 + c;
1924 break;
1925
c5aa993b 1926 case 0x6: /*sbc */
c906108c
SS
1927 result = operand1 - operand2 + c;
1928 break;
1929
c5aa993b 1930 case 0x7: /*rsc */
c906108c
SS
1931 result = operand2 - operand1 + c;
1932 break;
1933
c5aa993b
JM
1934 case 0x8:
1935 case 0x9:
1936 case 0xa:
1937 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1938 result = (unsigned long) nextpc;
1939 break;
1940
c5aa993b 1941 case 0xc: /*orr */
c906108c
SS
1942 result = operand1 | operand2;
1943 break;
1944
c5aa993b 1945 case 0xd: /*mov */
c906108c
SS
1946 /* Always step into a function. */
1947 result = operand2;
c5aa993b 1948 break;
c906108c 1949
c5aa993b 1950 case 0xe: /*bic */
c906108c
SS
1951 result = operand1 & ~operand2;
1952 break;
1953
c5aa993b 1954 case 0xf: /*mvn */
c906108c
SS
1955 result = ~operand2;
1956 break;
1957 }
1958 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1959
1960 if (nextpc == pc)
1961 error ("Infinite loop detected");
1962 break;
1963 }
c5aa993b
JM
1964
1965 case 0x4:
1966 case 0x5: /* data transfer */
1967 case 0x6:
1968 case 0x7:
c906108c
SS
1969 if (bit (this_instr, 20))
1970 {
1971 /* load */
1972 if (bits (this_instr, 12, 15) == 15)
1973 {
1974 /* rd == pc */
c5aa993b 1975 unsigned long rn;
c906108c 1976 unsigned long base;
c5aa993b 1977
c906108c
SS
1978 if (bit (this_instr, 22))
1979 error ("Illegal update to pc in instruction");
1980
1981 /* byte write to PC */
1982 rn = bits (this_instr, 16, 19);
1983 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1984 if (bit (this_instr, 24))
1985 {
1986 /* pre-indexed */
1987 int c = (status & FLAG_C) ? 1 : 0;
1988 unsigned long offset =
c5aa993b 1989 (bit (this_instr, 25)
ed9a39eb 1990 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1991 : bits (this_instr, 0, 11));
c906108c
SS
1992
1993 if (bit (this_instr, 23))
1994 base += offset;
1995 else
1996 base -= offset;
1997 }
c5aa993b 1998 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1999 4);
c5aa993b 2000
c906108c
SS
2001 nextpc = ADDR_BITS_REMOVE (nextpc);
2002
2003 if (nextpc == pc)
2004 error ("Infinite loop detected");
2005 }
2006 }
2007 break;
c5aa993b
JM
2008
2009 case 0x8:
2010 case 0x9: /* block transfer */
c906108c
SS
2011 if (bit (this_instr, 20))
2012 {
2013 /* LDM */
2014 if (bit (this_instr, 15))
2015 {
2016 /* loading pc */
2017 int offset = 0;
2018
2019 if (bit (this_instr, 23))
2020 {
2021 /* up */
2022 unsigned long reglist = bits (this_instr, 0, 14);
2023 offset = bitcount (reglist) * 4;
c5aa993b 2024 if (bit (this_instr, 24)) /* pre */
c906108c
SS
2025 offset += 4;
2026 }
2027 else if (bit (this_instr, 24))
2028 offset = -4;
c5aa993b 2029
c906108c 2030 {
c5aa993b
JM
2031 unsigned long rn_val =
2032 read_register (bits (this_instr, 16, 19));
c906108c
SS
2033 nextpc =
2034 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 2035 + offset),
c906108c
SS
2036 4);
2037 }
2038 nextpc = ADDR_BITS_REMOVE (nextpc);
2039 if (nextpc == pc)
2040 error ("Infinite loop detected");
2041 }
2042 }
2043 break;
c5aa993b
JM
2044
2045 case 0xb: /* branch & link */
2046 case 0xa: /* branch */
c906108c
SS
2047 {
2048 nextpc = BranchDest (pc, this_instr);
2049
2050 nextpc = ADDR_BITS_REMOVE (nextpc);
2051 if (nextpc == pc)
2052 error ("Infinite loop detected");
2053 break;
2054 }
c5aa993b
JM
2055
2056 case 0xc:
2057 case 0xd:
2058 case 0xe: /* coproc ops */
2059 case 0xf: /* SWI */
c906108c
SS
2060 break;
2061
2062 default:
97e03143 2063 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
2064 return (pc);
2065 }
2066 }
2067
2068 return nextpc;
2069}
2070
9512d7fd
FN
2071/* single_step() is called just before we want to resume the inferior,
2072 if we want to single-step it but there is no hardware or kernel
2073 single-step support. We find the target of the coming instruction
2074 and breakpoint it.
2075
94c30b78
MS
2076 single_step() is also called just after the inferior stops. If we
2077 had set up a simulated single-step, we undo our damage. */
9512d7fd 2078
34e8f22d
RE
2079static void
2080arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 2081{
b8d5e71d 2082 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
2083 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2084
2085 if (insert_bpt)
2086 {
34e8f22d 2087 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2088 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2089 }
2090 else
80fcf3f0 2091 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2092}
9512d7fd 2093
c906108c
SS
2094#include "bfd-in2.h"
2095#include "libcoff.h"
2096
2097static int
ed9a39eb 2098gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2099{
2100 if (arm_pc_is_thumb (memaddr))
2101 {
c5aa993b
JM
2102 static asymbol *asym;
2103 static combined_entry_type ce;
2104 static struct coff_symbol_struct csym;
2105 static struct _bfd fake_bfd;
2106 static bfd_target fake_target;
c906108c
SS
2107
2108 if (csym.native == NULL)
2109 {
da3c6d4a
MS
2110 /* Create a fake symbol vector containing a Thumb symbol.
2111 This is solely so that the code in print_insn_little_arm()
2112 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2113 the presence of a Thumb symbol and switch to decoding
2114 Thumb instructions. */
c5aa993b
JM
2115
2116 fake_target.flavour = bfd_target_coff_flavour;
2117 fake_bfd.xvec = &fake_target;
c906108c 2118 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2119 csym.native = &ce;
2120 csym.symbol.the_bfd = &fake_bfd;
2121 csym.symbol.name = "fake";
2122 asym = (asymbol *) & csym;
c906108c 2123 }
c5aa993b 2124
c906108c 2125 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2126 info->symbols = &asym;
c906108c
SS
2127 }
2128 else
2129 info->symbols = NULL;
c5aa993b 2130
d7449b42 2131 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2132 return print_insn_big_arm (memaddr, info);
2133 else
2134 return print_insn_little_arm (memaddr, info);
2135}
2136
66e810cd
RE
2137/* The following define instruction sequences that will cause ARM
2138 cpu's to take an undefined instruction trap. These are used to
2139 signal a breakpoint to GDB.
2140
2141 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2142 modes. A different instruction is required for each mode. The ARM
2143 cpu's can also be big or little endian. Thus four different
2144 instructions are needed to support all cases.
2145
2146 Note: ARMv4 defines several new instructions that will take the
2147 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2148 not in fact add the new instructions. The new undefined
2149 instructions in ARMv4 are all instructions that had no defined
2150 behaviour in earlier chips. There is no guarantee that they will
2151 raise an exception, but may be treated as NOP's. In practice, it
2152 may only safe to rely on instructions matching:
2153
2154 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2155 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2156 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2157
2158 Even this may only true if the condition predicate is true. The
2159 following use a condition predicate of ALWAYS so it is always TRUE.
2160
2161 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2162 and NetBSD all use a software interrupt rather than an undefined
2163 instruction to force a trap. This can be handled by by the
2164 abi-specific code during establishment of the gdbarch vector. */
2165
2166
d7b486e7
RE
2167/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2168 override these definitions. */
66e810cd
RE
2169#ifndef ARM_LE_BREAKPOINT
2170#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2171#endif
2172#ifndef ARM_BE_BREAKPOINT
2173#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2174#endif
2175#ifndef THUMB_LE_BREAKPOINT
2176#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2177#endif
2178#ifndef THUMB_BE_BREAKPOINT
2179#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2180#endif
2181
2182static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2183static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2184static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2185static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2186
34e8f22d
RE
2187/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2188 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2189 breakpoint should be used. It returns a pointer to a string of
2190 bytes that encode a breakpoint instruction, stores the length of
2191 the string to *lenptr, and adjusts the program counter (if
2192 necessary) to point to the actual memory location where the
c906108c
SS
2193 breakpoint should be inserted. */
2194
34e8f22d
RE
2195/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2196 breakpoints and storing their handles instread of what was in
2197 memory. It is nice that this is the same size as a handle -
94c30b78 2198 otherwise remote-rdp will have to change. */
34e8f22d 2199
ab89facf 2200static const unsigned char *
ed9a39eb 2201arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2202{
66e810cd
RE
2203 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2204
c906108c
SS
2205 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2206 {
66e810cd
RE
2207 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2208 *lenptr = tdep->thumb_breakpoint_size;
2209 return tdep->thumb_breakpoint;
c906108c
SS
2210 }
2211 else
2212 {
66e810cd
RE
2213 *lenptr = tdep->arm_breakpoint_size;
2214 return tdep->arm_breakpoint;
c906108c
SS
2215 }
2216}
ed9a39eb
JM
2217
2218/* Extract from an array REGBUF containing the (raw) register state a
2219 function return value of type TYPE, and copy that, in virtual
2220 format, into VALBUF. */
2221
34e8f22d 2222static void
ed9a39eb 2223arm_extract_return_value (struct type *type,
b508a996
RE
2224 struct regcache *regs,
2225 void *dst)
ed9a39eb 2226{
b508a996
RE
2227 bfd_byte *valbuf = dst;
2228
ed9a39eb 2229 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7
RE
2230 {
2231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2232
2233 switch (tdep->fp_model)
2234 {
2235 case ARM_FLOAT_FPA:
b508a996
RE
2236 {
2237 /* The value is in register F0 in internal format. We need to
2238 extract the raw value and then convert it to the desired
2239 internal type. */
2240 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2241
2242 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2243 convert_from_extended (floatformat_from_type (type), tmpbuf,
2244 valbuf);
2245 }
08216dd7
RE
2246 break;
2247
2248 case ARM_FLOAT_SOFT:
2249 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2250 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2251 if (TYPE_LENGTH (type) > 4)
2252 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2253 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2254 break;
2255
2256 default:
2257 internal_error
2258 (__FILE__, __LINE__,
2259 "arm_extract_return_value: Floating point model not supported");
2260 break;
2261 }
2262 }
b508a996
RE
2263 else if (TYPE_CODE (type) == TYPE_CODE_INT
2264 || TYPE_CODE (type) == TYPE_CODE_CHAR
2265 || TYPE_CODE (type) == TYPE_CODE_BOOL
2266 || TYPE_CODE (type) == TYPE_CODE_PTR
2267 || TYPE_CODE (type) == TYPE_CODE_REF
2268 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2269 {
2270 /* If the the type is a plain integer, then the access is
2271 straight-forward. Otherwise we have to play around a bit more. */
2272 int len = TYPE_LENGTH (type);
2273 int regno = ARM_A1_REGNUM;
2274 ULONGEST tmp;
2275
2276 while (len > 0)
2277 {
2278 /* By using store_unsigned_integer we avoid having to do
2279 anything special for small big-endian values. */
2280 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2281 store_unsigned_integer (valbuf,
2282 (len > INT_REGISTER_RAW_SIZE
2283 ? INT_REGISTER_RAW_SIZE : len),
2284 tmp);
2285 len -= INT_REGISTER_RAW_SIZE;
2286 valbuf += INT_REGISTER_RAW_SIZE;
2287 }
2288 }
ed9a39eb 2289 else
b508a996
RE
2290 {
2291 /* For a structure or union the behaviour is as if the value had
2292 been stored to word-aligned memory and then loaded into
2293 registers with 32-bit load instruction(s). */
2294 int len = TYPE_LENGTH (type);
2295 int regno = ARM_A1_REGNUM;
2296 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2297
2298 while (len > 0)
2299 {
2300 regcache_cooked_read (regs, regno++, tmpbuf);
2301 memcpy (valbuf, tmpbuf,
2302 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2303 len -= INT_REGISTER_RAW_SIZE;
2304 valbuf += INT_REGISTER_RAW_SIZE;
2305 }
2306 }
34e8f22d
RE
2307}
2308
67255d04
RE
2309/* Extract from an array REGBUF containing the (raw) register state
2310 the address in which a function should return its structure value. */
2311
2312static CORE_ADDR
95f95911 2313arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2314{
95f95911
MS
2315 ULONGEST ret;
2316
2317 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2318 return ret;
67255d04
RE
2319}
2320
2321/* Will a function return an aggregate type in memory or in a
2322 register? Return 0 if an aggregate type can be returned in a
2323 register, 1 if it must be returned in memory. */
2324
2325static int
2326arm_use_struct_convention (int gcc_p, struct type *type)
2327{
2328 int nRc;
2329 register enum type_code code;
2330
2331 /* In the ARM ABI, "integer" like aggregate types are returned in
2332 registers. For an aggregate type to be integer like, its size
2333 must be less than or equal to REGISTER_SIZE and the offset of
2334 each addressable subfield must be zero. Note that bit fields are
2335 not addressable, and all addressable subfields of unions always
2336 start at offset zero.
2337
2338 This function is based on the behaviour of GCC 2.95.1.
2339 See: gcc/arm.c: arm_return_in_memory() for details.
2340
2341 Note: All versions of GCC before GCC 2.95.2 do not set up the
2342 parameters correctly for a function returning the following
2343 structure: struct { float f;}; This should be returned in memory,
2344 not a register. Richard Earnshaw sent me a patch, but I do not
2345 know of any way to detect if a function like the above has been
2346 compiled with the correct calling convention. */
2347
2348 /* All aggregate types that won't fit in a register must be returned
2349 in memory. */
2350 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2351 {
2352 return 1;
2353 }
2354
2355 /* The only aggregate types that can be returned in a register are
2356 structs and unions. Arrays must be returned in memory. */
2357 code = TYPE_CODE (type);
2358 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2359 {
2360 return 1;
2361 }
2362
2363 /* Assume all other aggregate types can be returned in a register.
2364 Run a check for structures, unions and arrays. */
2365 nRc = 0;
2366
2367 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2368 {
2369 int i;
2370 /* Need to check if this struct/union is "integer" like. For
2371 this to be true, its size must be less than or equal to
2372 REGISTER_SIZE and the offset of each addressable subfield
2373 must be zero. Note that bit fields are not addressable, and
2374 unions always start at offset zero. If any of the subfields
2375 is a floating point type, the struct/union cannot be an
2376 integer type. */
2377
2378 /* For each field in the object, check:
2379 1) Is it FP? --> yes, nRc = 1;
2380 2) Is it addressable (bitpos != 0) and
2381 not packed (bitsize == 0)?
2382 --> yes, nRc = 1
2383 */
2384
2385 for (i = 0; i < TYPE_NFIELDS (type); i++)
2386 {
2387 enum type_code field_type_code;
2388 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2389
2390 /* Is it a floating point type field? */
2391 if (field_type_code == TYPE_CODE_FLT)
2392 {
2393 nRc = 1;
2394 break;
2395 }
2396
2397 /* If bitpos != 0, then we have to care about it. */
2398 if (TYPE_FIELD_BITPOS (type, i) != 0)
2399 {
2400 /* Bitfields are not addressable. If the field bitsize is
2401 zero, then the field is not packed. Hence it cannot be
2402 a bitfield or any other packed type. */
2403 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2404 {
2405 nRc = 1;
2406 break;
2407 }
2408 }
2409 }
2410 }
2411
2412 return nRc;
2413}
2414
34e8f22d
RE
2415/* Write into appropriate registers a function return value of type
2416 TYPE, given in virtual format. */
2417
2418static void
b508a996
RE
2419arm_store_return_value (struct type *type, struct regcache *regs,
2420 const void *src)
34e8f22d 2421{
b508a996
RE
2422 const bfd_byte *valbuf = src;
2423
34e8f22d
RE
2424 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2425 {
08216dd7 2426 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7bbcf283 2427 char buf[ARM_MAX_REGISTER_RAW_SIZE];
34e8f22d 2428
08216dd7
RE
2429 switch (tdep->fp_model)
2430 {
2431 case ARM_FLOAT_FPA:
2432
b508a996
RE
2433 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2434 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2435 break;
2436
2437 case ARM_FLOAT_SOFT:
2438 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2439 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2440 if (TYPE_LENGTH (type) > 4)
2441 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2442 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2443 break;
2444
2445 default:
2446 internal_error
2447 (__FILE__, __LINE__,
2448 "arm_store_return_value: Floating point model not supported");
2449 break;
2450 }
34e8f22d 2451 }
b508a996
RE
2452 else if (TYPE_CODE (type) == TYPE_CODE_INT
2453 || TYPE_CODE (type) == TYPE_CODE_CHAR
2454 || TYPE_CODE (type) == TYPE_CODE_BOOL
2455 || TYPE_CODE (type) == TYPE_CODE_PTR
2456 || TYPE_CODE (type) == TYPE_CODE_REF
2457 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2458 {
2459 if (TYPE_LENGTH (type) <= 4)
2460 {
2461 /* Values of one word or less are zero/sign-extended and
2462 returned in r0. */
2463 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2464 LONGEST val = unpack_long (type, valbuf);
2465
2466 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2467 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2468 }
2469 else
2470 {
2471 /* Integral values greater than one word are stored in consecutive
2472 registers starting with r0. This will always be a multiple of
2473 the regiser size. */
2474 int len = TYPE_LENGTH (type);
2475 int regno = ARM_A1_REGNUM;
2476
2477 while (len > 0)
2478 {
2479 regcache_cooked_write (regs, regno++, valbuf);
2480 len -= INT_REGISTER_RAW_SIZE;
2481 valbuf += INT_REGISTER_RAW_SIZE;
2482 }
2483 }
2484 }
34e8f22d 2485 else
b508a996
RE
2486 {
2487 /* For a structure or union the behaviour is as if the value had
2488 been stored to word-aligned memory and then loaded into
2489 registers with 32-bit load instruction(s). */
2490 int len = TYPE_LENGTH (type);
2491 int regno = ARM_A1_REGNUM;
2492 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2493
2494 while (len > 0)
2495 {
2496 memcpy (tmpbuf, valbuf,
2497 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2498 regcache_cooked_write (regs, regno++, tmpbuf);
2499 len -= INT_REGISTER_RAW_SIZE;
2500 valbuf += INT_REGISTER_RAW_SIZE;
2501 }
2502 }
34e8f22d
RE
2503}
2504
2505/* Store the address of the place in which to copy the structure the
94c30b78 2506 subroutine will return. This is called from call_function. */
34e8f22d
RE
2507
2508static void
2509arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2510{
2511 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2512}
2513
9df628e0
RE
2514static int
2515arm_get_longjmp_target (CORE_ADDR *pc)
2516{
2517 CORE_ADDR jb_addr;
2518 char buf[INT_REGISTER_RAW_SIZE];
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2520
2521 jb_addr = read_register (ARM_A1_REGNUM);
2522
2523 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2524 INT_REGISTER_RAW_SIZE))
2525 return 0;
2526
2527 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2528 return 1;
2529}
2530
ed9a39eb 2531/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2532
2533int
ed9a39eb 2534arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2535{
2536 CORE_ADDR start_addr;
2537
ed9a39eb
JM
2538 /* Find the starting address of the function containing the PC. If
2539 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2540 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2541 &start_addr, NULL))
c906108c
SS
2542 return 0;
2543
2544 return strncmp (name, "_call_via_r", 11) == 0;
2545}
2546
ed9a39eb
JM
2547/* If PC is in a Thumb call or return stub, return the address of the
2548 target PC, which is in a register. The thunk functions are called
2549 _called_via_xx, where x is the register name. The possible names
2550 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2551
2552CORE_ADDR
ed9a39eb 2553arm_skip_stub (CORE_ADDR pc)
c906108c 2554{
c5aa993b 2555 char *name;
c906108c
SS
2556 CORE_ADDR start_addr;
2557
2558 /* Find the starting address and name of the function containing the PC. */
2559 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2560 return 0;
2561
2562 /* Call thunks always start with "_call_via_". */
2563 if (strncmp (name, "_call_via_", 10) == 0)
2564 {
ed9a39eb
JM
2565 /* Use the name suffix to determine which register contains the
2566 target PC. */
c5aa993b
JM
2567 static char *table[15] =
2568 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2569 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2570 };
c906108c
SS
2571 int regno;
2572
2573 for (regno = 0; regno <= 14; regno++)
2574 if (strcmp (&name[10], table[regno]) == 0)
2575 return read_register (regno);
2576 }
ed9a39eb 2577
c5aa993b 2578 return 0; /* not a stub */
c906108c
SS
2579}
2580
da3c6d4a
MS
2581/* If the user changes the register disassembly flavor used for info
2582 register and other commands, we have to also switch the flavor used
2583 in opcodes for disassembly output. This function is run in the set
94c30b78 2584 disassembly_flavor command, and does that. */
bc90b915
FN
2585
2586static void
2587set_disassembly_flavor_sfunc (char *args, int from_tty,
2588 struct cmd_list_element *c)
2589{
2590 set_disassembly_flavor ();
2591}
2592\f
966fbf70 2593/* Return the ARM register name corresponding to register I. */
a208b0cb 2594static const char *
34e8f22d 2595arm_register_name (int i)
966fbf70
RE
2596{
2597 return arm_register_names[i];
2598}
2599
bc90b915
FN
2600static void
2601set_disassembly_flavor (void)
2602{
2603 const char *setname, *setdesc, **regnames;
2604 int numregs, j;
2605
94c30b78 2606 /* Find the flavor that the user wants in the opcodes table. */
bc90b915
FN
2607 int current = 0;
2608 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2609 while ((disassembly_flavor != setname)
2610 && (current < num_flavor_options))
2611 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2612 current_option = current;
2613
94c30b78 2614 /* Fill our copy. */
bc90b915
FN
2615 for (j = 0; j < numregs; j++)
2616 arm_register_names[j] = (char *) regnames[j];
2617
94c30b78 2618 /* Adjust case. */
34e8f22d 2619 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2620 {
34e8f22d
RE
2621 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2622 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2623 }
2624 else
2625 {
34e8f22d
RE
2626 arm_register_names[ARM_FPS_REGNUM] = "fps";
2627 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2628 }
2629
94c30b78 2630 /* Synchronize the disassembler. */
bc90b915
FN
2631 set_arm_regname_option (current);
2632}
2633
2634/* arm_othernames implements the "othernames" command. This is kind
2635 of hacky, and I prefer the set-show disassembly-flavor which is
2636 also used for the x86 gdb. I will keep this around, however, in
94c30b78 2637 case anyone is actually using it. */
bc90b915
FN
2638
2639static void
2640arm_othernames (char *names, int n)
2641{
94c30b78 2642 /* Circle through the various flavors. */
bc90b915
FN
2643 current_option = (current_option + 1) % num_flavor_options;
2644
2645 disassembly_flavor = valid_flavors[current_option];
94c30b78 2646 set_disassembly_flavor ();
bc90b915
FN
2647}
2648
a42dd537
KB
2649/* Fetch, and possibly build, an appropriate link_map_offsets structure
2650 for ARM linux targets using the struct offsets defined in <link.h>.
2651 Note, however, that link.h is not actually referred to in this file.
2652 Instead, the relevant structs offsets were obtained from examining
2653 link.h. (We can't refer to link.h from this file because the host
2654 system won't necessarily have it, or if it does, the structs which
94c30b78 2655 it defines will refer to the host system, not the target). */
a42dd537
KB
2656
2657struct link_map_offsets *
2658arm_linux_svr4_fetch_link_map_offsets (void)
2659{
2660 static struct link_map_offsets lmo;
2661 static struct link_map_offsets *lmp = 0;
2662
2663 if (lmp == 0)
2664 {
2665 lmp = &lmo;
2666
2667 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
94c30b78 2668 need. */
a42dd537
KB
2669
2670 lmo.r_map_offset = 4;
2671 lmo.r_map_size = 4;
2672
2673 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
94c30b78 2674 need. */
a42dd537
KB
2675
2676 lmo.l_addr_offset = 0;
2677 lmo.l_addr_size = 4;
2678
2679 lmo.l_name_offset = 4;
2680 lmo.l_name_size = 4;
2681
2682 lmo.l_next_offset = 12;
2683 lmo.l_next_size = 4;
2684
2685 lmo.l_prev_offset = 16;
2686 lmo.l_prev_size = 4;
2687 }
2688
2689 return lmp;
2690}
2691
082fc60d
RE
2692/* Test whether the coff symbol specific value corresponds to a Thumb
2693 function. */
2694
2695static int
2696coff_sym_is_thumb (int val)
2697{
2698 return (val == C_THUMBEXT ||
2699 val == C_THUMBSTAT ||
2700 val == C_THUMBEXTFUNC ||
2701 val == C_THUMBSTATFUNC ||
2702 val == C_THUMBLABEL);
2703}
2704
2705/* arm_coff_make_msymbol_special()
2706 arm_elf_make_msymbol_special()
2707
2708 These functions test whether the COFF or ELF symbol corresponds to
2709 an address in thumb code, and set a "special" bit in a minimal
2710 symbol to indicate that it does. */
2711
34e8f22d 2712static void
082fc60d
RE
2713arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2714{
2715 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2716 STT_ARM_TFUNC). */
2717 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2718 == STT_LOPROC)
2719 MSYMBOL_SET_SPECIAL (msym);
2720}
2721
34e8f22d 2722static void
082fc60d
RE
2723arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2724{
2725 if (coff_sym_is_thumb (val))
2726 MSYMBOL_SET_SPECIAL (msym);
2727}
2728
97e03143 2729\f
70f80edf
JT
2730static enum gdb_osabi
2731arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2732{
70f80edf
JT
2733 unsigned int elfosabi, eflags;
2734 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2735
70f80edf 2736 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2737
70f80edf 2738 switch (elfosabi)
97e03143 2739 {
70f80edf
JT
2740 case ELFOSABI_NONE:
2741 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2742 file are conforming to the base specification for that machine
2743 (there are no OS-specific extensions). In order to determine the
2744 real OS in use we must look for OS notes that have been added. */
2745 bfd_map_over_sections (abfd,
2746 generic_elf_osabi_sniff_abi_tag_sections,
2747 &osabi);
2748 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2749 {
70f80edf
JT
2750 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2751 field for more information. */
2752 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2753 switch (eflags)
97e03143 2754 {
70f80edf
JT
2755 case EF_ARM_EABI_VER1:
2756 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2757 break;
2758
70f80edf
JT
2759 case EF_ARM_EABI_VER2:
2760 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2761 break;
2762
70f80edf
JT
2763 case EF_ARM_EABI_UNKNOWN:
2764 /* Assume GNU tools. */
2765 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2766 break;
2767
70f80edf
JT
2768 default:
2769 internal_error (__FILE__, __LINE__,
2770 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2771 "version 0x%x", eflags);
97e03143
RE
2772 }
2773 }
70f80edf 2774 break;
97e03143 2775
70f80edf
JT
2776 case ELFOSABI_ARM:
2777 /* GNU tools use this value. Check note sections in this case,
2778 as well. */
97e03143 2779 bfd_map_over_sections (abfd,
70f80edf
JT
2780 generic_elf_osabi_sniff_abi_tag_sections,
2781 &osabi);
2782 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2783 {
70f80edf
JT
2784 /* Assume APCS ABI. */
2785 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2786 }
2787 break;
2788
97e03143 2789 case ELFOSABI_FREEBSD:
70f80edf
JT
2790 osabi = GDB_OSABI_FREEBSD_ELF;
2791 break;
97e03143 2792
70f80edf
JT
2793 case ELFOSABI_NETBSD:
2794 osabi = GDB_OSABI_NETBSD_ELF;
2795 break;
97e03143 2796
70f80edf
JT
2797 case ELFOSABI_LINUX:
2798 osabi = GDB_OSABI_LINUX;
2799 break;
97e03143
RE
2800 }
2801
70f80edf 2802 return osabi;
97e03143
RE
2803}
2804
70f80edf 2805\f
da3c6d4a
MS
2806/* Initialize the current architecture based on INFO. If possible,
2807 re-use an architecture from ARCHES, which is a list of
2808 architectures already created during this debugging session.
97e03143 2809
da3c6d4a
MS
2810 Called e.g. at program startup, when reading a core file, and when
2811 reading a binary file. */
97e03143 2812
39bbf761
RE
2813static struct gdbarch *
2814arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2815{
97e03143 2816 struct gdbarch_tdep *tdep;
39bbf761
RE
2817 struct gdbarch *gdbarch;
2818
97e03143 2819 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2820
4be87837 2821 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2822 {
4be87837 2823 switch (bfd_get_flavour (info.abfd))
97e03143 2824 {
4be87837
DJ
2825 case bfd_target_aout_flavour:
2826 /* Assume it's an old APCS-style ABI. */
2827 info.osabi = GDB_OSABI_ARM_APCS;
2828 break;
97e03143 2829
4be87837
DJ
2830 case bfd_target_coff_flavour:
2831 /* Assume it's an old APCS-style ABI. */
2832 /* XXX WinCE? */
2833 info.osabi = GDB_OSABI_ARM_APCS;
2834 break;
97e03143 2835
4be87837
DJ
2836 default:
2837 /* Leave it as "unknown". */
97e03143
RE
2838 }
2839 }
2840
4be87837
DJ
2841 /* If there is already a candidate, use it. */
2842 arches = gdbarch_list_lookup_by_info (arches, &info);
2843 if (arches != NULL)
2844 return arches->gdbarch;
97e03143
RE
2845
2846 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2847 gdbarch = gdbarch_alloc (&info, tdep);
2848
a5afb99f
AC
2849 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2850 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2851 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2852
08216dd7
RE
2853 /* This is the way it has always defaulted. */
2854 tdep->fp_model = ARM_FLOAT_FPA;
2855
2856 /* Breakpoints. */
67255d04
RE
2857 switch (info.byte_order)
2858 {
2859 case BFD_ENDIAN_BIG:
66e810cd
RE
2860 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2861 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2862 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2863 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2864
67255d04
RE
2865 break;
2866
2867 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2868 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2869 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2870 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2871 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2872
67255d04
RE
2873 break;
2874
2875 default:
2876 internal_error (__FILE__, __LINE__,
2877 "arm_gdbarch_init: bad byte order for float format");
2878 }
2879
d7b486e7
RE
2880 /* On ARM targets char defaults to unsigned. */
2881 set_gdbarch_char_signed (gdbarch, 0);
2882
9df628e0 2883 /* This should be low enough for everything. */
97e03143 2884 tdep->lowest_pc = 0x20;
94c30b78 2885 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2886
848cfffb
AC
2887 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2888 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2889
2890 set_gdbarch_call_dummy_p (gdbarch, 1);
2891 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2892
2893 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2894 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2895 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2896 set_gdbarch_call_dummy_length (gdbarch, 0);
2897
2898 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
848cfffb
AC
2899
2900 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2901 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
39bbf761 2902
39bbf761
RE
2903 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2904
148754e5 2905 /* Frame handling. */
39bbf761 2906 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
148754e5
RE
2907 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2908 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2909 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2910 set_gdbarch_frameless_function_invocation
2911 (gdbarch, arm_frameless_function_invocation);
2912 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2913 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2914 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2915 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2916 set_gdbarch_frame_args_skip (gdbarch, 0);
2917 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
848cfffb 2918 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
148754e5
RE
2919 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2920
34e8f22d
RE
2921 /* Address manipulation. */
2922 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2923 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2924
2925 /* Offset from address of function to start of its code. */
2926 set_gdbarch_function_start_offset (gdbarch, 0);
2927
2928 /* Advance PC across function entry code. */
2929 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2930
2931 /* Get the PC when a frame might not be available. */
2932 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2933
2934 /* The stack grows downward. */
2935 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2936
2937 /* Breakpoint manipulation. */
2938 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2939 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2940
2941 /* Information about registers, etc. */
2942 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
94c30b78 2943 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2944 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2945 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2946 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2947 set_gdbarch_register_bytes (gdbarch,
2948 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2949 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2950 + NUM_SREGS * STATUS_REGISTER_SIZE));
2951 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2952 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2953 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2954 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2955 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2956 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2957
26216b98
AC
2958 /* Internal <-> external register number maps. */
2959 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2960
34e8f22d
RE
2961 /* Integer registers are 4 bytes. */
2962 set_gdbarch_register_size (gdbarch, 4);
2963 set_gdbarch_register_name (gdbarch, arm_register_name);
2964
2965 /* Returning results. */
b508a996
RE
2966 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2967 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
34e8f22d 2968 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04 2969 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
95f95911 2970 set_gdbarch_extract_struct_value_address (gdbarch,
67255d04 2971 arm_extract_struct_value_address);
34e8f22d
RE
2972
2973 /* Single stepping. */
2974 /* XXX For an RDI target we should ask the target if it can single-step. */
2975 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2976
2977 /* Minsymbol frobbing. */
2978 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2979 set_gdbarch_coff_make_msymbol_special (gdbarch,
2980 arm_coff_make_msymbol_special);
2981
97e03143 2982 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2983 gdbarch_init_osabi (info, gdbarch);
97e03143
RE
2984
2985 /* Now we have tuned the configuration, set a few final things,
2986 based on what the OS ABI has told us. */
2987
9df628e0
RE
2988 if (tdep->jb_pc >= 0)
2989 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2990
08216dd7
RE
2991 /* Floating point sizes and format. */
2992 switch (info.byte_order)
2993 {
2994 case BFD_ENDIAN_BIG:
2995 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2996 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2997 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2998
2999 break;
3000
3001 case BFD_ENDIAN_LITTLE:
3002 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
3003 if (tdep->fp_model == ARM_FLOAT_VFP
3004 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
3005 {
3006 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
3007 set_gdbarch_long_double_format (gdbarch,
3008 &floatformat_ieee_double_little);
3009 }
3010 else
3011 {
3012 set_gdbarch_double_format
3013 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3014 set_gdbarch_long_double_format
3015 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3016 }
3017 break;
3018
3019 default:
3020 internal_error (__FILE__, __LINE__,
3021 "arm_gdbarch_init: bad byte order for float format");
3022 }
3023
97e03143 3024 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
3025 references the old architecture vector, not the one we are
3026 building here. */
b2fb4676
AC
3027 if (get_frame_saved_regs (&prologue_cache) != NULL)
3028 xfree (get_frame_saved_regs (&prologue_cache));
34e8f22d 3029
a0abec03
AC
3030 /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
3031 references the old architecture vector, not the one we are
3032 building here. */
34e8f22d
RE
3033 prologue_cache.saved_regs = (CORE_ADDR *)
3034 xcalloc (1, (sizeof (CORE_ADDR)
29673b29
AC
3035 * (gdbarch_num_regs (gdbarch)
3036 + gdbarch_num_pseudo_regs (gdbarch))));
39bbf761
RE
3037
3038 return gdbarch;
3039}
3040
97e03143
RE
3041static void
3042arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3043{
3044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3045
3046 if (tdep == NULL)
3047 return;
3048
97e03143
RE
3049 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3050 (unsigned long) tdep->lowest_pc);
3051}
3052
3053static void
3054arm_init_abi_eabi_v1 (struct gdbarch_info info,
3055 struct gdbarch *gdbarch)
3056{
3057 /* Place-holder. */
3058}
3059
3060static void
3061arm_init_abi_eabi_v2 (struct gdbarch_info info,
3062 struct gdbarch *gdbarch)
3063{
3064 /* Place-holder. */
3065}
3066
3067static void
3068arm_init_abi_apcs (struct gdbarch_info info,
3069 struct gdbarch *gdbarch)
3070{
3071 /* Place-holder. */
3072}
3073
c906108c 3074void
ed9a39eb 3075_initialize_arm_tdep (void)
c906108c 3076{
bc90b915
FN
3077 struct ui_file *stb;
3078 long length;
96baa820 3079 struct cmd_list_element *new_cmd;
53904c9e
AC
3080 const char *setname;
3081 const char *setdesc;
3082 const char **regnames;
bc90b915
FN
3083 int numregs, i, j;
3084 static char *helptext;
085dd6e6 3085
39bbf761 3086 if (GDB_MULTI_ARCH)
97e03143
RE
3087 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3088
70f80edf
JT
3089 /* Register an ELF OS ABI sniffer for ARM binaries. */
3090 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3091 bfd_target_elf_flavour,
3092 arm_elf_osabi_sniffer);
3093
97e03143 3094 /* Register some ABI variants for embedded systems. */
05816f70 3095 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 3096 arm_init_abi_eabi_v1);
05816f70 3097 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 3098 arm_init_abi_eabi_v2);
05816f70 3099 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 3100 arm_init_abi_apcs);
39bbf761 3101
c906108c 3102 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 3103
94c30b78 3104 /* Get the number of possible sets of register names defined in opcodes. */
bc90b915
FN
3105 num_flavor_options = get_arm_regname_num_options ();
3106
94c30b78 3107 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3108 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3109
94c30b78 3110 /* Begin creating the help text. */
bc90b915
FN
3111 stb = mem_fileopen ();
3112 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3113The valid values are:\n");
ed9a39eb 3114
94c30b78 3115 /* Initialize the array that will be passed to add_set_enum_cmd(). */
bc90b915
FN
3116 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3117 for (i = 0; i < num_flavor_options; i++)
3118 {
3119 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 3120 valid_flavors[i] = setname;
bc90b915
FN
3121 fprintf_unfiltered (stb, "%s - %s\n", setname,
3122 setdesc);
94c30b78 3123 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
3124 if (!strcmp (setname, "std"))
3125 {
53904c9e 3126 disassembly_flavor = setname;
bc90b915
FN
3127 current_option = i;
3128 for (j = 0; j < numregs; j++)
3129 arm_register_names[j] = (char *) regnames[j];
3130 set_arm_regname_option (i);
3131 }
3132 }
94c30b78 3133 /* Mark the end of valid options. */
bc90b915 3134 valid_flavors[num_flavor_options] = NULL;
c906108c 3135
94c30b78 3136 /* Finish the creation of the help text. */
bc90b915
FN
3137 fprintf_unfiltered (stb, "The default is \"std\".");
3138 helptext = ui_file_xstrdup (stb, &length);
3139 ui_file_delete (stb);
ed9a39eb 3140
94c30b78 3141 /* Add the disassembly-flavor command. */
96baa820 3142 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 3143 valid_flavors,
1ed2a135 3144 &disassembly_flavor,
bc90b915 3145 helptext,
ed9a39eb 3146 &setlist);
9f60d481 3147 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
3148 add_show_from_set (new_cmd, &showlist);
3149
c906108c
SS
3150 /* ??? Maybe this should be a boolean. */
3151 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 3152 var_zinteger, (char *) &arm_apcs_32,
96baa820 3153 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 3154 &showlist);
c906108c 3155
94c30b78 3156 /* Add the deprecated "othernames" command. */
bc90b915
FN
3157
3158 add_com ("othernames", class_obscure, arm_othernames,
3159 "Switch to the next set of register names.");
c3b4394c
RE
3160
3161 /* Fill in the prologue_cache fields. */
34e8f22d 3162 prologue_cache.saved_regs = NULL;
c3b4394c
RE
3163 prologue_cache.extra_info = (struct frame_extra_info *)
3164 xcalloc (1, sizeof (struct frame_extra_info));
6529d2dd
AC
3165
3166 /* Debugging flag. */
3167 add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
3168 &arm_debug, "Set arm debugging.\n\
3169When non-zero, arm specific debugging is enabled.", &setdebuglist),
3170 &showdebuglist);
c906108c 3171}
This page took 0.397333 seconds and 4 git commands to generate.