2007-04-16 Denis Pilat <denis.pilat@st.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
34e8f22d
RE
46
47#include "arm-tdep.h"
26216b98 48#include "gdb/sim-arm.h"
34e8f22d 49
082fc60d
RE
50#include "elf-bfd.h"
51#include "coff/internal.h"
97e03143 52#include "elf/arm.h"
c906108c 53
26216b98
AC
54#include "gdb_assert.h"
55
6529d2dd
AC
56static int arm_debug;
57
082fc60d
RE
58/* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 60 is used for this purpose.
082fc60d
RE
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
64
65#define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69#define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
afd7eef0
RE
72/* The list of available "set arm ..." and "show arm ..." commands. */
73static struct cmd_list_element *setarmcmdlist = NULL;
74static struct cmd_list_element *showarmcmdlist = NULL;
75
fd50bc42
RE
76/* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78static const char *fp_model_strings[] =
79{
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
28e97307
DJ
84 "vfp",
85 NULL
fd50bc42
RE
86};
87
88/* A variable that can be configured by the user. */
89static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90static const char *current_fp_model = "auto";
91
28e97307
DJ
92/* The ABI to use. Keep this in sync with arm_abi_kind. */
93static const char *arm_abi_strings[] =
94{
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99};
100
101/* A variable that can be configured by the user. */
102static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103static const char *arm_abi_string = "auto";
104
94c30b78 105/* Number of different reg name sets (options). */
afd7eef0 106static int num_disassembly_options;
bc90b915 107
123dc839
DJ
108/* The standard register names, and all the valid aliases for them. */
109static const struct
110{
111 const char *name;
112 int regnum;
113} arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157};
bc90b915 158
123dc839 159static const char *const arm_register_names[] =
da59e081
JM
160{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 166 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 167
afd7eef0
RE
168/* Valid register name styles. */
169static const char **valid_disassembly_styles;
ed9a39eb 170
afd7eef0
RE
171/* Disassembly style to use. Default to "std" register names. */
172static const char *disassembly_style;
96baa820 173
ed9a39eb 174/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
175 style. */
176static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 177 struct cmd_list_element *);
afd7eef0 178static void set_disassembly_style (void);
ed9a39eb 179
b508a996
RE
180static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
ed9a39eb 184
9b8d791a 185struct arm_prologue_cache
c3b4394c 186{
eb5492fa
DJ
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
c3b4394c
RE
197 int framesize;
198 int frameoffset;
eb5492fa
DJ
199
200 /* The register used to hold the frame pointer for this frame. */
c3b4394c 201 int framereg;
eb5492fa
DJ
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
c3b4394c 205};
ed9a39eb 206
bc90b915
FN
207/* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209#define IS_THUMB_ADDR(addr) ((addr) & 1)
210#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
94c30b78 213/* Set to true if the 32-bit mode is in use. */
c906108c
SS
214
215int arm_apcs_32 = 1;
216
ed9a39eb
JM
217/* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
c906108c 219
ad527d2e 220static int
2a451106 221arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 222{
c5aa993b 223 struct minimal_symbol *sym;
c906108c 224
ed9a39eb 225 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
ed9a39eb 229 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
c5aa993b 233 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
234 }
235 else
ed9a39eb
JM
236 {
237 return 0;
238 }
c906108c
SS
239}
240
181c1381 241/* Remove useless bits from addresses in a running program. */
34e8f22d 242static CORE_ADDR
ed9a39eb 243arm_addr_bits_remove (CORE_ADDR val)
c906108c 244{
a3a2ee65
JT
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 247 else
a3a2ee65 248 return (val & 0x03fffffc);
c906108c
SS
249}
250
181c1381
RE
251/* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
34e8f22d 253static CORE_ADDR
181c1381
RE
254arm_smash_text_address (CORE_ADDR val)
255{
256 return val & ~1;
257}
258
29d73ae4
DJ
259/* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
262
263static CORE_ADDR
29d73ae4
DJ
264thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
c906108c 267{
29d73ae4
DJ
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
da3c6d4a 273
29d73ae4
DJ
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
c906108c 288 {
29d73ae4
DJ
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
c906108c 292
94c30b78 293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 294 {
29d73ae4
DJ
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
da59e081 320 }
da3c6d4a
MS
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
da59e081 323 {
29d73ae4
DJ
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
da59e081 328 else
29d73ae4
DJ
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
da59e081
JM
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 336 {
29d73ae4
DJ
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
da59e081 340 }
29d73ae4 341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 342 {
29d73ae4
DJ
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 356 }
29d73ae4 357 else
3d74b771 358 {
29d73ae4
DJ
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
da3c6d4a 363 break;
3d74b771 364 }
29d73ae4
DJ
365
366 start += 2;
c906108c
SS
367 }
368
29d73ae4
DJ
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
c906108c
SS
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 436 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
176620f1 446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
c906108c 456 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 457 by disassembling the instructions. */
c906108c 458
b8d5e71d
MS
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
c906108c 462
29d73ae4
DJ
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
1c5bada0 469 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
28cd8767
JG
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
b8d5e71d
MS
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
c906108c 484
b8d5e71d
MS
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
c906108c 487
b8d5e71d
MS
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
11d3b27d 490
b8d5e71d
MS
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
f43845b3 494
b8d5e71d
MS
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
f43845b3 522 }
c906108c 523
b8d5e71d 524 return skip_pc; /* End of prologue */
c906108c 525}
94c30b78 526
c5aa993b 527/* *INDENT-OFF* */
c906108c
SS
528/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
c906108c 534
da59e081
JM
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
c906108c
SS
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
543 12 bytes. The frame register is R7.
544
da3c6d4a
MS
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
c5aa993b
JM
547/* *INDENT-ON* */
548
c906108c 549static void
eb5492fa 550thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
551{
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
94c30b78 555 /* Which register has been copied to register n? */
da3c6d4a
MS
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
c5aa993b 563 int i;
c906108c 564
eb5492fa 565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 570 prologue_end = prev_pc;
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
f7060f85
DJ
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
c906108c 578
eb5492fa 579 prologue_end = min (prologue_end, prev_pc);
c906108c 580
29d73ae4
DJ
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
c906108c
SS
583}
584
ed9a39eb 585/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
c906108c
SS
590 This information is stored in the "extra" fields of the frame_info.
591
96baa820
JM
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
ed9a39eb
JM
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
96baa820 599
c906108c 600 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
c906108c 608 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
ed9a39eb 615
96baa820
JM
616 A variable argument function call will look like:
617
ed9a39eb
JM
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
96baa820 623 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
96baa820
JM
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
ed9a39eb
JM
649
650 */
c906108c
SS
651
652static void
eb5492fa 653arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 654{
28cd8767 655 int regno, sp_offset, fp_offset, ip_offset;
c906108c 656 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 658
c906108c 659 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
c906108c
SS
663
664 /* Check for Thumb prologue. */
eb5492fa 665 if (arm_pc_is_thumb (prev_pc))
c906108c 666 {
eb5492fa 667 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 674 {
2a451106
KB
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
eb5492fa 681 prologue_end = prev_pc;
2a451106
KB
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
94c30b78 705 the scheduler. */
2a451106
KB
706
707 if (prologue_end > prologue_start + 64)
708 {
94c30b78 709 prologue_end = prologue_start + 64; /* See above. */
2a451106 710 }
c906108c
SS
711 }
712 else
713 {
eb5492fa
DJ
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 728 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 729 }
c906108c
SS
730 }
731
eb5492fa
DJ
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
c906108c 735 /* Now search the prologue looking for instructions that set up the
96baa820 736 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 737
96baa820
JM
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 741 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 746 if we don't see this as the first insn, we will stop.
c906108c 747
f43845b3
MS
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 750
f43845b3
MS
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
b8d5e71d 754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 755
28cd8767 756 sp_offset = fp_offset = ip_offset = 0;
f43845b3 757
94c30b78
MS
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
f43845b3 760 current_pc += 4)
96baa820 761 {
d4473757
KB
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
94c30b78 764 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 765 {
28cd8767
JG
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
f43845b3
MS
783 continue;
784 }
94c30b78 785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 786 {
e28a332c
JG
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
c906108c 795 {
d4473757 796 int mask = insn & 0xffff;
ed9a39eb 797
94c30b78 798 /* Calculate offsets of saved registers. */
34e8f22d 799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
eb5492fa 803 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
804 }
805 }
b8d5e71d
MS
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
d4473757
KB
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
94c30b78
MS
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 824 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 825 fp_offset = -imm + ip_offset;
9b8d791a 826 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
94c30b78
MS
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
ff6f572f
DJ
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
837 {
838 sp_offset -= 12;
34e8f22d 839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 840 cache->saved_regs[regno].addr = sp_offset;
d4473757 841 }
ff6f572f
DJ
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
94c30b78 848 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 849 {
d4473757
KB
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
96baa820 854 }
d4473757 855 else
96baa820 856 {
d4473757
KB
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
96baa820 861 }
d4473757 862
34e8f22d 863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
866 {
867 sp_offset -= 12;
eb5492fa 868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 869 }
c906108c 870 }
d4473757 871 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 872 break; /* Condition not true, exit early */
b8d5e71d 873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 874 break; /* Don't scan past a block load */
d4473757
KB
875 else
876 /* The optimizer might shove anything into the prologue,
94c30b78 877 so we just skip what we don't recognize. */
d4473757 878 continue;
c906108c
SS
879 }
880
94c30b78
MS
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
d4473757 887 else
9b8d791a 888 cache->frameoffset = 0;
c906108c
SS
889}
890
eb5492fa
DJ
891static struct arm_prologue_cache *
892arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 893{
eb5492fa
DJ
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
c5aa993b 897
35d5d4ee 898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 900
eb5492fa 901 arm_scan_prologue (next_frame, cache);
848cfffb 902
eb5492fa
DJ
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
c906108c 906
eb5492fa 907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 908
eb5492fa
DJ
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 912 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
c906108c
SS
916}
917
eb5492fa
DJ
918/* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
c906108c 920
148754e5 921static void
eb5492fa
DJ
922arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
eb5492fa
DJ
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
f079148d 929
eb5492fa
DJ
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
2a451106 933
93d42b30 934 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 935
eb5492fa
DJ
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
9e815ec2 938 if (func <= LOWEST_PC)
eb5492fa 939 return;
5a203e44 940
eb5492fa
DJ
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
24de872b 944
eb5492fa 945 id = frame_id_build (cache->prev_sp, func);
eb5492fa 946 *this_id = id;
c906108c
SS
947}
948
eb5492fa
DJ
949static void
950arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
9af75ef6 957 gdb_byte *valuep)
24de872b
DJ
958{
959 struct arm_prologue_cache *cache;
960
eb5492fa
DJ
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
24de872b 964
eb5492fa
DJ
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
24de872b 970
eb5492fa
DJ
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
1f67027d
AC
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
984}
985
986struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990};
991
992static const struct frame_unwind *
993arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994{
995 return &arm_prologue_unwind;
24de872b
DJ
996}
997
909cf6ea
DJ
998static struct arm_prologue_cache *
999arm_make_stub_cache (struct frame_info *next_frame)
1000{
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
35d5d4ee 1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011}
1012
1013/* Our frame ID for a stub frame is the current SP and LR. */
1014
1015static void
1016arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019{
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028}
1029
1030struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034};
1035
1036static const struct frame_unwind *
1037arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038{
93d42b30 1039 CORE_ADDR addr_in_block;
909cf6ea
DJ
1040 char dummy[4];
1041
93d42b30
DJ
1042 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1043 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1044 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1045 return &arm_stub_unwind;
1046
1047 return NULL;
1048}
1049
24de872b 1050static CORE_ADDR
eb5492fa 1051arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1052{
1053 struct arm_prologue_cache *cache;
1054
eb5492fa
DJ
1055 if (*this_cache == NULL)
1056 *this_cache = arm_make_prologue_cache (next_frame);
1057 cache = *this_cache;
1058
1059 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1060}
1061
eb5492fa
DJ
1062struct frame_base arm_normal_base = {
1063 &arm_prologue_unwind,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base
1067};
1068
eb5492fa
DJ
1069/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1070 dummy frame. The frame ID's base needs to match the TOS value
1071 saved by save_dummy_frame_tos() and returned from
1072 arm_push_dummy_call, and the PC needs to match the dummy frame's
1073 breakpoint. */
c906108c 1074
eb5492fa
DJ
1075static struct frame_id
1076arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1077{
eb5492fa
DJ
1078 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1079 frame_pc_unwind (next_frame));
1080}
c3b4394c 1081
eb5492fa
DJ
1082/* Given THIS_FRAME, find the previous frame's resume PC (which will
1083 be used to construct the previous frame's ID, after looking up the
1084 containing function). */
c3b4394c 1085
eb5492fa
DJ
1086static CORE_ADDR
1087arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1088{
1089 CORE_ADDR pc;
1090 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1091 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1092}
1093
1094static CORE_ADDR
1095arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1096{
1097 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1098}
1099
2dd604e7
RE
1100/* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The code below implements a FILO (stack) to do this. */
1102
1103struct stack_item
1104{
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108};
1109
1110static struct stack_item *
1111push_stack_item (struct stack_item *prev, void *contents, int len)
1112{
1113 struct stack_item *si;
1114 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1115 si->data = xmalloc (len);
2dd604e7
RE
1116 si->len = len;
1117 si->prev = prev;
1118 memcpy (si->data, contents, len);
1119 return si;
1120}
1121
1122static struct stack_item *
1123pop_stack_item (struct stack_item *si)
1124{
1125 struct stack_item *dead = si;
1126 si = si->prev;
1127 xfree (dead->data);
1128 xfree (dead);
1129 return si;
1130}
1131
2af48f68
PB
1132
1133/* Return the alignment (in bytes) of the given type. */
1134
1135static int
1136arm_type_align (struct type *t)
1137{
1138 int n;
1139 int align;
1140 int falign;
1141
1142 t = check_typedef (t);
1143 switch (TYPE_CODE (t))
1144 {
1145 default:
1146 /* Should never happen. */
1147 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1148 return 4;
1149
1150 case TYPE_CODE_PTR:
1151 case TYPE_CODE_ENUM:
1152 case TYPE_CODE_INT:
1153 case TYPE_CODE_FLT:
1154 case TYPE_CODE_SET:
1155 case TYPE_CODE_RANGE:
1156 case TYPE_CODE_BITSTRING:
1157 case TYPE_CODE_REF:
1158 case TYPE_CODE_CHAR:
1159 case TYPE_CODE_BOOL:
1160 return TYPE_LENGTH (t);
1161
1162 case TYPE_CODE_ARRAY:
1163 case TYPE_CODE_COMPLEX:
1164 /* TODO: What about vector types? */
1165 return arm_type_align (TYPE_TARGET_TYPE (t));
1166
1167 case TYPE_CODE_STRUCT:
1168 case TYPE_CODE_UNION:
1169 align = 1;
1170 for (n = 0; n < TYPE_NFIELDS (t); n++)
1171 {
1172 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1173 if (falign > align)
1174 align = falign;
1175 }
1176 return align;
1177 }
1178}
1179
2dd604e7
RE
1180/* We currently only support passing parameters in integer registers. This
1181 conforms with GCC's default model. Several other variants exist and
1182 we should probably support some of them based on the selected ABI. */
1183
1184static CORE_ADDR
7d9b040b 1185arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1186 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1187 struct value **args, CORE_ADDR sp, int struct_return,
1188 CORE_ADDR struct_addr)
2dd604e7
RE
1189{
1190 int argnum;
1191 int argreg;
1192 int nstack;
1193 struct stack_item *si = NULL;
1194
6a65450a
AC
1195 /* Set the return address. For the ARM, the return breakpoint is
1196 always at BP_ADDR. */
2dd604e7 1197 /* XXX Fix for Thumb. */
6a65450a 1198 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1199
1200 /* Walk through the list of args and determine how large a temporary
1201 stack is required. Need to take care here as structs may be
1202 passed on the stack, and we have to to push them. */
1203 nstack = 0;
1204
1205 argreg = ARM_A1_REGNUM;
1206 nstack = 0;
1207
2dd604e7
RE
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
0fd88904 1225 bfd_byte *val;
2af48f68 1226 int align;
2dd604e7 1227
df407dfe 1228 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1229 len = TYPE_LENGTH (arg_type);
1230 target_type = TYPE_TARGET_TYPE (arg_type);
1231 typecode = TYPE_CODE (arg_type);
0fd88904 1232 val = value_contents_writeable (args[argnum]);
2dd604e7 1233
2af48f68
PB
1234 align = arm_type_align (arg_type);
1235 /* Round alignment up to a whole number of words. */
1236 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1237 /* Different ABIs have different maximum alignments. */
1238 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1239 {
1240 /* The APCS ABI only requires word alignment. */
1241 align = INT_REGISTER_SIZE;
1242 }
1243 else
1244 {
1245 /* The AAPCS requires at most doubleword alignment. */
1246 if (align > INT_REGISTER_SIZE * 2)
1247 align = INT_REGISTER_SIZE * 2;
1248 }
1249
1250 /* Push stack padding for dowubleword alignment. */
1251 if (nstack & (align - 1))
1252 {
1253 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1254 nstack += INT_REGISTER_SIZE;
1255 }
1256
1257 /* Doubleword aligned quantities must go in even register pairs. */
1258 if (argreg <= ARM_LAST_ARG_REGNUM
1259 && align > INT_REGISTER_SIZE
1260 && argreg & 1)
1261 argreg++;
1262
2dd604e7
RE
1263 /* If the argument is a pointer to a function, and it is a
1264 Thumb function, create a LOCAL copy of the value and set
1265 the THUMB bit in it. */
1266 if (TYPE_CODE_PTR == typecode
1267 && target_type != NULL
1268 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1269 {
7c0b4a20 1270 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1271 if (arm_pc_is_thumb (regval))
1272 {
1273 val = alloca (len);
fbd9dcd3 1274 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1275 }
1276 }
1277
1278 /* Copy the argument to general registers or the stack in
1279 register-sized pieces. Large arguments are split between
1280 registers and stack. */
1281 while (len > 0)
1282 {
b1e29e33 1283 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1284
1285 if (argreg <= ARM_LAST_ARG_REGNUM)
1286 {
1287 /* The argument is being passed in a general purpose
1288 register. */
7c0b4a20 1289 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1290 if (arm_debug)
1291 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1292 argnum, REGISTER_NAME (argreg),
b1e29e33 1293 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1294 regcache_cooked_write_unsigned (regcache, argreg, regval);
1295 argreg++;
1296 }
1297 else
1298 {
1299 /* Push the arguments onto the stack. */
1300 if (arm_debug)
1301 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1302 argnum, nstack);
b1e29e33
AC
1303 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1304 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1305 }
1306
1307 len -= partial_len;
1308 val += partial_len;
1309 }
1310 }
1311 /* If we have an odd number of words to push, then decrement the stack
1312 by one word now, so first stack argument will be dword aligned. */
1313 if (nstack & 4)
1314 sp -= 4;
1315
1316 while (si)
1317 {
1318 sp -= si->len;
1319 write_memory (sp, si->data, si->len);
1320 si = pop_stack_item (si);
1321 }
1322
1323 /* Finally, update teh SP register. */
1324 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1325
1326 return sp;
1327}
1328
f53f0d0b
PB
1329
1330/* Always align the frame to an 8-byte boundary. This is required on
1331 some platforms and harmless on the rest. */
1332
1333static CORE_ADDR
1334arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1335{
1336 /* Align the stack to eight bytes. */
1337 return sp & ~ (CORE_ADDR) 7;
1338}
1339
c906108c 1340static void
ed9a39eb 1341print_fpu_flags (int flags)
c906108c 1342{
c5aa993b
JM
1343 if (flags & (1 << 0))
1344 fputs ("IVO ", stdout);
1345 if (flags & (1 << 1))
1346 fputs ("DVZ ", stdout);
1347 if (flags & (1 << 2))
1348 fputs ("OFL ", stdout);
1349 if (flags & (1 << 3))
1350 fputs ("UFL ", stdout);
1351 if (flags & (1 << 4))
1352 fputs ("INX ", stdout);
1353 putchar ('\n');
c906108c
SS
1354}
1355
5e74b15c
RE
1356/* Print interesting information about the floating point processor
1357 (if present) or emulator. */
34e8f22d 1358static void
d855c300 1359arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1360 struct frame_info *frame, const char *args)
c906108c 1361{
52f0bd74 1362 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1363 int type;
1364
1365 type = (status >> 24) & 127;
edefbb7c
AC
1366 if (status & (1 << 31))
1367 printf (_("Hardware FPU type %d\n"), type);
1368 else
1369 printf (_("Software FPU type %d\n"), type);
1370 /* i18n: [floating point unit] mask */
1371 fputs (_("mask: "), stdout);
c5aa993b 1372 print_fpu_flags (status >> 16);
edefbb7c
AC
1373 /* i18n: [floating point unit] flags */
1374 fputs (_("flags: "), stdout);
c5aa993b 1375 print_fpu_flags (status);
c906108c
SS
1376}
1377
34e8f22d
RE
1378/* Return the GDB type object for the "standard" data type of data in
1379 register N. */
1380
1381static struct type *
7a5ea0d4 1382arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1383{
34e8f22d 1384 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1385 return builtin_type_arm_ext;
e4c16157
DJ
1386 else if (regnum == ARM_SP_REGNUM)
1387 return builtin_type_void_data_ptr;
1388 else if (regnum == ARM_PC_REGNUM)
1389 return builtin_type_void_func_ptr;
ff6f572f
DJ
1390 else if (regnum >= ARRAY_SIZE (arm_register_names))
1391 /* These registers are only supported on targets which supply
1392 an XML description. */
1393 return builtin_type_int0;
032758dc 1394 else
e4c16157 1395 return builtin_type_uint32;
032758dc
AC
1396}
1397
ff6f572f
DJ
1398/* Map a DWARF register REGNUM onto the appropriate GDB register
1399 number. */
1400
1401static int
1402arm_dwarf_reg_to_regnum (int reg)
1403{
1404 /* Core integer regs. */
1405 if (reg >= 0 && reg <= 15)
1406 return reg;
1407
1408 /* Legacy FPA encoding. These were once used in a way which
1409 overlapped with VFP register numbering, so their use is
1410 discouraged, but GDB doesn't support the ARM toolchain
1411 which used them for VFP. */
1412 if (reg >= 16 && reg <= 23)
1413 return ARM_F0_REGNUM + reg - 16;
1414
1415 /* New assignments for the FPA registers. */
1416 if (reg >= 96 && reg <= 103)
1417 return ARM_F0_REGNUM + reg - 96;
1418
1419 /* WMMX register assignments. */
1420 if (reg >= 104 && reg <= 111)
1421 return ARM_WCGR0_REGNUM + reg - 104;
1422
1423 if (reg >= 112 && reg <= 127)
1424 return ARM_WR0_REGNUM + reg - 112;
1425
1426 if (reg >= 192 && reg <= 199)
1427 return ARM_WC0_REGNUM + reg - 192;
1428
1429 return -1;
1430}
1431
26216b98
AC
1432/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1433static int
1434arm_register_sim_regno (int regnum)
1435{
1436 int reg = regnum;
1437 gdb_assert (reg >= 0 && reg < NUM_REGS);
1438
ff6f572f
DJ
1439 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1440 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1441
1442 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1443 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1444
1445 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1446 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1447
26216b98
AC
1448 if (reg < NUM_GREGS)
1449 return SIM_ARM_R0_REGNUM + reg;
1450 reg -= NUM_GREGS;
1451
1452 if (reg < NUM_FREGS)
1453 return SIM_ARM_FP0_REGNUM + reg;
1454 reg -= NUM_FREGS;
1455
1456 if (reg < NUM_SREGS)
1457 return SIM_ARM_FPS_REGNUM + reg;
1458 reg -= NUM_SREGS;
1459
edefbb7c 1460 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1461}
34e8f22d 1462
a37b3cc0
AC
1463/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1464 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1465 It is thought that this is is the floating-point register format on
1466 little-endian systems. */
c906108c 1467
ed9a39eb 1468static void
b508a996
RE
1469convert_from_extended (const struct floatformat *fmt, const void *ptr,
1470 void *dbl)
c906108c 1471{
a37b3cc0 1472 DOUBLEST d;
d7449b42 1473 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1474 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1475 else
1476 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1477 ptr, &d);
b508a996 1478 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1479}
1480
34e8f22d 1481static void
b508a996 1482convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1483{
a37b3cc0 1484 DOUBLEST d;
b508a996 1485 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1486 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1487 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1488 else
1489 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1490 &d, dbl);
c906108c 1491}
ed9a39eb 1492
c906108c 1493static int
ed9a39eb 1494condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1495{
1496 if (cond == INST_AL || cond == INST_NV)
1497 return 1;
1498
1499 switch (cond)
1500 {
1501 case INST_EQ:
1502 return ((status_reg & FLAG_Z) != 0);
1503 case INST_NE:
1504 return ((status_reg & FLAG_Z) == 0);
1505 case INST_CS:
1506 return ((status_reg & FLAG_C) != 0);
1507 case INST_CC:
1508 return ((status_reg & FLAG_C) == 0);
1509 case INST_MI:
1510 return ((status_reg & FLAG_N) != 0);
1511 case INST_PL:
1512 return ((status_reg & FLAG_N) == 0);
1513 case INST_VS:
1514 return ((status_reg & FLAG_V) != 0);
1515 case INST_VC:
1516 return ((status_reg & FLAG_V) == 0);
1517 case INST_HI:
1518 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1519 case INST_LS:
1520 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1521 case INST_GE:
1522 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1523 case INST_LT:
1524 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1525 case INST_GT:
1526 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1527 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1528 case INST_LE:
1529 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1530 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1531 }
1532 return 1;
1533}
1534
9512d7fd 1535/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1536#define submask(x) ((1L << ((x) + 1)) - 1)
1537#define bit(obj,st) (((obj) >> (st)) & 1)
1538#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1539#define sbits(obj,st,fn) \
1540 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1541#define BranchDest(addr,instr) \
1542 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1543#define ARM_PC_32 1
1544
1545static unsigned long
ed9a39eb
JM
1546shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1547 unsigned long status_reg)
c906108c
SS
1548{
1549 unsigned long res, shift;
1550 int rm = bits (inst, 0, 3);
1551 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1552
1553 if (bit (inst, 4))
c906108c
SS
1554 {
1555 int rs = bits (inst, 8, 11);
1556 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1557 }
1558 else
1559 shift = bits (inst, 7, 11);
c5aa993b
JM
1560
1561 res = (rm == 15
c906108c 1562 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1563 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1564 : read_register (rm));
1565
1566 switch (shifttype)
1567 {
c5aa993b 1568 case 0: /* LSL */
c906108c
SS
1569 res = shift >= 32 ? 0 : res << shift;
1570 break;
c5aa993b
JM
1571
1572 case 1: /* LSR */
c906108c
SS
1573 res = shift >= 32 ? 0 : res >> shift;
1574 break;
1575
c5aa993b
JM
1576 case 2: /* ASR */
1577 if (shift >= 32)
1578 shift = 31;
c906108c
SS
1579 res = ((res & 0x80000000L)
1580 ? ~((~res) >> shift) : res >> shift);
1581 break;
1582
c5aa993b 1583 case 3: /* ROR/RRX */
c906108c
SS
1584 shift &= 31;
1585 if (shift == 0)
1586 res = (res >> 1) | (carry ? 0x80000000L : 0);
1587 else
c5aa993b 1588 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1589 break;
1590 }
1591
1592 return res & 0xffffffff;
1593}
1594
c906108c
SS
1595/* Return number of 1-bits in VAL. */
1596
1597static int
ed9a39eb 1598bitcount (unsigned long val)
c906108c
SS
1599{
1600 int nbits;
1601 for (nbits = 0; val != 0; nbits++)
c5aa993b 1602 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1603 return nbits;
1604}
1605
ad527d2e 1606static CORE_ADDR
ed9a39eb 1607thumb_get_next_pc (CORE_ADDR pc)
c906108c 1608{
c5aa993b 1609 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1610 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1611 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1612 unsigned long offset;
1613
1614 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1615 {
1616 CORE_ADDR sp;
1617
1618 /* Fetch the saved PC from the stack. It's stored above
1619 all of the other registers. */
b1e29e33 1620 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1621 sp = read_register (ARM_SP_REGNUM);
1c5bada0 1622 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
c906108c
SS
1623 nextpc = ADDR_BITS_REMOVE (nextpc);
1624 if (nextpc == pc)
edefbb7c 1625 error (_("Infinite loop detected"));
c906108c
SS
1626 }
1627 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1628 {
34e8f22d 1629 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1630 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1631 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1632 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1633 }
1634 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1635 {
1636 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1637 }
aa17d93e 1638 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1639 {
1c5bada0 1640 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1641 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1642 nextpc = pc_val + offset;
aa17d93e
DJ
1643 /* For BLX make sure to clear the low bits. */
1644 if (bits (inst2, 11, 12) == 1)
1645 nextpc = nextpc & 0xfffffffc;
c906108c 1646 }
aa17d93e 1647 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1648 {
1649 if (bits (inst1, 3, 6) == 0x0f)
1650 nextpc = pc_val;
1651 else
1652 nextpc = read_register (bits (inst1, 3, 6));
1653
1654 nextpc = ADDR_BITS_REMOVE (nextpc);
1655 if (nextpc == pc)
edefbb7c 1656 error (_("Infinite loop detected"));
9498281f 1657 }
c906108c
SS
1658
1659 return nextpc;
1660}
1661
ad527d2e 1662static CORE_ADDR
ed9a39eb 1663arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1664{
1665 unsigned long pc_val;
1666 unsigned long this_instr;
1667 unsigned long status;
1668 CORE_ADDR nextpc;
1669
1670 if (arm_pc_is_thumb (pc))
1671 return thumb_get_next_pc (pc);
1672
1673 pc_val = (unsigned long) pc;
1c5bada0 1674 this_instr = read_memory_unsigned_integer (pc, 4);
34e8f22d 1675 status = read_register (ARM_PS_REGNUM);
c5aa993b 1676 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1677
1678 if (condition_true (bits (this_instr, 28, 31), status))
1679 {
1680 switch (bits (this_instr, 24, 27))
1681 {
c5aa993b 1682 case 0x0:
94c30b78 1683 case 0x1: /* data processing */
c5aa993b
JM
1684 case 0x2:
1685 case 0x3:
c906108c
SS
1686 {
1687 unsigned long operand1, operand2, result = 0;
1688 unsigned long rn;
1689 int c;
c5aa993b 1690
c906108c
SS
1691 if (bits (this_instr, 12, 15) != 15)
1692 break;
1693
1694 if (bits (this_instr, 22, 25) == 0
c5aa993b 1695 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1696 error (_("Invalid update to pc in instruction"));
c906108c 1697
9498281f 1698 /* BX <reg>, BLX <reg> */
e150acc7
PB
1699 if (bits (this_instr, 4, 27) == 0x12fff1
1700 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1701 {
1702 rn = bits (this_instr, 0, 3);
1703 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1704 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1705
1706 if (nextpc == pc)
edefbb7c 1707 error (_("Infinite loop detected"));
9498281f
DJ
1708
1709 return nextpc;
1710 }
1711
c906108c
SS
1712 /* Multiply into PC */
1713 c = (status & FLAG_C) ? 1 : 0;
1714 rn = bits (this_instr, 16, 19);
1715 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1716
c906108c
SS
1717 if (bit (this_instr, 25))
1718 {
1719 unsigned long immval = bits (this_instr, 0, 7);
1720 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1721 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1722 & 0xffffffff;
c906108c 1723 }
c5aa993b 1724 else /* operand 2 is a shifted register */
c906108c 1725 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1726
c906108c
SS
1727 switch (bits (this_instr, 21, 24))
1728 {
c5aa993b 1729 case 0x0: /*and */
c906108c
SS
1730 result = operand1 & operand2;
1731 break;
1732
c5aa993b 1733 case 0x1: /*eor */
c906108c
SS
1734 result = operand1 ^ operand2;
1735 break;
1736
c5aa993b 1737 case 0x2: /*sub */
c906108c
SS
1738 result = operand1 - operand2;
1739 break;
1740
c5aa993b 1741 case 0x3: /*rsb */
c906108c
SS
1742 result = operand2 - operand1;
1743 break;
1744
c5aa993b 1745 case 0x4: /*add */
c906108c
SS
1746 result = operand1 + operand2;
1747 break;
1748
c5aa993b 1749 case 0x5: /*adc */
c906108c
SS
1750 result = operand1 + operand2 + c;
1751 break;
1752
c5aa993b 1753 case 0x6: /*sbc */
c906108c
SS
1754 result = operand1 - operand2 + c;
1755 break;
1756
c5aa993b 1757 case 0x7: /*rsc */
c906108c
SS
1758 result = operand2 - operand1 + c;
1759 break;
1760
c5aa993b
JM
1761 case 0x8:
1762 case 0x9:
1763 case 0xa:
1764 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1765 result = (unsigned long) nextpc;
1766 break;
1767
c5aa993b 1768 case 0xc: /*orr */
c906108c
SS
1769 result = operand1 | operand2;
1770 break;
1771
c5aa993b 1772 case 0xd: /*mov */
c906108c
SS
1773 /* Always step into a function. */
1774 result = operand2;
c5aa993b 1775 break;
c906108c 1776
c5aa993b 1777 case 0xe: /*bic */
c906108c
SS
1778 result = operand1 & ~operand2;
1779 break;
1780
c5aa993b 1781 case 0xf: /*mvn */
c906108c
SS
1782 result = ~operand2;
1783 break;
1784 }
1785 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1786
1787 if (nextpc == pc)
edefbb7c 1788 error (_("Infinite loop detected"));
c906108c
SS
1789 break;
1790 }
c5aa993b
JM
1791
1792 case 0x4:
1793 case 0x5: /* data transfer */
1794 case 0x6:
1795 case 0x7:
c906108c
SS
1796 if (bit (this_instr, 20))
1797 {
1798 /* load */
1799 if (bits (this_instr, 12, 15) == 15)
1800 {
1801 /* rd == pc */
c5aa993b 1802 unsigned long rn;
c906108c 1803 unsigned long base;
c5aa993b 1804
c906108c 1805 if (bit (this_instr, 22))
edefbb7c 1806 error (_("Invalid update to pc in instruction"));
c906108c
SS
1807
1808 /* byte write to PC */
1809 rn = bits (this_instr, 16, 19);
1810 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1811 if (bit (this_instr, 24))
1812 {
1813 /* pre-indexed */
1814 int c = (status & FLAG_C) ? 1 : 0;
1815 unsigned long offset =
c5aa993b 1816 (bit (this_instr, 25)
ed9a39eb 1817 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1818 : bits (this_instr, 0, 11));
c906108c
SS
1819
1820 if (bit (this_instr, 23))
1821 base += offset;
1822 else
1823 base -= offset;
1824 }
c5aa993b 1825 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1826 4);
c5aa993b 1827
c906108c
SS
1828 nextpc = ADDR_BITS_REMOVE (nextpc);
1829
1830 if (nextpc == pc)
edefbb7c 1831 error (_("Infinite loop detected"));
c906108c
SS
1832 }
1833 }
1834 break;
c5aa993b
JM
1835
1836 case 0x8:
1837 case 0x9: /* block transfer */
c906108c
SS
1838 if (bit (this_instr, 20))
1839 {
1840 /* LDM */
1841 if (bit (this_instr, 15))
1842 {
1843 /* loading pc */
1844 int offset = 0;
1845
1846 if (bit (this_instr, 23))
1847 {
1848 /* up */
1849 unsigned long reglist = bits (this_instr, 0, 14);
1850 offset = bitcount (reglist) * 4;
c5aa993b 1851 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1852 offset += 4;
1853 }
1854 else if (bit (this_instr, 24))
1855 offset = -4;
c5aa993b 1856
c906108c 1857 {
c5aa993b
JM
1858 unsigned long rn_val =
1859 read_register (bits (this_instr, 16, 19));
c906108c
SS
1860 nextpc =
1861 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1862 + offset),
c906108c
SS
1863 4);
1864 }
1865 nextpc = ADDR_BITS_REMOVE (nextpc);
1866 if (nextpc == pc)
edefbb7c 1867 error (_("Infinite loop detected"));
c906108c
SS
1868 }
1869 }
1870 break;
c5aa993b
JM
1871
1872 case 0xb: /* branch & link */
1873 case 0xa: /* branch */
c906108c
SS
1874 {
1875 nextpc = BranchDest (pc, this_instr);
1876
9498281f
DJ
1877 /* BLX */
1878 if (bits (this_instr, 28, 31) == INST_NV)
1879 nextpc |= bit (this_instr, 24) << 1;
1880
c906108c
SS
1881 nextpc = ADDR_BITS_REMOVE (nextpc);
1882 if (nextpc == pc)
edefbb7c 1883 error (_("Infinite loop detected"));
c906108c
SS
1884 break;
1885 }
c5aa993b
JM
1886
1887 case 0xc:
1888 case 0xd:
1889 case 0xe: /* coproc ops */
1890 case 0xf: /* SWI */
c906108c
SS
1891 break;
1892
1893 default:
edefbb7c 1894 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1895 return (pc);
1896 }
1897 }
1898
1899 return nextpc;
1900}
1901
9512d7fd
FN
1902/* single_step() is called just before we want to resume the inferior,
1903 if we want to single-step it but there is no hardware or kernel
1904 single-step support. We find the target of the coming instruction
e0cd558a 1905 and breakpoint it. */
9512d7fd 1906
e6590a1b 1907static int
e0cd558a 1908arm_software_single_step (struct regcache *regcache)
9512d7fd 1909{
8181d85f
DJ
1910 /* NOTE: This may insert the wrong breakpoint instruction when
1911 single-stepping over a mode-changing instruction, if the
1912 CPSR heuristics are used. */
9512d7fd 1913
e0cd558a
UW
1914 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1915 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1916
1917 return 1;
9512d7fd 1918}
9512d7fd 1919
c906108c
SS
1920#include "bfd-in2.h"
1921#include "libcoff.h"
1922
1923static int
ed9a39eb 1924gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1925{
1926 if (arm_pc_is_thumb (memaddr))
1927 {
c5aa993b
JM
1928 static asymbol *asym;
1929 static combined_entry_type ce;
1930 static struct coff_symbol_struct csym;
27cddce2 1931 static struct bfd fake_bfd;
c5aa993b 1932 static bfd_target fake_target;
c906108c
SS
1933
1934 if (csym.native == NULL)
1935 {
da3c6d4a
MS
1936 /* Create a fake symbol vector containing a Thumb symbol.
1937 This is solely so that the code in print_insn_little_arm()
1938 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1939 the presence of a Thumb symbol and switch to decoding
1940 Thumb instructions. */
c5aa993b
JM
1941
1942 fake_target.flavour = bfd_target_coff_flavour;
1943 fake_bfd.xvec = &fake_target;
c906108c 1944 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1945 csym.native = &ce;
1946 csym.symbol.the_bfd = &fake_bfd;
1947 csym.symbol.name = "fake";
1948 asym = (asymbol *) & csym;
c906108c 1949 }
c5aa993b 1950
c906108c 1951 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1952 info->symbols = &asym;
c906108c
SS
1953 }
1954 else
1955 info->symbols = NULL;
c5aa993b 1956
d7449b42 1957 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1958 return print_insn_big_arm (memaddr, info);
1959 else
1960 return print_insn_little_arm (memaddr, info);
1961}
1962
66e810cd
RE
1963/* The following define instruction sequences that will cause ARM
1964 cpu's to take an undefined instruction trap. These are used to
1965 signal a breakpoint to GDB.
1966
1967 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1968 modes. A different instruction is required for each mode. The ARM
1969 cpu's can also be big or little endian. Thus four different
1970 instructions are needed to support all cases.
1971
1972 Note: ARMv4 defines several new instructions that will take the
1973 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1974 not in fact add the new instructions. The new undefined
1975 instructions in ARMv4 are all instructions that had no defined
1976 behaviour in earlier chips. There is no guarantee that they will
1977 raise an exception, but may be treated as NOP's. In practice, it
1978 may only safe to rely on instructions matching:
1979
1980 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1981 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1982 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1983
1984 Even this may only true if the condition predicate is true. The
1985 following use a condition predicate of ALWAYS so it is always TRUE.
1986
1987 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1988 and NetBSD all use a software interrupt rather than an undefined
1989 instruction to force a trap. This can be handled by by the
1990 abi-specific code during establishment of the gdbarch vector. */
1991
1992
d7b486e7
RE
1993/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1994 override these definitions. */
66e810cd
RE
1995#ifndef ARM_LE_BREAKPOINT
1996#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1997#endif
1998#ifndef ARM_BE_BREAKPOINT
1999#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2000#endif
2001#ifndef THUMB_LE_BREAKPOINT
2002#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2003#endif
2004#ifndef THUMB_BE_BREAKPOINT
2005#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2006#endif
2007
2008static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2009static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2010static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2011static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2012
34e8f22d
RE
2013/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2014 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2015 breakpoint should be used. It returns a pointer to a string of
2016 bytes that encode a breakpoint instruction, stores the length of
2017 the string to *lenptr, and adjusts the program counter (if
2018 necessary) to point to the actual memory location where the
c906108c
SS
2019 breakpoint should be inserted. */
2020
ab89facf 2021static const unsigned char *
ed9a39eb 2022arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2023{
66e810cd
RE
2024 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2025
4bf7064c 2026 if (arm_pc_is_thumb (*pcptr))
c906108c 2027 {
66e810cd
RE
2028 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2029 *lenptr = tdep->thumb_breakpoint_size;
2030 return tdep->thumb_breakpoint;
c906108c
SS
2031 }
2032 else
2033 {
66e810cd
RE
2034 *lenptr = tdep->arm_breakpoint_size;
2035 return tdep->arm_breakpoint;
c906108c
SS
2036 }
2037}
ed9a39eb
JM
2038
2039/* Extract from an array REGBUF containing the (raw) register state a
2040 function return value of type TYPE, and copy that, in virtual
2041 format, into VALBUF. */
2042
34e8f22d 2043static void
5238cf52
MK
2044arm_extract_return_value (struct type *type, struct regcache *regs,
2045 gdb_byte *valbuf)
ed9a39eb
JM
2046{
2047 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2048 {
28e97307 2049 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2050 {
2051 case ARM_FLOAT_FPA:
b508a996
RE
2052 {
2053 /* The value is in register F0 in internal format. We need to
2054 extract the raw value and then convert it to the desired
2055 internal type. */
7a5ea0d4 2056 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2057
2058 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2059 convert_from_extended (floatformat_from_type (type), tmpbuf,
2060 valbuf);
2061 }
08216dd7
RE
2062 break;
2063
fd50bc42 2064 case ARM_FLOAT_SOFT_FPA:
08216dd7 2065 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2066 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2067 if (TYPE_LENGTH (type) > 4)
2068 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2069 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2070 break;
2071
2072 default:
2073 internal_error
2074 (__FILE__, __LINE__,
edefbb7c 2075 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2076 break;
2077 }
2078 }
b508a996
RE
2079 else if (TYPE_CODE (type) == TYPE_CODE_INT
2080 || TYPE_CODE (type) == TYPE_CODE_CHAR
2081 || TYPE_CODE (type) == TYPE_CODE_BOOL
2082 || TYPE_CODE (type) == TYPE_CODE_PTR
2083 || TYPE_CODE (type) == TYPE_CODE_REF
2084 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2085 {
2086 /* If the the type is a plain integer, then the access is
2087 straight-forward. Otherwise we have to play around a bit more. */
2088 int len = TYPE_LENGTH (type);
2089 int regno = ARM_A1_REGNUM;
2090 ULONGEST tmp;
2091
2092 while (len > 0)
2093 {
2094 /* By using store_unsigned_integer we avoid having to do
2095 anything special for small big-endian values. */
2096 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2097 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2098 (len > INT_REGISTER_SIZE
2099 ? INT_REGISTER_SIZE : len),
b508a996 2100 tmp);
7a5ea0d4
DJ
2101 len -= INT_REGISTER_SIZE;
2102 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2103 }
2104 }
ed9a39eb 2105 else
b508a996
RE
2106 {
2107 /* For a structure or union the behaviour is as if the value had
2108 been stored to word-aligned memory and then loaded into
2109 registers with 32-bit load instruction(s). */
2110 int len = TYPE_LENGTH (type);
2111 int regno = ARM_A1_REGNUM;
7a5ea0d4 2112 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2113
2114 while (len > 0)
2115 {
2116 regcache_cooked_read (regs, regno++, tmpbuf);
2117 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2118 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2119 len -= INT_REGISTER_SIZE;
2120 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2121 }
2122 }
34e8f22d
RE
2123}
2124
67255d04
RE
2125
2126/* Will a function return an aggregate type in memory or in a
2127 register? Return 0 if an aggregate type can be returned in a
2128 register, 1 if it must be returned in memory. */
2129
2130static int
2af48f68 2131arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2132{
2133 int nRc;
52f0bd74 2134 enum type_code code;
67255d04 2135
44e1a9eb
DJ
2136 CHECK_TYPEDEF (type);
2137
67255d04
RE
2138 /* In the ARM ABI, "integer" like aggregate types are returned in
2139 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2140 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2141 offset of each addressable subfield must be zero. Note that bit
2142 fields are not addressable, and all addressable subfields of
2143 unions always start at offset zero.
67255d04
RE
2144
2145 This function is based on the behaviour of GCC 2.95.1.
2146 See: gcc/arm.c: arm_return_in_memory() for details.
2147
2148 Note: All versions of GCC before GCC 2.95.2 do not set up the
2149 parameters correctly for a function returning the following
2150 structure: struct { float f;}; This should be returned in memory,
2151 not a register. Richard Earnshaw sent me a patch, but I do not
2152 know of any way to detect if a function like the above has been
2153 compiled with the correct calling convention. */
2154
2155 /* All aggregate types that won't fit in a register must be returned
2156 in memory. */
b1e29e33 2157 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2158 {
2159 return 1;
2160 }
2161
2af48f68
PB
2162 /* The AAPCS says all aggregates not larger than a word are returned
2163 in a register. */
2164 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2165 return 0;
2166
67255d04
RE
2167 /* The only aggregate types that can be returned in a register are
2168 structs and unions. Arrays must be returned in memory. */
2169 code = TYPE_CODE (type);
2170 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2171 {
2172 return 1;
2173 }
2174
2175 /* Assume all other aggregate types can be returned in a register.
2176 Run a check for structures, unions and arrays. */
2177 nRc = 0;
2178
2179 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2180 {
2181 int i;
2182 /* Need to check if this struct/union is "integer" like. For
2183 this to be true, its size must be less than or equal to
b1e29e33
AC
2184 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2185 subfield must be zero. Note that bit fields are not
2186 addressable, and unions always start at offset zero. If any
2187 of the subfields is a floating point type, the struct/union
2188 cannot be an integer type. */
67255d04
RE
2189
2190 /* For each field in the object, check:
2191 1) Is it FP? --> yes, nRc = 1;
2192 2) Is it addressable (bitpos != 0) and
2193 not packed (bitsize == 0)?
2194 --> yes, nRc = 1
2195 */
2196
2197 for (i = 0; i < TYPE_NFIELDS (type); i++)
2198 {
2199 enum type_code field_type_code;
44e1a9eb 2200 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2201
2202 /* Is it a floating point type field? */
2203 if (field_type_code == TYPE_CODE_FLT)
2204 {
2205 nRc = 1;
2206 break;
2207 }
2208
2209 /* If bitpos != 0, then we have to care about it. */
2210 if (TYPE_FIELD_BITPOS (type, i) != 0)
2211 {
2212 /* Bitfields are not addressable. If the field bitsize is
2213 zero, then the field is not packed. Hence it cannot be
2214 a bitfield or any other packed type. */
2215 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2216 {
2217 nRc = 1;
2218 break;
2219 }
2220 }
2221 }
2222 }
2223
2224 return nRc;
2225}
2226
34e8f22d
RE
2227/* Write into appropriate registers a function return value of type
2228 TYPE, given in virtual format. */
2229
2230static void
b508a996 2231arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2232 const gdb_byte *valbuf)
34e8f22d
RE
2233{
2234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2235 {
7a5ea0d4 2236 char buf[MAX_REGISTER_SIZE];
34e8f22d 2237
28e97307 2238 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2239 {
2240 case ARM_FLOAT_FPA:
2241
b508a996
RE
2242 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2243 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2244 break;
2245
fd50bc42 2246 case ARM_FLOAT_SOFT_FPA:
08216dd7 2247 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2248 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2249 if (TYPE_LENGTH (type) > 4)
2250 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2251 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2252 break;
2253
2254 default:
2255 internal_error
2256 (__FILE__, __LINE__,
edefbb7c 2257 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2258 break;
2259 }
34e8f22d 2260 }
b508a996
RE
2261 else if (TYPE_CODE (type) == TYPE_CODE_INT
2262 || TYPE_CODE (type) == TYPE_CODE_CHAR
2263 || TYPE_CODE (type) == TYPE_CODE_BOOL
2264 || TYPE_CODE (type) == TYPE_CODE_PTR
2265 || TYPE_CODE (type) == TYPE_CODE_REF
2266 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2267 {
2268 if (TYPE_LENGTH (type) <= 4)
2269 {
2270 /* Values of one word or less are zero/sign-extended and
2271 returned in r0. */
7a5ea0d4 2272 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2273 LONGEST val = unpack_long (type, valbuf);
2274
7a5ea0d4 2275 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2276 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2277 }
2278 else
2279 {
2280 /* Integral values greater than one word are stored in consecutive
2281 registers starting with r0. This will always be a multiple of
2282 the regiser size. */
2283 int len = TYPE_LENGTH (type);
2284 int regno = ARM_A1_REGNUM;
2285
2286 while (len > 0)
2287 {
2288 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2289 len -= INT_REGISTER_SIZE;
2290 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2291 }
2292 }
2293 }
34e8f22d 2294 else
b508a996
RE
2295 {
2296 /* For a structure or union the behaviour is as if the value had
2297 been stored to word-aligned memory and then loaded into
2298 registers with 32-bit load instruction(s). */
2299 int len = TYPE_LENGTH (type);
2300 int regno = ARM_A1_REGNUM;
7a5ea0d4 2301 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2302
2303 while (len > 0)
2304 {
2305 memcpy (tmpbuf, valbuf,
7a5ea0d4 2306 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2307 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2308 len -= INT_REGISTER_SIZE;
2309 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2310 }
2311 }
34e8f22d
RE
2312}
2313
2af48f68
PB
2314
2315/* Handle function return values. */
2316
2317static enum return_value_convention
2318arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2319 struct regcache *regcache, gdb_byte *readbuf,
2320 const gdb_byte *writebuf)
2af48f68 2321{
7c00367c
MK
2322 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2323
2af48f68
PB
2324 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2325 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2326 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2327 {
7c00367c
MK
2328 if (tdep->struct_return == pcc_struct_return
2329 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2330 return RETURN_VALUE_STRUCT_CONVENTION;
2331 }
2332
2333 if (writebuf)
2334 arm_store_return_value (valtype, regcache, writebuf);
2335
2336 if (readbuf)
2337 arm_extract_return_value (valtype, regcache, readbuf);
2338
2339 return RETURN_VALUE_REGISTER_CONVENTION;
2340}
2341
2342
9df628e0
RE
2343static int
2344arm_get_longjmp_target (CORE_ADDR *pc)
2345{
2346 CORE_ADDR jb_addr;
7a5ea0d4 2347 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2348 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2349
2350 jb_addr = read_register (ARM_A1_REGNUM);
2351
2352 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2353 INT_REGISTER_SIZE))
9df628e0
RE
2354 return 0;
2355
7a5ea0d4 2356 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2357 return 1;
2358}
2359
ed9a39eb 2360/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2361
2362int
ed9a39eb 2363arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2364{
2365 CORE_ADDR start_addr;
2366
ed9a39eb
JM
2367 /* Find the starting address of the function containing the PC. If
2368 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2369 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2370 &start_addr, NULL))
c906108c
SS
2371 return 0;
2372
2373 return strncmp (name, "_call_via_r", 11) == 0;
2374}
2375
ed9a39eb
JM
2376/* If PC is in a Thumb call or return stub, return the address of the
2377 target PC, which is in a register. The thunk functions are called
2378 _called_via_xx, where x is the register name. The possible names
2379 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2380
2381CORE_ADDR
ed9a39eb 2382arm_skip_stub (CORE_ADDR pc)
c906108c 2383{
c5aa993b 2384 char *name;
c906108c
SS
2385 CORE_ADDR start_addr;
2386
2387 /* Find the starting address and name of the function containing the PC. */
2388 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2389 return 0;
2390
2391 /* Call thunks always start with "_call_via_". */
2392 if (strncmp (name, "_call_via_", 10) == 0)
2393 {
ed9a39eb
JM
2394 /* Use the name suffix to determine which register contains the
2395 target PC. */
c5aa993b
JM
2396 static char *table[15] =
2397 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2398 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2399 };
c906108c
SS
2400 int regno;
2401
2402 for (regno = 0; regno <= 14; regno++)
2403 if (strcmp (&name[10], table[regno]) == 0)
2404 return read_register (regno);
2405 }
ed9a39eb 2406
c5aa993b 2407 return 0; /* not a stub */
c906108c
SS
2408}
2409
afd7eef0
RE
2410static void
2411set_arm_command (char *args, int from_tty)
2412{
edefbb7c
AC
2413 printf_unfiltered (_("\
2414\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2415 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2416}
2417
2418static void
2419show_arm_command (char *args, int from_tty)
2420{
26304000 2421 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2422}
2423
28e97307
DJ
2424static void
2425arm_update_current_architecture (void)
fd50bc42 2426{
28e97307 2427 struct gdbarch_info info;
fd50bc42 2428
28e97307
DJ
2429 /* If the current architecture is not ARM, we have nothing to do. */
2430 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2431 return;
fd50bc42 2432
28e97307
DJ
2433 /* Update the architecture. */
2434 gdbarch_info_init (&info);
fd50bc42 2435
28e97307
DJ
2436 if (!gdbarch_update_p (info))
2437 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2438}
2439
2440static void
2441set_fp_model_sfunc (char *args, int from_tty,
2442 struct cmd_list_element *c)
2443{
2444 enum arm_float_model fp_model;
2445
2446 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2447 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2448 {
2449 arm_fp_model = fp_model;
2450 break;
2451 }
2452
2453 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2454 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2455 current_fp_model);
2456
28e97307 2457 arm_update_current_architecture ();
fd50bc42
RE
2458}
2459
2460static void
08546159
AC
2461show_fp_model (struct ui_file *file, int from_tty,
2462 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2463{
2464 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2465
28e97307 2466 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2467 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2468 fprintf_filtered (file, _("\
2469The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2470 fp_model_strings[tdep->fp_model]);
2471 else
2472 fprintf_filtered (file, _("\
2473The current ARM floating point model is \"%s\".\n"),
2474 fp_model_strings[arm_fp_model]);
2475}
2476
2477static void
2478arm_set_abi (char *args, int from_tty,
2479 struct cmd_list_element *c)
2480{
2481 enum arm_abi_kind arm_abi;
2482
2483 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2484 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2485 {
2486 arm_abi_global = arm_abi;
2487 break;
2488 }
2489
2490 if (arm_abi == ARM_ABI_LAST)
2491 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2492 arm_abi_string);
2493
2494 arm_update_current_architecture ();
2495}
2496
2497static void
2498arm_show_abi (struct ui_file *file, int from_tty,
2499 struct cmd_list_element *c, const char *value)
2500{
2501 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2502
2503 if (arm_abi_global == ARM_ABI_AUTO
2504 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2505 fprintf_filtered (file, _("\
2506The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2507 arm_abi_strings[tdep->arm_abi]);
2508 else
2509 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2510 arm_abi_string);
fd50bc42
RE
2511}
2512
afd7eef0
RE
2513/* If the user changes the register disassembly style used for info
2514 register and other commands, we have to also switch the style used
2515 in opcodes for disassembly output. This function is run in the "set
2516 arm disassembly" command, and does that. */
bc90b915
FN
2517
2518static void
afd7eef0 2519set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2520 struct cmd_list_element *c)
2521{
afd7eef0 2522 set_disassembly_style ();
bc90b915
FN
2523}
2524\f
966fbf70 2525/* Return the ARM register name corresponding to register I. */
a208b0cb 2526static const char *
34e8f22d 2527arm_register_name (int i)
966fbf70 2528{
ff6f572f
DJ
2529 if (i >= ARRAY_SIZE (arm_register_names))
2530 /* These registers are only supported on targets which supply
2531 an XML description. */
2532 return "";
2533
966fbf70
RE
2534 return arm_register_names[i];
2535}
2536
bc90b915 2537static void
afd7eef0 2538set_disassembly_style (void)
bc90b915 2539{
123dc839 2540 int current;
bc90b915 2541
123dc839
DJ
2542 /* Find the style that the user wants. */
2543 for (current = 0; current < num_disassembly_options; current++)
2544 if (disassembly_style == valid_disassembly_styles[current])
2545 break;
2546 gdb_assert (current < num_disassembly_options);
bc90b915 2547
94c30b78 2548 /* Synchronize the disassembler. */
bc90b915
FN
2549 set_arm_regname_option (current);
2550}
2551
082fc60d
RE
2552/* Test whether the coff symbol specific value corresponds to a Thumb
2553 function. */
2554
2555static int
2556coff_sym_is_thumb (int val)
2557{
2558 return (val == C_THUMBEXT ||
2559 val == C_THUMBSTAT ||
2560 val == C_THUMBEXTFUNC ||
2561 val == C_THUMBSTATFUNC ||
2562 val == C_THUMBLABEL);
2563}
2564
2565/* arm_coff_make_msymbol_special()
2566 arm_elf_make_msymbol_special()
2567
2568 These functions test whether the COFF or ELF symbol corresponds to
2569 an address in thumb code, and set a "special" bit in a minimal
2570 symbol to indicate that it does. */
2571
34e8f22d 2572static void
082fc60d
RE
2573arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2574{
2575 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2576 STT_ARM_TFUNC). */
2577 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2578 == STT_LOPROC)
2579 MSYMBOL_SET_SPECIAL (msym);
2580}
2581
34e8f22d 2582static void
082fc60d
RE
2583arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2584{
2585 if (coff_sym_is_thumb (val))
2586 MSYMBOL_SET_SPECIAL (msym);
2587}
2588
756fe439
DJ
2589static void
2590arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2591{
2592 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2593
2594 /* If necessary, set the T bit. */
2595 if (arm_apcs_32)
2596 {
2597 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2598 if (arm_pc_is_thumb (pc))
2599 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2600 else
2601 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2602 }
2603}
123dc839
DJ
2604
2605static struct value *
2606value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2607{
2608 const int *reg_p = baton;
2609 return value_of_register (*reg_p, frame);
2610}
97e03143 2611\f
70f80edf
JT
2612static enum gdb_osabi
2613arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2614{
2af48f68 2615 unsigned int elfosabi;
70f80edf 2616 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2617
70f80edf 2618 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2619
28e97307
DJ
2620 if (elfosabi == ELFOSABI_ARM)
2621 /* GNU tools use this value. Check note sections in this case,
2622 as well. */
2623 bfd_map_over_sections (abfd,
2624 generic_elf_osabi_sniff_abi_tag_sections,
2625 &osabi);
97e03143 2626
28e97307 2627 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2628 return osabi;
97e03143
RE
2629}
2630
70f80edf 2631\f
da3c6d4a
MS
2632/* Initialize the current architecture based on INFO. If possible,
2633 re-use an architecture from ARCHES, which is a list of
2634 architectures already created during this debugging session.
97e03143 2635
da3c6d4a
MS
2636 Called e.g. at program startup, when reading a core file, and when
2637 reading a binary file. */
97e03143 2638
39bbf761
RE
2639static struct gdbarch *
2640arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2641{
97e03143 2642 struct gdbarch_tdep *tdep;
39bbf761 2643 struct gdbarch *gdbarch;
28e97307
DJ
2644 struct gdbarch_list *best_arch;
2645 enum arm_abi_kind arm_abi = arm_abi_global;
2646 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2647 struct tdesc_arch_data *tdesc_data = NULL;
2648 int i;
ff6f572f 2649 int have_fpa_registers = 1;
123dc839
DJ
2650
2651 /* Check any target description for validity. */
2652 if (tdesc_has_registers (info.target_desc))
2653 {
2654 /* For most registers we require GDB's default names; but also allow
2655 the numeric names for sp / lr / pc, as a convenience. */
2656 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2657 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2658 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2659
2660 const struct tdesc_feature *feature;
2661 int i, valid_p;
2662
2663 feature = tdesc_find_feature (info.target_desc,
2664 "org.gnu.gdb.arm.core");
2665 if (feature == NULL)
2666 return NULL;
2667
2668 tdesc_data = tdesc_data_alloc ();
2669
2670 valid_p = 1;
2671 for (i = 0; i < ARM_SP_REGNUM; i++)
2672 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2673 arm_register_names[i]);
2674 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2675 ARM_SP_REGNUM,
2676 arm_sp_names);
2677 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2678 ARM_LR_REGNUM,
2679 arm_lr_names);
2680 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2681 ARM_PC_REGNUM,
2682 arm_pc_names);
2683 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2684 ARM_PS_REGNUM, "cpsr");
2685
2686 if (!valid_p)
2687 {
2688 tdesc_data_cleanup (tdesc_data);
2689 return NULL;
2690 }
2691
2692 feature = tdesc_find_feature (info.target_desc,
2693 "org.gnu.gdb.arm.fpa");
2694 if (feature != NULL)
2695 {
2696 valid_p = 1;
2697 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2698 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2699 arm_register_names[i]);
2700 if (!valid_p)
2701 {
2702 tdesc_data_cleanup (tdesc_data);
2703 return NULL;
2704 }
2705 }
ff6f572f
DJ
2706 else
2707 have_fpa_registers = 0;
2708
2709 feature = tdesc_find_feature (info.target_desc,
2710 "org.gnu.gdb.xscale.iwmmxt");
2711 if (feature != NULL)
2712 {
2713 static const char *const iwmmxt_names[] = {
2714 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2715 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2716 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2717 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2718 };
2719
2720 valid_p = 1;
2721 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2722 valid_p
2723 &= tdesc_numbered_register (feature, tdesc_data, i,
2724 iwmmxt_names[i - ARM_WR0_REGNUM]);
2725
2726 /* Check for the control registers, but do not fail if they
2727 are missing. */
2728 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2729 tdesc_numbered_register (feature, tdesc_data, i,
2730 iwmmxt_names[i - ARM_WR0_REGNUM]);
2731
2732 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2733 valid_p
2734 &= tdesc_numbered_register (feature, tdesc_data, i,
2735 iwmmxt_names[i - ARM_WR0_REGNUM]);
2736
2737 if (!valid_p)
2738 {
2739 tdesc_data_cleanup (tdesc_data);
2740 return NULL;
2741 }
2742 }
123dc839 2743 }
39bbf761 2744
28e97307
DJ
2745 /* If we have an object to base this architecture on, try to determine
2746 its ABI. */
39bbf761 2747
28e97307 2748 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2749 {
6b26d61a 2750 int ei_osabi, e_flags;
28e97307 2751
4be87837 2752 switch (bfd_get_flavour (info.abfd))
97e03143 2753 {
4be87837
DJ
2754 case bfd_target_aout_flavour:
2755 /* Assume it's an old APCS-style ABI. */
28e97307 2756 arm_abi = ARM_ABI_APCS;
4be87837 2757 break;
97e03143 2758
4be87837
DJ
2759 case bfd_target_coff_flavour:
2760 /* Assume it's an old APCS-style ABI. */
2761 /* XXX WinCE? */
28e97307
DJ
2762 arm_abi = ARM_ABI_APCS;
2763 break;
2764
2765 case bfd_target_elf_flavour:
2766 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2767 e_flags = elf_elfheader (info.abfd)->e_flags;
2768
28e97307
DJ
2769 if (ei_osabi == ELFOSABI_ARM)
2770 {
2771 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2772 objects. There's nowhere to tag an EABI version
2773 anyway, so assume APCS. */
28e97307
DJ
2774 arm_abi = ARM_ABI_APCS;
2775 }
2776 else if (ei_osabi == ELFOSABI_NONE)
2777 {
6b26d61a 2778 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2779
2780 switch (eabi_ver)
2781 {
2782 case EF_ARM_EABI_UNKNOWN:
2783 /* Assume GNU tools. */
2784 arm_abi = ARM_ABI_APCS;
2785 break;
2786
2787 case EF_ARM_EABI_VER4:
625b5003 2788 case EF_ARM_EABI_VER5:
28e97307 2789 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2790 /* EABI binaries default to VFP float ordering. */
2791 if (fp_model == ARM_FLOAT_AUTO)
2792 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2793 break;
2794
2795 default:
6b26d61a 2796 /* Leave it as "auto". */
28e97307 2797 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2798 break;
2799 }
2800 }
2801
2802 if (fp_model == ARM_FLOAT_AUTO)
2803 {
2804 int e_flags = elf_elfheader (info.abfd)->e_flags;
2805
2806 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2807 {
2808 case 0:
2809 /* Leave it as "auto". Strictly speaking this case
2810 means FPA, but almost nobody uses that now, and
2811 many toolchains fail to set the appropriate bits
2812 for the floating-point model they use. */
2813 break;
2814 case EF_ARM_SOFT_FLOAT:
2815 fp_model = ARM_FLOAT_SOFT_FPA;
2816 break;
2817 case EF_ARM_VFP_FLOAT:
2818 fp_model = ARM_FLOAT_VFP;
2819 break;
2820 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2821 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2822 break;
2823 }
2824 }
4be87837 2825 break;
97e03143 2826
4be87837 2827 default:
28e97307 2828 /* Leave it as "auto". */
50ceaba5 2829 break;
97e03143
RE
2830 }
2831 }
2832
28e97307
DJ
2833 /* Now that we have inferred any architecture settings that we
2834 can, try to inherit from the last ARM ABI. */
4be87837 2835 if (arches != NULL)
28e97307
DJ
2836 {
2837 if (arm_abi == ARM_ABI_AUTO)
2838 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2839
2840 if (fp_model == ARM_FLOAT_AUTO)
2841 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2842 }
2843 else
2844 {
2845 /* There was no prior ARM architecture; fill in default values. */
2846
2847 if (arm_abi == ARM_ABI_AUTO)
2848 arm_abi = ARM_ABI_APCS;
2849
2850 /* We used to default to FPA for generic ARM, but almost nobody
2851 uses that now, and we now provide a way for the user to force
2852 the model. So default to the most useful variant. */
2853 if (fp_model == ARM_FLOAT_AUTO)
2854 fp_model = ARM_FLOAT_SOFT_FPA;
2855 }
2856
2857 /* If there is already a candidate, use it. */
2858 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2859 best_arch != NULL;
2860 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2861 {
2862 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2863 continue;
2864
2865 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2866 continue;
2867
2868 /* Found a match. */
2869 break;
2870 }
97e03143 2871
28e97307 2872 if (best_arch != NULL)
123dc839
DJ
2873 {
2874 if (tdesc_data != NULL)
2875 tdesc_data_cleanup (tdesc_data);
2876 return best_arch->gdbarch;
2877 }
28e97307
DJ
2878
2879 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2880 gdbarch = gdbarch_alloc (&info, tdep);
2881
28e97307
DJ
2882 /* Record additional information about the architecture we are defining.
2883 These are gdbarch discriminators, like the OSABI. */
2884 tdep->arm_abi = arm_abi;
2885 tdep->fp_model = fp_model;
ff6f572f 2886 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2887
2888 /* Breakpoints. */
67255d04
RE
2889 switch (info.byte_order)
2890 {
2891 case BFD_ENDIAN_BIG:
66e810cd
RE
2892 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2893 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2894 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2895 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2896
67255d04
RE
2897 break;
2898
2899 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2900 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2901 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2902 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2903 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2904
67255d04
RE
2905 break;
2906
2907 default:
2908 internal_error (__FILE__, __LINE__,
edefbb7c 2909 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2910 }
2911
d7b486e7
RE
2912 /* On ARM targets char defaults to unsigned. */
2913 set_gdbarch_char_signed (gdbarch, 0);
2914
9df628e0 2915 /* This should be low enough for everything. */
97e03143 2916 tdep->lowest_pc = 0x20;
94c30b78 2917 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2918
7c00367c
MK
2919 /* The default, for both APCS and AAPCS, is to return small
2920 structures in registers. */
2921 tdep->struct_return = reg_struct_return;
2922
2dd604e7 2923 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2924 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2925
756fe439
DJ
2926 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2927
148754e5 2928 /* Frame handling. */
eb5492fa
DJ
2929 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2930 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2931 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2932
eb5492fa 2933 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2934
34e8f22d
RE
2935 /* Address manipulation. */
2936 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2937 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2938
34e8f22d
RE
2939 /* Advance PC across function entry code. */
2940 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2941
34e8f22d
RE
2942 /* The stack grows downward. */
2943 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2944
2945 /* Breakpoint manipulation. */
2946 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2947
2948 /* Information about registers, etc. */
0ba6dca9 2949 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2950 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2951 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2952 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2953 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2954
ff6f572f
DJ
2955 /* This "info float" is FPA-specific. Use the generic version if we
2956 do not have FPA. */
2957 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2958 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2959
26216b98 2960 /* Internal <-> external register number maps. */
ff6f572f
DJ
2961 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2962 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2963 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2964
34e8f22d 2965 /* Integer registers are 4 bytes. */
b1e29e33 2966 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2967 set_gdbarch_register_name (gdbarch, arm_register_name);
2968
2969 /* Returning results. */
2af48f68 2970 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2971
2972 /* Single stepping. */
2973 /* XXX For an RDI target we should ask the target if it can single-step. */
2974 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2975
03d48a7d
RE
2976 /* Disassembly. */
2977 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2978
34e8f22d
RE
2979 /* Minsymbol frobbing. */
2980 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2981 set_gdbarch_coff_make_msymbol_special (gdbarch,
2982 arm_coff_make_msymbol_special);
2983
0d5de010
DJ
2984 /* Virtual tables. */
2985 set_gdbarch_vbit_in_delta (gdbarch, 1);
2986
97e03143 2987 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2988 gdbarch_init_osabi (info, gdbarch);
97e03143 2989
eb5492fa 2990 /* Add some default predicates. */
909cf6ea 2991 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2992 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2993 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2994
97e03143
RE
2995 /* Now we have tuned the configuration, set a few final things,
2996 based on what the OS ABI has told us. */
2997
9df628e0
RE
2998 if (tdep->jb_pc >= 0)
2999 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3000
08216dd7 3001 /* Floating point sizes and format. */
8da61cc4
DJ
3002 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3003 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
08216dd7 3004 {
8da61cc4
DJ
3005 set_gdbarch_double_format
3006 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3007 set_gdbarch_long_double_format
3008 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3009 }
3010 else
3011 {
3012 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3013 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3014 }
3015
123dc839
DJ
3016 if (tdesc_data)
3017 tdesc_use_registers (gdbarch, tdesc_data);
3018
3019 /* Add standard register aliases. We add aliases even for those
3020 nanes which are used by the current architecture - it's simpler,
3021 and does no harm, since nothing ever lists user registers. */
3022 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3023 user_reg_add (gdbarch, arm_register_aliases[i].name,
3024 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3025
39bbf761
RE
3026 return gdbarch;
3027}
3028
97e03143
RE
3029static void
3030arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3033
3034 if (tdep == NULL)
3035 return;
3036
edefbb7c 3037 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3038 (unsigned long) tdep->lowest_pc);
3039}
3040
a78f21af
AC
3041extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3042
c906108c 3043void
ed9a39eb 3044_initialize_arm_tdep (void)
c906108c 3045{
bc90b915
FN
3046 struct ui_file *stb;
3047 long length;
26304000 3048 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3049 const char *setname;
3050 const char *setdesc;
4bd7b427 3051 const char *const *regnames;
bc90b915
FN
3052 int numregs, i, j;
3053 static char *helptext;
edefbb7c
AC
3054 char regdesc[1024], *rdptr = regdesc;
3055 size_t rest = sizeof (regdesc);
085dd6e6 3056
42cf1509 3057 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3058
70f80edf
JT
3059 /* Register an ELF OS ABI sniffer for ARM binaries. */
3060 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3061 bfd_target_elf_flavour,
3062 arm_elf_osabi_sniffer);
3063
94c30b78 3064 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3065 num_disassembly_options = get_arm_regname_num_options ();
3066
3067 /* Add root prefix command for all "set arm"/"show arm" commands. */
3068 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3069 _("Various ARM-specific commands."),
afd7eef0
RE
3070 &setarmcmdlist, "set arm ", 0, &setlist);
3071
3072 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3073 _("Various ARM-specific commands."),
afd7eef0 3074 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3075
94c30b78 3076 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3077 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3078
eefe576e
AC
3079 /* Initialize the array that will be passed to
3080 add_setshow_enum_cmd(). */
afd7eef0
RE
3081 valid_disassembly_styles
3082 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3083 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3084 {
3085 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3086 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3087 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3088 rdptr += length;
3089 rest -= length;
123dc839
DJ
3090 /* When we find the default names, tell the disassembler to use
3091 them. */
bc90b915
FN
3092 if (!strcmp (setname, "std"))
3093 {
afd7eef0 3094 disassembly_style = setname;
bc90b915
FN
3095 set_arm_regname_option (i);
3096 }
3097 }
94c30b78 3098 /* Mark the end of valid options. */
afd7eef0 3099 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3100
edefbb7c
AC
3101 /* Create the help text. */
3102 stb = mem_fileopen ();
3103 fprintf_unfiltered (stb, "%s%s%s",
3104 _("The valid values are:\n"),
3105 regdesc,
3106 _("The default is \"std\"."));
bc90b915
FN
3107 helptext = ui_file_xstrdup (stb, &length);
3108 ui_file_delete (stb);
ed9a39eb 3109
edefbb7c
AC
3110 add_setshow_enum_cmd("disassembler", no_class,
3111 valid_disassembly_styles, &disassembly_style,
3112 _("Set the disassembly style."),
3113 _("Show the disassembly style."),
3114 helptext,
2c5b56ce 3115 set_disassembly_style_sfunc,
7915a72c 3116 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3117 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3118
3119 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3120 _("Set usage of ARM 32-bit mode."),
3121 _("Show usage of ARM 32-bit mode."),
3122 _("When off, a 26-bit PC will be used."),
2c5b56ce 3123 NULL,
7915a72c 3124 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3125 &setarmcmdlist, &showarmcmdlist);
c906108c 3126
fd50bc42 3127 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3128 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3129 _("Set the floating point type."),
3130 _("Show the floating point type."),
3131 _("auto - Determine the FP typefrom the OS-ABI.\n\
3132softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3133fpa - FPA co-processor (GCC compiled).\n\
3134softvfp - Software FP with pure-endian doubles.\n\
3135vfp - VFP co-processor."),
edefbb7c 3136 set_fp_model_sfunc, show_fp_model,
7376b4c2 3137 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3138
28e97307
DJ
3139 /* Add a command to allow the user to force the ABI. */
3140 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3141 _("Set the ABI."),
3142 _("Show the ABI."),
3143 NULL, arm_set_abi, arm_show_abi,
3144 &setarmcmdlist, &showarmcmdlist);
3145
6529d2dd 3146 /* Debugging flag. */
edefbb7c
AC
3147 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3148 _("Set ARM debugging."),
3149 _("Show ARM debugging."),
3150 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3151 NULL,
7915a72c 3152 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3153 &setdebuglist, &showdebuglist);
c906108c 3154}
This page took 1.102177 seconds and 4 git commands to generate.