Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
61baf725 | 3 | Copyright (C) 1988-2017 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 19 | |
0baeab03 PA |
20 | #include "defs.h" |
21 | ||
0963b4bd | 22 | #include <ctype.h> /* XXX for isupper (). */ |
34e8f22d | 23 | |
c906108c SS |
24 | #include "frame.h" |
25 | #include "inferior.h" | |
45741a9c | 26 | #include "infrun.h" |
c906108c SS |
27 | #include "gdbcmd.h" |
28 | #include "gdbcore.h" | |
0963b4bd | 29 | #include "dis-asm.h" /* For register styles. */ |
e47ad6c0 | 30 | #include "disasm.h" |
4e052eda | 31 | #include "regcache.h" |
54483882 | 32 | #include "reggroups.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
34e8f22d | 35 | #include "arch-utils.h" |
4be87837 | 36 | #include "osabi.h" |
eb5492fa DJ |
37 | #include "frame-unwind.h" |
38 | #include "frame-base.h" | |
39 | #include "trad-frame.h" | |
842e1f1e DJ |
40 | #include "objfiles.h" |
41 | #include "dwarf2-frame.h" | |
e4c16157 | 42 | #include "gdbtypes.h" |
29d73ae4 | 43 | #include "prologue-value.h" |
25f8c692 | 44 | #include "remote.h" |
123dc839 DJ |
45 | #include "target-descriptions.h" |
46 | #include "user-regs.h" | |
0e9e9abd | 47 | #include "observer.h" |
34e8f22d | 48 | |
8689682c | 49 | #include "arch/arm.h" |
d9311bfa | 50 | #include "arch/arm-get-next-pcs.h" |
34e8f22d | 51 | #include "arm-tdep.h" |
26216b98 | 52 | #include "gdb/sim-arm.h" |
34e8f22d | 53 | |
082fc60d RE |
54 | #include "elf-bfd.h" |
55 | #include "coff/internal.h" | |
97e03143 | 56 | #include "elf/arm.h" |
c906108c | 57 | |
60c5725c | 58 | #include "vec.h" |
26216b98 | 59 | |
72508ac0 | 60 | #include "record.h" |
d02ed0bb | 61 | #include "record-full.h" |
325fac50 | 62 | #include <algorithm> |
72508ac0 | 63 | |
0a69eedb YQ |
64 | #include "features/arm/arm-with-m.c" |
65 | #include "features/arm/arm-with-m-fpa-layout.c" | |
66 | #include "features/arm/arm-with-m-vfp-d16.c" | |
67 | #include "features/arm/arm-with-iwmmxt.c" | |
68 | #include "features/arm/arm-with-vfpv2.c" | |
69 | #include "features/arm/arm-with-vfpv3.c" | |
70 | #include "features/arm/arm-with-neon.c" | |
9779414d | 71 | |
b121eeb9 YQ |
72 | #if GDB_SELF_TEST |
73 | #include "selftest.h" | |
74 | #endif | |
75 | ||
6529d2dd AC |
76 | static int arm_debug; |
77 | ||
082fc60d RE |
78 | /* Macros for setting and testing a bit in a minimal symbol that marks |
79 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 80 | is used for this purpose. |
082fc60d RE |
81 | |
82 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 83 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d | 84 | |
0963b4bd | 85 | #define MSYMBOL_SET_SPECIAL(msym) \ |
b887350f | 86 | MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
082fc60d RE |
87 | |
88 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
b887350f | 89 | MSYMBOL_TARGET_FLAG_1 (msym) |
082fc60d | 90 | |
60c5725c DJ |
91 | /* Per-objfile data used for mapping symbols. */ |
92 | static const struct objfile_data *arm_objfile_data_key; | |
93 | ||
94 | struct arm_mapping_symbol | |
95 | { | |
96 | bfd_vma value; | |
97 | char type; | |
98 | }; | |
99 | typedef struct arm_mapping_symbol arm_mapping_symbol_s; | |
100 | DEF_VEC_O(arm_mapping_symbol_s); | |
101 | ||
102 | struct arm_per_objfile | |
103 | { | |
104 | VEC(arm_mapping_symbol_s) **section_maps; | |
105 | }; | |
106 | ||
afd7eef0 RE |
107 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
108 | static struct cmd_list_element *setarmcmdlist = NULL; | |
109 | static struct cmd_list_element *showarmcmdlist = NULL; | |
110 | ||
fd50bc42 RE |
111 | /* The type of floating-point to use. Keep this in sync with enum |
112 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
40478521 | 113 | static const char *const fp_model_strings[] = |
fd50bc42 RE |
114 | { |
115 | "auto", | |
116 | "softfpa", | |
117 | "fpa", | |
118 | "softvfp", | |
28e97307 DJ |
119 | "vfp", |
120 | NULL | |
fd50bc42 RE |
121 | }; |
122 | ||
123 | /* A variable that can be configured by the user. */ | |
124 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
125 | static const char *current_fp_model = "auto"; | |
126 | ||
28e97307 | 127 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
40478521 | 128 | static const char *const arm_abi_strings[] = |
28e97307 DJ |
129 | { |
130 | "auto", | |
131 | "APCS", | |
132 | "AAPCS", | |
133 | NULL | |
134 | }; | |
135 | ||
136 | /* A variable that can be configured by the user. */ | |
137 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
138 | static const char *arm_abi_string = "auto"; | |
139 | ||
0428b8f5 | 140 | /* The execution mode to assume. */ |
40478521 | 141 | static const char *const arm_mode_strings[] = |
0428b8f5 DJ |
142 | { |
143 | "auto", | |
144 | "arm", | |
68770265 MGD |
145 | "thumb", |
146 | NULL | |
0428b8f5 DJ |
147 | }; |
148 | ||
149 | static const char *arm_fallback_mode_string = "auto"; | |
150 | static const char *arm_force_mode_string = "auto"; | |
151 | ||
f32bf4a4 YQ |
152 | /* The standard register names, and all the valid aliases for them. Note |
153 | that `fp', `sp' and `pc' are not added in this alias list, because they | |
154 | have been added as builtin user registers in | |
155 | std-regs.c:_initialize_frame_reg. */ | |
123dc839 DJ |
156 | static const struct |
157 | { | |
158 | const char *name; | |
159 | int regnum; | |
160 | } arm_register_aliases[] = { | |
161 | /* Basic register numbers. */ | |
162 | { "r0", 0 }, | |
163 | { "r1", 1 }, | |
164 | { "r2", 2 }, | |
165 | { "r3", 3 }, | |
166 | { "r4", 4 }, | |
167 | { "r5", 5 }, | |
168 | { "r6", 6 }, | |
169 | { "r7", 7 }, | |
170 | { "r8", 8 }, | |
171 | { "r9", 9 }, | |
172 | { "r10", 10 }, | |
173 | { "r11", 11 }, | |
174 | { "r12", 12 }, | |
175 | { "r13", 13 }, | |
176 | { "r14", 14 }, | |
177 | { "r15", 15 }, | |
178 | /* Synonyms (argument and variable registers). */ | |
179 | { "a1", 0 }, | |
180 | { "a2", 1 }, | |
181 | { "a3", 2 }, | |
182 | { "a4", 3 }, | |
183 | { "v1", 4 }, | |
184 | { "v2", 5 }, | |
185 | { "v3", 6 }, | |
186 | { "v4", 7 }, | |
187 | { "v5", 8 }, | |
188 | { "v6", 9 }, | |
189 | { "v7", 10 }, | |
190 | { "v8", 11 }, | |
191 | /* Other platform-specific names for r9. */ | |
192 | { "sb", 9 }, | |
193 | { "tr", 9 }, | |
194 | /* Special names. */ | |
195 | { "ip", 12 }, | |
123dc839 | 196 | { "lr", 14 }, |
123dc839 DJ |
197 | /* Names used by GCC (not listed in the ARM EABI). */ |
198 | { "sl", 10 }, | |
123dc839 DJ |
199 | /* A special name from the older ATPCS. */ |
200 | { "wr", 7 }, | |
201 | }; | |
bc90b915 | 202 | |
123dc839 | 203 | static const char *const arm_register_names[] = |
da59e081 JM |
204 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
205 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
206 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
207 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
208 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
209 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 210 | "fps", "cpsr" }; /* 24 25 */ |
ed9a39eb | 211 | |
65b48a81 PB |
212 | /* Holds the current set of options to be passed to the disassembler. */ |
213 | static char *arm_disassembler_options; | |
214 | ||
afd7eef0 RE |
215 | /* Valid register name styles. */ |
216 | static const char **valid_disassembly_styles; | |
ed9a39eb | 217 | |
afd7eef0 RE |
218 | /* Disassembly style to use. Default to "std" register names. */ |
219 | static const char *disassembly_style; | |
96baa820 | 220 | |
ed9a39eb | 221 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
222 | style. */ |
223 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 224 | struct cmd_list_element *); |
65b48a81 PB |
225 | static void show_disassembly_style_sfunc (struct ui_file *, int, |
226 | struct cmd_list_element *, | |
227 | const char *); | |
ed9a39eb | 228 | |
b508a996 | 229 | static void convert_from_extended (const struct floatformat *, const void *, |
be8626e0 | 230 | void *, int); |
b508a996 | 231 | static void convert_to_extended (const struct floatformat *, void *, |
be8626e0 | 232 | const void *, int); |
ed9a39eb | 233 | |
05d1431c PA |
234 | static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, |
235 | struct regcache *regcache, | |
236 | int regnum, gdb_byte *buf); | |
58d6951d DJ |
237 | static void arm_neon_quad_write (struct gdbarch *gdbarch, |
238 | struct regcache *regcache, | |
239 | int regnum, const gdb_byte *buf); | |
240 | ||
e7cf25a8 | 241 | static CORE_ADDR |
553cb527 | 242 | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self); |
e7cf25a8 YQ |
243 | |
244 | ||
d9311bfa AT |
245 | /* get_next_pcs operations. */ |
246 | static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = { | |
247 | arm_get_next_pcs_read_memory_unsigned_integer, | |
248 | arm_get_next_pcs_syscall_next_pc, | |
249 | arm_get_next_pcs_addr_bits_remove, | |
ed443b61 YQ |
250 | arm_get_next_pcs_is_thumb, |
251 | NULL, | |
d9311bfa AT |
252 | }; |
253 | ||
9b8d791a | 254 | struct arm_prologue_cache |
c3b4394c | 255 | { |
eb5492fa DJ |
256 | /* The stack pointer at the time this frame was created; i.e. the |
257 | caller's stack pointer when this function was called. It is used | |
258 | to identify this frame. */ | |
259 | CORE_ADDR prev_sp; | |
260 | ||
4be43953 DJ |
261 | /* The frame base for this frame is just prev_sp - frame size. |
262 | FRAMESIZE is the distance from the frame pointer to the | |
263 | initial stack pointer. */ | |
eb5492fa | 264 | |
c3b4394c | 265 | int framesize; |
eb5492fa DJ |
266 | |
267 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 268 | int framereg; |
eb5492fa DJ |
269 | |
270 | /* Saved register offsets. */ | |
271 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 272 | }; |
ed9a39eb | 273 | |
0d39a070 DJ |
274 | static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, |
275 | CORE_ADDR prologue_start, | |
276 | CORE_ADDR prologue_end, | |
277 | struct arm_prologue_cache *cache); | |
278 | ||
cca44b1b JB |
279 | /* Architecture version for displaced stepping. This effects the behaviour of |
280 | certain instructions, and really should not be hard-wired. */ | |
281 | ||
282 | #define DISPLACED_STEPPING_ARCH_VERSION 5 | |
283 | ||
94c30b78 | 284 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
285 | |
286 | int arm_apcs_32 = 1; | |
287 | ||
9779414d DJ |
288 | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
289 | ||
478fd957 | 290 | int |
9779414d DJ |
291 | arm_psr_thumb_bit (struct gdbarch *gdbarch) |
292 | { | |
293 | if (gdbarch_tdep (gdbarch)->is_m) | |
294 | return XPSR_T; | |
295 | else | |
296 | return CPSR_T; | |
297 | } | |
298 | ||
d0e59a68 AT |
299 | /* Determine if the processor is currently executing in Thumb mode. */ |
300 | ||
301 | int | |
302 | arm_is_thumb (struct regcache *regcache) | |
303 | { | |
304 | ULONGEST cpsr; | |
305 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache)); | |
306 | ||
307 | cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM); | |
308 | ||
309 | return (cpsr & t_bit) != 0; | |
310 | } | |
311 | ||
b39cc962 DJ |
312 | /* Determine if FRAME is executing in Thumb mode. */ |
313 | ||
25b41d01 | 314 | int |
b39cc962 DJ |
315 | arm_frame_is_thumb (struct frame_info *frame) |
316 | { | |
317 | CORE_ADDR cpsr; | |
9779414d | 318 | ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
b39cc962 DJ |
319 | |
320 | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | |
321 | directly (from a signal frame or dummy frame) or by interpreting | |
322 | the saved LR (from a prologue or DWARF frame). So consult it and | |
323 | trust the unwinders. */ | |
324 | cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | |
325 | ||
9779414d | 326 | return (cpsr & t_bit) != 0; |
b39cc962 DJ |
327 | } |
328 | ||
60c5725c DJ |
329 | /* Callback for VEC_lower_bound. */ |
330 | ||
331 | static inline int | |
332 | arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, | |
333 | const struct arm_mapping_symbol *rhs) | |
334 | { | |
335 | return lhs->value < rhs->value; | |
336 | } | |
337 | ||
f9d67f43 DJ |
338 | /* Search for the mapping symbol covering MEMADDR. If one is found, |
339 | return its type. Otherwise, return 0. If START is non-NULL, | |
340 | set *START to the location of the mapping symbol. */ | |
c906108c | 341 | |
f9d67f43 DJ |
342 | static char |
343 | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | |
c906108c | 344 | { |
60c5725c | 345 | struct obj_section *sec; |
0428b8f5 | 346 | |
60c5725c DJ |
347 | /* If there are mapping symbols, consult them. */ |
348 | sec = find_pc_section (memaddr); | |
349 | if (sec != NULL) | |
350 | { | |
351 | struct arm_per_objfile *data; | |
352 | VEC(arm_mapping_symbol_s) *map; | |
aded6f54 PA |
353 | struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), |
354 | 0 }; | |
60c5725c DJ |
355 | unsigned int idx; |
356 | ||
9a3c8263 SM |
357 | data = (struct arm_per_objfile *) objfile_data (sec->objfile, |
358 | arm_objfile_data_key); | |
60c5725c DJ |
359 | if (data != NULL) |
360 | { | |
361 | map = data->section_maps[sec->the_bfd_section->index]; | |
362 | if (!VEC_empty (arm_mapping_symbol_s, map)) | |
363 | { | |
364 | struct arm_mapping_symbol *map_sym; | |
365 | ||
366 | idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, | |
367 | arm_compare_mapping_symbols); | |
368 | ||
369 | /* VEC_lower_bound finds the earliest ordered insertion | |
370 | point. If the following symbol starts at this exact | |
371 | address, we use that; otherwise, the preceding | |
372 | mapping symbol covers this address. */ | |
373 | if (idx < VEC_length (arm_mapping_symbol_s, map)) | |
374 | { | |
375 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx); | |
376 | if (map_sym->value == map_key.value) | |
f9d67f43 DJ |
377 | { |
378 | if (start) | |
379 | *start = map_sym->value + obj_section_addr (sec); | |
380 | return map_sym->type; | |
381 | } | |
60c5725c DJ |
382 | } |
383 | ||
384 | if (idx > 0) | |
385 | { | |
386 | map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); | |
f9d67f43 DJ |
387 | if (start) |
388 | *start = map_sym->value + obj_section_addr (sec); | |
389 | return map_sym->type; | |
60c5725c DJ |
390 | } |
391 | } | |
392 | } | |
393 | } | |
394 | ||
f9d67f43 DJ |
395 | return 0; |
396 | } | |
397 | ||
398 | /* Determine if the program counter specified in MEMADDR is in a Thumb | |
399 | function. This function should be called for addresses unrelated to | |
400 | any executing frame; otherwise, prefer arm_frame_is_thumb. */ | |
401 | ||
e3039479 | 402 | int |
9779414d | 403 | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
f9d67f43 | 404 | { |
7cbd4a93 | 405 | struct bound_minimal_symbol sym; |
f9d67f43 | 406 | char type; |
a42244db YQ |
407 | struct displaced_step_closure* dsc |
408 | = get_displaced_step_closure_by_addr(memaddr); | |
409 | ||
410 | /* If checking the mode of displaced instruction in copy area, the mode | |
411 | should be determined by instruction on the original address. */ | |
412 | if (dsc) | |
413 | { | |
414 | if (debug_displaced) | |
415 | fprintf_unfiltered (gdb_stdlog, | |
416 | "displaced: check mode of %.8lx instead of %.8lx\n", | |
417 | (unsigned long) dsc->insn_addr, | |
418 | (unsigned long) memaddr); | |
419 | memaddr = dsc->insn_addr; | |
420 | } | |
f9d67f43 DJ |
421 | |
422 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
423 | if (IS_THUMB_ADDR (memaddr)) | |
424 | return 1; | |
425 | ||
426 | /* If the user wants to override the symbol table, let him. */ | |
427 | if (strcmp (arm_force_mode_string, "arm") == 0) | |
428 | return 0; | |
429 | if (strcmp (arm_force_mode_string, "thumb") == 0) | |
430 | return 1; | |
431 | ||
9779414d DJ |
432 | /* ARM v6-M and v7-M are always in Thumb mode. */ |
433 | if (gdbarch_tdep (gdbarch)->is_m) | |
434 | return 1; | |
435 | ||
f9d67f43 DJ |
436 | /* If there are mapping symbols, consult them. */ |
437 | type = arm_find_mapping_symbol (memaddr, NULL); | |
438 | if (type) | |
439 | return type == 't'; | |
440 | ||
ed9a39eb | 441 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c | 442 | sym = lookup_minimal_symbol_by_pc (memaddr); |
7cbd4a93 TT |
443 | if (sym.minsym) |
444 | return (MSYMBOL_IS_SPECIAL (sym.minsym)); | |
0428b8f5 DJ |
445 | |
446 | /* If the user wants to override the fallback mode, let them. */ | |
447 | if (strcmp (arm_fallback_mode_string, "arm") == 0) | |
448 | return 0; | |
449 | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | |
450 | return 1; | |
451 | ||
452 | /* If we couldn't find any symbol, but we're talking to a running | |
453 | target, then trust the current value of $cpsr. This lets | |
454 | "display/i $pc" always show the correct mode (though if there is | |
455 | a symbol table we will not reach here, so it still may not be | |
18819fa6 | 456 | displayed in the mode it will be executed). */ |
0428b8f5 | 457 | if (target_has_registers) |
18819fa6 | 458 | return arm_frame_is_thumb (get_current_frame ()); |
0428b8f5 DJ |
459 | |
460 | /* Otherwise we're out of luck; we assume ARM. */ | |
461 | return 0; | |
c906108c SS |
462 | } |
463 | ||
ca90e760 FH |
464 | /* Determine if the address specified equals any of these magic return |
465 | values, called EXC_RETURN, defined by the ARM v6-M and v7-M | |
466 | architectures. | |
467 | ||
468 | From ARMv6-M Reference Manual B1.5.8 | |
469 | Table B1-5 Exception return behavior | |
470 | ||
471 | EXC_RETURN Return To Return Stack | |
472 | 0xFFFFFFF1 Handler mode Main | |
473 | 0xFFFFFFF9 Thread mode Main | |
474 | 0xFFFFFFFD Thread mode Process | |
475 | ||
476 | From ARMv7-M Reference Manual B1.5.8 | |
477 | Table B1-8 EXC_RETURN definition of exception return behavior, no FP | |
478 | ||
479 | EXC_RETURN Return To Return Stack | |
480 | 0xFFFFFFF1 Handler mode Main | |
481 | 0xFFFFFFF9 Thread mode Main | |
482 | 0xFFFFFFFD Thread mode Process | |
483 | ||
484 | Table B1-9 EXC_RETURN definition of exception return behavior, with | |
485 | FP | |
486 | ||
487 | EXC_RETURN Return To Return Stack Frame Type | |
488 | 0xFFFFFFE1 Handler mode Main Extended | |
489 | 0xFFFFFFE9 Thread mode Main Extended | |
490 | 0xFFFFFFED Thread mode Process Extended | |
491 | 0xFFFFFFF1 Handler mode Main Basic | |
492 | 0xFFFFFFF9 Thread mode Main Basic | |
493 | 0xFFFFFFFD Thread mode Process Basic | |
494 | ||
495 | For more details see "B1.5.8 Exception return behavior" | |
496 | in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */ | |
497 | ||
498 | static int | |
499 | arm_m_addr_is_magic (CORE_ADDR addr) | |
500 | { | |
501 | switch (addr) | |
502 | { | |
503 | /* Values from Tables in B1.5.8 the EXC_RETURN definitions of | |
504 | the exception return behavior. */ | |
505 | case 0xffffffe1: | |
506 | case 0xffffffe9: | |
507 | case 0xffffffed: | |
508 | case 0xfffffff1: | |
509 | case 0xfffffff9: | |
510 | case 0xfffffffd: | |
511 | /* Address is magic. */ | |
512 | return 1; | |
513 | ||
514 | default: | |
515 | /* Address is not magic. */ | |
516 | return 0; | |
517 | } | |
518 | } | |
519 | ||
181c1381 | 520 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 521 | static CORE_ADDR |
24568a2c | 522 | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
c906108c | 523 | { |
2ae28aa9 YQ |
524 | /* On M-profile devices, do not strip the low bit from EXC_RETURN |
525 | (the magic exception return address). */ | |
526 | if (gdbarch_tdep (gdbarch)->is_m | |
ca90e760 | 527 | && arm_m_addr_is_magic (val)) |
2ae28aa9 YQ |
528 | return val; |
529 | ||
a3a2ee65 | 530 | if (arm_apcs_32) |
dd6be234 | 531 | return UNMAKE_THUMB_ADDR (val); |
c906108c | 532 | else |
a3a2ee65 | 533 | return (val & 0x03fffffc); |
c906108c SS |
534 | } |
535 | ||
0d39a070 | 536 | /* Return 1 if PC is the start of a compiler helper function which |
e0634ccf UW |
537 | can be safely ignored during prologue skipping. IS_THUMB is true |
538 | if the function is known to be a Thumb function due to the way it | |
539 | is being called. */ | |
0d39a070 | 540 | static int |
e0634ccf | 541 | skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) |
0d39a070 | 542 | { |
e0634ccf | 543 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7cbd4a93 | 544 | struct bound_minimal_symbol msym; |
0d39a070 DJ |
545 | |
546 | msym = lookup_minimal_symbol_by_pc (pc); | |
7cbd4a93 | 547 | if (msym.minsym != NULL |
77e371c0 | 548 | && BMSYMBOL_VALUE_ADDRESS (msym) == pc |
efd66ac6 | 549 | && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL) |
e0634ccf | 550 | { |
efd66ac6 | 551 | const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym); |
0d39a070 | 552 | |
e0634ccf UW |
553 | /* The GNU linker's Thumb call stub to foo is named |
554 | __foo_from_thumb. */ | |
555 | if (strstr (name, "_from_thumb") != NULL) | |
556 | name += 2; | |
0d39a070 | 557 | |
e0634ccf UW |
558 | /* On soft-float targets, __truncdfsf2 is called to convert promoted |
559 | arguments to their argument types in non-prototyped | |
560 | functions. */ | |
61012eef | 561 | if (startswith (name, "__truncdfsf2")) |
e0634ccf | 562 | return 1; |
61012eef | 563 | if (startswith (name, "__aeabi_d2f")) |
e0634ccf | 564 | return 1; |
0d39a070 | 565 | |
e0634ccf | 566 | /* Internal functions related to thread-local storage. */ |
61012eef | 567 | if (startswith (name, "__tls_get_addr")) |
e0634ccf | 568 | return 1; |
61012eef | 569 | if (startswith (name, "__aeabi_read_tp")) |
e0634ccf UW |
570 | return 1; |
571 | } | |
572 | else | |
573 | { | |
574 | /* If we run against a stripped glibc, we may be unable to identify | |
575 | special functions by name. Check for one important case, | |
576 | __aeabi_read_tp, by comparing the *code* against the default | |
577 | implementation (this is hand-written ARM assembler in glibc). */ | |
578 | ||
579 | if (!is_thumb | |
198cd59d | 580 | && read_code_unsigned_integer (pc, 4, byte_order_for_code) |
e0634ccf | 581 | == 0xe3e00a0f /* mov r0, #0xffff0fff */ |
198cd59d | 582 | && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code) |
e0634ccf UW |
583 | == 0xe240f01f) /* sub pc, r0, #31 */ |
584 | return 1; | |
585 | } | |
ec3d575a | 586 | |
0d39a070 DJ |
587 | return 0; |
588 | } | |
589 | ||
621c6d5b YQ |
590 | /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
591 | the first 16-bit of instruction, and INSN2 is the second 16-bit of | |
592 | instruction. */ | |
593 | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | |
594 | ((bits ((insn1), 0, 3) << 12) \ | |
595 | | (bits ((insn1), 10, 10) << 11) \ | |
596 | | (bits ((insn2), 12, 14) << 8) \ | |
597 | | bits ((insn2), 0, 7)) | |
598 | ||
599 | /* Extract the immediate from instruction movw/movt of encoding A. INSN is | |
600 | the 32-bit instruction. */ | |
601 | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | |
602 | ((bits ((insn), 16, 19) << 12) \ | |
603 | | bits ((insn), 0, 11)) | |
604 | ||
ec3d575a UW |
605 | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
606 | ||
607 | static unsigned int | |
608 | thumb_expand_immediate (unsigned int imm) | |
609 | { | |
610 | unsigned int count = imm >> 7; | |
611 | ||
612 | if (count < 8) | |
613 | switch (count / 2) | |
614 | { | |
615 | case 0: | |
616 | return imm & 0xff; | |
617 | case 1: | |
618 | return (imm & 0xff) | ((imm & 0xff) << 16); | |
619 | case 2: | |
620 | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | |
621 | case 3: | |
622 | return (imm & 0xff) | ((imm & 0xff) << 8) | |
623 | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | |
624 | } | |
625 | ||
626 | return (0x80 | (imm & 0x7f)) << (32 - count); | |
627 | } | |
628 | ||
540314bd YQ |
629 | /* Return 1 if the 16-bit Thumb instruction INSN restores SP in |
630 | epilogue, 0 otherwise. */ | |
631 | ||
632 | static int | |
633 | thumb_instruction_restores_sp (unsigned short insn) | |
634 | { | |
635 | return (insn == 0x46bd /* mov sp, r7 */ | |
636 | || (insn & 0xff80) == 0xb000 /* add sp, imm */ | |
637 | || (insn & 0xfe00) == 0xbc00); /* pop <registers> */ | |
638 | } | |
639 | ||
29d73ae4 DJ |
640 | /* Analyze a Thumb prologue, looking for a recognizable stack frame |
641 | and frame pointer. Scan until we encounter a store that could | |
0d39a070 DJ |
642 | clobber the stack frame unexpectedly, or an unknown instruction. |
643 | Return the last address which is definitely safe to skip for an | |
644 | initial breakpoint. */ | |
c906108c SS |
645 | |
646 | static CORE_ADDR | |
29d73ae4 DJ |
647 | thumb_analyze_prologue (struct gdbarch *gdbarch, |
648 | CORE_ADDR start, CORE_ADDR limit, | |
649 | struct arm_prologue_cache *cache) | |
c906108c | 650 | { |
0d39a070 | 651 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e17a4113 | 652 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
29d73ae4 DJ |
653 | int i; |
654 | pv_t regs[16]; | |
655 | struct pv_area *stack; | |
656 | struct cleanup *back_to; | |
657 | CORE_ADDR offset; | |
ec3d575a | 658 | CORE_ADDR unrecognized_pc = 0; |
da3c6d4a | 659 | |
29d73ae4 DJ |
660 | for (i = 0; i < 16; i++) |
661 | regs[i] = pv_register (i, 0); | |
55f960e1 | 662 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
29d73ae4 DJ |
663 | back_to = make_cleanup_free_pv_area (stack); |
664 | ||
29d73ae4 | 665 | while (start < limit) |
c906108c | 666 | { |
29d73ae4 DJ |
667 | unsigned short insn; |
668 | ||
198cd59d | 669 | insn = read_code_unsigned_integer (start, 2, byte_order_for_code); |
9d4fde75 | 670 | |
94c30b78 | 671 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 672 | { |
29d73ae4 DJ |
673 | int regno; |
674 | int mask; | |
4be43953 DJ |
675 | |
676 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) | |
677 | break; | |
29d73ae4 DJ |
678 | |
679 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
680 | whether to save LR (R14). */ | |
681 | mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
682 | ||
683 | /* Calculate offsets of saved R0-R7 and LR. */ | |
684 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
685 | if (mask & (1 << regno)) | |
686 | { | |
29d73ae4 DJ |
687 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
688 | -4); | |
689 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); | |
690 | } | |
da59e081 | 691 | } |
1db01f22 | 692 | else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */ |
da59e081 | 693 | { |
29d73ae4 | 694 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
1db01f22 YQ |
695 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
696 | -offset); | |
da59e081 | 697 | } |
808f7ab1 YQ |
698 | else if (thumb_instruction_restores_sp (insn)) |
699 | { | |
700 | /* Don't scan past the epilogue. */ | |
701 | break; | |
702 | } | |
0d39a070 DJ |
703 | else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
704 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | |
705 | (insn & 0xff) << 2); | |
706 | else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ | |
707 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
708 | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | |
709 | bits (insn, 6, 8)); | |
710 | else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ | |
711 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
712 | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | |
713 | bits (insn, 0, 7)); | |
714 | else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ | |
715 | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | |
716 | && pv_is_constant (regs[bits (insn, 3, 5)])) | |
717 | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | |
718 | regs[bits (insn, 6, 8)]); | |
719 | else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ | |
720 | && pv_is_constant (regs[bits (insn, 3, 6)])) | |
721 | { | |
722 | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | |
723 | int rm = bits (insn, 3, 6); | |
724 | regs[rd] = pv_add (regs[rd], regs[rm]); | |
725 | } | |
29d73ae4 | 726 | else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
da59e081 | 727 | { |
29d73ae4 DJ |
728 | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
729 | int src_reg = (insn & 0x78) >> 3; | |
730 | regs[dst_reg] = regs[src_reg]; | |
da59e081 | 731 | } |
29d73ae4 | 732 | else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
da59e081 | 733 | { |
29d73ae4 DJ |
734 | /* Handle stores to the stack. Normally pushes are used, |
735 | but with GCC -mtpcs-frame, there may be other stores | |
736 | in the prologue to create the frame. */ | |
737 | int regno = (insn >> 8) & 0x7; | |
738 | pv_t addr; | |
739 | ||
740 | offset = (insn & 0xff) << 2; | |
741 | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | |
742 | ||
743 | if (pv_area_store_would_trash (stack, addr)) | |
744 | break; | |
745 | ||
746 | pv_area_store (stack, addr, 4, regs[regno]); | |
da59e081 | 747 | } |
0d39a070 DJ |
748 | else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
749 | { | |
750 | int rd = bits (insn, 0, 2); | |
751 | int rn = bits (insn, 3, 5); | |
752 | pv_t addr; | |
753 | ||
754 | offset = bits (insn, 6, 10) << 2; | |
755 | addr = pv_add_constant (regs[rn], offset); | |
756 | ||
757 | if (pv_area_store_would_trash (stack, addr)) | |
758 | break; | |
759 | ||
760 | pv_area_store (stack, addr, 4, regs[rd]); | |
761 | } | |
762 | else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ | |
763 | || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ | |
764 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | |
765 | /* Ignore stores of argument registers to the stack. */ | |
766 | ; | |
767 | else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ | |
768 | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | |
769 | /* Ignore block loads from the stack, potentially copying | |
770 | parameters from memory. */ | |
771 | ; | |
772 | else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ | |
773 | || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ | |
774 | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | |
775 | /* Similarly ignore single loads from the stack. */ | |
776 | ; | |
777 | else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ | |
778 | || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ | |
779 | /* Skip register copies, i.e. saves to another register | |
780 | instead of the stack. */ | |
781 | ; | |
782 | else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ | |
783 | /* Recognize constant loads; even with small stacks these are necessary | |
784 | on Thumb. */ | |
785 | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | |
786 | else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ | |
787 | { | |
788 | /* Constant pool loads, for the same reason. */ | |
789 | unsigned int constant; | |
790 | CORE_ADDR loc; | |
791 | ||
792 | loc = start + 4 + bits (insn, 0, 7) * 4; | |
793 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
794 | regs[bits (insn, 8, 10)] = pv_constant (constant); | |
795 | } | |
db24da6d | 796 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */ |
0d39a070 | 797 | { |
0d39a070 DJ |
798 | unsigned short inst2; |
799 | ||
198cd59d YQ |
800 | inst2 = read_code_unsigned_integer (start + 2, 2, |
801 | byte_order_for_code); | |
0d39a070 DJ |
802 | |
803 | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | |
804 | { | |
805 | /* BL, BLX. Allow some special function calls when | |
806 | skipping the prologue; GCC generates these before | |
807 | storing arguments to the stack. */ | |
808 | CORE_ADDR nextpc; | |
809 | int j1, j2, imm1, imm2; | |
810 | ||
811 | imm1 = sbits (insn, 0, 10); | |
812 | imm2 = bits (inst2, 0, 10); | |
813 | j1 = bit (inst2, 13); | |
814 | j2 = bit (inst2, 11); | |
815 | ||
816 | offset = ((imm1 << 12) + (imm2 << 1)); | |
817 | offset ^= ((!j2) << 22) | ((!j1) << 23); | |
818 | ||
819 | nextpc = start + 4 + offset; | |
820 | /* For BLX make sure to clear the low bits. */ | |
821 | if (bit (inst2, 12) == 0) | |
822 | nextpc = nextpc & 0xfffffffc; | |
823 | ||
e0634ccf UW |
824 | if (!skip_prologue_function (gdbarch, nextpc, |
825 | bit (inst2, 12) != 0)) | |
0d39a070 DJ |
826 | break; |
827 | } | |
ec3d575a | 828 | |
0963b4bd MS |
829 | else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
830 | { registers } */ | |
ec3d575a UW |
831 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
832 | { | |
833 | pv_t addr = regs[bits (insn, 0, 3)]; | |
834 | int regno; | |
835 | ||
836 | if (pv_area_store_would_trash (stack, addr)) | |
837 | break; | |
838 | ||
839 | /* Calculate offsets of saved registers. */ | |
840 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | |
841 | if (inst2 & (1 << regno)) | |
842 | { | |
843 | addr = pv_add_constant (addr, -4); | |
844 | pv_area_store (stack, addr, 4, regs[regno]); | |
845 | } | |
846 | ||
847 | if (insn & 0x0020) | |
848 | regs[bits (insn, 0, 3)] = addr; | |
849 | } | |
850 | ||
0963b4bd MS |
851 | else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
852 | [Rn, #+/-imm]{!} */ | |
ec3d575a UW |
853 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
854 | { | |
855 | int regno1 = bits (inst2, 12, 15); | |
856 | int regno2 = bits (inst2, 8, 11); | |
857 | pv_t addr = regs[bits (insn, 0, 3)]; | |
858 | ||
859 | offset = inst2 & 0xff; | |
860 | if (insn & 0x0080) | |
861 | addr = pv_add_constant (addr, offset); | |
862 | else | |
863 | addr = pv_add_constant (addr, -offset); | |
864 | ||
865 | if (pv_area_store_would_trash (stack, addr)) | |
866 | break; | |
867 | ||
868 | pv_area_store (stack, addr, 4, regs[regno1]); | |
869 | pv_area_store (stack, pv_add_constant (addr, 4), | |
870 | 4, regs[regno2]); | |
871 | ||
872 | if (insn & 0x0020) | |
873 | regs[bits (insn, 0, 3)] = addr; | |
874 | } | |
875 | ||
876 | else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ | |
877 | && (inst2 & 0x0c00) == 0x0c00 | |
878 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
879 | { | |
880 | int regno = bits (inst2, 12, 15); | |
881 | pv_t addr = regs[bits (insn, 0, 3)]; | |
882 | ||
883 | offset = inst2 & 0xff; | |
884 | if (inst2 & 0x0200) | |
885 | addr = pv_add_constant (addr, offset); | |
886 | else | |
887 | addr = pv_add_constant (addr, -offset); | |
888 | ||
889 | if (pv_area_store_would_trash (stack, addr)) | |
890 | break; | |
891 | ||
892 | pv_area_store (stack, addr, 4, regs[regno]); | |
893 | ||
894 | if (inst2 & 0x0100) | |
895 | regs[bits (insn, 0, 3)] = addr; | |
896 | } | |
897 | ||
898 | else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ | |
899 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
900 | { | |
901 | int regno = bits (inst2, 12, 15); | |
902 | pv_t addr; | |
903 | ||
904 | offset = inst2 & 0xfff; | |
905 | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | |
906 | ||
907 | if (pv_area_store_would_trash (stack, addr)) | |
908 | break; | |
909 | ||
910 | pv_area_store (stack, addr, 4, regs[regno]); | |
911 | } | |
912 | ||
913 | else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ | |
0d39a070 | 914 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 915 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 916 | ; |
ec3d575a UW |
917 | |
918 | else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ | |
919 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 920 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 921 | /* Ignore stores of argument registers to the stack. */ |
0d39a070 | 922 | ; |
ec3d575a | 923 | |
0963b4bd MS |
924 | else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
925 | { registers } */ | |
ec3d575a UW |
926 | && (inst2 & 0x8000) == 0x0000 |
927 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | |
928 | /* Ignore block loads from the stack, potentially copying | |
929 | parameters from memory. */ | |
0d39a070 | 930 | ; |
ec3d575a | 931 | |
0963b4bd MS |
932 | else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, |
933 | [Rn, #+/-imm] */ | |
0d39a070 | 934 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 935 | /* Similarly ignore dual loads from the stack. */ |
0d39a070 | 936 | ; |
ec3d575a UW |
937 | |
938 | else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ | |
939 | && (inst2 & 0x0d00) == 0x0c00 | |
0d39a070 | 940 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 941 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 942 | ; |
ec3d575a UW |
943 | |
944 | else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ | |
0d39a070 | 945 | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
ec3d575a | 946 | /* Similarly ignore single loads from the stack. */ |
0d39a070 | 947 | ; |
ec3d575a UW |
948 | |
949 | else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ | |
950 | && (inst2 & 0x8000) == 0x0000) | |
951 | { | |
952 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
953 | | (bits (inst2, 12, 14) << 8) | |
954 | | bits (inst2, 0, 7)); | |
955 | ||
956 | regs[bits (inst2, 8, 11)] | |
957 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
958 | thumb_expand_immediate (imm)); | |
959 | } | |
960 | ||
961 | else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ | |
962 | && (inst2 & 0x8000) == 0x0000) | |
0d39a070 | 963 | { |
ec3d575a UW |
964 | unsigned int imm = ((bits (insn, 10, 10) << 11) |
965 | | (bits (inst2, 12, 14) << 8) | |
966 | | bits (inst2, 0, 7)); | |
967 | ||
968 | regs[bits (inst2, 8, 11)] | |
969 | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | |
970 | } | |
971 | ||
972 | else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ | |
973 | && (inst2 & 0x8000) == 0x0000) | |
974 | { | |
975 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
976 | | (bits (inst2, 12, 14) << 8) | |
977 | | bits (inst2, 0, 7)); | |
978 | ||
979 | regs[bits (inst2, 8, 11)] | |
980 | = pv_add_constant (regs[bits (insn, 0, 3)], | |
981 | - (CORE_ADDR) thumb_expand_immediate (imm)); | |
982 | } | |
983 | ||
984 | else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ | |
985 | && (inst2 & 0x8000) == 0x0000) | |
986 | { | |
987 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
988 | | (bits (inst2, 12, 14) << 8) | |
989 | | bits (inst2, 0, 7)); | |
990 | ||
991 | regs[bits (inst2, 8, 11)] | |
992 | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | |
993 | } | |
994 | ||
995 | else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ | |
996 | { | |
997 | unsigned int imm = ((bits (insn, 10, 10) << 11) | |
998 | | (bits (inst2, 12, 14) << 8) | |
999 | | bits (inst2, 0, 7)); | |
1000 | ||
1001 | regs[bits (inst2, 8, 11)] | |
1002 | = pv_constant (thumb_expand_immediate (imm)); | |
1003 | } | |
1004 | ||
1005 | else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1006 | { | |
621c6d5b YQ |
1007 | unsigned int imm |
1008 | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | |
ec3d575a UW |
1009 | |
1010 | regs[bits (inst2, 8, 11)] = pv_constant (imm); | |
1011 | } | |
1012 | ||
1013 | else if (insn == 0xea5f /* mov.w Rd,Rm */ | |
1014 | && (inst2 & 0xf0f0) == 0) | |
1015 | { | |
1016 | int dst_reg = (inst2 & 0x0f00) >> 8; | |
1017 | int src_reg = inst2 & 0xf; | |
1018 | regs[dst_reg] = regs[src_reg]; | |
1019 | } | |
1020 | ||
1021 | else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ | |
1022 | { | |
1023 | /* Constant pool loads. */ | |
1024 | unsigned int constant; | |
1025 | CORE_ADDR loc; | |
1026 | ||
cac395ea | 1027 | offset = bits (inst2, 0, 11); |
ec3d575a UW |
1028 | if (insn & 0x0080) |
1029 | loc = start + 4 + offset; | |
1030 | else | |
1031 | loc = start + 4 - offset; | |
1032 | ||
1033 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1034 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1035 | } | |
1036 | ||
1037 | else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ | |
1038 | { | |
1039 | /* Constant pool loads. */ | |
1040 | unsigned int constant; | |
1041 | CORE_ADDR loc; | |
1042 | ||
cac395ea | 1043 | offset = bits (inst2, 0, 7) << 2; |
ec3d575a UW |
1044 | if (insn & 0x0080) |
1045 | loc = start + 4 + offset; | |
1046 | else | |
1047 | loc = start + 4 - offset; | |
1048 | ||
1049 | constant = read_memory_unsigned_integer (loc, 4, byte_order); | |
1050 | regs[bits (inst2, 12, 15)] = pv_constant (constant); | |
1051 | ||
1052 | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | |
1053 | regs[bits (inst2, 8, 11)] = pv_constant (constant); | |
1054 | } | |
1055 | ||
1056 | else if (thumb2_instruction_changes_pc (insn, inst2)) | |
1057 | { | |
1058 | /* Don't scan past anything that might change control flow. */ | |
0d39a070 DJ |
1059 | break; |
1060 | } | |
ec3d575a UW |
1061 | else |
1062 | { | |
1063 | /* The optimizer might shove anything into the prologue, | |
1064 | so we just skip what we don't recognize. */ | |
1065 | unrecognized_pc = start; | |
1066 | } | |
0d39a070 DJ |
1067 | |
1068 | start += 2; | |
1069 | } | |
ec3d575a | 1070 | else if (thumb_instruction_changes_pc (insn)) |
3d74b771 | 1071 | { |
ec3d575a | 1072 | /* Don't scan past anything that might change control flow. */ |
da3c6d4a | 1073 | break; |
3d74b771 | 1074 | } |
ec3d575a UW |
1075 | else |
1076 | { | |
1077 | /* The optimizer might shove anything into the prologue, | |
1078 | so we just skip what we don't recognize. */ | |
1079 | unrecognized_pc = start; | |
1080 | } | |
29d73ae4 DJ |
1081 | |
1082 | start += 2; | |
c906108c SS |
1083 | } |
1084 | ||
0d39a070 DJ |
1085 | if (arm_debug) |
1086 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1087 | paddress (gdbarch, start)); | |
1088 | ||
ec3d575a UW |
1089 | if (unrecognized_pc == 0) |
1090 | unrecognized_pc = start; | |
1091 | ||
29d73ae4 DJ |
1092 | if (cache == NULL) |
1093 | { | |
1094 | do_cleanups (back_to); | |
ec3d575a | 1095 | return unrecognized_pc; |
29d73ae4 DJ |
1096 | } |
1097 | ||
29d73ae4 DJ |
1098 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
1099 | { | |
1100 | /* Frame pointer is fp. Frame size is constant. */ | |
1101 | cache->framereg = ARM_FP_REGNUM; | |
1102 | cache->framesize = -regs[ARM_FP_REGNUM].k; | |
1103 | } | |
1104 | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | |
1105 | { | |
1106 | /* Frame pointer is r7. Frame size is constant. */ | |
1107 | cache->framereg = THUMB_FP_REGNUM; | |
1108 | cache->framesize = -regs[THUMB_FP_REGNUM].k; | |
1109 | } | |
72a2e3dc | 1110 | else |
29d73ae4 DJ |
1111 | { |
1112 | /* Try the stack pointer... this is a bit desperate. */ | |
1113 | cache->framereg = ARM_SP_REGNUM; | |
1114 | cache->framesize = -regs[ARM_SP_REGNUM].k; | |
1115 | } | |
29d73ae4 DJ |
1116 | |
1117 | for (i = 0; i < 16; i++) | |
1118 | if (pv_area_find_reg (stack, gdbarch, i, &offset)) | |
1119 | cache->saved_regs[i].addr = offset; | |
1120 | ||
1121 | do_cleanups (back_to); | |
ec3d575a | 1122 | return unrecognized_pc; |
c906108c SS |
1123 | } |
1124 | ||
621c6d5b YQ |
1125 | |
1126 | /* Try to analyze the instructions starting from PC, which load symbol | |
1127 | __stack_chk_guard. Return the address of instruction after loading this | |
1128 | symbol, set the dest register number to *BASEREG, and set the size of | |
1129 | instructions for loading symbol in OFFSET. Return 0 if instructions are | |
1130 | not recognized. */ | |
1131 | ||
1132 | static CORE_ADDR | |
1133 | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | |
1134 | unsigned int *destreg, int *offset) | |
1135 | { | |
1136 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
1137 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1138 | unsigned int low, high, address; | |
1139 | ||
1140 | address = 0; | |
1141 | if (is_thumb) | |
1142 | { | |
1143 | unsigned short insn1 | |
198cd59d | 1144 | = read_code_unsigned_integer (pc, 2, byte_order_for_code); |
621c6d5b YQ |
1145 | |
1146 | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | |
1147 | { | |
1148 | *destreg = bits (insn1, 8, 10); | |
1149 | *offset = 2; | |
6ae274b7 YQ |
1150 | address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2); |
1151 | address = read_memory_unsigned_integer (address, 4, | |
1152 | byte_order_for_code); | |
621c6d5b YQ |
1153 | } |
1154 | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | |
1155 | { | |
1156 | unsigned short insn2 | |
198cd59d | 1157 | = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code); |
621c6d5b YQ |
1158 | |
1159 | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1160 | ||
1161 | insn1 | |
198cd59d | 1162 | = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code); |
621c6d5b | 1163 | insn2 |
198cd59d | 1164 | = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code); |
621c6d5b YQ |
1165 | |
1166 | /* movt Rd, #const */ | |
1167 | if ((insn1 & 0xfbc0) == 0xf2c0) | |
1168 | { | |
1169 | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | |
1170 | *destreg = bits (insn2, 8, 11); | |
1171 | *offset = 8; | |
1172 | address = (high << 16 | low); | |
1173 | } | |
1174 | } | |
1175 | } | |
1176 | else | |
1177 | { | |
2e9e421f | 1178 | unsigned int insn |
198cd59d | 1179 | = read_code_unsigned_integer (pc, 4, byte_order_for_code); |
2e9e421f | 1180 | |
6ae274b7 | 1181 | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */ |
2e9e421f | 1182 | { |
6ae274b7 YQ |
1183 | address = bits (insn, 0, 11) + pc + 8; |
1184 | address = read_memory_unsigned_integer (address, 4, | |
1185 | byte_order_for_code); | |
1186 | ||
2e9e421f UW |
1187 | *destreg = bits (insn, 12, 15); |
1188 | *offset = 4; | |
1189 | } | |
1190 | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | |
1191 | { | |
1192 | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1193 | ||
1194 | insn | |
198cd59d | 1195 | = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code); |
2e9e421f UW |
1196 | |
1197 | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | |
1198 | { | |
1199 | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | |
1200 | *destreg = bits (insn, 12, 15); | |
1201 | *offset = 8; | |
1202 | address = (high << 16 | low); | |
1203 | } | |
1204 | } | |
621c6d5b YQ |
1205 | } |
1206 | ||
1207 | return address; | |
1208 | } | |
1209 | ||
1210 | /* Try to skip a sequence of instructions used for stack protector. If PC | |
0963b4bd MS |
1211 | points to the first instruction of this sequence, return the address of |
1212 | first instruction after this sequence, otherwise, return original PC. | |
621c6d5b YQ |
1213 | |
1214 | On arm, this sequence of instructions is composed of mainly three steps, | |
1215 | Step 1: load symbol __stack_chk_guard, | |
1216 | Step 2: load from address of __stack_chk_guard, | |
1217 | Step 3: store it to somewhere else. | |
1218 | ||
1219 | Usually, instructions on step 2 and step 3 are the same on various ARM | |
1220 | architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | |
1221 | on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, | |
1222 | instructions in step 1 vary from different ARM architectures. On ARMv7, | |
1223 | they are, | |
1224 | ||
1225 | movw Rn, #:lower16:__stack_chk_guard | |
1226 | movt Rn, #:upper16:__stack_chk_guard | |
1227 | ||
1228 | On ARMv5t, it is, | |
1229 | ||
1230 | ldr Rn, .Label | |
1231 | .... | |
1232 | .Lable: | |
1233 | .word __stack_chk_guard | |
1234 | ||
1235 | Since ldr/str is a very popular instruction, we can't use them as | |
1236 | 'fingerprint' or 'signature' of stack protector sequence. Here we choose | |
1237 | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | |
1238 | stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ | |
1239 | ||
1240 | static CORE_ADDR | |
1241 | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | |
1242 | { | |
1243 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
22e048c9 | 1244 | unsigned int basereg; |
7cbd4a93 | 1245 | struct bound_minimal_symbol stack_chk_guard; |
621c6d5b YQ |
1246 | int offset; |
1247 | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | |
1248 | CORE_ADDR addr; | |
1249 | ||
1250 | /* Try to parse the instructions in Step 1. */ | |
1251 | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | |
1252 | &basereg, &offset); | |
1253 | if (!addr) | |
1254 | return pc; | |
1255 | ||
1256 | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | |
6041179a JB |
1257 | /* ADDR must correspond to a symbol whose name is __stack_chk_guard. |
1258 | Otherwise, this sequence cannot be for stack protector. */ | |
1259 | if (stack_chk_guard.minsym == NULL | |
61012eef | 1260 | || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard")) |
621c6d5b YQ |
1261 | return pc; |
1262 | ||
1263 | if (is_thumb) | |
1264 | { | |
1265 | unsigned int destreg; | |
1266 | unsigned short insn | |
198cd59d | 1267 | = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code); |
621c6d5b YQ |
1268 | |
1269 | /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ | |
1270 | if ((insn & 0xf800) != 0x6800) | |
1271 | return pc; | |
1272 | if (bits (insn, 3, 5) != basereg) | |
1273 | return pc; | |
1274 | destreg = bits (insn, 0, 2); | |
1275 | ||
198cd59d YQ |
1276 | insn = read_code_unsigned_integer (pc + offset + 2, 2, |
1277 | byte_order_for_code); | |
621c6d5b YQ |
1278 | /* Step 3: str Rd, [Rn, #immed], encoding T1. */ |
1279 | if ((insn & 0xf800) != 0x6000) | |
1280 | return pc; | |
1281 | if (destreg != bits (insn, 0, 2)) | |
1282 | return pc; | |
1283 | } | |
1284 | else | |
1285 | { | |
1286 | unsigned int destreg; | |
1287 | unsigned int insn | |
198cd59d | 1288 | = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code); |
621c6d5b YQ |
1289 | |
1290 | /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ | |
1291 | if ((insn & 0x0e500000) != 0x04100000) | |
1292 | return pc; | |
1293 | if (bits (insn, 16, 19) != basereg) | |
1294 | return pc; | |
1295 | destreg = bits (insn, 12, 15); | |
1296 | /* Step 3: str Rd, [Rn, #immed], encoding A1. */ | |
198cd59d | 1297 | insn = read_code_unsigned_integer (pc + offset + 4, |
621c6d5b YQ |
1298 | 4, byte_order_for_code); |
1299 | if ((insn & 0x0e500000) != 0x04000000) | |
1300 | return pc; | |
1301 | if (bits (insn, 12, 15) != destreg) | |
1302 | return pc; | |
1303 | } | |
1304 | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | |
1305 | on arm. */ | |
1306 | if (is_thumb) | |
1307 | return pc + offset + 4; | |
1308 | else | |
1309 | return pc + offset + 8; | |
1310 | } | |
1311 | ||
da3c6d4a MS |
1312 | /* Advance the PC across any function entry prologue instructions to |
1313 | reach some "real" code. | |
34e8f22d RE |
1314 | |
1315 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 1316 | prologue: |
c906108c | 1317 | |
c5aa993b JM |
1318 | mov ip, sp |
1319 | [stmfd sp!, {a1,a2,a3,a4}] | |
1320 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
1321 | [stfe f7, [sp, #-12]!] |
1322 | [stfe f6, [sp, #-12]!] | |
1323 | [stfe f5, [sp, #-12]!] | |
1324 | [stfe f4, [sp, #-12]!] | |
0963b4bd | 1325 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
c906108c | 1326 | |
34e8f22d | 1327 | static CORE_ADDR |
6093d2eb | 1328 | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1329 | { |
a89fea3c | 1330 | CORE_ADDR func_addr, limit_pc; |
c906108c | 1331 | |
a89fea3c JL |
1332 | /* See if we can determine the end of the prologue via the symbol table. |
1333 | If so, then return either PC, or the PC after the prologue, whichever | |
1334 | is greater. */ | |
1335 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
c906108c | 1336 | { |
d80b854b UW |
1337 | CORE_ADDR post_prologue_pc |
1338 | = skip_prologue_using_sal (gdbarch, func_addr); | |
43f3e411 | 1339 | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
0d39a070 | 1340 | |
621c6d5b YQ |
1341 | if (post_prologue_pc) |
1342 | post_prologue_pc | |
1343 | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | |
1344 | ||
1345 | ||
0d39a070 DJ |
1346 | /* GCC always emits a line note before the prologue and another |
1347 | one after, even if the two are at the same address or on the | |
1348 | same line. Take advantage of this so that we do not need to | |
1349 | know every instruction that might appear in the prologue. We | |
1350 | will have producer information for most binaries; if it is | |
1351 | missing (e.g. for -gstabs), assuming the GNU tools. */ | |
1352 | if (post_prologue_pc | |
43f3e411 DE |
1353 | && (cust == NULL |
1354 | || COMPUNIT_PRODUCER (cust) == NULL | |
61012eef GB |
1355 | || startswith (COMPUNIT_PRODUCER (cust), "GNU ") |
1356 | || startswith (COMPUNIT_PRODUCER (cust), "clang "))) | |
0d39a070 DJ |
1357 | return post_prologue_pc; |
1358 | ||
a89fea3c | 1359 | if (post_prologue_pc != 0) |
0d39a070 DJ |
1360 | { |
1361 | CORE_ADDR analyzed_limit; | |
1362 | ||
1363 | /* For non-GCC compilers, make sure the entire line is an | |
1364 | acceptable prologue; GDB will round this function's | |
1365 | return value up to the end of the following line so we | |
1366 | can not skip just part of a line (and we do not want to). | |
1367 | ||
1368 | RealView does not treat the prologue specially, but does | |
1369 | associate prologue code with the opening brace; so this | |
1370 | lets us skip the first line if we think it is the opening | |
1371 | brace. */ | |
9779414d | 1372 | if (arm_pc_is_thumb (gdbarch, func_addr)) |
0d39a070 DJ |
1373 | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
1374 | post_prologue_pc, NULL); | |
1375 | else | |
1376 | analyzed_limit = arm_analyze_prologue (gdbarch, func_addr, | |
1377 | post_prologue_pc, NULL); | |
1378 | ||
1379 | if (analyzed_limit != post_prologue_pc) | |
1380 | return func_addr; | |
1381 | ||
1382 | return post_prologue_pc; | |
1383 | } | |
c906108c SS |
1384 | } |
1385 | ||
a89fea3c JL |
1386 | /* Can't determine prologue from the symbol table, need to examine |
1387 | instructions. */ | |
c906108c | 1388 | |
a89fea3c JL |
1389 | /* Find an upper limit on the function prologue using the debug |
1390 | information. If the debug information could not be used to provide | |
1391 | that bound, then use an arbitrary large number as the upper bound. */ | |
0963b4bd | 1392 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
d80b854b | 1393 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
a89fea3c JL |
1394 | if (limit_pc == 0) |
1395 | limit_pc = pc + 64; /* Magic. */ | |
1396 | ||
c906108c | 1397 | |
29d73ae4 | 1398 | /* Check if this is Thumb code. */ |
9779414d | 1399 | if (arm_pc_is_thumb (gdbarch, pc)) |
a89fea3c | 1400 | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
21daaaaf YQ |
1401 | else |
1402 | return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL); | |
c906108c | 1403 | } |
94c30b78 | 1404 | |
c5aa993b | 1405 | /* *INDENT-OFF* */ |
c906108c SS |
1406 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
1407 | This function decodes a Thumb function prologue to determine: | |
1408 | 1) the size of the stack frame | |
1409 | 2) which registers are saved on it | |
1410 | 3) the offsets of saved regs | |
1411 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 1412 | |
da59e081 JM |
1413 | A typical Thumb function prologue would create this stack frame |
1414 | (offsets relative to FP) | |
c906108c SS |
1415 | old SP -> 24 stack parameters |
1416 | 20 LR | |
1417 | 16 R7 | |
1418 | R7 -> 0 local variables (16 bytes) | |
1419 | SP -> -12 additional stack space (12 bytes) | |
1420 | The frame size would thus be 36 bytes, and the frame offset would be | |
0963b4bd | 1421 | 12 bytes. The frame register is R7. |
da59e081 | 1422 | |
da3c6d4a MS |
1423 | The comments for thumb_skip_prolog() describe the algorithm we use |
1424 | to detect the end of the prolog. */ | |
c5aa993b JM |
1425 | /* *INDENT-ON* */ |
1426 | ||
c906108c | 1427 | static void |
be8626e0 | 1428 | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
b39cc962 | 1429 | CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
c906108c SS |
1430 | { |
1431 | CORE_ADDR prologue_start; | |
1432 | CORE_ADDR prologue_end; | |
c906108c | 1433 | |
b39cc962 DJ |
1434 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
1435 | &prologue_end)) | |
c906108c | 1436 | { |
ec3d575a UW |
1437 | /* See comment in arm_scan_prologue for an explanation of |
1438 | this heuristics. */ | |
1439 | if (prologue_end > prologue_start + 64) | |
1440 | { | |
1441 | prologue_end = prologue_start + 64; | |
1442 | } | |
c906108c SS |
1443 | } |
1444 | else | |
f7060f85 DJ |
1445 | /* We're in the boondocks: we have no idea where the start of the |
1446 | function is. */ | |
1447 | return; | |
c906108c | 1448 | |
325fac50 | 1449 | prologue_end = std::min (prologue_end, prev_pc); |
c906108c | 1450 | |
be8626e0 | 1451 | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
c906108c SS |
1452 | } |
1453 | ||
f303bc3e YQ |
1454 | /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0 |
1455 | otherwise. */ | |
1456 | ||
1457 | static int | |
1458 | arm_instruction_restores_sp (unsigned int insn) | |
1459 | { | |
1460 | if (bits (insn, 28, 31) != INST_NV) | |
1461 | { | |
1462 | if ((insn & 0x0df0f000) == 0x0080d000 | |
1463 | /* ADD SP (register or immediate). */ | |
1464 | || (insn & 0x0df0f000) == 0x0040d000 | |
1465 | /* SUB SP (register or immediate). */ | |
1466 | || (insn & 0x0ffffff0) == 0x01a0d000 | |
1467 | /* MOV SP. */ | |
1468 | || (insn & 0x0fff0000) == 0x08bd0000 | |
1469 | /* POP (LDMIA). */ | |
1470 | || (insn & 0x0fff0000) == 0x049d0000) | |
1471 | /* POP of a single register. */ | |
1472 | return 1; | |
1473 | } | |
1474 | ||
1475 | return 0; | |
1476 | } | |
1477 | ||
0d39a070 DJ |
1478 | /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
1479 | continuing no further than PROLOGUE_END. If CACHE is non-NULL, | |
1480 | fill it in. Return the first address not recognized as a prologue | |
1481 | instruction. | |
eb5492fa | 1482 | |
0d39a070 DJ |
1483 | We recognize all the instructions typically found in ARM prologues, |
1484 | plus harmless instructions which can be skipped (either for analysis | |
1485 | purposes, or a more restrictive set that can be skipped when finding | |
1486 | the end of the prologue). */ | |
1487 | ||
1488 | static CORE_ADDR | |
1489 | arm_analyze_prologue (struct gdbarch *gdbarch, | |
1490 | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | |
1491 | struct arm_prologue_cache *cache) | |
1492 | { | |
0d39a070 DJ |
1493 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
1494 | int regno; | |
1495 | CORE_ADDR offset, current_pc; | |
1496 | pv_t regs[ARM_FPS_REGNUM]; | |
1497 | struct pv_area *stack; | |
1498 | struct cleanup *back_to; | |
0d39a070 DJ |
1499 | CORE_ADDR unrecognized_pc = 0; |
1500 | ||
1501 | /* Search the prologue looking for instructions that set up the | |
96baa820 | 1502 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 1503 | |
96baa820 JM |
1504 | Be careful, however, and if it doesn't look like a prologue, |
1505 | don't try to scan it. If, for instance, a frameless function | |
1506 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 1507 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 | 1508 | and other operations that rely on a knowledge of the stack |
0d39a070 | 1509 | traceback. */ |
d4473757 | 1510 | |
4be43953 DJ |
1511 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
1512 | regs[regno] = pv_register (regno, 0); | |
55f960e1 | 1513 | stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
4be43953 DJ |
1514 | back_to = make_cleanup_free_pv_area (stack); |
1515 | ||
94c30b78 MS |
1516 | for (current_pc = prologue_start; |
1517 | current_pc < prologue_end; | |
f43845b3 | 1518 | current_pc += 4) |
96baa820 | 1519 | { |
e17a4113 | 1520 | unsigned int insn |
198cd59d | 1521 | = read_code_unsigned_integer (current_pc, 4, byte_order_for_code); |
9d4fde75 | 1522 | |
94c30b78 | 1523 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 1524 | { |
4be43953 | 1525 | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
28cd8767 JG |
1526 | continue; |
1527 | } | |
0d39a070 DJ |
1528 | else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
1529 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1530 | { |
1531 | unsigned imm = insn & 0xff; /* immediate value */ | |
1532 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1533 | int rd = bits (insn, 12, 15); |
28cd8767 | 1534 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1535 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
28cd8767 JG |
1536 | continue; |
1537 | } | |
0d39a070 DJ |
1538 | else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
1539 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
28cd8767 JG |
1540 | { |
1541 | unsigned imm = insn & 0xff; /* immediate value */ | |
1542 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
0d39a070 | 1543 | int rd = bits (insn, 12, 15); |
28cd8767 | 1544 | imm = (imm >> rot) | (imm << (32 - rot)); |
0d39a070 | 1545 | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
f43845b3 MS |
1546 | continue; |
1547 | } | |
0963b4bd MS |
1548 | else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
1549 | [sp, #-4]! */ | |
f43845b3 | 1550 | { |
4be43953 DJ |
1551 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1552 | break; | |
1553 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
0d39a070 DJ |
1554 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, |
1555 | regs[bits (insn, 12, 15)]); | |
f43845b3 MS |
1556 | continue; |
1557 | } | |
1558 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
1559 | /* stmfd sp!, {..., fp, ip, lr, pc} |
1560 | or | |
1561 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 1562 | { |
d4473757 | 1563 | int mask = insn & 0xffff; |
ed9a39eb | 1564 | |
4be43953 DJ |
1565 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1566 | break; | |
1567 | ||
94c30b78 | 1568 | /* Calculate offsets of saved registers. */ |
34e8f22d | 1569 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
1570 | if (mask & (1 << regno)) |
1571 | { | |
0963b4bd MS |
1572 | regs[ARM_SP_REGNUM] |
1573 | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | |
4be43953 | 1574 | pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); |
d4473757 KB |
1575 | } |
1576 | } | |
0d39a070 DJ |
1577 | else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
1578 | || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ | |
f8bf5763 | 1579 | || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
b8d5e71d MS |
1580 | { |
1581 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1582 | continue; | |
1583 | } | |
0d39a070 DJ |
1584 | else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
1585 | || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ | |
f8bf5763 | 1586 | || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
f43845b3 MS |
1587 | { |
1588 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
1589 | continue; | |
1590 | } | |
0963b4bd MS |
1591 | else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
1592 | { registers } */ | |
0d39a070 DJ |
1593 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
1594 | { | |
1595 | /* No need to add this to saved_regs -- it's just arg regs. */ | |
1596 | continue; | |
1597 | } | |
d4473757 KB |
1598 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
1599 | { | |
94c30b78 MS |
1600 | unsigned imm = insn & 0xff; /* immediate value */ |
1601 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1602 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1603 | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
d4473757 KB |
1604 | } |
1605 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
1606 | { | |
94c30b78 MS |
1607 | unsigned imm = insn & 0xff; /* immediate value */ |
1608 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 1609 | imm = (imm >> rot) | (imm << (32 - rot)); |
4be43953 | 1610 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
d4473757 | 1611 | } |
0963b4bd MS |
1612 | else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
1613 | [sp, -#c]! */ | |
2af46ca0 | 1614 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 | 1615 | { |
4be43953 DJ |
1616 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1617 | break; | |
1618 | ||
1619 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | |
34e8f22d | 1620 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
4be43953 | 1621 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]); |
d4473757 | 1622 | } |
0963b4bd MS |
1623 | else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
1624 | [sp!] */ | |
2af46ca0 | 1625 | && gdbarch_tdep (gdbarch)->have_fpa_registers) |
d4473757 KB |
1626 | { |
1627 | int n_saved_fp_regs; | |
1628 | unsigned int fp_start_reg, fp_bound_reg; | |
1629 | ||
4be43953 DJ |
1630 | if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) |
1631 | break; | |
1632 | ||
94c30b78 | 1633 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 1634 | { |
d4473757 KB |
1635 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1636 | n_saved_fp_regs = 3; | |
1637 | else | |
1638 | n_saved_fp_regs = 1; | |
96baa820 | 1639 | } |
d4473757 | 1640 | else |
96baa820 | 1641 | { |
d4473757 KB |
1642 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
1643 | n_saved_fp_regs = 2; | |
1644 | else | |
1645 | n_saved_fp_regs = 4; | |
96baa820 | 1646 | } |
d4473757 | 1647 | |
34e8f22d | 1648 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
1649 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
1650 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 | 1651 | { |
4be43953 DJ |
1652 | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
1653 | pv_area_store (stack, regs[ARM_SP_REGNUM], 12, | |
1654 | regs[fp_start_reg++]); | |
96baa820 | 1655 | } |
c906108c | 1656 | } |
0d39a070 DJ |
1657 | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
1658 | { | |
1659 | /* Allow some special function calls when skipping the | |
1660 | prologue; GCC generates these before storing arguments to | |
1661 | the stack. */ | |
1662 | CORE_ADDR dest = BranchDest (current_pc, insn); | |
1663 | ||
e0634ccf | 1664 | if (skip_prologue_function (gdbarch, dest, 0)) |
0d39a070 DJ |
1665 | continue; |
1666 | else | |
1667 | break; | |
1668 | } | |
d4473757 | 1669 | else if ((insn & 0xf0000000) != 0xe0000000) |
0963b4bd | 1670 | break; /* Condition not true, exit early. */ |
0d39a070 DJ |
1671 | else if (arm_instruction_changes_pc (insn)) |
1672 | /* Don't scan past anything that might change control flow. */ | |
1673 | break; | |
f303bc3e YQ |
1674 | else if (arm_instruction_restores_sp (insn)) |
1675 | { | |
1676 | /* Don't scan past the epilogue. */ | |
1677 | break; | |
1678 | } | |
d19f7eee UW |
1679 | else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */ |
1680 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1681 | /* Ignore block loads from the stack, potentially copying | |
1682 | parameters from memory. */ | |
1683 | continue; | |
1684 | else if ((insn & 0xfc500000) == 0xe4100000 | |
1685 | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | |
1686 | /* Similarly ignore single loads from the stack. */ | |
1687 | continue; | |
0d39a070 DJ |
1688 | else if ((insn & 0xffff0ff0) == 0xe1a00000) |
1689 | /* MOV Rd, Rm. Skip register copies, i.e. saves to another | |
1690 | register instead of the stack. */ | |
d4473757 | 1691 | continue; |
0d39a070 DJ |
1692 | else |
1693 | { | |
21daaaaf YQ |
1694 | /* The optimizer might shove anything into the prologue, if |
1695 | we build up cache (cache != NULL) from scanning prologue, | |
1696 | we just skip what we don't recognize and scan further to | |
1697 | make cache as complete as possible. However, if we skip | |
1698 | prologue, we'll stop immediately on unrecognized | |
1699 | instruction. */ | |
0d39a070 | 1700 | unrecognized_pc = current_pc; |
21daaaaf YQ |
1701 | if (cache != NULL) |
1702 | continue; | |
1703 | else | |
1704 | break; | |
0d39a070 | 1705 | } |
c906108c SS |
1706 | } |
1707 | ||
0d39a070 DJ |
1708 | if (unrecognized_pc == 0) |
1709 | unrecognized_pc = current_pc; | |
1710 | ||
0d39a070 DJ |
1711 | if (cache) |
1712 | { | |
4072f920 YQ |
1713 | int framereg, framesize; |
1714 | ||
1715 | /* The frame size is just the distance from the frame register | |
1716 | to the original stack pointer. */ | |
1717 | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | |
1718 | { | |
1719 | /* Frame pointer is fp. */ | |
1720 | framereg = ARM_FP_REGNUM; | |
1721 | framesize = -regs[ARM_FP_REGNUM].k; | |
1722 | } | |
1723 | else | |
1724 | { | |
1725 | /* Try the stack pointer... this is a bit desperate. */ | |
1726 | framereg = ARM_SP_REGNUM; | |
1727 | framesize = -regs[ARM_SP_REGNUM].k; | |
1728 | } | |
1729 | ||
0d39a070 DJ |
1730 | cache->framereg = framereg; |
1731 | cache->framesize = framesize; | |
1732 | ||
1733 | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | |
1734 | if (pv_area_find_reg (stack, gdbarch, regno, &offset)) | |
1735 | cache->saved_regs[regno].addr = offset; | |
1736 | } | |
1737 | ||
1738 | if (arm_debug) | |
1739 | fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n", | |
1740 | paddress (gdbarch, unrecognized_pc)); | |
4be43953 DJ |
1741 | |
1742 | do_cleanups (back_to); | |
0d39a070 DJ |
1743 | return unrecognized_pc; |
1744 | } | |
1745 | ||
1746 | static void | |
1747 | arm_scan_prologue (struct frame_info *this_frame, | |
1748 | struct arm_prologue_cache *cache) | |
1749 | { | |
1750 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1751 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
bec2ab5a | 1752 | CORE_ADDR prologue_start, prologue_end; |
0d39a070 DJ |
1753 | CORE_ADDR prev_pc = get_frame_pc (this_frame); |
1754 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
0d39a070 DJ |
1755 | |
1756 | /* Assume there is no frame until proven otherwise. */ | |
1757 | cache->framereg = ARM_SP_REGNUM; | |
1758 | cache->framesize = 0; | |
1759 | ||
1760 | /* Check for Thumb prologue. */ | |
1761 | if (arm_frame_is_thumb (this_frame)) | |
1762 | { | |
1763 | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | |
1764 | return; | |
1765 | } | |
1766 | ||
1767 | /* Find the function prologue. If we can't find the function in | |
1768 | the symbol table, peek in the stack frame to find the PC. */ | |
1769 | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | |
1770 | &prologue_end)) | |
1771 | { | |
1772 | /* One way to find the end of the prologue (which works well | |
1773 | for unoptimized code) is to do the following: | |
1774 | ||
1775 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
1776 | ||
1777 | if (sal.line == 0) | |
1778 | prologue_end = prev_pc; | |
1779 | else if (sal.end < prologue_end) | |
1780 | prologue_end = sal.end; | |
1781 | ||
1782 | This mechanism is very accurate so long as the optimizer | |
1783 | doesn't move any instructions from the function body into the | |
1784 | prologue. If this happens, sal.end will be the last | |
1785 | instruction in the first hunk of prologue code just before | |
1786 | the first instruction that the scheduler has moved from | |
1787 | the body to the prologue. | |
1788 | ||
1789 | In order to make sure that we scan all of the prologue | |
1790 | instructions, we use a slightly less accurate mechanism which | |
1791 | may scan more than necessary. To help compensate for this | |
1792 | lack of accuracy, the prologue scanning loop below contains | |
1793 | several clauses which'll cause the loop to terminate early if | |
1794 | an implausible prologue instruction is encountered. | |
1795 | ||
1796 | The expression | |
1797 | ||
1798 | prologue_start + 64 | |
1799 | ||
1800 | is a suitable endpoint since it accounts for the largest | |
1801 | possible prologue plus up to five instructions inserted by | |
1802 | the scheduler. */ | |
1803 | ||
1804 | if (prologue_end > prologue_start + 64) | |
1805 | { | |
1806 | prologue_end = prologue_start + 64; /* See above. */ | |
1807 | } | |
1808 | } | |
1809 | else | |
1810 | { | |
1811 | /* We have no symbol information. Our only option is to assume this | |
1812 | function has a standard stack frame and the normal frame register. | |
1813 | Then, we can find the value of our frame pointer on entrance to | |
1814 | the callee (or at the present moment if this is the innermost frame). | |
1815 | The value stored there should be the address of the stmfd + 8. */ | |
1816 | CORE_ADDR frame_loc; | |
7913a64c | 1817 | ULONGEST return_value; |
0d39a070 DJ |
1818 | |
1819 | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | |
7913a64c YQ |
1820 | if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order, |
1821 | &return_value)) | |
0d39a070 DJ |
1822 | return; |
1823 | else | |
1824 | { | |
1825 | prologue_start = gdbarch_addr_bits_remove | |
1826 | (gdbarch, return_value) - 8; | |
1827 | prologue_end = prologue_start + 64; /* See above. */ | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | if (prev_pc < prologue_end) | |
1832 | prologue_end = prev_pc; | |
1833 | ||
1834 | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | |
c906108c SS |
1835 | } |
1836 | ||
eb5492fa | 1837 | static struct arm_prologue_cache * |
a262aec2 | 1838 | arm_make_prologue_cache (struct frame_info *this_frame) |
c906108c | 1839 | { |
eb5492fa DJ |
1840 | int reg; |
1841 | struct arm_prologue_cache *cache; | |
1842 | CORE_ADDR unwound_fp; | |
c5aa993b | 1843 | |
35d5d4ee | 1844 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 1845 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
c906108c | 1846 | |
a262aec2 | 1847 | arm_scan_prologue (this_frame, cache); |
848cfffb | 1848 | |
a262aec2 | 1849 | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
eb5492fa DJ |
1850 | if (unwound_fp == 0) |
1851 | return cache; | |
c906108c | 1852 | |
4be43953 | 1853 | cache->prev_sp = unwound_fp + cache->framesize; |
c906108c | 1854 | |
eb5492fa DJ |
1855 | /* Calculate actual addresses of saved registers using offsets |
1856 | determined by arm_scan_prologue. */ | |
a262aec2 | 1857 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
e28a332c | 1858 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
1859 | cache->saved_regs[reg].addr += cache->prev_sp; |
1860 | ||
1861 | return cache; | |
c906108c SS |
1862 | } |
1863 | ||
c1ee9414 LM |
1864 | /* Implementation of the stop_reason hook for arm_prologue frames. */ |
1865 | ||
1866 | static enum unwind_stop_reason | |
1867 | arm_prologue_unwind_stop_reason (struct frame_info *this_frame, | |
1868 | void **this_cache) | |
1869 | { | |
1870 | struct arm_prologue_cache *cache; | |
1871 | CORE_ADDR pc; | |
1872 | ||
1873 | if (*this_cache == NULL) | |
1874 | *this_cache = arm_make_prologue_cache (this_frame); | |
9a3c8263 | 1875 | cache = (struct arm_prologue_cache *) *this_cache; |
c1ee9414 LM |
1876 | |
1877 | /* This is meant to halt the backtrace at "_start". */ | |
1878 | pc = get_frame_pc (this_frame); | |
1879 | if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc) | |
1880 | return UNWIND_OUTERMOST; | |
1881 | ||
1882 | /* If we've hit a wall, stop. */ | |
1883 | if (cache->prev_sp == 0) | |
1884 | return UNWIND_OUTERMOST; | |
1885 | ||
1886 | return UNWIND_NO_REASON; | |
1887 | } | |
1888 | ||
eb5492fa DJ |
1889 | /* Our frame ID for a normal frame is the current function's starting PC |
1890 | and the caller's SP when we were called. */ | |
c906108c | 1891 | |
148754e5 | 1892 | static void |
a262aec2 | 1893 | arm_prologue_this_id (struct frame_info *this_frame, |
eb5492fa DJ |
1894 | void **this_cache, |
1895 | struct frame_id *this_id) | |
c906108c | 1896 | { |
eb5492fa DJ |
1897 | struct arm_prologue_cache *cache; |
1898 | struct frame_id id; | |
2c404490 | 1899 | CORE_ADDR pc, func; |
f079148d | 1900 | |
eb5492fa | 1901 | if (*this_cache == NULL) |
a262aec2 | 1902 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 1903 | cache = (struct arm_prologue_cache *) *this_cache; |
2a451106 | 1904 | |
0e9e9abd UW |
1905 | /* Use function start address as part of the frame ID. If we cannot |
1906 | identify the start address (due to missing symbol information), | |
1907 | fall back to just using the current PC. */ | |
c1ee9414 | 1908 | pc = get_frame_pc (this_frame); |
2c404490 | 1909 | func = get_frame_func (this_frame); |
0e9e9abd UW |
1910 | if (!func) |
1911 | func = pc; | |
1912 | ||
eb5492fa | 1913 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 1914 | *this_id = id; |
c906108c SS |
1915 | } |
1916 | ||
a262aec2 DJ |
1917 | static struct value * |
1918 | arm_prologue_prev_register (struct frame_info *this_frame, | |
eb5492fa | 1919 | void **this_cache, |
a262aec2 | 1920 | int prev_regnum) |
24de872b | 1921 | { |
24568a2c | 1922 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
24de872b DJ |
1923 | struct arm_prologue_cache *cache; |
1924 | ||
eb5492fa | 1925 | if (*this_cache == NULL) |
a262aec2 | 1926 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 1927 | cache = (struct arm_prologue_cache *) *this_cache; |
24de872b | 1928 | |
eb5492fa | 1929 | /* If we are asked to unwind the PC, then we need to return the LR |
b39cc962 DJ |
1930 | instead. The prologue may save PC, but it will point into this |
1931 | frame's prologue, not the next frame's resume location. Also | |
1932 | strip the saved T bit. A valid LR may have the low bit set, but | |
1933 | a valid PC never does. */ | |
eb5492fa | 1934 | if (prev_regnum == ARM_PC_REGNUM) |
b39cc962 DJ |
1935 | { |
1936 | CORE_ADDR lr; | |
1937 | ||
1938 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1939 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
24568a2c | 1940 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 | 1941 | } |
24de872b | 1942 | |
eb5492fa | 1943 | /* SP is generally not saved to the stack, but this frame is |
a262aec2 | 1944 | identified by the next frame's stack pointer at the time of the call. |
eb5492fa DJ |
1945 | The value was already reconstructed into PREV_SP. */ |
1946 | if (prev_regnum == ARM_SP_REGNUM) | |
a262aec2 | 1947 | return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
eb5492fa | 1948 | |
b39cc962 DJ |
1949 | /* The CPSR may have been changed by the call instruction and by the |
1950 | called function. The only bit we can reconstruct is the T bit, | |
1951 | by checking the low bit of LR as of the call. This is a reliable | |
1952 | indicator of Thumb-ness except for some ARM v4T pre-interworking | |
1953 | Thumb code, which could get away with a clear low bit as long as | |
1954 | the called function did not use bx. Guess that all other | |
1955 | bits are unchanged; the condition flags are presumably lost, | |
1956 | but the processor status is likely valid. */ | |
1957 | if (prev_regnum == ARM_PS_REGNUM) | |
1958 | { | |
1959 | CORE_ADDR lr, cpsr; | |
9779414d | 1960 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
1961 | |
1962 | cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | |
1963 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
1964 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 1965 | cpsr |= t_bit; |
b39cc962 | 1966 | else |
9779414d | 1967 | cpsr &= ~t_bit; |
b39cc962 DJ |
1968 | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
1969 | } | |
1970 | ||
a262aec2 DJ |
1971 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
1972 | prev_regnum); | |
eb5492fa DJ |
1973 | } |
1974 | ||
1975 | struct frame_unwind arm_prologue_unwind = { | |
1976 | NORMAL_FRAME, | |
c1ee9414 | 1977 | arm_prologue_unwind_stop_reason, |
eb5492fa | 1978 | arm_prologue_this_id, |
a262aec2 DJ |
1979 | arm_prologue_prev_register, |
1980 | NULL, | |
1981 | default_frame_sniffer | |
eb5492fa DJ |
1982 | }; |
1983 | ||
0e9e9abd UW |
1984 | /* Maintain a list of ARM exception table entries per objfile, similar to the |
1985 | list of mapping symbols. We only cache entries for standard ARM-defined | |
1986 | personality routines; the cache will contain only the frame unwinding | |
1987 | instructions associated with the entry (not the descriptors). */ | |
1988 | ||
1989 | static const struct objfile_data *arm_exidx_data_key; | |
1990 | ||
1991 | struct arm_exidx_entry | |
1992 | { | |
1993 | bfd_vma addr; | |
1994 | gdb_byte *entry; | |
1995 | }; | |
1996 | typedef struct arm_exidx_entry arm_exidx_entry_s; | |
1997 | DEF_VEC_O(arm_exidx_entry_s); | |
1998 | ||
1999 | struct arm_exidx_data | |
2000 | { | |
2001 | VEC(arm_exidx_entry_s) **section_maps; | |
2002 | }; | |
2003 | ||
2004 | static void | |
2005 | arm_exidx_data_free (struct objfile *objfile, void *arg) | |
2006 | { | |
9a3c8263 | 2007 | struct arm_exidx_data *data = (struct arm_exidx_data *) arg; |
0e9e9abd UW |
2008 | unsigned int i; |
2009 | ||
2010 | for (i = 0; i < objfile->obfd->section_count; i++) | |
2011 | VEC_free (arm_exidx_entry_s, data->section_maps[i]); | |
2012 | } | |
2013 | ||
2014 | static inline int | |
2015 | arm_compare_exidx_entries (const struct arm_exidx_entry *lhs, | |
2016 | const struct arm_exidx_entry *rhs) | |
2017 | { | |
2018 | return lhs->addr < rhs->addr; | |
2019 | } | |
2020 | ||
2021 | static struct obj_section * | |
2022 | arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) | |
2023 | { | |
2024 | struct obj_section *osect; | |
2025 | ||
2026 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
2027 | if (bfd_get_section_flags (objfile->obfd, | |
2028 | osect->the_bfd_section) & SEC_ALLOC) | |
2029 | { | |
2030 | bfd_vma start, size; | |
2031 | start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section); | |
2032 | size = bfd_get_section_size (osect->the_bfd_section); | |
2033 | ||
2034 | if (start <= vma && vma < start + size) | |
2035 | return osect; | |
2036 | } | |
2037 | ||
2038 | return NULL; | |
2039 | } | |
2040 | ||
2041 | /* Parse contents of exception table and exception index sections | |
2042 | of OBJFILE, and fill in the exception table entry cache. | |
2043 | ||
2044 | For each entry that refers to a standard ARM-defined personality | |
2045 | routine, extract the frame unwinding instructions (from either | |
2046 | the index or the table section). The unwinding instructions | |
2047 | are normalized by: | |
2048 | - extracting them from the rest of the table data | |
2049 | - converting to host endianness | |
2050 | - appending the implicit 0xb0 ("Finish") code | |
2051 | ||
2052 | The extracted and normalized instructions are stored for later | |
2053 | retrieval by the arm_find_exidx_entry routine. */ | |
2054 | ||
2055 | static void | |
2056 | arm_exidx_new_objfile (struct objfile *objfile) | |
2057 | { | |
3bb47e8b | 2058 | struct cleanup *cleanups; |
0e9e9abd UW |
2059 | struct arm_exidx_data *data; |
2060 | asection *exidx, *extab; | |
2061 | bfd_vma exidx_vma = 0, extab_vma = 0; | |
2062 | bfd_size_type exidx_size = 0, extab_size = 0; | |
2063 | gdb_byte *exidx_data = NULL, *extab_data = NULL; | |
2064 | LONGEST i; | |
2065 | ||
2066 | /* If we've already touched this file, do nothing. */ | |
2067 | if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL) | |
2068 | return; | |
3bb47e8b | 2069 | cleanups = make_cleanup (null_cleanup, NULL); |
0e9e9abd UW |
2070 | |
2071 | /* Read contents of exception table and index. */ | |
a5eda10c | 2072 | exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind); |
0e9e9abd UW |
2073 | if (exidx) |
2074 | { | |
2075 | exidx_vma = bfd_section_vma (objfile->obfd, exidx); | |
2076 | exidx_size = bfd_get_section_size (exidx); | |
224c3ddb | 2077 | exidx_data = (gdb_byte *) xmalloc (exidx_size); |
0e9e9abd UW |
2078 | make_cleanup (xfree, exidx_data); |
2079 | ||
2080 | if (!bfd_get_section_contents (objfile->obfd, exidx, | |
2081 | exidx_data, 0, exidx_size)) | |
2082 | { | |
2083 | do_cleanups (cleanups); | |
2084 | return; | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab"); | |
2089 | if (extab) | |
2090 | { | |
2091 | extab_vma = bfd_section_vma (objfile->obfd, extab); | |
2092 | extab_size = bfd_get_section_size (extab); | |
224c3ddb | 2093 | extab_data = (gdb_byte *) xmalloc (extab_size); |
0e9e9abd UW |
2094 | make_cleanup (xfree, extab_data); |
2095 | ||
2096 | if (!bfd_get_section_contents (objfile->obfd, extab, | |
2097 | extab_data, 0, extab_size)) | |
2098 | { | |
2099 | do_cleanups (cleanups); | |
2100 | return; | |
2101 | } | |
2102 | } | |
2103 | ||
2104 | /* Allocate exception table data structure. */ | |
2105 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data); | |
2106 | set_objfile_data (objfile, arm_exidx_data_key, data); | |
2107 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
2108 | objfile->obfd->section_count, | |
2109 | VEC(arm_exidx_entry_s) *); | |
2110 | ||
2111 | /* Fill in exception table. */ | |
2112 | for (i = 0; i < exidx_size / 8; i++) | |
2113 | { | |
2114 | struct arm_exidx_entry new_exidx_entry; | |
2115 | bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8); | |
2116 | bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4); | |
2117 | bfd_vma addr = 0, word = 0; | |
2118 | int n_bytes = 0, n_words = 0; | |
2119 | struct obj_section *sec; | |
2120 | gdb_byte *entry = NULL; | |
2121 | ||
2122 | /* Extract address of start of function. */ | |
2123 | idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2124 | idx += exidx_vma + i * 8; | |
2125 | ||
2126 | /* Find section containing function and compute section offset. */ | |
2127 | sec = arm_obj_section_from_vma (objfile, idx); | |
2128 | if (sec == NULL) | |
2129 | continue; | |
2130 | idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section); | |
2131 | ||
2132 | /* Determine address of exception table entry. */ | |
2133 | if (val == 1) | |
2134 | { | |
2135 | /* EXIDX_CANTUNWIND -- no exception table entry present. */ | |
2136 | } | |
2137 | else if ((val & 0xff000000) == 0x80000000) | |
2138 | { | |
2139 | /* Exception table entry embedded in .ARM.exidx | |
2140 | -- must be short form. */ | |
2141 | word = val; | |
2142 | n_bytes = 3; | |
2143 | } | |
2144 | else if (!(val & 0x80000000)) | |
2145 | { | |
2146 | /* Exception table entry in .ARM.extab. */ | |
2147 | addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2148 | addr += exidx_vma + i * 8 + 4; | |
2149 | ||
2150 | if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size) | |
2151 | { | |
2152 | word = bfd_h_get_32 (objfile->obfd, | |
2153 | extab_data + addr - extab_vma); | |
2154 | addr += 4; | |
2155 | ||
2156 | if ((word & 0xff000000) == 0x80000000) | |
2157 | { | |
2158 | /* Short form. */ | |
2159 | n_bytes = 3; | |
2160 | } | |
2161 | else if ((word & 0xff000000) == 0x81000000 | |
2162 | || (word & 0xff000000) == 0x82000000) | |
2163 | { | |
2164 | /* Long form. */ | |
2165 | n_bytes = 2; | |
2166 | n_words = ((word >> 16) & 0xff); | |
2167 | } | |
2168 | else if (!(word & 0x80000000)) | |
2169 | { | |
2170 | bfd_vma pers; | |
2171 | struct obj_section *pers_sec; | |
2172 | int gnu_personality = 0; | |
2173 | ||
2174 | /* Custom personality routine. */ | |
2175 | pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; | |
2176 | pers = UNMAKE_THUMB_ADDR (pers + addr - 4); | |
2177 | ||
2178 | /* Check whether we've got one of the variants of the | |
2179 | GNU personality routines. */ | |
2180 | pers_sec = arm_obj_section_from_vma (objfile, pers); | |
2181 | if (pers_sec) | |
2182 | { | |
2183 | static const char *personality[] = | |
2184 | { | |
2185 | "__gcc_personality_v0", | |
2186 | "__gxx_personality_v0", | |
2187 | "__gcj_personality_v0", | |
2188 | "__gnu_objc_personality_v0", | |
2189 | NULL | |
2190 | }; | |
2191 | ||
2192 | CORE_ADDR pc = pers + obj_section_offset (pers_sec); | |
2193 | int k; | |
2194 | ||
2195 | for (k = 0; personality[k]; k++) | |
2196 | if (lookup_minimal_symbol_by_pc_name | |
2197 | (pc, personality[k], objfile)) | |
2198 | { | |
2199 | gnu_personality = 1; | |
2200 | break; | |
2201 | } | |
2202 | } | |
2203 | ||
2204 | /* If so, the next word contains a word count in the high | |
2205 | byte, followed by the same unwind instructions as the | |
2206 | pre-defined forms. */ | |
2207 | if (gnu_personality | |
2208 | && addr + 4 <= extab_vma + extab_size) | |
2209 | { | |
2210 | word = bfd_h_get_32 (objfile->obfd, | |
2211 | extab_data + addr - extab_vma); | |
2212 | addr += 4; | |
2213 | n_bytes = 3; | |
2214 | n_words = ((word >> 24) & 0xff); | |
2215 | } | |
2216 | } | |
2217 | } | |
2218 | } | |
2219 | ||
2220 | /* Sanity check address. */ | |
2221 | if (n_words) | |
2222 | if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size) | |
2223 | n_words = n_bytes = 0; | |
2224 | ||
2225 | /* The unwind instructions reside in WORD (only the N_BYTES least | |
2226 | significant bytes are valid), followed by N_WORDS words in the | |
2227 | extab section starting at ADDR. */ | |
2228 | if (n_bytes || n_words) | |
2229 | { | |
224c3ddb SM |
2230 | gdb_byte *p = entry |
2231 | = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, | |
2232 | n_bytes + n_words * 4 + 1); | |
0e9e9abd UW |
2233 | |
2234 | while (n_bytes--) | |
2235 | *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); | |
2236 | ||
2237 | while (n_words--) | |
2238 | { | |
2239 | word = bfd_h_get_32 (objfile->obfd, | |
2240 | extab_data + addr - extab_vma); | |
2241 | addr += 4; | |
2242 | ||
2243 | *p++ = (gdb_byte) ((word >> 24) & 0xff); | |
2244 | *p++ = (gdb_byte) ((word >> 16) & 0xff); | |
2245 | *p++ = (gdb_byte) ((word >> 8) & 0xff); | |
2246 | *p++ = (gdb_byte) (word & 0xff); | |
2247 | } | |
2248 | ||
2249 | /* Implied "Finish" to terminate the list. */ | |
2250 | *p++ = 0xb0; | |
2251 | } | |
2252 | ||
2253 | /* Push entry onto vector. They are guaranteed to always | |
2254 | appear in order of increasing addresses. */ | |
2255 | new_exidx_entry.addr = idx; | |
2256 | new_exidx_entry.entry = entry; | |
2257 | VEC_safe_push (arm_exidx_entry_s, | |
2258 | data->section_maps[sec->the_bfd_section->index], | |
2259 | &new_exidx_entry); | |
2260 | } | |
2261 | ||
2262 | do_cleanups (cleanups); | |
2263 | } | |
2264 | ||
2265 | /* Search for the exception table entry covering MEMADDR. If one is found, | |
2266 | return a pointer to its data. Otherwise, return 0. If START is non-NULL, | |
2267 | set *START to the start of the region covered by this entry. */ | |
2268 | ||
2269 | static gdb_byte * | |
2270 | arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) | |
2271 | { | |
2272 | struct obj_section *sec; | |
2273 | ||
2274 | sec = find_pc_section (memaddr); | |
2275 | if (sec != NULL) | |
2276 | { | |
2277 | struct arm_exidx_data *data; | |
2278 | VEC(arm_exidx_entry_s) *map; | |
2279 | struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 }; | |
2280 | unsigned int idx; | |
2281 | ||
9a3c8263 SM |
2282 | data = ((struct arm_exidx_data *) |
2283 | objfile_data (sec->objfile, arm_exidx_data_key)); | |
0e9e9abd UW |
2284 | if (data != NULL) |
2285 | { | |
2286 | map = data->section_maps[sec->the_bfd_section->index]; | |
2287 | if (!VEC_empty (arm_exidx_entry_s, map)) | |
2288 | { | |
2289 | struct arm_exidx_entry *map_sym; | |
2290 | ||
2291 | idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key, | |
2292 | arm_compare_exidx_entries); | |
2293 | ||
2294 | /* VEC_lower_bound finds the earliest ordered insertion | |
2295 | point. If the following symbol starts at this exact | |
2296 | address, we use that; otherwise, the preceding | |
2297 | exception table entry covers this address. */ | |
2298 | if (idx < VEC_length (arm_exidx_entry_s, map)) | |
2299 | { | |
2300 | map_sym = VEC_index (arm_exidx_entry_s, map, idx); | |
2301 | if (map_sym->addr == map_key.addr) | |
2302 | { | |
2303 | if (start) | |
2304 | *start = map_sym->addr + obj_section_addr (sec); | |
2305 | return map_sym->entry; | |
2306 | } | |
2307 | } | |
2308 | ||
2309 | if (idx > 0) | |
2310 | { | |
2311 | map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1); | |
2312 | if (start) | |
2313 | *start = map_sym->addr + obj_section_addr (sec); | |
2314 | return map_sym->entry; | |
2315 | } | |
2316 | } | |
2317 | } | |
2318 | } | |
2319 | ||
2320 | return NULL; | |
2321 | } | |
2322 | ||
2323 | /* Given the current frame THIS_FRAME, and its associated frame unwinding | |
2324 | instruction list from the ARM exception table entry ENTRY, allocate and | |
2325 | return a prologue cache structure describing how to unwind this frame. | |
2326 | ||
2327 | Return NULL if the unwinding instruction list contains a "spare", | |
2328 | "reserved" or "refuse to unwind" instruction as defined in section | |
2329 | "9.3 Frame unwinding instructions" of the "Exception Handling ABI | |
2330 | for the ARM Architecture" document. */ | |
2331 | ||
2332 | static struct arm_prologue_cache * | |
2333 | arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry) | |
2334 | { | |
2335 | CORE_ADDR vsp = 0; | |
2336 | int vsp_valid = 0; | |
2337 | ||
2338 | struct arm_prologue_cache *cache; | |
2339 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2340 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2341 | ||
2342 | for (;;) | |
2343 | { | |
2344 | gdb_byte insn; | |
2345 | ||
2346 | /* Whenever we reload SP, we actually have to retrieve its | |
2347 | actual value in the current frame. */ | |
2348 | if (!vsp_valid) | |
2349 | { | |
2350 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2351 | { | |
2352 | int reg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2353 | vsp = get_frame_register_unsigned (this_frame, reg); | |
2354 | } | |
2355 | else | |
2356 | { | |
2357 | CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr; | |
2358 | vsp = get_frame_memory_unsigned (this_frame, addr, 4); | |
2359 | } | |
2360 | ||
2361 | vsp_valid = 1; | |
2362 | } | |
2363 | ||
2364 | /* Decode next unwind instruction. */ | |
2365 | insn = *entry++; | |
2366 | ||
2367 | if ((insn & 0xc0) == 0) | |
2368 | { | |
2369 | int offset = insn & 0x3f; | |
2370 | vsp += (offset << 2) + 4; | |
2371 | } | |
2372 | else if ((insn & 0xc0) == 0x40) | |
2373 | { | |
2374 | int offset = insn & 0x3f; | |
2375 | vsp -= (offset << 2) + 4; | |
2376 | } | |
2377 | else if ((insn & 0xf0) == 0x80) | |
2378 | { | |
2379 | int mask = ((insn & 0xf) << 8) | *entry++; | |
2380 | int i; | |
2381 | ||
2382 | /* The special case of an all-zero mask identifies | |
2383 | "Refuse to unwind". We return NULL to fall back | |
2384 | to the prologue analyzer. */ | |
2385 | if (mask == 0) | |
2386 | return NULL; | |
2387 | ||
2388 | /* Pop registers r4..r15 under mask. */ | |
2389 | for (i = 0; i < 12; i++) | |
2390 | if (mask & (1 << i)) | |
2391 | { | |
2392 | cache->saved_regs[4 + i].addr = vsp; | |
2393 | vsp += 4; | |
2394 | } | |
2395 | ||
2396 | /* Special-case popping SP -- we need to reload vsp. */ | |
2397 | if (mask & (1 << (ARM_SP_REGNUM - 4))) | |
2398 | vsp_valid = 0; | |
2399 | } | |
2400 | else if ((insn & 0xf0) == 0x90) | |
2401 | { | |
2402 | int reg = insn & 0xf; | |
2403 | ||
2404 | /* Reserved cases. */ | |
2405 | if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) | |
2406 | return NULL; | |
2407 | ||
2408 | /* Set SP from another register and mark VSP for reload. */ | |
2409 | cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; | |
2410 | vsp_valid = 0; | |
2411 | } | |
2412 | else if ((insn & 0xf0) == 0xa0) | |
2413 | { | |
2414 | int count = insn & 0x7; | |
2415 | int pop_lr = (insn & 0x8) != 0; | |
2416 | int i; | |
2417 | ||
2418 | /* Pop r4..r[4+count]. */ | |
2419 | for (i = 0; i <= count; i++) | |
2420 | { | |
2421 | cache->saved_regs[4 + i].addr = vsp; | |
2422 | vsp += 4; | |
2423 | } | |
2424 | ||
2425 | /* If indicated by flag, pop LR as well. */ | |
2426 | if (pop_lr) | |
2427 | { | |
2428 | cache->saved_regs[ARM_LR_REGNUM].addr = vsp; | |
2429 | vsp += 4; | |
2430 | } | |
2431 | } | |
2432 | else if (insn == 0xb0) | |
2433 | { | |
2434 | /* We could only have updated PC by popping into it; if so, it | |
2435 | will show up as address. Otherwise, copy LR into PC. */ | |
2436 | if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM)) | |
2437 | cache->saved_regs[ARM_PC_REGNUM] | |
2438 | = cache->saved_regs[ARM_LR_REGNUM]; | |
2439 | ||
2440 | /* We're done. */ | |
2441 | break; | |
2442 | } | |
2443 | else if (insn == 0xb1) | |
2444 | { | |
2445 | int mask = *entry++; | |
2446 | int i; | |
2447 | ||
2448 | /* All-zero mask and mask >= 16 is "spare". */ | |
2449 | if (mask == 0 || mask >= 16) | |
2450 | return NULL; | |
2451 | ||
2452 | /* Pop r0..r3 under mask. */ | |
2453 | for (i = 0; i < 4; i++) | |
2454 | if (mask & (1 << i)) | |
2455 | { | |
2456 | cache->saved_regs[i].addr = vsp; | |
2457 | vsp += 4; | |
2458 | } | |
2459 | } | |
2460 | else if (insn == 0xb2) | |
2461 | { | |
2462 | ULONGEST offset = 0; | |
2463 | unsigned shift = 0; | |
2464 | ||
2465 | do | |
2466 | { | |
2467 | offset |= (*entry & 0x7f) << shift; | |
2468 | shift += 7; | |
2469 | } | |
2470 | while (*entry++ & 0x80); | |
2471 | ||
2472 | vsp += 0x204 + (offset << 2); | |
2473 | } | |
2474 | else if (insn == 0xb3) | |
2475 | { | |
2476 | int start = *entry >> 4; | |
2477 | int count = (*entry++) & 0xf; | |
2478 | int i; | |
2479 | ||
2480 | /* Only registers D0..D15 are valid here. */ | |
2481 | if (start + count >= 16) | |
2482 | return NULL; | |
2483 | ||
2484 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2485 | for (i = 0; i <= count; i++) | |
2486 | { | |
2487 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2488 | vsp += 8; | |
2489 | } | |
2490 | ||
2491 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2492 | vsp += 4; | |
2493 | } | |
2494 | else if ((insn & 0xf8) == 0xb8) | |
2495 | { | |
2496 | int count = insn & 0x7; | |
2497 | int i; | |
2498 | ||
2499 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2500 | for (i = 0; i <= count; i++) | |
2501 | { | |
2502 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2503 | vsp += 8; | |
2504 | } | |
2505 | ||
2506 | /* Add an extra 4 bytes for FSTMFDX-style stack. */ | |
2507 | vsp += 4; | |
2508 | } | |
2509 | else if (insn == 0xc6) | |
2510 | { | |
2511 | int start = *entry >> 4; | |
2512 | int count = (*entry++) & 0xf; | |
2513 | int i; | |
2514 | ||
2515 | /* Only registers WR0..WR15 are valid. */ | |
2516 | if (start + count >= 16) | |
2517 | return NULL; | |
2518 | ||
2519 | /* Pop iwmmx registers WR[start]..WR[start+count]. */ | |
2520 | for (i = 0; i <= count; i++) | |
2521 | { | |
2522 | cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp; | |
2523 | vsp += 8; | |
2524 | } | |
2525 | } | |
2526 | else if (insn == 0xc7) | |
2527 | { | |
2528 | int mask = *entry++; | |
2529 | int i; | |
2530 | ||
2531 | /* All-zero mask and mask >= 16 is "spare". */ | |
2532 | if (mask == 0 || mask >= 16) | |
2533 | return NULL; | |
2534 | ||
2535 | /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */ | |
2536 | for (i = 0; i < 4; i++) | |
2537 | if (mask & (1 << i)) | |
2538 | { | |
2539 | cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp; | |
2540 | vsp += 4; | |
2541 | } | |
2542 | } | |
2543 | else if ((insn & 0xf8) == 0xc0) | |
2544 | { | |
2545 | int count = insn & 0x7; | |
2546 | int i; | |
2547 | ||
2548 | /* Pop iwmmx registers WR[10]..WR[10+count]. */ | |
2549 | for (i = 0; i <= count; i++) | |
2550 | { | |
2551 | cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp; | |
2552 | vsp += 8; | |
2553 | } | |
2554 | } | |
2555 | else if (insn == 0xc8) | |
2556 | { | |
2557 | int start = *entry >> 4; | |
2558 | int count = (*entry++) & 0xf; | |
2559 | int i; | |
2560 | ||
2561 | /* Only registers D0..D31 are valid. */ | |
2562 | if (start + count >= 16) | |
2563 | return NULL; | |
2564 | ||
2565 | /* Pop VFP double-precision registers | |
2566 | D[16+start]..D[16+start+count]. */ | |
2567 | for (i = 0; i <= count; i++) | |
2568 | { | |
2569 | cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp; | |
2570 | vsp += 8; | |
2571 | } | |
2572 | } | |
2573 | else if (insn == 0xc9) | |
2574 | { | |
2575 | int start = *entry >> 4; | |
2576 | int count = (*entry++) & 0xf; | |
2577 | int i; | |
2578 | ||
2579 | /* Pop VFP double-precision registers D[start]..D[start+count]. */ | |
2580 | for (i = 0; i <= count; i++) | |
2581 | { | |
2582 | cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp; | |
2583 | vsp += 8; | |
2584 | } | |
2585 | } | |
2586 | else if ((insn & 0xf8) == 0xd0) | |
2587 | { | |
2588 | int count = insn & 0x7; | |
2589 | int i; | |
2590 | ||
2591 | /* Pop VFP double-precision registers D[8]..D[8+count]. */ | |
2592 | for (i = 0; i <= count; i++) | |
2593 | { | |
2594 | cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp; | |
2595 | vsp += 8; | |
2596 | } | |
2597 | } | |
2598 | else | |
2599 | { | |
2600 | /* Everything else is "spare". */ | |
2601 | return NULL; | |
2602 | } | |
2603 | } | |
2604 | ||
2605 | /* If we restore SP from a register, assume this was the frame register. | |
2606 | Otherwise just fall back to SP as frame register. */ | |
2607 | if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM)) | |
2608 | cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg; | |
2609 | else | |
2610 | cache->framereg = ARM_SP_REGNUM; | |
2611 | ||
2612 | /* Determine offset to previous frame. */ | |
2613 | cache->framesize | |
2614 | = vsp - get_frame_register_unsigned (this_frame, cache->framereg); | |
2615 | ||
2616 | /* We already got the previous SP. */ | |
2617 | cache->prev_sp = vsp; | |
2618 | ||
2619 | return cache; | |
2620 | } | |
2621 | ||
2622 | /* Unwinding via ARM exception table entries. Note that the sniffer | |
2623 | already computes a filled-in prologue cache, which is then used | |
2624 | with the same arm_prologue_this_id and arm_prologue_prev_register | |
2625 | routines also used for prologue-parsing based unwinding. */ | |
2626 | ||
2627 | static int | |
2628 | arm_exidx_unwind_sniffer (const struct frame_unwind *self, | |
2629 | struct frame_info *this_frame, | |
2630 | void **this_prologue_cache) | |
2631 | { | |
2632 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2633 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
2634 | CORE_ADDR addr_in_block, exidx_region, func_start; | |
2635 | struct arm_prologue_cache *cache; | |
2636 | gdb_byte *entry; | |
2637 | ||
2638 | /* See if we have an ARM exception table entry covering this address. */ | |
2639 | addr_in_block = get_frame_address_in_block (this_frame); | |
2640 | entry = arm_find_exidx_entry (addr_in_block, &exidx_region); | |
2641 | if (!entry) | |
2642 | return 0; | |
2643 | ||
2644 | /* The ARM exception table does not describe unwind information | |
2645 | for arbitrary PC values, but is guaranteed to be correct only | |
2646 | at call sites. We have to decide here whether we want to use | |
2647 | ARM exception table information for this frame, or fall back | |
2648 | to using prologue parsing. (Note that if we have DWARF CFI, | |
2649 | this sniffer isn't even called -- CFI is always preferred.) | |
2650 | ||
2651 | Before we make this decision, however, we check whether we | |
2652 | actually have *symbol* information for the current frame. | |
2653 | If not, prologue parsing would not work anyway, so we might | |
2654 | as well use the exception table and hope for the best. */ | |
2655 | if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) | |
2656 | { | |
2657 | int exc_valid = 0; | |
2658 | ||
2659 | /* If the next frame is "normal", we are at a call site in this | |
2660 | frame, so exception information is guaranteed to be valid. */ | |
2661 | if (get_next_frame (this_frame) | |
2662 | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | |
2663 | exc_valid = 1; | |
2664 | ||
2665 | /* We also assume exception information is valid if we're currently | |
2666 | blocked in a system call. The system library is supposed to | |
d9311bfa AT |
2667 | ensure this, so that e.g. pthread cancellation works. */ |
2668 | if (arm_frame_is_thumb (this_frame)) | |
0e9e9abd | 2669 | { |
7913a64c | 2670 | ULONGEST insn; |
416dc9c6 | 2671 | |
7913a64c YQ |
2672 | if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2, |
2673 | 2, byte_order_for_code, &insn) | |
d9311bfa AT |
2674 | && (insn & 0xff00) == 0xdf00 /* svc */) |
2675 | exc_valid = 1; | |
0e9e9abd | 2676 | } |
d9311bfa AT |
2677 | else |
2678 | { | |
7913a64c | 2679 | ULONGEST insn; |
416dc9c6 | 2680 | |
7913a64c YQ |
2681 | if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4, |
2682 | 4, byte_order_for_code, &insn) | |
d9311bfa AT |
2683 | && (insn & 0x0f000000) == 0x0f000000 /* svc */) |
2684 | exc_valid = 1; | |
2685 | } | |
2686 | ||
0e9e9abd UW |
2687 | /* Bail out if we don't know that exception information is valid. */ |
2688 | if (!exc_valid) | |
2689 | return 0; | |
2690 | ||
2691 | /* The ARM exception index does not mark the *end* of the region | |
2692 | covered by the entry, and some functions will not have any entry. | |
2693 | To correctly recognize the end of the covered region, the linker | |
2694 | should have inserted dummy records with a CANTUNWIND marker. | |
2695 | ||
2696 | Unfortunately, current versions of GNU ld do not reliably do | |
2697 | this, and thus we may have found an incorrect entry above. | |
2698 | As a (temporary) sanity check, we only use the entry if it | |
2699 | lies *within* the bounds of the function. Note that this check | |
2700 | might reject perfectly valid entries that just happen to cover | |
2701 | multiple functions; therefore this check ought to be removed | |
2702 | once the linker is fixed. */ | |
2703 | if (func_start > exidx_region) | |
2704 | return 0; | |
2705 | } | |
2706 | ||
2707 | /* Decode the list of unwinding instructions into a prologue cache. | |
2708 | Note that this may fail due to e.g. a "refuse to unwind" code. */ | |
2709 | cache = arm_exidx_fill_cache (this_frame, entry); | |
2710 | if (!cache) | |
2711 | return 0; | |
2712 | ||
2713 | *this_prologue_cache = cache; | |
2714 | return 1; | |
2715 | } | |
2716 | ||
2717 | struct frame_unwind arm_exidx_unwind = { | |
2718 | NORMAL_FRAME, | |
8fbca658 | 2719 | default_frame_unwind_stop_reason, |
0e9e9abd UW |
2720 | arm_prologue_this_id, |
2721 | arm_prologue_prev_register, | |
2722 | NULL, | |
2723 | arm_exidx_unwind_sniffer | |
2724 | }; | |
2725 | ||
779aa56f YQ |
2726 | static struct arm_prologue_cache * |
2727 | arm_make_epilogue_frame_cache (struct frame_info *this_frame) | |
2728 | { | |
2729 | struct arm_prologue_cache *cache; | |
779aa56f YQ |
2730 | int reg; |
2731 | ||
2732 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2733 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2734 | ||
2735 | /* Still rely on the offset calculated from prologue. */ | |
2736 | arm_scan_prologue (this_frame, cache); | |
2737 | ||
2738 | /* Since we are in epilogue, the SP has been restored. */ | |
2739 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); | |
2740 | ||
2741 | /* Calculate actual addresses of saved registers using offsets | |
2742 | determined by arm_scan_prologue. */ | |
2743 | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) | |
2744 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2745 | cache->saved_regs[reg].addr += cache->prev_sp; | |
2746 | ||
2747 | return cache; | |
2748 | } | |
2749 | ||
2750 | /* Implementation of function hook 'this_id' in | |
2751 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2752 | ||
2753 | static void | |
2754 | arm_epilogue_frame_this_id (struct frame_info *this_frame, | |
2755 | void **this_cache, | |
2756 | struct frame_id *this_id) | |
2757 | { | |
2758 | struct arm_prologue_cache *cache; | |
2759 | CORE_ADDR pc, func; | |
2760 | ||
2761 | if (*this_cache == NULL) | |
2762 | *this_cache = arm_make_epilogue_frame_cache (this_frame); | |
2763 | cache = (struct arm_prologue_cache *) *this_cache; | |
2764 | ||
2765 | /* Use function start address as part of the frame ID. If we cannot | |
2766 | identify the start address (due to missing symbol information), | |
2767 | fall back to just using the current PC. */ | |
2768 | pc = get_frame_pc (this_frame); | |
2769 | func = get_frame_func (this_frame); | |
fb3f3d25 | 2770 | if (func == 0) |
779aa56f YQ |
2771 | func = pc; |
2772 | ||
2773 | (*this_id) = frame_id_build (cache->prev_sp, pc); | |
2774 | } | |
2775 | ||
2776 | /* Implementation of function hook 'prev_register' in | |
2777 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2778 | ||
2779 | static struct value * | |
2780 | arm_epilogue_frame_prev_register (struct frame_info *this_frame, | |
2781 | void **this_cache, int regnum) | |
2782 | { | |
779aa56f YQ |
2783 | if (*this_cache == NULL) |
2784 | *this_cache = arm_make_epilogue_frame_cache (this_frame); | |
779aa56f YQ |
2785 | |
2786 | return arm_prologue_prev_register (this_frame, this_cache, regnum); | |
2787 | } | |
2788 | ||
2789 | static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, | |
2790 | CORE_ADDR pc); | |
2791 | static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, | |
2792 | CORE_ADDR pc); | |
2793 | ||
2794 | /* Implementation of function hook 'sniffer' in | |
2795 | 'struct frame_uwnind' for epilogue unwinder. */ | |
2796 | ||
2797 | static int | |
2798 | arm_epilogue_frame_sniffer (const struct frame_unwind *self, | |
2799 | struct frame_info *this_frame, | |
2800 | void **this_prologue_cache) | |
2801 | { | |
2802 | if (frame_relative_level (this_frame) == 0) | |
2803 | { | |
2804 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2805 | CORE_ADDR pc = get_frame_pc (this_frame); | |
2806 | ||
2807 | if (arm_frame_is_thumb (this_frame)) | |
2808 | return thumb_stack_frame_destroyed_p (gdbarch, pc); | |
2809 | else | |
2810 | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | |
2811 | } | |
2812 | else | |
2813 | return 0; | |
2814 | } | |
2815 | ||
2816 | /* Frame unwinder from epilogue. */ | |
2817 | ||
2818 | static const struct frame_unwind arm_epilogue_frame_unwind = | |
2819 | { | |
2820 | NORMAL_FRAME, | |
2821 | default_frame_unwind_stop_reason, | |
2822 | arm_epilogue_frame_this_id, | |
2823 | arm_epilogue_frame_prev_register, | |
2824 | NULL, | |
2825 | arm_epilogue_frame_sniffer, | |
2826 | }; | |
2827 | ||
80d8d390 YQ |
2828 | /* Recognize GCC's trampoline for thumb call-indirect. If we are in a |
2829 | trampoline, return the target PC. Otherwise return 0. | |
2830 | ||
2831 | void call0a (char c, short s, int i, long l) {} | |
2832 | ||
2833 | int main (void) | |
2834 | { | |
2835 | (*pointer_to_call0a) (c, s, i, l); | |
2836 | } | |
2837 | ||
2838 | Instead of calling a stub library function _call_via_xx (xx is | |
2839 | the register name), GCC may inline the trampoline in the object | |
2840 | file as below (register r2 has the address of call0a). | |
2841 | ||
2842 | .global main | |
2843 | .type main, %function | |
2844 | ... | |
2845 | bl .L1 | |
2846 | ... | |
2847 | .size main, .-main | |
2848 | ||
2849 | .L1: | |
2850 | bx r2 | |
2851 | ||
2852 | The trampoline 'bx r2' doesn't belong to main. */ | |
2853 | ||
2854 | static CORE_ADDR | |
2855 | arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc) | |
2856 | { | |
2857 | /* The heuristics of recognizing such trampoline is that FRAME is | |
2858 | executing in Thumb mode and the instruction on PC is 'bx Rm'. */ | |
2859 | if (arm_frame_is_thumb (frame)) | |
2860 | { | |
2861 | gdb_byte buf[2]; | |
2862 | ||
2863 | if (target_read_memory (pc, buf, 2) == 0) | |
2864 | { | |
2865 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2866 | enum bfd_endian byte_order_for_code | |
2867 | = gdbarch_byte_order_for_code (gdbarch); | |
2868 | uint16_t insn | |
2869 | = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
2870 | ||
2871 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
2872 | { | |
2873 | CORE_ADDR dest | |
2874 | = get_frame_register_unsigned (frame, bits (insn, 3, 6)); | |
2875 | ||
2876 | /* Clear the LSB so that gdb core sets step-resume | |
2877 | breakpoint at the right address. */ | |
2878 | return UNMAKE_THUMB_ADDR (dest); | |
2879 | } | |
2880 | } | |
2881 | } | |
2882 | ||
2883 | return 0; | |
2884 | } | |
2885 | ||
909cf6ea | 2886 | static struct arm_prologue_cache * |
a262aec2 | 2887 | arm_make_stub_cache (struct frame_info *this_frame) |
909cf6ea | 2888 | { |
909cf6ea | 2889 | struct arm_prologue_cache *cache; |
909cf6ea | 2890 | |
35d5d4ee | 2891 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
a262aec2 | 2892 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
909cf6ea | 2893 | |
a262aec2 | 2894 | cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
909cf6ea DJ |
2895 | |
2896 | return cache; | |
2897 | } | |
2898 | ||
2899 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
2900 | ||
2901 | static void | |
a262aec2 | 2902 | arm_stub_this_id (struct frame_info *this_frame, |
909cf6ea DJ |
2903 | void **this_cache, |
2904 | struct frame_id *this_id) | |
2905 | { | |
2906 | struct arm_prologue_cache *cache; | |
2907 | ||
2908 | if (*this_cache == NULL) | |
a262aec2 | 2909 | *this_cache = arm_make_stub_cache (this_frame); |
9a3c8263 | 2910 | cache = (struct arm_prologue_cache *) *this_cache; |
909cf6ea | 2911 | |
a262aec2 | 2912 | *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
909cf6ea DJ |
2913 | } |
2914 | ||
a262aec2 DJ |
2915 | static int |
2916 | arm_stub_unwind_sniffer (const struct frame_unwind *self, | |
2917 | struct frame_info *this_frame, | |
2918 | void **this_prologue_cache) | |
909cf6ea | 2919 | { |
93d42b30 | 2920 | CORE_ADDR addr_in_block; |
948f8e3d | 2921 | gdb_byte dummy[4]; |
18d18ac8 YQ |
2922 | CORE_ADDR pc, start_addr; |
2923 | const char *name; | |
909cf6ea | 2924 | |
a262aec2 | 2925 | addr_in_block = get_frame_address_in_block (this_frame); |
18d18ac8 | 2926 | pc = get_frame_pc (this_frame); |
3e5d3a5a | 2927 | if (in_plt_section (addr_in_block) |
fc36e839 DE |
2928 | /* We also use the stub winder if the target memory is unreadable |
2929 | to avoid having the prologue unwinder trying to read it. */ | |
18d18ac8 YQ |
2930 | || target_read_memory (pc, dummy, 4) != 0) |
2931 | return 1; | |
2932 | ||
2933 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0 | |
2934 | && arm_skip_bx_reg (this_frame, pc) != 0) | |
a262aec2 | 2935 | return 1; |
909cf6ea | 2936 | |
a262aec2 | 2937 | return 0; |
909cf6ea DJ |
2938 | } |
2939 | ||
a262aec2 DJ |
2940 | struct frame_unwind arm_stub_unwind = { |
2941 | NORMAL_FRAME, | |
8fbca658 | 2942 | default_frame_unwind_stop_reason, |
a262aec2 DJ |
2943 | arm_stub_this_id, |
2944 | arm_prologue_prev_register, | |
2945 | NULL, | |
2946 | arm_stub_unwind_sniffer | |
2947 | }; | |
2948 | ||
2ae28aa9 YQ |
2949 | /* Put here the code to store, into CACHE->saved_regs, the addresses |
2950 | of the saved registers of frame described by THIS_FRAME. CACHE is | |
2951 | returned. */ | |
2952 | ||
2953 | static struct arm_prologue_cache * | |
2954 | arm_m_exception_cache (struct frame_info *this_frame) | |
2955 | { | |
2956 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2957 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2958 | struct arm_prologue_cache *cache; | |
2959 | CORE_ADDR unwound_sp; | |
2960 | LONGEST xpsr; | |
2961 | ||
2962 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | |
2963 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
2964 | ||
2965 | unwound_sp = get_frame_register_unsigned (this_frame, | |
2966 | ARM_SP_REGNUM); | |
2967 | ||
2968 | /* The hardware saves eight 32-bit words, comprising xPSR, | |
2969 | ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in | |
2970 | "B1.5.6 Exception entry behavior" in | |
2971 | "ARMv7-M Architecture Reference Manual". */ | |
2972 | cache->saved_regs[0].addr = unwound_sp; | |
2973 | cache->saved_regs[1].addr = unwound_sp + 4; | |
2974 | cache->saved_regs[2].addr = unwound_sp + 8; | |
2975 | cache->saved_regs[3].addr = unwound_sp + 12; | |
2976 | cache->saved_regs[12].addr = unwound_sp + 16; | |
2977 | cache->saved_regs[14].addr = unwound_sp + 20; | |
2978 | cache->saved_regs[15].addr = unwound_sp + 24; | |
2979 | cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28; | |
2980 | ||
2981 | /* If bit 9 of the saved xPSR is set, then there is a four-byte | |
2982 | aligner between the top of the 32-byte stack frame and the | |
2983 | previous context's stack pointer. */ | |
2984 | cache->prev_sp = unwound_sp + 32; | |
2985 | if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr) | |
2986 | && (xpsr & (1 << 9)) != 0) | |
2987 | cache->prev_sp += 4; | |
2988 | ||
2989 | return cache; | |
2990 | } | |
2991 | ||
2992 | /* Implementation of function hook 'this_id' in | |
2993 | 'struct frame_uwnind'. */ | |
2994 | ||
2995 | static void | |
2996 | arm_m_exception_this_id (struct frame_info *this_frame, | |
2997 | void **this_cache, | |
2998 | struct frame_id *this_id) | |
2999 | { | |
3000 | struct arm_prologue_cache *cache; | |
3001 | ||
3002 | if (*this_cache == NULL) | |
3003 | *this_cache = arm_m_exception_cache (this_frame); | |
9a3c8263 | 3004 | cache = (struct arm_prologue_cache *) *this_cache; |
2ae28aa9 YQ |
3005 | |
3006 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
3007 | *this_id = frame_id_build (cache->prev_sp, | |
3008 | get_frame_pc (this_frame)); | |
3009 | } | |
3010 | ||
3011 | /* Implementation of function hook 'prev_register' in | |
3012 | 'struct frame_uwnind'. */ | |
3013 | ||
3014 | static struct value * | |
3015 | arm_m_exception_prev_register (struct frame_info *this_frame, | |
3016 | void **this_cache, | |
3017 | int prev_regnum) | |
3018 | { | |
2ae28aa9 YQ |
3019 | struct arm_prologue_cache *cache; |
3020 | ||
3021 | if (*this_cache == NULL) | |
3022 | *this_cache = arm_m_exception_cache (this_frame); | |
9a3c8263 | 3023 | cache = (struct arm_prologue_cache *) *this_cache; |
2ae28aa9 YQ |
3024 | |
3025 | /* The value was already reconstructed into PREV_SP. */ | |
3026 | if (prev_regnum == ARM_SP_REGNUM) | |
3027 | return frame_unwind_got_constant (this_frame, prev_regnum, | |
3028 | cache->prev_sp); | |
3029 | ||
3030 | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | |
3031 | prev_regnum); | |
3032 | } | |
3033 | ||
3034 | /* Implementation of function hook 'sniffer' in | |
3035 | 'struct frame_uwnind'. */ | |
3036 | ||
3037 | static int | |
3038 | arm_m_exception_unwind_sniffer (const struct frame_unwind *self, | |
3039 | struct frame_info *this_frame, | |
3040 | void **this_prologue_cache) | |
3041 | { | |
3042 | CORE_ADDR this_pc = get_frame_pc (this_frame); | |
3043 | ||
3044 | /* No need to check is_m; this sniffer is only registered for | |
3045 | M-profile architectures. */ | |
3046 | ||
ca90e760 FH |
3047 | /* Check if exception frame returns to a magic PC value. */ |
3048 | return arm_m_addr_is_magic (this_pc); | |
2ae28aa9 YQ |
3049 | } |
3050 | ||
3051 | /* Frame unwinder for M-profile exceptions. */ | |
3052 | ||
3053 | struct frame_unwind arm_m_exception_unwind = | |
3054 | { | |
3055 | SIGTRAMP_FRAME, | |
3056 | default_frame_unwind_stop_reason, | |
3057 | arm_m_exception_this_id, | |
3058 | arm_m_exception_prev_register, | |
3059 | NULL, | |
3060 | arm_m_exception_unwind_sniffer | |
3061 | }; | |
3062 | ||
24de872b | 3063 | static CORE_ADDR |
a262aec2 | 3064 | arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
24de872b DJ |
3065 | { |
3066 | struct arm_prologue_cache *cache; | |
3067 | ||
eb5492fa | 3068 | if (*this_cache == NULL) |
a262aec2 | 3069 | *this_cache = arm_make_prologue_cache (this_frame); |
9a3c8263 | 3070 | cache = (struct arm_prologue_cache *) *this_cache; |
eb5492fa | 3071 | |
4be43953 | 3072 | return cache->prev_sp - cache->framesize; |
24de872b DJ |
3073 | } |
3074 | ||
eb5492fa DJ |
3075 | struct frame_base arm_normal_base = { |
3076 | &arm_prologue_unwind, | |
3077 | arm_normal_frame_base, | |
3078 | arm_normal_frame_base, | |
3079 | arm_normal_frame_base | |
3080 | }; | |
3081 | ||
a262aec2 | 3082 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
eb5492fa DJ |
3083 | dummy frame. The frame ID's base needs to match the TOS value |
3084 | saved by save_dummy_frame_tos() and returned from | |
3085 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
3086 | breakpoint. */ | |
c906108c | 3087 | |
eb5492fa | 3088 | static struct frame_id |
a262aec2 | 3089 | arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
c906108c | 3090 | { |
0963b4bd MS |
3091 | return frame_id_build (get_frame_register_unsigned (this_frame, |
3092 | ARM_SP_REGNUM), | |
a262aec2 | 3093 | get_frame_pc (this_frame)); |
eb5492fa | 3094 | } |
c3b4394c | 3095 | |
eb5492fa DJ |
3096 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
3097 | be used to construct the previous frame's ID, after looking up the | |
3098 | containing function). */ | |
c3b4394c | 3099 | |
eb5492fa DJ |
3100 | static CORE_ADDR |
3101 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3102 | { | |
3103 | CORE_ADDR pc; | |
3104 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
24568a2c | 3105 | return arm_addr_bits_remove (gdbarch, pc); |
eb5492fa DJ |
3106 | } |
3107 | ||
3108 | static CORE_ADDR | |
3109 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
3110 | { | |
3111 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
3112 | } |
3113 | ||
b39cc962 DJ |
3114 | static struct value * |
3115 | arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, | |
3116 | int regnum) | |
3117 | { | |
24568a2c | 3118 | struct gdbarch * gdbarch = get_frame_arch (this_frame); |
b39cc962 | 3119 | CORE_ADDR lr, cpsr; |
9779414d | 3120 | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
b39cc962 DJ |
3121 | |
3122 | switch (regnum) | |
3123 | { | |
3124 | case ARM_PC_REGNUM: | |
3125 | /* The PC is normally copied from the return column, which | |
3126 | describes saves of LR. However, that version may have an | |
3127 | extra bit set to indicate Thumb state. The bit is not | |
3128 | part of the PC. */ | |
3129 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | |
3130 | return frame_unwind_got_constant (this_frame, regnum, | |
24568a2c | 3131 | arm_addr_bits_remove (gdbarch, lr)); |
b39cc962 DJ |
3132 | |
3133 | case ARM_PS_REGNUM: | |
3134 | /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ | |
ca38c58e | 3135 | cpsr = get_frame_register_unsigned (this_frame, regnum); |
b39cc962 DJ |
3136 | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
3137 | if (IS_THUMB_ADDR (lr)) | |
9779414d | 3138 | cpsr |= t_bit; |
b39cc962 | 3139 | else |
9779414d | 3140 | cpsr &= ~t_bit; |
ca38c58e | 3141 | return frame_unwind_got_constant (this_frame, regnum, cpsr); |
b39cc962 DJ |
3142 | |
3143 | default: | |
3144 | internal_error (__FILE__, __LINE__, | |
3145 | _("Unexpected register %d"), regnum); | |
3146 | } | |
3147 | } | |
3148 | ||
3149 | static void | |
3150 | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3151 | struct dwarf2_frame_state_reg *reg, | |
3152 | struct frame_info *this_frame) | |
3153 | { | |
3154 | switch (regnum) | |
3155 | { | |
3156 | case ARM_PC_REGNUM: | |
3157 | case ARM_PS_REGNUM: | |
3158 | reg->how = DWARF2_FRAME_REG_FN; | |
3159 | reg->loc.fn = arm_dwarf2_prev_register; | |
3160 | break; | |
3161 | case ARM_SP_REGNUM: | |
3162 | reg->how = DWARF2_FRAME_REG_CFA; | |
3163 | break; | |
3164 | } | |
3165 | } | |
3166 | ||
c9cf6e20 | 3167 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
4024ca99 UW |
3168 | |
3169 | static int | |
c9cf6e20 | 3170 | thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
4024ca99 UW |
3171 | { |
3172 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3173 | unsigned int insn, insn2; | |
3174 | int found_return = 0, found_stack_adjust = 0; | |
3175 | CORE_ADDR func_start, func_end; | |
3176 | CORE_ADDR scan_pc; | |
3177 | gdb_byte buf[4]; | |
3178 | ||
3179 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
3180 | return 0; | |
3181 | ||
3182 | /* The epilogue is a sequence of instructions along the following lines: | |
3183 | ||
3184 | - add stack frame size to SP or FP | |
3185 | - [if frame pointer used] restore SP from FP | |
3186 | - restore registers from SP [may include PC] | |
3187 | - a return-type instruction [if PC wasn't already restored] | |
3188 | ||
3189 | In a first pass, we scan forward from the current PC and verify the | |
3190 | instructions we find as compatible with this sequence, ending in a | |
3191 | return instruction. | |
3192 | ||
3193 | However, this is not sufficient to distinguish indirect function calls | |
3194 | within a function from indirect tail calls in the epilogue in some cases. | |
3195 | Therefore, if we didn't already find any SP-changing instruction during | |
3196 | forward scan, we add a backward scanning heuristic to ensure we actually | |
3197 | are in the epilogue. */ | |
3198 | ||
3199 | scan_pc = pc; | |
3200 | while (scan_pc < func_end && !found_return) | |
3201 | { | |
3202 | if (target_read_memory (scan_pc, buf, 2)) | |
3203 | break; | |
3204 | ||
3205 | scan_pc += 2; | |
3206 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3207 | ||
3208 | if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ | |
3209 | found_return = 1; | |
3210 | else if (insn == 0x46f7) /* mov pc, lr */ | |
3211 | found_return = 1; | |
540314bd | 3212 | else if (thumb_instruction_restores_sp (insn)) |
4024ca99 | 3213 | { |
b7576e5c | 3214 | if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */ |
4024ca99 UW |
3215 | found_return = 1; |
3216 | } | |
db24da6d | 3217 | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */ |
4024ca99 UW |
3218 | { |
3219 | if (target_read_memory (scan_pc, buf, 2)) | |
3220 | break; | |
3221 | ||
3222 | scan_pc += 2; | |
3223 | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | |
3224 | ||
3225 | if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3226 | { | |
4024ca99 UW |
3227 | if (insn2 & 0x8000) /* <registers> include PC. */ |
3228 | found_return = 1; | |
3229 | } | |
3230 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3231 | && (insn2 & 0x0fff) == 0x0b04) | |
3232 | { | |
4024ca99 UW |
3233 | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ |
3234 | found_return = 1; | |
3235 | } | |
3236 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3237 | && (insn2 & 0x0e00) == 0x0a00) | |
6b65d1b6 | 3238 | ; |
4024ca99 UW |
3239 | else |
3240 | break; | |
3241 | } | |
3242 | else | |
3243 | break; | |
3244 | } | |
3245 | ||
3246 | if (!found_return) | |
3247 | return 0; | |
3248 | ||
3249 | /* Since any instruction in the epilogue sequence, with the possible | |
3250 | exception of return itself, updates the stack pointer, we need to | |
3251 | scan backwards for at most one instruction. Try either a 16-bit or | |
3252 | a 32-bit instruction. This is just a heuristic, so we do not worry | |
0963b4bd | 3253 | too much about false positives. */ |
4024ca99 | 3254 | |
6b65d1b6 YQ |
3255 | if (pc - 4 < func_start) |
3256 | return 0; | |
3257 | if (target_read_memory (pc - 4, buf, 4)) | |
3258 | return 0; | |
4024ca99 | 3259 | |
6b65d1b6 YQ |
3260 | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); |
3261 | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | |
3262 | ||
3263 | if (thumb_instruction_restores_sp (insn2)) | |
3264 | found_stack_adjust = 1; | |
3265 | else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ | |
3266 | found_stack_adjust = 1; | |
3267 | else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ | |
3268 | && (insn2 & 0x0fff) == 0x0b04) | |
3269 | found_stack_adjust = 1; | |
3270 | else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ | |
3271 | && (insn2 & 0x0e00) == 0x0a00) | |
3272 | found_stack_adjust = 1; | |
4024ca99 UW |
3273 | |
3274 | return found_stack_adjust; | |
3275 | } | |
3276 | ||
4024ca99 | 3277 | static int |
c58b006a | 3278 | arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) |
4024ca99 UW |
3279 | { |
3280 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | |
3281 | unsigned int insn; | |
f303bc3e | 3282 | int found_return; |
4024ca99 UW |
3283 | CORE_ADDR func_start, func_end; |
3284 | ||
4024ca99 UW |
3285 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
3286 | return 0; | |
3287 | ||
3288 | /* We are in the epilogue if the previous instruction was a stack | |
3289 | adjustment and the next instruction is a possible return (bx, mov | |
3290 | pc, or pop). We could have to scan backwards to find the stack | |
3291 | adjustment, or forwards to find the return, but this is a decent | |
3292 | approximation. First scan forwards. */ | |
3293 | ||
3294 | found_return = 0; | |
3295 | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | |
3296 | if (bits (insn, 28, 31) != INST_NV) | |
3297 | { | |
3298 | if ((insn & 0x0ffffff0) == 0x012fff10) | |
3299 | /* BX. */ | |
3300 | found_return = 1; | |
3301 | else if ((insn & 0x0ffffff0) == 0x01a0f000) | |
3302 | /* MOV PC. */ | |
3303 | found_return = 1; | |
3304 | else if ((insn & 0x0fff0000) == 0x08bd0000 | |
3305 | && (insn & 0x0000c000) != 0) | |
3306 | /* POP (LDMIA), including PC or LR. */ | |
3307 | found_return = 1; | |
3308 | } | |
3309 | ||
3310 | if (!found_return) | |
3311 | return 0; | |
3312 | ||
3313 | /* Scan backwards. This is just a heuristic, so do not worry about | |
3314 | false positives from mode changes. */ | |
3315 | ||
3316 | if (pc < func_start + 4) | |
3317 | return 0; | |
3318 | ||
3319 | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); | |
f303bc3e | 3320 | if (arm_instruction_restores_sp (insn)) |
4024ca99 UW |
3321 | return 1; |
3322 | ||
3323 | return 0; | |
3324 | } | |
3325 | ||
c58b006a YQ |
3326 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
3327 | ||
3328 | static int | |
3329 | arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3330 | { | |
3331 | if (arm_pc_is_thumb (gdbarch, pc)) | |
3332 | return thumb_stack_frame_destroyed_p (gdbarch, pc); | |
3333 | else | |
3334 | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | |
3335 | } | |
4024ca99 | 3336 | |
2dd604e7 RE |
3337 | /* When arguments must be pushed onto the stack, they go on in reverse |
3338 | order. The code below implements a FILO (stack) to do this. */ | |
3339 | ||
3340 | struct stack_item | |
3341 | { | |
3342 | int len; | |
3343 | struct stack_item *prev; | |
7c543f7b | 3344 | gdb_byte *data; |
2dd604e7 RE |
3345 | }; |
3346 | ||
3347 | static struct stack_item * | |
df3b6708 | 3348 | push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len) |
2dd604e7 RE |
3349 | { |
3350 | struct stack_item *si; | |
8d749320 | 3351 | si = XNEW (struct stack_item); |
7c543f7b | 3352 | si->data = (gdb_byte *) xmalloc (len); |
2dd604e7 RE |
3353 | si->len = len; |
3354 | si->prev = prev; | |
3355 | memcpy (si->data, contents, len); | |
3356 | return si; | |
3357 | } | |
3358 | ||
3359 | static struct stack_item * | |
3360 | pop_stack_item (struct stack_item *si) | |
3361 | { | |
3362 | struct stack_item *dead = si; | |
3363 | si = si->prev; | |
3364 | xfree (dead->data); | |
3365 | xfree (dead); | |
3366 | return si; | |
3367 | } | |
3368 | ||
2af48f68 PB |
3369 | |
3370 | /* Return the alignment (in bytes) of the given type. */ | |
3371 | ||
3372 | static int | |
3373 | arm_type_align (struct type *t) | |
3374 | { | |
3375 | int n; | |
3376 | int align; | |
3377 | int falign; | |
3378 | ||
3379 | t = check_typedef (t); | |
3380 | switch (TYPE_CODE (t)) | |
3381 | { | |
3382 | default: | |
3383 | /* Should never happen. */ | |
3384 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
3385 | return 4; | |
3386 | ||
3387 | case TYPE_CODE_PTR: | |
3388 | case TYPE_CODE_ENUM: | |
3389 | case TYPE_CODE_INT: | |
3390 | case TYPE_CODE_FLT: | |
3391 | case TYPE_CODE_SET: | |
3392 | case TYPE_CODE_RANGE: | |
2af48f68 | 3393 | case TYPE_CODE_REF: |
aa006118 | 3394 | case TYPE_CODE_RVALUE_REF: |
2af48f68 PB |
3395 | case TYPE_CODE_CHAR: |
3396 | case TYPE_CODE_BOOL: | |
3397 | return TYPE_LENGTH (t); | |
3398 | ||
3399 | case TYPE_CODE_ARRAY: | |
c4312b19 YQ |
3400 | if (TYPE_VECTOR (t)) |
3401 | { | |
3402 | /* Use the natural alignment for vector types (the same for | |
3403 | scalar type), but the maximum alignment is 64-bit. */ | |
3404 | if (TYPE_LENGTH (t) > 8) | |
3405 | return 8; | |
3406 | else | |
3407 | return TYPE_LENGTH (t); | |
3408 | } | |
3409 | else | |
3410 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
2af48f68 | 3411 | case TYPE_CODE_COMPLEX: |
2af48f68 PB |
3412 | return arm_type_align (TYPE_TARGET_TYPE (t)); |
3413 | ||
3414 | case TYPE_CODE_STRUCT: | |
3415 | case TYPE_CODE_UNION: | |
3416 | align = 1; | |
3417 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
3418 | { | |
3419 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
3420 | if (falign > align) | |
3421 | align = falign; | |
3422 | } | |
3423 | return align; | |
3424 | } | |
3425 | } | |
3426 | ||
90445bd3 DJ |
3427 | /* Possible base types for a candidate for passing and returning in |
3428 | VFP registers. */ | |
3429 | ||
3430 | enum arm_vfp_cprc_base_type | |
3431 | { | |
3432 | VFP_CPRC_UNKNOWN, | |
3433 | VFP_CPRC_SINGLE, | |
3434 | VFP_CPRC_DOUBLE, | |
3435 | VFP_CPRC_VEC64, | |
3436 | VFP_CPRC_VEC128 | |
3437 | }; | |
3438 | ||
3439 | /* The length of one element of base type B. */ | |
3440 | ||
3441 | static unsigned | |
3442 | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | |
3443 | { | |
3444 | switch (b) | |
3445 | { | |
3446 | case VFP_CPRC_SINGLE: | |
3447 | return 4; | |
3448 | case VFP_CPRC_DOUBLE: | |
3449 | return 8; | |
3450 | case VFP_CPRC_VEC64: | |
3451 | return 8; | |
3452 | case VFP_CPRC_VEC128: | |
3453 | return 16; | |
3454 | default: | |
3455 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3456 | (int) b); | |
3457 | } | |
3458 | } | |
3459 | ||
3460 | /* The character ('s', 'd' or 'q') for the type of VFP register used | |
3461 | for passing base type B. */ | |
3462 | ||
3463 | static int | |
3464 | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | |
3465 | { | |
3466 | switch (b) | |
3467 | { | |
3468 | case VFP_CPRC_SINGLE: | |
3469 | return 's'; | |
3470 | case VFP_CPRC_DOUBLE: | |
3471 | return 'd'; | |
3472 | case VFP_CPRC_VEC64: | |
3473 | return 'd'; | |
3474 | case VFP_CPRC_VEC128: | |
3475 | return 'q'; | |
3476 | default: | |
3477 | internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), | |
3478 | (int) b); | |
3479 | } | |
3480 | } | |
3481 | ||
3482 | /* Determine whether T may be part of a candidate for passing and | |
3483 | returning in VFP registers, ignoring the limit on the total number | |
3484 | of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | |
3485 | classification of the first valid component found; if it is not | |
3486 | VFP_CPRC_UNKNOWN, all components must have the same classification | |
3487 | as *BASE_TYPE. If it is found that T contains a type not permitted | |
3488 | for passing and returning in VFP registers, a type differently | |
3489 | classified from *BASE_TYPE, or two types differently classified | |
3490 | from each other, return -1, otherwise return the total number of | |
3491 | base-type elements found (possibly 0 in an empty structure or | |
817e0957 YQ |
3492 | array). Vector types are not currently supported, matching the |
3493 | generic AAPCS support. */ | |
90445bd3 DJ |
3494 | |
3495 | static int | |
3496 | arm_vfp_cprc_sub_candidate (struct type *t, | |
3497 | enum arm_vfp_cprc_base_type *base_type) | |
3498 | { | |
3499 | t = check_typedef (t); | |
3500 | switch (TYPE_CODE (t)) | |
3501 | { | |
3502 | case TYPE_CODE_FLT: | |
3503 | switch (TYPE_LENGTH (t)) | |
3504 | { | |
3505 | case 4: | |
3506 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3507 | *base_type = VFP_CPRC_SINGLE; | |
3508 | else if (*base_type != VFP_CPRC_SINGLE) | |
3509 | return -1; | |
3510 | return 1; | |
3511 | ||
3512 | case 8: | |
3513 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3514 | *base_type = VFP_CPRC_DOUBLE; | |
3515 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3516 | return -1; | |
3517 | return 1; | |
3518 | ||
3519 | default: | |
3520 | return -1; | |
3521 | } | |
3522 | break; | |
3523 | ||
817e0957 YQ |
3524 | case TYPE_CODE_COMPLEX: |
3525 | /* Arguments of complex T where T is one of the types float or | |
3526 | double get treated as if they are implemented as: | |
3527 | ||
3528 | struct complexT | |
3529 | { | |
3530 | T real; | |
3531 | T imag; | |
5f52445b YQ |
3532 | }; |
3533 | ||
3534 | */ | |
817e0957 YQ |
3535 | switch (TYPE_LENGTH (t)) |
3536 | { | |
3537 | case 8: | |
3538 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3539 | *base_type = VFP_CPRC_SINGLE; | |
3540 | else if (*base_type != VFP_CPRC_SINGLE) | |
3541 | return -1; | |
3542 | return 2; | |
3543 | ||
3544 | case 16: | |
3545 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3546 | *base_type = VFP_CPRC_DOUBLE; | |
3547 | else if (*base_type != VFP_CPRC_DOUBLE) | |
3548 | return -1; | |
3549 | return 2; | |
3550 | ||
3551 | default: | |
3552 | return -1; | |
3553 | } | |
3554 | break; | |
3555 | ||
90445bd3 DJ |
3556 | case TYPE_CODE_ARRAY: |
3557 | { | |
c4312b19 | 3558 | if (TYPE_VECTOR (t)) |
90445bd3 | 3559 | { |
c4312b19 YQ |
3560 | /* A 64-bit or 128-bit containerized vector type are VFP |
3561 | CPRCs. */ | |
3562 | switch (TYPE_LENGTH (t)) | |
3563 | { | |
3564 | case 8: | |
3565 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3566 | *base_type = VFP_CPRC_VEC64; | |
3567 | return 1; | |
3568 | case 16: | |
3569 | if (*base_type == VFP_CPRC_UNKNOWN) | |
3570 | *base_type = VFP_CPRC_VEC128; | |
3571 | return 1; | |
3572 | default: | |
3573 | return -1; | |
3574 | } | |
3575 | } | |
3576 | else | |
3577 | { | |
3578 | int count; | |
3579 | unsigned unitlen; | |
3580 | ||
3581 | count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), | |
3582 | base_type); | |
3583 | if (count == -1) | |
3584 | return -1; | |
3585 | if (TYPE_LENGTH (t) == 0) | |
3586 | { | |
3587 | gdb_assert (count == 0); | |
3588 | return 0; | |
3589 | } | |
3590 | else if (count == 0) | |
3591 | return -1; | |
3592 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3593 | gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); | |
3594 | return TYPE_LENGTH (t) / unitlen; | |
90445bd3 | 3595 | } |
90445bd3 DJ |
3596 | } |
3597 | break; | |
3598 | ||
3599 | case TYPE_CODE_STRUCT: | |
3600 | { | |
3601 | int count = 0; | |
3602 | unsigned unitlen; | |
3603 | int i; | |
3604 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3605 | { | |
1040b979 YQ |
3606 | int sub_count = 0; |
3607 | ||
3608 | if (!field_is_static (&TYPE_FIELD (t, i))) | |
3609 | sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3610 | base_type); | |
90445bd3 DJ |
3611 | if (sub_count == -1) |
3612 | return -1; | |
3613 | count += sub_count; | |
3614 | } | |
3615 | if (TYPE_LENGTH (t) == 0) | |
3616 | { | |
3617 | gdb_assert (count == 0); | |
3618 | return 0; | |
3619 | } | |
3620 | else if (count == 0) | |
3621 | return -1; | |
3622 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3623 | if (TYPE_LENGTH (t) != unitlen * count) | |
3624 | return -1; | |
3625 | return count; | |
3626 | } | |
3627 | ||
3628 | case TYPE_CODE_UNION: | |
3629 | { | |
3630 | int count = 0; | |
3631 | unsigned unitlen; | |
3632 | int i; | |
3633 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3634 | { | |
3635 | int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i), | |
3636 | base_type); | |
3637 | if (sub_count == -1) | |
3638 | return -1; | |
3639 | count = (count > sub_count ? count : sub_count); | |
3640 | } | |
3641 | if (TYPE_LENGTH (t) == 0) | |
3642 | { | |
3643 | gdb_assert (count == 0); | |
3644 | return 0; | |
3645 | } | |
3646 | else if (count == 0) | |
3647 | return -1; | |
3648 | unitlen = arm_vfp_cprc_unit_length (*base_type); | |
3649 | if (TYPE_LENGTH (t) != unitlen * count) | |
3650 | return -1; | |
3651 | return count; | |
3652 | } | |
3653 | ||
3654 | default: | |
3655 | break; | |
3656 | } | |
3657 | ||
3658 | return -1; | |
3659 | } | |
3660 | ||
3661 | /* Determine whether T is a VFP co-processor register candidate (CPRC) | |
3662 | if passed to or returned from a non-variadic function with the VFP | |
3663 | ABI in effect. Return 1 if it is, 0 otherwise. If it is, set | |
3664 | *BASE_TYPE to the base type for T and *COUNT to the number of | |
3665 | elements of that base type before returning. */ | |
3666 | ||
3667 | static int | |
3668 | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | |
3669 | int *count) | |
3670 | { | |
3671 | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | |
3672 | int c = arm_vfp_cprc_sub_candidate (t, &b); | |
3673 | if (c <= 0 || c > 4) | |
3674 | return 0; | |
3675 | *base_type = b; | |
3676 | *count = c; | |
3677 | return 1; | |
3678 | } | |
3679 | ||
3680 | /* Return 1 if the VFP ABI should be used for passing arguments to and | |
3681 | returning values from a function of type FUNC_TYPE, 0 | |
3682 | otherwise. */ | |
3683 | ||
3684 | static int | |
3685 | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | |
3686 | { | |
3687 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3688 | /* Variadic functions always use the base ABI. Assume that functions | |
3689 | without debug info are not variadic. */ | |
3690 | if (func_type && TYPE_VARARGS (check_typedef (func_type))) | |
3691 | return 0; | |
3692 | /* The VFP ABI is only supported as a variant of AAPCS. */ | |
3693 | if (tdep->arm_abi != ARM_ABI_AAPCS) | |
3694 | return 0; | |
3695 | return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP; | |
3696 | } | |
3697 | ||
3698 | /* We currently only support passing parameters in integer registers, which | |
3699 | conforms with GCC's default model, and VFP argument passing following | |
3700 | the VFP variant of AAPCS. Several other variants exist and | |
2dd604e7 RE |
3701 | we should probably support some of them based on the selected ABI. */ |
3702 | ||
3703 | static CORE_ADDR | |
7d9b040b | 3704 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
3705 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
3706 | struct value **args, CORE_ADDR sp, int struct_return, | |
3707 | CORE_ADDR struct_addr) | |
2dd604e7 | 3708 | { |
e17a4113 | 3709 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2dd604e7 RE |
3710 | int argnum; |
3711 | int argreg; | |
3712 | int nstack; | |
3713 | struct stack_item *si = NULL; | |
90445bd3 DJ |
3714 | int use_vfp_abi; |
3715 | struct type *ftype; | |
3716 | unsigned vfp_regs_free = (1 << 16) - 1; | |
3717 | ||
3718 | /* Determine the type of this function and whether the VFP ABI | |
3719 | applies. */ | |
3720 | ftype = check_typedef (value_type (function)); | |
3721 | if (TYPE_CODE (ftype) == TYPE_CODE_PTR) | |
3722 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
3723 | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | |
2dd604e7 | 3724 | |
6a65450a AC |
3725 | /* Set the return address. For the ARM, the return breakpoint is |
3726 | always at BP_ADDR. */ | |
9779414d | 3727 | if (arm_pc_is_thumb (gdbarch, bp_addr)) |
9dca5578 | 3728 | bp_addr |= 1; |
6a65450a | 3729 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
3730 | |
3731 | /* Walk through the list of args and determine how large a temporary | |
3732 | stack is required. Need to take care here as structs may be | |
7a9dd1b2 | 3733 | passed on the stack, and we have to push them. */ |
2dd604e7 RE |
3734 | nstack = 0; |
3735 | ||
3736 | argreg = ARM_A1_REGNUM; | |
3737 | nstack = 0; | |
3738 | ||
2dd604e7 RE |
3739 | /* The struct_return pointer occupies the first parameter |
3740 | passing register. */ | |
3741 | if (struct_return) | |
3742 | { | |
3743 | if (arm_debug) | |
5af949e3 | 3744 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n", |
2af46ca0 | 3745 | gdbarch_register_name (gdbarch, argreg), |
5af949e3 | 3746 | paddress (gdbarch, struct_addr)); |
2dd604e7 RE |
3747 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
3748 | argreg++; | |
3749 | } | |
3750 | ||
3751 | for (argnum = 0; argnum < nargs; argnum++) | |
3752 | { | |
3753 | int len; | |
3754 | struct type *arg_type; | |
3755 | struct type *target_type; | |
3756 | enum type_code typecode; | |
8c6363cf | 3757 | const bfd_byte *val; |
2af48f68 | 3758 | int align; |
90445bd3 DJ |
3759 | enum arm_vfp_cprc_base_type vfp_base_type; |
3760 | int vfp_base_count; | |
3761 | int may_use_core_reg = 1; | |
2dd604e7 | 3762 | |
df407dfe | 3763 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
3764 | len = TYPE_LENGTH (arg_type); |
3765 | target_type = TYPE_TARGET_TYPE (arg_type); | |
3766 | typecode = TYPE_CODE (arg_type); | |
8c6363cf | 3767 | val = value_contents (args[argnum]); |
2dd604e7 | 3768 | |
2af48f68 PB |
3769 | align = arm_type_align (arg_type); |
3770 | /* Round alignment up to a whole number of words. */ | |
3771 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
3772 | /* Different ABIs have different maximum alignments. */ | |
3773 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
3774 | { | |
3775 | /* The APCS ABI only requires word alignment. */ | |
3776 | align = INT_REGISTER_SIZE; | |
3777 | } | |
3778 | else | |
3779 | { | |
3780 | /* The AAPCS requires at most doubleword alignment. */ | |
3781 | if (align > INT_REGISTER_SIZE * 2) | |
3782 | align = INT_REGISTER_SIZE * 2; | |
3783 | } | |
3784 | ||
90445bd3 DJ |
3785 | if (use_vfp_abi |
3786 | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | |
3787 | &vfp_base_count)) | |
3788 | { | |
3789 | int regno; | |
3790 | int unit_length; | |
3791 | int shift; | |
3792 | unsigned mask; | |
3793 | ||
3794 | /* Because this is a CPRC it cannot go in a core register or | |
3795 | cause a core register to be skipped for alignment. | |
3796 | Either it goes in VFP registers and the rest of this loop | |
3797 | iteration is skipped for this argument, or it goes on the | |
3798 | stack (and the stack alignment code is correct for this | |
3799 | case). */ | |
3800 | may_use_core_reg = 0; | |
3801 | ||
3802 | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
3803 | shift = unit_length / 4; | |
3804 | mask = (1 << (shift * vfp_base_count)) - 1; | |
3805 | for (regno = 0; regno < 16; regno += shift) | |
3806 | if (((vfp_regs_free >> regno) & mask) == mask) | |
3807 | break; | |
3808 | ||
3809 | if (regno < 16) | |
3810 | { | |
3811 | int reg_char; | |
3812 | int reg_scaled; | |
3813 | int i; | |
3814 | ||
3815 | vfp_regs_free &= ~(mask << regno); | |
3816 | reg_scaled = regno / shift; | |
3817 | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
3818 | for (i = 0; i < vfp_base_count; i++) | |
3819 | { | |
3820 | char name_buf[4]; | |
3821 | int regnum; | |
58d6951d DJ |
3822 | if (reg_char == 'q') |
3823 | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | |
90445bd3 | 3824 | val + i * unit_length); |
58d6951d DJ |
3825 | else |
3826 | { | |
8c042590 PM |
3827 | xsnprintf (name_buf, sizeof (name_buf), "%c%d", |
3828 | reg_char, reg_scaled + i); | |
58d6951d DJ |
3829 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
3830 | strlen (name_buf)); | |
3831 | regcache_cooked_write (regcache, regnum, | |
3832 | val + i * unit_length); | |
3833 | } | |
90445bd3 DJ |
3834 | } |
3835 | continue; | |
3836 | } | |
3837 | else | |
3838 | { | |
3839 | /* This CPRC could not go in VFP registers, so all VFP | |
3840 | registers are now marked as used. */ | |
3841 | vfp_regs_free = 0; | |
3842 | } | |
3843 | } | |
3844 | ||
2af48f68 PB |
3845 | /* Push stack padding for dowubleword alignment. */ |
3846 | if (nstack & (align - 1)) | |
3847 | { | |
3848 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
3849 | nstack += INT_REGISTER_SIZE; | |
3850 | } | |
3851 | ||
3852 | /* Doubleword aligned quantities must go in even register pairs. */ | |
90445bd3 DJ |
3853 | if (may_use_core_reg |
3854 | && argreg <= ARM_LAST_ARG_REGNUM | |
2af48f68 PB |
3855 | && align > INT_REGISTER_SIZE |
3856 | && argreg & 1) | |
3857 | argreg++; | |
3858 | ||
2dd604e7 RE |
3859 | /* If the argument is a pointer to a function, and it is a |
3860 | Thumb function, create a LOCAL copy of the value and set | |
3861 | the THUMB bit in it. */ | |
3862 | if (TYPE_CODE_PTR == typecode | |
3863 | && target_type != NULL | |
f96b8fa0 | 3864 | && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type))) |
2dd604e7 | 3865 | { |
e17a4113 | 3866 | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
9779414d | 3867 | if (arm_pc_is_thumb (gdbarch, regval)) |
2dd604e7 | 3868 | { |
224c3ddb | 3869 | bfd_byte *copy = (bfd_byte *) alloca (len); |
8c6363cf | 3870 | store_unsigned_integer (copy, len, byte_order, |
e17a4113 | 3871 | MAKE_THUMB_ADDR (regval)); |
8c6363cf | 3872 | val = copy; |
2dd604e7 RE |
3873 | } |
3874 | } | |
3875 | ||
3876 | /* Copy the argument to general registers or the stack in | |
3877 | register-sized pieces. Large arguments are split between | |
3878 | registers and stack. */ | |
3879 | while (len > 0) | |
3880 | { | |
f0c9063c | 3881 | int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE; |
ef9bd0b8 YQ |
3882 | CORE_ADDR regval |
3883 | = extract_unsigned_integer (val, partial_len, byte_order); | |
2dd604e7 | 3884 | |
90445bd3 | 3885 | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
2dd604e7 RE |
3886 | { |
3887 | /* The argument is being passed in a general purpose | |
3888 | register. */ | |
e17a4113 | 3889 | if (byte_order == BFD_ENDIAN_BIG) |
8bf8793c | 3890 | regval <<= (INT_REGISTER_SIZE - partial_len) * 8; |
2dd604e7 RE |
3891 | if (arm_debug) |
3892 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
c9f4d572 UW |
3893 | argnum, |
3894 | gdbarch_register_name | |
2af46ca0 | 3895 | (gdbarch, argreg), |
f0c9063c | 3896 | phex (regval, INT_REGISTER_SIZE)); |
2dd604e7 RE |
3897 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
3898 | argreg++; | |
3899 | } | |
3900 | else | |
3901 | { | |
ef9bd0b8 YQ |
3902 | gdb_byte buf[INT_REGISTER_SIZE]; |
3903 | ||
3904 | memset (buf, 0, sizeof (buf)); | |
3905 | store_unsigned_integer (buf, partial_len, byte_order, regval); | |
3906 | ||
2dd604e7 RE |
3907 | /* Push the arguments onto the stack. */ |
3908 | if (arm_debug) | |
3909 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
3910 | argnum, nstack); | |
ef9bd0b8 | 3911 | si = push_stack_item (si, buf, INT_REGISTER_SIZE); |
f0c9063c | 3912 | nstack += INT_REGISTER_SIZE; |
2dd604e7 RE |
3913 | } |
3914 | ||
3915 | len -= partial_len; | |
3916 | val += partial_len; | |
3917 | } | |
3918 | } | |
3919 | /* If we have an odd number of words to push, then decrement the stack | |
3920 | by one word now, so first stack argument will be dword aligned. */ | |
3921 | if (nstack & 4) | |
3922 | sp -= 4; | |
3923 | ||
3924 | while (si) | |
3925 | { | |
3926 | sp -= si->len; | |
3927 | write_memory (sp, si->data, si->len); | |
3928 | si = pop_stack_item (si); | |
3929 | } | |
3930 | ||
3931 | /* Finally, update teh SP register. */ | |
3932 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
3933 | ||
3934 | return sp; | |
3935 | } | |
3936 | ||
f53f0d0b PB |
3937 | |
3938 | /* Always align the frame to an 8-byte boundary. This is required on | |
3939 | some platforms and harmless on the rest. */ | |
3940 | ||
3941 | static CORE_ADDR | |
3942 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
3943 | { | |
3944 | /* Align the stack to eight bytes. */ | |
3945 | return sp & ~ (CORE_ADDR) 7; | |
3946 | } | |
3947 | ||
c906108c | 3948 | static void |
12b27276 | 3949 | print_fpu_flags (struct ui_file *file, int flags) |
c906108c | 3950 | { |
c5aa993b | 3951 | if (flags & (1 << 0)) |
12b27276 | 3952 | fputs_filtered ("IVO ", file); |
c5aa993b | 3953 | if (flags & (1 << 1)) |
12b27276 | 3954 | fputs_filtered ("DVZ ", file); |
c5aa993b | 3955 | if (flags & (1 << 2)) |
12b27276 | 3956 | fputs_filtered ("OFL ", file); |
c5aa993b | 3957 | if (flags & (1 << 3)) |
12b27276 | 3958 | fputs_filtered ("UFL ", file); |
c5aa993b | 3959 | if (flags & (1 << 4)) |
12b27276 WN |
3960 | fputs_filtered ("INX ", file); |
3961 | fputc_filtered ('\n', file); | |
c906108c SS |
3962 | } |
3963 | ||
5e74b15c RE |
3964 | /* Print interesting information about the floating point processor |
3965 | (if present) or emulator. */ | |
34e8f22d | 3966 | static void |
d855c300 | 3967 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 3968 | struct frame_info *frame, const char *args) |
c906108c | 3969 | { |
9c9acae0 | 3970 | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
c5aa993b JM |
3971 | int type; |
3972 | ||
3973 | type = (status >> 24) & 127; | |
edefbb7c | 3974 | if (status & (1 << 31)) |
12b27276 | 3975 | fprintf_filtered (file, _("Hardware FPU type %d\n"), type); |
edefbb7c | 3976 | else |
12b27276 | 3977 | fprintf_filtered (file, _("Software FPU type %d\n"), type); |
edefbb7c | 3978 | /* i18n: [floating point unit] mask */ |
12b27276 WN |
3979 | fputs_filtered (_("mask: "), file); |
3980 | print_fpu_flags (file, status >> 16); | |
edefbb7c | 3981 | /* i18n: [floating point unit] flags */ |
12b27276 WN |
3982 | fputs_filtered (_("flags: "), file); |
3983 | print_fpu_flags (file, status); | |
c906108c SS |
3984 | } |
3985 | ||
27067745 UW |
3986 | /* Construct the ARM extended floating point type. */ |
3987 | static struct type * | |
3988 | arm_ext_type (struct gdbarch *gdbarch) | |
3989 | { | |
3990 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3991 | ||
3992 | if (!tdep->arm_ext_type) | |
3993 | tdep->arm_ext_type | |
e9bb382b | 3994 | = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
27067745 UW |
3995 | floatformats_arm_ext); |
3996 | ||
3997 | return tdep->arm_ext_type; | |
3998 | } | |
3999 | ||
58d6951d DJ |
4000 | static struct type * |
4001 | arm_neon_double_type (struct gdbarch *gdbarch) | |
4002 | { | |
4003 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4004 | ||
4005 | if (tdep->neon_double_type == NULL) | |
4006 | { | |
4007 | struct type *t, *elem; | |
4008 | ||
4009 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | |
4010 | TYPE_CODE_UNION); | |
4011 | elem = builtin_type (gdbarch)->builtin_uint8; | |
4012 | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | |
4013 | elem = builtin_type (gdbarch)->builtin_uint16; | |
4014 | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | |
4015 | elem = builtin_type (gdbarch)->builtin_uint32; | |
4016 | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | |
4017 | elem = builtin_type (gdbarch)->builtin_uint64; | |
4018 | append_composite_type_field (t, "u64", elem); | |
4019 | elem = builtin_type (gdbarch)->builtin_float; | |
4020 | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | |
4021 | elem = builtin_type (gdbarch)->builtin_double; | |
4022 | append_composite_type_field (t, "f64", elem); | |
4023 | ||
4024 | TYPE_VECTOR (t) = 1; | |
4025 | TYPE_NAME (t) = "neon_d"; | |
4026 | tdep->neon_double_type = t; | |
4027 | } | |
4028 | ||
4029 | return tdep->neon_double_type; | |
4030 | } | |
4031 | ||
4032 | /* FIXME: The vector types are not correctly ordered on big-endian | |
4033 | targets. Just as s0 is the low bits of d0, d0[0] is also the low | |
4034 | bits of d0 - regardless of what unit size is being held in d0. So | |
4035 | the offset of the first uint8 in d0 is 7, but the offset of the | |
4036 | first float is 4. This code works as-is for little-endian | |
4037 | targets. */ | |
4038 | ||
4039 | static struct type * | |
4040 | arm_neon_quad_type (struct gdbarch *gdbarch) | |
4041 | { | |
4042 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4043 | ||
4044 | if (tdep->neon_quad_type == NULL) | |
4045 | { | |
4046 | struct type *t, *elem; | |
4047 | ||
4048 | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | |
4049 | TYPE_CODE_UNION); | |
4050 | elem = builtin_type (gdbarch)->builtin_uint8; | |
4051 | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | |
4052 | elem = builtin_type (gdbarch)->builtin_uint16; | |
4053 | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | |
4054 | elem = builtin_type (gdbarch)->builtin_uint32; | |
4055 | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | |
4056 | elem = builtin_type (gdbarch)->builtin_uint64; | |
4057 | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | |
4058 | elem = builtin_type (gdbarch)->builtin_float; | |
4059 | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | |
4060 | elem = builtin_type (gdbarch)->builtin_double; | |
4061 | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | |
4062 | ||
4063 | TYPE_VECTOR (t) = 1; | |
4064 | TYPE_NAME (t) = "neon_q"; | |
4065 | tdep->neon_quad_type = t; | |
4066 | } | |
4067 | ||
4068 | return tdep->neon_quad_type; | |
4069 | } | |
4070 | ||
34e8f22d RE |
4071 | /* Return the GDB type object for the "standard" data type of data in |
4072 | register N. */ | |
4073 | ||
4074 | static struct type * | |
7a5ea0d4 | 4075 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 4076 | { |
58d6951d DJ |
4077 | int num_regs = gdbarch_num_regs (gdbarch); |
4078 | ||
4079 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
4080 | && regnum >= num_regs && regnum < num_regs + 32) | |
4081 | return builtin_type (gdbarch)->builtin_float; | |
4082 | ||
4083 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
4084 | && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16) | |
4085 | return arm_neon_quad_type (gdbarch); | |
4086 | ||
4087 | /* If the target description has register information, we are only | |
4088 | in this function so that we can override the types of | |
4089 | double-precision registers for NEON. */ | |
4090 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
4091 | { | |
4092 | struct type *t = tdesc_register_type (gdbarch, regnum); | |
4093 | ||
4094 | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | |
4095 | && TYPE_CODE (t) == TYPE_CODE_FLT | |
4096 | && gdbarch_tdep (gdbarch)->have_neon) | |
4097 | return arm_neon_double_type (gdbarch); | |
4098 | else | |
4099 | return t; | |
4100 | } | |
4101 | ||
34e8f22d | 4102 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
58d6951d DJ |
4103 | { |
4104 | if (!gdbarch_tdep (gdbarch)->have_fpa_registers) | |
4105 | return builtin_type (gdbarch)->builtin_void; | |
4106 | ||
4107 | return arm_ext_type (gdbarch); | |
4108 | } | |
e4c16157 | 4109 | else if (regnum == ARM_SP_REGNUM) |
0dfff4cb | 4110 | return builtin_type (gdbarch)->builtin_data_ptr; |
e4c16157 | 4111 | else if (regnum == ARM_PC_REGNUM) |
0dfff4cb | 4112 | return builtin_type (gdbarch)->builtin_func_ptr; |
ff6f572f DJ |
4113 | else if (regnum >= ARRAY_SIZE (arm_register_names)) |
4114 | /* These registers are only supported on targets which supply | |
4115 | an XML description. */ | |
df4df182 | 4116 | return builtin_type (gdbarch)->builtin_int0; |
032758dc | 4117 | else |
df4df182 | 4118 | return builtin_type (gdbarch)->builtin_uint32; |
032758dc AC |
4119 | } |
4120 | ||
ff6f572f DJ |
4121 | /* Map a DWARF register REGNUM onto the appropriate GDB register |
4122 | number. */ | |
4123 | ||
4124 | static int | |
d3f73121 | 4125 | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
ff6f572f DJ |
4126 | { |
4127 | /* Core integer regs. */ | |
4128 | if (reg >= 0 && reg <= 15) | |
4129 | return reg; | |
4130 | ||
4131 | /* Legacy FPA encoding. These were once used in a way which | |
4132 | overlapped with VFP register numbering, so their use is | |
4133 | discouraged, but GDB doesn't support the ARM toolchain | |
4134 | which used them for VFP. */ | |
4135 | if (reg >= 16 && reg <= 23) | |
4136 | return ARM_F0_REGNUM + reg - 16; | |
4137 | ||
4138 | /* New assignments for the FPA registers. */ | |
4139 | if (reg >= 96 && reg <= 103) | |
4140 | return ARM_F0_REGNUM + reg - 96; | |
4141 | ||
4142 | /* WMMX register assignments. */ | |
4143 | if (reg >= 104 && reg <= 111) | |
4144 | return ARM_WCGR0_REGNUM + reg - 104; | |
4145 | ||
4146 | if (reg >= 112 && reg <= 127) | |
4147 | return ARM_WR0_REGNUM + reg - 112; | |
4148 | ||
4149 | if (reg >= 192 && reg <= 199) | |
4150 | return ARM_WC0_REGNUM + reg - 192; | |
4151 | ||
58d6951d DJ |
4152 | /* VFP v2 registers. A double precision value is actually |
4153 | in d1 rather than s2, but the ABI only defines numbering | |
4154 | for the single precision registers. This will "just work" | |
4155 | in GDB for little endian targets (we'll read eight bytes, | |
4156 | starting in s0 and then progressing to s1), but will be | |
4157 | reversed on big endian targets with VFP. This won't | |
4158 | be a problem for the new Neon quad registers; you're supposed | |
4159 | to use DW_OP_piece for those. */ | |
4160 | if (reg >= 64 && reg <= 95) | |
4161 | { | |
4162 | char name_buf[4]; | |
4163 | ||
8c042590 | 4164 | xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64); |
58d6951d DJ |
4165 | return user_reg_map_name_to_regnum (gdbarch, name_buf, |
4166 | strlen (name_buf)); | |
4167 | } | |
4168 | ||
4169 | /* VFP v3 / Neon registers. This range is also used for VFP v2 | |
4170 | registers, except that it now describes d0 instead of s0. */ | |
4171 | if (reg >= 256 && reg <= 287) | |
4172 | { | |
4173 | char name_buf[4]; | |
4174 | ||
8c042590 | 4175 | xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256); |
58d6951d DJ |
4176 | return user_reg_map_name_to_regnum (gdbarch, name_buf, |
4177 | strlen (name_buf)); | |
4178 | } | |
4179 | ||
ff6f572f DJ |
4180 | return -1; |
4181 | } | |
4182 | ||
26216b98 AC |
4183 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
4184 | static int | |
e7faf938 | 4185 | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
26216b98 AC |
4186 | { |
4187 | int reg = regnum; | |
e7faf938 | 4188 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
26216b98 | 4189 | |
ff6f572f DJ |
4190 | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
4191 | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | |
4192 | ||
4193 | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | |
4194 | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | |
4195 | ||
4196 | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | |
4197 | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | |
4198 | ||
26216b98 AC |
4199 | if (reg < NUM_GREGS) |
4200 | return SIM_ARM_R0_REGNUM + reg; | |
4201 | reg -= NUM_GREGS; | |
4202 | ||
4203 | if (reg < NUM_FREGS) | |
4204 | return SIM_ARM_FP0_REGNUM + reg; | |
4205 | reg -= NUM_FREGS; | |
4206 | ||
4207 | if (reg < NUM_SREGS) | |
4208 | return SIM_ARM_FPS_REGNUM + reg; | |
4209 | reg -= NUM_SREGS; | |
4210 | ||
edefbb7c | 4211 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 4212 | } |
34e8f22d | 4213 | |
a37b3cc0 AC |
4214 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
4215 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
4216 | It is thought that this is is the floating-point register format on | |
4217 | little-endian systems. */ | |
c906108c | 4218 | |
ed9a39eb | 4219 | static void |
b508a996 | 4220 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
be8626e0 | 4221 | void *dbl, int endianess) |
c906108c | 4222 | { |
a37b3cc0 | 4223 | DOUBLEST d; |
be8626e0 MD |
4224 | |
4225 | if (endianess == BFD_ENDIAN_BIG) | |
a37b3cc0 AC |
4226 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
4227 | else | |
4228 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4229 | ptr, &d); | |
b508a996 | 4230 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
4231 | } |
4232 | ||
34e8f22d | 4233 | static void |
be8626e0 MD |
4234 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr, |
4235 | int endianess) | |
c906108c | 4236 | { |
a37b3cc0 | 4237 | DOUBLEST d; |
be8626e0 | 4238 | |
b508a996 | 4239 | floatformat_to_doublest (fmt, ptr, &d); |
be8626e0 | 4240 | if (endianess == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
4241 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
4242 | else | |
4243 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
4244 | &d, dbl); | |
c906108c | 4245 | } |
ed9a39eb | 4246 | |
d9311bfa AT |
4247 | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
4248 | the buffer to be NEW_LEN bytes ending at ENDADDR. Return | |
4249 | NULL if an error occurs. BUF is freed. */ | |
c906108c | 4250 | |
d9311bfa AT |
4251 | static gdb_byte * |
4252 | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | |
4253 | int old_len, int new_len) | |
4254 | { | |
4255 | gdb_byte *new_buf; | |
4256 | int bytes_to_read = new_len - old_len; | |
c906108c | 4257 | |
d9311bfa AT |
4258 | new_buf = (gdb_byte *) xmalloc (new_len); |
4259 | memcpy (new_buf + bytes_to_read, buf, old_len); | |
4260 | xfree (buf); | |
198cd59d | 4261 | if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0) |
d9311bfa AT |
4262 | { |
4263 | xfree (new_buf); | |
4264 | return NULL; | |
c906108c | 4265 | } |
d9311bfa | 4266 | return new_buf; |
c906108c SS |
4267 | } |
4268 | ||
d9311bfa AT |
4269 | /* An IT block is at most the 2-byte IT instruction followed by |
4270 | four 4-byte instructions. The furthest back we must search to | |
4271 | find an IT block that affects the current instruction is thus | |
4272 | 2 + 3 * 4 == 14 bytes. */ | |
4273 | #define MAX_IT_BLOCK_PREFIX 14 | |
177321bd | 4274 | |
d9311bfa AT |
4275 | /* Use a quick scan if there are more than this many bytes of |
4276 | code. */ | |
4277 | #define IT_SCAN_THRESHOLD 32 | |
177321bd | 4278 | |
d9311bfa AT |
4279 | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. |
4280 | A breakpoint in an IT block may not be hit, depending on the | |
4281 | condition flags. */ | |
ad527d2e | 4282 | static CORE_ADDR |
d9311bfa | 4283 | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) |
c906108c | 4284 | { |
d9311bfa AT |
4285 | gdb_byte *buf; |
4286 | char map_type; | |
4287 | CORE_ADDR boundary, func_start; | |
4288 | int buf_len; | |
4289 | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); | |
4290 | int i, any, last_it, last_it_count; | |
177321bd | 4291 | |
d9311bfa AT |
4292 | /* If we are using BKPT breakpoints, none of this is necessary. */ |
4293 | if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL) | |
4294 | return bpaddr; | |
177321bd | 4295 | |
d9311bfa AT |
4296 | /* ARM mode does not have this problem. */ |
4297 | if (!arm_pc_is_thumb (gdbarch, bpaddr)) | |
4298 | return bpaddr; | |
177321bd | 4299 | |
d9311bfa AT |
4300 | /* We are setting a breakpoint in Thumb code that could potentially |
4301 | contain an IT block. The first step is to find how much Thumb | |
4302 | code there is; we do not need to read outside of known Thumb | |
4303 | sequences. */ | |
4304 | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | |
4305 | if (map_type == 0) | |
4306 | /* Thumb-2 code must have mapping symbols to have a chance. */ | |
4307 | return bpaddr; | |
9dca5578 | 4308 | |
d9311bfa | 4309 | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); |
177321bd | 4310 | |
d9311bfa AT |
4311 | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) |
4312 | && func_start > boundary) | |
4313 | boundary = func_start; | |
9dca5578 | 4314 | |
d9311bfa AT |
4315 | /* Search for a candidate IT instruction. We have to do some fancy |
4316 | footwork to distinguish a real IT instruction from the second | |
4317 | half of a 32-bit instruction, but there is no need for that if | |
4318 | there's no candidate. */ | |
325fac50 | 4319 | buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX); |
d9311bfa AT |
4320 | if (buf_len == 0) |
4321 | /* No room for an IT instruction. */ | |
4322 | return bpaddr; | |
c906108c | 4323 | |
d9311bfa | 4324 | buf = (gdb_byte *) xmalloc (buf_len); |
198cd59d | 4325 | if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0) |
d9311bfa AT |
4326 | return bpaddr; |
4327 | any = 0; | |
4328 | for (i = 0; i < buf_len; i += 2) | |
c906108c | 4329 | { |
d9311bfa AT |
4330 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); |
4331 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
25b41d01 | 4332 | { |
d9311bfa AT |
4333 | any = 1; |
4334 | break; | |
25b41d01 | 4335 | } |
c906108c | 4336 | } |
d9311bfa AT |
4337 | |
4338 | if (any == 0) | |
c906108c | 4339 | { |
d9311bfa AT |
4340 | xfree (buf); |
4341 | return bpaddr; | |
f9d67f43 DJ |
4342 | } |
4343 | ||
4344 | /* OK, the code bytes before this instruction contain at least one | |
4345 | halfword which resembles an IT instruction. We know that it's | |
4346 | Thumb code, but there are still two possibilities. Either the | |
4347 | halfword really is an IT instruction, or it is the second half of | |
4348 | a 32-bit Thumb instruction. The only way we can tell is to | |
4349 | scan forwards from a known instruction boundary. */ | |
4350 | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | |
4351 | { | |
4352 | int definite; | |
4353 | ||
4354 | /* There's a lot of code before this instruction. Start with an | |
4355 | optimistic search; it's easy to recognize halfwords that can | |
4356 | not be the start of a 32-bit instruction, and use that to | |
4357 | lock on to the instruction boundaries. */ | |
4358 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | |
4359 | if (buf == NULL) | |
4360 | return bpaddr; | |
4361 | buf_len = IT_SCAN_THRESHOLD; | |
4362 | ||
4363 | definite = 0; | |
4364 | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | |
4365 | { | |
4366 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4367 | if (thumb_insn_size (inst1) == 2) | |
4368 | { | |
4369 | definite = 1; | |
4370 | break; | |
4371 | } | |
4372 | } | |
4373 | ||
4374 | /* At this point, if DEFINITE, BUF[I] is the first place we | |
4375 | are sure that we know the instruction boundaries, and it is far | |
4376 | enough from BPADDR that we could not miss an IT instruction | |
4377 | affecting BPADDR. If ! DEFINITE, give up - start from a | |
4378 | known boundary. */ | |
4379 | if (! definite) | |
4380 | { | |
0963b4bd MS |
4381 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
4382 | bpaddr - boundary); | |
f9d67f43 DJ |
4383 | if (buf == NULL) |
4384 | return bpaddr; | |
4385 | buf_len = bpaddr - boundary; | |
4386 | i = 0; | |
4387 | } | |
4388 | } | |
4389 | else | |
4390 | { | |
4391 | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | |
4392 | if (buf == NULL) | |
4393 | return bpaddr; | |
4394 | buf_len = bpaddr - boundary; | |
4395 | i = 0; | |
4396 | } | |
4397 | ||
4398 | /* Scan forwards. Find the last IT instruction before BPADDR. */ | |
4399 | last_it = -1; | |
4400 | last_it_count = 0; | |
4401 | while (i < buf_len) | |
4402 | { | |
4403 | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | |
4404 | last_it_count--; | |
4405 | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | |
4406 | { | |
4407 | last_it = i; | |
4408 | if (inst1 & 0x0001) | |
4409 | last_it_count = 4; | |
4410 | else if (inst1 & 0x0002) | |
4411 | last_it_count = 3; | |
4412 | else if (inst1 & 0x0004) | |
4413 | last_it_count = 2; | |
4414 | else | |
4415 | last_it_count = 1; | |
4416 | } | |
4417 | i += thumb_insn_size (inst1); | |
4418 | } | |
4419 | ||
4420 | xfree (buf); | |
4421 | ||
4422 | if (last_it == -1) | |
4423 | /* There wasn't really an IT instruction after all. */ | |
4424 | return bpaddr; | |
4425 | ||
4426 | if (last_it_count < 1) | |
4427 | /* It was too far away. */ | |
4428 | return bpaddr; | |
4429 | ||
4430 | /* This really is a trouble spot. Move the breakpoint to the IT | |
4431 | instruction. */ | |
4432 | return bpaddr - buf_len + last_it; | |
4433 | } | |
4434 | ||
cca44b1b | 4435 | /* ARM displaced stepping support. |
c906108c | 4436 | |
cca44b1b | 4437 | Generally ARM displaced stepping works as follows: |
c906108c | 4438 | |
cca44b1b | 4439 | 1. When an instruction is to be single-stepped, it is first decoded by |
2ba163c8 SM |
4440 | arm_process_displaced_insn. Depending on the type of instruction, it is |
4441 | then copied to a scratch location, possibly in a modified form. The | |
4442 | copy_* set of functions performs such modification, as necessary. A | |
4443 | breakpoint is placed after the modified instruction in the scratch space | |
4444 | to return control to GDB. Note in particular that instructions which | |
4445 | modify the PC will no longer do so after modification. | |
c5aa993b | 4446 | |
cca44b1b JB |
4447 | 2. The instruction is single-stepped, by setting the PC to the scratch |
4448 | location address, and resuming. Control returns to GDB when the | |
4449 | breakpoint is hit. | |
c5aa993b | 4450 | |
cca44b1b JB |
4451 | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
4452 | function used for the current instruction. This function's job is to | |
4453 | put the CPU/memory state back to what it would have been if the | |
4454 | instruction had been executed unmodified in its original location. */ | |
c5aa993b | 4455 | |
cca44b1b JB |
4456 | /* NOP instruction (mov r0, r0). */ |
4457 | #define ARM_NOP 0xe1a00000 | |
34518530 | 4458 | #define THUMB_NOP 0x4600 |
cca44b1b JB |
4459 | |
4460 | /* Helper for register reads for displaced stepping. In particular, this | |
4461 | returns the PC as it would be seen by the instruction at its original | |
4462 | location. */ | |
4463 | ||
4464 | ULONGEST | |
36073a92 YQ |
4465 | displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc, |
4466 | int regno) | |
cca44b1b JB |
4467 | { |
4468 | ULONGEST ret; | |
36073a92 | 4469 | CORE_ADDR from = dsc->insn_addr; |
cca44b1b | 4470 | |
bf9f652a | 4471 | if (regno == ARM_PC_REGNUM) |
cca44b1b | 4472 | { |
4db71c0b YQ |
4473 | /* Compute pipeline offset: |
4474 | - When executing an ARM instruction, PC reads as the address of the | |
4475 | current instruction plus 8. | |
4476 | - When executing a Thumb instruction, PC reads as the address of the | |
4477 | current instruction plus 4. */ | |
4478 | ||
36073a92 | 4479 | if (!dsc->is_thumb) |
4db71c0b YQ |
4480 | from += 8; |
4481 | else | |
4482 | from += 4; | |
4483 | ||
cca44b1b JB |
4484 | if (debug_displaced) |
4485 | fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n", | |
4db71c0b YQ |
4486 | (unsigned long) from); |
4487 | return (ULONGEST) from; | |
cca44b1b | 4488 | } |
c906108c | 4489 | else |
cca44b1b JB |
4490 | { |
4491 | regcache_cooked_read_unsigned (regs, regno, &ret); | |
4492 | if (debug_displaced) | |
4493 | fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n", | |
4494 | regno, (unsigned long) ret); | |
4495 | return ret; | |
4496 | } | |
c906108c SS |
4497 | } |
4498 | ||
cca44b1b JB |
4499 | static int |
4500 | displaced_in_arm_mode (struct regcache *regs) | |
4501 | { | |
4502 | ULONGEST ps; | |
9779414d | 4503 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
66e810cd | 4504 | |
cca44b1b | 4505 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
66e810cd | 4506 | |
9779414d | 4507 | return (ps & t_bit) == 0; |
cca44b1b | 4508 | } |
66e810cd | 4509 | |
cca44b1b | 4510 | /* Write to the PC as from a branch instruction. */ |
c906108c | 4511 | |
cca44b1b | 4512 | static void |
36073a92 YQ |
4513 | branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
4514 | ULONGEST val) | |
c906108c | 4515 | { |
36073a92 | 4516 | if (!dsc->is_thumb) |
cca44b1b JB |
4517 | /* Note: If bits 0/1 are set, this branch would be unpredictable for |
4518 | architecture versions < 6. */ | |
0963b4bd MS |
4519 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4520 | val & ~(ULONGEST) 0x3); | |
cca44b1b | 4521 | else |
0963b4bd MS |
4522 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
4523 | val & ~(ULONGEST) 0x1); | |
cca44b1b | 4524 | } |
66e810cd | 4525 | |
cca44b1b JB |
4526 | /* Write to the PC as from a branch-exchange instruction. */ |
4527 | ||
4528 | static void | |
4529 | bx_write_pc (struct regcache *regs, ULONGEST val) | |
4530 | { | |
4531 | ULONGEST ps; | |
9779414d | 4532 | ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs)); |
cca44b1b JB |
4533 | |
4534 | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | |
4535 | ||
4536 | if ((val & 1) == 1) | |
c906108c | 4537 | { |
9779414d | 4538 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
cca44b1b JB |
4539 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
4540 | } | |
4541 | else if ((val & 2) == 0) | |
4542 | { | |
9779414d | 4543 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4544 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
c906108c SS |
4545 | } |
4546 | else | |
4547 | { | |
cca44b1b JB |
4548 | /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
4549 | mode, align dest to 4 bytes). */ | |
4550 | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | |
9779414d | 4551 | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
cca44b1b | 4552 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
c906108c SS |
4553 | } |
4554 | } | |
ed9a39eb | 4555 | |
cca44b1b | 4556 | /* Write to the PC as if from a load instruction. */ |
ed9a39eb | 4557 | |
34e8f22d | 4558 | static void |
36073a92 YQ |
4559 | load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
4560 | ULONGEST val) | |
ed9a39eb | 4561 | { |
cca44b1b JB |
4562 | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
4563 | bx_write_pc (regs, val); | |
4564 | else | |
36073a92 | 4565 | branch_write_pc (regs, dsc, val); |
cca44b1b | 4566 | } |
be8626e0 | 4567 | |
cca44b1b JB |
4568 | /* Write to the PC as if from an ALU instruction. */ |
4569 | ||
4570 | static void | |
36073a92 YQ |
4571 | alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc, |
4572 | ULONGEST val) | |
cca44b1b | 4573 | { |
36073a92 | 4574 | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) |
cca44b1b JB |
4575 | bx_write_pc (regs, val); |
4576 | else | |
36073a92 | 4577 | branch_write_pc (regs, dsc, val); |
cca44b1b JB |
4578 | } |
4579 | ||
4580 | /* Helper for writing to registers for displaced stepping. Writing to the PC | |
4581 | has a varying effects depending on the instruction which does the write: | |
4582 | this is controlled by the WRITE_PC argument. */ | |
4583 | ||
4584 | void | |
4585 | displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc, | |
4586 | int regno, ULONGEST val, enum pc_write_style write_pc) | |
4587 | { | |
bf9f652a | 4588 | if (regno == ARM_PC_REGNUM) |
08216dd7 | 4589 | { |
cca44b1b JB |
4590 | if (debug_displaced) |
4591 | fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n", | |
4592 | (unsigned long) val); | |
4593 | switch (write_pc) | |
08216dd7 | 4594 | { |
cca44b1b | 4595 | case BRANCH_WRITE_PC: |
36073a92 | 4596 | branch_write_pc (regs, dsc, val); |
08216dd7 RE |
4597 | break; |
4598 | ||
cca44b1b JB |
4599 | case BX_WRITE_PC: |
4600 | bx_write_pc (regs, val); | |
4601 | break; | |
4602 | ||
4603 | case LOAD_WRITE_PC: | |
36073a92 | 4604 | load_write_pc (regs, dsc, val); |
cca44b1b JB |
4605 | break; |
4606 | ||
4607 | case ALU_WRITE_PC: | |
36073a92 | 4608 | alu_write_pc (regs, dsc, val); |
cca44b1b JB |
4609 | break; |
4610 | ||
4611 | case CANNOT_WRITE_PC: | |
4612 | warning (_("Instruction wrote to PC in an unexpected way when " | |
4613 | "single-stepping")); | |
08216dd7 RE |
4614 | break; |
4615 | ||
4616 | default: | |
97b9747c JB |
4617 | internal_error (__FILE__, __LINE__, |
4618 | _("Invalid argument to displaced_write_reg")); | |
08216dd7 | 4619 | } |
b508a996 | 4620 | |
cca44b1b | 4621 | dsc->wrote_to_pc = 1; |
b508a996 | 4622 | } |
ed9a39eb | 4623 | else |
b508a996 | 4624 | { |
cca44b1b JB |
4625 | if (debug_displaced) |
4626 | fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n", | |
4627 | regno, (unsigned long) val); | |
4628 | regcache_cooked_write_unsigned (regs, regno, val); | |
b508a996 | 4629 | } |
34e8f22d RE |
4630 | } |
4631 | ||
cca44b1b JB |
4632 | /* This function is used to concisely determine if an instruction INSN |
4633 | references PC. Register fields of interest in INSN should have the | |
0963b4bd MS |
4634 | corresponding fields of BITMASK set to 0b1111. The function |
4635 | returns return 1 if any of these fields in INSN reference the PC | |
4636 | (also 0b1111, r15), else it returns 0. */ | |
67255d04 RE |
4637 | |
4638 | static int | |
cca44b1b | 4639 | insn_references_pc (uint32_t insn, uint32_t bitmask) |
67255d04 | 4640 | { |
cca44b1b | 4641 | uint32_t lowbit = 1; |
67255d04 | 4642 | |
cca44b1b JB |
4643 | while (bitmask != 0) |
4644 | { | |
4645 | uint32_t mask; | |
44e1a9eb | 4646 | |
cca44b1b JB |
4647 | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
4648 | ; | |
67255d04 | 4649 | |
cca44b1b JB |
4650 | if (!lowbit) |
4651 | break; | |
67255d04 | 4652 | |
cca44b1b | 4653 | mask = lowbit * 0xf; |
67255d04 | 4654 | |
cca44b1b JB |
4655 | if ((insn & mask) == mask) |
4656 | return 1; | |
4657 | ||
4658 | bitmask &= ~mask; | |
67255d04 RE |
4659 | } |
4660 | ||
cca44b1b JB |
4661 | return 0; |
4662 | } | |
2af48f68 | 4663 | |
cca44b1b JB |
4664 | /* The simplest copy function. Many instructions have the same effect no |
4665 | matter what address they are executed at: in those cases, use this. */ | |
67255d04 | 4666 | |
cca44b1b | 4667 | static int |
7ff120b4 YQ |
4668 | arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, |
4669 | const char *iname, struct displaced_step_closure *dsc) | |
cca44b1b JB |
4670 | { |
4671 | if (debug_displaced) | |
4672 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, " | |
4673 | "opcode/class '%s' unmodified\n", (unsigned long) insn, | |
4674 | iname); | |
67255d04 | 4675 | |
cca44b1b | 4676 | dsc->modinsn[0] = insn; |
67255d04 | 4677 | |
cca44b1b JB |
4678 | return 0; |
4679 | } | |
4680 | ||
34518530 YQ |
4681 | static int |
4682 | thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
4683 | uint16_t insn2, const char *iname, | |
4684 | struct displaced_step_closure *dsc) | |
4685 | { | |
4686 | if (debug_displaced) | |
4687 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, " | |
4688 | "opcode/class '%s' unmodified\n", insn1, insn2, | |
4689 | iname); | |
4690 | ||
4691 | dsc->modinsn[0] = insn1; | |
4692 | dsc->modinsn[1] = insn2; | |
4693 | dsc->numinsns = 2; | |
4694 | ||
4695 | return 0; | |
4696 | } | |
4697 | ||
4698 | /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any | |
4699 | modification. */ | |
4700 | static int | |
615234c1 | 4701 | thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn, |
34518530 YQ |
4702 | const char *iname, |
4703 | struct displaced_step_closure *dsc) | |
4704 | { | |
4705 | if (debug_displaced) | |
4706 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, " | |
4707 | "opcode/class '%s' unmodified\n", insn, | |
4708 | iname); | |
4709 | ||
4710 | dsc->modinsn[0] = insn; | |
4711 | ||
4712 | return 0; | |
4713 | } | |
4714 | ||
cca44b1b JB |
4715 | /* Preload instructions with immediate offset. */ |
4716 | ||
4717 | static void | |
6e39997a | 4718 | cleanup_preload (struct gdbarch *gdbarch, |
cca44b1b JB |
4719 | struct regcache *regs, struct displaced_step_closure *dsc) |
4720 | { | |
4721 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4722 | if (!dsc->u.preload.immed) | |
4723 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
4724 | } | |
4725 | ||
7ff120b4 YQ |
4726 | static void |
4727 | install_preload (struct gdbarch *gdbarch, struct regcache *regs, | |
4728 | struct displaced_step_closure *dsc, unsigned int rn) | |
cca44b1b | 4729 | { |
cca44b1b | 4730 | ULONGEST rn_val; |
cca44b1b JB |
4731 | /* Preload instructions: |
4732 | ||
4733 | {pli/pld} [rn, #+/-imm] | |
4734 | -> | |
4735 | {pli/pld} [r0, #+/-imm]. */ | |
4736 | ||
36073a92 YQ |
4737 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4738 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 4739 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
cca44b1b JB |
4740 | dsc->u.preload.immed = 1; |
4741 | ||
cca44b1b | 4742 | dsc->cleanup = &cleanup_preload; |
cca44b1b JB |
4743 | } |
4744 | ||
cca44b1b | 4745 | static int |
7ff120b4 | 4746 | arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
cca44b1b JB |
4747 | struct displaced_step_closure *dsc) |
4748 | { | |
4749 | unsigned int rn = bits (insn, 16, 19); | |
cca44b1b | 4750 | |
7ff120b4 YQ |
4751 | if (!insn_references_pc (insn, 0x000f0000ul)) |
4752 | return arm_copy_unmodified (gdbarch, insn, "preload", dsc); | |
cca44b1b JB |
4753 | |
4754 | if (debug_displaced) | |
4755 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4756 | (unsigned long) insn); | |
4757 | ||
7ff120b4 YQ |
4758 | dsc->modinsn[0] = insn & 0xfff0ffff; |
4759 | ||
4760 | install_preload (gdbarch, regs, dsc, rn); | |
4761 | ||
4762 | return 0; | |
4763 | } | |
4764 | ||
34518530 YQ |
4765 | static int |
4766 | thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
4767 | struct regcache *regs, struct displaced_step_closure *dsc) | |
4768 | { | |
4769 | unsigned int rn = bits (insn1, 0, 3); | |
4770 | unsigned int u_bit = bit (insn1, 7); | |
4771 | int imm12 = bits (insn2, 0, 11); | |
4772 | ULONGEST pc_val; | |
4773 | ||
4774 | if (rn != ARM_PC_REGNUM) | |
4775 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); | |
4776 | ||
4777 | /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and | |
4778 | PLD (literal) Encoding T1. */ | |
4779 | if (debug_displaced) | |
4780 | fprintf_unfiltered (gdb_stdlog, | |
4781 | "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n", | |
4782 | (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', | |
4783 | imm12); | |
4784 | ||
4785 | if (!u_bit) | |
4786 | imm12 = -1 * imm12; | |
4787 | ||
4788 | /* Rewrite instruction {pli/pld} PC imm12 into: | |
4789 | Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 | |
4790 | ||
4791 | {pli/pld} [r0, r1] | |
4792 | ||
4793 | Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */ | |
4794 | ||
4795 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
4796 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
4797 | ||
4798 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
4799 | ||
4800 | displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); | |
4801 | displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); | |
4802 | dsc->u.preload.immed = 0; | |
4803 | ||
4804 | /* {pli/pld} [r0, r1] */ | |
4805 | dsc->modinsn[0] = insn1 & 0xfff0; | |
4806 | dsc->modinsn[1] = 0xf001; | |
4807 | dsc->numinsns = 2; | |
4808 | ||
4809 | dsc->cleanup = &cleanup_preload; | |
4810 | return 0; | |
4811 | } | |
4812 | ||
7ff120b4 YQ |
4813 | /* Preload instructions with register offset. */ |
4814 | ||
4815 | static void | |
4816 | install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, | |
4817 | struct displaced_step_closure *dsc, unsigned int rn, | |
4818 | unsigned int rm) | |
4819 | { | |
4820 | ULONGEST rn_val, rm_val; | |
4821 | ||
cca44b1b JB |
4822 | /* Preload register-offset instructions: |
4823 | ||
4824 | {pli/pld} [rn, rm {, shift}] | |
4825 | -> | |
4826 | {pli/pld} [r0, r1 {, shift}]. */ | |
4827 | ||
36073a92 YQ |
4828 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4829 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
4830 | rn_val = displaced_read_reg (regs, dsc, rn); | |
4831 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
4832 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
4833 | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | |
cca44b1b JB |
4834 | dsc->u.preload.immed = 0; |
4835 | ||
cca44b1b | 4836 | dsc->cleanup = &cleanup_preload; |
7ff120b4 YQ |
4837 | } |
4838 | ||
4839 | static int | |
4840 | arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, | |
4841 | struct regcache *regs, | |
4842 | struct displaced_step_closure *dsc) | |
4843 | { | |
4844 | unsigned int rn = bits (insn, 16, 19); | |
4845 | unsigned int rm = bits (insn, 0, 3); | |
4846 | ||
4847 | ||
4848 | if (!insn_references_pc (insn, 0x000f000ful)) | |
4849 | return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); | |
4850 | ||
4851 | if (debug_displaced) | |
4852 | fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n", | |
4853 | (unsigned long) insn); | |
4854 | ||
4855 | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | |
cca44b1b | 4856 | |
7ff120b4 | 4857 | install_preload_reg (gdbarch, regs, dsc, rn, rm); |
cca44b1b JB |
4858 | return 0; |
4859 | } | |
4860 | ||
4861 | /* Copy/cleanup coprocessor load and store instructions. */ | |
4862 | ||
4863 | static void | |
6e39997a | 4864 | cleanup_copro_load_store (struct gdbarch *gdbarch, |
cca44b1b JB |
4865 | struct regcache *regs, |
4866 | struct displaced_step_closure *dsc) | |
4867 | { | |
36073a92 | 4868 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
4869 | |
4870 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
4871 | ||
4872 | if (dsc->u.ldst.writeback) | |
4873 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | |
4874 | } | |
4875 | ||
7ff120b4 YQ |
4876 | static void |
4877 | install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, | |
4878 | struct displaced_step_closure *dsc, | |
4879 | int writeback, unsigned int rn) | |
cca44b1b | 4880 | { |
cca44b1b | 4881 | ULONGEST rn_val; |
cca44b1b | 4882 | |
cca44b1b JB |
4883 | /* Coprocessor load/store instructions: |
4884 | ||
4885 | {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) | |
4886 | -> | |
4887 | {stc/stc2} [r0, #+/-imm]. | |
4888 | ||
4889 | ldc/ldc2 are handled identically. */ | |
4890 | ||
36073a92 YQ |
4891 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
4892 | rn_val = displaced_read_reg (regs, dsc, rn); | |
2b16b2e3 YQ |
4893 | /* PC should be 4-byte aligned. */ |
4894 | rn_val = rn_val & 0xfffffffc; | |
cca44b1b JB |
4895 | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
4896 | ||
7ff120b4 | 4897 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
4898 | dsc->u.ldst.rn = rn; |
4899 | ||
7ff120b4 YQ |
4900 | dsc->cleanup = &cleanup_copro_load_store; |
4901 | } | |
4902 | ||
4903 | static int | |
4904 | arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | |
4905 | struct regcache *regs, | |
4906 | struct displaced_step_closure *dsc) | |
4907 | { | |
4908 | unsigned int rn = bits (insn, 16, 19); | |
4909 | ||
4910 | if (!insn_references_pc (insn, 0x000f0000ul)) | |
4911 | return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); | |
4912 | ||
4913 | if (debug_displaced) | |
4914 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
4915 | "load/store insn %.8lx\n", (unsigned long) insn); | |
4916 | ||
cca44b1b JB |
4917 | dsc->modinsn[0] = insn & 0xfff0ffff; |
4918 | ||
7ff120b4 | 4919 | install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); |
cca44b1b JB |
4920 | |
4921 | return 0; | |
4922 | } | |
4923 | ||
34518530 YQ |
4924 | static int |
4925 | thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, | |
4926 | uint16_t insn2, struct regcache *regs, | |
4927 | struct displaced_step_closure *dsc) | |
4928 | { | |
4929 | unsigned int rn = bits (insn1, 0, 3); | |
4930 | ||
4931 | if (rn != ARM_PC_REGNUM) | |
4932 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
4933 | "copro load/store", dsc); | |
4934 | ||
4935 | if (debug_displaced) | |
4936 | fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor " | |
4937 | "load/store insn %.4x%.4x\n", insn1, insn2); | |
4938 | ||
4939 | dsc->modinsn[0] = insn1 & 0xfff0; | |
4940 | dsc->modinsn[1] = insn2; | |
4941 | dsc->numinsns = 2; | |
4942 | ||
4943 | /* This function is called for copying instruction LDC/LDC2/VLDR, which | |
4944 | doesn't support writeback, so pass 0. */ | |
4945 | install_copro_load_store (gdbarch, regs, dsc, 0, rn); | |
4946 | ||
4947 | return 0; | |
4948 | } | |
4949 | ||
cca44b1b JB |
4950 | /* Clean up branch instructions (actually perform the branch, by setting |
4951 | PC). */ | |
4952 | ||
4953 | static void | |
6e39997a | 4954 | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
4955 | struct displaced_step_closure *dsc) |
4956 | { | |
36073a92 | 4957 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
4958 | int branch_taken = condition_true (dsc->u.branch.cond, status); |
4959 | enum pc_write_style write_pc = dsc->u.branch.exchange | |
4960 | ? BX_WRITE_PC : BRANCH_WRITE_PC; | |
4961 | ||
4962 | if (!branch_taken) | |
4963 | return; | |
4964 | ||
4965 | if (dsc->u.branch.link) | |
4966 | { | |
8c8dba6d YQ |
4967 | /* The value of LR should be the next insn of current one. In order |
4968 | not to confuse logic hanlding later insn `bx lr', if current insn mode | |
4969 | is Thumb, the bit 0 of LR value should be set to 1. */ | |
4970 | ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; | |
4971 | ||
4972 | if (dsc->is_thumb) | |
4973 | next_insn_addr |= 0x1; | |
4974 | ||
4975 | displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, | |
4976 | CANNOT_WRITE_PC); | |
cca44b1b JB |
4977 | } |
4978 | ||
bf9f652a | 4979 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); |
cca44b1b JB |
4980 | } |
4981 | ||
4982 | /* Copy B/BL/BLX instructions with immediate destinations. */ | |
4983 | ||
7ff120b4 YQ |
4984 | static void |
4985 | install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, | |
4986 | struct displaced_step_closure *dsc, | |
4987 | unsigned int cond, int exchange, int link, long offset) | |
4988 | { | |
4989 | /* Implement "BL<cond> <label>" as: | |
4990 | ||
4991 | Preparation: cond <- instruction condition | |
4992 | Insn: mov r0, r0 (nop) | |
4993 | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | |
4994 | ||
4995 | B<cond> similar, but don't set r14 in cleanup. */ | |
4996 | ||
4997 | dsc->u.branch.cond = cond; | |
4998 | dsc->u.branch.link = link; | |
4999 | dsc->u.branch.exchange = exchange; | |
5000 | ||
2b16b2e3 YQ |
5001 | dsc->u.branch.dest = dsc->insn_addr; |
5002 | if (link && exchange) | |
5003 | /* For BLX, offset is computed from the Align (PC, 4). */ | |
5004 | dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; | |
5005 | ||
7ff120b4 | 5006 | if (dsc->is_thumb) |
2b16b2e3 | 5007 | dsc->u.branch.dest += 4 + offset; |
7ff120b4 | 5008 | else |
2b16b2e3 | 5009 | dsc->u.branch.dest += 8 + offset; |
7ff120b4 YQ |
5010 | |
5011 | dsc->cleanup = &cleanup_branch; | |
5012 | } | |
cca44b1b | 5013 | static int |
7ff120b4 YQ |
5014 | arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
5015 | struct regcache *regs, struct displaced_step_closure *dsc) | |
cca44b1b JB |
5016 | { |
5017 | unsigned int cond = bits (insn, 28, 31); | |
5018 | int exchange = (cond == 0xf); | |
5019 | int link = exchange || bit (insn, 24); | |
cca44b1b JB |
5020 | long offset; |
5021 | ||
5022 | if (debug_displaced) | |
5023 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn " | |
5024 | "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b", | |
5025 | (unsigned long) insn); | |
cca44b1b JB |
5026 | if (exchange) |
5027 | /* For BLX, set bit 0 of the destination. The cleanup_branch function will | |
5028 | then arrange the switch into Thumb mode. */ | |
5029 | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | |
5030 | else | |
5031 | offset = bits (insn, 0, 23) << 2; | |
5032 | ||
5033 | if (bit (offset, 25)) | |
5034 | offset = offset | ~0x3ffffff; | |
5035 | ||
cca44b1b JB |
5036 | dsc->modinsn[0] = ARM_NOP; |
5037 | ||
7ff120b4 | 5038 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
cca44b1b JB |
5039 | return 0; |
5040 | } | |
5041 | ||
34518530 YQ |
5042 | static int |
5043 | thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, | |
5044 | uint16_t insn2, struct regcache *regs, | |
5045 | struct displaced_step_closure *dsc) | |
5046 | { | |
5047 | int link = bit (insn2, 14); | |
5048 | int exchange = link && !bit (insn2, 12); | |
5049 | int cond = INST_AL; | |
5050 | long offset = 0; | |
5051 | int j1 = bit (insn2, 13); | |
5052 | int j2 = bit (insn2, 11); | |
5053 | int s = sbits (insn1, 10, 10); | |
5054 | int i1 = !(j1 ^ bit (insn1, 10)); | |
5055 | int i2 = !(j2 ^ bit (insn1, 10)); | |
5056 | ||
5057 | if (!link && !exchange) /* B */ | |
5058 | { | |
5059 | offset = (bits (insn2, 0, 10) << 1); | |
5060 | if (bit (insn2, 12)) /* Encoding T4 */ | |
5061 | { | |
5062 | offset |= (bits (insn1, 0, 9) << 12) | |
5063 | | (i2 << 22) | |
5064 | | (i1 << 23) | |
5065 | | (s << 24); | |
5066 | cond = INST_AL; | |
5067 | } | |
5068 | else /* Encoding T3 */ | |
5069 | { | |
5070 | offset |= (bits (insn1, 0, 5) << 12) | |
5071 | | (j1 << 18) | |
5072 | | (j2 << 19) | |
5073 | | (s << 20); | |
5074 | cond = bits (insn1, 6, 9); | |
5075 | } | |
5076 | } | |
5077 | else | |
5078 | { | |
5079 | offset = (bits (insn1, 0, 9) << 12); | |
5080 | offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); | |
5081 | offset |= exchange ? | |
5082 | (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); | |
5083 | } | |
5084 | ||
5085 | if (debug_displaced) | |
5086 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn " | |
5087 | "%.4x %.4x with offset %.8lx\n", | |
5088 | link ? (exchange) ? "blx" : "bl" : "b", | |
5089 | insn1, insn2, offset); | |
5090 | ||
5091 | dsc->modinsn[0] = THUMB_NOP; | |
5092 | ||
5093 | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | |
5094 | return 0; | |
5095 | } | |
5096 | ||
5097 | /* Copy B Thumb instructions. */ | |
5098 | static int | |
615234c1 | 5099 | thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn, |
34518530 YQ |
5100 | struct displaced_step_closure *dsc) |
5101 | { | |
5102 | unsigned int cond = 0; | |
5103 | int offset = 0; | |
5104 | unsigned short bit_12_15 = bits (insn, 12, 15); | |
5105 | CORE_ADDR from = dsc->insn_addr; | |
5106 | ||
5107 | if (bit_12_15 == 0xd) | |
5108 | { | |
5109 | /* offset = SignExtend (imm8:0, 32) */ | |
5110 | offset = sbits ((insn << 1), 0, 8); | |
5111 | cond = bits (insn, 8, 11); | |
5112 | } | |
5113 | else if (bit_12_15 == 0xe) /* Encoding T2 */ | |
5114 | { | |
5115 | offset = sbits ((insn << 1), 0, 11); | |
5116 | cond = INST_AL; | |
5117 | } | |
5118 | ||
5119 | if (debug_displaced) | |
5120 | fprintf_unfiltered (gdb_stdlog, | |
5121 | "displaced: copying b immediate insn %.4x " | |
5122 | "with offset %d\n", insn, offset); | |
5123 | ||
5124 | dsc->u.branch.cond = cond; | |
5125 | dsc->u.branch.link = 0; | |
5126 | dsc->u.branch.exchange = 0; | |
5127 | dsc->u.branch.dest = from + 4 + offset; | |
5128 | ||
5129 | dsc->modinsn[0] = THUMB_NOP; | |
5130 | ||
5131 | dsc->cleanup = &cleanup_branch; | |
5132 | ||
5133 | return 0; | |
5134 | } | |
5135 | ||
cca44b1b JB |
5136 | /* Copy BX/BLX with register-specified destinations. */ |
5137 | ||
7ff120b4 YQ |
5138 | static void |
5139 | install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
5140 | struct displaced_step_closure *dsc, int link, | |
5141 | unsigned int cond, unsigned int rm) | |
cca44b1b | 5142 | { |
cca44b1b JB |
5143 | /* Implement {BX,BLX}<cond> <reg>" as: |
5144 | ||
5145 | Preparation: cond <- instruction condition | |
5146 | Insn: mov r0, r0 (nop) | |
5147 | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | |
5148 | ||
5149 | Don't set r14 in cleanup for BX. */ | |
5150 | ||
36073a92 | 5151 | dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5152 | |
5153 | dsc->u.branch.cond = cond; | |
5154 | dsc->u.branch.link = link; | |
cca44b1b | 5155 | |
7ff120b4 | 5156 | dsc->u.branch.exchange = 1; |
cca44b1b JB |
5157 | |
5158 | dsc->cleanup = &cleanup_branch; | |
7ff120b4 | 5159 | } |
cca44b1b | 5160 | |
7ff120b4 YQ |
5161 | static int |
5162 | arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, | |
5163 | struct regcache *regs, struct displaced_step_closure *dsc) | |
5164 | { | |
5165 | unsigned int cond = bits (insn, 28, 31); | |
5166 | /* BX: x12xxx1x | |
5167 | BLX: x12xxx3x. */ | |
5168 | int link = bit (insn, 5); | |
5169 | unsigned int rm = bits (insn, 0, 3); | |
5170 | ||
5171 | if (debug_displaced) | |
5172 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx", | |
5173 | (unsigned long) insn); | |
5174 | ||
5175 | dsc->modinsn[0] = ARM_NOP; | |
5176 | ||
5177 | install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); | |
cca44b1b JB |
5178 | return 0; |
5179 | } | |
5180 | ||
34518530 YQ |
5181 | static int |
5182 | thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, | |
5183 | struct regcache *regs, | |
5184 | struct displaced_step_closure *dsc) | |
5185 | { | |
5186 | int link = bit (insn, 7); | |
5187 | unsigned int rm = bits (insn, 3, 6); | |
5188 | ||
5189 | if (debug_displaced) | |
5190 | fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x", | |
5191 | (unsigned short) insn); | |
5192 | ||
5193 | dsc->modinsn[0] = THUMB_NOP; | |
5194 | ||
5195 | install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); | |
5196 | ||
5197 | return 0; | |
5198 | } | |
5199 | ||
5200 | ||
0963b4bd | 5201 | /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
cca44b1b JB |
5202 | |
5203 | static void | |
6e39997a | 5204 | cleanup_alu_imm (struct gdbarch *gdbarch, |
cca44b1b JB |
5205 | struct regcache *regs, struct displaced_step_closure *dsc) |
5206 | { | |
36073a92 | 5207 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5208 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
5209 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5210 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5211 | } | |
5212 | ||
5213 | static int | |
7ff120b4 YQ |
5214 | arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
5215 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
5216 | { |
5217 | unsigned int rn = bits (insn, 16, 19); | |
5218 | unsigned int rd = bits (insn, 12, 15); | |
5219 | unsigned int op = bits (insn, 21, 24); | |
5220 | int is_mov = (op == 0xd); | |
5221 | ULONGEST rd_val, rn_val; | |
cca44b1b JB |
5222 | |
5223 | if (!insn_references_pc (insn, 0x000ff000ul)) | |
7ff120b4 | 5224 | return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); |
cca44b1b JB |
5225 | |
5226 | if (debug_displaced) | |
5227 | fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn " | |
5228 | "%.8lx\n", is_mov ? "move" : "ALU", | |
5229 | (unsigned long) insn); | |
5230 | ||
5231 | /* Instruction is of form: | |
5232 | ||
5233 | <op><cond> rd, [rn,] #imm | |
5234 | ||
5235 | Rewrite as: | |
5236 | ||
5237 | Preparation: tmp1, tmp2 <- r0, r1; | |
5238 | r0, r1 <- rd, rn | |
5239 | Insn: <op><cond> r0, r1, #imm | |
5240 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
5241 | */ | |
5242 | ||
36073a92 YQ |
5243 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5244 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5245 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5246 | rd_val = displaced_read_reg (regs, dsc, rd); | |
cca44b1b JB |
5247 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5248 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5249 | dsc->rd = rd; | |
5250 | ||
5251 | if (is_mov) | |
5252 | dsc->modinsn[0] = insn & 0xfff00fff; | |
5253 | else | |
5254 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | |
5255 | ||
5256 | dsc->cleanup = &cleanup_alu_imm; | |
5257 | ||
5258 | return 0; | |
5259 | } | |
5260 | ||
34518530 YQ |
5261 | static int |
5262 | thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
5263 | uint16_t insn2, struct regcache *regs, | |
5264 | struct displaced_step_closure *dsc) | |
5265 | { | |
5266 | unsigned int op = bits (insn1, 5, 8); | |
5267 | unsigned int rn, rm, rd; | |
5268 | ULONGEST rd_val, rn_val; | |
5269 | ||
5270 | rn = bits (insn1, 0, 3); /* Rn */ | |
5271 | rm = bits (insn2, 0, 3); /* Rm */ | |
5272 | rd = bits (insn2, 8, 11); /* Rd */ | |
5273 | ||
5274 | /* This routine is only called for instruction MOV. */ | |
5275 | gdb_assert (op == 0x2 && rn == 0xf); | |
5276 | ||
5277 | if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) | |
5278 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); | |
5279 | ||
5280 | if (debug_displaced) | |
5281 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n", | |
5282 | "ALU", insn1, insn2); | |
5283 | ||
5284 | /* Instruction is of form: | |
5285 | ||
5286 | <op><cond> rd, [rn,] #imm | |
5287 | ||
5288 | Rewrite as: | |
5289 | ||
5290 | Preparation: tmp1, tmp2 <- r0, r1; | |
5291 | r0, r1 <- rd, rn | |
5292 | Insn: <op><cond> r0, r1, #imm | |
5293 | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | |
5294 | */ | |
5295 | ||
5296 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5297 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5298 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5299 | rd_val = displaced_read_reg (regs, dsc, rd); | |
5300 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | |
5301 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5302 | dsc->rd = rd; | |
5303 | ||
5304 | dsc->modinsn[0] = insn1; | |
5305 | dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); | |
5306 | dsc->numinsns = 2; | |
5307 | ||
5308 | dsc->cleanup = &cleanup_alu_imm; | |
5309 | ||
5310 | return 0; | |
5311 | } | |
5312 | ||
cca44b1b JB |
5313 | /* Copy/cleanup arithmetic/logic insns with register RHS. */ |
5314 | ||
5315 | static void | |
6e39997a | 5316 | cleanup_alu_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
5317 | struct regcache *regs, struct displaced_step_closure *dsc) |
5318 | { | |
5319 | ULONGEST rd_val; | |
5320 | int i; | |
5321 | ||
36073a92 | 5322 | rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5323 | |
5324 | for (i = 0; i < 3; i++) | |
5325 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
5326 | ||
5327 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5328 | } | |
5329 | ||
7ff120b4 YQ |
5330 | static void |
5331 | install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
5332 | struct displaced_step_closure *dsc, | |
5333 | unsigned int rd, unsigned int rn, unsigned int rm) | |
cca44b1b | 5334 | { |
cca44b1b | 5335 | ULONGEST rd_val, rn_val, rm_val; |
cca44b1b | 5336 | |
cca44b1b JB |
5337 | /* Instruction is of form: |
5338 | ||
5339 | <op><cond> rd, [rn,] rm [, <shift>] | |
5340 | ||
5341 | Rewrite as: | |
5342 | ||
5343 | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | |
5344 | r0, r1, r2 <- rd, rn, rm | |
ef713951 | 5345 | Insn: <op><cond> r0, [r1,] r2 [, <shift>] |
cca44b1b JB |
5346 | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 |
5347 | */ | |
5348 | ||
36073a92 YQ |
5349 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5350 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5351 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
5352 | rd_val = displaced_read_reg (regs, dsc, rd); | |
5353 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5354 | rm_val = displaced_read_reg (regs, dsc, rm); | |
cca44b1b JB |
5355 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5356 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5357 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
5358 | dsc->rd = rd; | |
5359 | ||
7ff120b4 YQ |
5360 | dsc->cleanup = &cleanup_alu_reg; |
5361 | } | |
5362 | ||
5363 | static int | |
5364 | arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | |
5365 | struct displaced_step_closure *dsc) | |
5366 | { | |
5367 | unsigned int op = bits (insn, 21, 24); | |
5368 | int is_mov = (op == 0xd); | |
5369 | ||
5370 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5371 | return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); | |
5372 | ||
5373 | if (debug_displaced) | |
5374 | fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n", | |
5375 | is_mov ? "move" : "ALU", (unsigned long) insn); | |
5376 | ||
cca44b1b JB |
5377 | if (is_mov) |
5378 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | |
5379 | else | |
5380 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | |
5381 | ||
7ff120b4 YQ |
5382 | install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), |
5383 | bits (insn, 0, 3)); | |
cca44b1b JB |
5384 | return 0; |
5385 | } | |
5386 | ||
34518530 YQ |
5387 | static int |
5388 | thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, | |
5389 | struct regcache *regs, | |
5390 | struct displaced_step_closure *dsc) | |
5391 | { | |
ef713951 | 5392 | unsigned rm, rd; |
34518530 | 5393 | |
ef713951 YQ |
5394 | rm = bits (insn, 3, 6); |
5395 | rd = (bit (insn, 7) << 3) | bits (insn, 0, 2); | |
34518530 | 5396 | |
ef713951 | 5397 | if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM) |
34518530 YQ |
5398 | return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); |
5399 | ||
5400 | if (debug_displaced) | |
ef713951 YQ |
5401 | fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n", |
5402 | (unsigned short) insn); | |
34518530 | 5403 | |
ef713951 | 5404 | dsc->modinsn[0] = ((insn & 0xff00) | 0x10); |
34518530 | 5405 | |
ef713951 | 5406 | install_alu_reg (gdbarch, regs, dsc, rd, rd, rm); |
34518530 YQ |
5407 | |
5408 | return 0; | |
5409 | } | |
5410 | ||
cca44b1b JB |
5411 | /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ |
5412 | ||
5413 | static void | |
6e39997a | 5414 | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
cca44b1b JB |
5415 | struct regcache *regs, |
5416 | struct displaced_step_closure *dsc) | |
5417 | { | |
36073a92 | 5418 | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b JB |
5419 | int i; |
5420 | ||
5421 | for (i = 0; i < 4; i++) | |
5422 | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | |
5423 | ||
5424 | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | |
5425 | } | |
5426 | ||
7ff120b4 YQ |
5427 | static void |
5428 | install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, | |
5429 | struct displaced_step_closure *dsc, | |
5430 | unsigned int rd, unsigned int rn, unsigned int rm, | |
5431 | unsigned rs) | |
cca44b1b | 5432 | { |
7ff120b4 | 5433 | int i; |
cca44b1b | 5434 | ULONGEST rd_val, rn_val, rm_val, rs_val; |
cca44b1b | 5435 | |
cca44b1b JB |
5436 | /* Instruction is of form: |
5437 | ||
5438 | <op><cond> rd, [rn,] rm, <shift> rs | |
5439 | ||
5440 | Rewrite as: | |
5441 | ||
5442 | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | |
5443 | r0, r1, r2, r3 <- rd, rn, rm, rs | |
5444 | Insn: <op><cond> r0, r1, r2, <shift> r3 | |
5445 | Cleanup: tmp5 <- r0 | |
5446 | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | |
5447 | rd <- tmp5 | |
5448 | */ | |
5449 | ||
5450 | for (i = 0; i < 4; i++) | |
36073a92 | 5451 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b | 5452 | |
36073a92 YQ |
5453 | rd_val = displaced_read_reg (regs, dsc, rd); |
5454 | rn_val = displaced_read_reg (regs, dsc, rn); | |
5455 | rm_val = displaced_read_reg (regs, dsc, rm); | |
5456 | rs_val = displaced_read_reg (regs, dsc, rs); | |
cca44b1b JB |
5457 | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
5458 | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | |
5459 | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | |
5460 | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | |
5461 | dsc->rd = rd; | |
7ff120b4 YQ |
5462 | dsc->cleanup = &cleanup_alu_shifted_reg; |
5463 | } | |
5464 | ||
5465 | static int | |
5466 | arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | |
5467 | struct regcache *regs, | |
5468 | struct displaced_step_closure *dsc) | |
5469 | { | |
5470 | unsigned int op = bits (insn, 21, 24); | |
5471 | int is_mov = (op == 0xd); | |
5472 | unsigned int rd, rn, rm, rs; | |
5473 | ||
5474 | if (!insn_references_pc (insn, 0x000fff0ful)) | |
5475 | return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | |
5476 | ||
5477 | if (debug_displaced) | |
5478 | fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn " | |
5479 | "%.8lx\n", is_mov ? "move" : "ALU", | |
5480 | (unsigned long) insn); | |
5481 | ||
5482 | rn = bits (insn, 16, 19); | |
5483 | rm = bits (insn, 0, 3); | |
5484 | rs = bits (insn, 8, 11); | |
5485 | rd = bits (insn, 12, 15); | |
cca44b1b JB |
5486 | |
5487 | if (is_mov) | |
5488 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | |
5489 | else | |
5490 | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | |
5491 | ||
7ff120b4 | 5492 | install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); |
cca44b1b JB |
5493 | |
5494 | return 0; | |
5495 | } | |
5496 | ||
5497 | /* Clean up load instructions. */ | |
5498 | ||
5499 | static void | |
6e39997a | 5500 | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5501 | struct displaced_step_closure *dsc) |
5502 | { | |
5503 | ULONGEST rt_val, rt_val2 = 0, rn_val; | |
cca44b1b | 5504 | |
36073a92 | 5505 | rt_val = displaced_read_reg (regs, dsc, 0); |
cca44b1b | 5506 | if (dsc->u.ldst.xfersize == 8) |
36073a92 YQ |
5507 | rt_val2 = displaced_read_reg (regs, dsc, 1); |
5508 | rn_val = displaced_read_reg (regs, dsc, 2); | |
cca44b1b JB |
5509 | |
5510 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5511 | if (dsc->u.ldst.xfersize > 4) | |
5512 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5513 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5514 | if (!dsc->u.ldst.immed) | |
5515 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5516 | ||
5517 | /* Handle register writeback. */ | |
5518 | if (dsc->u.ldst.writeback) | |
5519 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5520 | /* Put result in right place. */ | |
5521 | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | |
5522 | if (dsc->u.ldst.xfersize == 8) | |
5523 | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | |
5524 | } | |
5525 | ||
5526 | /* Clean up store instructions. */ | |
5527 | ||
5528 | static void | |
6e39997a | 5529 | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
cca44b1b JB |
5530 | struct displaced_step_closure *dsc) |
5531 | { | |
36073a92 | 5532 | ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); |
cca44b1b JB |
5533 | |
5534 | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | |
5535 | if (dsc->u.ldst.xfersize > 4) | |
5536 | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | |
5537 | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | |
5538 | if (!dsc->u.ldst.immed) | |
5539 | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | |
5540 | if (!dsc->u.ldst.restore_r4) | |
5541 | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | |
5542 | ||
5543 | /* Writeback. */ | |
5544 | if (dsc->u.ldst.writeback) | |
5545 | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | |
5546 | } | |
5547 | ||
5548 | /* Copy "extra" load/store instructions. These are halfword/doubleword | |
5549 | transfers, which have a different encoding to byte/word transfers. */ | |
5550 | ||
5551 | static int | |
550dc4e2 | 5552 | arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged, |
7ff120b4 | 5553 | struct regcache *regs, struct displaced_step_closure *dsc) |
cca44b1b JB |
5554 | { |
5555 | unsigned int op1 = bits (insn, 20, 24); | |
5556 | unsigned int op2 = bits (insn, 5, 6); | |
5557 | unsigned int rt = bits (insn, 12, 15); | |
5558 | unsigned int rn = bits (insn, 16, 19); | |
5559 | unsigned int rm = bits (insn, 0, 3); | |
5560 | char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | |
5561 | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | |
5562 | int immed = (op1 & 0x4) != 0; | |
5563 | int opcode; | |
5564 | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | |
cca44b1b JB |
5565 | |
5566 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
7ff120b4 | 5567 | return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); |
cca44b1b JB |
5568 | |
5569 | if (debug_displaced) | |
5570 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store " | |
550dc4e2 | 5571 | "insn %.8lx\n", unprivileged ? "unprivileged " : "", |
cca44b1b JB |
5572 | (unsigned long) insn); |
5573 | ||
5574 | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | |
5575 | ||
5576 | if (opcode < 0) | |
5577 | internal_error (__FILE__, __LINE__, | |
5578 | _("copy_extra_ld_st: instruction decode error")); | |
5579 | ||
36073a92 YQ |
5580 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5581 | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | |
5582 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 5583 | if (!immed) |
36073a92 | 5584 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 5585 | |
36073a92 | 5586 | rt_val = displaced_read_reg (regs, dsc, rt); |
cca44b1b | 5587 | if (bytesize[opcode] == 8) |
36073a92 YQ |
5588 | rt_val2 = displaced_read_reg (regs, dsc, rt + 1); |
5589 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5590 | if (!immed) |
36073a92 | 5591 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5592 | |
5593 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5594 | if (bytesize[opcode] == 8) | |
5595 | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | |
5596 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5597 | if (!immed) | |
5598 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
5599 | ||
5600 | dsc->rd = rt; | |
5601 | dsc->u.ldst.xfersize = bytesize[opcode]; | |
5602 | dsc->u.ldst.rn = rn; | |
5603 | dsc->u.ldst.immed = immed; | |
5604 | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | |
5605 | dsc->u.ldst.restore_r4 = 0; | |
5606 | ||
5607 | if (immed) | |
5608 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | |
5609 | -> | |
5610 | {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ | |
5611 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5612 | else | |
5613 | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | |
5614 | -> | |
5615 | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ | |
5616 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5617 | ||
5618 | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | |
5619 | ||
5620 | return 0; | |
5621 | } | |
5622 | ||
0f6f04ba | 5623 | /* Copy byte/half word/word loads and stores. */ |
cca44b1b | 5624 | |
7ff120b4 | 5625 | static void |
0f6f04ba YQ |
5626 | install_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
5627 | struct displaced_step_closure *dsc, int load, | |
5628 | int immed, int writeback, int size, int usermode, | |
5629 | int rt, int rm, int rn) | |
cca44b1b | 5630 | { |
cca44b1b | 5631 | ULONGEST rt_val, rn_val, rm_val = 0; |
cca44b1b | 5632 | |
36073a92 YQ |
5633 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
5634 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
cca44b1b | 5635 | if (!immed) |
36073a92 | 5636 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
cca44b1b | 5637 | if (!load) |
36073a92 | 5638 | dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); |
cca44b1b | 5639 | |
36073a92 YQ |
5640 | rt_val = displaced_read_reg (regs, dsc, rt); |
5641 | rn_val = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 5642 | if (!immed) |
36073a92 | 5643 | rm_val = displaced_read_reg (regs, dsc, rm); |
cca44b1b JB |
5644 | |
5645 | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | |
5646 | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | |
5647 | if (!immed) | |
5648 | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | |
cca44b1b | 5649 | dsc->rd = rt; |
0f6f04ba | 5650 | dsc->u.ldst.xfersize = size; |
cca44b1b JB |
5651 | dsc->u.ldst.rn = rn; |
5652 | dsc->u.ldst.immed = immed; | |
7ff120b4 | 5653 | dsc->u.ldst.writeback = writeback; |
cca44b1b JB |
5654 | |
5655 | /* To write PC we can do: | |
5656 | ||
494e194e YQ |
5657 | Before this sequence of instructions: |
5658 | r0 is the PC value got from displaced_read_reg, so r0 = from + 8; | |
5659 | r2 is the Rn value got from dispalced_read_reg. | |
5660 | ||
5661 | Insn1: push {pc} Write address of STR instruction + offset on stack | |
5662 | Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset | |
5663 | Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc | |
5664 | = addr(Insn1) + offset - addr(Insn3) - 8 | |
5665 | = offset - 16 | |
5666 | Insn4: add r4, r4, #8 r4 = offset - 8 | |
5667 | Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8 | |
5668 | = from + offset | |
5669 | Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) | |
cca44b1b JB |
5670 | |
5671 | Otherwise we don't know what value to write for PC, since the offset is | |
494e194e YQ |
5672 | architecture-dependent (sometimes PC+8, sometimes PC+12). More details |
5673 | of this can be found in Section "Saving from r15" in | |
5674 | http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ | |
cca44b1b | 5675 | |
7ff120b4 YQ |
5676 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
5677 | } | |
5678 | ||
34518530 YQ |
5679 | |
5680 | static int | |
5681 | thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, | |
5682 | uint16_t insn2, struct regcache *regs, | |
5683 | struct displaced_step_closure *dsc, int size) | |
5684 | { | |
5685 | unsigned int u_bit = bit (insn1, 7); | |
5686 | unsigned int rt = bits (insn2, 12, 15); | |
5687 | int imm12 = bits (insn2, 0, 11); | |
5688 | ULONGEST pc_val; | |
5689 | ||
5690 | if (debug_displaced) | |
5691 | fprintf_unfiltered (gdb_stdlog, | |
5692 | "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n", | |
5693 | (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', | |
5694 | imm12); | |
5695 | ||
5696 | if (!u_bit) | |
5697 | imm12 = -1 * imm12; | |
5698 | ||
5699 | /* Rewrite instruction LDR Rt imm12 into: | |
5700 | ||
5701 | Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 | |
5702 | ||
5703 | LDR R0, R2, R3, | |
5704 | ||
5705 | Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */ | |
5706 | ||
5707 | ||
5708 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
5709 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
5710 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
5711 | ||
5712 | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
5713 | ||
5714 | pc_val = pc_val & 0xfffffffc; | |
5715 | ||
5716 | displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); | |
5717 | displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); | |
5718 | ||
5719 | dsc->rd = rt; | |
5720 | ||
5721 | dsc->u.ldst.xfersize = size; | |
5722 | dsc->u.ldst.immed = 0; | |
5723 | dsc->u.ldst.writeback = 0; | |
5724 | dsc->u.ldst.restore_r4 = 0; | |
5725 | ||
5726 | /* LDR R0, R2, R3 */ | |
5727 | dsc->modinsn[0] = 0xf852; | |
5728 | dsc->modinsn[1] = 0x3; | |
5729 | dsc->numinsns = 2; | |
5730 | ||
5731 | dsc->cleanup = &cleanup_load; | |
5732 | ||
5733 | return 0; | |
5734 | } | |
5735 | ||
5736 | static int | |
5737 | thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, | |
5738 | uint16_t insn2, struct regcache *regs, | |
5739 | struct displaced_step_closure *dsc, | |
5740 | int writeback, int immed) | |
5741 | { | |
5742 | unsigned int rt = bits (insn2, 12, 15); | |
5743 | unsigned int rn = bits (insn1, 0, 3); | |
5744 | unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */ | |
5745 | /* In LDR (register), there is also a register Rm, which is not allowed to | |
5746 | be PC, so we don't have to check it. */ | |
5747 | ||
5748 | if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | |
5749 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", | |
5750 | dsc); | |
5751 | ||
5752 | if (debug_displaced) | |
5753 | fprintf_unfiltered (gdb_stdlog, | |
5754 | "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n", | |
5755 | rt, rn, insn1, insn2); | |
5756 | ||
5757 | install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, | |
5758 | 0, rt, rm, rn); | |
5759 | ||
5760 | dsc->u.ldst.restore_r4 = 0; | |
5761 | ||
5762 | if (immed) | |
5763 | /* ldr[b]<cond> rt, [rn, #imm], etc. | |
5764 | -> | |
5765 | ldr[b]<cond> r0, [r2, #imm]. */ | |
5766 | { | |
5767 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
5768 | dsc->modinsn[1] = insn2 & 0x0fff; | |
5769 | } | |
5770 | else | |
5771 | /* ldr[b]<cond> rt, [rn, rm], etc. | |
5772 | -> | |
5773 | ldr[b]<cond> r0, [r2, r3]. */ | |
5774 | { | |
5775 | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | |
5776 | dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; | |
5777 | } | |
5778 | ||
5779 | dsc->numinsns = 2; | |
5780 | ||
5781 | return 0; | |
5782 | } | |
5783 | ||
5784 | ||
7ff120b4 YQ |
5785 | static int |
5786 | arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | |
5787 | struct regcache *regs, | |
5788 | struct displaced_step_closure *dsc, | |
0f6f04ba | 5789 | int load, int size, int usermode) |
7ff120b4 YQ |
5790 | { |
5791 | int immed = !bit (insn, 25); | |
5792 | int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); | |
5793 | unsigned int rt = bits (insn, 12, 15); | |
5794 | unsigned int rn = bits (insn, 16, 19); | |
5795 | unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ | |
5796 | ||
5797 | if (!insn_references_pc (insn, 0x000ff00ful)) | |
5798 | return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); | |
5799 | ||
5800 | if (debug_displaced) | |
5801 | fprintf_unfiltered (gdb_stdlog, | |
5802 | "displaced: copying %s%s r%d [r%d] insn %.8lx\n", | |
0f6f04ba YQ |
5803 | load ? (size == 1 ? "ldrb" : "ldr") |
5804 | : (size == 1 ? "strb" : "str"), usermode ? "t" : "", | |
7ff120b4 YQ |
5805 | rt, rn, |
5806 | (unsigned long) insn); | |
5807 | ||
0f6f04ba YQ |
5808 | install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, |
5809 | usermode, rt, rm, rn); | |
7ff120b4 | 5810 | |
bf9f652a | 5811 | if (load || rt != ARM_PC_REGNUM) |
cca44b1b JB |
5812 | { |
5813 | dsc->u.ldst.restore_r4 = 0; | |
5814 | ||
5815 | if (immed) | |
5816 | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | |
5817 | -> | |
5818 | {ldr,str}[b]<cond> r0, [r2, #imm]. */ | |
5819 | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | |
5820 | else | |
5821 | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | |
5822 | -> | |
5823 | {ldr,str}[b]<cond> r0, [r2, r3]. */ | |
5824 | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | |
5825 | } | |
5826 | else | |
5827 | { | |
5828 | /* We need to use r4 as scratch. Make sure it's restored afterwards. */ | |
5829 | dsc->u.ldst.restore_r4 = 1; | |
494e194e YQ |
5830 | dsc->modinsn[0] = 0xe92d8000; /* push {pc} */ |
5831 | dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */ | |
cca44b1b JB |
5832 | dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ |
5833 | dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ | |
5834 | dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ | |
5835 | ||
5836 | /* As above. */ | |
5837 | if (immed) | |
5838 | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | |
5839 | else | |
5840 | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | |
5841 | ||
cca44b1b JB |
5842 | dsc->numinsns = 6; |
5843 | } | |
5844 | ||
5845 | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | |
5846 | ||
5847 | return 0; | |
5848 | } | |
5849 | ||
5850 | /* Cleanup LDM instructions with fully-populated register list. This is an | |
5851 | unfortunate corner case: it's impossible to implement correctly by modifying | |
5852 | the instruction. The issue is as follows: we have an instruction, | |
5853 | ||
5854 | ldm rN, {r0-r15} | |
5855 | ||
5856 | which we must rewrite to avoid loading PC. A possible solution would be to | |
5857 | do the load in two halves, something like (with suitable cleanup | |
5858 | afterwards): | |
5859 | ||
5860 | mov r8, rN | |
5861 | ldm[id][ab] r8!, {r0-r7} | |
5862 | str r7, <temp> | |
5863 | ldm[id][ab] r8, {r7-r14} | |
5864 | <bkpt> | |
5865 | ||
5866 | but at present there's no suitable place for <temp>, since the scratch space | |
5867 | is overwritten before the cleanup routine is called. For now, we simply | |
5868 | emulate the instruction. */ | |
5869 | ||
5870 | static void | |
5871 | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | |
5872 | struct displaced_step_closure *dsc) | |
5873 | { | |
cca44b1b JB |
5874 | int inc = dsc->u.block.increment; |
5875 | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | |
5876 | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | |
5877 | uint32_t regmask = dsc->u.block.regmask; | |
5878 | int regno = inc ? 0 : 15; | |
5879 | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | |
5880 | int exception_return = dsc->u.block.load && dsc->u.block.user | |
5881 | && (regmask & 0x8000) != 0; | |
36073a92 | 5882 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5883 | int do_transfer = condition_true (dsc->u.block.cond, status); |
5884 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5885 | ||
5886 | if (!do_transfer) | |
5887 | return; | |
5888 | ||
5889 | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | |
5890 | sensible we can do here. Complain loudly. */ | |
5891 | if (exception_return) | |
5892 | error (_("Cannot single-step exception return")); | |
5893 | ||
5894 | /* We don't handle any stores here for now. */ | |
5895 | gdb_assert (dsc->u.block.load != 0); | |
5896 | ||
5897 | if (debug_displaced) | |
5898 | fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: " | |
5899 | "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm", | |
5900 | dsc->u.block.increment ? "inc" : "dec", | |
5901 | dsc->u.block.before ? "before" : "after"); | |
5902 | ||
5903 | while (regmask) | |
5904 | { | |
5905 | uint32_t memword; | |
5906 | ||
5907 | if (inc) | |
bf9f652a | 5908 | while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) |
cca44b1b JB |
5909 | regno++; |
5910 | else | |
5911 | while (regno >= 0 && (regmask & (1 << regno)) == 0) | |
5912 | regno--; | |
5913 | ||
5914 | xfer_addr += bump_before; | |
5915 | ||
5916 | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | |
5917 | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | |
5918 | ||
5919 | xfer_addr += bump_after; | |
5920 | ||
5921 | regmask &= ~(1 << regno); | |
5922 | } | |
5923 | ||
5924 | if (dsc->u.block.writeback) | |
5925 | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | |
5926 | CANNOT_WRITE_PC); | |
5927 | } | |
5928 | ||
5929 | /* Clean up an STM which included the PC in the register list. */ | |
5930 | ||
5931 | static void | |
5932 | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | |
5933 | struct displaced_step_closure *dsc) | |
5934 | { | |
36073a92 | 5935 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
cca44b1b JB |
5936 | int store_executed = condition_true (dsc->u.block.cond, status); |
5937 | CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask); | |
5938 | CORE_ADDR stm_insn_addr; | |
5939 | uint32_t pc_val; | |
5940 | long offset; | |
5941 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5942 | ||
5943 | /* If condition code fails, there's nothing else to do. */ | |
5944 | if (!store_executed) | |
5945 | return; | |
5946 | ||
5947 | if (dsc->u.block.increment) | |
5948 | { | |
5949 | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | |
5950 | ||
5951 | if (dsc->u.block.before) | |
5952 | pc_stored_at += 4; | |
5953 | } | |
5954 | else | |
5955 | { | |
5956 | pc_stored_at = dsc->u.block.xfer_addr; | |
5957 | ||
5958 | if (dsc->u.block.before) | |
5959 | pc_stored_at -= 4; | |
5960 | } | |
5961 | ||
5962 | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | |
5963 | stm_insn_addr = dsc->scratch_base; | |
5964 | offset = pc_val - stm_insn_addr; | |
5965 | ||
5966 | if (debug_displaced) | |
5967 | fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for " | |
5968 | "STM instruction\n", offset); | |
5969 | ||
5970 | /* Rewrite the stored PC to the proper value for the non-displaced original | |
5971 | instruction. */ | |
5972 | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | |
5973 | dsc->insn_addr + offset); | |
5974 | } | |
5975 | ||
5976 | /* Clean up an LDM which includes the PC in the register list. We clumped all | |
5977 | the registers in the transferred list into a contiguous range r0...rX (to | |
5978 | avoid loading PC directly and losing control of the debugged program), so we | |
5979 | must undo that here. */ | |
5980 | ||
5981 | static void | |
6e39997a | 5982 | cleanup_block_load_pc (struct gdbarch *gdbarch, |
cca44b1b JB |
5983 | struct regcache *regs, |
5984 | struct displaced_step_closure *dsc) | |
5985 | { | |
36073a92 | 5986 | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
22e048c9 | 5987 | int load_executed = condition_true (dsc->u.block.cond, status); |
bf9f652a | 5988 | unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; |
cca44b1b JB |
5989 | unsigned int regs_loaded = bitcount (mask); |
5990 | unsigned int num_to_shuffle = regs_loaded, clobbered; | |
5991 | ||
5992 | /* The method employed here will fail if the register list is fully populated | |
5993 | (we need to avoid loading PC directly). */ | |
5994 | gdb_assert (num_to_shuffle < 16); | |
5995 | ||
5996 | if (!load_executed) | |
5997 | return; | |
5998 | ||
5999 | clobbered = (1 << num_to_shuffle) - 1; | |
6000 | ||
6001 | while (num_to_shuffle > 0) | |
6002 | { | |
6003 | if ((mask & (1 << write_reg)) != 0) | |
6004 | { | |
6005 | unsigned int read_reg = num_to_shuffle - 1; | |
6006 | ||
6007 | if (read_reg != write_reg) | |
6008 | { | |
36073a92 | 6009 | ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); |
cca44b1b JB |
6010 | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); |
6011 | if (debug_displaced) | |
6012 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move " | |
6013 | "loaded register r%d to r%d\n"), read_reg, | |
6014 | write_reg); | |
6015 | } | |
6016 | else if (debug_displaced) | |
6017 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register " | |
6018 | "r%d already in the right place\n"), | |
6019 | write_reg); | |
6020 | ||
6021 | clobbered &= ~(1 << write_reg); | |
6022 | ||
6023 | num_to_shuffle--; | |
6024 | } | |
6025 | ||
6026 | write_reg--; | |
6027 | } | |
6028 | ||
6029 | /* Restore any registers we scribbled over. */ | |
6030 | for (write_reg = 0; clobbered != 0; write_reg++) | |
6031 | { | |
6032 | if ((clobbered & (1 << write_reg)) != 0) | |
6033 | { | |
6034 | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | |
6035 | CANNOT_WRITE_PC); | |
6036 | if (debug_displaced) | |
6037 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored " | |
6038 | "clobbered register r%d\n"), write_reg); | |
6039 | clobbered &= ~(1 << write_reg); | |
6040 | } | |
6041 | } | |
6042 | ||
6043 | /* Perform register writeback manually. */ | |
6044 | if (dsc->u.block.writeback) | |
6045 | { | |
6046 | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | |
6047 | ||
6048 | if (dsc->u.block.increment) | |
6049 | new_rn_val += regs_loaded * 4; | |
6050 | else | |
6051 | new_rn_val -= regs_loaded * 4; | |
6052 | ||
6053 | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | |
6054 | CANNOT_WRITE_PC); | |
6055 | } | |
6056 | } | |
6057 | ||
6058 | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | |
6059 | in user-level code (in particular exception return, ldm rn, {...pc}^). */ | |
6060 | ||
6061 | static int | |
7ff120b4 YQ |
6062 | arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, |
6063 | struct regcache *regs, | |
6064 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6065 | { |
6066 | int load = bit (insn, 20); | |
6067 | int user = bit (insn, 22); | |
6068 | int increment = bit (insn, 23); | |
6069 | int before = bit (insn, 24); | |
6070 | int writeback = bit (insn, 21); | |
6071 | int rn = bits (insn, 16, 19); | |
cca44b1b | 6072 | |
0963b4bd MS |
6073 | /* Block transfers which don't mention PC can be run directly |
6074 | out-of-line. */ | |
bf9f652a | 6075 | if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) |
7ff120b4 | 6076 | return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); |
cca44b1b | 6077 | |
bf9f652a | 6078 | if (rn == ARM_PC_REGNUM) |
cca44b1b | 6079 | { |
0963b4bd MS |
6080 | warning (_("displaced: Unpredictable LDM or STM with " |
6081 | "base register r15")); | |
7ff120b4 | 6082 | return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
cca44b1b JB |
6083 | } |
6084 | ||
6085 | if (debug_displaced) | |
6086 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " | |
6087 | "%.8lx\n", (unsigned long) insn); | |
6088 | ||
36073a92 | 6089 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
cca44b1b JB |
6090 | dsc->u.block.rn = rn; |
6091 | ||
6092 | dsc->u.block.load = load; | |
6093 | dsc->u.block.user = user; | |
6094 | dsc->u.block.increment = increment; | |
6095 | dsc->u.block.before = before; | |
6096 | dsc->u.block.writeback = writeback; | |
6097 | dsc->u.block.cond = bits (insn, 28, 31); | |
6098 | ||
6099 | dsc->u.block.regmask = insn & 0xffff; | |
6100 | ||
6101 | if (load) | |
6102 | { | |
6103 | if ((insn & 0xffff) == 0xffff) | |
6104 | { | |
6105 | /* LDM with a fully-populated register list. This case is | |
6106 | particularly tricky. Implement for now by fully emulating the | |
6107 | instruction (which might not behave perfectly in all cases, but | |
6108 | these instructions should be rare enough for that not to matter | |
6109 | too much). */ | |
6110 | dsc->modinsn[0] = ARM_NOP; | |
6111 | ||
6112 | dsc->cleanup = &cleanup_block_load_all; | |
6113 | } | |
6114 | else | |
6115 | { | |
6116 | /* LDM of a list of registers which includes PC. Implement by | |
6117 | rewriting the list of registers to be transferred into a | |
6118 | contiguous chunk r0...rX before doing the transfer, then shuffling | |
6119 | registers into the correct places in the cleanup routine. */ | |
6120 | unsigned int regmask = insn & 0xffff; | |
bec2ab5a SM |
6121 | unsigned int num_in_list = bitcount (regmask), new_regmask; |
6122 | unsigned int i; | |
cca44b1b JB |
6123 | |
6124 | for (i = 0; i < num_in_list; i++) | |
36073a92 | 6125 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
cca44b1b JB |
6126 | |
6127 | /* Writeback makes things complicated. We need to avoid clobbering | |
6128 | the base register with one of the registers in our modified | |
6129 | register list, but just using a different register can't work in | |
6130 | all cases, e.g.: | |
6131 | ||
6132 | ldm r14!, {r0-r13,pc} | |
6133 | ||
6134 | which would need to be rewritten as: | |
6135 | ||
6136 | ldm rN!, {r0-r14} | |
6137 | ||
6138 | but that can't work, because there's no free register for N. | |
6139 | ||
6140 | Solve this by turning off the writeback bit, and emulating | |
6141 | writeback manually in the cleanup routine. */ | |
6142 | ||
6143 | if (writeback) | |
6144 | insn &= ~(1 << 21); | |
6145 | ||
6146 | new_regmask = (1 << num_in_list) - 1; | |
6147 | ||
6148 | if (debug_displaced) | |
6149 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
6150 | "{..., pc}: original reg list %.4x, modified " | |
6151 | "list %.4x\n"), rn, writeback ? "!" : "", | |
6152 | (int) insn & 0xffff, new_regmask); | |
6153 | ||
6154 | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | |
6155 | ||
6156 | dsc->cleanup = &cleanup_block_load_pc; | |
6157 | } | |
6158 | } | |
6159 | else | |
6160 | { | |
6161 | /* STM of a list of registers which includes PC. Run the instruction | |
6162 | as-is, but out of line: this will store the wrong value for the PC, | |
6163 | so we must manually fix up the memory in the cleanup routine. | |
6164 | Doing things this way has the advantage that we can auto-detect | |
6165 | the offset of the PC write (which is architecture-dependent) in | |
6166 | the cleanup routine. */ | |
6167 | dsc->modinsn[0] = insn; | |
6168 | ||
6169 | dsc->cleanup = &cleanup_block_store_pc; | |
6170 | } | |
6171 | ||
6172 | return 0; | |
6173 | } | |
6174 | ||
34518530 YQ |
6175 | static int |
6176 | thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
6177 | struct regcache *regs, | |
6178 | struct displaced_step_closure *dsc) | |
cca44b1b | 6179 | { |
34518530 YQ |
6180 | int rn = bits (insn1, 0, 3); |
6181 | int load = bit (insn1, 4); | |
6182 | int writeback = bit (insn1, 5); | |
cca44b1b | 6183 | |
34518530 YQ |
6184 | /* Block transfers which don't mention PC can be run directly |
6185 | out-of-line. */ | |
6186 | if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) | |
6187 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); | |
7ff120b4 | 6188 | |
34518530 YQ |
6189 | if (rn == ARM_PC_REGNUM) |
6190 | { | |
6191 | warning (_("displaced: Unpredictable LDM or STM with " | |
6192 | "base register r15")); | |
6193 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6194 | "unpredictable ldm/stm", dsc); | |
6195 | } | |
cca44b1b JB |
6196 | |
6197 | if (debug_displaced) | |
34518530 YQ |
6198 | fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn " |
6199 | "%.4x%.4x\n", insn1, insn2); | |
cca44b1b | 6200 | |
34518530 YQ |
6201 | /* Clear bit 13, since it should be always zero. */ |
6202 | dsc->u.block.regmask = (insn2 & 0xdfff); | |
6203 | dsc->u.block.rn = rn; | |
cca44b1b | 6204 | |
34518530 YQ |
6205 | dsc->u.block.load = load; |
6206 | dsc->u.block.user = 0; | |
6207 | dsc->u.block.increment = bit (insn1, 7); | |
6208 | dsc->u.block.before = bit (insn1, 8); | |
6209 | dsc->u.block.writeback = writeback; | |
6210 | dsc->u.block.cond = INST_AL; | |
6211 | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | |
cca44b1b | 6212 | |
34518530 YQ |
6213 | if (load) |
6214 | { | |
6215 | if (dsc->u.block.regmask == 0xffff) | |
6216 | { | |
6217 | /* This branch is impossible to happen. */ | |
6218 | gdb_assert (0); | |
6219 | } | |
6220 | else | |
6221 | { | |
6222 | unsigned int regmask = dsc->u.block.regmask; | |
bec2ab5a SM |
6223 | unsigned int num_in_list = bitcount (regmask), new_regmask; |
6224 | unsigned int i; | |
34518530 YQ |
6225 | |
6226 | for (i = 0; i < num_in_list; i++) | |
6227 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
6228 | ||
6229 | if (writeback) | |
6230 | insn1 &= ~(1 << 5); | |
6231 | ||
6232 | new_regmask = (1 << num_in_list) - 1; | |
6233 | ||
6234 | if (debug_displaced) | |
6235 | fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, " | |
6236 | "{..., pc}: original reg list %.4x, modified " | |
6237 | "list %.4x\n"), rn, writeback ? "!" : "", | |
6238 | (int) dsc->u.block.regmask, new_regmask); | |
6239 | ||
6240 | dsc->modinsn[0] = insn1; | |
6241 | dsc->modinsn[1] = (new_regmask & 0xffff); | |
6242 | dsc->numinsns = 2; | |
6243 | ||
6244 | dsc->cleanup = &cleanup_block_load_pc; | |
6245 | } | |
6246 | } | |
6247 | else | |
6248 | { | |
6249 | dsc->modinsn[0] = insn1; | |
6250 | dsc->modinsn[1] = insn2; | |
6251 | dsc->numinsns = 2; | |
6252 | dsc->cleanup = &cleanup_block_store_pc; | |
6253 | } | |
6254 | return 0; | |
6255 | } | |
6256 | ||
d9311bfa AT |
6257 | /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs. |
6258 | This is used to avoid a dependency on BFD's bfd_endian enum. */ | |
6259 | ||
6260 | ULONGEST | |
6261 | arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, | |
6262 | int byte_order) | |
6263 | { | |
5f2dfcfd AT |
6264 | return read_memory_unsigned_integer (memaddr, len, |
6265 | (enum bfd_endian) byte_order); | |
d9311bfa AT |
6266 | } |
6267 | ||
6268 | /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */ | |
6269 | ||
6270 | CORE_ADDR | |
6271 | arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self, | |
6272 | CORE_ADDR val) | |
6273 | { | |
6274 | return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val); | |
6275 | } | |
6276 | ||
6277 | /* Wrapper over syscall_next_pc for use in get_next_pcs. */ | |
6278 | ||
e7cf25a8 | 6279 | static CORE_ADDR |
553cb527 | 6280 | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self) |
d9311bfa | 6281 | { |
d9311bfa AT |
6282 | return 0; |
6283 | } | |
6284 | ||
6285 | /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */ | |
6286 | ||
6287 | int | |
6288 | arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self) | |
6289 | { | |
6290 | return arm_is_thumb (self->regcache); | |
6291 | } | |
6292 | ||
6293 | /* single_step() is called just before we want to resume the inferior, | |
6294 | if we want to single-step it but there is no hardware or kernel | |
6295 | single-step support. We find the target of the coming instructions | |
6296 | and breakpoint them. */ | |
6297 | ||
a0ff9e1a | 6298 | std::vector<CORE_ADDR> |
f5ea389a | 6299 | arm_software_single_step (struct regcache *regcache) |
d9311bfa | 6300 | { |
d9311bfa | 6301 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
d9311bfa | 6302 | struct arm_get_next_pcs next_pcs_ctx; |
d9311bfa AT |
6303 | |
6304 | arm_get_next_pcs_ctor (&next_pcs_ctx, | |
6305 | &arm_get_next_pcs_ops, | |
6306 | gdbarch_byte_order (gdbarch), | |
6307 | gdbarch_byte_order_for_code (gdbarch), | |
1b451dda | 6308 | 0, |
d9311bfa AT |
6309 | regcache); |
6310 | ||
a0ff9e1a | 6311 | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
d9311bfa | 6312 | |
a0ff9e1a SM |
6313 | for (CORE_ADDR &pc_ref : next_pcs) |
6314 | pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref); | |
d9311bfa | 6315 | |
93f9a11f | 6316 | return next_pcs; |
d9311bfa AT |
6317 | } |
6318 | ||
34518530 YQ |
6319 | /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden |
6320 | for Linux, where some SVC instructions must be treated specially. */ | |
6321 | ||
6322 | static void | |
6323 | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
6324 | struct displaced_step_closure *dsc) | |
6325 | { | |
6326 | CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; | |
6327 | ||
6328 | if (debug_displaced) | |
6329 | fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at " | |
6330 | "%.8lx\n", (unsigned long) resume_addr); | |
6331 | ||
6332 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | |
6333 | } | |
6334 | ||
6335 | ||
6336 | /* Common copy routine for svc instruciton. */ | |
6337 | ||
6338 | static int | |
6339 | install_svc (struct gdbarch *gdbarch, struct regcache *regs, | |
6340 | struct displaced_step_closure *dsc) | |
6341 | { | |
6342 | /* Preparation: none. | |
6343 | Insn: unmodified svc. | |
6344 | Cleanup: pc <- insn_addr + insn_size. */ | |
6345 | ||
6346 | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | |
6347 | instruction. */ | |
6348 | dsc->wrote_to_pc = 1; | |
6349 | ||
6350 | /* Allow OS-specific code to override SVC handling. */ | |
bd18283a YQ |
6351 | if (dsc->u.svc.copy_svc_os) |
6352 | return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); | |
6353 | else | |
6354 | { | |
6355 | dsc->cleanup = &cleanup_svc; | |
6356 | return 0; | |
6357 | } | |
34518530 YQ |
6358 | } |
6359 | ||
6360 | static int | |
6361 | arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, | |
6362 | struct regcache *regs, struct displaced_step_closure *dsc) | |
6363 | { | |
6364 | ||
6365 | if (debug_displaced) | |
6366 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n", | |
6367 | (unsigned long) insn); | |
6368 | ||
6369 | dsc->modinsn[0] = insn; | |
6370 | ||
6371 | return install_svc (gdbarch, regs, dsc); | |
6372 | } | |
6373 | ||
6374 | static int | |
6375 | thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, | |
6376 | struct regcache *regs, struct displaced_step_closure *dsc) | |
6377 | { | |
6378 | ||
6379 | if (debug_displaced) | |
6380 | fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n", | |
6381 | insn); | |
bd18283a | 6382 | |
34518530 YQ |
6383 | dsc->modinsn[0] = insn; |
6384 | ||
6385 | return install_svc (gdbarch, regs, dsc); | |
cca44b1b JB |
6386 | } |
6387 | ||
6388 | /* Copy undefined instructions. */ | |
6389 | ||
6390 | static int | |
7ff120b4 YQ |
6391 | arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
6392 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6393 | { |
6394 | if (debug_displaced) | |
0963b4bd MS |
6395 | fprintf_unfiltered (gdb_stdlog, |
6396 | "displaced: copying undefined insn %.8lx\n", | |
cca44b1b JB |
6397 | (unsigned long) insn); |
6398 | ||
6399 | dsc->modinsn[0] = insn; | |
6400 | ||
6401 | return 0; | |
6402 | } | |
6403 | ||
34518530 YQ |
6404 | static int |
6405 | thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | |
6406 | struct displaced_step_closure *dsc) | |
6407 | { | |
6408 | ||
6409 | if (debug_displaced) | |
6410 | fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn " | |
6411 | "%.4x %.4x\n", (unsigned short) insn1, | |
6412 | (unsigned short) insn2); | |
6413 | ||
6414 | dsc->modinsn[0] = insn1; | |
6415 | dsc->modinsn[1] = insn2; | |
6416 | dsc->numinsns = 2; | |
6417 | ||
6418 | return 0; | |
6419 | } | |
6420 | ||
cca44b1b JB |
6421 | /* Copy unpredictable instructions. */ |
6422 | ||
6423 | static int | |
7ff120b4 YQ |
6424 | arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
6425 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6426 | { |
6427 | if (debug_displaced) | |
6428 | fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn " | |
6429 | "%.8lx\n", (unsigned long) insn); | |
6430 | ||
6431 | dsc->modinsn[0] = insn; | |
6432 | ||
6433 | return 0; | |
6434 | } | |
6435 | ||
6436 | /* The decode_* functions are instruction decoding helpers. They mostly follow | |
6437 | the presentation in the ARM ARM. */ | |
6438 | ||
6439 | static int | |
7ff120b4 YQ |
6440 | arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, |
6441 | struct regcache *regs, | |
6442 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6443 | { |
6444 | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | |
6445 | unsigned int rn = bits (insn, 16, 19); | |
6446 | ||
6447 | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0) | |
7ff120b4 | 6448 | return arm_copy_unmodified (gdbarch, insn, "cps", dsc); |
cca44b1b | 6449 | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1) |
7ff120b4 | 6450 | return arm_copy_unmodified (gdbarch, insn, "setend", dsc); |
cca44b1b | 6451 | else if ((op1 & 0x60) == 0x20) |
7ff120b4 | 6452 | return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); |
cca44b1b | 6453 | else if ((op1 & 0x71) == 0x40) |
7ff120b4 YQ |
6454 | return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", |
6455 | dsc); | |
cca44b1b | 6456 | else if ((op1 & 0x77) == 0x41) |
7ff120b4 | 6457 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 6458 | else if ((op1 & 0x77) == 0x45) |
7ff120b4 | 6459 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */ |
cca44b1b JB |
6460 | else if ((op1 & 0x77) == 0x51) |
6461 | { | |
6462 | if (rn != 0xf) | |
7ff120b4 | 6463 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b | 6464 | else |
7ff120b4 | 6465 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
6466 | } |
6467 | else if ((op1 & 0x77) == 0x55) | |
7ff120b4 | 6468 | return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
cca44b1b JB |
6469 | else if (op1 == 0x57) |
6470 | switch (op2) | |
6471 | { | |
7ff120b4 YQ |
6472 | case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); |
6473 | case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); | |
6474 | case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); | |
6475 | case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); | |
6476 | default: return arm_copy_unpred (gdbarch, insn, dsc); | |
cca44b1b JB |
6477 | } |
6478 | else if ((op1 & 0x63) == 0x43) | |
7ff120b4 | 6479 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b JB |
6480 | else if ((op2 & 0x1) == 0x0) |
6481 | switch (op1 & ~0x80) | |
6482 | { | |
6483 | case 0x61: | |
7ff120b4 | 6484 | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
cca44b1b | 6485 | case 0x65: |
7ff120b4 | 6486 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ |
cca44b1b JB |
6487 | case 0x71: case 0x75: |
6488 | /* pld/pldw reg. */ | |
7ff120b4 | 6489 | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6490 | case 0x63: case 0x67: case 0x73: case 0x77: |
7ff120b4 | 6491 | return arm_copy_unpred (gdbarch, insn, dsc); |
cca44b1b | 6492 | default: |
7ff120b4 | 6493 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6494 | } |
6495 | else | |
7ff120b4 | 6496 | return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ |
cca44b1b JB |
6497 | } |
6498 | ||
6499 | static int | |
7ff120b4 YQ |
6500 | arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, |
6501 | struct regcache *regs, | |
6502 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6503 | { |
6504 | if (bit (insn, 27) == 0) | |
7ff120b4 | 6505 | return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6506 | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ |
6507 | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | |
6508 | { | |
6509 | case 0x0: case 0x2: | |
7ff120b4 | 6510 | return arm_copy_unmodified (gdbarch, insn, "srs", dsc); |
cca44b1b JB |
6511 | |
6512 | case 0x1: case 0x3: | |
7ff120b4 | 6513 | return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); |
cca44b1b JB |
6514 | |
6515 | case 0x4: case 0x5: case 0x6: case 0x7: | |
7ff120b4 | 6516 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6517 | |
6518 | case 0x8: | |
6519 | switch ((insn & 0xe00000) >> 21) | |
6520 | { | |
6521 | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | |
6522 | /* stc/stc2. */ | |
7ff120b4 | 6523 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6524 | |
6525 | case 0x2: | |
7ff120b4 | 6526 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b JB |
6527 | |
6528 | default: | |
7ff120b4 | 6529 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6530 | } |
6531 | ||
6532 | case 0x9: | |
6533 | { | |
6534 | int rn_f = (bits (insn, 16, 19) == 0xf); | |
6535 | switch ((insn & 0xe00000) >> 21) | |
6536 | { | |
6537 | case 0x1: case 0x3: | |
6538 | /* ldc/ldc2 imm (undefined for rn == pc). */ | |
7ff120b4 YQ |
6539 | return rn_f ? arm_copy_undef (gdbarch, insn, dsc) |
6540 | : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | |
cca44b1b JB |
6541 | |
6542 | case 0x2: | |
7ff120b4 | 6543 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
6544 | |
6545 | case 0x4: case 0x5: case 0x6: case 0x7: | |
6546 | /* ldc/ldc2 lit (undefined for rn != pc). */ | |
7ff120b4 YQ |
6547 | return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) |
6548 | : arm_copy_undef (gdbarch, insn, dsc); | |
cca44b1b JB |
6549 | |
6550 | default: | |
7ff120b4 | 6551 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6552 | } |
6553 | } | |
6554 | ||
6555 | case 0xa: | |
7ff120b4 | 6556 | return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); |
cca44b1b JB |
6557 | |
6558 | case 0xb: | |
6559 | if (bits (insn, 16, 19) == 0xf) | |
6560 | /* ldc/ldc2 lit. */ | |
7ff120b4 | 6561 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 6562 | else |
7ff120b4 | 6563 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6564 | |
6565 | case 0xc: | |
6566 | if (bit (insn, 4)) | |
7ff120b4 | 6567 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 6568 | else |
7ff120b4 | 6569 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6570 | |
6571 | case 0xd: | |
6572 | if (bit (insn, 4)) | |
7ff120b4 | 6573 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 6574 | else |
7ff120b4 | 6575 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6576 | |
6577 | default: | |
7ff120b4 | 6578 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6579 | } |
6580 | } | |
6581 | ||
6582 | /* Decode miscellaneous instructions in dp/misc encoding space. */ | |
6583 | ||
6584 | static int | |
7ff120b4 YQ |
6585 | arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, |
6586 | struct regcache *regs, | |
6587 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6588 | { |
6589 | unsigned int op2 = bits (insn, 4, 6); | |
6590 | unsigned int op = bits (insn, 21, 22); | |
cca44b1b JB |
6591 | |
6592 | switch (op2) | |
6593 | { | |
6594 | case 0x0: | |
7ff120b4 | 6595 | return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); |
cca44b1b JB |
6596 | |
6597 | case 0x1: | |
6598 | if (op == 0x1) /* bx. */ | |
7ff120b4 | 6599 | return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6600 | else if (op == 0x3) |
7ff120b4 | 6601 | return arm_copy_unmodified (gdbarch, insn, "clz", dsc); |
cca44b1b | 6602 | else |
7ff120b4 | 6603 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6604 | |
6605 | case 0x2: | |
6606 | if (op == 0x1) | |
6607 | /* Not really supported. */ | |
7ff120b4 | 6608 | return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); |
cca44b1b | 6609 | else |
7ff120b4 | 6610 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6611 | |
6612 | case 0x3: | |
6613 | if (op == 0x1) | |
7ff120b4 | 6614 | return arm_copy_bx_blx_reg (gdbarch, insn, |
0963b4bd | 6615 | regs, dsc); /* blx register. */ |
cca44b1b | 6616 | else |
7ff120b4 | 6617 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6618 | |
6619 | case 0x5: | |
7ff120b4 | 6620 | return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); |
cca44b1b JB |
6621 | |
6622 | case 0x7: | |
6623 | if (op == 0x1) | |
7ff120b4 | 6624 | return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); |
cca44b1b JB |
6625 | else if (op == 0x3) |
6626 | /* Not really supported. */ | |
7ff120b4 | 6627 | return arm_copy_unmodified (gdbarch, insn, "smc", dsc); |
cca44b1b JB |
6628 | |
6629 | default: | |
7ff120b4 | 6630 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6631 | } |
6632 | } | |
6633 | ||
6634 | static int | |
7ff120b4 YQ |
6635 | arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, |
6636 | struct regcache *regs, | |
6637 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6638 | { |
6639 | if (bit (insn, 25)) | |
6640 | switch (bits (insn, 20, 24)) | |
6641 | { | |
6642 | case 0x10: | |
7ff120b4 | 6643 | return arm_copy_unmodified (gdbarch, insn, "movw", dsc); |
cca44b1b JB |
6644 | |
6645 | case 0x14: | |
7ff120b4 | 6646 | return arm_copy_unmodified (gdbarch, insn, "movt", dsc); |
cca44b1b JB |
6647 | |
6648 | case 0x12: case 0x16: | |
7ff120b4 | 6649 | return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); |
cca44b1b JB |
6650 | |
6651 | default: | |
7ff120b4 | 6652 | return arm_copy_alu_imm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6653 | } |
6654 | else | |
6655 | { | |
6656 | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | |
6657 | ||
6658 | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | |
7ff120b4 | 6659 | return arm_copy_alu_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6660 | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) |
7ff120b4 | 6661 | return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); |
cca44b1b | 6662 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) |
7ff120b4 | 6663 | return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); |
cca44b1b | 6664 | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) |
7ff120b4 | 6665 | return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); |
cca44b1b | 6666 | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) |
7ff120b4 | 6667 | return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); |
cca44b1b | 6668 | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) |
7ff120b4 | 6669 | return arm_copy_unmodified (gdbarch, insn, "synch", dsc); |
cca44b1b | 6670 | else if (op2 == 0xb || (op2 & 0xd) == 0xd) |
550dc4e2 | 6671 | /* 2nd arg means "unprivileged". */ |
7ff120b4 YQ |
6672 | return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, |
6673 | dsc); | |
cca44b1b JB |
6674 | } |
6675 | ||
6676 | /* Should be unreachable. */ | |
6677 | return 1; | |
6678 | } | |
6679 | ||
6680 | static int | |
7ff120b4 YQ |
6681 | arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, |
6682 | struct regcache *regs, | |
6683 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6684 | { |
6685 | int a = bit (insn, 25), b = bit (insn, 4); | |
6686 | uint32_t op1 = bits (insn, 20, 24); | |
cca44b1b JB |
6687 | |
6688 | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | |
6689 | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | |
0f6f04ba | 6690 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); |
cca44b1b JB |
6691 | else if ((!a && (op1 & 0x17) == 0x02) |
6692 | || (a && (op1 & 0x17) == 0x02 && !b)) | |
0f6f04ba | 6693 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); |
cca44b1b JB |
6694 | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) |
6695 | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | |
0f6f04ba | 6696 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); |
cca44b1b JB |
6697 | else if ((!a && (op1 & 0x17) == 0x03) |
6698 | || (a && (op1 & 0x17) == 0x03 && !b)) | |
0f6f04ba | 6699 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); |
cca44b1b JB |
6700 | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) |
6701 | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | |
7ff120b4 | 6702 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); |
cca44b1b JB |
6703 | else if ((!a && (op1 & 0x17) == 0x06) |
6704 | || (a && (op1 & 0x17) == 0x06 && !b)) | |
7ff120b4 | 6705 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); |
cca44b1b JB |
6706 | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) |
6707 | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | |
7ff120b4 | 6708 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); |
cca44b1b JB |
6709 | else if ((!a && (op1 & 0x17) == 0x07) |
6710 | || (a && (op1 & 0x17) == 0x07 && !b)) | |
7ff120b4 | 6711 | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); |
cca44b1b JB |
6712 | |
6713 | /* Should be unreachable. */ | |
6714 | return 1; | |
6715 | } | |
6716 | ||
6717 | static int | |
7ff120b4 YQ |
6718 | arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, |
6719 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6720 | { |
6721 | switch (bits (insn, 20, 24)) | |
6722 | { | |
6723 | case 0x00: case 0x01: case 0x02: case 0x03: | |
7ff120b4 | 6724 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); |
cca44b1b JB |
6725 | |
6726 | case 0x04: case 0x05: case 0x06: case 0x07: | |
7ff120b4 | 6727 | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); |
cca44b1b JB |
6728 | |
6729 | case 0x08: case 0x09: case 0x0a: case 0x0b: | |
6730 | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | |
7ff120b4 | 6731 | return arm_copy_unmodified (gdbarch, insn, |
cca44b1b JB |
6732 | "decode/pack/unpack/saturate/reverse", dsc); |
6733 | ||
6734 | case 0x18: | |
6735 | if (bits (insn, 5, 7) == 0) /* op2. */ | |
6736 | { | |
6737 | if (bits (insn, 12, 15) == 0xf) | |
7ff120b4 | 6738 | return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); |
cca44b1b | 6739 | else |
7ff120b4 | 6740 | return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); |
cca44b1b JB |
6741 | } |
6742 | else | |
7ff120b4 | 6743 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6744 | |
6745 | case 0x1a: case 0x1b: | |
6746 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 6747 | return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); |
cca44b1b | 6748 | else |
7ff120b4 | 6749 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6750 | |
6751 | case 0x1c: case 0x1d: | |
6752 | if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ | |
6753 | { | |
6754 | if (bits (insn, 0, 3) == 0xf) | |
7ff120b4 | 6755 | return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); |
cca44b1b | 6756 | else |
7ff120b4 | 6757 | return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); |
cca44b1b JB |
6758 | } |
6759 | else | |
7ff120b4 | 6760 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6761 | |
6762 | case 0x1e: case 0x1f: | |
6763 | if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ | |
7ff120b4 | 6764 | return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); |
cca44b1b | 6765 | else |
7ff120b4 | 6766 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b JB |
6767 | } |
6768 | ||
6769 | /* Should be unreachable. */ | |
6770 | return 1; | |
6771 | } | |
6772 | ||
6773 | static int | |
615234c1 | 6774 | arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn, |
7ff120b4 YQ |
6775 | struct regcache *regs, |
6776 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6777 | { |
6778 | if (bit (insn, 25)) | |
7ff120b4 | 6779 | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
cca44b1b | 6780 | else |
7ff120b4 | 6781 | return arm_copy_block_xfer (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6782 | } |
6783 | ||
6784 | static int | |
7ff120b4 YQ |
6785 | arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, |
6786 | struct regcache *regs, | |
6787 | struct displaced_step_closure *dsc) | |
cca44b1b JB |
6788 | { |
6789 | unsigned int opcode = bits (insn, 20, 24); | |
6790 | ||
6791 | switch (opcode) | |
6792 | { | |
6793 | case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ | |
7ff120b4 | 6794 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); |
cca44b1b JB |
6795 | |
6796 | case 0x08: case 0x0a: case 0x0c: case 0x0e: | |
6797 | case 0x12: case 0x16: | |
7ff120b4 | 6798 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); |
cca44b1b JB |
6799 | |
6800 | case 0x09: case 0x0b: case 0x0d: case 0x0f: | |
6801 | case 0x13: case 0x17: | |
7ff120b4 | 6802 | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); |
cca44b1b JB |
6803 | |
6804 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
6805 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
6806 | /* Note: no writeback for these instructions. Bit 25 will always be | |
6807 | zero though (via caller), so the following works OK. */ | |
7ff120b4 | 6808 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6809 | } |
6810 | ||
6811 | /* Should be unreachable. */ | |
6812 | return 1; | |
6813 | } | |
6814 | ||
34518530 YQ |
6815 | /* Decode shifted register instructions. */ |
6816 | ||
6817 | static int | |
6818 | thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, | |
6819 | uint16_t insn2, struct regcache *regs, | |
6820 | struct displaced_step_closure *dsc) | |
6821 | { | |
6822 | /* PC is only allowed to be used in instruction MOV. */ | |
6823 | ||
6824 | unsigned int op = bits (insn1, 5, 8); | |
6825 | unsigned int rn = bits (insn1, 0, 3); | |
6826 | ||
6827 | if (op == 0x2 && rn == 0xf) /* MOV */ | |
6828 | return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); | |
6829 | else | |
6830 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6831 | "dp (shift reg)", dsc); | |
6832 | } | |
6833 | ||
6834 | ||
6835 | /* Decode extension register load/store. Exactly the same as | |
6836 | arm_decode_ext_reg_ld_st. */ | |
6837 | ||
6838 | static int | |
6839 | thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, | |
6840 | uint16_t insn2, struct regcache *regs, | |
6841 | struct displaced_step_closure *dsc) | |
6842 | { | |
6843 | unsigned int opcode = bits (insn1, 4, 8); | |
6844 | ||
6845 | switch (opcode) | |
6846 | { | |
6847 | case 0x04: case 0x05: | |
6848 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6849 | "vfp/neon vmov", dsc); | |
6850 | ||
6851 | case 0x08: case 0x0c: /* 01x00 */ | |
6852 | case 0x0a: case 0x0e: /* 01x10 */ | |
6853 | case 0x12: case 0x16: /* 10x10 */ | |
6854 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6855 | "vfp/neon vstm/vpush", dsc); | |
6856 | ||
6857 | case 0x09: case 0x0d: /* 01x01 */ | |
6858 | case 0x0b: case 0x0f: /* 01x11 */ | |
6859 | case 0x13: case 0x17: /* 10x11 */ | |
6860 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6861 | "vfp/neon vldm/vpop", dsc); | |
6862 | ||
6863 | case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ | |
6864 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6865 | "vstr", dsc); | |
6866 | case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ | |
6867 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); | |
6868 | } | |
6869 | ||
6870 | /* Should be unreachable. */ | |
6871 | return 1; | |
6872 | } | |
6873 | ||
cca44b1b | 6874 | static int |
12545665 | 6875 | arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, |
7ff120b4 | 6876 | struct regcache *regs, struct displaced_step_closure *dsc) |
cca44b1b JB |
6877 | { |
6878 | unsigned int op1 = bits (insn, 20, 25); | |
6879 | int op = bit (insn, 4); | |
6880 | unsigned int coproc = bits (insn, 8, 11); | |
cca44b1b JB |
6881 | |
6882 | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | |
7ff120b4 | 6883 | return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6884 | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 |
6885 | && (coproc & 0xe) != 0xa) | |
6886 | /* stc/stc2. */ | |
7ff120b4 | 6887 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b JB |
6888 | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 |
6889 | && (coproc & 0xe) != 0xa) | |
6890 | /* ldc/ldc2 imm/lit. */ | |
7ff120b4 | 6891 | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
cca44b1b | 6892 | else if ((op1 & 0x3e) == 0x00) |
7ff120b4 | 6893 | return arm_copy_undef (gdbarch, insn, dsc); |
cca44b1b | 6894 | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) |
7ff120b4 | 6895 | return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); |
cca44b1b | 6896 | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) |
7ff120b4 | 6897 | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
cca44b1b | 6898 | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) |
7ff120b4 | 6899 | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
cca44b1b JB |
6900 | else if ((op1 & 0x30) == 0x20 && !op) |
6901 | { | |
6902 | if ((coproc & 0xe) == 0xa) | |
7ff120b4 | 6903 | return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); |
cca44b1b | 6904 | else |
7ff120b4 | 6905 | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
cca44b1b JB |
6906 | } |
6907 | else if ((op1 & 0x30) == 0x20 && op) | |
7ff120b4 | 6908 | return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); |
cca44b1b | 6909 | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 6910 | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
cca44b1b | 6911 | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) |
7ff120b4 | 6912 | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
cca44b1b | 6913 | else if ((op1 & 0x30) == 0x30) |
7ff120b4 | 6914 | return arm_copy_svc (gdbarch, insn, regs, dsc); |
cca44b1b | 6915 | else |
7ff120b4 | 6916 | return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ |
cca44b1b JB |
6917 | } |
6918 | ||
34518530 YQ |
6919 | static int |
6920 | thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, | |
6921 | uint16_t insn2, struct regcache *regs, | |
6922 | struct displaced_step_closure *dsc) | |
6923 | { | |
6924 | unsigned int coproc = bits (insn2, 8, 11); | |
34518530 YQ |
6925 | unsigned int bit_5_8 = bits (insn1, 5, 8); |
6926 | unsigned int bit_9 = bit (insn1, 9); | |
6927 | unsigned int bit_4 = bit (insn1, 4); | |
34518530 YQ |
6928 | |
6929 | if (bit_9 == 0) | |
6930 | { | |
6931 | if (bit_5_8 == 2) | |
6932 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6933 | "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", | |
6934 | dsc); | |
6935 | else if (bit_5_8 == 0) /* UNDEFINED. */ | |
6936 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
6937 | else | |
6938 | { | |
6939 | /*coproc is 101x. SIMD/VFP, ext registers load/store. */ | |
6940 | if ((coproc & 0xe) == 0xa) | |
6941 | return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, | |
6942 | dsc); | |
6943 | else /* coproc is not 101x. */ | |
6944 | { | |
6945 | if (bit_4 == 0) /* STC/STC2. */ | |
6946 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
6947 | "stc/stc2", dsc); | |
6948 | else /* LDC/LDC2 {literal, immeidate}. */ | |
6949 | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, | |
6950 | regs, dsc); | |
6951 | } | |
6952 | } | |
6953 | } | |
6954 | else | |
6955 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); | |
6956 | ||
6957 | return 0; | |
6958 | } | |
6959 | ||
6960 | static void | |
6961 | install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, | |
6962 | struct displaced_step_closure *dsc, int rd) | |
6963 | { | |
6964 | /* ADR Rd, #imm | |
6965 | ||
6966 | Rewrite as: | |
6967 | ||
6968 | Preparation: Rd <- PC | |
6969 | Insn: ADD Rd, #imm | |
6970 | Cleanup: Null. | |
6971 | */ | |
6972 | ||
6973 | /* Rd <- PC */ | |
6974 | int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
6975 | displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); | |
6976 | } | |
6977 | ||
6978 | static int | |
6979 | thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, | |
6980 | struct displaced_step_closure *dsc, | |
6981 | int rd, unsigned int imm) | |
6982 | { | |
6983 | ||
6984 | /* Encoding T2: ADDS Rd, #imm */ | |
6985 | dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); | |
6986 | ||
6987 | install_pc_relative (gdbarch, regs, dsc, rd); | |
6988 | ||
6989 | return 0; | |
6990 | } | |
6991 | ||
6992 | static int | |
6993 | thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, | |
6994 | struct regcache *regs, | |
6995 | struct displaced_step_closure *dsc) | |
6996 | { | |
6997 | unsigned int rd = bits (insn, 8, 10); | |
6998 | unsigned int imm8 = bits (insn, 0, 7); | |
6999 | ||
7000 | if (debug_displaced) | |
7001 | fprintf_unfiltered (gdb_stdlog, | |
7002 | "displaced: copying thumb adr r%d, #%d insn %.4x\n", | |
7003 | rd, imm8, insn); | |
7004 | ||
7005 | return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); | |
7006 | } | |
7007 | ||
7008 | static int | |
7009 | thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, | |
7010 | uint16_t insn2, struct regcache *regs, | |
7011 | struct displaced_step_closure *dsc) | |
7012 | { | |
7013 | unsigned int rd = bits (insn2, 8, 11); | |
7014 | /* Since immediate has the same encoding in ADR ADD and SUB, so we simply | |
7015 | extract raw immediate encoding rather than computing immediate. When | |
7016 | generating ADD or SUB instruction, we can simply perform OR operation to | |
7017 | set immediate into ADD. */ | |
7018 | unsigned int imm_3_8 = insn2 & 0x70ff; | |
7019 | unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */ | |
7020 | ||
7021 | if (debug_displaced) | |
7022 | fprintf_unfiltered (gdb_stdlog, | |
7023 | "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n", | |
7024 | rd, imm_i, imm_3_8, insn1, insn2); | |
7025 | ||
7026 | if (bit (insn1, 7)) /* Encoding T2 */ | |
7027 | { | |
7028 | /* Encoding T3: SUB Rd, Rd, #imm */ | |
7029 | dsc->modinsn[0] = (0xf1a0 | rd | imm_i); | |
7030 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7031 | } | |
7032 | else /* Encoding T3 */ | |
7033 | { | |
7034 | /* Encoding T3: ADD Rd, Rd, #imm */ | |
7035 | dsc->modinsn[0] = (0xf100 | rd | imm_i); | |
7036 | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | |
7037 | } | |
7038 | dsc->numinsns = 2; | |
7039 | ||
7040 | install_pc_relative (gdbarch, regs, dsc, rd); | |
7041 | ||
7042 | return 0; | |
7043 | } | |
7044 | ||
7045 | static int | |
615234c1 | 7046 | thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1, |
34518530 YQ |
7047 | struct regcache *regs, |
7048 | struct displaced_step_closure *dsc) | |
7049 | { | |
7050 | unsigned int rt = bits (insn1, 8, 10); | |
7051 | unsigned int pc; | |
7052 | int imm8 = (bits (insn1, 0, 7) << 2); | |
34518530 YQ |
7053 | |
7054 | /* LDR Rd, #imm8 | |
7055 | ||
7056 | Rwrite as: | |
7057 | ||
7058 | Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; | |
7059 | ||
7060 | Insn: LDR R0, [R2, R3]; | |
7061 | Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ | |
7062 | ||
7063 | if (debug_displaced) | |
7064 | fprintf_unfiltered (gdb_stdlog, | |
7065 | "displaced: copying thumb ldr r%d [pc #%d]\n" | |
7066 | , rt, imm8); | |
7067 | ||
7068 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | |
7069 | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | |
7070 | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | |
7071 | pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | |
7072 | /* The assembler calculates the required value of the offset from the | |
7073 | Align(PC,4) value of this instruction to the label. */ | |
7074 | pc = pc & 0xfffffffc; | |
7075 | ||
7076 | displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); | |
7077 | displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); | |
7078 | ||
7079 | dsc->rd = rt; | |
7080 | dsc->u.ldst.xfersize = 4; | |
7081 | dsc->u.ldst.rn = 0; | |
7082 | dsc->u.ldst.immed = 0; | |
7083 | dsc->u.ldst.writeback = 0; | |
7084 | dsc->u.ldst.restore_r4 = 0; | |
7085 | ||
7086 | dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ | |
7087 | ||
7088 | dsc->cleanup = &cleanup_load; | |
7089 | ||
7090 | return 0; | |
7091 | } | |
7092 | ||
7093 | /* Copy Thumb cbnz/cbz insruction. */ | |
7094 | ||
7095 | static int | |
7096 | thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, | |
7097 | struct regcache *regs, | |
7098 | struct displaced_step_closure *dsc) | |
7099 | { | |
7100 | int non_zero = bit (insn1, 11); | |
7101 | unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); | |
7102 | CORE_ADDR from = dsc->insn_addr; | |
7103 | int rn = bits (insn1, 0, 2); | |
7104 | int rn_val = displaced_read_reg (regs, dsc, rn); | |
7105 | ||
7106 | dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); | |
7107 | /* CBNZ and CBZ do not affect the condition flags. If condition is true, | |
7108 | set it INST_AL, so cleanup_branch will know branch is taken, otherwise, | |
7109 | condition is false, let it be, cleanup_branch will do nothing. */ | |
7110 | if (dsc->u.branch.cond) | |
7111 | { | |
7112 | dsc->u.branch.cond = INST_AL; | |
7113 | dsc->u.branch.dest = from + 4 + imm5; | |
7114 | } | |
7115 | else | |
7116 | dsc->u.branch.dest = from + 2; | |
7117 | ||
7118 | dsc->u.branch.link = 0; | |
7119 | dsc->u.branch.exchange = 0; | |
7120 | ||
7121 | if (debug_displaced) | |
7122 | fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]" | |
7123 | " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz", | |
7124 | rn, rn_val, insn1, dsc->u.branch.dest); | |
7125 | ||
7126 | dsc->modinsn[0] = THUMB_NOP; | |
7127 | ||
7128 | dsc->cleanup = &cleanup_branch; | |
7129 | return 0; | |
7130 | } | |
7131 | ||
7132 | /* Copy Table Branch Byte/Halfword */ | |
7133 | static int | |
7134 | thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, | |
7135 | uint16_t insn2, struct regcache *regs, | |
7136 | struct displaced_step_closure *dsc) | |
7137 | { | |
7138 | ULONGEST rn_val, rm_val; | |
7139 | int is_tbh = bit (insn2, 4); | |
7140 | CORE_ADDR halfwords = 0; | |
7141 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7142 | ||
7143 | rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); | |
7144 | rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); | |
7145 | ||
7146 | if (is_tbh) | |
7147 | { | |
7148 | gdb_byte buf[2]; | |
7149 | ||
7150 | target_read_memory (rn_val + 2 * rm_val, buf, 2); | |
7151 | halfwords = extract_unsigned_integer (buf, 2, byte_order); | |
7152 | } | |
7153 | else | |
7154 | { | |
7155 | gdb_byte buf[1]; | |
7156 | ||
7157 | target_read_memory (rn_val + rm_val, buf, 1); | |
7158 | halfwords = extract_unsigned_integer (buf, 1, byte_order); | |
7159 | } | |
7160 | ||
7161 | if (debug_displaced) | |
7162 | fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x" | |
7163 | " offset 0x%x\n", is_tbh ? "tbh" : "tbb", | |
7164 | (unsigned int) rn_val, (unsigned int) rm_val, | |
7165 | (unsigned int) halfwords); | |
7166 | ||
7167 | dsc->u.branch.cond = INST_AL; | |
7168 | dsc->u.branch.link = 0; | |
7169 | dsc->u.branch.exchange = 0; | |
7170 | dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; | |
7171 | ||
7172 | dsc->cleanup = &cleanup_branch; | |
7173 | ||
7174 | return 0; | |
7175 | } | |
7176 | ||
7177 | static void | |
7178 | cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, | |
7179 | struct displaced_step_closure *dsc) | |
7180 | { | |
7181 | /* PC <- r7 */ | |
7182 | int val = displaced_read_reg (regs, dsc, 7); | |
7183 | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); | |
7184 | ||
7185 | /* r7 <- r8 */ | |
7186 | val = displaced_read_reg (regs, dsc, 8); | |
7187 | displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); | |
7188 | ||
7189 | /* r8 <- tmp[0] */ | |
7190 | displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); | |
7191 | ||
7192 | } | |
7193 | ||
7194 | static int | |
615234c1 | 7195 | thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1, |
34518530 YQ |
7196 | struct regcache *regs, |
7197 | struct displaced_step_closure *dsc) | |
7198 | { | |
7199 | dsc->u.block.regmask = insn1 & 0x00ff; | |
7200 | ||
7201 | /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} | |
7202 | to : | |
7203 | ||
7204 | (1) register list is full, that is, r0-r7 are used. | |
7205 | Prepare: tmp[0] <- r8 | |
7206 | ||
7207 | POP {r0, r1, ...., r6, r7}; remove PC from reglist | |
7208 | MOV r8, r7; Move value of r7 to r8; | |
7209 | POP {r7}; Store PC value into r7. | |
7210 | ||
7211 | Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] | |
7212 | ||
7213 | (2) register list is not full, supposing there are N registers in | |
7214 | register list (except PC, 0 <= N <= 7). | |
7215 | Prepare: for each i, 0 - N, tmp[i] <- ri. | |
7216 | ||
7217 | POP {r0, r1, ...., rN}; | |
7218 | ||
7219 | Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN | |
7220 | from tmp[] properly. | |
7221 | */ | |
7222 | if (debug_displaced) | |
7223 | fprintf_unfiltered (gdb_stdlog, | |
7224 | "displaced: copying thumb pop {%.8x, pc} insn %.4x\n", | |
7225 | dsc->u.block.regmask, insn1); | |
7226 | ||
7227 | if (dsc->u.block.regmask == 0xff) | |
7228 | { | |
7229 | dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); | |
7230 | ||
7231 | dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ | |
7232 | dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ | |
7233 | dsc->modinsn[2] = 0xbc80; /* POP {r7} */ | |
7234 | ||
7235 | dsc->numinsns = 3; | |
7236 | dsc->cleanup = &cleanup_pop_pc_16bit_all; | |
7237 | } | |
7238 | else | |
7239 | { | |
7240 | unsigned int num_in_list = bitcount (dsc->u.block.regmask); | |
bec2ab5a SM |
7241 | unsigned int i; |
7242 | unsigned int new_regmask; | |
34518530 YQ |
7243 | |
7244 | for (i = 0; i < num_in_list + 1; i++) | |
7245 | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | |
7246 | ||
7247 | new_regmask = (1 << (num_in_list + 1)) - 1; | |
7248 | ||
7249 | if (debug_displaced) | |
7250 | fprintf_unfiltered (gdb_stdlog, _("displaced: POP " | |
7251 | "{..., pc}: original reg list %.4x," | |
7252 | " modified list %.4x\n"), | |
7253 | (int) dsc->u.block.regmask, new_regmask); | |
7254 | ||
7255 | dsc->u.block.regmask |= 0x8000; | |
7256 | dsc->u.block.writeback = 0; | |
7257 | dsc->u.block.cond = INST_AL; | |
7258 | ||
7259 | dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); | |
7260 | ||
7261 | dsc->cleanup = &cleanup_block_load_pc; | |
7262 | } | |
7263 | ||
7264 | return 0; | |
7265 | } | |
7266 | ||
7267 | static void | |
7268 | thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
7269 | struct regcache *regs, | |
7270 | struct displaced_step_closure *dsc) | |
7271 | { | |
7272 | unsigned short op_bit_12_15 = bits (insn1, 12, 15); | |
7273 | unsigned short op_bit_10_11 = bits (insn1, 10, 11); | |
7274 | int err = 0; | |
7275 | ||
7276 | /* 16-bit thumb instructions. */ | |
7277 | switch (op_bit_12_15) | |
7278 | { | |
7279 | /* Shift (imme), add, subtract, move and compare. */ | |
7280 | case 0: case 1: case 2: case 3: | |
7281 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
7282 | "shift/add/sub/mov/cmp", | |
7283 | dsc); | |
7284 | break; | |
7285 | case 4: | |
7286 | switch (op_bit_10_11) | |
7287 | { | |
7288 | case 0: /* Data-processing */ | |
7289 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | |
7290 | "data-processing", | |
7291 | dsc); | |
7292 | break; | |
7293 | case 1: /* Special data instructions and branch and exchange. */ | |
7294 | { | |
7295 | unsigned short op = bits (insn1, 7, 9); | |
7296 | if (op == 6 || op == 7) /* BX or BLX */ | |
7297 | err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); | |
7298 | else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */ | |
7299 | err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); | |
7300 | else | |
7301 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", | |
7302 | dsc); | |
7303 | } | |
7304 | break; | |
7305 | default: /* LDR (literal) */ | |
7306 | err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); | |
7307 | } | |
7308 | break; | |
7309 | case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ | |
7310 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); | |
7311 | break; | |
7312 | case 10: | |
7313 | if (op_bit_10_11 < 2) /* Generate PC-relative address */ | |
7314 | err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); | |
7315 | else /* Generate SP-relative address */ | |
7316 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); | |
7317 | break; | |
7318 | case 11: /* Misc 16-bit instructions */ | |
7319 | { | |
7320 | switch (bits (insn1, 8, 11)) | |
7321 | { | |
7322 | case 1: case 3: case 9: case 11: /* CBNZ, CBZ */ | |
7323 | err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); | |
7324 | break; | |
7325 | case 12: case 13: /* POP */ | |
7326 | if (bit (insn1, 8)) /* PC is in register list. */ | |
7327 | err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); | |
7328 | else | |
7329 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); | |
7330 | break; | |
7331 | case 15: /* If-Then, and hints */ | |
7332 | if (bits (insn1, 0, 3)) | |
7333 | /* If-Then makes up to four following instructions conditional. | |
7334 | IT instruction itself is not conditional, so handle it as a | |
7335 | common unmodified instruction. */ | |
7336 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", | |
7337 | dsc); | |
7338 | else | |
7339 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); | |
7340 | break; | |
7341 | default: | |
7342 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); | |
7343 | } | |
7344 | } | |
7345 | break; | |
7346 | case 12: | |
7347 | if (op_bit_10_11 < 2) /* Store multiple registers */ | |
7348 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); | |
7349 | else /* Load multiple registers */ | |
7350 | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); | |
7351 | break; | |
7352 | case 13: /* Conditional branch and supervisor call */ | |
7353 | if (bits (insn1, 9, 11) != 7) /* conditional branch */ | |
7354 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
7355 | else | |
7356 | err = thumb_copy_svc (gdbarch, insn1, regs, dsc); | |
7357 | break; | |
7358 | case 14: /* Unconditional branch */ | |
7359 | err = thumb_copy_b (gdbarch, insn1, dsc); | |
7360 | break; | |
7361 | default: | |
7362 | err = 1; | |
7363 | } | |
7364 | ||
7365 | if (err) | |
7366 | internal_error (__FILE__, __LINE__, | |
7367 | _("thumb_process_displaced_16bit_insn: Instruction decode error")); | |
7368 | } | |
7369 | ||
7370 | static int | |
7371 | decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, | |
7372 | uint16_t insn1, uint16_t insn2, | |
7373 | struct regcache *regs, | |
7374 | struct displaced_step_closure *dsc) | |
7375 | { | |
7376 | int rt = bits (insn2, 12, 15); | |
7377 | int rn = bits (insn1, 0, 3); | |
7378 | int op1 = bits (insn1, 7, 8); | |
34518530 YQ |
7379 | |
7380 | switch (bits (insn1, 5, 6)) | |
7381 | { | |
7382 | case 0: /* Load byte and memory hints */ | |
7383 | if (rt == 0xf) /* PLD/PLI */ | |
7384 | { | |
7385 | if (rn == 0xf) | |
7386 | /* PLD literal or Encoding T3 of PLI(immediate, literal). */ | |
7387 | return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); | |
7388 | else | |
7389 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7390 | "pli/pld", dsc); | |
7391 | } | |
7392 | else | |
7393 | { | |
7394 | if (rn == 0xf) /* LDRB/LDRSB (literal) */ | |
7395 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
7396 | 1); | |
7397 | else | |
7398 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7399 | "ldrb{reg, immediate}/ldrbt", | |
7400 | dsc); | |
7401 | } | |
7402 | ||
7403 | break; | |
7404 | case 1: /* Load halfword and memory hints. */ | |
7405 | if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */ | |
7406 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7407 | "pld/unalloc memhint", dsc); | |
7408 | else | |
7409 | { | |
7410 | if (rn == 0xf) | |
7411 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | |
7412 | 2); | |
7413 | else | |
7414 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7415 | "ldrh/ldrht", dsc); | |
7416 | } | |
7417 | break; | |
7418 | case 2: /* Load word */ | |
7419 | { | |
7420 | int insn2_bit_8_11 = bits (insn2, 8, 11); | |
7421 | ||
7422 | if (rn == 0xf) | |
7423 | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); | |
7424 | else if (op1 == 0x1) /* Encoding T3 */ | |
7425 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, | |
7426 | 0, 1); | |
7427 | else /* op1 == 0x0 */ | |
7428 | { | |
7429 | if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) | |
7430 | /* LDR (immediate) */ | |
7431 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
7432 | dsc, bit (insn2, 8), 1); | |
7433 | else if (insn2_bit_8_11 == 0xe) /* LDRT */ | |
7434 | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7435 | "ldrt", dsc); | |
7436 | else | |
7437 | /* LDR (register) */ | |
7438 | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | |
7439 | dsc, 0, 0); | |
7440 | } | |
7441 | break; | |
7442 | } | |
7443 | default: | |
7444 | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | |
7445 | break; | |
7446 | } | |
7447 | return 0; | |
7448 | } | |
7449 | ||
7450 | static void | |
7451 | thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | |
7452 | uint16_t insn2, struct regcache *regs, | |
7453 | struct displaced_step_closure *dsc) | |
7454 | { | |
7455 | int err = 0; | |
7456 | unsigned short op = bit (insn2, 15); | |
7457 | unsigned int op1 = bits (insn1, 11, 12); | |
7458 | ||
7459 | switch (op1) | |
7460 | { | |
7461 | case 1: | |
7462 | { | |
7463 | switch (bits (insn1, 9, 10)) | |
7464 | { | |
7465 | case 0: | |
7466 | if (bit (insn1, 6)) | |
7467 | { | |
7468 | /* Load/store {dual, execlusive}, table branch. */ | |
7469 | if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 | |
7470 | && bits (insn2, 5, 7) == 0) | |
7471 | err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, | |
7472 | dsc); | |
7473 | else | |
7474 | /* PC is not allowed to use in load/store {dual, exclusive} | |
7475 | instructions. */ | |
7476 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7477 | "load/store dual/ex", dsc); | |
7478 | } | |
7479 | else /* load/store multiple */ | |
7480 | { | |
7481 | switch (bits (insn1, 7, 8)) | |
7482 | { | |
7483 | case 0: case 3: /* SRS, RFE */ | |
7484 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7485 | "srs/rfe", dsc); | |
7486 | break; | |
7487 | case 1: case 2: /* LDM/STM/PUSH/POP */ | |
7488 | err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); | |
7489 | break; | |
7490 | } | |
7491 | } | |
7492 | break; | |
7493 | ||
7494 | case 1: | |
7495 | /* Data-processing (shift register). */ | |
7496 | err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, | |
7497 | dsc); | |
7498 | break; | |
7499 | default: /* Coprocessor instructions. */ | |
7500 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
7501 | break; | |
7502 | } | |
7503 | break; | |
7504 | } | |
7505 | case 2: /* op1 = 2 */ | |
7506 | if (op) /* Branch and misc control. */ | |
7507 | { | |
7508 | if (bit (insn2, 14) /* BLX/BL */ | |
7509 | || bit (insn2, 12) /* Unconditional branch */ | |
7510 | || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ | |
7511 | err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); | |
7512 | else | |
7513 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7514 | "misc ctrl", dsc); | |
7515 | } | |
7516 | else | |
7517 | { | |
7518 | if (bit (insn1, 9)) /* Data processing (plain binary imm). */ | |
7519 | { | |
7520 | int op = bits (insn1, 4, 8); | |
7521 | int rn = bits (insn1, 0, 3); | |
7522 | if ((op == 0 || op == 0xa) && rn == 0xf) | |
7523 | err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, | |
7524 | regs, dsc); | |
7525 | else | |
7526 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7527 | "dp/pb", dsc); | |
7528 | } | |
7529 | else /* Data processing (modified immeidate) */ | |
7530 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7531 | "dp/mi", dsc); | |
7532 | } | |
7533 | break; | |
7534 | case 3: /* op1 = 3 */ | |
7535 | switch (bits (insn1, 9, 10)) | |
7536 | { | |
7537 | case 0: | |
7538 | if (bit (insn1, 4)) | |
7539 | err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, | |
7540 | regs, dsc); | |
7541 | else /* NEON Load/Store and Store single data item */ | |
7542 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7543 | "neon elt/struct load/store", | |
7544 | dsc); | |
7545 | break; | |
7546 | case 1: /* op1 = 3, bits (9, 10) == 1 */ | |
7547 | switch (bits (insn1, 7, 8)) | |
7548 | { | |
7549 | case 0: case 1: /* Data processing (register) */ | |
7550 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7551 | "dp(reg)", dsc); | |
7552 | break; | |
7553 | case 2: /* Multiply and absolute difference */ | |
7554 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7555 | "mul/mua/diff", dsc); | |
7556 | break; | |
7557 | case 3: /* Long multiply and divide */ | |
7558 | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | |
7559 | "lmul/lmua", dsc); | |
7560 | break; | |
7561 | } | |
7562 | break; | |
7563 | default: /* Coprocessor instructions */ | |
7564 | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | |
7565 | break; | |
7566 | } | |
7567 | break; | |
7568 | default: | |
7569 | err = 1; | |
7570 | } | |
7571 | ||
7572 | if (err) | |
7573 | internal_error (__FILE__, __LINE__, | |
7574 | _("thumb_process_displaced_32bit_insn: Instruction decode error")); | |
7575 | ||
7576 | } | |
7577 | ||
b434a28f YQ |
7578 | static void |
7579 | thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | |
12545665 | 7580 | struct regcache *regs, |
b434a28f YQ |
7581 | struct displaced_step_closure *dsc) |
7582 | { | |
34518530 YQ |
7583 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7584 | uint16_t insn1 | |
7585 | = read_memory_unsigned_integer (from, 2, byte_order_for_code); | |
7586 | ||
7587 | if (debug_displaced) | |
7588 | fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x " | |
7589 | "at %.8lx\n", insn1, (unsigned long) from); | |
7590 | ||
7591 | dsc->is_thumb = 1; | |
7592 | dsc->insn_size = thumb_insn_size (insn1); | |
7593 | if (thumb_insn_size (insn1) == 4) | |
7594 | { | |
7595 | uint16_t insn2 | |
7596 | = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); | |
7597 | thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); | |
7598 | } | |
7599 | else | |
7600 | thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); | |
b434a28f YQ |
7601 | } |
7602 | ||
cca44b1b | 7603 | void |
b434a28f YQ |
7604 | arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
7605 | CORE_ADDR to, struct regcache *regs, | |
cca44b1b JB |
7606 | struct displaced_step_closure *dsc) |
7607 | { | |
7608 | int err = 0; | |
b434a28f YQ |
7609 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
7610 | uint32_t insn; | |
cca44b1b JB |
7611 | |
7612 | /* Most displaced instructions use a 1-instruction scratch space, so set this | |
7613 | here and override below if/when necessary. */ | |
7614 | dsc->numinsns = 1; | |
7615 | dsc->insn_addr = from; | |
7616 | dsc->scratch_base = to; | |
7617 | dsc->cleanup = NULL; | |
7618 | dsc->wrote_to_pc = 0; | |
7619 | ||
b434a28f | 7620 | if (!displaced_in_arm_mode (regs)) |
12545665 | 7621 | return thumb_process_displaced_insn (gdbarch, from, regs, dsc); |
b434a28f | 7622 | |
4db71c0b YQ |
7623 | dsc->is_thumb = 0; |
7624 | dsc->insn_size = 4; | |
b434a28f YQ |
7625 | insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); |
7626 | if (debug_displaced) | |
7627 | fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx " | |
7628 | "at %.8lx\n", (unsigned long) insn, | |
7629 | (unsigned long) from); | |
7630 | ||
cca44b1b | 7631 | if ((insn & 0xf0000000) == 0xf0000000) |
7ff120b4 | 7632 | err = arm_decode_unconditional (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7633 | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) |
7634 | { | |
7635 | case 0x0: case 0x1: case 0x2: case 0x3: | |
7ff120b4 | 7636 | err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7637 | break; |
7638 | ||
7639 | case 0x4: case 0x5: case 0x6: | |
7ff120b4 | 7640 | err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7641 | break; |
7642 | ||
7643 | case 0x7: | |
7ff120b4 | 7644 | err = arm_decode_media (gdbarch, insn, dsc); |
cca44b1b JB |
7645 | break; |
7646 | ||
7647 | case 0x8: case 0x9: case 0xa: case 0xb: | |
7ff120b4 | 7648 | err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7649 | break; |
7650 | ||
7651 | case 0xc: case 0xd: case 0xe: case 0xf: | |
12545665 | 7652 | err = arm_decode_svc_copro (gdbarch, insn, regs, dsc); |
cca44b1b JB |
7653 | break; |
7654 | } | |
7655 | ||
7656 | if (err) | |
7657 | internal_error (__FILE__, __LINE__, | |
7658 | _("arm_process_displaced_insn: Instruction decode error")); | |
7659 | } | |
7660 | ||
7661 | /* Actually set up the scratch space for a displaced instruction. */ | |
7662 | ||
7663 | void | |
7664 | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | |
7665 | CORE_ADDR to, struct displaced_step_closure *dsc) | |
7666 | { | |
7667 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4db71c0b | 7668 | unsigned int i, len, offset; |
cca44b1b | 7669 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
4db71c0b | 7670 | int size = dsc->is_thumb? 2 : 4; |
948f8e3d | 7671 | const gdb_byte *bkp_insn; |
cca44b1b | 7672 | |
4db71c0b | 7673 | offset = 0; |
cca44b1b JB |
7674 | /* Poke modified instruction(s). */ |
7675 | for (i = 0; i < dsc->numinsns; i++) | |
7676 | { | |
7677 | if (debug_displaced) | |
4db71c0b YQ |
7678 | { |
7679 | fprintf_unfiltered (gdb_stdlog, "displaced: writing insn "); | |
7680 | if (size == 4) | |
7681 | fprintf_unfiltered (gdb_stdlog, "%.8lx", | |
7682 | dsc->modinsn[i]); | |
7683 | else if (size == 2) | |
7684 | fprintf_unfiltered (gdb_stdlog, "%.4x", | |
7685 | (unsigned short)dsc->modinsn[i]); | |
7686 | ||
7687 | fprintf_unfiltered (gdb_stdlog, " at %.8lx\n", | |
7688 | (unsigned long) to + offset); | |
7689 | ||
7690 | } | |
7691 | write_memory_unsigned_integer (to + offset, size, | |
7692 | byte_order_for_code, | |
cca44b1b | 7693 | dsc->modinsn[i]); |
4db71c0b YQ |
7694 | offset += size; |
7695 | } | |
7696 | ||
7697 | /* Choose the correct breakpoint instruction. */ | |
7698 | if (dsc->is_thumb) | |
7699 | { | |
7700 | bkp_insn = tdep->thumb_breakpoint; | |
7701 | len = tdep->thumb_breakpoint_size; | |
7702 | } | |
7703 | else | |
7704 | { | |
7705 | bkp_insn = tdep->arm_breakpoint; | |
7706 | len = tdep->arm_breakpoint_size; | |
cca44b1b JB |
7707 | } |
7708 | ||
7709 | /* Put breakpoint afterwards. */ | |
4db71c0b | 7710 | write_memory (to + offset, bkp_insn, len); |
cca44b1b JB |
7711 | |
7712 | if (debug_displaced) | |
7713 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
7714 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
7715 | } | |
7716 | ||
cca44b1b JB |
7717 | /* Entry point for cleaning things up after a displaced instruction has been |
7718 | single-stepped. */ | |
7719 | ||
7720 | void | |
7721 | arm_displaced_step_fixup (struct gdbarch *gdbarch, | |
7722 | struct displaced_step_closure *dsc, | |
7723 | CORE_ADDR from, CORE_ADDR to, | |
7724 | struct regcache *regs) | |
7725 | { | |
7726 | if (dsc->cleanup) | |
7727 | dsc->cleanup (gdbarch, regs, dsc); | |
7728 | ||
7729 | if (!dsc->wrote_to_pc) | |
4db71c0b YQ |
7730 | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
7731 | dsc->insn_addr + dsc->insn_size); | |
7732 | ||
cca44b1b JB |
7733 | } |
7734 | ||
7735 | #include "bfd-in2.h" | |
7736 | #include "libcoff.h" | |
7737 | ||
7738 | static int | |
7739 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | |
7740 | { | |
e47ad6c0 YQ |
7741 | gdb_disassembler *di |
7742 | = static_cast<gdb_disassembler *>(info->application_data); | |
7743 | struct gdbarch *gdbarch = di->arch (); | |
9779414d DJ |
7744 | |
7745 | if (arm_pc_is_thumb (gdbarch, memaddr)) | |
cca44b1b JB |
7746 | { |
7747 | static asymbol *asym; | |
7748 | static combined_entry_type ce; | |
7749 | static struct coff_symbol_struct csym; | |
7750 | static struct bfd fake_bfd; | |
7751 | static bfd_target fake_target; | |
7752 | ||
7753 | if (csym.native == NULL) | |
7754 | { | |
7755 | /* Create a fake symbol vector containing a Thumb symbol. | |
7756 | This is solely so that the code in print_insn_little_arm() | |
7757 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
7758 | the presence of a Thumb symbol and switch to decoding | |
7759 | Thumb instructions. */ | |
7760 | ||
7761 | fake_target.flavour = bfd_target_coff_flavour; | |
7762 | fake_bfd.xvec = &fake_target; | |
7763 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
7764 | csym.native = &ce; | |
7765 | csym.symbol.the_bfd = &fake_bfd; | |
7766 | csym.symbol.name = "fake"; | |
7767 | asym = (asymbol *) & csym; | |
7768 | } | |
7769 | ||
7770 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
7771 | info->symbols = &asym; | |
7772 | } | |
7773 | else | |
7774 | info->symbols = NULL; | |
7775 | ||
6394c606 | 7776 | return default_print_insn (memaddr, info); |
cca44b1b JB |
7777 | } |
7778 | ||
7779 | /* The following define instruction sequences that will cause ARM | |
7780 | cpu's to take an undefined instruction trap. These are used to | |
7781 | signal a breakpoint to GDB. | |
7782 | ||
7783 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
7784 | modes. A different instruction is required for each mode. The ARM | |
7785 | cpu's can also be big or little endian. Thus four different | |
7786 | instructions are needed to support all cases. | |
7787 | ||
7788 | Note: ARMv4 defines several new instructions that will take the | |
7789 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
7790 | not in fact add the new instructions. The new undefined | |
7791 | instructions in ARMv4 are all instructions that had no defined | |
7792 | behaviour in earlier chips. There is no guarantee that they will | |
7793 | raise an exception, but may be treated as NOP's. In practice, it | |
7794 | may only safe to rely on instructions matching: | |
7795 | ||
7796 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
7797 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
7798 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
7799 | ||
0963b4bd | 7800 | Even this may only true if the condition predicate is true. The |
cca44b1b JB |
7801 | following use a condition predicate of ALWAYS so it is always TRUE. |
7802 | ||
7803 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
7804 | and NetBSD all use a software interrupt rather than an undefined | |
7805 | instruction to force a trap. This can be handled by by the | |
7806 | abi-specific code during establishment of the gdbarch vector. */ | |
7807 | ||
7808 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
7809 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
7810 | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | |
7811 | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | |
7812 | ||
948f8e3d PA |
7813 | static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; |
7814 | static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
7815 | static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
7816 | static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
cca44b1b | 7817 | |
cd6c3b4f YQ |
7818 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
7819 | ||
d19280ad YQ |
7820 | static int |
7821 | arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
cca44b1b JB |
7822 | { |
7823 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
177321bd | 7824 | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
cca44b1b | 7825 | |
9779414d | 7826 | if (arm_pc_is_thumb (gdbarch, *pcptr)) |
cca44b1b JB |
7827 | { |
7828 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
177321bd DJ |
7829 | |
7830 | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | |
7831 | check whether we are replacing a 32-bit instruction. */ | |
7832 | if (tdep->thumb2_breakpoint != NULL) | |
7833 | { | |
7834 | gdb_byte buf[2]; | |
d19280ad | 7835 | |
177321bd DJ |
7836 | if (target_read_memory (*pcptr, buf, 2) == 0) |
7837 | { | |
7838 | unsigned short inst1; | |
d19280ad | 7839 | |
177321bd | 7840 | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); |
db24da6d | 7841 | if (thumb_insn_size (inst1) == 4) |
d19280ad | 7842 | return ARM_BP_KIND_THUMB2; |
177321bd DJ |
7843 | } |
7844 | } | |
7845 | ||
d19280ad | 7846 | return ARM_BP_KIND_THUMB; |
cca44b1b JB |
7847 | } |
7848 | else | |
d19280ad YQ |
7849 | return ARM_BP_KIND_ARM; |
7850 | ||
7851 | } | |
7852 | ||
cd6c3b4f YQ |
7853 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
7854 | ||
d19280ad YQ |
7855 | static const gdb_byte * |
7856 | arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
7857 | { | |
7858 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
7859 | ||
7860 | switch (kind) | |
cca44b1b | 7861 | { |
d19280ad YQ |
7862 | case ARM_BP_KIND_ARM: |
7863 | *size = tdep->arm_breakpoint_size; | |
cca44b1b | 7864 | return tdep->arm_breakpoint; |
d19280ad YQ |
7865 | case ARM_BP_KIND_THUMB: |
7866 | *size = tdep->thumb_breakpoint_size; | |
7867 | return tdep->thumb_breakpoint; | |
7868 | case ARM_BP_KIND_THUMB2: | |
7869 | *size = tdep->thumb2_breakpoint_size; | |
7870 | return tdep->thumb2_breakpoint; | |
7871 | default: | |
7872 | gdb_assert_not_reached ("unexpected arm breakpoint kind"); | |
cca44b1b JB |
7873 | } |
7874 | } | |
7875 | ||
833b7ab5 YQ |
7876 | /* Implement the breakpoint_kind_from_current_state gdbarch method. */ |
7877 | ||
7878 | static int | |
7879 | arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch, | |
7880 | struct regcache *regcache, | |
7881 | CORE_ADDR *pcptr) | |
7882 | { | |
7883 | gdb_byte buf[4]; | |
7884 | ||
7885 | /* Check the memory pointed by PC is readable. */ | |
7886 | if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0) | |
7887 | { | |
7888 | struct arm_get_next_pcs next_pcs_ctx; | |
833b7ab5 YQ |
7889 | |
7890 | arm_get_next_pcs_ctor (&next_pcs_ctx, | |
7891 | &arm_get_next_pcs_ops, | |
7892 | gdbarch_byte_order (gdbarch), | |
7893 | gdbarch_byte_order_for_code (gdbarch), | |
7894 | 0, | |
7895 | regcache); | |
7896 | ||
a0ff9e1a | 7897 | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
833b7ab5 YQ |
7898 | |
7899 | /* If MEMADDR is the next instruction of current pc, do the | |
7900 | software single step computation, and get the thumb mode by | |
7901 | the destination address. */ | |
a0ff9e1a | 7902 | for (CORE_ADDR pc : next_pcs) |
833b7ab5 YQ |
7903 | { |
7904 | if (UNMAKE_THUMB_ADDR (pc) == *pcptr) | |
7905 | { | |
833b7ab5 YQ |
7906 | if (IS_THUMB_ADDR (pc)) |
7907 | { | |
7908 | *pcptr = MAKE_THUMB_ADDR (*pcptr); | |
7909 | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | |
7910 | } | |
7911 | else | |
7912 | return ARM_BP_KIND_ARM; | |
7913 | } | |
7914 | } | |
833b7ab5 YQ |
7915 | } |
7916 | ||
7917 | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | |
7918 | } | |
7919 | ||
cca44b1b JB |
7920 | /* Extract from an array REGBUF containing the (raw) register state a |
7921 | function return value of type TYPE, and copy that, in virtual | |
7922 | format, into VALBUF. */ | |
7923 | ||
7924 | static void | |
7925 | arm_extract_return_value (struct type *type, struct regcache *regs, | |
7926 | gdb_byte *valbuf) | |
7927 | { | |
7928 | struct gdbarch *gdbarch = get_regcache_arch (regs); | |
7929 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7930 | ||
7931 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
7932 | { | |
7933 | switch (gdbarch_tdep (gdbarch)->fp_model) | |
7934 | { | |
7935 | case ARM_FLOAT_FPA: | |
7936 | { | |
7937 | /* The value is in register F0 in internal format. We need to | |
7938 | extract the raw value and then convert it to the desired | |
7939 | internal type. */ | |
7940 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; | |
7941 | ||
7942 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
7943 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
7944 | valbuf, gdbarch_byte_order (gdbarch)); | |
7945 | } | |
7946 | break; | |
7947 | ||
7948 | case ARM_FLOAT_SOFT_FPA: | |
7949 | case ARM_FLOAT_SOFT_VFP: | |
7950 | /* ARM_FLOAT_VFP can arise if this is a variadic function so | |
7951 | not using the VFP ABI code. */ | |
7952 | case ARM_FLOAT_VFP: | |
7953 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); | |
7954 | if (TYPE_LENGTH (type) > 4) | |
7955 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
7956 | valbuf + INT_REGISTER_SIZE); | |
7957 | break; | |
7958 | ||
7959 | default: | |
0963b4bd MS |
7960 | internal_error (__FILE__, __LINE__, |
7961 | _("arm_extract_return_value: " | |
7962 | "Floating point model not supported")); | |
cca44b1b JB |
7963 | break; |
7964 | } | |
7965 | } | |
7966 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
7967 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
7968 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
7969 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 7970 | || TYPE_IS_REFERENCE (type) |
cca44b1b JB |
7971 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
7972 | { | |
b021a221 MS |
7973 | /* If the type is a plain integer, then the access is |
7974 | straight-forward. Otherwise we have to play around a bit | |
7975 | more. */ | |
cca44b1b JB |
7976 | int len = TYPE_LENGTH (type); |
7977 | int regno = ARM_A1_REGNUM; | |
7978 | ULONGEST tmp; | |
7979 | ||
7980 | while (len > 0) | |
7981 | { | |
7982 | /* By using store_unsigned_integer we avoid having to do | |
7983 | anything special for small big-endian values. */ | |
7984 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
7985 | store_unsigned_integer (valbuf, | |
7986 | (len > INT_REGISTER_SIZE | |
7987 | ? INT_REGISTER_SIZE : len), | |
7988 | byte_order, tmp); | |
7989 | len -= INT_REGISTER_SIZE; | |
7990 | valbuf += INT_REGISTER_SIZE; | |
7991 | } | |
7992 | } | |
7993 | else | |
7994 | { | |
7995 | /* For a structure or union the behaviour is as if the value had | |
7996 | been stored to word-aligned memory and then loaded into | |
7997 | registers with 32-bit load instruction(s). */ | |
7998 | int len = TYPE_LENGTH (type); | |
7999 | int regno = ARM_A1_REGNUM; | |
8000 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; | |
8001 | ||
8002 | while (len > 0) | |
8003 | { | |
8004 | regcache_cooked_read (regs, regno++, tmpbuf); | |
8005 | memcpy (valbuf, tmpbuf, | |
8006 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); | |
8007 | len -= INT_REGISTER_SIZE; | |
8008 | valbuf += INT_REGISTER_SIZE; | |
8009 | } | |
8010 | } | |
8011 | } | |
8012 | ||
8013 | ||
8014 | /* Will a function return an aggregate type in memory or in a | |
8015 | register? Return 0 if an aggregate type can be returned in a | |
8016 | register, 1 if it must be returned in memory. */ | |
8017 | ||
8018 | static int | |
8019 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | |
8020 | { | |
cca44b1b JB |
8021 | enum type_code code; |
8022 | ||
f168693b | 8023 | type = check_typedef (type); |
cca44b1b | 8024 | |
b13c8ab2 YQ |
8025 | /* Simple, non-aggregate types (ie not including vectors and |
8026 | complex) are always returned in a register (or registers). */ | |
8027 | code = TYPE_CODE (type); | |
8028 | if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code | |
8029 | && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code) | |
8030 | return 0; | |
cca44b1b | 8031 | |
c4312b19 YQ |
8032 | if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type)) |
8033 | { | |
8034 | /* Vector values should be returned using ARM registers if they | |
8035 | are not over 16 bytes. */ | |
8036 | return (TYPE_LENGTH (type) > 16); | |
8037 | } | |
8038 | ||
b13c8ab2 | 8039 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) |
cca44b1b | 8040 | { |
b13c8ab2 YQ |
8041 | /* The AAPCS says all aggregates not larger than a word are returned |
8042 | in a register. */ | |
8043 | if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE) | |
8044 | return 0; | |
8045 | ||
cca44b1b JB |
8046 | return 1; |
8047 | } | |
b13c8ab2 YQ |
8048 | else |
8049 | { | |
8050 | int nRc; | |
cca44b1b | 8051 | |
b13c8ab2 YQ |
8052 | /* All aggregate types that won't fit in a register must be returned |
8053 | in memory. */ | |
8054 | if (TYPE_LENGTH (type) > INT_REGISTER_SIZE) | |
8055 | return 1; | |
cca44b1b | 8056 | |
b13c8ab2 YQ |
8057 | /* In the ARM ABI, "integer" like aggregate types are returned in |
8058 | registers. For an aggregate type to be integer like, its size | |
8059 | must be less than or equal to INT_REGISTER_SIZE and the | |
8060 | offset of each addressable subfield must be zero. Note that bit | |
8061 | fields are not addressable, and all addressable subfields of | |
8062 | unions always start at offset zero. | |
cca44b1b | 8063 | |
b13c8ab2 YQ |
8064 | This function is based on the behaviour of GCC 2.95.1. |
8065 | See: gcc/arm.c: arm_return_in_memory() for details. | |
cca44b1b | 8066 | |
b13c8ab2 YQ |
8067 | Note: All versions of GCC before GCC 2.95.2 do not set up the |
8068 | parameters correctly for a function returning the following | |
8069 | structure: struct { float f;}; This should be returned in memory, | |
8070 | not a register. Richard Earnshaw sent me a patch, but I do not | |
8071 | know of any way to detect if a function like the above has been | |
8072 | compiled with the correct calling convention. */ | |
8073 | ||
8074 | /* Assume all other aggregate types can be returned in a register. | |
8075 | Run a check for structures, unions and arrays. */ | |
8076 | nRc = 0; | |
67255d04 | 8077 | |
b13c8ab2 YQ |
8078 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) |
8079 | { | |
8080 | int i; | |
8081 | /* Need to check if this struct/union is "integer" like. For | |
8082 | this to be true, its size must be less than or equal to | |
8083 | INT_REGISTER_SIZE and the offset of each addressable | |
8084 | subfield must be zero. Note that bit fields are not | |
8085 | addressable, and unions always start at offset zero. If any | |
8086 | of the subfields is a floating point type, the struct/union | |
8087 | cannot be an integer type. */ | |
8088 | ||
8089 | /* For each field in the object, check: | |
8090 | 1) Is it FP? --> yes, nRc = 1; | |
8091 | 2) Is it addressable (bitpos != 0) and | |
8092 | not packed (bitsize == 0)? | |
8093 | --> yes, nRc = 1 | |
8094 | */ | |
8095 | ||
8096 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
67255d04 | 8097 | { |
b13c8ab2 YQ |
8098 | enum type_code field_type_code; |
8099 | ||
8100 | field_type_code | |
8101 | = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, | |
8102 | i))); | |
8103 | ||
8104 | /* Is it a floating point type field? */ | |
8105 | if (field_type_code == TYPE_CODE_FLT) | |
67255d04 RE |
8106 | { |
8107 | nRc = 1; | |
8108 | break; | |
8109 | } | |
b13c8ab2 YQ |
8110 | |
8111 | /* If bitpos != 0, then we have to care about it. */ | |
8112 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
8113 | { | |
8114 | /* Bitfields are not addressable. If the field bitsize is | |
8115 | zero, then the field is not packed. Hence it cannot be | |
8116 | a bitfield or any other packed type. */ | |
8117 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
8118 | { | |
8119 | nRc = 1; | |
8120 | break; | |
8121 | } | |
8122 | } | |
67255d04 RE |
8123 | } |
8124 | } | |
67255d04 | 8125 | |
b13c8ab2 YQ |
8126 | return nRc; |
8127 | } | |
67255d04 RE |
8128 | } |
8129 | ||
34e8f22d RE |
8130 | /* Write into appropriate registers a function return value of type |
8131 | TYPE, given in virtual format. */ | |
8132 | ||
8133 | static void | |
b508a996 | 8134 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 8135 | const gdb_byte *valbuf) |
34e8f22d | 8136 | { |
be8626e0 | 8137 | struct gdbarch *gdbarch = get_regcache_arch (regs); |
e17a4113 | 8138 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
be8626e0 | 8139 | |
34e8f22d RE |
8140 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
8141 | { | |
64403bd1 | 8142 | gdb_byte buf[FP_REGISTER_SIZE]; |
34e8f22d | 8143 | |
be8626e0 | 8144 | switch (gdbarch_tdep (gdbarch)->fp_model) |
08216dd7 RE |
8145 | { |
8146 | case ARM_FLOAT_FPA: | |
8147 | ||
be8626e0 MD |
8148 | convert_to_extended (floatformat_from_type (type), buf, valbuf, |
8149 | gdbarch_byte_order (gdbarch)); | |
b508a996 | 8150 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); |
08216dd7 RE |
8151 | break; |
8152 | ||
fd50bc42 | 8153 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 8154 | case ARM_FLOAT_SOFT_VFP: |
90445bd3 DJ |
8155 | /* ARM_FLOAT_VFP can arise if this is a variadic function so |
8156 | not using the VFP ABI code. */ | |
8157 | case ARM_FLOAT_VFP: | |
b508a996 RE |
8158 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
8159 | if (TYPE_LENGTH (type) > 4) | |
8160 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 8161 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
8162 | break; |
8163 | ||
8164 | default: | |
9b20d036 MS |
8165 | internal_error (__FILE__, __LINE__, |
8166 | _("arm_store_return_value: Floating " | |
8167 | "point model not supported")); | |
08216dd7 RE |
8168 | break; |
8169 | } | |
34e8f22d | 8170 | } |
b508a996 RE |
8171 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
8172 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
8173 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
8174 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
aa006118 | 8175 | || TYPE_IS_REFERENCE (type) |
b508a996 RE |
8176 | || TYPE_CODE (type) == TYPE_CODE_ENUM) |
8177 | { | |
8178 | if (TYPE_LENGTH (type) <= 4) | |
8179 | { | |
8180 | /* Values of one word or less are zero/sign-extended and | |
8181 | returned in r0. */ | |
7a5ea0d4 | 8182 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8183 | LONGEST val = unpack_long (type, valbuf); |
8184 | ||
e17a4113 | 8185 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val); |
b508a996 RE |
8186 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
8187 | } | |
8188 | else | |
8189 | { | |
8190 | /* Integral values greater than one word are stored in consecutive | |
8191 | registers starting with r0. This will always be a multiple of | |
8192 | the regiser size. */ | |
8193 | int len = TYPE_LENGTH (type); | |
8194 | int regno = ARM_A1_REGNUM; | |
8195 | ||
8196 | while (len > 0) | |
8197 | { | |
8198 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
8199 | len -= INT_REGISTER_SIZE; |
8200 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
8201 | } |
8202 | } | |
8203 | } | |
34e8f22d | 8204 | else |
b508a996 RE |
8205 | { |
8206 | /* For a structure or union the behaviour is as if the value had | |
8207 | been stored to word-aligned memory and then loaded into | |
8208 | registers with 32-bit load instruction(s). */ | |
8209 | int len = TYPE_LENGTH (type); | |
8210 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 8211 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
8212 | |
8213 | while (len > 0) | |
8214 | { | |
8215 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 8216 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 8217 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
8218 | len -= INT_REGISTER_SIZE; |
8219 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
8220 | } |
8221 | } | |
34e8f22d RE |
8222 | } |
8223 | ||
2af48f68 PB |
8224 | |
8225 | /* Handle function return values. */ | |
8226 | ||
8227 | static enum return_value_convention | |
6a3a010b | 8228 | arm_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
8229 | struct type *valtype, struct regcache *regcache, |
8230 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
2af48f68 | 8231 | { |
7c00367c | 8232 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
6a3a010b | 8233 | struct type *func_type = function ? value_type (function) : NULL; |
90445bd3 DJ |
8234 | enum arm_vfp_cprc_base_type vfp_base_type; |
8235 | int vfp_base_count; | |
8236 | ||
8237 | if (arm_vfp_abi_for_function (gdbarch, func_type) | |
8238 | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | |
8239 | { | |
8240 | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | |
8241 | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | |
8242 | int i; | |
8243 | for (i = 0; i < vfp_base_count; i++) | |
8244 | { | |
58d6951d DJ |
8245 | if (reg_char == 'q') |
8246 | { | |
8247 | if (writebuf) | |
8248 | arm_neon_quad_write (gdbarch, regcache, i, | |
8249 | writebuf + i * unit_length); | |
8250 | ||
8251 | if (readbuf) | |
8252 | arm_neon_quad_read (gdbarch, regcache, i, | |
8253 | readbuf + i * unit_length); | |
8254 | } | |
8255 | else | |
8256 | { | |
8257 | char name_buf[4]; | |
8258 | int regnum; | |
8259 | ||
8c042590 | 8260 | xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i); |
58d6951d DJ |
8261 | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8262 | strlen (name_buf)); | |
8263 | if (writebuf) | |
8264 | regcache_cooked_write (regcache, regnum, | |
8265 | writebuf + i * unit_length); | |
8266 | if (readbuf) | |
8267 | regcache_cooked_read (regcache, regnum, | |
8268 | readbuf + i * unit_length); | |
8269 | } | |
90445bd3 DJ |
8270 | } |
8271 | return RETURN_VALUE_REGISTER_CONVENTION; | |
8272 | } | |
7c00367c | 8273 | |
2af48f68 PB |
8274 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
8275 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
8276 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
8277 | { | |
7c00367c MK |
8278 | if (tdep->struct_return == pcc_struct_return |
8279 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
8280 | return RETURN_VALUE_STRUCT_CONVENTION; |
8281 | } | |
b13c8ab2 YQ |
8282 | else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX) |
8283 | { | |
8284 | if (arm_return_in_memory (gdbarch, valtype)) | |
8285 | return RETURN_VALUE_STRUCT_CONVENTION; | |
8286 | } | |
7052e42c | 8287 | |
2af48f68 PB |
8288 | if (writebuf) |
8289 | arm_store_return_value (valtype, regcache, writebuf); | |
8290 | ||
8291 | if (readbuf) | |
8292 | arm_extract_return_value (valtype, regcache, readbuf); | |
8293 | ||
8294 | return RETURN_VALUE_REGISTER_CONVENTION; | |
8295 | } | |
8296 | ||
8297 | ||
9df628e0 | 8298 | static int |
60ade65d | 8299 | arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
9df628e0 | 8300 | { |
e17a4113 UW |
8301 | struct gdbarch *gdbarch = get_frame_arch (frame); |
8302 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8303 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9df628e0 | 8304 | CORE_ADDR jb_addr; |
e362b510 | 8305 | gdb_byte buf[INT_REGISTER_SIZE]; |
9df628e0 | 8306 | |
60ade65d | 8307 | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
9df628e0 RE |
8308 | |
8309 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 8310 | INT_REGISTER_SIZE)) |
9df628e0 RE |
8311 | return 0; |
8312 | ||
e17a4113 | 8313 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order); |
9df628e0 RE |
8314 | return 1; |
8315 | } | |
8316 | ||
faa95490 DJ |
8317 | /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
8318 | return the target PC. Otherwise return 0. */ | |
c906108c SS |
8319 | |
8320 | CORE_ADDR | |
52f729a7 | 8321 | arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 8322 | { |
2c02bd72 | 8323 | const char *name; |
faa95490 | 8324 | int namelen; |
c906108c SS |
8325 | CORE_ADDR start_addr; |
8326 | ||
8327 | /* Find the starting address and name of the function containing the PC. */ | |
8328 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
80d8d390 YQ |
8329 | { |
8330 | /* Trampoline 'bx reg' doesn't belong to any functions. Do the | |
8331 | check here. */ | |
8332 | start_addr = arm_skip_bx_reg (frame, pc); | |
8333 | if (start_addr != 0) | |
8334 | return start_addr; | |
8335 | ||
8336 | return 0; | |
8337 | } | |
c906108c | 8338 | |
faa95490 DJ |
8339 | /* If PC is in a Thumb call or return stub, return the address of the |
8340 | target PC, which is in a register. The thunk functions are called | |
8341 | _call_via_xx, where x is the register name. The possible names | |
3d8d5e79 DJ |
8342 | are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
8343 | functions, named __ARM_call_via_r[0-7]. */ | |
61012eef GB |
8344 | if (startswith (name, "_call_via_") |
8345 | || startswith (name, "__ARM_call_via_")) | |
c906108c | 8346 | { |
ed9a39eb JM |
8347 | /* Use the name suffix to determine which register contains the |
8348 | target PC. */ | |
a121b7c1 | 8349 | static const char *table[15] = |
c5aa993b JM |
8350 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
8351 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
8352 | }; | |
c906108c | 8353 | int regno; |
faa95490 | 8354 | int offset = strlen (name) - 2; |
c906108c SS |
8355 | |
8356 | for (regno = 0; regno <= 14; regno++) | |
faa95490 | 8357 | if (strcmp (&name[offset], table[regno]) == 0) |
52f729a7 | 8358 | return get_frame_register_unsigned (frame, regno); |
c906108c | 8359 | } |
ed9a39eb | 8360 | |
faa95490 DJ |
8361 | /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
8362 | non-interworking calls to foo. We could decode the stubs | |
8363 | to find the target but it's easier to use the symbol table. */ | |
8364 | namelen = strlen (name); | |
8365 | if (name[0] == '_' && name[1] == '_' | |
8366 | && ((namelen > 2 + strlen ("_from_thumb") | |
61012eef | 8367 | && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb")) |
faa95490 | 8368 | || (namelen > 2 + strlen ("_from_arm") |
61012eef | 8369 | && startswith (name + namelen - strlen ("_from_arm"), "_from_arm")))) |
faa95490 DJ |
8370 | { |
8371 | char *target_name; | |
8372 | int target_len = namelen - 2; | |
3b7344d5 | 8373 | struct bound_minimal_symbol minsym; |
faa95490 DJ |
8374 | struct objfile *objfile; |
8375 | struct obj_section *sec; | |
8376 | ||
8377 | if (name[namelen - 1] == 'b') | |
8378 | target_len -= strlen ("_from_thumb"); | |
8379 | else | |
8380 | target_len -= strlen ("_from_arm"); | |
8381 | ||
224c3ddb | 8382 | target_name = (char *) alloca (target_len + 1); |
faa95490 DJ |
8383 | memcpy (target_name, name + 2, target_len); |
8384 | target_name[target_len] = '\0'; | |
8385 | ||
8386 | sec = find_pc_section (pc); | |
8387 | objfile = (sec == NULL) ? NULL : sec->objfile; | |
8388 | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | |
3b7344d5 | 8389 | if (minsym.minsym != NULL) |
77e371c0 | 8390 | return BMSYMBOL_VALUE_ADDRESS (minsym); |
faa95490 DJ |
8391 | else |
8392 | return 0; | |
8393 | } | |
8394 | ||
c5aa993b | 8395 | return 0; /* not a stub */ |
c906108c SS |
8396 | } |
8397 | ||
afd7eef0 RE |
8398 | static void |
8399 | set_arm_command (char *args, int from_tty) | |
8400 | { | |
edefbb7c AC |
8401 | printf_unfiltered (_("\ |
8402 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
8403 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
8404 | } | |
8405 | ||
8406 | static void | |
8407 | show_arm_command (char *args, int from_tty) | |
8408 | { | |
26304000 | 8409 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
8410 | } |
8411 | ||
28e97307 DJ |
8412 | static void |
8413 | arm_update_current_architecture (void) | |
fd50bc42 | 8414 | { |
28e97307 | 8415 | struct gdbarch_info info; |
fd50bc42 | 8416 | |
28e97307 | 8417 | /* If the current architecture is not ARM, we have nothing to do. */ |
f5656ead | 8418 | if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm) |
28e97307 | 8419 | return; |
fd50bc42 | 8420 | |
28e97307 DJ |
8421 | /* Update the architecture. */ |
8422 | gdbarch_info_init (&info); | |
fd50bc42 | 8423 | |
28e97307 | 8424 | if (!gdbarch_update_p (info)) |
9b20d036 | 8425 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
fd50bc42 RE |
8426 | } |
8427 | ||
8428 | static void | |
8429 | set_fp_model_sfunc (char *args, int from_tty, | |
8430 | struct cmd_list_element *c) | |
8431 | { | |
570dc176 | 8432 | int fp_model; |
fd50bc42 RE |
8433 | |
8434 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
8435 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
8436 | { | |
aead7601 | 8437 | arm_fp_model = (enum arm_float_model) fp_model; |
fd50bc42 RE |
8438 | break; |
8439 | } | |
8440 | ||
8441 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 8442 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
8443 | current_fp_model); |
8444 | ||
28e97307 | 8445 | arm_update_current_architecture (); |
fd50bc42 RE |
8446 | } |
8447 | ||
8448 | static void | |
08546159 AC |
8449 | show_fp_model (struct ui_file *file, int from_tty, |
8450 | struct cmd_list_element *c, const char *value) | |
fd50bc42 | 8451 | { |
f5656ead | 8452 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
fd50bc42 | 8453 | |
28e97307 | 8454 | if (arm_fp_model == ARM_FLOAT_AUTO |
f5656ead | 8455 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
8456 | fprintf_filtered (file, _("\ |
8457 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
8458 | fp_model_strings[tdep->fp_model]); | |
8459 | else | |
8460 | fprintf_filtered (file, _("\ | |
8461 | The current ARM floating point model is \"%s\".\n"), | |
8462 | fp_model_strings[arm_fp_model]); | |
8463 | } | |
8464 | ||
8465 | static void | |
8466 | arm_set_abi (char *args, int from_tty, | |
8467 | struct cmd_list_element *c) | |
8468 | { | |
570dc176 | 8469 | int arm_abi; |
28e97307 DJ |
8470 | |
8471 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
8472 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
8473 | { | |
aead7601 | 8474 | arm_abi_global = (enum arm_abi_kind) arm_abi; |
28e97307 DJ |
8475 | break; |
8476 | } | |
8477 | ||
8478 | if (arm_abi == ARM_ABI_LAST) | |
8479 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
8480 | arm_abi_string); | |
8481 | ||
8482 | arm_update_current_architecture (); | |
8483 | } | |
8484 | ||
8485 | static void | |
8486 | arm_show_abi (struct ui_file *file, int from_tty, | |
8487 | struct cmd_list_element *c, const char *value) | |
8488 | { | |
f5656ead | 8489 | struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ()); |
28e97307 DJ |
8490 | |
8491 | if (arm_abi_global == ARM_ABI_AUTO | |
f5656ead | 8492 | && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
28e97307 DJ |
8493 | fprintf_filtered (file, _("\ |
8494 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
8495 | arm_abi_strings[tdep->arm_abi]); | |
8496 | else | |
8497 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
8498 | arm_abi_string); | |
fd50bc42 RE |
8499 | } |
8500 | ||
0428b8f5 DJ |
8501 | static void |
8502 | arm_show_fallback_mode (struct ui_file *file, int from_tty, | |
8503 | struct cmd_list_element *c, const char *value) | |
8504 | { | |
0963b4bd MS |
8505 | fprintf_filtered (file, |
8506 | _("The current execution mode assumed " | |
8507 | "(when symbols are unavailable) is \"%s\".\n"), | |
0428b8f5 DJ |
8508 | arm_fallback_mode_string); |
8509 | } | |
8510 | ||
8511 | static void | |
8512 | arm_show_force_mode (struct ui_file *file, int from_tty, | |
8513 | struct cmd_list_element *c, const char *value) | |
8514 | { | |
0963b4bd MS |
8515 | fprintf_filtered (file, |
8516 | _("The current execution mode assumed " | |
8517 | "(even when symbols are available) is \"%s\".\n"), | |
0428b8f5 DJ |
8518 | arm_force_mode_string); |
8519 | } | |
8520 | ||
afd7eef0 RE |
8521 | /* If the user changes the register disassembly style used for info |
8522 | register and other commands, we have to also switch the style used | |
8523 | in opcodes for disassembly output. This function is run in the "set | |
8524 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
8525 | |
8526 | static void | |
afd7eef0 | 8527 | set_disassembly_style_sfunc (char *args, int from_tty, |
65b48a81 | 8528 | struct cmd_list_element *c) |
bc90b915 | 8529 | { |
65b48a81 PB |
8530 | /* Convert the short style name into the long style name (eg, reg-names-*) |
8531 | before calling the generic set_disassembler_options() function. */ | |
8532 | std::string long_name = std::string ("reg-names-") + disassembly_style; | |
8533 | set_disassembler_options (&long_name[0]); | |
8534 | } | |
8535 | ||
8536 | static void | |
8537 | show_disassembly_style_sfunc (struct ui_file *file, int from_tty, | |
8538 | struct cmd_list_element *c, const char *value) | |
8539 | { | |
8540 | struct gdbarch *gdbarch = get_current_arch (); | |
8541 | char *options = get_disassembler_options (gdbarch); | |
8542 | const char *style = ""; | |
8543 | int len = 0; | |
f995bbe8 | 8544 | const char *opt; |
65b48a81 PB |
8545 | |
8546 | FOR_EACH_DISASSEMBLER_OPTION (opt, options) | |
8547 | if (CONST_STRNEQ (opt, "reg-names-")) | |
8548 | { | |
8549 | style = &opt[strlen ("reg-names-")]; | |
8550 | len = strcspn (style, ","); | |
8551 | } | |
8552 | ||
8553 | fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style); | |
bc90b915 FN |
8554 | } |
8555 | \f | |
966fbf70 | 8556 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 8557 | static const char * |
d93859e2 | 8558 | arm_register_name (struct gdbarch *gdbarch, int i) |
966fbf70 | 8559 | { |
58d6951d DJ |
8560 | const int num_regs = gdbarch_num_regs (gdbarch); |
8561 | ||
8562 | if (gdbarch_tdep (gdbarch)->have_vfp_pseudos | |
8563 | && i >= num_regs && i < num_regs + 32) | |
8564 | { | |
8565 | static const char *const vfp_pseudo_names[] = { | |
8566 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
8567 | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | |
8568 | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | |
8569 | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | |
8570 | }; | |
8571 | ||
8572 | return vfp_pseudo_names[i - num_regs]; | |
8573 | } | |
8574 | ||
8575 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos | |
8576 | && i >= num_regs + 32 && i < num_regs + 32 + 16) | |
8577 | { | |
8578 | static const char *const neon_pseudo_names[] = { | |
8579 | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | |
8580 | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | |
8581 | }; | |
8582 | ||
8583 | return neon_pseudo_names[i - num_regs - 32]; | |
8584 | } | |
8585 | ||
ff6f572f DJ |
8586 | if (i >= ARRAY_SIZE (arm_register_names)) |
8587 | /* These registers are only supported on targets which supply | |
8588 | an XML description. */ | |
8589 | return ""; | |
8590 | ||
966fbf70 RE |
8591 | return arm_register_names[i]; |
8592 | } | |
8593 | ||
082fc60d RE |
8594 | /* Test whether the coff symbol specific value corresponds to a Thumb |
8595 | function. */ | |
8596 | ||
8597 | static int | |
8598 | coff_sym_is_thumb (int val) | |
8599 | { | |
f8bf5763 PM |
8600 | return (val == C_THUMBEXT |
8601 | || val == C_THUMBSTAT | |
8602 | || val == C_THUMBEXTFUNC | |
8603 | || val == C_THUMBSTATFUNC | |
8604 | || val == C_THUMBLABEL); | |
082fc60d RE |
8605 | } |
8606 | ||
8607 | /* arm_coff_make_msymbol_special() | |
8608 | arm_elf_make_msymbol_special() | |
8609 | ||
8610 | These functions test whether the COFF or ELF symbol corresponds to | |
8611 | an address in thumb code, and set a "special" bit in a minimal | |
8612 | symbol to indicate that it does. */ | |
8613 | ||
34e8f22d | 8614 | static void |
082fc60d RE |
8615 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
8616 | { | |
39d911fc TP |
8617 | elf_symbol_type *elfsym = (elf_symbol_type *) sym; |
8618 | ||
8619 | if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal) | |
467d42c4 | 8620 | == ST_BRANCH_TO_THUMB) |
082fc60d RE |
8621 | MSYMBOL_SET_SPECIAL (msym); |
8622 | } | |
8623 | ||
34e8f22d | 8624 | static void |
082fc60d RE |
8625 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
8626 | { | |
8627 | if (coff_sym_is_thumb (val)) | |
8628 | MSYMBOL_SET_SPECIAL (msym); | |
8629 | } | |
8630 | ||
60c5725c | 8631 | static void |
c1bd65d0 | 8632 | arm_objfile_data_free (struct objfile *objfile, void *arg) |
60c5725c | 8633 | { |
9a3c8263 | 8634 | struct arm_per_objfile *data = (struct arm_per_objfile *) arg; |
60c5725c DJ |
8635 | unsigned int i; |
8636 | ||
8637 | for (i = 0; i < objfile->obfd->section_count; i++) | |
8638 | VEC_free (arm_mapping_symbol_s, data->section_maps[i]); | |
8639 | } | |
8640 | ||
8641 | static void | |
8642 | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | |
8643 | asymbol *sym) | |
8644 | { | |
8645 | const char *name = bfd_asymbol_name (sym); | |
8646 | struct arm_per_objfile *data; | |
8647 | VEC(arm_mapping_symbol_s) **map_p; | |
8648 | struct arm_mapping_symbol new_map_sym; | |
8649 | ||
8650 | gdb_assert (name[0] == '$'); | |
8651 | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | |
8652 | return; | |
8653 | ||
9a3c8263 SM |
8654 | data = (struct arm_per_objfile *) objfile_data (objfile, |
8655 | arm_objfile_data_key); | |
60c5725c DJ |
8656 | if (data == NULL) |
8657 | { | |
8658 | data = OBSTACK_ZALLOC (&objfile->objfile_obstack, | |
8659 | struct arm_per_objfile); | |
8660 | set_objfile_data (objfile, arm_objfile_data_key, data); | |
8661 | data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
8662 | objfile->obfd->section_count, | |
8663 | VEC(arm_mapping_symbol_s) *); | |
8664 | } | |
8665 | map_p = &data->section_maps[bfd_get_section (sym)->index]; | |
8666 | ||
8667 | new_map_sym.value = sym->value; | |
8668 | new_map_sym.type = name[1]; | |
8669 | ||
8670 | /* Assume that most mapping symbols appear in order of increasing | |
8671 | value. If they were randomly distributed, it would be faster to | |
8672 | always push here and then sort at first use. */ | |
8673 | if (!VEC_empty (arm_mapping_symbol_s, *map_p)) | |
8674 | { | |
8675 | struct arm_mapping_symbol *prev_map_sym; | |
8676 | ||
8677 | prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p); | |
8678 | if (prev_map_sym->value >= sym->value) | |
8679 | { | |
8680 | unsigned int idx; | |
8681 | idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym, | |
8682 | arm_compare_mapping_symbols); | |
8683 | VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym); | |
8684 | return; | |
8685 | } | |
8686 | } | |
8687 | ||
8688 | VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym); | |
8689 | } | |
8690 | ||
756fe439 | 8691 | static void |
61a1198a | 8692 | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
756fe439 | 8693 | { |
9779414d | 8694 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
61a1198a | 8695 | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
756fe439 DJ |
8696 | |
8697 | /* If necessary, set the T bit. */ | |
8698 | if (arm_apcs_32) | |
8699 | { | |
9779414d | 8700 | ULONGEST val, t_bit; |
61a1198a | 8701 | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
9779414d DJ |
8702 | t_bit = arm_psr_thumb_bit (gdbarch); |
8703 | if (arm_pc_is_thumb (gdbarch, pc)) | |
8704 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | |
8705 | val | t_bit); | |
756fe439 | 8706 | else |
61a1198a | 8707 | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
9779414d | 8708 | val & ~t_bit); |
756fe439 DJ |
8709 | } |
8710 | } | |
123dc839 | 8711 | |
58d6951d DJ |
8712 | /* Read the contents of a NEON quad register, by reading from two |
8713 | double registers. This is used to implement the quad pseudo | |
8714 | registers, and for argument passing in case the quad registers are | |
8715 | missing; vectors are passed in quad registers when using the VFP | |
8716 | ABI, even if a NEON unit is not present. REGNUM is the index of | |
8717 | the quad register, in [0, 15]. */ | |
8718 | ||
05d1431c | 8719 | static enum register_status |
58d6951d DJ |
8720 | arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, |
8721 | int regnum, gdb_byte *buf) | |
8722 | { | |
8723 | char name_buf[4]; | |
8724 | gdb_byte reg_buf[8]; | |
8725 | int offset, double_regnum; | |
05d1431c | 8726 | enum register_status status; |
58d6951d | 8727 | |
8c042590 | 8728 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
58d6951d DJ |
8729 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8730 | strlen (name_buf)); | |
8731 | ||
8732 | /* d0 is always the least significant half of q0. */ | |
8733 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8734 | offset = 8; | |
8735 | else | |
8736 | offset = 0; | |
8737 | ||
05d1431c PA |
8738 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
8739 | if (status != REG_VALID) | |
8740 | return status; | |
58d6951d DJ |
8741 | memcpy (buf + offset, reg_buf, 8); |
8742 | ||
8743 | offset = 8 - offset; | |
05d1431c PA |
8744 | status = regcache_raw_read (regcache, double_regnum + 1, reg_buf); |
8745 | if (status != REG_VALID) | |
8746 | return status; | |
58d6951d | 8747 | memcpy (buf + offset, reg_buf, 8); |
05d1431c PA |
8748 | |
8749 | return REG_VALID; | |
58d6951d DJ |
8750 | } |
8751 | ||
05d1431c | 8752 | static enum register_status |
58d6951d DJ |
8753 | arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache, |
8754 | int regnum, gdb_byte *buf) | |
8755 | { | |
8756 | const int num_regs = gdbarch_num_regs (gdbarch); | |
8757 | char name_buf[4]; | |
8758 | gdb_byte reg_buf[8]; | |
8759 | int offset, double_regnum; | |
8760 | ||
8761 | gdb_assert (regnum >= num_regs); | |
8762 | regnum -= num_regs; | |
8763 | ||
8764 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
8765 | /* Quad-precision register. */ | |
05d1431c | 8766 | return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf); |
58d6951d DJ |
8767 | else |
8768 | { | |
05d1431c PA |
8769 | enum register_status status; |
8770 | ||
58d6951d DJ |
8771 | /* Single-precision register. */ |
8772 | gdb_assert (regnum < 32); | |
8773 | ||
8774 | /* s0 is always the least significant half of d0. */ | |
8775 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8776 | offset = (regnum & 1) ? 0 : 4; | |
8777 | else | |
8778 | offset = (regnum & 1) ? 4 : 0; | |
8779 | ||
8c042590 | 8780 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
58d6951d DJ |
8781 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8782 | strlen (name_buf)); | |
8783 | ||
05d1431c PA |
8784 | status = regcache_raw_read (regcache, double_regnum, reg_buf); |
8785 | if (status == REG_VALID) | |
8786 | memcpy (buf, reg_buf + offset, 4); | |
8787 | return status; | |
58d6951d DJ |
8788 | } |
8789 | } | |
8790 | ||
8791 | /* Store the contents of BUF to a NEON quad register, by writing to | |
8792 | two double registers. This is used to implement the quad pseudo | |
8793 | registers, and for argument passing in case the quad registers are | |
8794 | missing; vectors are passed in quad registers when using the VFP | |
8795 | ABI, even if a NEON unit is not present. REGNUM is the index | |
8796 | of the quad register, in [0, 15]. */ | |
8797 | ||
8798 | static void | |
8799 | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
8800 | int regnum, const gdb_byte *buf) | |
8801 | { | |
8802 | char name_buf[4]; | |
58d6951d DJ |
8803 | int offset, double_regnum; |
8804 | ||
8c042590 | 8805 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
58d6951d DJ |
8806 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8807 | strlen (name_buf)); | |
8808 | ||
8809 | /* d0 is always the least significant half of q0. */ | |
8810 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8811 | offset = 8; | |
8812 | else | |
8813 | offset = 0; | |
8814 | ||
8815 | regcache_raw_write (regcache, double_regnum, buf + offset); | |
8816 | offset = 8 - offset; | |
8817 | regcache_raw_write (regcache, double_regnum + 1, buf + offset); | |
8818 | } | |
8819 | ||
8820 | static void | |
8821 | arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
8822 | int regnum, const gdb_byte *buf) | |
8823 | { | |
8824 | const int num_regs = gdbarch_num_regs (gdbarch); | |
8825 | char name_buf[4]; | |
8826 | gdb_byte reg_buf[8]; | |
8827 | int offset, double_regnum; | |
8828 | ||
8829 | gdb_assert (regnum >= num_regs); | |
8830 | regnum -= num_regs; | |
8831 | ||
8832 | if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48) | |
8833 | /* Quad-precision register. */ | |
8834 | arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf); | |
8835 | else | |
8836 | { | |
8837 | /* Single-precision register. */ | |
8838 | gdb_assert (regnum < 32); | |
8839 | ||
8840 | /* s0 is always the least significant half of d0. */ | |
8841 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
8842 | offset = (regnum & 1) ? 0 : 4; | |
8843 | else | |
8844 | offset = (regnum & 1) ? 4 : 0; | |
8845 | ||
8c042590 | 8846 | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
58d6951d DJ |
8847 | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
8848 | strlen (name_buf)); | |
8849 | ||
8850 | regcache_raw_read (regcache, double_regnum, reg_buf); | |
8851 | memcpy (reg_buf + offset, buf, 4); | |
8852 | regcache_raw_write (regcache, double_regnum, reg_buf); | |
8853 | } | |
8854 | } | |
8855 | ||
123dc839 DJ |
8856 | static struct value * |
8857 | value_of_arm_user_reg (struct frame_info *frame, const void *baton) | |
8858 | { | |
9a3c8263 | 8859 | const int *reg_p = (const int *) baton; |
123dc839 DJ |
8860 | return value_of_register (*reg_p, frame); |
8861 | } | |
97e03143 | 8862 | \f |
70f80edf JT |
8863 | static enum gdb_osabi |
8864 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 8865 | { |
2af48f68 | 8866 | unsigned int elfosabi; |
70f80edf | 8867 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 8868 | |
70f80edf | 8869 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 8870 | |
28e97307 DJ |
8871 | if (elfosabi == ELFOSABI_ARM) |
8872 | /* GNU tools use this value. Check note sections in this case, | |
8873 | as well. */ | |
8874 | bfd_map_over_sections (abfd, | |
8875 | generic_elf_osabi_sniff_abi_tag_sections, | |
8876 | &osabi); | |
97e03143 | 8877 | |
28e97307 | 8878 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 8879 | return osabi; |
97e03143 RE |
8880 | } |
8881 | ||
54483882 YQ |
8882 | static int |
8883 | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
8884 | struct reggroup *group) | |
8885 | { | |
2c291032 YQ |
8886 | /* FPS register's type is INT, but belongs to float_reggroup. Beside |
8887 | this, FPS register belongs to save_regroup, restore_reggroup, and | |
8888 | all_reggroup, of course. */ | |
54483882 | 8889 | if (regnum == ARM_FPS_REGNUM) |
2c291032 YQ |
8890 | return (group == float_reggroup |
8891 | || group == save_reggroup | |
8892 | || group == restore_reggroup | |
8893 | || group == all_reggroup); | |
54483882 YQ |
8894 | else |
8895 | return default_register_reggroup_p (gdbarch, regnum, group); | |
8896 | } | |
8897 | ||
25f8c692 JL |
8898 | \f |
8899 | /* For backward-compatibility we allow two 'g' packet lengths with | |
8900 | the remote protocol depending on whether FPA registers are | |
8901 | supplied. M-profile targets do not have FPA registers, but some | |
8902 | stubs already exist in the wild which use a 'g' packet which | |
8903 | supplies them albeit with dummy values. The packet format which | |
8904 | includes FPA registers should be considered deprecated for | |
8905 | M-profile targets. */ | |
8906 | ||
8907 | static void | |
8908 | arm_register_g_packet_guesses (struct gdbarch *gdbarch) | |
8909 | { | |
8910 | if (gdbarch_tdep (gdbarch)->is_m) | |
8911 | { | |
8912 | /* If we know from the executable this is an M-profile target, | |
8913 | cater for remote targets whose register set layout is the | |
8914 | same as the FPA layout. */ | |
8915 | register_remote_g_packet_guess (gdbarch, | |
03145bf4 | 8916 | /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */ |
25f8c692 JL |
8917 | (16 * INT_REGISTER_SIZE) |
8918 | + (8 * FP_REGISTER_SIZE) | |
8919 | + (2 * INT_REGISTER_SIZE), | |
8920 | tdesc_arm_with_m_fpa_layout); | |
8921 | ||
8922 | /* The regular M-profile layout. */ | |
8923 | register_remote_g_packet_guess (gdbarch, | |
8924 | /* r0-r12,sp,lr,pc; xpsr */ | |
8925 | (16 * INT_REGISTER_SIZE) | |
8926 | + INT_REGISTER_SIZE, | |
8927 | tdesc_arm_with_m); | |
3184d3f9 JL |
8928 | |
8929 | /* M-profile plus M4F VFP. */ | |
8930 | register_remote_g_packet_guess (gdbarch, | |
8931 | /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */ | |
8932 | (16 * INT_REGISTER_SIZE) | |
8933 | + (16 * VFP_REGISTER_SIZE) | |
8934 | + (2 * INT_REGISTER_SIZE), | |
8935 | tdesc_arm_with_m_vfp_d16); | |
25f8c692 JL |
8936 | } |
8937 | ||
8938 | /* Otherwise we don't have a useful guess. */ | |
8939 | } | |
8940 | ||
7eb89530 YQ |
8941 | /* Implement the code_of_frame_writable gdbarch method. */ |
8942 | ||
8943 | static int | |
8944 | arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame) | |
8945 | { | |
8946 | if (gdbarch_tdep (gdbarch)->is_m | |
8947 | && get_frame_type (frame) == SIGTRAMP_FRAME) | |
8948 | { | |
8949 | /* M-profile exception frames return to some magic PCs, where | |
8950 | isn't writable at all. */ | |
8951 | return 0; | |
8952 | } | |
8953 | else | |
8954 | return 1; | |
8955 | } | |
8956 | ||
70f80edf | 8957 | \f |
da3c6d4a MS |
8958 | /* Initialize the current architecture based on INFO. If possible, |
8959 | re-use an architecture from ARCHES, which is a list of | |
8960 | architectures already created during this debugging session. | |
97e03143 | 8961 | |
da3c6d4a MS |
8962 | Called e.g. at program startup, when reading a core file, and when |
8963 | reading a binary file. */ | |
97e03143 | 8964 | |
39bbf761 RE |
8965 | static struct gdbarch * |
8966 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
8967 | { | |
97e03143 | 8968 | struct gdbarch_tdep *tdep; |
39bbf761 | 8969 | struct gdbarch *gdbarch; |
28e97307 DJ |
8970 | struct gdbarch_list *best_arch; |
8971 | enum arm_abi_kind arm_abi = arm_abi_global; | |
8972 | enum arm_float_model fp_model = arm_fp_model; | |
123dc839 | 8973 | struct tdesc_arch_data *tdesc_data = NULL; |
9779414d | 8974 | int i, is_m = 0; |
330c6ca9 | 8975 | int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0; |
a56cc1ce | 8976 | int have_wmmx_registers = 0; |
58d6951d | 8977 | int have_neon = 0; |
ff6f572f | 8978 | int have_fpa_registers = 1; |
9779414d DJ |
8979 | const struct target_desc *tdesc = info.target_desc; |
8980 | ||
8981 | /* If we have an object to base this architecture on, try to determine | |
8982 | its ABI. */ | |
8983 | ||
8984 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | |
8985 | { | |
8986 | int ei_osabi, e_flags; | |
8987 | ||
8988 | switch (bfd_get_flavour (info.abfd)) | |
8989 | { | |
9779414d DJ |
8990 | case bfd_target_coff_flavour: |
8991 | /* Assume it's an old APCS-style ABI. */ | |
8992 | /* XXX WinCE? */ | |
8993 | arm_abi = ARM_ABI_APCS; | |
8994 | break; | |
8995 | ||
8996 | case bfd_target_elf_flavour: | |
8997 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
8998 | e_flags = elf_elfheader (info.abfd)->e_flags; | |
8999 | ||
9000 | if (ei_osabi == ELFOSABI_ARM) | |
9001 | { | |
9002 | /* GNU tools used to use this value, but do not for EABI | |
9003 | objects. There's nowhere to tag an EABI version | |
9004 | anyway, so assume APCS. */ | |
9005 | arm_abi = ARM_ABI_APCS; | |
9006 | } | |
d403db27 | 9007 | else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU) |
9779414d DJ |
9008 | { |
9009 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | |
9010 | int attr_arch, attr_profile; | |
9011 | ||
9012 | switch (eabi_ver) | |
9013 | { | |
9014 | case EF_ARM_EABI_UNKNOWN: | |
9015 | /* Assume GNU tools. */ | |
9016 | arm_abi = ARM_ABI_APCS; | |
9017 | break; | |
9018 | ||
9019 | case EF_ARM_EABI_VER4: | |
9020 | case EF_ARM_EABI_VER5: | |
9021 | arm_abi = ARM_ABI_AAPCS; | |
9022 | /* EABI binaries default to VFP float ordering. | |
9023 | They may also contain build attributes that can | |
9024 | be used to identify if the VFP argument-passing | |
9025 | ABI is in use. */ | |
9026 | if (fp_model == ARM_FLOAT_AUTO) | |
9027 | { | |
9028 | #ifdef HAVE_ELF | |
9029 | switch (bfd_elf_get_obj_attr_int (info.abfd, | |
9030 | OBJ_ATTR_PROC, | |
9031 | Tag_ABI_VFP_args)) | |
9032 | { | |
b35b0298 | 9033 | case AEABI_VFP_args_base: |
9779414d DJ |
9034 | /* "The user intended FP parameter/result |
9035 | passing to conform to AAPCS, base | |
9036 | variant". */ | |
9037 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9038 | break; | |
b35b0298 | 9039 | case AEABI_VFP_args_vfp: |
9779414d DJ |
9040 | /* "The user intended FP parameter/result |
9041 | passing to conform to AAPCS, VFP | |
9042 | variant". */ | |
9043 | fp_model = ARM_FLOAT_VFP; | |
9044 | break; | |
b35b0298 | 9045 | case AEABI_VFP_args_toolchain: |
9779414d DJ |
9046 | /* "The user intended FP parameter/result |
9047 | passing to conform to tool chain-specific | |
9048 | conventions" - we don't know any such | |
9049 | conventions, so leave it as "auto". */ | |
9050 | break; | |
b35b0298 | 9051 | case AEABI_VFP_args_compatible: |
5c294fee TG |
9052 | /* "Code is compatible with both the base |
9053 | and VFP variants; the user did not permit | |
9054 | non-variadic functions to pass FP | |
9055 | parameters/results" - leave it as | |
9056 | "auto". */ | |
9057 | break; | |
9779414d DJ |
9058 | default: |
9059 | /* Attribute value not mentioned in the | |
5c294fee | 9060 | November 2012 ABI, so leave it as |
9779414d DJ |
9061 | "auto". */ |
9062 | break; | |
9063 | } | |
9064 | #else | |
9065 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9066 | #endif | |
9067 | } | |
9068 | break; | |
9069 | ||
9070 | default: | |
9071 | /* Leave it as "auto". */ | |
9072 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | |
9073 | break; | |
9074 | } | |
9075 | ||
9076 | #ifdef HAVE_ELF | |
9077 | /* Detect M-profile programs. This only works if the | |
9078 | executable file includes build attributes; GCC does | |
9079 | copy them to the executable, but e.g. RealView does | |
9080 | not. */ | |
9081 | attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | |
9082 | Tag_CPU_arch); | |
0963b4bd MS |
9083 | attr_profile = bfd_elf_get_obj_attr_int (info.abfd, |
9084 | OBJ_ATTR_PROC, | |
9779414d DJ |
9085 | Tag_CPU_arch_profile); |
9086 | /* GCC specifies the profile for v6-M; RealView only | |
9087 | specifies the profile for architectures starting with | |
9088 | V7 (as opposed to architectures with a tag | |
9089 | numerically greater than TAG_CPU_ARCH_V7). */ | |
9090 | if (!tdesc_has_registers (tdesc) | |
9091 | && (attr_arch == TAG_CPU_ARCH_V6_M | |
9092 | || attr_arch == TAG_CPU_ARCH_V6S_M | |
9093 | || attr_profile == 'M')) | |
25f8c692 | 9094 | is_m = 1; |
9779414d DJ |
9095 | #endif |
9096 | } | |
9097 | ||
9098 | if (fp_model == ARM_FLOAT_AUTO) | |
9099 | { | |
9100 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
9101 | ||
9102 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
9103 | { | |
9104 | case 0: | |
9105 | /* Leave it as "auto". Strictly speaking this case | |
9106 | means FPA, but almost nobody uses that now, and | |
9107 | many toolchains fail to set the appropriate bits | |
9108 | for the floating-point model they use. */ | |
9109 | break; | |
9110 | case EF_ARM_SOFT_FLOAT: | |
9111 | fp_model = ARM_FLOAT_SOFT_FPA; | |
9112 | break; | |
9113 | case EF_ARM_VFP_FLOAT: | |
9114 | fp_model = ARM_FLOAT_VFP; | |
9115 | break; | |
9116 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
9117 | fp_model = ARM_FLOAT_SOFT_VFP; | |
9118 | break; | |
9119 | } | |
9120 | } | |
9121 | ||
9122 | if (e_flags & EF_ARM_BE8) | |
9123 | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | |
9124 | ||
9125 | break; | |
9126 | ||
9127 | default: | |
9128 | /* Leave it as "auto". */ | |
9129 | break; | |
9130 | } | |
9131 | } | |
123dc839 DJ |
9132 | |
9133 | /* Check any target description for validity. */ | |
9779414d | 9134 | if (tdesc_has_registers (tdesc)) |
123dc839 DJ |
9135 | { |
9136 | /* For most registers we require GDB's default names; but also allow | |
9137 | the numeric names for sp / lr / pc, as a convenience. */ | |
9138 | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | |
9139 | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | |
9140 | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | |
9141 | ||
9142 | const struct tdesc_feature *feature; | |
58d6951d | 9143 | int valid_p; |
123dc839 | 9144 | |
9779414d | 9145 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9146 | "org.gnu.gdb.arm.core"); |
9147 | if (feature == NULL) | |
9779414d DJ |
9148 | { |
9149 | feature = tdesc_find_feature (tdesc, | |
9150 | "org.gnu.gdb.arm.m-profile"); | |
9151 | if (feature == NULL) | |
9152 | return NULL; | |
9153 | else | |
9154 | is_m = 1; | |
9155 | } | |
123dc839 DJ |
9156 | |
9157 | tdesc_data = tdesc_data_alloc (); | |
9158 | ||
9159 | valid_p = 1; | |
9160 | for (i = 0; i < ARM_SP_REGNUM; i++) | |
9161 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9162 | arm_register_names[i]); | |
9163 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9164 | ARM_SP_REGNUM, | |
9165 | arm_sp_names); | |
9166 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9167 | ARM_LR_REGNUM, | |
9168 | arm_lr_names); | |
9169 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
9170 | ARM_PC_REGNUM, | |
9171 | arm_pc_names); | |
9779414d DJ |
9172 | if (is_m) |
9173 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9174 | ARM_PS_REGNUM, "xpsr"); | |
9175 | else | |
9176 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9177 | ARM_PS_REGNUM, "cpsr"); | |
123dc839 DJ |
9178 | |
9179 | if (!valid_p) | |
9180 | { | |
9181 | tdesc_data_cleanup (tdesc_data); | |
9182 | return NULL; | |
9183 | } | |
9184 | ||
9779414d | 9185 | feature = tdesc_find_feature (tdesc, |
123dc839 DJ |
9186 | "org.gnu.gdb.arm.fpa"); |
9187 | if (feature != NULL) | |
9188 | { | |
9189 | valid_p = 1; | |
9190 | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | |
9191 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
9192 | arm_register_names[i]); | |
9193 | if (!valid_p) | |
9194 | { | |
9195 | tdesc_data_cleanup (tdesc_data); | |
9196 | return NULL; | |
9197 | } | |
9198 | } | |
ff6f572f DJ |
9199 | else |
9200 | have_fpa_registers = 0; | |
9201 | ||
9779414d | 9202 | feature = tdesc_find_feature (tdesc, |
ff6f572f DJ |
9203 | "org.gnu.gdb.xscale.iwmmxt"); |
9204 | if (feature != NULL) | |
9205 | { | |
9206 | static const char *const iwmmxt_names[] = { | |
9207 | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | |
9208 | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | |
9209 | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | |
9210 | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | |
9211 | }; | |
9212 | ||
9213 | valid_p = 1; | |
9214 | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | |
9215 | valid_p | |
9216 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9217 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9218 | ||
9219 | /* Check for the control registers, but do not fail if they | |
9220 | are missing. */ | |
9221 | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | |
9222 | tdesc_numbered_register (feature, tdesc_data, i, | |
9223 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9224 | ||
9225 | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | |
9226 | valid_p | |
9227 | &= tdesc_numbered_register (feature, tdesc_data, i, | |
9228 | iwmmxt_names[i - ARM_WR0_REGNUM]); | |
9229 | ||
9230 | if (!valid_p) | |
9231 | { | |
9232 | tdesc_data_cleanup (tdesc_data); | |
9233 | return NULL; | |
9234 | } | |
a56cc1ce YQ |
9235 | |
9236 | have_wmmx_registers = 1; | |
ff6f572f | 9237 | } |
58d6951d DJ |
9238 | |
9239 | /* If we have a VFP unit, check whether the single precision registers | |
9240 | are present. If not, then we will synthesize them as pseudo | |
9241 | registers. */ | |
9779414d | 9242 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9243 | "org.gnu.gdb.arm.vfp"); |
9244 | if (feature != NULL) | |
9245 | { | |
9246 | static const char *const vfp_double_names[] = { | |
9247 | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | |
9248 | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | |
9249 | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | |
9250 | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | |
9251 | }; | |
9252 | ||
9253 | /* Require the double precision registers. There must be either | |
9254 | 16 or 32. */ | |
9255 | valid_p = 1; | |
9256 | for (i = 0; i < 32; i++) | |
9257 | { | |
9258 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9259 | ARM_D0_REGNUM + i, | |
9260 | vfp_double_names[i]); | |
9261 | if (!valid_p) | |
9262 | break; | |
9263 | } | |
2b9e5ea6 UW |
9264 | if (!valid_p && i == 16) |
9265 | valid_p = 1; | |
58d6951d | 9266 | |
2b9e5ea6 UW |
9267 | /* Also require FPSCR. */ |
9268 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
9269 | ARM_FPSCR_REGNUM, "fpscr"); | |
9270 | if (!valid_p) | |
58d6951d DJ |
9271 | { |
9272 | tdesc_data_cleanup (tdesc_data); | |
9273 | return NULL; | |
9274 | } | |
9275 | ||
9276 | if (tdesc_unnumbered_register (feature, "s0") == 0) | |
9277 | have_vfp_pseudos = 1; | |
9278 | ||
330c6ca9 | 9279 | vfp_register_count = i; |
58d6951d DJ |
9280 | |
9281 | /* If we have VFP, also check for NEON. The architecture allows | |
9282 | NEON without VFP (integer vector operations only), but GDB | |
9283 | does not support that. */ | |
9779414d | 9284 | feature = tdesc_find_feature (tdesc, |
58d6951d DJ |
9285 | "org.gnu.gdb.arm.neon"); |
9286 | if (feature != NULL) | |
9287 | { | |
9288 | /* NEON requires 32 double-precision registers. */ | |
9289 | if (i != 32) | |
9290 | { | |
9291 | tdesc_data_cleanup (tdesc_data); | |
9292 | return NULL; | |
9293 | } | |
9294 | ||
9295 | /* If there are quad registers defined by the stub, use | |
9296 | their type; otherwise (normally) provide them with | |
9297 | the default type. */ | |
9298 | if (tdesc_unnumbered_register (feature, "q0") == 0) | |
9299 | have_neon_pseudos = 1; | |
9300 | ||
9301 | have_neon = 1; | |
9302 | } | |
9303 | } | |
123dc839 | 9304 | } |
39bbf761 | 9305 | |
28e97307 DJ |
9306 | /* If there is already a candidate, use it. */ |
9307 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
9308 | best_arch != NULL; | |
9309 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
9310 | { | |
b8926edc DJ |
9311 | if (arm_abi != ARM_ABI_AUTO |
9312 | && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
28e97307 DJ |
9313 | continue; |
9314 | ||
b8926edc DJ |
9315 | if (fp_model != ARM_FLOAT_AUTO |
9316 | && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
28e97307 DJ |
9317 | continue; |
9318 | ||
58d6951d DJ |
9319 | /* There are various other properties in tdep that we do not |
9320 | need to check here: those derived from a target description, | |
9321 | since gdbarches with a different target description are | |
9322 | automatically disqualified. */ | |
9323 | ||
9779414d DJ |
9324 | /* Do check is_m, though, since it might come from the binary. */ |
9325 | if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m) | |
9326 | continue; | |
9327 | ||
28e97307 DJ |
9328 | /* Found a match. */ |
9329 | break; | |
9330 | } | |
97e03143 | 9331 | |
28e97307 | 9332 | if (best_arch != NULL) |
123dc839 DJ |
9333 | { |
9334 | if (tdesc_data != NULL) | |
9335 | tdesc_data_cleanup (tdesc_data); | |
9336 | return best_arch->gdbarch; | |
9337 | } | |
28e97307 | 9338 | |
8d749320 | 9339 | tdep = XCNEW (struct gdbarch_tdep); |
97e03143 RE |
9340 | gdbarch = gdbarch_alloc (&info, tdep); |
9341 | ||
28e97307 DJ |
9342 | /* Record additional information about the architecture we are defining. |
9343 | These are gdbarch discriminators, like the OSABI. */ | |
9344 | tdep->arm_abi = arm_abi; | |
9345 | tdep->fp_model = fp_model; | |
9779414d | 9346 | tdep->is_m = is_m; |
ff6f572f | 9347 | tdep->have_fpa_registers = have_fpa_registers; |
a56cc1ce | 9348 | tdep->have_wmmx_registers = have_wmmx_registers; |
330c6ca9 YQ |
9349 | gdb_assert (vfp_register_count == 0 |
9350 | || vfp_register_count == 16 | |
9351 | || vfp_register_count == 32); | |
9352 | tdep->vfp_register_count = vfp_register_count; | |
58d6951d DJ |
9353 | tdep->have_vfp_pseudos = have_vfp_pseudos; |
9354 | tdep->have_neon_pseudos = have_neon_pseudos; | |
9355 | tdep->have_neon = have_neon; | |
08216dd7 | 9356 | |
25f8c692 JL |
9357 | arm_register_g_packet_guesses (gdbarch); |
9358 | ||
08216dd7 | 9359 | /* Breakpoints. */ |
9d4fde75 | 9360 | switch (info.byte_order_for_code) |
67255d04 RE |
9361 | { |
9362 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
9363 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
9364 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
9365 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
9366 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
9367 | ||
67255d04 RE |
9368 | break; |
9369 | ||
9370 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
9371 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
9372 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
9373 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
9374 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
9375 | ||
67255d04 RE |
9376 | break; |
9377 | ||
9378 | default: | |
9379 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 9380 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
9381 | } |
9382 | ||
d7b486e7 RE |
9383 | /* On ARM targets char defaults to unsigned. */ |
9384 | set_gdbarch_char_signed (gdbarch, 0); | |
9385 | ||
53375380 PA |
9386 | /* wchar_t is unsigned under the AAPCS. */ |
9387 | if (tdep->arm_abi == ARM_ABI_AAPCS) | |
9388 | set_gdbarch_wchar_signed (gdbarch, 0); | |
9389 | else | |
9390 | set_gdbarch_wchar_signed (gdbarch, 1); | |
53375380 | 9391 | |
cca44b1b JB |
9392 | /* Note: for displaced stepping, this includes the breakpoint, and one word |
9393 | of additional scratch space. This setting isn't used for anything beside | |
9394 | displaced stepping at present. */ | |
9395 | set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS); | |
9396 | ||
9df628e0 | 9397 | /* This should be low enough for everything. */ |
97e03143 | 9398 | tdep->lowest_pc = 0x20; |
94c30b78 | 9399 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 9400 | |
7c00367c MK |
9401 | /* The default, for both APCS and AAPCS, is to return small |
9402 | structures in registers. */ | |
9403 | tdep->struct_return = reg_struct_return; | |
9404 | ||
2dd604e7 | 9405 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 9406 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 9407 | |
7eb89530 YQ |
9408 | if (is_m) |
9409 | set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable); | |
9410 | ||
756fe439 DJ |
9411 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
9412 | ||
148754e5 | 9413 | /* Frame handling. */ |
a262aec2 | 9414 | set_gdbarch_dummy_id (gdbarch, arm_dummy_id); |
eb5492fa DJ |
9415 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); |
9416 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
9417 | ||
eb5492fa | 9418 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 9419 | |
34e8f22d | 9420 | /* Address manipulation. */ |
34e8f22d RE |
9421 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); |
9422 | ||
34e8f22d RE |
9423 | /* Advance PC across function entry code. */ |
9424 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
9425 | ||
c9cf6e20 MG |
9426 | /* Detect whether PC is at a point where the stack has been destroyed. */ |
9427 | set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p); | |
4024ca99 | 9428 | |
190dce09 UW |
9429 | /* Skip trampolines. */ |
9430 | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | |
9431 | ||
34e8f22d RE |
9432 | /* The stack grows downward. */ |
9433 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
9434 | ||
9435 | /* Breakpoint manipulation. */ | |
04180708 YQ |
9436 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc); |
9437 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind); | |
833b7ab5 YQ |
9438 | set_gdbarch_breakpoint_kind_from_current_state (gdbarch, |
9439 | arm_breakpoint_kind_from_current_state); | |
34e8f22d RE |
9440 | |
9441 | /* Information about registers, etc. */ | |
34e8f22d RE |
9442 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
9443 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
ff6f572f | 9444 | set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS); |
7a5ea0d4 | 9445 | set_gdbarch_register_type (gdbarch, arm_register_type); |
54483882 | 9446 | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
34e8f22d | 9447 | |
ff6f572f DJ |
9448 | /* This "info float" is FPA-specific. Use the generic version if we |
9449 | do not have FPA. */ | |
9450 | if (gdbarch_tdep (gdbarch)->have_fpa_registers) | |
9451 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
9452 | ||
26216b98 | 9453 | /* Internal <-> external register number maps. */ |
ff6f572f | 9454 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
26216b98 AC |
9455 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
9456 | ||
34e8f22d RE |
9457 | set_gdbarch_register_name (gdbarch, arm_register_name); |
9458 | ||
9459 | /* Returning results. */ | |
2af48f68 | 9460 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d | 9461 | |
03d48a7d RE |
9462 | /* Disassembly. */ |
9463 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
9464 | ||
34e8f22d RE |
9465 | /* Minsymbol frobbing. */ |
9466 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
9467 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
9468 | arm_coff_make_msymbol_special); | |
60c5725c | 9469 | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
34e8f22d | 9470 | |
f9d67f43 DJ |
9471 | /* Thumb-2 IT block support. */ |
9472 | set_gdbarch_adjust_breakpoint_address (gdbarch, | |
9473 | arm_adjust_breakpoint_address); | |
9474 | ||
0d5de010 DJ |
9475 | /* Virtual tables. */ |
9476 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
9477 | ||
97e03143 | 9478 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 9479 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 9480 | |
b39cc962 DJ |
9481 | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
9482 | ||
eb5492fa | 9483 | /* Add some default predicates. */ |
2ae28aa9 YQ |
9484 | if (is_m) |
9485 | frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind); | |
a262aec2 DJ |
9486 | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
9487 | dwarf2_append_unwinders (gdbarch); | |
0e9e9abd | 9488 | frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); |
779aa56f | 9489 | frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind); |
a262aec2 | 9490 | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); |
eb5492fa | 9491 | |
97e03143 RE |
9492 | /* Now we have tuned the configuration, set a few final things, |
9493 | based on what the OS ABI has told us. */ | |
9494 | ||
b8926edc DJ |
9495 | /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
9496 | binaries are always marked. */ | |
9497 | if (tdep->arm_abi == ARM_ABI_AUTO) | |
9498 | tdep->arm_abi = ARM_ABI_APCS; | |
9499 | ||
e3039479 UW |
9500 | /* Watchpoints are not steppable. */ |
9501 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
9502 | ||
b8926edc DJ |
9503 | /* We used to default to FPA for generic ARM, but almost nobody |
9504 | uses that now, and we now provide a way for the user to force | |
9505 | the model. So default to the most useful variant. */ | |
9506 | if (tdep->fp_model == ARM_FLOAT_AUTO) | |
9507 | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | |
9508 | ||
9df628e0 RE |
9509 | if (tdep->jb_pc >= 0) |
9510 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
9511 | ||
08216dd7 | 9512 | /* Floating point sizes and format. */ |
8da61cc4 | 9513 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
b8926edc | 9514 | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
08216dd7 | 9515 | { |
8da61cc4 DJ |
9516 | set_gdbarch_double_format |
9517 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
9518 | set_gdbarch_long_double_format | |
9519 | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | |
9520 | } | |
9521 | else | |
9522 | { | |
9523 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
9524 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
08216dd7 RE |
9525 | } |
9526 | ||
58d6951d DJ |
9527 | if (have_vfp_pseudos) |
9528 | { | |
9529 | /* NOTE: These are the only pseudo registers used by | |
9530 | the ARM target at the moment. If more are added, a | |
9531 | little more care in numbering will be needed. */ | |
9532 | ||
9533 | int num_pseudos = 32; | |
9534 | if (have_neon_pseudos) | |
9535 | num_pseudos += 16; | |
9536 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | |
9537 | set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); | |
9538 | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | |
9539 | } | |
9540 | ||
123dc839 | 9541 | if (tdesc_data) |
58d6951d DJ |
9542 | { |
9543 | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | |
9544 | ||
9779414d | 9545 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
58d6951d DJ |
9546 | |
9547 | /* Override tdesc_register_type to adjust the types of VFP | |
9548 | registers for NEON. */ | |
9549 | set_gdbarch_register_type (gdbarch, arm_register_type); | |
9550 | } | |
123dc839 DJ |
9551 | |
9552 | /* Add standard register aliases. We add aliases even for those | |
9553 | nanes which are used by the current architecture - it's simpler, | |
9554 | and does no harm, since nothing ever lists user registers. */ | |
9555 | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | |
9556 | user_reg_add (gdbarch, arm_register_aliases[i].name, | |
9557 | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | |
9558 | ||
65b48a81 PB |
9559 | set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options); |
9560 | set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ()); | |
9561 | ||
39bbf761 RE |
9562 | return gdbarch; |
9563 | } | |
9564 | ||
97e03143 | 9565 | static void |
2af46ca0 | 9566 | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
97e03143 | 9567 | { |
2af46ca0 | 9568 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
97e03143 RE |
9569 | |
9570 | if (tdep == NULL) | |
9571 | return; | |
9572 | ||
edefbb7c | 9573 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
9574 | (unsigned long) tdep->lowest_pc); |
9575 | } | |
9576 | ||
0d4c07af | 9577 | #if GDB_SELF_TEST |
b121eeb9 YQ |
9578 | namespace selftests |
9579 | { | |
9580 | static void arm_record_test (void); | |
9581 | } | |
0d4c07af | 9582 | #endif |
b121eeb9 | 9583 | |
a78f21af AC |
9584 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
9585 | ||
c906108c | 9586 | void |
ed9a39eb | 9587 | _initialize_arm_tdep (void) |
c906108c | 9588 | { |
bc90b915 | 9589 | long length; |
53904c9e AC |
9590 | const char *setname; |
9591 | const char *setdesc; | |
65b48a81 | 9592 | int i, j; |
edefbb7c AC |
9593 | char regdesc[1024], *rdptr = regdesc; |
9594 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 9595 | |
42cf1509 | 9596 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 9597 | |
60c5725c | 9598 | arm_objfile_data_key |
c1bd65d0 | 9599 | = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free); |
60c5725c | 9600 | |
0e9e9abd UW |
9601 | /* Add ourselves to objfile event chain. */ |
9602 | observer_attach_new_objfile (arm_exidx_new_objfile); | |
9603 | arm_exidx_data_key | |
9604 | = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free); | |
9605 | ||
70f80edf JT |
9606 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
9607 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
9608 | bfd_target_elf_flavour, | |
9609 | arm_elf_osabi_sniffer); | |
9610 | ||
9779414d DJ |
9611 | /* Initialize the standard target descriptions. */ |
9612 | initialize_tdesc_arm_with_m (); | |
25f8c692 | 9613 | initialize_tdesc_arm_with_m_fpa_layout (); |
3184d3f9 | 9614 | initialize_tdesc_arm_with_m_vfp_d16 (); |
ef7e8358 UW |
9615 | initialize_tdesc_arm_with_iwmmxt (); |
9616 | initialize_tdesc_arm_with_vfpv2 (); | |
9617 | initialize_tdesc_arm_with_vfpv3 (); | |
9618 | initialize_tdesc_arm_with_neon (); | |
9779414d | 9619 | |
afd7eef0 RE |
9620 | /* Add root prefix command for all "set arm"/"show arm" commands. */ |
9621 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 9622 | _("Various ARM-specific commands."), |
afd7eef0 RE |
9623 | &setarmcmdlist, "set arm ", 0, &setlist); |
9624 | ||
9625 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 9626 | _("Various ARM-specific commands."), |
afd7eef0 | 9627 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 9628 | |
c5aa993b | 9629 | |
65b48a81 PB |
9630 | arm_disassembler_options = xstrdup ("reg-names-std"); |
9631 | const disasm_options_t *disasm_options = disassembler_options_arm (); | |
9632 | int num_disassembly_styles = 0; | |
9633 | for (i = 0; disasm_options->name[i] != NULL; i++) | |
9634 | if (CONST_STRNEQ (disasm_options->name[i], "reg-names-")) | |
9635 | num_disassembly_styles++; | |
9636 | ||
9637 | /* Initialize the array that will be passed to add_setshow_enum_cmd(). */ | |
8d749320 | 9638 | valid_disassembly_styles = XNEWVEC (const char *, |
65b48a81 PB |
9639 | num_disassembly_styles + 1); |
9640 | for (i = j = 0; disasm_options->name[i] != NULL; i++) | |
9641 | if (CONST_STRNEQ (disasm_options->name[i], "reg-names-")) | |
9642 | { | |
9643 | size_t offset = strlen ("reg-names-"); | |
9644 | const char *style = disasm_options->name[i]; | |
9645 | valid_disassembly_styles[j++] = &style[offset]; | |
9646 | length = snprintf (rdptr, rest, "%s - %s\n", &style[offset], | |
9647 | disasm_options->description[i]); | |
9648 | rdptr += length; | |
9649 | rest -= length; | |
9650 | } | |
94c30b78 | 9651 | /* Mark the end of valid options. */ |
65b48a81 | 9652 | valid_disassembly_styles[num_disassembly_styles] = NULL; |
c906108c | 9653 | |
edefbb7c | 9654 | /* Create the help text. */ |
d7e74731 PA |
9655 | std::string helptext = string_printf ("%s%s%s", |
9656 | _("The valid values are:\n"), | |
9657 | regdesc, | |
9658 | _("The default is \"std\".")); | |
ed9a39eb | 9659 | |
edefbb7c AC |
9660 | add_setshow_enum_cmd("disassembler", no_class, |
9661 | valid_disassembly_styles, &disassembly_style, | |
9662 | _("Set the disassembly style."), | |
9663 | _("Show the disassembly style."), | |
09b0e4b0 | 9664 | helptext.c_str (), |
2c5b56ce | 9665 | set_disassembly_style_sfunc, |
65b48a81 | 9666 | show_disassembly_style_sfunc, |
7376b4c2 | 9667 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
9668 | |
9669 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
9670 | _("Set usage of ARM 32-bit mode."), | |
9671 | _("Show usage of ARM 32-bit mode."), | |
9672 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 9673 | NULL, |
0963b4bd MS |
9674 | NULL, /* FIXME: i18n: Usage of ARM 32-bit |
9675 | mode is %s. */ | |
26304000 | 9676 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 9677 | |
fd50bc42 | 9678 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
9679 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
9680 | _("Set the floating point type."), | |
9681 | _("Show the floating point type."), | |
9682 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
9683 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
9684 | fpa - FPA co-processor (GCC compiled).\n\ | |
9685 | softvfp - Software FP with pure-endian doubles.\n\ | |
9686 | vfp - VFP co-processor."), | |
edefbb7c | 9687 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 9688 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 9689 | |
28e97307 DJ |
9690 | /* Add a command to allow the user to force the ABI. */ |
9691 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
9692 | _("Set the ABI."), | |
9693 | _("Show the ABI."), | |
9694 | NULL, arm_set_abi, arm_show_abi, | |
9695 | &setarmcmdlist, &showarmcmdlist); | |
9696 | ||
0428b8f5 DJ |
9697 | /* Add two commands to allow the user to force the assumed |
9698 | execution mode. */ | |
9699 | add_setshow_enum_cmd ("fallback-mode", class_support, | |
9700 | arm_mode_strings, &arm_fallback_mode_string, | |
9701 | _("Set the mode assumed when symbols are unavailable."), | |
9702 | _("Show the mode assumed when symbols are unavailable."), | |
9703 | NULL, NULL, arm_show_fallback_mode, | |
9704 | &setarmcmdlist, &showarmcmdlist); | |
9705 | add_setshow_enum_cmd ("force-mode", class_support, | |
9706 | arm_mode_strings, &arm_force_mode_string, | |
9707 | _("Set the mode assumed even when symbols are available."), | |
9708 | _("Show the mode assumed even when symbols are available."), | |
9709 | NULL, NULL, arm_show_force_mode, | |
9710 | &setarmcmdlist, &showarmcmdlist); | |
9711 | ||
6529d2dd | 9712 | /* Debugging flag. */ |
edefbb7c AC |
9713 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
9714 | _("Set ARM debugging."), | |
9715 | _("Show ARM debugging."), | |
9716 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 9717 | NULL, |
7915a72c | 9718 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 9719 | &setdebuglist, &showdebuglist); |
b121eeb9 YQ |
9720 | |
9721 | #if GDB_SELF_TEST | |
7649770c | 9722 | selftests::register_test (selftests::arm_record_test); |
b121eeb9 YQ |
9723 | #endif |
9724 | ||
c906108c | 9725 | } |
72508ac0 PO |
9726 | |
9727 | /* ARM-reversible process record data structures. */ | |
9728 | ||
9729 | #define ARM_INSN_SIZE_BYTES 4 | |
9730 | #define THUMB_INSN_SIZE_BYTES 2 | |
9731 | #define THUMB2_INSN_SIZE_BYTES 4 | |
9732 | ||
9733 | ||
71e396f9 LM |
9734 | /* Position of the bit within a 32-bit ARM instruction |
9735 | that defines whether the instruction is a load or store. */ | |
72508ac0 PO |
9736 | #define INSN_S_L_BIT_NUM 20 |
9737 | ||
9738 | #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ | |
9739 | do \ | |
9740 | { \ | |
9741 | unsigned int reg_len = LENGTH; \ | |
9742 | if (reg_len) \ | |
9743 | { \ | |
9744 | REGS = XNEWVEC (uint32_t, reg_len); \ | |
9745 | memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ | |
9746 | } \ | |
9747 | } \ | |
9748 | while (0) | |
9749 | ||
9750 | #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ | |
9751 | do \ | |
9752 | { \ | |
9753 | unsigned int mem_len = LENGTH; \ | |
9754 | if (mem_len) \ | |
9755 | { \ | |
9756 | MEMS = XNEWVEC (struct arm_mem_r, mem_len); \ | |
9757 | memcpy(&MEMS->len, &RECORD_BUF[0], \ | |
9758 | sizeof(struct arm_mem_r) * LENGTH); \ | |
9759 | } \ | |
9760 | } \ | |
9761 | while (0) | |
9762 | ||
9763 | /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */ | |
9764 | #define INSN_RECORDED(ARM_RECORD) \ | |
9765 | (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count) | |
9766 | ||
9767 | /* ARM memory record structure. */ | |
9768 | struct arm_mem_r | |
9769 | { | |
9770 | uint32_t len; /* Record length. */ | |
bfbbec00 | 9771 | uint32_t addr; /* Memory address. */ |
72508ac0 PO |
9772 | }; |
9773 | ||
9774 | /* ARM instruction record contains opcode of current insn | |
9775 | and execution state (before entry to decode_insn()), | |
9776 | contains list of to-be-modified registers and | |
9777 | memory blocks (on return from decode_insn()). */ | |
9778 | ||
9779 | typedef struct insn_decode_record_t | |
9780 | { | |
9781 | struct gdbarch *gdbarch; | |
9782 | struct regcache *regcache; | |
9783 | CORE_ADDR this_addr; /* Address of the insn being decoded. */ | |
9784 | uint32_t arm_insn; /* Should accommodate thumb. */ | |
9785 | uint32_t cond; /* Condition code. */ | |
9786 | uint32_t opcode; /* Insn opcode. */ | |
9787 | uint32_t decode; /* Insn decode bits. */ | |
9788 | uint32_t mem_rec_count; /* No of mem records. */ | |
9789 | uint32_t reg_rec_count; /* No of reg records. */ | |
9790 | uint32_t *arm_regs; /* Registers to be saved for this record. */ | |
9791 | struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */ | |
9792 | } insn_decode_record; | |
9793 | ||
9794 | ||
9795 | /* Checks ARM SBZ and SBO mandatory fields. */ | |
9796 | ||
9797 | static int | |
9798 | sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo) | |
9799 | { | |
9800 | uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1)); | |
9801 | ||
9802 | if (!len) | |
9803 | return 1; | |
9804 | ||
9805 | if (!sbo) | |
9806 | ones = ~ones; | |
9807 | ||
9808 | while (ones) | |
9809 | { | |
9810 | if (!(ones & sbo)) | |
9811 | { | |
9812 | return 0; | |
9813 | } | |
9814 | ones = ones >> 1; | |
9815 | } | |
9816 | return 1; | |
9817 | } | |
9818 | ||
c6ec2b30 OJ |
9819 | enum arm_record_result |
9820 | { | |
9821 | ARM_RECORD_SUCCESS = 0, | |
9822 | ARM_RECORD_FAILURE = 1 | |
9823 | }; | |
9824 | ||
72508ac0 PO |
9825 | typedef enum |
9826 | { | |
9827 | ARM_RECORD_STRH=1, | |
9828 | ARM_RECORD_STRD | |
9829 | } arm_record_strx_t; | |
9830 | ||
9831 | typedef enum | |
9832 | { | |
9833 | ARM_RECORD=1, | |
9834 | THUMB_RECORD, | |
9835 | THUMB2_RECORD | |
9836 | } record_type_t; | |
9837 | ||
9838 | ||
9839 | static int | |
9840 | arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf, | |
9841 | uint32_t *record_buf_mem, arm_record_strx_t str_type) | |
9842 | { | |
9843 | ||
9844 | struct regcache *reg_cache = arm_insn_r->regcache; | |
9845 | ULONGEST u_regval[2]= {0}; | |
9846 | ||
9847 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
9848 | uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; | |
72508ac0 PO |
9849 | |
9850 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
9851 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
72508ac0 PO |
9852 | |
9853 | if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
9854 | { | |
9855 | /* 1) Handle misc store, immediate offset. */ | |
9856 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
9857 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
9858 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
9859 | regcache_raw_read_unsigned (reg_cache, reg_src1, | |
9860 | &u_regval[0]); | |
9861 | if (ARM_PC_REGNUM == reg_src1) | |
9862 | { | |
9863 | /* If R15 was used as Rn, hence current PC+8. */ | |
9864 | u_regval[0] = u_regval[0] + 8; | |
9865 | } | |
9866 | offset_8 = (immed_high << 4) | immed_low; | |
9867 | /* Calculate target store address. */ | |
9868 | if (14 == arm_insn_r->opcode) | |
9869 | { | |
9870 | tgt_mem_addr = u_regval[0] + offset_8; | |
9871 | } | |
9872 | else | |
9873 | { | |
9874 | tgt_mem_addr = u_regval[0] - offset_8; | |
9875 | } | |
9876 | if (ARM_RECORD_STRH == str_type) | |
9877 | { | |
9878 | record_buf_mem[0] = 2; | |
9879 | record_buf_mem[1] = tgt_mem_addr; | |
9880 | arm_insn_r->mem_rec_count = 1; | |
9881 | } | |
9882 | else if (ARM_RECORD_STRD == str_type) | |
9883 | { | |
9884 | record_buf_mem[0] = 4; | |
9885 | record_buf_mem[1] = tgt_mem_addr; | |
9886 | record_buf_mem[2] = 4; | |
9887 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9888 | arm_insn_r->mem_rec_count = 2; | |
9889 | } | |
9890 | } | |
9891 | else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode) | |
9892 | { | |
9893 | /* 2) Store, register offset. */ | |
9894 | /* Get Rm. */ | |
9895 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
9896 | /* Get Rn. */ | |
9897 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
9898 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9899 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
9900 | if (15 == reg_src2) | |
9901 | { | |
9902 | /* If R15 was used as Rn, hence current PC+8. */ | |
9903 | u_regval[0] = u_regval[0] + 8; | |
9904 | } | |
9905 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9906 | if (12 == arm_insn_r->opcode) | |
9907 | { | |
9908 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
9909 | } | |
9910 | else | |
9911 | { | |
9912 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
9913 | } | |
9914 | if (ARM_RECORD_STRH == str_type) | |
9915 | { | |
9916 | record_buf_mem[0] = 2; | |
9917 | record_buf_mem[1] = tgt_mem_addr; | |
9918 | arm_insn_r->mem_rec_count = 1; | |
9919 | } | |
9920 | else if (ARM_RECORD_STRD == str_type) | |
9921 | { | |
9922 | record_buf_mem[0] = 4; | |
9923 | record_buf_mem[1] = tgt_mem_addr; | |
9924 | record_buf_mem[2] = 4; | |
9925 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9926 | arm_insn_r->mem_rec_count = 2; | |
9927 | } | |
9928 | } | |
9929 | else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
9930 | || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
9931 | { | |
9932 | /* 3) Store, immediate pre-indexed. */ | |
9933 | /* 5) Store, immediate post-indexed. */ | |
9934 | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | |
9935 | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | |
9936 | offset_8 = (immed_high << 4) | immed_low; | |
9937 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
9938 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9939 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9940 | if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | |
9941 | { | |
9942 | tgt_mem_addr = u_regval[0] + offset_8; | |
9943 | } | |
9944 | else | |
9945 | { | |
9946 | tgt_mem_addr = u_regval[0] - offset_8; | |
9947 | } | |
9948 | if (ARM_RECORD_STRH == str_type) | |
9949 | { | |
9950 | record_buf_mem[0] = 2; | |
9951 | record_buf_mem[1] = tgt_mem_addr; | |
9952 | arm_insn_r->mem_rec_count = 1; | |
9953 | } | |
9954 | else if (ARM_RECORD_STRD == str_type) | |
9955 | { | |
9956 | record_buf_mem[0] = 4; | |
9957 | record_buf_mem[1] = tgt_mem_addr; | |
9958 | record_buf_mem[2] = 4; | |
9959 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9960 | arm_insn_r->mem_rec_count = 2; | |
9961 | } | |
9962 | /* Record Rn also as it changes. */ | |
9963 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
9964 | arm_insn_r->reg_rec_count = 1; | |
9965 | } | |
9966 | else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode | |
9967 | || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
9968 | { | |
9969 | /* 4) Store, register pre-indexed. */ | |
9970 | /* 6) Store, register post -indexed. */ | |
9971 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
9972 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
9973 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
9974 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
9975 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
9976 | if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | |
9977 | { | |
9978 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
9979 | } | |
9980 | else | |
9981 | { | |
9982 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
9983 | } | |
9984 | if (ARM_RECORD_STRH == str_type) | |
9985 | { | |
9986 | record_buf_mem[0] = 2; | |
9987 | record_buf_mem[1] = tgt_mem_addr; | |
9988 | arm_insn_r->mem_rec_count = 1; | |
9989 | } | |
9990 | else if (ARM_RECORD_STRD == str_type) | |
9991 | { | |
9992 | record_buf_mem[0] = 4; | |
9993 | record_buf_mem[1] = tgt_mem_addr; | |
9994 | record_buf_mem[2] = 4; | |
9995 | record_buf_mem[3] = tgt_mem_addr + 4; | |
9996 | arm_insn_r->mem_rec_count = 2; | |
9997 | } | |
9998 | /* Record Rn also as it changes. */ | |
9999 | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | |
10000 | arm_insn_r->reg_rec_count = 1; | |
10001 | } | |
10002 | return 0; | |
10003 | } | |
10004 | ||
10005 | /* Handling ARM extension space insns. */ | |
10006 | ||
10007 | static int | |
10008 | arm_record_extension_space (insn_decode_record *arm_insn_r) | |
10009 | { | |
10010 | uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */ | |
10011 | uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0; | |
10012 | uint32_t record_buf[8], record_buf_mem[8]; | |
10013 | uint32_t reg_src1 = 0; | |
72508ac0 PO |
10014 | struct regcache *reg_cache = arm_insn_r->regcache; |
10015 | ULONGEST u_regval = 0; | |
10016 | ||
10017 | gdb_assert (!INSN_RECORDED(arm_insn_r)); | |
10018 | /* Handle unconditional insn extension space. */ | |
10019 | ||
10020 | opcode1 = bits (arm_insn_r->arm_insn, 20, 27); | |
10021 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
10022 | if (arm_insn_r->cond) | |
10023 | { | |
10024 | /* PLD has no affect on architectural state, it just affects | |
10025 | the caches. */ | |
10026 | if (5 == ((opcode1 & 0xE0) >> 5)) | |
10027 | { | |
10028 | /* BLX(1) */ | |
10029 | record_buf[0] = ARM_PS_REGNUM; | |
10030 | record_buf[1] = ARM_LR_REGNUM; | |
10031 | arm_insn_r->reg_rec_count = 2; | |
10032 | } | |
10033 | /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */ | |
10034 | } | |
10035 | ||
10036 | ||
10037 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
10038 | if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4)) | |
10039 | { | |
10040 | ret = -1; | |
10041 | /* Undefined instruction on ARM V5; need to handle if later | |
10042 | versions define it. */ | |
10043 | } | |
10044 | ||
10045 | opcode1 = bits (arm_insn_r->arm_insn, 24, 27); | |
10046 | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | |
10047 | insn_op1 = bits (arm_insn_r->arm_insn, 20, 23); | |
10048 | ||
10049 | /* Handle arithmetic insn extension space. */ | |
10050 | if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond | |
10051 | && !INSN_RECORDED(arm_insn_r)) | |
10052 | { | |
10053 | /* Handle MLA(S) and MUL(S). */ | |
10054 | if (0 <= insn_op1 && 3 >= insn_op1) | |
10055 | { | |
10056 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10057 | record_buf[1] = ARM_PS_REGNUM; | |
10058 | arm_insn_r->reg_rec_count = 2; | |
10059 | } | |
10060 | else if (4 <= insn_op1 && 15 >= insn_op1) | |
10061 | { | |
10062 | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ | |
10063 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10064 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10065 | record_buf[2] = ARM_PS_REGNUM; | |
10066 | arm_insn_r->reg_rec_count = 3; | |
10067 | } | |
10068 | } | |
10069 | ||
10070 | opcode1 = bits (arm_insn_r->arm_insn, 26, 27); | |
10071 | opcode2 = bits (arm_insn_r->arm_insn, 23, 24); | |
10072 | insn_op1 = bits (arm_insn_r->arm_insn, 21, 22); | |
10073 | ||
10074 | /* Handle control insn extension space. */ | |
10075 | ||
10076 | if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20) | |
10077 | && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r)) | |
10078 | { | |
10079 | if (!bit (arm_insn_r->arm_insn,25)) | |
10080 | { | |
10081 | if (!bits (arm_insn_r->arm_insn, 4, 7)) | |
10082 | { | |
10083 | if ((0 == insn_op1) || (2 == insn_op1)) | |
10084 | { | |
10085 | /* MRS. */ | |
10086 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10087 | arm_insn_r->reg_rec_count = 1; | |
10088 | } | |
10089 | else if (1 == insn_op1) | |
10090 | { | |
10091 | /* CSPR is going to be changed. */ | |
10092 | record_buf[0] = ARM_PS_REGNUM; | |
10093 | arm_insn_r->reg_rec_count = 1; | |
10094 | } | |
10095 | else if (3 == insn_op1) | |
10096 | { | |
10097 | /* SPSR is going to be changed. */ | |
10098 | /* We need to get SPSR value, which is yet to be done. */ | |
72508ac0 PO |
10099 | return -1; |
10100 | } | |
10101 | } | |
10102 | else if (1 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10103 | { | |
10104 | if (1 == insn_op1) | |
10105 | { | |
10106 | /* BX. */ | |
10107 | record_buf[0] = ARM_PS_REGNUM; | |
10108 | arm_insn_r->reg_rec_count = 1; | |
10109 | } | |
10110 | else if (3 == insn_op1) | |
10111 | { | |
10112 | /* CLZ. */ | |
10113 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10114 | arm_insn_r->reg_rec_count = 1; | |
10115 | } | |
10116 | } | |
10117 | else if (3 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10118 | { | |
10119 | /* BLX. */ | |
10120 | record_buf[0] = ARM_PS_REGNUM; | |
10121 | record_buf[1] = ARM_LR_REGNUM; | |
10122 | arm_insn_r->reg_rec_count = 2; | |
10123 | } | |
10124 | else if (5 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10125 | { | |
10126 | /* QADD, QSUB, QDADD, QDSUB */ | |
10127 | record_buf[0] = ARM_PS_REGNUM; | |
10128 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10129 | arm_insn_r->reg_rec_count = 2; | |
10130 | } | |
10131 | else if (7 == bits (arm_insn_r->arm_insn, 4, 7)) | |
10132 | { | |
10133 | /* BKPT. */ | |
10134 | record_buf[0] = ARM_PS_REGNUM; | |
10135 | record_buf[1] = ARM_LR_REGNUM; | |
10136 | arm_insn_r->reg_rec_count = 2; | |
10137 | ||
10138 | /* Save SPSR also;how? */ | |
72508ac0 PO |
10139 | return -1; |
10140 | } | |
10141 | else if(8 == bits (arm_insn_r->arm_insn, 4, 7) | |
10142 | || 10 == bits (arm_insn_r->arm_insn, 4, 7) | |
10143 | || 12 == bits (arm_insn_r->arm_insn, 4, 7) | |
10144 | || 14 == bits (arm_insn_r->arm_insn, 4, 7) | |
10145 | ) | |
10146 | { | |
10147 | if (0 == insn_op1 || 1 == insn_op1) | |
10148 | { | |
10149 | /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */ | |
10150 | /* We dont do optimization for SMULW<y> where we | |
10151 | need only Rd. */ | |
10152 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10153 | record_buf[1] = ARM_PS_REGNUM; | |
10154 | arm_insn_r->reg_rec_count = 2; | |
10155 | } | |
10156 | else if (2 == insn_op1) | |
10157 | { | |
10158 | /* SMLAL<x><y>. */ | |
10159 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10160 | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
10161 | arm_insn_r->reg_rec_count = 2; | |
10162 | } | |
10163 | else if (3 == insn_op1) | |
10164 | { | |
10165 | /* SMUL<x><y>. */ | |
10166 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10167 | arm_insn_r->reg_rec_count = 1; | |
10168 | } | |
10169 | } | |
10170 | } | |
10171 | else | |
10172 | { | |
10173 | /* MSR : immediate form. */ | |
10174 | if (1 == insn_op1) | |
10175 | { | |
10176 | /* CSPR is going to be changed. */ | |
10177 | record_buf[0] = ARM_PS_REGNUM; | |
10178 | arm_insn_r->reg_rec_count = 1; | |
10179 | } | |
10180 | else if (3 == insn_op1) | |
10181 | { | |
10182 | /* SPSR is going to be changed. */ | |
10183 | /* we need to get SPSR value, which is yet to be done */ | |
72508ac0 PO |
10184 | return -1; |
10185 | } | |
10186 | } | |
10187 | } | |
10188 | ||
10189 | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | |
10190 | opcode2 = bits (arm_insn_r->arm_insn, 20, 24); | |
10191 | insn_op1 = bits (arm_insn_r->arm_insn, 5, 6); | |
10192 | ||
10193 | /* Handle load/store insn extension space. */ | |
10194 | ||
10195 | if (!opcode1 && bit (arm_insn_r->arm_insn, 7) | |
10196 | && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond | |
10197 | && !INSN_RECORDED(arm_insn_r)) | |
10198 | { | |
10199 | /* SWP/SWPB. */ | |
10200 | if (0 == insn_op1) | |
10201 | { | |
10202 | /* These insn, changes register and memory as well. */ | |
10203 | /* SWP or SWPB insn. */ | |
10204 | /* Get memory address given by Rn. */ | |
10205 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10206 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
10207 | /* SWP insn ?, swaps word. */ | |
10208 | if (8 == arm_insn_r->opcode) | |
10209 | { | |
10210 | record_buf_mem[0] = 4; | |
10211 | } | |
10212 | else | |
10213 | { | |
10214 | /* SWPB insn, swaps only byte. */ | |
10215 | record_buf_mem[0] = 1; | |
10216 | } | |
10217 | record_buf_mem[1] = u_regval; | |
10218 | arm_insn_r->mem_rec_count = 1; | |
10219 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10220 | arm_insn_r->reg_rec_count = 1; | |
10221 | } | |
10222 | else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10223 | { | |
10224 | /* STRH. */ | |
10225 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
10226 | ARM_RECORD_STRH); | |
10227 | } | |
10228 | else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10229 | { | |
10230 | /* LDRD. */ | |
10231 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10232 | record_buf[1] = record_buf[0] + 1; | |
10233 | arm_insn_r->reg_rec_count = 2; | |
10234 | } | |
10235 | else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | |
10236 | { | |
10237 | /* STRD. */ | |
10238 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
10239 | ARM_RECORD_STRD); | |
10240 | } | |
10241 | else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3) | |
10242 | { | |
10243 | /* LDRH, LDRSB, LDRSH. */ | |
10244 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10245 | arm_insn_r->reg_rec_count = 1; | |
10246 | } | |
10247 | ||
10248 | } | |
10249 | ||
10250 | opcode1 = bits (arm_insn_r->arm_insn, 23, 27); | |
10251 | if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21) | |
10252 | && !INSN_RECORDED(arm_insn_r)) | |
10253 | { | |
10254 | ret = -1; | |
10255 | /* Handle coprocessor insn extension space. */ | |
10256 | } | |
10257 | ||
10258 | /* To be done for ARMv5 and later; as of now we return -1. */ | |
10259 | if (-1 == ret) | |
ca92db2d | 10260 | return ret; |
72508ac0 PO |
10261 | |
10262 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10263 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10264 | ||
10265 | return ret; | |
10266 | } | |
10267 | ||
10268 | /* Handling opcode 000 insns. */ | |
10269 | ||
10270 | static int | |
10271 | arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r) | |
10272 | { | |
10273 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10274 | uint32_t record_buf[8], record_buf_mem[8]; | |
10275 | ULONGEST u_regval[2] = {0}; | |
10276 | ||
bec2ab5a | 10277 | uint32_t reg_src1 = 0, reg_dest = 0; |
72508ac0 PO |
10278 | uint32_t opcode1 = 0; |
10279 | ||
10280 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
10281 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10282 | opcode1 = bits (arm_insn_r->arm_insn, 20, 24); | |
10283 | ||
10284 | /* Data processing insn /multiply insn. */ | |
10285 | if (9 == arm_insn_r->decode | |
10286 | && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | |
10287 | || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode))) | |
10288 | { | |
10289 | /* Handle multiply instructions. */ | |
10290 | /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */ | |
10291 | if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode) | |
10292 | { | |
10293 | /* Handle MLA and MUL. */ | |
10294 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10295 | record_buf[1] = ARM_PS_REGNUM; | |
10296 | arm_insn_r->reg_rec_count = 2; | |
10297 | } | |
10298 | else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | |
10299 | { | |
10300 | /* Handle SMLAL, SMULL, UMLAL, UMULL. */ | |
10301 | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | |
10302 | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | |
10303 | record_buf[2] = ARM_PS_REGNUM; | |
10304 | arm_insn_r->reg_rec_count = 3; | |
10305 | } | |
10306 | } | |
10307 | else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | |
10308 | && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode)) | |
10309 | { | |
10310 | /* Handle misc load insns, as 20th bit (L = 1). */ | |
10311 | /* LDR insn has a capability to do branching, if | |
10312 | MOV LR, PC is precceded by LDR insn having Rn as R15 | |
10313 | in that case, it emulates branch and link insn, and hence we | |
10314 | need to save CSPR and PC as well. I am not sure this is right | |
10315 | place; as opcode = 010 LDR insn make this happen, if R15 was | |
10316 | used. */ | |
10317 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
10318 | if (15 != reg_dest) | |
10319 | { | |
10320 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10321 | arm_insn_r->reg_rec_count = 1; | |
10322 | } | |
10323 | else | |
10324 | { | |
10325 | record_buf[0] = reg_dest; | |
10326 | record_buf[1] = ARM_PS_REGNUM; | |
10327 | arm_insn_r->reg_rec_count = 2; | |
10328 | } | |
10329 | } | |
10330 | else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | |
10331 | && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0) | |
10332 | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | |
10333 | && 2 == bits (arm_insn_r->arm_insn, 20, 21)) | |
10334 | { | |
10335 | /* Handle MSR insn. */ | |
10336 | if (9 == arm_insn_r->opcode) | |
10337 | { | |
10338 | /* CSPR is going to be changed. */ | |
10339 | record_buf[0] = ARM_PS_REGNUM; | |
10340 | arm_insn_r->reg_rec_count = 1; | |
10341 | } | |
10342 | else | |
10343 | { | |
10344 | /* SPSR is going to be changed. */ | |
10345 | /* How to read SPSR value? */ | |
72508ac0 PO |
10346 | return -1; |
10347 | } | |
10348 | } | |
10349 | else if (9 == arm_insn_r->decode | |
10350 | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
10351 | && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10352 | { | |
10353 | /* Handling SWP, SWPB. */ | |
10354 | /* These insn, changes register and memory as well. */ | |
10355 | /* SWP or SWPB insn. */ | |
10356 | ||
10357 | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | |
10358 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10359 | /* SWP insn ?, swaps word. */ | |
10360 | if (8 == arm_insn_r->opcode) | |
10361 | { | |
10362 | record_buf_mem[0] = 4; | |
10363 | } | |
10364 | else | |
10365 | { | |
10366 | /* SWPB insn, swaps only byte. */ | |
10367 | record_buf_mem[0] = 1; | |
10368 | } | |
10369 | record_buf_mem[1] = u_regval[0]; | |
10370 | arm_insn_r->mem_rec_count = 1; | |
10371 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10372 | arm_insn_r->reg_rec_count = 1; | |
10373 | } | |
10374 | else if (3 == arm_insn_r->decode && 0x12 == opcode1 | |
10375 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
10376 | { | |
10377 | /* Handle BLX, branch and link/exchange. */ | |
10378 | if (9 == arm_insn_r->opcode) | |
10379 | { | |
10380 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm, | |
10381 | and R14 stores the return address. */ | |
10382 | record_buf[0] = ARM_PS_REGNUM; | |
10383 | record_buf[1] = ARM_LR_REGNUM; | |
10384 | arm_insn_r->reg_rec_count = 2; | |
10385 | } | |
10386 | } | |
10387 | else if (7 == arm_insn_r->decode && 0x12 == opcode1) | |
10388 | { | |
10389 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
10390 | /* CPSR is changed to be executed in ARM state, disabling normal | |
10391 | interrupts, entering abort mode. */ | |
10392 | /* According to high vector configuration PC is set. */ | |
10393 | /* user hit breakpoint and type reverse, in | |
10394 | that case, we need to go back with previous CPSR and | |
10395 | Program Counter. */ | |
10396 | record_buf[0] = ARM_PS_REGNUM; | |
10397 | record_buf[1] = ARM_LR_REGNUM; | |
10398 | arm_insn_r->reg_rec_count = 2; | |
10399 | ||
10400 | /* Save SPSR also; how? */ | |
72508ac0 PO |
10401 | return -1; |
10402 | } | |
10403 | else if (11 == arm_insn_r->decode | |
10404 | && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10405 | { | |
10406 | /* Handle enhanced store insns and DSP insns (e.g. LDRD). */ | |
10407 | ||
10408 | /* Handle str(x) insn */ | |
10409 | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | |
10410 | ARM_RECORD_STRH); | |
10411 | } | |
10412 | else if (1 == arm_insn_r->decode && 0x12 == opcode1 | |
10413 | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | |
10414 | { | |
10415 | /* Handle BX, branch and link/exchange. */ | |
10416 | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */ | |
10417 | record_buf[0] = ARM_PS_REGNUM; | |
10418 | arm_insn_r->reg_rec_count = 1; | |
10419 | } | |
10420 | else if (1 == arm_insn_r->decode && 0x16 == opcode1 | |
10421 | && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1) | |
10422 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)) | |
10423 | { | |
10424 | /* Count leading zeros: CLZ. */ | |
10425 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10426 | arm_insn_r->reg_rec_count = 1; | |
10427 | } | |
10428 | else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | |
10429 | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | |
10430 | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1) | |
10431 | && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0) | |
10432 | ) | |
10433 | { | |
10434 | /* Handle MRS insn. */ | |
10435 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10436 | arm_insn_r->reg_rec_count = 1; | |
10437 | } | |
10438 | else if (arm_insn_r->opcode <= 15) | |
10439 | { | |
10440 | /* Normal data processing insns. */ | |
10441 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
10442 | register, which is specified by 13-16 decode. */ | |
10443 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10444 | record_buf[1] = ARM_PS_REGNUM; | |
10445 | arm_insn_r->reg_rec_count = 2; | |
10446 | } | |
10447 | else | |
10448 | { | |
10449 | return -1; | |
10450 | } | |
10451 | ||
10452 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10453 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10454 | return 0; | |
10455 | } | |
10456 | ||
10457 | /* Handling opcode 001 insns. */ | |
10458 | ||
10459 | static int | |
10460 | arm_record_data_proc_imm (insn_decode_record *arm_insn_r) | |
10461 | { | |
10462 | uint32_t record_buf[8], record_buf_mem[8]; | |
10463 | ||
10464 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | |
10465 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10466 | ||
10467 | if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | |
10468 | && 2 == bits (arm_insn_r->arm_insn, 20, 21) | |
10469 | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | |
10470 | ) | |
10471 | { | |
10472 | /* Handle MSR insn. */ | |
10473 | if (9 == arm_insn_r->opcode) | |
10474 | { | |
10475 | /* CSPR is going to be changed. */ | |
10476 | record_buf[0] = ARM_PS_REGNUM; | |
10477 | arm_insn_r->reg_rec_count = 1; | |
10478 | } | |
10479 | else | |
10480 | { | |
10481 | /* SPSR is going to be changed. */ | |
10482 | } | |
10483 | } | |
10484 | else if (arm_insn_r->opcode <= 15) | |
10485 | { | |
10486 | /* Normal data processing insns. */ | |
10487 | /* Out of 11 shifter operands mode, all the insn modifies destination | |
10488 | register, which is specified by 13-16 decode. */ | |
10489 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10490 | record_buf[1] = ARM_PS_REGNUM; | |
10491 | arm_insn_r->reg_rec_count = 2; | |
10492 | } | |
10493 | else | |
10494 | { | |
10495 | return -1; | |
10496 | } | |
10497 | ||
10498 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10499 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10500 | return 0; | |
10501 | } | |
10502 | ||
c55978a6 YQ |
10503 | static int |
10504 | arm_record_media (insn_decode_record *arm_insn_r) | |
10505 | { | |
10506 | uint32_t record_buf[8]; | |
10507 | ||
10508 | switch (bits (arm_insn_r->arm_insn, 22, 24)) | |
10509 | { | |
10510 | case 0: | |
10511 | /* Parallel addition and subtraction, signed */ | |
10512 | case 1: | |
10513 | /* Parallel addition and subtraction, unsigned */ | |
10514 | case 2: | |
10515 | case 3: | |
10516 | /* Packing, unpacking, saturation and reversal */ | |
10517 | { | |
10518 | int rd = bits (arm_insn_r->arm_insn, 12, 15); | |
10519 | ||
10520 | record_buf[arm_insn_r->reg_rec_count++] = rd; | |
10521 | } | |
10522 | break; | |
10523 | ||
10524 | case 4: | |
10525 | case 5: | |
10526 | /* Signed multiplies */ | |
10527 | { | |
10528 | int rd = bits (arm_insn_r->arm_insn, 16, 19); | |
10529 | unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22); | |
10530 | ||
10531 | record_buf[arm_insn_r->reg_rec_count++] = rd; | |
10532 | if (op1 == 0x0) | |
10533 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
10534 | else if (op1 == 0x4) | |
10535 | record_buf[arm_insn_r->reg_rec_count++] | |
10536 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10537 | } | |
10538 | break; | |
10539 | ||
10540 | case 6: | |
10541 | { | |
10542 | if (bit (arm_insn_r->arm_insn, 21) | |
10543 | && bits (arm_insn_r->arm_insn, 5, 6) == 0x2) | |
10544 | { | |
10545 | /* SBFX */ | |
10546 | record_buf[arm_insn_r->reg_rec_count++] | |
10547 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10548 | } | |
10549 | else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0 | |
10550 | && bits (arm_insn_r->arm_insn, 5, 7) == 0x0) | |
10551 | { | |
10552 | /* USAD8 and USADA8 */ | |
10553 | record_buf[arm_insn_r->reg_rec_count++] | |
10554 | = bits (arm_insn_r->arm_insn, 16, 19); | |
10555 | } | |
10556 | } | |
10557 | break; | |
10558 | ||
10559 | case 7: | |
10560 | { | |
10561 | if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3 | |
10562 | && bits (arm_insn_r->arm_insn, 5, 7) == 0x7) | |
10563 | { | |
10564 | /* Permanently UNDEFINED */ | |
10565 | return -1; | |
10566 | } | |
10567 | else | |
10568 | { | |
10569 | /* BFC, BFI and UBFX */ | |
10570 | record_buf[arm_insn_r->reg_rec_count++] | |
10571 | = bits (arm_insn_r->arm_insn, 12, 15); | |
10572 | } | |
10573 | } | |
10574 | break; | |
10575 | ||
10576 | default: | |
10577 | return -1; | |
10578 | } | |
10579 | ||
10580 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10581 | ||
10582 | return 0; | |
10583 | } | |
10584 | ||
71e396f9 | 10585 | /* Handle ARM mode instructions with opcode 010. */ |
72508ac0 PO |
10586 | |
10587 | static int | |
10588 | arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r) | |
10589 | { | |
10590 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10591 | ||
71e396f9 LM |
10592 | uint32_t reg_base , reg_dest; |
10593 | uint32_t offset_12, tgt_mem_addr; | |
72508ac0 | 10594 | uint32_t record_buf[8], record_buf_mem[8]; |
71e396f9 LM |
10595 | unsigned char wback; |
10596 | ULONGEST u_regval; | |
72508ac0 | 10597 | |
71e396f9 LM |
10598 | /* Calculate wback. */ |
10599 | wback = (bit (arm_insn_r->arm_insn, 24) == 0) | |
10600 | || (bit (arm_insn_r->arm_insn, 21) == 1); | |
72508ac0 | 10601 | |
71e396f9 LM |
10602 | arm_insn_r->reg_rec_count = 0; |
10603 | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | |
72508ac0 PO |
10604 | |
10605 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10606 | { | |
71e396f9 LM |
10607 | /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT |
10608 | and LDRT. */ | |
10609 | ||
72508ac0 | 10610 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); |
71e396f9 LM |
10611 | record_buf[arm_insn_r->reg_rec_count++] = reg_dest; |
10612 | ||
10613 | /* The LDR instruction is capable of doing branching. If MOV LR, PC | |
10614 | preceeds a LDR instruction having R15 as reg_base, it | |
10615 | emulates a branch and link instruction, and hence we need to save | |
10616 | CPSR and PC as well. */ | |
10617 | if (ARM_PC_REGNUM == reg_dest) | |
10618 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
10619 | ||
10620 | /* If wback is true, also save the base register, which is going to be | |
10621 | written to. */ | |
10622 | if (wback) | |
10623 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
10624 | } |
10625 | else | |
10626 | { | |
71e396f9 LM |
10627 | /* STR (immediate), STRB (immediate), STRBT and STRT. */ |
10628 | ||
72508ac0 | 10629 | offset_12 = bits (arm_insn_r->arm_insn, 0, 11); |
71e396f9 LM |
10630 | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); |
10631 | ||
10632 | /* Handle bit U. */ | |
72508ac0 | 10633 | if (bit (arm_insn_r->arm_insn, 23)) |
71e396f9 LM |
10634 | { |
10635 | /* U == 1: Add the offset. */ | |
10636 | tgt_mem_addr = (uint32_t) u_regval + offset_12; | |
10637 | } | |
72508ac0 | 10638 | else |
71e396f9 LM |
10639 | { |
10640 | /* U == 0: subtract the offset. */ | |
10641 | tgt_mem_addr = (uint32_t) u_regval - offset_12; | |
10642 | } | |
10643 | ||
10644 | /* Bit 22 tells us whether the store instruction writes 1 byte or 4 | |
10645 | bytes. */ | |
10646 | if (bit (arm_insn_r->arm_insn, 22)) | |
10647 | { | |
10648 | /* STRB and STRBT: 1 byte. */ | |
10649 | record_buf_mem[0] = 1; | |
10650 | } | |
10651 | else | |
10652 | { | |
10653 | /* STR and STRT: 4 bytes. */ | |
10654 | record_buf_mem[0] = 4; | |
10655 | } | |
10656 | ||
10657 | /* Handle bit P. */ | |
10658 | if (bit (arm_insn_r->arm_insn, 24)) | |
10659 | record_buf_mem[1] = tgt_mem_addr; | |
10660 | else | |
10661 | record_buf_mem[1] = (uint32_t) u_regval; | |
72508ac0 | 10662 | |
72508ac0 PO |
10663 | arm_insn_r->mem_rec_count = 1; |
10664 | ||
71e396f9 LM |
10665 | /* If wback is true, also save the base register, which is going to be |
10666 | written to. */ | |
10667 | if (wback) | |
10668 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
10669 | } |
10670 | ||
10671 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10672 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10673 | return 0; | |
10674 | } | |
10675 | ||
10676 | /* Handling opcode 011 insns. */ | |
10677 | ||
10678 | static int | |
10679 | arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r) | |
10680 | { | |
10681 | struct regcache *reg_cache = arm_insn_r->regcache; | |
10682 | ||
10683 | uint32_t shift_imm = 0; | |
10684 | uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; | |
10685 | uint32_t offset_12 = 0, tgt_mem_addr = 0; | |
10686 | uint32_t record_buf[8], record_buf_mem[8]; | |
10687 | ||
10688 | LONGEST s_word; | |
10689 | ULONGEST u_regval[2]; | |
10690 | ||
c55978a6 YQ |
10691 | if (bit (arm_insn_r->arm_insn, 4)) |
10692 | return arm_record_media (arm_insn_r); | |
10693 | ||
72508ac0 PO |
10694 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
10695 | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | |
10696 | ||
10697 | /* Handle enhanced store insns and LDRD DSP insn, | |
10698 | order begins according to addressing modes for store insns | |
10699 | STRH insn. */ | |
10700 | ||
10701 | /* LDR or STR? */ | |
10702 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10703 | { | |
10704 | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | |
10705 | /* LDR insn has a capability to do branching, if | |
10706 | MOV LR, PC is precedded by LDR insn having Rn as R15 | |
10707 | in that case, it emulates branch and link insn, and hence we | |
10708 | need to save CSPR and PC as well. */ | |
10709 | if (15 != reg_dest) | |
10710 | { | |
10711 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
10712 | arm_insn_r->reg_rec_count = 1; | |
10713 | } | |
10714 | else | |
10715 | { | |
10716 | record_buf[0] = reg_dest; | |
10717 | record_buf[1] = ARM_PS_REGNUM; | |
10718 | arm_insn_r->reg_rec_count = 2; | |
10719 | } | |
10720 | } | |
10721 | else | |
10722 | { | |
10723 | if (! bits (arm_insn_r->arm_insn, 4, 11)) | |
10724 | { | |
10725 | /* Store insn, register offset and register pre-indexed, | |
10726 | register post-indexed. */ | |
10727 | /* Get Rm. */ | |
10728 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10729 | /* Get Rn. */ | |
10730 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10731 | regcache_raw_read_unsigned (reg_cache, reg_src1 | |
10732 | , &u_regval[0]); | |
10733 | regcache_raw_read_unsigned (reg_cache, reg_src2 | |
10734 | , &u_regval[1]); | |
10735 | if (15 == reg_src2) | |
10736 | { | |
10737 | /* If R15 was used as Rn, hence current PC+8. */ | |
10738 | /* Pre-indexed mode doesnt reach here ; illegal insn. */ | |
10739 | u_regval[0] = u_regval[0] + 8; | |
10740 | } | |
10741 | /* Calculate target store address, Rn +/- Rm, register offset. */ | |
10742 | /* U == 1. */ | |
10743 | if (bit (arm_insn_r->arm_insn, 23)) | |
10744 | { | |
10745 | tgt_mem_addr = u_regval[0] + u_regval[1]; | |
10746 | } | |
10747 | else | |
10748 | { | |
10749 | tgt_mem_addr = u_regval[1] - u_regval[0]; | |
10750 | } | |
10751 | ||
10752 | switch (arm_insn_r->opcode) | |
10753 | { | |
10754 | /* STR. */ | |
10755 | case 8: | |
10756 | case 12: | |
10757 | /* STR. */ | |
10758 | case 9: | |
10759 | case 13: | |
10760 | /* STRT. */ | |
10761 | case 1: | |
10762 | case 5: | |
10763 | /* STR. */ | |
10764 | case 0: | |
10765 | case 4: | |
10766 | record_buf_mem[0] = 4; | |
10767 | break; | |
10768 | ||
10769 | /* STRB. */ | |
10770 | case 10: | |
10771 | case 14: | |
10772 | /* STRB. */ | |
10773 | case 11: | |
10774 | case 15: | |
10775 | /* STRBT. */ | |
10776 | case 3: | |
10777 | case 7: | |
10778 | /* STRB. */ | |
10779 | case 2: | |
10780 | case 6: | |
10781 | record_buf_mem[0] = 1; | |
10782 | break; | |
10783 | ||
10784 | default: | |
10785 | gdb_assert_not_reached ("no decoding pattern found"); | |
10786 | break; | |
10787 | } | |
10788 | record_buf_mem[1] = tgt_mem_addr; | |
10789 | arm_insn_r->mem_rec_count = 1; | |
10790 | ||
10791 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
10792 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
10793 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
10794 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
10795 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
10796 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
10797 | ) | |
10798 | { | |
10799 | /* Rn is going to be changed in pre-indexed mode and | |
10800 | post-indexed mode as well. */ | |
10801 | record_buf[0] = reg_src2; | |
10802 | arm_insn_r->reg_rec_count = 1; | |
10803 | } | |
10804 | } | |
10805 | else | |
10806 | { | |
10807 | /* Store insn, scaled register offset; scaled pre-indexed. */ | |
10808 | offset_12 = bits (arm_insn_r->arm_insn, 5, 6); | |
10809 | /* Get Rm. */ | |
10810 | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | |
10811 | /* Get Rn. */ | |
10812 | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | |
10813 | /* Get shift_imm. */ | |
10814 | shift_imm = bits (arm_insn_r->arm_insn, 7, 11); | |
10815 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
10816 | regcache_raw_read_signed (reg_cache, reg_src1, &s_word); | |
10817 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10818 | /* Offset_12 used as shift. */ | |
10819 | switch (offset_12) | |
10820 | { | |
10821 | case 0: | |
10822 | /* Offset_12 used as index. */ | |
10823 | offset_12 = u_regval[0] << shift_imm; | |
10824 | break; | |
10825 | ||
10826 | case 1: | |
10827 | offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm; | |
10828 | break; | |
10829 | ||
10830 | case 2: | |
10831 | if (!shift_imm) | |
10832 | { | |
10833 | if (bit (u_regval[0], 31)) | |
10834 | { | |
10835 | offset_12 = 0xFFFFFFFF; | |
10836 | } | |
10837 | else | |
10838 | { | |
10839 | offset_12 = 0; | |
10840 | } | |
10841 | } | |
10842 | else | |
10843 | { | |
10844 | /* This is arithmetic shift. */ | |
10845 | offset_12 = s_word >> shift_imm; | |
10846 | } | |
10847 | break; | |
10848 | ||
10849 | case 3: | |
10850 | if (!shift_imm) | |
10851 | { | |
10852 | regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM, | |
10853 | &u_regval[1]); | |
10854 | /* Get C flag value and shift it by 31. */ | |
10855 | offset_12 = (((bit (u_regval[1], 29)) << 31) \ | |
10856 | | (u_regval[0]) >> 1); | |
10857 | } | |
10858 | else | |
10859 | { | |
10860 | offset_12 = (u_regval[0] >> shift_imm) \ | |
10861 | | (u_regval[0] << | |
10862 | (sizeof(uint32_t) - shift_imm)); | |
10863 | } | |
10864 | break; | |
10865 | ||
10866 | default: | |
10867 | gdb_assert_not_reached ("no decoding pattern found"); | |
10868 | break; | |
10869 | } | |
10870 | ||
10871 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
10872 | /* bit U set. */ | |
10873 | if (bit (arm_insn_r->arm_insn, 23)) | |
10874 | { | |
10875 | tgt_mem_addr = u_regval[1] + offset_12; | |
10876 | } | |
10877 | else | |
10878 | { | |
10879 | tgt_mem_addr = u_regval[1] - offset_12; | |
10880 | } | |
10881 | ||
10882 | switch (arm_insn_r->opcode) | |
10883 | { | |
10884 | /* STR. */ | |
10885 | case 8: | |
10886 | case 12: | |
10887 | /* STR. */ | |
10888 | case 9: | |
10889 | case 13: | |
10890 | /* STRT. */ | |
10891 | case 1: | |
10892 | case 5: | |
10893 | /* STR. */ | |
10894 | case 0: | |
10895 | case 4: | |
10896 | record_buf_mem[0] = 4; | |
10897 | break; | |
10898 | ||
10899 | /* STRB. */ | |
10900 | case 10: | |
10901 | case 14: | |
10902 | /* STRB. */ | |
10903 | case 11: | |
10904 | case 15: | |
10905 | /* STRBT. */ | |
10906 | case 3: | |
10907 | case 7: | |
10908 | /* STRB. */ | |
10909 | case 2: | |
10910 | case 6: | |
10911 | record_buf_mem[0] = 1; | |
10912 | break; | |
10913 | ||
10914 | default: | |
10915 | gdb_assert_not_reached ("no decoding pattern found"); | |
10916 | break; | |
10917 | } | |
10918 | record_buf_mem[1] = tgt_mem_addr; | |
10919 | arm_insn_r->mem_rec_count = 1; | |
10920 | ||
10921 | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | |
10922 | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | |
10923 | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | |
10924 | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | |
10925 | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | |
10926 | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | |
10927 | ) | |
10928 | { | |
10929 | /* Rn is going to be changed in register scaled pre-indexed | |
10930 | mode,and scaled post indexed mode. */ | |
10931 | record_buf[0] = reg_src2; | |
10932 | arm_insn_r->reg_rec_count = 1; | |
10933 | } | |
10934 | } | |
10935 | } | |
10936 | ||
10937 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
10938 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
10939 | return 0; | |
10940 | } | |
10941 | ||
71e396f9 | 10942 | /* Handle ARM mode instructions with opcode 100. */ |
72508ac0 PO |
10943 | |
10944 | static int | |
10945 | arm_record_ld_st_multiple (insn_decode_record *arm_insn_r) | |
10946 | { | |
10947 | struct regcache *reg_cache = arm_insn_r->regcache; | |
71e396f9 LM |
10948 | uint32_t register_count = 0, register_bits; |
10949 | uint32_t reg_base, addr_mode; | |
72508ac0 | 10950 | uint32_t record_buf[24], record_buf_mem[48]; |
71e396f9 LM |
10951 | uint32_t wback; |
10952 | ULONGEST u_regval; | |
72508ac0 | 10953 | |
71e396f9 LM |
10954 | /* Fetch the list of registers. */ |
10955 | register_bits = bits (arm_insn_r->arm_insn, 0, 15); | |
10956 | arm_insn_r->reg_rec_count = 0; | |
10957 | ||
10958 | /* Fetch the base register that contains the address we are loading data | |
10959 | to. */ | |
10960 | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | |
72508ac0 | 10961 | |
71e396f9 LM |
10962 | /* Calculate wback. */ |
10963 | wback = (bit (arm_insn_r->arm_insn, 21) == 1); | |
72508ac0 PO |
10964 | |
10965 | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
10966 | { | |
71e396f9 | 10967 | /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */ |
72508ac0 | 10968 | |
71e396f9 | 10969 | /* Find out which registers are going to be loaded from memory. */ |
72508ac0 | 10970 | while (register_bits) |
71e396f9 LM |
10971 | { |
10972 | if (register_bits & 0x00000001) | |
10973 | record_buf[arm_insn_r->reg_rec_count++] = register_count; | |
10974 | register_bits = register_bits >> 1; | |
10975 | register_count++; | |
10976 | } | |
72508ac0 | 10977 | |
71e396f9 LM |
10978 | |
10979 | /* If wback is true, also save the base register, which is going to be | |
10980 | written to. */ | |
10981 | if (wback) | |
10982 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
10983 | ||
10984 | /* Save the CPSR register. */ | |
10985 | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | |
72508ac0 PO |
10986 | } |
10987 | else | |
10988 | { | |
71e396f9 | 10989 | /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */ |
72508ac0 | 10990 | |
71e396f9 LM |
10991 | addr_mode = bits (arm_insn_r->arm_insn, 23, 24); |
10992 | ||
10993 | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); | |
10994 | ||
10995 | /* Find out how many registers are going to be stored to memory. */ | |
72508ac0 | 10996 | while (register_bits) |
71e396f9 LM |
10997 | { |
10998 | if (register_bits & 0x00000001) | |
10999 | register_count++; | |
11000 | register_bits = register_bits >> 1; | |
11001 | } | |
72508ac0 PO |
11002 | |
11003 | switch (addr_mode) | |
71e396f9 LM |
11004 | { |
11005 | /* STMDA (STMED): Decrement after. */ | |
11006 | case 0: | |
11007 | record_buf_mem[1] = (uint32_t) u_regval | |
11008 | - register_count * INT_REGISTER_SIZE + 4; | |
11009 | break; | |
11010 | /* STM (STMIA, STMEA): Increment after. */ | |
11011 | case 1: | |
11012 | record_buf_mem[1] = (uint32_t) u_regval; | |
11013 | break; | |
11014 | /* STMDB (STMFD): Decrement before. */ | |
11015 | case 2: | |
11016 | record_buf_mem[1] = (uint32_t) u_regval | |
11017 | - register_count * INT_REGISTER_SIZE; | |
11018 | break; | |
11019 | /* STMIB (STMFA): Increment before. */ | |
11020 | case 3: | |
11021 | record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE; | |
11022 | break; | |
11023 | default: | |
11024 | gdb_assert_not_reached ("no decoding pattern found"); | |
11025 | break; | |
11026 | } | |
72508ac0 | 11027 | |
71e396f9 LM |
11028 | record_buf_mem[0] = register_count * INT_REGISTER_SIZE; |
11029 | arm_insn_r->mem_rec_count = 1; | |
11030 | ||
11031 | /* If wback is true, also save the base register, which is going to be | |
11032 | written to. */ | |
11033 | if (wback) | |
11034 | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | |
72508ac0 PO |
11035 | } |
11036 | ||
11037 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11038 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11039 | return 0; | |
11040 | } | |
11041 | ||
11042 | /* Handling opcode 101 insns. */ | |
11043 | ||
11044 | static int | |
11045 | arm_record_b_bl (insn_decode_record *arm_insn_r) | |
11046 | { | |
11047 | uint32_t record_buf[8]; | |
11048 | ||
11049 | /* Handle B, BL, BLX(1) insns. */ | |
11050 | /* B simply branches so we do nothing here. */ | |
11051 | /* Note: BLX(1) doesnt fall here but instead it falls into | |
11052 | extension space. */ | |
11053 | if (bit (arm_insn_r->arm_insn, 24)) | |
11054 | { | |
11055 | record_buf[0] = ARM_LR_REGNUM; | |
11056 | arm_insn_r->reg_rec_count = 1; | |
11057 | } | |
11058 | ||
11059 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11060 | ||
11061 | return 0; | |
11062 | } | |
11063 | ||
72508ac0 | 11064 | static int |
c6ec2b30 | 11065 | arm_record_unsupported_insn (insn_decode_record *arm_insn_r) |
72508ac0 PO |
11066 | { |
11067 | printf_unfiltered (_("Process record does not support instruction " | |
01e57735 YQ |
11068 | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, |
11069 | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | |
72508ac0 PO |
11070 | |
11071 | return -1; | |
11072 | } | |
11073 | ||
5a578da5 OJ |
11074 | /* Record handler for vector data transfer instructions. */ |
11075 | ||
11076 | static int | |
11077 | arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r) | |
11078 | { | |
11079 | uint32_t bits_a, bit_c, bit_l, reg_t, reg_v; | |
11080 | uint32_t record_buf[4]; | |
11081 | ||
5a578da5 OJ |
11082 | reg_t = bits (arm_insn_r->arm_insn, 12, 15); |
11083 | reg_v = bits (arm_insn_r->arm_insn, 21, 23); | |
11084 | bits_a = bits (arm_insn_r->arm_insn, 21, 23); | |
11085 | bit_l = bit (arm_insn_r->arm_insn, 20); | |
11086 | bit_c = bit (arm_insn_r->arm_insn, 8); | |
11087 | ||
11088 | /* Handle VMOV instruction. */ | |
11089 | if (bit_l && bit_c) | |
11090 | { | |
11091 | record_buf[0] = reg_t; | |
11092 | arm_insn_r->reg_rec_count = 1; | |
11093 | } | |
11094 | else if (bit_l && !bit_c) | |
11095 | { | |
11096 | /* Handle VMOV instruction. */ | |
11097 | if (bits_a == 0x00) | |
11098 | { | |
f1771dce | 11099 | record_buf[0] = reg_t; |
5a578da5 OJ |
11100 | arm_insn_r->reg_rec_count = 1; |
11101 | } | |
11102 | /* Handle VMRS instruction. */ | |
11103 | else if (bits_a == 0x07) | |
11104 | { | |
11105 | if (reg_t == 15) | |
11106 | reg_t = ARM_PS_REGNUM; | |
11107 | ||
11108 | record_buf[0] = reg_t; | |
11109 | arm_insn_r->reg_rec_count = 1; | |
11110 | } | |
11111 | } | |
11112 | else if (!bit_l && !bit_c) | |
11113 | { | |
11114 | /* Handle VMOV instruction. */ | |
11115 | if (bits_a == 0x00) | |
11116 | { | |
f1771dce | 11117 | record_buf[0] = ARM_D0_REGNUM + reg_v; |
5a578da5 OJ |
11118 | |
11119 | arm_insn_r->reg_rec_count = 1; | |
11120 | } | |
11121 | /* Handle VMSR instruction. */ | |
11122 | else if (bits_a == 0x07) | |
11123 | { | |
11124 | record_buf[0] = ARM_FPSCR_REGNUM; | |
11125 | arm_insn_r->reg_rec_count = 1; | |
11126 | } | |
11127 | } | |
11128 | else if (!bit_l && bit_c) | |
11129 | { | |
11130 | /* Handle VMOV instruction. */ | |
11131 | if (!(bits_a & 0x04)) | |
11132 | { | |
11133 | record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4)) | |
11134 | + ARM_D0_REGNUM; | |
11135 | arm_insn_r->reg_rec_count = 1; | |
11136 | } | |
11137 | /* Handle VDUP instruction. */ | |
11138 | else | |
11139 | { | |
11140 | if (bit (arm_insn_r->arm_insn, 21)) | |
11141 | { | |
11142 | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | |
11143 | record_buf[0] = reg_v + ARM_D0_REGNUM; | |
11144 | record_buf[1] = reg_v + ARM_D0_REGNUM + 1; | |
11145 | arm_insn_r->reg_rec_count = 2; | |
11146 | } | |
11147 | else | |
11148 | { | |
11149 | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | |
11150 | record_buf[0] = reg_v + ARM_D0_REGNUM; | |
11151 | arm_insn_r->reg_rec_count = 1; | |
11152 | } | |
11153 | } | |
11154 | } | |
11155 | ||
11156 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11157 | return 0; | |
11158 | } | |
11159 | ||
f20f80dd OJ |
11160 | /* Record handler for extension register load/store instructions. */ |
11161 | ||
11162 | static int | |
11163 | arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r) | |
11164 | { | |
11165 | uint32_t opcode, single_reg; | |
11166 | uint8_t op_vldm_vstm; | |
11167 | uint32_t record_buf[8], record_buf_mem[128]; | |
11168 | ULONGEST u_regval = 0; | |
11169 | ||
11170 | struct regcache *reg_cache = arm_insn_r->regcache; | |
f20f80dd OJ |
11171 | |
11172 | opcode = bits (arm_insn_r->arm_insn, 20, 24); | |
9fde51ed | 11173 | single_reg = !bit (arm_insn_r->arm_insn, 8); |
f20f80dd OJ |
11174 | op_vldm_vstm = opcode & 0x1b; |
11175 | ||
11176 | /* Handle VMOV instructions. */ | |
11177 | if ((opcode & 0x1e) == 0x04) | |
11178 | { | |
9fde51ed | 11179 | if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */ |
01e57735 YQ |
11180 | { |
11181 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11182 | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
11183 | arm_insn_r->reg_rec_count = 2; | |
11184 | } | |
f20f80dd | 11185 | else |
01e57735 | 11186 | { |
9fde51ed YQ |
11187 | uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3); |
11188 | uint8_t bit_m = bit (arm_insn_r->arm_insn, 5); | |
f20f80dd | 11189 | |
9fde51ed | 11190 | if (single_reg) |
01e57735 | 11191 | { |
9fde51ed YQ |
11192 | /* The first S register number m is REG_M:M (M is bit 5), |
11193 | the corresponding D register number is REG_M:M / 2, which | |
11194 | is REG_M. */ | |
11195 | record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m; | |
11196 | /* The second S register number is REG_M:M + 1, the | |
11197 | corresponding D register number is (REG_M:M + 1) / 2. | |
11198 | IOW, if bit M is 1, the first and second S registers | |
11199 | are mapped to different D registers, otherwise, they are | |
11200 | in the same D register. */ | |
11201 | if (bit_m) | |
11202 | { | |
11203 | record_buf[arm_insn_r->reg_rec_count++] | |
11204 | = ARM_D0_REGNUM + reg_m + 1; | |
11205 | } | |
01e57735 YQ |
11206 | } |
11207 | else | |
11208 | { | |
9fde51ed | 11209 | record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM); |
01e57735 YQ |
11210 | arm_insn_r->reg_rec_count = 1; |
11211 | } | |
11212 | } | |
f20f80dd OJ |
11213 | } |
11214 | /* Handle VSTM and VPUSH instructions. */ | |
11215 | else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a | |
01e57735 | 11216 | || op_vldm_vstm == 0x12) |
f20f80dd OJ |
11217 | { |
11218 | uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count; | |
11219 | uint32_t memory_index = 0; | |
11220 | ||
11221 | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | |
11222 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
11223 | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | |
9fde51ed | 11224 | imm_off32 = imm_off8 << 2; |
f20f80dd OJ |
11225 | memory_count = imm_off8; |
11226 | ||
11227 | if (bit (arm_insn_r->arm_insn, 23)) | |
01e57735 | 11228 | start_address = u_regval; |
f20f80dd | 11229 | else |
01e57735 | 11230 | start_address = u_regval - imm_off32; |
f20f80dd OJ |
11231 | |
11232 | if (bit (arm_insn_r->arm_insn, 21)) | |
01e57735 YQ |
11233 | { |
11234 | record_buf[0] = reg_rn; | |
11235 | arm_insn_r->reg_rec_count = 1; | |
11236 | } | |
f20f80dd OJ |
11237 | |
11238 | while (memory_count > 0) | |
01e57735 | 11239 | { |
9fde51ed | 11240 | if (single_reg) |
01e57735 | 11241 | { |
9fde51ed YQ |
11242 | record_buf_mem[memory_index] = 4; |
11243 | record_buf_mem[memory_index + 1] = start_address; | |
01e57735 YQ |
11244 | start_address = start_address + 4; |
11245 | memory_index = memory_index + 2; | |
11246 | } | |
11247 | else | |
11248 | { | |
9fde51ed YQ |
11249 | record_buf_mem[memory_index] = 4; |
11250 | record_buf_mem[memory_index + 1] = start_address; | |
11251 | record_buf_mem[memory_index + 2] = 4; | |
11252 | record_buf_mem[memory_index + 3] = start_address + 4; | |
01e57735 YQ |
11253 | start_address = start_address + 8; |
11254 | memory_index = memory_index + 4; | |
11255 | } | |
11256 | memory_count--; | |
11257 | } | |
f20f80dd OJ |
11258 | arm_insn_r->mem_rec_count = (memory_index >> 1); |
11259 | } | |
11260 | /* Handle VLDM instructions. */ | |
11261 | else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b | |
01e57735 | 11262 | || op_vldm_vstm == 0x13) |
f20f80dd OJ |
11263 | { |
11264 | uint32_t reg_count, reg_vd; | |
11265 | uint32_t reg_index = 0; | |
9fde51ed | 11266 | uint32_t bit_d = bit (arm_insn_r->arm_insn, 22); |
f20f80dd OJ |
11267 | |
11268 | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11269 | reg_count = bits (arm_insn_r->arm_insn, 0, 7); | |
11270 | ||
9fde51ed YQ |
11271 | /* REG_VD is the first D register number. If the instruction |
11272 | loads memory to S registers (SINGLE_REG is TRUE), the register | |
11273 | number is (REG_VD << 1 | bit D), so the corresponding D | |
11274 | register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */ | |
11275 | if (!single_reg) | |
11276 | reg_vd = reg_vd | (bit_d << 4); | |
f20f80dd | 11277 | |
9fde51ed | 11278 | if (bit (arm_insn_r->arm_insn, 21) /* write back */) |
01e57735 | 11279 | record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19); |
f20f80dd | 11280 | |
9fde51ed YQ |
11281 | /* If the instruction loads memory to D register, REG_COUNT should |
11282 | be divided by 2, according to the ARM Architecture Reference | |
11283 | Manual. If the instruction loads memory to S register, divide by | |
11284 | 2 as well because two S registers are mapped to D register. */ | |
11285 | reg_count = reg_count / 2; | |
11286 | if (single_reg && bit_d) | |
01e57735 | 11287 | { |
9fde51ed YQ |
11288 | /* Increase the register count if S register list starts from |
11289 | an odd number (bit d is one). */ | |
11290 | reg_count++; | |
11291 | } | |
f20f80dd | 11292 | |
9fde51ed YQ |
11293 | while (reg_count > 0) |
11294 | { | |
11295 | record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1; | |
01e57735 YQ |
11296 | reg_count--; |
11297 | } | |
f20f80dd OJ |
11298 | arm_insn_r->reg_rec_count = reg_index; |
11299 | } | |
11300 | /* VSTR Vector store register. */ | |
11301 | else if ((opcode & 0x13) == 0x10) | |
11302 | { | |
bec2ab5a | 11303 | uint32_t start_address, reg_rn, imm_off32, imm_off8; |
f20f80dd OJ |
11304 | uint32_t memory_index = 0; |
11305 | ||
11306 | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | |
11307 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
11308 | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | |
9fde51ed | 11309 | imm_off32 = imm_off8 << 2; |
f20f80dd OJ |
11310 | |
11311 | if (bit (arm_insn_r->arm_insn, 23)) | |
01e57735 | 11312 | start_address = u_regval + imm_off32; |
f20f80dd | 11313 | else |
01e57735 | 11314 | start_address = u_regval - imm_off32; |
f20f80dd OJ |
11315 | |
11316 | if (single_reg) | |
01e57735 | 11317 | { |
9fde51ed YQ |
11318 | record_buf_mem[memory_index] = 4; |
11319 | record_buf_mem[memory_index + 1] = start_address; | |
01e57735 YQ |
11320 | arm_insn_r->mem_rec_count = 1; |
11321 | } | |
f20f80dd | 11322 | else |
01e57735 | 11323 | { |
9fde51ed YQ |
11324 | record_buf_mem[memory_index] = 4; |
11325 | record_buf_mem[memory_index + 1] = start_address; | |
11326 | record_buf_mem[memory_index + 2] = 4; | |
11327 | record_buf_mem[memory_index + 3] = start_address + 4; | |
01e57735 YQ |
11328 | arm_insn_r->mem_rec_count = 2; |
11329 | } | |
f20f80dd OJ |
11330 | } |
11331 | /* VLDR Vector load register. */ | |
11332 | else if ((opcode & 0x13) == 0x11) | |
11333 | { | |
11334 | uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11335 | ||
11336 | if (!single_reg) | |
01e57735 YQ |
11337 | { |
11338 | reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4); | |
11339 | record_buf[0] = ARM_D0_REGNUM + reg_vd; | |
11340 | } | |
f20f80dd | 11341 | else |
01e57735 YQ |
11342 | { |
11343 | reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22); | |
9fde51ed YQ |
11344 | /* Record register D rather than pseudo register S. */ |
11345 | record_buf[0] = ARM_D0_REGNUM + reg_vd / 2; | |
01e57735 | 11346 | } |
f20f80dd OJ |
11347 | arm_insn_r->reg_rec_count = 1; |
11348 | } | |
11349 | ||
11350 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11351 | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | |
11352 | return 0; | |
11353 | } | |
11354 | ||
851f26ae OJ |
11355 | /* Record handler for arm/thumb mode VFP data processing instructions. */ |
11356 | ||
11357 | static int | |
11358 | arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r) | |
11359 | { | |
11360 | uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd; | |
11361 | uint32_t record_buf[4]; | |
11362 | enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV}; | |
11363 | enum insn_types curr_insn_type = INSN_INV; | |
11364 | ||
11365 | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | |
11366 | opc1 = bits (arm_insn_r->arm_insn, 20, 23); | |
11367 | opc2 = bits (arm_insn_r->arm_insn, 16, 19); | |
11368 | opc3 = bits (arm_insn_r->arm_insn, 6, 7); | |
11369 | dp_op_sz = bit (arm_insn_r->arm_insn, 8); | |
11370 | bit_d = bit (arm_insn_r->arm_insn, 22); | |
11371 | opc1 = opc1 & 0x04; | |
11372 | ||
11373 | /* Handle VMLA, VMLS. */ | |
11374 | if (opc1 == 0x00) | |
11375 | { | |
11376 | if (bit (arm_insn_r->arm_insn, 10)) | |
11377 | { | |
11378 | if (bit (arm_insn_r->arm_insn, 6)) | |
11379 | curr_insn_type = INSN_T0; | |
11380 | else | |
11381 | curr_insn_type = INSN_T1; | |
11382 | } | |
11383 | else | |
11384 | { | |
11385 | if (dp_op_sz) | |
11386 | curr_insn_type = INSN_T1; | |
11387 | else | |
11388 | curr_insn_type = INSN_T2; | |
11389 | } | |
11390 | } | |
11391 | /* Handle VNMLA, VNMLS, VNMUL. */ | |
11392 | else if (opc1 == 0x01) | |
11393 | { | |
11394 | if (dp_op_sz) | |
11395 | curr_insn_type = INSN_T1; | |
11396 | else | |
11397 | curr_insn_type = INSN_T2; | |
11398 | } | |
11399 | /* Handle VMUL. */ | |
11400 | else if (opc1 == 0x02 && !(opc3 & 0x01)) | |
11401 | { | |
11402 | if (bit (arm_insn_r->arm_insn, 10)) | |
11403 | { | |
11404 | if (bit (arm_insn_r->arm_insn, 6)) | |
11405 | curr_insn_type = INSN_T0; | |
11406 | else | |
11407 | curr_insn_type = INSN_T1; | |
11408 | } | |
11409 | else | |
11410 | { | |
11411 | if (dp_op_sz) | |
11412 | curr_insn_type = INSN_T1; | |
11413 | else | |
11414 | curr_insn_type = INSN_T2; | |
11415 | } | |
11416 | } | |
11417 | /* Handle VADD, VSUB. */ | |
11418 | else if (opc1 == 0x03) | |
11419 | { | |
11420 | if (!bit (arm_insn_r->arm_insn, 9)) | |
11421 | { | |
11422 | if (bit (arm_insn_r->arm_insn, 6)) | |
11423 | curr_insn_type = INSN_T0; | |
11424 | else | |
11425 | curr_insn_type = INSN_T1; | |
11426 | } | |
11427 | else | |
11428 | { | |
11429 | if (dp_op_sz) | |
11430 | curr_insn_type = INSN_T1; | |
11431 | else | |
11432 | curr_insn_type = INSN_T2; | |
11433 | } | |
11434 | } | |
11435 | /* Handle VDIV. */ | |
11436 | else if (opc1 == 0x0b) | |
11437 | { | |
11438 | if (dp_op_sz) | |
11439 | curr_insn_type = INSN_T1; | |
11440 | else | |
11441 | curr_insn_type = INSN_T2; | |
11442 | } | |
11443 | /* Handle all other vfp data processing instructions. */ | |
11444 | else if (opc1 == 0x0b) | |
11445 | { | |
11446 | /* Handle VMOV. */ | |
11447 | if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01)) | |
11448 | { | |
11449 | if (bit (arm_insn_r->arm_insn, 4)) | |
11450 | { | |
11451 | if (bit (arm_insn_r->arm_insn, 6)) | |
11452 | curr_insn_type = INSN_T0; | |
11453 | else | |
11454 | curr_insn_type = INSN_T1; | |
11455 | } | |
11456 | else | |
11457 | { | |
11458 | if (dp_op_sz) | |
11459 | curr_insn_type = INSN_T1; | |
11460 | else | |
11461 | curr_insn_type = INSN_T2; | |
11462 | } | |
11463 | } | |
11464 | /* Handle VNEG and VABS. */ | |
11465 | else if ((opc2 == 0x01 && opc3 == 0x01) | |
11466 | || (opc2 == 0x00 && opc3 == 0x03)) | |
11467 | { | |
11468 | if (!bit (arm_insn_r->arm_insn, 11)) | |
11469 | { | |
11470 | if (bit (arm_insn_r->arm_insn, 6)) | |
11471 | curr_insn_type = INSN_T0; | |
11472 | else | |
11473 | curr_insn_type = INSN_T1; | |
11474 | } | |
11475 | else | |
11476 | { | |
11477 | if (dp_op_sz) | |
11478 | curr_insn_type = INSN_T1; | |
11479 | else | |
11480 | curr_insn_type = INSN_T2; | |
11481 | } | |
11482 | } | |
11483 | /* Handle VSQRT. */ | |
11484 | else if (opc2 == 0x01 && opc3 == 0x03) | |
11485 | { | |
11486 | if (dp_op_sz) | |
11487 | curr_insn_type = INSN_T1; | |
11488 | else | |
11489 | curr_insn_type = INSN_T2; | |
11490 | } | |
11491 | /* Handle VCVT. */ | |
11492 | else if (opc2 == 0x07 && opc3 == 0x03) | |
11493 | { | |
11494 | if (!dp_op_sz) | |
11495 | curr_insn_type = INSN_T1; | |
11496 | else | |
11497 | curr_insn_type = INSN_T2; | |
11498 | } | |
11499 | else if (opc3 & 0x01) | |
11500 | { | |
11501 | /* Handle VCVT. */ | |
11502 | if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c) | |
11503 | { | |
11504 | if (!bit (arm_insn_r->arm_insn, 18)) | |
11505 | curr_insn_type = INSN_T2; | |
11506 | else | |
11507 | { | |
11508 | if (dp_op_sz) | |
11509 | curr_insn_type = INSN_T1; | |
11510 | else | |
11511 | curr_insn_type = INSN_T2; | |
11512 | } | |
11513 | } | |
11514 | /* Handle VCVT. */ | |
11515 | else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e) | |
11516 | { | |
11517 | if (dp_op_sz) | |
11518 | curr_insn_type = INSN_T1; | |
11519 | else | |
11520 | curr_insn_type = INSN_T2; | |
11521 | } | |
11522 | /* Handle VCVTB, VCVTT. */ | |
11523 | else if ((opc2 & 0x0e) == 0x02) | |
11524 | curr_insn_type = INSN_T2; | |
11525 | /* Handle VCMP, VCMPE. */ | |
11526 | else if ((opc2 & 0x0e) == 0x04) | |
11527 | curr_insn_type = INSN_T3; | |
11528 | } | |
11529 | } | |
11530 | ||
11531 | switch (curr_insn_type) | |
11532 | { | |
11533 | case INSN_T0: | |
11534 | reg_vd = reg_vd | (bit_d << 4); | |
11535 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11536 | record_buf[1] = reg_vd + ARM_D0_REGNUM + 1; | |
11537 | arm_insn_r->reg_rec_count = 2; | |
11538 | break; | |
11539 | ||
11540 | case INSN_T1: | |
11541 | reg_vd = reg_vd | (bit_d << 4); | |
11542 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11543 | arm_insn_r->reg_rec_count = 1; | |
11544 | break; | |
11545 | ||
11546 | case INSN_T2: | |
11547 | reg_vd = (reg_vd << 1) | bit_d; | |
11548 | record_buf[0] = reg_vd + ARM_D0_REGNUM; | |
11549 | arm_insn_r->reg_rec_count = 1; | |
11550 | break; | |
11551 | ||
11552 | case INSN_T3: | |
11553 | record_buf[0] = ARM_FPSCR_REGNUM; | |
11554 | arm_insn_r->reg_rec_count = 1; | |
11555 | break; | |
11556 | ||
11557 | default: | |
11558 | gdb_assert_not_reached ("no decoding pattern found"); | |
11559 | break; | |
11560 | } | |
11561 | ||
11562 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | |
11563 | return 0; | |
11564 | } | |
11565 | ||
60cc5e93 OJ |
11566 | /* Handling opcode 110 insns. */ |
11567 | ||
11568 | static int | |
11569 | arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r) | |
11570 | { | |
bec2ab5a | 11571 | uint32_t op1, op1_ebit, coproc; |
60cc5e93 OJ |
11572 | |
11573 | coproc = bits (arm_insn_r->arm_insn, 8, 11); | |
11574 | op1 = bits (arm_insn_r->arm_insn, 20, 25); | |
11575 | op1_ebit = bit (arm_insn_r->arm_insn, 20); | |
11576 | ||
11577 | if ((coproc & 0x0e) == 0x0a) | |
11578 | { | |
11579 | /* Handle extension register ld/st instructions. */ | |
11580 | if (!(op1 & 0x20)) | |
f20f80dd | 11581 | return arm_record_exreg_ld_st_insn (arm_insn_r); |
60cc5e93 OJ |
11582 | |
11583 | /* 64-bit transfers between arm core and extension registers. */ | |
11584 | if ((op1 & 0x3e) == 0x04) | |
f20f80dd | 11585 | return arm_record_exreg_ld_st_insn (arm_insn_r); |
60cc5e93 OJ |
11586 | } |
11587 | else | |
11588 | { | |
11589 | /* Handle coprocessor ld/st instructions. */ | |
11590 | if (!(op1 & 0x3a)) | |
11591 | { | |
11592 | /* Store. */ | |
11593 | if (!op1_ebit) | |
11594 | return arm_record_unsupported_insn (arm_insn_r); | |
11595 | else | |
11596 | /* Load. */ | |
11597 | return arm_record_unsupported_insn (arm_insn_r); | |
11598 | } | |
11599 | ||
11600 | /* Move to coprocessor from two arm core registers. */ | |
11601 | if (op1 == 0x4) | |
11602 | return arm_record_unsupported_insn (arm_insn_r); | |
11603 | ||
11604 | /* Move to two arm core registers from coprocessor. */ | |
11605 | if (op1 == 0x5) | |
11606 | { | |
11607 | uint32_t reg_t[2]; | |
11608 | ||
11609 | reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11610 | reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19); | |
11611 | arm_insn_r->reg_rec_count = 2; | |
11612 | ||
11613 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t); | |
11614 | return 0; | |
11615 | } | |
11616 | } | |
11617 | return arm_record_unsupported_insn (arm_insn_r); | |
11618 | } | |
11619 | ||
72508ac0 PO |
11620 | /* Handling opcode 111 insns. */ |
11621 | ||
11622 | static int | |
11623 | arm_record_coproc_data_proc (insn_decode_record *arm_insn_r) | |
11624 | { | |
60cc5e93 | 11625 | uint32_t op, op1_sbit, op1_ebit, coproc; |
72508ac0 PO |
11626 | struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch); |
11627 | struct regcache *reg_cache = arm_insn_r->regcache; | |
72508ac0 PO |
11628 | |
11629 | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27); | |
60cc5e93 OJ |
11630 | coproc = bits (arm_insn_r->arm_insn, 8, 11); |
11631 | op1_sbit = bit (arm_insn_r->arm_insn, 24); | |
11632 | op1_ebit = bit (arm_insn_r->arm_insn, 20); | |
11633 | op = bit (arm_insn_r->arm_insn, 4); | |
97dfe206 OJ |
11634 | |
11635 | /* Handle arm SWI/SVC system call instructions. */ | |
60cc5e93 | 11636 | if (op1_sbit) |
97dfe206 OJ |
11637 | { |
11638 | if (tdep->arm_syscall_record != NULL) | |
11639 | { | |
11640 | ULONGEST svc_operand, svc_number; | |
11641 | ||
11642 | svc_operand = (0x00ffffff & arm_insn_r->arm_insn); | |
11643 | ||
11644 | if (svc_operand) /* OABI. */ | |
11645 | svc_number = svc_operand - 0x900000; | |
11646 | else /* EABI. */ | |
11647 | regcache_raw_read_unsigned (reg_cache, 7, &svc_number); | |
11648 | ||
60cc5e93 | 11649 | return tdep->arm_syscall_record (reg_cache, svc_number); |
97dfe206 OJ |
11650 | } |
11651 | else | |
11652 | { | |
11653 | printf_unfiltered (_("no syscall record support\n")); | |
60cc5e93 | 11654 | return -1; |
97dfe206 OJ |
11655 | } |
11656 | } | |
60cc5e93 OJ |
11657 | |
11658 | if ((coproc & 0x0e) == 0x0a) | |
11659 | { | |
11660 | /* VFP data-processing instructions. */ | |
11661 | if (!op1_sbit && !op) | |
851f26ae | 11662 | return arm_record_vfp_data_proc_insn (arm_insn_r); |
60cc5e93 OJ |
11663 | |
11664 | /* Advanced SIMD, VFP instructions. */ | |
11665 | if (!op1_sbit && op) | |
5a578da5 | 11666 | return arm_record_vdata_transfer_insn (arm_insn_r); |
60cc5e93 | 11667 | } |
97dfe206 OJ |
11668 | else |
11669 | { | |
60cc5e93 OJ |
11670 | /* Coprocessor data operations. */ |
11671 | if (!op1_sbit && !op) | |
11672 | return arm_record_unsupported_insn (arm_insn_r); | |
11673 | ||
11674 | /* Move to Coprocessor from ARM core register. */ | |
11675 | if (!op1_sbit && !op1_ebit && op) | |
11676 | return arm_record_unsupported_insn (arm_insn_r); | |
11677 | ||
11678 | /* Move to arm core register from coprocessor. */ | |
11679 | if (!op1_sbit && op1_ebit && op) | |
11680 | { | |
11681 | uint32_t record_buf[1]; | |
11682 | ||
11683 | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | |
11684 | if (record_buf[0] == 15) | |
11685 | record_buf[0] = ARM_PS_REGNUM; | |
11686 | ||
11687 | arm_insn_r->reg_rec_count = 1; | |
11688 | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, | |
11689 | record_buf); | |
11690 | return 0; | |
11691 | } | |
97dfe206 | 11692 | } |
72508ac0 | 11693 | |
60cc5e93 | 11694 | return arm_record_unsupported_insn (arm_insn_r); |
72508ac0 PO |
11695 | } |
11696 | ||
11697 | /* Handling opcode 000 insns. */ | |
11698 | ||
11699 | static int | |
11700 | thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r) | |
11701 | { | |
11702 | uint32_t record_buf[8]; | |
11703 | uint32_t reg_src1 = 0; | |
11704 | ||
11705 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11706 | ||
11707 | record_buf[0] = ARM_PS_REGNUM; | |
11708 | record_buf[1] = reg_src1; | |
11709 | thumb_insn_r->reg_rec_count = 2; | |
11710 | ||
11711 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11712 | ||
11713 | return 0; | |
11714 | } | |
11715 | ||
11716 | ||
11717 | /* Handling opcode 001 insns. */ | |
11718 | ||
11719 | static int | |
11720 | thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r) | |
11721 | { | |
11722 | uint32_t record_buf[8]; | |
11723 | uint32_t reg_src1 = 0; | |
11724 | ||
11725 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11726 | ||
11727 | record_buf[0] = ARM_PS_REGNUM; | |
11728 | record_buf[1] = reg_src1; | |
11729 | thumb_insn_r->reg_rec_count = 2; | |
11730 | ||
11731 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11732 | ||
11733 | return 0; | |
11734 | } | |
11735 | ||
11736 | /* Handling opcode 010 insns. */ | |
11737 | ||
11738 | static int | |
11739 | thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r) | |
11740 | { | |
11741 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11742 | uint32_t record_buf[8], record_buf_mem[8]; | |
11743 | ||
11744 | uint32_t reg_src1 = 0, reg_src2 = 0; | |
11745 | uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0; | |
11746 | ||
11747 | ULONGEST u_regval[2] = {0}; | |
11748 | ||
11749 | opcode1 = bits (thumb_insn_r->arm_insn, 10, 12); | |
11750 | ||
11751 | if (bit (thumb_insn_r->arm_insn, 12)) | |
11752 | { | |
11753 | /* Handle load/store register offset. */ | |
b121eeb9 YQ |
11754 | uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11); |
11755 | ||
11756 | if (opB >= 4 && opB <= 7) | |
72508ac0 PO |
11757 | { |
11758 | /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */ | |
11759 | reg_src1 = bits (thumb_insn_r->arm_insn,0, 2); | |
11760 | record_buf[0] = reg_src1; | |
11761 | thumb_insn_r->reg_rec_count = 1; | |
11762 | } | |
b121eeb9 | 11763 | else if (opB >= 0 && opB <= 2) |
72508ac0 PO |
11764 | { |
11765 | /* STR(2), STRB(2), STRH(2) . */ | |
11766 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
11767 | reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8); | |
11768 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | |
11769 | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | |
b121eeb9 | 11770 | if (0 == opB) |
72508ac0 | 11771 | record_buf_mem[0] = 4; /* STR (2). */ |
b121eeb9 | 11772 | else if (2 == opB) |
72508ac0 | 11773 | record_buf_mem[0] = 1; /* STRB (2). */ |
b121eeb9 | 11774 | else if (1 == opB) |
72508ac0 PO |
11775 | record_buf_mem[0] = 2; /* STRH (2). */ |
11776 | record_buf_mem[1] = u_regval[0] + u_regval[1]; | |
11777 | thumb_insn_r->mem_rec_count = 1; | |
11778 | } | |
11779 | } | |
11780 | else if (bit (thumb_insn_r->arm_insn, 11)) | |
11781 | { | |
11782 | /* Handle load from literal pool. */ | |
11783 | /* LDR(3). */ | |
11784 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11785 | record_buf[0] = reg_src1; | |
11786 | thumb_insn_r->reg_rec_count = 1; | |
11787 | } | |
11788 | else if (opcode1) | |
11789 | { | |
b121eeb9 | 11790 | /* Special data instructions and branch and exchange */ |
72508ac0 PO |
11791 | opcode2 = bits (thumb_insn_r->arm_insn, 8, 9); |
11792 | opcode3 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11793 | if ((3 == opcode2) && (!opcode3)) | |
11794 | { | |
11795 | /* Branch with exchange. */ | |
11796 | record_buf[0] = ARM_PS_REGNUM; | |
11797 | thumb_insn_r->reg_rec_count = 1; | |
11798 | } | |
11799 | else | |
11800 | { | |
1f33efec YQ |
11801 | /* Format 8; special data processing insns. */ |
11802 | record_buf[0] = ARM_PS_REGNUM; | |
11803 | record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3 | |
11804 | | bits (thumb_insn_r->arm_insn, 0, 2)); | |
72508ac0 PO |
11805 | thumb_insn_r->reg_rec_count = 2; |
11806 | } | |
11807 | } | |
11808 | else | |
11809 | { | |
11810 | /* Format 5; data processing insns. */ | |
11811 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11812 | if (bit (thumb_insn_r->arm_insn, 7)) | |
11813 | { | |
11814 | reg_src1 = reg_src1 + 8; | |
11815 | } | |
11816 | record_buf[0] = ARM_PS_REGNUM; | |
11817 | record_buf[1] = reg_src1; | |
11818 | thumb_insn_r->reg_rec_count = 2; | |
11819 | } | |
11820 | ||
11821 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11822 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
11823 | record_buf_mem); | |
11824 | ||
11825 | return 0; | |
11826 | } | |
11827 | ||
11828 | /* Handling opcode 001 insns. */ | |
11829 | ||
11830 | static int | |
11831 | thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r) | |
11832 | { | |
11833 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11834 | uint32_t record_buf[8], record_buf_mem[8]; | |
11835 | ||
11836 | uint32_t reg_src1 = 0; | |
11837 | uint32_t opcode = 0, immed_5 = 0; | |
11838 | ||
11839 | ULONGEST u_regval = 0; | |
11840 | ||
11841 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
11842 | ||
11843 | if (opcode) | |
11844 | { | |
11845 | /* LDR(1). */ | |
11846 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11847 | record_buf[0] = reg_src1; | |
11848 | thumb_insn_r->reg_rec_count = 1; | |
11849 | } | |
11850 | else | |
11851 | { | |
11852 | /* STR(1). */ | |
11853 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
11854 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
11855 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
11856 | record_buf_mem[0] = 4; | |
11857 | record_buf_mem[1] = u_regval + (immed_5 * 4); | |
11858 | thumb_insn_r->mem_rec_count = 1; | |
11859 | } | |
11860 | ||
11861 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11862 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
11863 | record_buf_mem); | |
11864 | ||
11865 | return 0; | |
11866 | } | |
11867 | ||
11868 | /* Handling opcode 100 insns. */ | |
11869 | ||
11870 | static int | |
11871 | thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r) | |
11872 | { | |
11873 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11874 | uint32_t record_buf[8], record_buf_mem[8]; | |
11875 | ||
11876 | uint32_t reg_src1 = 0; | |
11877 | uint32_t opcode = 0, immed_8 = 0, immed_5 = 0; | |
11878 | ||
11879 | ULONGEST u_regval = 0; | |
11880 | ||
11881 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
11882 | ||
11883 | if (3 == opcode) | |
11884 | { | |
11885 | /* LDR(4). */ | |
11886 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11887 | record_buf[0] = reg_src1; | |
11888 | thumb_insn_r->reg_rec_count = 1; | |
11889 | } | |
11890 | else if (1 == opcode) | |
11891 | { | |
11892 | /* LDRH(1). */ | |
11893 | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | |
11894 | record_buf[0] = reg_src1; | |
11895 | thumb_insn_r->reg_rec_count = 1; | |
11896 | } | |
11897 | else if (2 == opcode) | |
11898 | { | |
11899 | /* STR(3). */ | |
11900 | immed_8 = bits (thumb_insn_r->arm_insn, 0, 7); | |
11901 | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | |
11902 | record_buf_mem[0] = 4; | |
11903 | record_buf_mem[1] = u_regval + (immed_8 * 4); | |
11904 | thumb_insn_r->mem_rec_count = 1; | |
11905 | } | |
11906 | else if (0 == opcode) | |
11907 | { | |
11908 | /* STRH(1). */ | |
11909 | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | |
11910 | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | |
11911 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
11912 | record_buf_mem[0] = 2; | |
11913 | record_buf_mem[1] = u_regval + (immed_5 * 2); | |
11914 | thumb_insn_r->mem_rec_count = 1; | |
11915 | } | |
11916 | ||
11917 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
11918 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
11919 | record_buf_mem); | |
11920 | ||
11921 | return 0; | |
11922 | } | |
11923 | ||
11924 | /* Handling opcode 101 insns. */ | |
11925 | ||
11926 | static int | |
11927 | thumb_record_misc (insn_decode_record *thumb_insn_r) | |
11928 | { | |
11929 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
11930 | ||
b121eeb9 | 11931 | uint32_t opcode = 0; |
72508ac0 | 11932 | uint32_t register_bits = 0, register_count = 0; |
bec2ab5a | 11933 | uint32_t index = 0, start_address = 0; |
72508ac0 PO |
11934 | uint32_t record_buf[24], record_buf_mem[48]; |
11935 | uint32_t reg_src1; | |
11936 | ||
11937 | ULONGEST u_regval = 0; | |
11938 | ||
11939 | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | |
72508ac0 | 11940 | |
b121eeb9 | 11941 | if (opcode == 0 || opcode == 1) |
72508ac0 | 11942 | { |
b121eeb9 YQ |
11943 | /* ADR and ADD (SP plus immediate) */ |
11944 | ||
72508ac0 PO |
11945 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
11946 | record_buf[0] = reg_src1; | |
11947 | thumb_insn_r->reg_rec_count = 1; | |
11948 | } | |
b121eeb9 | 11949 | else |
72508ac0 | 11950 | { |
b121eeb9 YQ |
11951 | /* Miscellaneous 16-bit instructions */ |
11952 | uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11); | |
11953 | ||
11954 | switch (opcode2) | |
11955 | { | |
11956 | case 6: | |
11957 | /* SETEND and CPS */ | |
11958 | break; | |
11959 | case 0: | |
11960 | /* ADD/SUB (SP plus immediate) */ | |
11961 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
11962 | record_buf[0] = ARM_SP_REGNUM; | |
11963 | thumb_insn_r->reg_rec_count = 1; | |
11964 | break; | |
11965 | case 1: /* fall through */ | |
11966 | case 3: /* fall through */ | |
11967 | case 9: /* fall through */ | |
11968 | case 11: | |
11969 | /* CBNZ, CBZ */ | |
b121eeb9 YQ |
11970 | break; |
11971 | case 2: | |
11972 | /* SXTH, SXTB, UXTH, UXTB */ | |
11973 | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); | |
11974 | thumb_insn_r->reg_rec_count = 1; | |
11975 | break; | |
11976 | case 4: /* fall through */ | |
11977 | case 5: | |
11978 | /* PUSH. */ | |
11979 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
11980 | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | |
11981 | while (register_bits) | |
11982 | { | |
11983 | if (register_bits & 0x00000001) | |
11984 | register_count++; | |
11985 | register_bits = register_bits >> 1; | |
11986 | } | |
11987 | start_address = u_regval - \ | |
11988 | (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count)); | |
11989 | thumb_insn_r->mem_rec_count = register_count; | |
11990 | while (register_count) | |
11991 | { | |
11992 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
11993 | record_buf_mem[(register_count * 2) - 2] = 4; | |
11994 | start_address = start_address + 4; | |
11995 | register_count--; | |
11996 | } | |
11997 | record_buf[0] = ARM_SP_REGNUM; | |
11998 | thumb_insn_r->reg_rec_count = 1; | |
11999 | break; | |
12000 | case 10: | |
12001 | /* REV, REV16, REVSH */ | |
ba14f379 YQ |
12002 | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); |
12003 | thumb_insn_r->reg_rec_count = 1; | |
b121eeb9 YQ |
12004 | break; |
12005 | case 12: /* fall through */ | |
12006 | case 13: | |
12007 | /* POP. */ | |
12008 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12009 | while (register_bits) | |
12010 | { | |
12011 | if (register_bits & 0x00000001) | |
12012 | record_buf[index++] = register_count; | |
12013 | register_bits = register_bits >> 1; | |
12014 | register_count++; | |
12015 | } | |
12016 | record_buf[index++] = ARM_PS_REGNUM; | |
12017 | record_buf[index++] = ARM_SP_REGNUM; | |
12018 | thumb_insn_r->reg_rec_count = index; | |
12019 | break; | |
12020 | case 0xe: | |
12021 | /* BKPT insn. */ | |
12022 | /* Handle enhanced software breakpoint insn, BKPT. */ | |
12023 | /* CPSR is changed to be executed in ARM state, disabling normal | |
12024 | interrupts, entering abort mode. */ | |
12025 | /* According to high vector configuration PC is set. */ | |
12026 | /* User hits breakpoint and type reverse, in that case, we need to go back with | |
12027 | previous CPSR and Program Counter. */ | |
12028 | record_buf[0] = ARM_PS_REGNUM; | |
12029 | record_buf[1] = ARM_LR_REGNUM; | |
12030 | thumb_insn_r->reg_rec_count = 2; | |
12031 | /* We need to save SPSR value, which is not yet done. */ | |
12032 | printf_unfiltered (_("Process record does not support instruction " | |
12033 | "0x%0x at address %s.\n"), | |
12034 | thumb_insn_r->arm_insn, | |
12035 | paddress (thumb_insn_r->gdbarch, | |
12036 | thumb_insn_r->this_addr)); | |
12037 | return -1; | |
12038 | ||
12039 | case 0xf: | |
12040 | /* If-Then, and hints */ | |
12041 | break; | |
12042 | default: | |
12043 | return -1; | |
12044 | }; | |
72508ac0 PO |
12045 | } |
12046 | ||
12047 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12048 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12049 | record_buf_mem); | |
12050 | ||
12051 | return 0; | |
12052 | } | |
12053 | ||
12054 | /* Handling opcode 110 insns. */ | |
12055 | ||
12056 | static int | |
12057 | thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r) | |
12058 | { | |
12059 | struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch); | |
12060 | struct regcache *reg_cache = thumb_insn_r->regcache; | |
12061 | ||
12062 | uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */ | |
12063 | uint32_t reg_src1 = 0; | |
12064 | uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0; | |
bec2ab5a | 12065 | uint32_t index = 0, start_address = 0; |
72508ac0 PO |
12066 | uint32_t record_buf[24], record_buf_mem[48]; |
12067 | ||
12068 | ULONGEST u_regval = 0; | |
12069 | ||
12070 | opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); | |
12071 | opcode2 = bits (thumb_insn_r->arm_insn, 11, 12); | |
12072 | ||
12073 | if (1 == opcode2) | |
12074 | { | |
12075 | ||
12076 | /* LDMIA. */ | |
12077 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12078 | /* Get Rn. */ | |
12079 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12080 | while (register_bits) | |
12081 | { | |
12082 | if (register_bits & 0x00000001) | |
f969241e | 12083 | record_buf[index++] = register_count; |
72508ac0 | 12084 | register_bits = register_bits >> 1; |
f969241e | 12085 | register_count++; |
72508ac0 | 12086 | } |
f969241e OJ |
12087 | record_buf[index++] = reg_src1; |
12088 | thumb_insn_r->reg_rec_count = index; | |
72508ac0 PO |
12089 | } |
12090 | else if (0 == opcode2) | |
12091 | { | |
12092 | /* It handles both STMIA. */ | |
12093 | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | |
12094 | /* Get Rn. */ | |
12095 | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | |
12096 | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | |
12097 | while (register_bits) | |
12098 | { | |
12099 | if (register_bits & 0x00000001) | |
12100 | register_count++; | |
12101 | register_bits = register_bits >> 1; | |
12102 | } | |
12103 | start_address = u_regval; | |
12104 | thumb_insn_r->mem_rec_count = register_count; | |
12105 | while (register_count) | |
12106 | { | |
12107 | record_buf_mem[(register_count * 2) - 1] = start_address; | |
12108 | record_buf_mem[(register_count * 2) - 2] = 4; | |
12109 | start_address = start_address + 4; | |
12110 | register_count--; | |
12111 | } | |
12112 | } | |
12113 | else if (0x1F == opcode1) | |
12114 | { | |
12115 | /* Handle arm syscall insn. */ | |
97dfe206 | 12116 | if (tdep->arm_syscall_record != NULL) |
72508ac0 | 12117 | { |
97dfe206 OJ |
12118 | regcache_raw_read_unsigned (reg_cache, 7, &u_regval); |
12119 | ret = tdep->arm_syscall_record (reg_cache, u_regval); | |
72508ac0 PO |
12120 | } |
12121 | else | |
12122 | { | |
12123 | printf_unfiltered (_("no syscall record support\n")); | |
12124 | return -1; | |
12125 | } | |
12126 | } | |
12127 | ||
12128 | /* B (1), conditional branch is automatically taken care in process_record, | |
12129 | as PC is saved there. */ | |
12130 | ||
12131 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12132 | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | |
12133 | record_buf_mem); | |
12134 | ||
12135 | return ret; | |
12136 | } | |
12137 | ||
12138 | /* Handling opcode 111 insns. */ | |
12139 | ||
12140 | static int | |
12141 | thumb_record_branch (insn_decode_record *thumb_insn_r) | |
12142 | { | |
12143 | uint32_t record_buf[8]; | |
12144 | uint32_t bits_h = 0; | |
12145 | ||
12146 | bits_h = bits (thumb_insn_r->arm_insn, 11, 12); | |
12147 | ||
12148 | if (2 == bits_h || 3 == bits_h) | |
12149 | { | |
12150 | /* BL */ | |
12151 | record_buf[0] = ARM_LR_REGNUM; | |
12152 | thumb_insn_r->reg_rec_count = 1; | |
12153 | } | |
12154 | else if (1 == bits_h) | |
12155 | { | |
12156 | /* BLX(1). */ | |
12157 | record_buf[0] = ARM_PS_REGNUM; | |
12158 | record_buf[1] = ARM_LR_REGNUM; | |
12159 | thumb_insn_r->reg_rec_count = 2; | |
12160 | } | |
12161 | ||
12162 | /* B(2) is automatically taken care in process_record, as PC is | |
12163 | saved there. */ | |
12164 | ||
12165 | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | |
12166 | ||
12167 | return 0; | |
12168 | } | |
12169 | ||
c6ec2b30 OJ |
12170 | /* Handler for thumb2 load/store multiple instructions. */ |
12171 | ||
12172 | static int | |
12173 | thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r) | |
12174 | { | |
12175 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12176 | ||
12177 | uint32_t reg_rn, op; | |
12178 | uint32_t register_bits = 0, register_count = 0; | |
12179 | uint32_t index = 0, start_address = 0; | |
12180 | uint32_t record_buf[24], record_buf_mem[48]; | |
12181 | ||
12182 | ULONGEST u_regval = 0; | |
12183 | ||
12184 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12185 | op = bits (thumb2_insn_r->arm_insn, 23, 24); | |
12186 | ||
12187 | if (0 == op || 3 == op) | |
12188 | { | |
12189 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12190 | { | |
12191 | /* Handle RFE instruction. */ | |
12192 | record_buf[0] = ARM_PS_REGNUM; | |
12193 | thumb2_insn_r->reg_rec_count = 1; | |
12194 | } | |
12195 | else | |
12196 | { | |
12197 | /* Handle SRS instruction after reading banked SP. */ | |
12198 | return arm_record_unsupported_insn (thumb2_insn_r); | |
12199 | } | |
12200 | } | |
12201 | else if (1 == op || 2 == op) | |
12202 | { | |
12203 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12204 | { | |
12205 | /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */ | |
12206 | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | |
12207 | while (register_bits) | |
12208 | { | |
12209 | if (register_bits & 0x00000001) | |
12210 | record_buf[index++] = register_count; | |
12211 | ||
12212 | register_count++; | |
12213 | register_bits = register_bits >> 1; | |
12214 | } | |
12215 | record_buf[index++] = reg_rn; | |
12216 | record_buf[index++] = ARM_PS_REGNUM; | |
12217 | thumb2_insn_r->reg_rec_count = index; | |
12218 | } | |
12219 | else | |
12220 | { | |
12221 | /* Handle STM/STMIA/STMEA and STMDB/STMFD. */ | |
12222 | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | |
12223 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
12224 | while (register_bits) | |
12225 | { | |
12226 | if (register_bits & 0x00000001) | |
12227 | register_count++; | |
12228 | ||
12229 | register_bits = register_bits >> 1; | |
12230 | } | |
12231 | ||
12232 | if (1 == op) | |
12233 | { | |
12234 | /* Start address calculation for LDMDB/LDMEA. */ | |
12235 | start_address = u_regval; | |
12236 | } | |
12237 | else if (2 == op) | |
12238 | { | |
12239 | /* Start address calculation for LDMDB/LDMEA. */ | |
12240 | start_address = u_regval - register_count * 4; | |
12241 | } | |
12242 | ||
12243 | thumb2_insn_r->mem_rec_count = register_count; | |
12244 | while (register_count) | |
12245 | { | |
12246 | record_buf_mem[register_count * 2 - 1] = start_address; | |
12247 | record_buf_mem[register_count * 2 - 2] = 4; | |
12248 | start_address = start_address + 4; | |
12249 | register_count--; | |
12250 | } | |
12251 | record_buf[0] = reg_rn; | |
12252 | record_buf[1] = ARM_PS_REGNUM; | |
12253 | thumb2_insn_r->reg_rec_count = 2; | |
12254 | } | |
12255 | } | |
12256 | ||
12257 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12258 | record_buf_mem); | |
12259 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12260 | record_buf); | |
12261 | return ARM_RECORD_SUCCESS; | |
12262 | } | |
12263 | ||
12264 | /* Handler for thumb2 load/store (dual/exclusive) and table branch | |
12265 | instructions. */ | |
12266 | ||
12267 | static int | |
12268 | thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r) | |
12269 | { | |
12270 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12271 | ||
12272 | uint32_t reg_rd, reg_rn, offset_imm; | |
12273 | uint32_t reg_dest1, reg_dest2; | |
12274 | uint32_t address, offset_addr; | |
12275 | uint32_t record_buf[8], record_buf_mem[8]; | |
12276 | uint32_t op1, op2, op3; | |
c6ec2b30 OJ |
12277 | |
12278 | ULONGEST u_regval[2]; | |
12279 | ||
12280 | op1 = bits (thumb2_insn_r->arm_insn, 23, 24); | |
12281 | op2 = bits (thumb2_insn_r->arm_insn, 20, 21); | |
12282 | op3 = bits (thumb2_insn_r->arm_insn, 4, 7); | |
12283 | ||
12284 | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | |
12285 | { | |
12286 | if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3))) | |
12287 | { | |
12288 | reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12289 | record_buf[0] = reg_dest1; | |
12290 | record_buf[1] = ARM_PS_REGNUM; | |
12291 | thumb2_insn_r->reg_rec_count = 2; | |
12292 | } | |
12293 | ||
12294 | if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3)) | |
12295 | { | |
12296 | reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12297 | record_buf[2] = reg_dest2; | |
12298 | thumb2_insn_r->reg_rec_count = 3; | |
12299 | } | |
12300 | } | |
12301 | else | |
12302 | { | |
12303 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12304 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | |
12305 | ||
12306 | if (0 == op1 && 0 == op2) | |
12307 | { | |
12308 | /* Handle STREX. */ | |
12309 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12310 | address = u_regval[0] + (offset_imm * 4); | |
12311 | record_buf_mem[0] = 4; | |
12312 | record_buf_mem[1] = address; | |
12313 | thumb2_insn_r->mem_rec_count = 1; | |
12314 | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12315 | record_buf[0] = reg_rd; | |
12316 | thumb2_insn_r->reg_rec_count = 1; | |
12317 | } | |
12318 | else if (1 == op1 && 0 == op2) | |
12319 | { | |
12320 | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12321 | record_buf[0] = reg_rd; | |
12322 | thumb2_insn_r->reg_rec_count = 1; | |
12323 | address = u_regval[0]; | |
12324 | record_buf_mem[1] = address; | |
12325 | ||
12326 | if (4 == op3) | |
12327 | { | |
12328 | /* Handle STREXB. */ | |
12329 | record_buf_mem[0] = 1; | |
12330 | thumb2_insn_r->mem_rec_count = 1; | |
12331 | } | |
12332 | else if (5 == op3) | |
12333 | { | |
12334 | /* Handle STREXH. */ | |
12335 | record_buf_mem[0] = 2 ; | |
12336 | thumb2_insn_r->mem_rec_count = 1; | |
12337 | } | |
12338 | else if (7 == op3) | |
12339 | { | |
12340 | /* Handle STREXD. */ | |
12341 | address = u_regval[0]; | |
12342 | record_buf_mem[0] = 4; | |
12343 | record_buf_mem[2] = 4; | |
12344 | record_buf_mem[3] = address + 4; | |
12345 | thumb2_insn_r->mem_rec_count = 2; | |
12346 | } | |
12347 | } | |
12348 | else | |
12349 | { | |
12350 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12351 | ||
12352 | if (bit (thumb2_insn_r->arm_insn, 24)) | |
12353 | { | |
12354 | if (bit (thumb2_insn_r->arm_insn, 23)) | |
12355 | offset_addr = u_regval[0] + (offset_imm * 4); | |
12356 | else | |
12357 | offset_addr = u_regval[0] - (offset_imm * 4); | |
12358 | ||
12359 | address = offset_addr; | |
12360 | } | |
12361 | else | |
12362 | address = u_regval[0]; | |
12363 | ||
12364 | record_buf_mem[0] = 4; | |
12365 | record_buf_mem[1] = address; | |
12366 | record_buf_mem[2] = 4; | |
12367 | record_buf_mem[3] = address + 4; | |
12368 | thumb2_insn_r->mem_rec_count = 2; | |
12369 | record_buf[0] = reg_rn; | |
12370 | thumb2_insn_r->reg_rec_count = 1; | |
12371 | } | |
12372 | } | |
12373 | ||
12374 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12375 | record_buf); | |
12376 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12377 | record_buf_mem); | |
12378 | return ARM_RECORD_SUCCESS; | |
12379 | } | |
12380 | ||
12381 | /* Handler for thumb2 data processing (shift register and modified immediate) | |
12382 | instructions. */ | |
12383 | ||
12384 | static int | |
12385 | thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r) | |
12386 | { | |
12387 | uint32_t reg_rd, op; | |
12388 | uint32_t record_buf[8]; | |
12389 | ||
12390 | op = bits (thumb2_insn_r->arm_insn, 21, 24); | |
12391 | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12392 | ||
12393 | if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd) | |
12394 | { | |
12395 | record_buf[0] = ARM_PS_REGNUM; | |
12396 | thumb2_insn_r->reg_rec_count = 1; | |
12397 | } | |
12398 | else | |
12399 | { | |
12400 | record_buf[0] = reg_rd; | |
12401 | record_buf[1] = ARM_PS_REGNUM; | |
12402 | thumb2_insn_r->reg_rec_count = 2; | |
12403 | } | |
12404 | ||
12405 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12406 | record_buf); | |
12407 | return ARM_RECORD_SUCCESS; | |
12408 | } | |
12409 | ||
12410 | /* Generic handler for thumb2 instructions which effect destination and PS | |
12411 | registers. */ | |
12412 | ||
12413 | static int | |
12414 | thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r) | |
12415 | { | |
12416 | uint32_t reg_rd; | |
12417 | uint32_t record_buf[8]; | |
12418 | ||
12419 | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12420 | ||
12421 | record_buf[0] = reg_rd; | |
12422 | record_buf[1] = ARM_PS_REGNUM; | |
12423 | thumb2_insn_r->reg_rec_count = 2; | |
12424 | ||
12425 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12426 | record_buf); | |
12427 | return ARM_RECORD_SUCCESS; | |
12428 | } | |
12429 | ||
12430 | /* Handler for thumb2 branch and miscellaneous control instructions. */ | |
12431 | ||
12432 | static int | |
12433 | thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r) | |
12434 | { | |
12435 | uint32_t op, op1, op2; | |
12436 | uint32_t record_buf[8]; | |
12437 | ||
12438 | op = bits (thumb2_insn_r->arm_insn, 20, 26); | |
12439 | op1 = bits (thumb2_insn_r->arm_insn, 12, 14); | |
12440 | op2 = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12441 | ||
12442 | /* Handle MSR insn. */ | |
12443 | if (!(op1 & 0x2) && 0x38 == op) | |
12444 | { | |
12445 | if (!(op2 & 0x3)) | |
12446 | { | |
12447 | /* CPSR is going to be changed. */ | |
12448 | record_buf[0] = ARM_PS_REGNUM; | |
12449 | thumb2_insn_r->reg_rec_count = 1; | |
12450 | } | |
12451 | else | |
12452 | { | |
12453 | arm_record_unsupported_insn(thumb2_insn_r); | |
12454 | return -1; | |
12455 | } | |
12456 | } | |
12457 | else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5)) | |
12458 | { | |
12459 | /* BLX. */ | |
12460 | record_buf[0] = ARM_PS_REGNUM; | |
12461 | record_buf[1] = ARM_LR_REGNUM; | |
12462 | thumb2_insn_r->reg_rec_count = 2; | |
12463 | } | |
12464 | ||
12465 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12466 | record_buf); | |
12467 | return ARM_RECORD_SUCCESS; | |
12468 | } | |
12469 | ||
12470 | /* Handler for thumb2 store single data item instructions. */ | |
12471 | ||
12472 | static int | |
12473 | thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r) | |
12474 | { | |
12475 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12476 | ||
12477 | uint32_t reg_rn, reg_rm, offset_imm, shift_imm; | |
12478 | uint32_t address, offset_addr; | |
12479 | uint32_t record_buf[8], record_buf_mem[8]; | |
12480 | uint32_t op1, op2; | |
12481 | ||
12482 | ULONGEST u_regval[2]; | |
12483 | ||
12484 | op1 = bits (thumb2_insn_r->arm_insn, 21, 23); | |
12485 | op2 = bits (thumb2_insn_r->arm_insn, 6, 11); | |
12486 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12487 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | |
12488 | ||
12489 | if (bit (thumb2_insn_r->arm_insn, 23)) | |
12490 | { | |
12491 | /* T2 encoding. */ | |
12492 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11); | |
12493 | offset_addr = u_regval[0] + offset_imm; | |
12494 | address = offset_addr; | |
12495 | } | |
12496 | else | |
12497 | { | |
12498 | /* T3 encoding. */ | |
12499 | if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20)) | |
12500 | { | |
12501 | /* Handle STRB (register). */ | |
12502 | reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3); | |
12503 | regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]); | |
12504 | shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5); | |
12505 | offset_addr = u_regval[1] << shift_imm; | |
12506 | address = u_regval[0] + offset_addr; | |
12507 | } | |
12508 | else | |
12509 | { | |
12510 | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | |
12511 | if (bit (thumb2_insn_r->arm_insn, 10)) | |
12512 | { | |
12513 | if (bit (thumb2_insn_r->arm_insn, 9)) | |
12514 | offset_addr = u_regval[0] + offset_imm; | |
12515 | else | |
12516 | offset_addr = u_regval[0] - offset_imm; | |
12517 | ||
12518 | address = offset_addr; | |
12519 | } | |
12520 | else | |
12521 | address = u_regval[0]; | |
12522 | } | |
12523 | } | |
12524 | ||
12525 | switch (op1) | |
12526 | { | |
12527 | /* Store byte instructions. */ | |
12528 | case 4: | |
12529 | case 0: | |
12530 | record_buf_mem[0] = 1; | |
12531 | break; | |
12532 | /* Store half word instructions. */ | |
12533 | case 1: | |
12534 | case 5: | |
12535 | record_buf_mem[0] = 2; | |
12536 | break; | |
12537 | /* Store word instructions. */ | |
12538 | case 2: | |
12539 | case 6: | |
12540 | record_buf_mem[0] = 4; | |
12541 | break; | |
12542 | ||
12543 | default: | |
12544 | gdb_assert_not_reached ("no decoding pattern found"); | |
12545 | break; | |
12546 | } | |
12547 | ||
12548 | record_buf_mem[1] = address; | |
12549 | thumb2_insn_r->mem_rec_count = 1; | |
12550 | record_buf[0] = reg_rn; | |
12551 | thumb2_insn_r->reg_rec_count = 1; | |
12552 | ||
12553 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12554 | record_buf); | |
12555 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12556 | record_buf_mem); | |
12557 | return ARM_RECORD_SUCCESS; | |
12558 | } | |
12559 | ||
12560 | /* Handler for thumb2 load memory hints instructions. */ | |
12561 | ||
12562 | static int | |
12563 | thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r) | |
12564 | { | |
12565 | uint32_t record_buf[8]; | |
12566 | uint32_t reg_rt, reg_rn; | |
12567 | ||
12568 | reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12569 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12570 | ||
12571 | if (ARM_PC_REGNUM != reg_rt) | |
12572 | { | |
12573 | record_buf[0] = reg_rt; | |
12574 | record_buf[1] = reg_rn; | |
12575 | record_buf[2] = ARM_PS_REGNUM; | |
12576 | thumb2_insn_r->reg_rec_count = 3; | |
12577 | ||
12578 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12579 | record_buf); | |
12580 | return ARM_RECORD_SUCCESS; | |
12581 | } | |
12582 | ||
12583 | return ARM_RECORD_FAILURE; | |
12584 | } | |
12585 | ||
12586 | /* Handler for thumb2 load word instructions. */ | |
12587 | ||
12588 | static int | |
12589 | thumb2_record_ld_word (insn_decode_record *thumb2_insn_r) | |
12590 | { | |
c6ec2b30 OJ |
12591 | uint32_t record_buf[8]; |
12592 | ||
12593 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12594 | record_buf[1] = ARM_PS_REGNUM; | |
12595 | thumb2_insn_r->reg_rec_count = 2; | |
12596 | ||
12597 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12598 | record_buf); | |
12599 | return ARM_RECORD_SUCCESS; | |
12600 | } | |
12601 | ||
12602 | /* Handler for thumb2 long multiply, long multiply accumulate, and | |
12603 | divide instructions. */ | |
12604 | ||
12605 | static int | |
12606 | thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r) | |
12607 | { | |
12608 | uint32_t opcode1 = 0, opcode2 = 0; | |
12609 | uint32_t record_buf[8]; | |
c6ec2b30 OJ |
12610 | |
12611 | opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22); | |
12612 | opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7); | |
12613 | ||
12614 | if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6)) | |
12615 | { | |
12616 | /* Handle SMULL, UMULL, SMULAL. */ | |
12617 | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ | |
12618 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12619 | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12620 | record_buf[2] = ARM_PS_REGNUM; | |
12621 | thumb2_insn_r->reg_rec_count = 3; | |
12622 | } | |
12623 | else if (1 == opcode1 || 3 == opcode2) | |
12624 | { | |
12625 | /* Handle SDIV and UDIV. */ | |
12626 | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12627 | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12628 | record_buf[2] = ARM_PS_REGNUM; | |
12629 | thumb2_insn_r->reg_rec_count = 3; | |
12630 | } | |
12631 | else | |
12632 | return ARM_RECORD_FAILURE; | |
12633 | ||
12634 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12635 | record_buf); | |
12636 | return ARM_RECORD_SUCCESS; | |
12637 | } | |
12638 | ||
60cc5e93 OJ |
12639 | /* Record handler for thumb32 coprocessor instructions. */ |
12640 | ||
12641 | static int | |
12642 | thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r) | |
12643 | { | |
12644 | if (bit (thumb2_insn_r->arm_insn, 25)) | |
12645 | return arm_record_coproc_data_proc (thumb2_insn_r); | |
12646 | else | |
12647 | return arm_record_asimd_vfp_coproc (thumb2_insn_r); | |
12648 | } | |
12649 | ||
1e1b6563 OJ |
12650 | /* Record handler for advance SIMD structure load/store instructions. */ |
12651 | ||
12652 | static int | |
12653 | thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r) | |
12654 | { | |
12655 | struct regcache *reg_cache = thumb2_insn_r->regcache; | |
12656 | uint32_t l_bit, a_bit, b_bits; | |
12657 | uint32_t record_buf[128], record_buf_mem[128]; | |
bec2ab5a | 12658 | uint32_t reg_rn, reg_vd, address, f_elem; |
1e1b6563 OJ |
12659 | uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0; |
12660 | uint8_t f_ebytes; | |
12661 | ||
12662 | l_bit = bit (thumb2_insn_r->arm_insn, 21); | |
12663 | a_bit = bit (thumb2_insn_r->arm_insn, 23); | |
12664 | b_bits = bits (thumb2_insn_r->arm_insn, 8, 11); | |
12665 | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | |
12666 | reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15); | |
12667 | reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd; | |
12668 | f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7)); | |
1e1b6563 OJ |
12669 | f_elem = 8 / f_ebytes; |
12670 | ||
12671 | if (!l_bit) | |
12672 | { | |
12673 | ULONGEST u_regval = 0; | |
12674 | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | |
12675 | address = u_regval; | |
12676 | ||
12677 | if (!a_bit) | |
12678 | { | |
12679 | /* Handle VST1. */ | |
12680 | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | |
12681 | { | |
12682 | if (b_bits == 0x07) | |
12683 | bf_regs = 1; | |
12684 | else if (b_bits == 0x0a) | |
12685 | bf_regs = 2; | |
12686 | else if (b_bits == 0x06) | |
12687 | bf_regs = 3; | |
12688 | else if (b_bits == 0x02) | |
12689 | bf_regs = 4; | |
12690 | else | |
12691 | bf_regs = 0; | |
12692 | ||
12693 | for (index_r = 0; index_r < bf_regs; index_r++) | |
12694 | { | |
12695 | for (index_e = 0; index_e < f_elem; index_e++) | |
12696 | { | |
12697 | record_buf_mem[index_m++] = f_ebytes; | |
12698 | record_buf_mem[index_m++] = address; | |
12699 | address = address + f_ebytes; | |
12700 | thumb2_insn_r->mem_rec_count += 1; | |
12701 | } | |
12702 | } | |
12703 | } | |
12704 | /* Handle VST2. */ | |
12705 | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | |
12706 | { | |
12707 | if (b_bits == 0x09 || b_bits == 0x08) | |
12708 | bf_regs = 1; | |
12709 | else if (b_bits == 0x03) | |
12710 | bf_regs = 2; | |
12711 | else | |
12712 | bf_regs = 0; | |
12713 | ||
12714 | for (index_r = 0; index_r < bf_regs; index_r++) | |
12715 | for (index_e = 0; index_e < f_elem; index_e++) | |
12716 | { | |
12717 | for (loop_t = 0; loop_t < 2; loop_t++) | |
12718 | { | |
12719 | record_buf_mem[index_m++] = f_ebytes; | |
12720 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12721 | thumb2_insn_r->mem_rec_count += 1; | |
12722 | } | |
12723 | address = address + (2 * f_ebytes); | |
12724 | } | |
12725 | } | |
12726 | /* Handle VST3. */ | |
12727 | else if ((b_bits & 0x0e) == 0x04) | |
12728 | { | |
12729 | for (index_e = 0; index_e < f_elem; index_e++) | |
12730 | { | |
12731 | for (loop_t = 0; loop_t < 3; loop_t++) | |
12732 | { | |
12733 | record_buf_mem[index_m++] = f_ebytes; | |
12734 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12735 | thumb2_insn_r->mem_rec_count += 1; | |
12736 | } | |
12737 | address = address + (3 * f_ebytes); | |
12738 | } | |
12739 | } | |
12740 | /* Handle VST4. */ | |
12741 | else if (!(b_bits & 0x0e)) | |
12742 | { | |
12743 | for (index_e = 0; index_e < f_elem; index_e++) | |
12744 | { | |
12745 | for (loop_t = 0; loop_t < 4; loop_t++) | |
12746 | { | |
12747 | record_buf_mem[index_m++] = f_ebytes; | |
12748 | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | |
12749 | thumb2_insn_r->mem_rec_count += 1; | |
12750 | } | |
12751 | address = address + (4 * f_ebytes); | |
12752 | } | |
12753 | } | |
12754 | } | |
12755 | else | |
12756 | { | |
12757 | uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11); | |
12758 | ||
12759 | if (bft_size == 0x00) | |
12760 | f_ebytes = 1; | |
12761 | else if (bft_size == 0x01) | |
12762 | f_ebytes = 2; | |
12763 | else if (bft_size == 0x02) | |
12764 | f_ebytes = 4; | |
12765 | else | |
12766 | f_ebytes = 0; | |
12767 | ||
12768 | /* Handle VST1. */ | |
12769 | if (!(b_bits & 0x0b) || b_bits == 0x08) | |
12770 | thumb2_insn_r->mem_rec_count = 1; | |
12771 | /* Handle VST2. */ | |
12772 | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09) | |
12773 | thumb2_insn_r->mem_rec_count = 2; | |
12774 | /* Handle VST3. */ | |
12775 | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a) | |
12776 | thumb2_insn_r->mem_rec_count = 3; | |
12777 | /* Handle VST4. */ | |
12778 | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b) | |
12779 | thumb2_insn_r->mem_rec_count = 4; | |
12780 | ||
12781 | for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++) | |
12782 | { | |
12783 | record_buf_mem[index_m] = f_ebytes; | |
12784 | record_buf_mem[index_m] = address + (index_m * f_ebytes); | |
12785 | } | |
12786 | } | |
12787 | } | |
12788 | else | |
12789 | { | |
12790 | if (!a_bit) | |
12791 | { | |
12792 | /* Handle VLD1. */ | |
12793 | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | |
12794 | thumb2_insn_r->reg_rec_count = 1; | |
12795 | /* Handle VLD2. */ | |
12796 | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | |
12797 | thumb2_insn_r->reg_rec_count = 2; | |
12798 | /* Handle VLD3. */ | |
12799 | else if ((b_bits & 0x0e) == 0x04) | |
12800 | thumb2_insn_r->reg_rec_count = 3; | |
12801 | /* Handle VLD4. */ | |
12802 | else if (!(b_bits & 0x0e)) | |
12803 | thumb2_insn_r->reg_rec_count = 4; | |
12804 | } | |
12805 | else | |
12806 | { | |
12807 | /* Handle VLD1. */ | |
12808 | if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c) | |
12809 | thumb2_insn_r->reg_rec_count = 1; | |
12810 | /* Handle VLD2. */ | |
12811 | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d) | |
12812 | thumb2_insn_r->reg_rec_count = 2; | |
12813 | /* Handle VLD3. */ | |
12814 | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e) | |
12815 | thumb2_insn_r->reg_rec_count = 3; | |
12816 | /* Handle VLD4. */ | |
12817 | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f) | |
12818 | thumb2_insn_r->reg_rec_count = 4; | |
12819 | ||
12820 | for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++) | |
12821 | record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r; | |
12822 | } | |
12823 | } | |
12824 | ||
12825 | if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15) | |
12826 | { | |
12827 | record_buf[index_r] = reg_rn; | |
12828 | thumb2_insn_r->reg_rec_count += 1; | |
12829 | } | |
12830 | ||
12831 | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | |
12832 | record_buf); | |
12833 | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | |
12834 | record_buf_mem); | |
12835 | return 0; | |
12836 | } | |
12837 | ||
c6ec2b30 OJ |
12838 | /* Decodes thumb2 instruction type and invokes its record handler. */ |
12839 | ||
12840 | static unsigned int | |
12841 | thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r) | |
12842 | { | |
12843 | uint32_t op, op1, op2; | |
12844 | ||
12845 | op = bit (thumb2_insn_r->arm_insn, 15); | |
12846 | op1 = bits (thumb2_insn_r->arm_insn, 27, 28); | |
12847 | op2 = bits (thumb2_insn_r->arm_insn, 20, 26); | |
12848 | ||
12849 | if (op1 == 0x01) | |
12850 | { | |
12851 | if (!(op2 & 0x64 )) | |
12852 | { | |
12853 | /* Load/store multiple instruction. */ | |
12854 | return thumb2_record_ld_st_multiple (thumb2_insn_r); | |
12855 | } | |
b121eeb9 | 12856 | else if ((op2 & 0x64) == 0x4) |
c6ec2b30 OJ |
12857 | { |
12858 | /* Load/store (dual/exclusive) and table branch instruction. */ | |
12859 | return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r); | |
12860 | } | |
b121eeb9 | 12861 | else if ((op2 & 0x60) == 0x20) |
c6ec2b30 OJ |
12862 | { |
12863 | /* Data-processing (shifted register). */ | |
12864 | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | |
12865 | } | |
12866 | else if (op2 & 0x40) | |
12867 | { | |
12868 | /* Co-processor instructions. */ | |
60cc5e93 | 12869 | return thumb2_record_coproc_insn (thumb2_insn_r); |
c6ec2b30 OJ |
12870 | } |
12871 | } | |
12872 | else if (op1 == 0x02) | |
12873 | { | |
12874 | if (op) | |
12875 | { | |
12876 | /* Branches and miscellaneous control instructions. */ | |
12877 | return thumb2_record_branch_misc_cntrl (thumb2_insn_r); | |
12878 | } | |
12879 | else if (op2 & 0x20) | |
12880 | { | |
12881 | /* Data-processing (plain binary immediate) instruction. */ | |
12882 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
12883 | } | |
12884 | else | |
12885 | { | |
12886 | /* Data-processing (modified immediate). */ | |
12887 | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | |
12888 | } | |
12889 | } | |
12890 | else if (op1 == 0x03) | |
12891 | { | |
12892 | if (!(op2 & 0x71 )) | |
12893 | { | |
12894 | /* Store single data item. */ | |
12895 | return thumb2_record_str_single_data (thumb2_insn_r); | |
12896 | } | |
12897 | else if (!((op2 & 0x71) ^ 0x10)) | |
12898 | { | |
12899 | /* Advanced SIMD or structure load/store instructions. */ | |
1e1b6563 | 12900 | return thumb2_record_asimd_struct_ld_st (thumb2_insn_r); |
c6ec2b30 OJ |
12901 | } |
12902 | else if (!((op2 & 0x67) ^ 0x01)) | |
12903 | { | |
12904 | /* Load byte, memory hints instruction. */ | |
12905 | return thumb2_record_ld_mem_hints (thumb2_insn_r); | |
12906 | } | |
12907 | else if (!((op2 & 0x67) ^ 0x03)) | |
12908 | { | |
12909 | /* Load halfword, memory hints instruction. */ | |
12910 | return thumb2_record_ld_mem_hints (thumb2_insn_r); | |
12911 | } | |
12912 | else if (!((op2 & 0x67) ^ 0x05)) | |
12913 | { | |
12914 | /* Load word instruction. */ | |
12915 | return thumb2_record_ld_word (thumb2_insn_r); | |
12916 | } | |
12917 | else if (!((op2 & 0x70) ^ 0x20)) | |
12918 | { | |
12919 | /* Data-processing (register) instruction. */ | |
12920 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
12921 | } | |
12922 | else if (!((op2 & 0x78) ^ 0x30)) | |
12923 | { | |
12924 | /* Multiply, multiply accumulate, abs diff instruction. */ | |
12925 | return thumb2_record_ps_dest_generic (thumb2_insn_r); | |
12926 | } | |
12927 | else if (!((op2 & 0x78) ^ 0x38)) | |
12928 | { | |
12929 | /* Long multiply, long multiply accumulate, and divide. */ | |
12930 | return thumb2_record_lmul_lmla_div (thumb2_insn_r); | |
12931 | } | |
12932 | else if (op2 & 0x40) | |
12933 | { | |
12934 | /* Co-processor instructions. */ | |
60cc5e93 | 12935 | return thumb2_record_coproc_insn (thumb2_insn_r); |
c6ec2b30 OJ |
12936 | } |
12937 | } | |
12938 | ||
12939 | return -1; | |
12940 | } | |
72508ac0 | 12941 | |
ffdbe864 | 12942 | namespace { |
728a7913 YQ |
12943 | /* Abstract memory reader. */ |
12944 | ||
12945 | class abstract_memory_reader | |
12946 | { | |
12947 | public: | |
12948 | /* Read LEN bytes of target memory at address MEMADDR, placing the | |
12949 | results in GDB's memory at BUF. Return true on success. */ | |
12950 | ||
12951 | virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0; | |
12952 | }; | |
12953 | ||
12954 | /* Instruction reader from real target. */ | |
12955 | ||
12956 | class instruction_reader : public abstract_memory_reader | |
12957 | { | |
12958 | public: | |
12959 | bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) | |
12960 | { | |
12961 | if (target_read_memory (memaddr, buf, len)) | |
12962 | return false; | |
12963 | else | |
12964 | return true; | |
12965 | } | |
12966 | }; | |
12967 | ||
ffdbe864 YQ |
12968 | } // namespace |
12969 | ||
72508ac0 PO |
12970 | /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success |
12971 | and positive val on fauilure. */ | |
12972 | ||
12973 | static int | |
728a7913 YQ |
12974 | extract_arm_insn (abstract_memory_reader& reader, |
12975 | insn_decode_record *insn_record, uint32_t insn_size) | |
72508ac0 PO |
12976 | { |
12977 | gdb_byte buf[insn_size]; | |
12978 | ||
12979 | memset (&buf[0], 0, insn_size); | |
12980 | ||
728a7913 | 12981 | if (!reader.read (insn_record->this_addr, buf, insn_size)) |
72508ac0 PO |
12982 | return 1; |
12983 | insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0], | |
12984 | insn_size, | |
2959fed9 | 12985 | gdbarch_byte_order_for_code (insn_record->gdbarch)); |
72508ac0 PO |
12986 | return 0; |
12987 | } | |
12988 | ||
12989 | typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*); | |
12990 | ||
12991 | /* Decode arm/thumb insn depending on condition cods and opcodes; and | |
12992 | dispatch it. */ | |
12993 | ||
12994 | static int | |
728a7913 YQ |
12995 | decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record, |
12996 | record_type_t record_type, uint32_t insn_size) | |
72508ac0 PO |
12997 | { |
12998 | ||
01e57735 YQ |
12999 | /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm |
13000 | instruction. */ | |
0fa9c223 | 13001 | static const sti_arm_hdl_fp_t arm_handle_insn[8] = |
72508ac0 PO |
13002 | { |
13003 | arm_record_data_proc_misc_ld_str, /* 000. */ | |
13004 | arm_record_data_proc_imm, /* 001. */ | |
13005 | arm_record_ld_st_imm_offset, /* 010. */ | |
13006 | arm_record_ld_st_reg_offset, /* 011. */ | |
13007 | arm_record_ld_st_multiple, /* 100. */ | |
13008 | arm_record_b_bl, /* 101. */ | |
60cc5e93 | 13009 | arm_record_asimd_vfp_coproc, /* 110. */ |
72508ac0 PO |
13010 | arm_record_coproc_data_proc /* 111. */ |
13011 | }; | |
13012 | ||
01e57735 YQ |
13013 | /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb |
13014 | instruction. */ | |
0fa9c223 | 13015 | static const sti_arm_hdl_fp_t thumb_handle_insn[8] = |
72508ac0 PO |
13016 | { \ |
13017 | thumb_record_shift_add_sub, /* 000. */ | |
13018 | thumb_record_add_sub_cmp_mov, /* 001. */ | |
13019 | thumb_record_ld_st_reg_offset, /* 010. */ | |
13020 | thumb_record_ld_st_imm_offset, /* 011. */ | |
13021 | thumb_record_ld_st_stack, /* 100. */ | |
13022 | thumb_record_misc, /* 101. */ | |
13023 | thumb_record_ldm_stm_swi, /* 110. */ | |
13024 | thumb_record_branch /* 111. */ | |
13025 | }; | |
13026 | ||
13027 | uint32_t ret = 0; /* return value: negative:failure 0:success. */ | |
13028 | uint32_t insn_id = 0; | |
13029 | ||
728a7913 | 13030 | if (extract_arm_insn (reader, arm_record, insn_size)) |
72508ac0 PO |
13031 | { |
13032 | if (record_debug) | |
01e57735 YQ |
13033 | { |
13034 | printf_unfiltered (_("Process record: error reading memory at " | |
13035 | "addr %s len = %d.\n"), | |
13036 | paddress (arm_record->gdbarch, | |
13037 | arm_record->this_addr), insn_size); | |
13038 | } | |
72508ac0 PO |
13039 | return -1; |
13040 | } | |
13041 | else if (ARM_RECORD == record_type) | |
13042 | { | |
13043 | arm_record->cond = bits (arm_record->arm_insn, 28, 31); | |
13044 | insn_id = bits (arm_record->arm_insn, 25, 27); | |
ca92db2d YQ |
13045 | |
13046 | if (arm_record->cond == 0xf) | |
13047 | ret = arm_record_extension_space (arm_record); | |
13048 | else | |
01e57735 | 13049 | { |
ca92db2d YQ |
13050 | /* If this insn has fallen into extension space |
13051 | then we need not decode it anymore. */ | |
01e57735 YQ |
13052 | ret = arm_handle_insn[insn_id] (arm_record); |
13053 | } | |
ca92db2d YQ |
13054 | if (ret != ARM_RECORD_SUCCESS) |
13055 | { | |
13056 | arm_record_unsupported_insn (arm_record); | |
13057 | ret = -1; | |
13058 | } | |
72508ac0 PO |
13059 | } |
13060 | else if (THUMB_RECORD == record_type) | |
13061 | { | |
13062 | /* As thumb does not have condition codes, we set negative. */ | |
13063 | arm_record->cond = -1; | |
13064 | insn_id = bits (arm_record->arm_insn, 13, 15); | |
13065 | ret = thumb_handle_insn[insn_id] (arm_record); | |
ca92db2d YQ |
13066 | if (ret != ARM_RECORD_SUCCESS) |
13067 | { | |
13068 | arm_record_unsupported_insn (arm_record); | |
13069 | ret = -1; | |
13070 | } | |
72508ac0 PO |
13071 | } |
13072 | else if (THUMB2_RECORD == record_type) | |
13073 | { | |
c6ec2b30 OJ |
13074 | /* As thumb does not have condition codes, we set negative. */ |
13075 | arm_record->cond = -1; | |
13076 | ||
13077 | /* Swap first half of 32bit thumb instruction with second half. */ | |
13078 | arm_record->arm_insn | |
01e57735 | 13079 | = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16); |
c6ec2b30 | 13080 | |
ca92db2d | 13081 | ret = thumb2_record_decode_insn_handler (arm_record); |
c6ec2b30 | 13082 | |
ca92db2d | 13083 | if (ret != ARM_RECORD_SUCCESS) |
01e57735 YQ |
13084 | { |
13085 | arm_record_unsupported_insn (arm_record); | |
13086 | ret = -1; | |
13087 | } | |
72508ac0 PO |
13088 | } |
13089 | else | |
13090 | { | |
13091 | /* Throw assertion. */ | |
13092 | gdb_assert_not_reached ("not a valid instruction, could not decode"); | |
13093 | } | |
13094 | ||
13095 | return ret; | |
13096 | } | |
13097 | ||
b121eeb9 YQ |
13098 | #if GDB_SELF_TEST |
13099 | namespace selftests { | |
13100 | ||
13101 | /* Provide both 16-bit and 32-bit thumb instructions. */ | |
13102 | ||
13103 | class instruction_reader_thumb : public abstract_memory_reader | |
13104 | { | |
13105 | public: | |
13106 | template<size_t SIZE> | |
13107 | instruction_reader_thumb (enum bfd_endian endian, | |
13108 | const uint16_t (&insns)[SIZE]) | |
13109 | : m_endian (endian), m_insns (insns), m_insns_size (SIZE) | |
13110 | {} | |
13111 | ||
13112 | bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) | |
13113 | { | |
13114 | SELF_CHECK (len == 4 || len == 2); | |
13115 | SELF_CHECK (memaddr % 2 == 0); | |
13116 | SELF_CHECK ((memaddr / 2) < m_insns_size); | |
13117 | ||
13118 | store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]); | |
13119 | if (len == 4) | |
13120 | { | |
13121 | store_unsigned_integer (&buf[2], 2, m_endian, | |
13122 | m_insns[memaddr / 2 + 1]); | |
13123 | } | |
13124 | return true; | |
13125 | } | |
13126 | ||
13127 | private: | |
13128 | enum bfd_endian m_endian; | |
13129 | const uint16_t *m_insns; | |
13130 | size_t m_insns_size; | |
13131 | }; | |
13132 | ||
13133 | static void | |
13134 | arm_record_test (void) | |
13135 | { | |
13136 | struct gdbarch_info info; | |
13137 | gdbarch_info_init (&info); | |
13138 | info.bfd_arch_info = bfd_scan_arch ("arm"); | |
13139 | ||
13140 | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | |
13141 | ||
13142 | SELF_CHECK (gdbarch != NULL); | |
13143 | ||
13144 | /* 16-bit Thumb instructions. */ | |
13145 | { | |
13146 | insn_decode_record arm_record; | |
13147 | ||
13148 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13149 | arm_record.gdbarch = gdbarch; | |
13150 | ||
13151 | static const uint16_t insns[] = { | |
13152 | /* db b2 uxtb r3, r3 */ | |
13153 | 0xb2db, | |
13154 | /* cd 58 ldr r5, [r1, r3] */ | |
13155 | 0x58cd, | |
13156 | }; | |
13157 | ||
13158 | enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); | |
13159 | instruction_reader_thumb reader (endian, insns); | |
13160 | int ret = decode_insn (reader, &arm_record, THUMB_RECORD, | |
13161 | THUMB_INSN_SIZE_BYTES); | |
13162 | ||
13163 | SELF_CHECK (ret == 0); | |
13164 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13165 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13166 | SELF_CHECK (arm_record.arm_regs[0] == 3); | |
13167 | ||
13168 | arm_record.this_addr += 2; | |
13169 | ret = decode_insn (reader, &arm_record, THUMB_RECORD, | |
13170 | THUMB_INSN_SIZE_BYTES); | |
13171 | ||
13172 | SELF_CHECK (ret == 0); | |
13173 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13174 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13175 | SELF_CHECK (arm_record.arm_regs[0] == 5); | |
13176 | } | |
13177 | ||
13178 | /* 32-bit Thumb-2 instructions. */ | |
13179 | { | |
13180 | insn_decode_record arm_record; | |
13181 | ||
13182 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13183 | arm_record.gdbarch = gdbarch; | |
13184 | ||
13185 | static const uint16_t insns[] = { | |
13186 | /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */ | |
13187 | 0xee1d, 0x7f70, | |
13188 | }; | |
13189 | ||
13190 | enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); | |
13191 | instruction_reader_thumb reader (endian, insns); | |
13192 | int ret = decode_insn (reader, &arm_record, THUMB2_RECORD, | |
13193 | THUMB2_INSN_SIZE_BYTES); | |
13194 | ||
13195 | SELF_CHECK (ret == 0); | |
13196 | SELF_CHECK (arm_record.mem_rec_count == 0); | |
13197 | SELF_CHECK (arm_record.reg_rec_count == 1); | |
13198 | SELF_CHECK (arm_record.arm_regs[0] == 7); | |
13199 | } | |
13200 | } | |
13201 | } // namespace selftests | |
13202 | #endif /* GDB_SELF_TEST */ | |
72508ac0 PO |
13203 | |
13204 | /* Cleans up local record registers and memory allocations. */ | |
13205 | ||
13206 | static void | |
13207 | deallocate_reg_mem (insn_decode_record *record) | |
13208 | { | |
13209 | xfree (record->arm_regs); | |
13210 | xfree (record->arm_mems); | |
13211 | } | |
13212 | ||
13213 | ||
01e57735 | 13214 | /* Parse the current instruction and record the values of the registers and |
72508ac0 PO |
13215 | memory that will be changed in current instruction to record_arch_list". |
13216 | Return -1 if something is wrong. */ | |
13217 | ||
13218 | int | |
01e57735 YQ |
13219 | arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, |
13220 | CORE_ADDR insn_addr) | |
72508ac0 PO |
13221 | { |
13222 | ||
72508ac0 PO |
13223 | uint32_t no_of_rec = 0; |
13224 | uint32_t ret = 0; /* return value: -1:record failure ; 0:success */ | |
13225 | ULONGEST t_bit = 0, insn_id = 0; | |
13226 | ||
13227 | ULONGEST u_regval = 0; | |
13228 | ||
13229 | insn_decode_record arm_record; | |
13230 | ||
13231 | memset (&arm_record, 0, sizeof (insn_decode_record)); | |
13232 | arm_record.regcache = regcache; | |
13233 | arm_record.this_addr = insn_addr; | |
13234 | arm_record.gdbarch = gdbarch; | |
13235 | ||
13236 | ||
13237 | if (record_debug > 1) | |
13238 | { | |
13239 | fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record " | |
01e57735 | 13240 | "addr = %s\n", |
72508ac0 PO |
13241 | paddress (gdbarch, arm_record.this_addr)); |
13242 | } | |
13243 | ||
728a7913 YQ |
13244 | instruction_reader reader; |
13245 | if (extract_arm_insn (reader, &arm_record, 2)) | |
72508ac0 PO |
13246 | { |
13247 | if (record_debug) | |
01e57735 YQ |
13248 | { |
13249 | printf_unfiltered (_("Process record: error reading memory at " | |
13250 | "addr %s len = %d.\n"), | |
13251 | paddress (arm_record.gdbarch, | |
13252 | arm_record.this_addr), 2); | |
13253 | } | |
72508ac0 PO |
13254 | return -1; |
13255 | } | |
13256 | ||
13257 | /* Check the insn, whether it is thumb or arm one. */ | |
13258 | ||
13259 | t_bit = arm_psr_thumb_bit (arm_record.gdbarch); | |
13260 | regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval); | |
13261 | ||
13262 | ||
13263 | if (!(u_regval & t_bit)) | |
13264 | { | |
13265 | /* We are decoding arm insn. */ | |
728a7913 | 13266 | ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES); |
72508ac0 PO |
13267 | } |
13268 | else | |
13269 | { | |
13270 | insn_id = bits (arm_record.arm_insn, 11, 15); | |
13271 | /* is it thumb2 insn? */ | |
13272 | if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id)) | |
01e57735 | 13273 | { |
728a7913 | 13274 | ret = decode_insn (reader, &arm_record, THUMB2_RECORD, |
01e57735 YQ |
13275 | THUMB2_INSN_SIZE_BYTES); |
13276 | } | |
72508ac0 | 13277 | else |
01e57735 YQ |
13278 | { |
13279 | /* We are decoding thumb insn. */ | |
728a7913 YQ |
13280 | ret = decode_insn (reader, &arm_record, THUMB_RECORD, |
13281 | THUMB_INSN_SIZE_BYTES); | |
01e57735 | 13282 | } |
72508ac0 PO |
13283 | } |
13284 | ||
13285 | if (0 == ret) | |
13286 | { | |
13287 | /* Record registers. */ | |
25ea693b | 13288 | record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM); |
72508ac0 | 13289 | if (arm_record.arm_regs) |
01e57735 YQ |
13290 | { |
13291 | for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++) | |
13292 | { | |
13293 | if (record_full_arch_list_add_reg | |
25ea693b | 13294 | (arm_record.regcache , arm_record.arm_regs[no_of_rec])) |
01e57735 YQ |
13295 | ret = -1; |
13296 | } | |
13297 | } | |
72508ac0 PO |
13298 | /* Record memories. */ |
13299 | if (arm_record.arm_mems) | |
01e57735 YQ |
13300 | { |
13301 | for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++) | |
13302 | { | |
13303 | if (record_full_arch_list_add_mem | |
13304 | ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr, | |
25ea693b | 13305 | arm_record.arm_mems[no_of_rec].len)) |
01e57735 YQ |
13306 | ret = -1; |
13307 | } | |
13308 | } | |
72508ac0 | 13309 | |
25ea693b | 13310 | if (record_full_arch_list_add_end ()) |
01e57735 | 13311 | ret = -1; |
72508ac0 PO |
13312 | } |
13313 | ||
13314 | ||
13315 | deallocate_reg_mem (&arm_record); | |
13316 | ||
13317 | return ret; | |
13318 | } |