Commit | Line | Data |
---|---|---|
ed9a39eb | 1 | /* Common target dependent code for GDB on ARM systems. |
0fd88904 | 2 | |
197e01b6 | 3 | Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, |
25224166 MK |
4 | 2000, 2001, 2002, 2003, 2004, 2005, 2006 |
5 | Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
22 | Boston, MA 02110-1301, USA. */ | |
c906108c | 23 | |
34e8f22d RE |
24 | #include <ctype.h> /* XXX for isupper () */ |
25 | ||
c906108c SS |
26 | #include "defs.h" |
27 | #include "frame.h" | |
28 | #include "inferior.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "gdbcore.h" | |
c906108c | 31 | #include "gdb_string.h" |
afd7eef0 | 32 | #include "dis-asm.h" /* For register styles. */ |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
34e8f22d | 36 | #include "arch-utils.h" |
4be87837 | 37 | #include "osabi.h" |
eb5492fa DJ |
38 | #include "frame-unwind.h" |
39 | #include "frame-base.h" | |
40 | #include "trad-frame.h" | |
842e1f1e DJ |
41 | #include "objfiles.h" |
42 | #include "dwarf2-frame.h" | |
e4c16157 | 43 | #include "gdbtypes.h" |
34e8f22d RE |
44 | |
45 | #include "arm-tdep.h" | |
26216b98 | 46 | #include "gdb/sim-arm.h" |
34e8f22d | 47 | |
082fc60d RE |
48 | #include "elf-bfd.h" |
49 | #include "coff/internal.h" | |
97e03143 | 50 | #include "elf/arm.h" |
c906108c | 51 | |
26216b98 AC |
52 | #include "gdb_assert.h" |
53 | ||
6529d2dd AC |
54 | static int arm_debug; |
55 | ||
082fc60d RE |
56 | /* Macros for setting and testing a bit in a minimal symbol that marks |
57 | it as Thumb function. The MSB of the minimal symbol's "info" field | |
f594e5e9 | 58 | is used for this purpose. |
082fc60d RE |
59 | |
60 | MSYMBOL_SET_SPECIAL Actually sets the "special" bit. | |
f594e5e9 | 61 | MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
082fc60d RE |
62 | |
63 | #define MSYMBOL_SET_SPECIAL(msym) \ | |
64 | MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \ | |
65 | | 0x80000000) | |
66 | ||
67 | #define MSYMBOL_IS_SPECIAL(msym) \ | |
68 | (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0) | |
69 | ||
afd7eef0 RE |
70 | /* The list of available "set arm ..." and "show arm ..." commands. */ |
71 | static struct cmd_list_element *setarmcmdlist = NULL; | |
72 | static struct cmd_list_element *showarmcmdlist = NULL; | |
73 | ||
fd50bc42 RE |
74 | /* The type of floating-point to use. Keep this in sync with enum |
75 | arm_float_model, and the help string in _initialize_arm_tdep. */ | |
76 | static const char *fp_model_strings[] = | |
77 | { | |
78 | "auto", | |
79 | "softfpa", | |
80 | "fpa", | |
81 | "softvfp", | |
28e97307 DJ |
82 | "vfp", |
83 | NULL | |
fd50bc42 RE |
84 | }; |
85 | ||
86 | /* A variable that can be configured by the user. */ | |
87 | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | |
88 | static const char *current_fp_model = "auto"; | |
89 | ||
28e97307 DJ |
90 | /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
91 | static const char *arm_abi_strings[] = | |
92 | { | |
93 | "auto", | |
94 | "APCS", | |
95 | "AAPCS", | |
96 | NULL | |
97 | }; | |
98 | ||
99 | /* A variable that can be configured by the user. */ | |
100 | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | |
101 | static const char *arm_abi_string = "auto"; | |
102 | ||
94c30b78 | 103 | /* Number of different reg name sets (options). */ |
afd7eef0 | 104 | static int num_disassembly_options; |
bc90b915 FN |
105 | |
106 | /* We have more registers than the disassembler as gdb can print the value | |
107 | of special registers as well. | |
108 | The general register names are overwritten by whatever is being used by | |
94c30b78 | 109 | the disassembler at the moment. We also adjust the case of cpsr and fps. */ |
bc90b915 | 110 | |
94c30b78 | 111 | /* Initial value: Register names used in ARM's ISA documentation. */ |
bc90b915 | 112 | static char * arm_register_name_strings[] = |
da59e081 JM |
113 | {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
114 | "r4", "r5", "r6", "r7", /* 4 5 6 7 */ | |
115 | "r8", "r9", "r10", "r11", /* 8 9 10 11 */ | |
116 | "r12", "sp", "lr", "pc", /* 12 13 14 15 */ | |
117 | "f0", "f1", "f2", "f3", /* 16 17 18 19 */ | |
118 | "f4", "f5", "f6", "f7", /* 20 21 22 23 */ | |
94c30b78 | 119 | "fps", "cpsr" }; /* 24 25 */ |
966fbf70 | 120 | static char **arm_register_names = arm_register_name_strings; |
ed9a39eb | 121 | |
afd7eef0 RE |
122 | /* Valid register name styles. */ |
123 | static const char **valid_disassembly_styles; | |
ed9a39eb | 124 | |
afd7eef0 RE |
125 | /* Disassembly style to use. Default to "std" register names. */ |
126 | static const char *disassembly_style; | |
94c30b78 | 127 | /* Index to that option in the opcodes table. */ |
da3c6d4a | 128 | static int current_option; |
96baa820 | 129 | |
ed9a39eb | 130 | /* This is used to keep the bfd arch_info in sync with the disassembly |
afd7eef0 RE |
131 | style. */ |
132 | static void set_disassembly_style_sfunc(char *, int, | |
ed9a39eb | 133 | struct cmd_list_element *); |
afd7eef0 | 134 | static void set_disassembly_style (void); |
ed9a39eb | 135 | |
b508a996 RE |
136 | static void convert_from_extended (const struct floatformat *, const void *, |
137 | void *); | |
138 | static void convert_to_extended (const struct floatformat *, void *, | |
139 | const void *); | |
ed9a39eb | 140 | |
9b8d791a | 141 | struct arm_prologue_cache |
c3b4394c | 142 | { |
eb5492fa DJ |
143 | /* The stack pointer at the time this frame was created; i.e. the |
144 | caller's stack pointer when this function was called. It is used | |
145 | to identify this frame. */ | |
146 | CORE_ADDR prev_sp; | |
147 | ||
148 | /* The frame base for this frame is just prev_sp + frame offset - | |
149 | frame size. FRAMESIZE is the size of this stack frame, and | |
150 | FRAMEOFFSET if the initial offset from the stack pointer (this | |
151 | frame's stack pointer, not PREV_SP) to the frame base. */ | |
152 | ||
c3b4394c RE |
153 | int framesize; |
154 | int frameoffset; | |
eb5492fa DJ |
155 | |
156 | /* The register used to hold the frame pointer for this frame. */ | |
c3b4394c | 157 | int framereg; |
eb5492fa DJ |
158 | |
159 | /* Saved register offsets. */ | |
160 | struct trad_frame_saved_reg *saved_regs; | |
c3b4394c | 161 | }; |
ed9a39eb | 162 | |
bc90b915 FN |
163 | /* Addresses for calling Thumb functions have the bit 0 set. |
164 | Here are some macros to test, set, or clear bit 0 of addresses. */ | |
165 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
166 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
167 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
168 | ||
94c30b78 | 169 | /* Set to true if the 32-bit mode is in use. */ |
c906108c SS |
170 | |
171 | int arm_apcs_32 = 1; | |
172 | ||
ed9a39eb JM |
173 | /* Determine if the program counter specified in MEMADDR is in a Thumb |
174 | function. */ | |
c906108c | 175 | |
34e8f22d | 176 | int |
2a451106 | 177 | arm_pc_is_thumb (CORE_ADDR memaddr) |
c906108c | 178 | { |
c5aa993b | 179 | struct minimal_symbol *sym; |
c906108c | 180 | |
ed9a39eb | 181 | /* If bit 0 of the address is set, assume this is a Thumb address. */ |
c906108c SS |
182 | if (IS_THUMB_ADDR (memaddr)) |
183 | return 1; | |
184 | ||
ed9a39eb | 185 | /* Thumb functions have a "special" bit set in minimal symbols. */ |
c906108c SS |
186 | sym = lookup_minimal_symbol_by_pc (memaddr); |
187 | if (sym) | |
188 | { | |
c5aa993b | 189 | return (MSYMBOL_IS_SPECIAL (sym)); |
c906108c SS |
190 | } |
191 | else | |
ed9a39eb JM |
192 | { |
193 | return 0; | |
194 | } | |
c906108c SS |
195 | } |
196 | ||
181c1381 | 197 | /* Remove useless bits from addresses in a running program. */ |
34e8f22d | 198 | static CORE_ADDR |
ed9a39eb | 199 | arm_addr_bits_remove (CORE_ADDR val) |
c906108c | 200 | { |
a3a2ee65 JT |
201 | if (arm_apcs_32) |
202 | return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc)); | |
c906108c | 203 | else |
a3a2ee65 | 204 | return (val & 0x03fffffc); |
c906108c SS |
205 | } |
206 | ||
181c1381 RE |
207 | /* When reading symbols, we need to zap the low bit of the address, |
208 | which may be set to 1 for Thumb functions. */ | |
34e8f22d | 209 | static CORE_ADDR |
181c1381 RE |
210 | arm_smash_text_address (CORE_ADDR val) |
211 | { | |
212 | return val & ~1; | |
213 | } | |
214 | ||
c906108c | 215 | /* A typical Thumb prologue looks like this: |
c5aa993b JM |
216 | push {r7, lr} |
217 | add sp, sp, #-28 | |
218 | add r7, sp, #12 | |
c906108c | 219 | Sometimes the latter instruction may be replaced by: |
da59e081 JM |
220 | mov r7, sp |
221 | ||
222 | or like this: | |
223 | push {r7, lr} | |
224 | mov r7, sp | |
225 | sub sp, #12 | |
226 | ||
227 | or, on tpcs, like this: | |
228 | sub sp,#16 | |
229 | push {r7, lr} | |
230 | (many instructions) | |
231 | mov r7, sp | |
232 | sub sp, #12 | |
233 | ||
234 | There is always one instruction of three classes: | |
235 | 1 - push | |
236 | 2 - setting of r7 | |
237 | 3 - adjusting of sp | |
238 | ||
239 | When we have found at least one of each class we are done with the prolog. | |
240 | Note that the "sub sp, #NN" before the push does not count. | |
ed9a39eb | 241 | */ |
c906108c SS |
242 | |
243 | static CORE_ADDR | |
c7885828 | 244 | thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) |
c906108c SS |
245 | { |
246 | CORE_ADDR current_pc; | |
da3c6d4a MS |
247 | /* findmask: |
248 | bit 0 - push { rlist } | |
249 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
250 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
251 | */ | |
252 | int findmask = 0; | |
253 | ||
94c30b78 MS |
254 | for (current_pc = pc; |
255 | current_pc + 2 < func_end && current_pc < pc + 40; | |
da3c6d4a | 256 | current_pc += 2) |
c906108c SS |
257 | { |
258 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
259 | ||
94c30b78 | 260 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
da59e081 | 261 | { |
94c30b78 | 262 | findmask |= 1; /* push found */ |
da59e081 | 263 | } |
da3c6d4a MS |
264 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
265 | sub sp, #simm */ | |
da59e081 | 266 | { |
94c30b78 | 267 | if ((findmask & 1) == 0) /* before push ? */ |
da59e081 JM |
268 | continue; |
269 | else | |
94c30b78 | 270 | findmask |= 4; /* add/sub sp found */ |
da59e081 JM |
271 | } |
272 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
273 | { | |
94c30b78 | 274 | findmask |= 2; /* setting of r7 found */ |
da59e081 JM |
275 | } |
276 | else if (insn == 0x466f) /* mov r7, sp */ | |
277 | { | |
94c30b78 | 278 | findmask |= 2; /* setting of r7 found */ |
da59e081 | 279 | } |
3d74b771 FF |
280 | else if (findmask == (4+2+1)) |
281 | { | |
da3c6d4a MS |
282 | /* We have found one of each type of prologue instruction */ |
283 | break; | |
3d74b771 | 284 | } |
da59e081 | 285 | else |
94c30b78 | 286 | /* Something in the prolog that we don't care about or some |
da3c6d4a | 287 | instruction from outside the prolog scheduled here for |
94c30b78 | 288 | optimization. */ |
da3c6d4a | 289 | continue; |
c906108c SS |
290 | } |
291 | ||
292 | return current_pc; | |
293 | } | |
294 | ||
da3c6d4a MS |
295 | /* Advance the PC across any function entry prologue instructions to |
296 | reach some "real" code. | |
34e8f22d RE |
297 | |
298 | The APCS (ARM Procedure Call Standard) defines the following | |
ed9a39eb | 299 | prologue: |
c906108c | 300 | |
c5aa993b JM |
301 | mov ip, sp |
302 | [stmfd sp!, {a1,a2,a3,a4}] | |
303 | stmfd sp!, {...,fp,ip,lr,pc} | |
ed9a39eb JM |
304 | [stfe f7, [sp, #-12]!] |
305 | [stfe f6, [sp, #-12]!] | |
306 | [stfe f5, [sp, #-12]!] | |
307 | [stfe f4, [sp, #-12]!] | |
308 | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ | |
c906108c | 309 | |
34e8f22d | 310 | static CORE_ADDR |
ed9a39eb | 311 | arm_skip_prologue (CORE_ADDR pc) |
c906108c SS |
312 | { |
313 | unsigned long inst; | |
314 | CORE_ADDR skip_pc; | |
b8d5e71d | 315 | CORE_ADDR func_addr, func_end = 0; |
50f6fb4b | 316 | char *func_name; |
c906108c SS |
317 | struct symtab_and_line sal; |
318 | ||
848cfffb | 319 | /* If we're in a dummy frame, don't even try to skip the prologue. */ |
30a4a8e0 | 320 | if (deprecated_pc_in_call_dummy (pc)) |
848cfffb AC |
321 | return pc; |
322 | ||
96baa820 | 323 | /* See what the symbol table says. */ |
ed9a39eb | 324 | |
50f6fb4b | 325 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) |
c906108c | 326 | { |
50f6fb4b CV |
327 | struct symbol *sym; |
328 | ||
329 | /* Found a function. */ | |
176620f1 | 330 | sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL); |
50f6fb4b CV |
331 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) |
332 | { | |
94c30b78 | 333 | /* Don't use this trick for assembly source files. */ |
50f6fb4b CV |
334 | sal = find_pc_line (func_addr, 0); |
335 | if ((sal.line != 0) && (sal.end < func_end)) | |
336 | return sal.end; | |
337 | } | |
c906108c SS |
338 | } |
339 | ||
340 | /* Check if this is Thumb code. */ | |
341 | if (arm_pc_is_thumb (pc)) | |
c7885828 | 342 | return thumb_skip_prologue (pc, func_end); |
c906108c SS |
343 | |
344 | /* Can't find the prologue end in the symbol table, try it the hard way | |
94c30b78 | 345 | by disassembling the instructions. */ |
c906108c | 346 | |
b8d5e71d MS |
347 | /* Like arm_scan_prologue, stop no later than pc + 64. */ |
348 | if (func_end == 0 || func_end > pc + 64) | |
349 | func_end = pc + 64; | |
c906108c | 350 | |
b8d5e71d | 351 | for (skip_pc = pc; skip_pc < func_end; skip_pc += 4) |
f43845b3 | 352 | { |
1c5bada0 | 353 | inst = read_memory_unsigned_integer (skip_pc, 4); |
f43845b3 | 354 | |
b8d5e71d MS |
355 | /* "mov ip, sp" is no longer a required part of the prologue. */ |
356 | if (inst == 0xe1a0c00d) /* mov ip, sp */ | |
357 | continue; | |
c906108c | 358 | |
28cd8767 JG |
359 | if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ |
360 | continue; | |
361 | ||
362 | if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
363 | continue; | |
364 | ||
b8d5e71d MS |
365 | /* Some prologues begin with "str lr, [sp, #-4]!". */ |
366 | if (inst == 0xe52de004) /* str lr, [sp, #-4]! */ | |
367 | continue; | |
c906108c | 368 | |
b8d5e71d MS |
369 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ |
370 | continue; | |
c906108c | 371 | |
b8d5e71d MS |
372 | if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */ |
373 | continue; | |
11d3b27d | 374 | |
b8d5e71d MS |
375 | /* Any insns after this point may float into the code, if it makes |
376 | for better instruction scheduling, so we skip them only if we | |
377 | find them, but still consider the function to be frame-ful. */ | |
f43845b3 | 378 | |
b8d5e71d MS |
379 | /* We may have either one sfmfd instruction here, or several stfe |
380 | insns, depending on the version of floating point code we | |
381 | support. */ | |
382 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
383 | continue; | |
384 | ||
385 | if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
386 | continue; | |
387 | ||
388 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
389 | continue; | |
390 | ||
391 | if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */ | |
392 | continue; | |
393 | ||
394 | if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */ | |
395 | (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */ | |
396 | (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */ | |
397 | continue; | |
398 | ||
399 | if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */ | |
400 | (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */ | |
401 | (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */ | |
402 | continue; | |
403 | ||
404 | /* Un-recognized instruction; stop scanning. */ | |
405 | break; | |
f43845b3 | 406 | } |
c906108c | 407 | |
b8d5e71d | 408 | return skip_pc; /* End of prologue */ |
c906108c | 409 | } |
94c30b78 | 410 | |
c5aa993b | 411 | /* *INDENT-OFF* */ |
c906108c SS |
412 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
413 | This function decodes a Thumb function prologue to determine: | |
414 | 1) the size of the stack frame | |
415 | 2) which registers are saved on it | |
416 | 3) the offsets of saved regs | |
417 | 4) the offset from the stack pointer to the frame pointer | |
c906108c | 418 | |
da59e081 JM |
419 | A typical Thumb function prologue would create this stack frame |
420 | (offsets relative to FP) | |
c906108c SS |
421 | old SP -> 24 stack parameters |
422 | 20 LR | |
423 | 16 R7 | |
424 | R7 -> 0 local variables (16 bytes) | |
425 | SP -> -12 additional stack space (12 bytes) | |
426 | The frame size would thus be 36 bytes, and the frame offset would be | |
da59e081 JM |
427 | 12 bytes. The frame register is R7. |
428 | ||
da3c6d4a MS |
429 | The comments for thumb_skip_prolog() describe the algorithm we use |
430 | to detect the end of the prolog. */ | |
c5aa993b JM |
431 | /* *INDENT-ON* */ |
432 | ||
c906108c | 433 | static void |
eb5492fa | 434 | thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache) |
c906108c SS |
435 | { |
436 | CORE_ADDR prologue_start; | |
437 | CORE_ADDR prologue_end; | |
438 | CORE_ADDR current_pc; | |
94c30b78 | 439 | /* Which register has been copied to register n? */ |
da3c6d4a MS |
440 | int saved_reg[16]; |
441 | /* findmask: | |
442 | bit 0 - push { rlist } | |
443 | bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) | |
444 | bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) | |
445 | */ | |
446 | int findmask = 0; | |
c5aa993b | 447 | int i; |
c906108c | 448 | |
eb5492fa | 449 | if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end)) |
c906108c SS |
450 | { |
451 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
452 | ||
94c30b78 | 453 | if (sal.line == 0) /* no line info, use current PC */ |
eb5492fa | 454 | prologue_end = prev_pc; |
c906108c | 455 | else if (sal.end < prologue_end) /* next line begins after fn end */ |
94c30b78 | 456 | prologue_end = sal.end; /* (probably means no prologue) */ |
c906108c SS |
457 | } |
458 | else | |
f7060f85 DJ |
459 | /* We're in the boondocks: we have no idea where the start of the |
460 | function is. */ | |
461 | return; | |
c906108c | 462 | |
eb5492fa | 463 | prologue_end = min (prologue_end, prev_pc); |
c906108c SS |
464 | |
465 | /* Initialize the saved register map. When register H is copied to | |
466 | register L, we will put H in saved_reg[L]. */ | |
467 | for (i = 0; i < 16; i++) | |
468 | saved_reg[i] = i; | |
469 | ||
470 | /* Search the prologue looking for instructions that set up the | |
da59e081 JM |
471 | frame pointer, adjust the stack pointer, and save registers. |
472 | Do this until all basic prolog instructions are found. */ | |
c906108c | 473 | |
9b8d791a | 474 | cache->framesize = 0; |
da59e081 JM |
475 | for (current_pc = prologue_start; |
476 | (current_pc < prologue_end) && ((findmask & 7) != 7); | |
477 | current_pc += 2) | |
c906108c SS |
478 | { |
479 | unsigned short insn; | |
480 | int regno; | |
481 | int offset; | |
482 | ||
483 | insn = read_memory_unsigned_integer (current_pc, 2); | |
484 | ||
c5aa993b | 485 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
c906108c | 486 | { |
da59e081 | 487 | int mask; |
94c30b78 | 488 | findmask |= 1; /* push found */ |
c906108c SS |
489 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
490 | whether to save LR (R14). */ | |
da59e081 | 491 | mask = (insn & 0xff) | ((insn & 0x100) << 6); |
c906108c | 492 | |
b8d5e71d | 493 | /* Calculate offsets of saved R0-R7 and LR. */ |
34e8f22d | 494 | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) |
c906108c | 495 | if (mask & (1 << regno)) |
c5aa993b | 496 | { |
9b8d791a | 497 | cache->framesize += 4; |
eb5492fa | 498 | cache->saved_regs[saved_reg[regno]].addr = -cache->framesize; |
da3c6d4a MS |
499 | /* Reset saved register map. */ |
500 | saved_reg[regno] = regno; | |
c906108c SS |
501 | } |
502 | } | |
da3c6d4a MS |
503 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR |
504 | sub sp, #simm */ | |
c906108c | 505 | { |
b8d5e71d | 506 | if ((findmask & 1) == 0) /* before push? */ |
da59e081 JM |
507 | continue; |
508 | else | |
94c30b78 | 509 | findmask |= 4; /* add/sub sp found */ |
da59e081 | 510 | |
94c30b78 MS |
511 | offset = (insn & 0x7f) << 2; /* get scaled offset */ |
512 | if (insn & 0x80) /* is it signed? (==subtracting) */ | |
da59e081 | 513 | { |
9b8d791a | 514 | cache->frameoffset += offset; |
da59e081 JM |
515 | offset = -offset; |
516 | } | |
9b8d791a | 517 | cache->framesize -= offset; |
c906108c SS |
518 | } |
519 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
520 | { | |
94c30b78 | 521 | findmask |= 2; /* setting of r7 found */ |
9b8d791a | 522 | cache->framereg = THUMB_FP_REGNUM; |
c3b4394c | 523 | /* get scaled offset */ |
9b8d791a | 524 | cache->frameoffset = (insn & 0xff) << 2; |
c906108c | 525 | } |
da59e081 | 526 | else if (insn == 0x466f) /* mov r7, sp */ |
c906108c | 527 | { |
94c30b78 | 528 | findmask |= 2; /* setting of r7 found */ |
9b8d791a DJ |
529 | cache->framereg = THUMB_FP_REGNUM; |
530 | cache->frameoffset = 0; | |
34e8f22d | 531 | saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM; |
c906108c SS |
532 | } |
533 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
534 | { | |
da3c6d4a | 535 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ |
c906108c | 536 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ |
94c30b78 | 537 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ |
c906108c SS |
538 | } |
539 | else | |
da3c6d4a MS |
540 | /* Something in the prolog that we don't care about or some |
541 | instruction from outside the prolog scheduled here for | |
542 | optimization. */ | |
543 | continue; | |
c906108c SS |
544 | } |
545 | } | |
546 | ||
ed9a39eb | 547 | /* This function decodes an ARM function prologue to determine: |
c5aa993b JM |
548 | 1) the size of the stack frame |
549 | 2) which registers are saved on it | |
550 | 3) the offsets of saved regs | |
551 | 4) the offset from the stack pointer to the frame pointer | |
c906108c SS |
552 | This information is stored in the "extra" fields of the frame_info. |
553 | ||
96baa820 JM |
554 | There are two basic forms for the ARM prologue. The fixed argument |
555 | function call will look like: | |
ed9a39eb JM |
556 | |
557 | mov ip, sp | |
558 | stmfd sp!, {fp, ip, lr, pc} | |
559 | sub fp, ip, #4 | |
560 | [sub sp, sp, #4] | |
96baa820 | 561 | |
c906108c | 562 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
563 | IP -> 4 (caller's stack) |
564 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
565 | -4 LR (return address in caller) | |
566 | -8 IP (copy of caller's SP) | |
567 | -12 FP (caller's FP) | |
568 | SP -> -28 Local variables | |
569 | ||
c906108c | 570 | The frame size would thus be 32 bytes, and the frame offset would be |
96baa820 JM |
571 | 28 bytes. The stmfd call can also save any of the vN registers it |
572 | plans to use, which increases the frame size accordingly. | |
573 | ||
574 | Note: The stored PC is 8 off of the STMFD instruction that stored it | |
575 | because the ARM Store instructions always store PC + 8 when you read | |
576 | the PC register. | |
ed9a39eb | 577 | |
96baa820 JM |
578 | A variable argument function call will look like: |
579 | ||
ed9a39eb JM |
580 | mov ip, sp |
581 | stmfd sp!, {a1, a2, a3, a4} | |
582 | stmfd sp!, {fp, ip, lr, pc} | |
583 | sub fp, ip, #20 | |
584 | ||
96baa820 | 585 | Which would create this stack frame (offsets relative to FP): |
ed9a39eb JM |
586 | IP -> 20 (caller's stack) |
587 | 16 A4 | |
588 | 12 A3 | |
589 | 8 A2 | |
590 | 4 A1 | |
591 | FP -> 0 PC (points to address of stmfd instruction + 8 in callee) | |
592 | -4 LR (return address in caller) | |
593 | -8 IP (copy of caller's SP) | |
594 | -12 FP (caller's FP) | |
595 | SP -> -28 Local variables | |
96baa820 JM |
596 | |
597 | The frame size would thus be 48 bytes, and the frame offset would be | |
598 | 28 bytes. | |
599 | ||
600 | There is another potential complication, which is that the optimizer | |
601 | will try to separate the store of fp in the "stmfd" instruction from | |
602 | the "sub fp, ip, #NN" instruction. Almost anything can be there, so | |
603 | we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... | |
604 | ||
605 | Also, note, the original version of the ARM toolchain claimed that there | |
606 | should be an | |
607 | ||
608 | instruction at the end of the prologue. I have never seen GCC produce | |
609 | this, and the ARM docs don't mention it. We still test for it below in | |
610 | case it happens... | |
ed9a39eb JM |
611 | |
612 | */ | |
c906108c SS |
613 | |
614 | static void | |
eb5492fa | 615 | arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache) |
c906108c | 616 | { |
28cd8767 | 617 | int regno, sp_offset, fp_offset, ip_offset; |
c906108c | 618 | CORE_ADDR prologue_start, prologue_end, current_pc; |
eb5492fa | 619 | CORE_ADDR prev_pc = frame_pc_unwind (next_frame); |
c906108c | 620 | |
c906108c | 621 | /* Assume there is no frame until proven otherwise. */ |
9b8d791a DJ |
622 | cache->framereg = ARM_SP_REGNUM; |
623 | cache->framesize = 0; | |
624 | cache->frameoffset = 0; | |
c906108c SS |
625 | |
626 | /* Check for Thumb prologue. */ | |
eb5492fa | 627 | if (arm_pc_is_thumb (prev_pc)) |
c906108c | 628 | { |
eb5492fa | 629 | thumb_scan_prologue (prev_pc, cache); |
c906108c SS |
630 | return; |
631 | } | |
632 | ||
633 | /* Find the function prologue. If we can't find the function in | |
634 | the symbol table, peek in the stack frame to find the PC. */ | |
eb5492fa | 635 | if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end)) |
c906108c | 636 | { |
2a451106 KB |
637 | /* One way to find the end of the prologue (which works well |
638 | for unoptimized code) is to do the following: | |
639 | ||
640 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
641 | ||
642 | if (sal.line == 0) | |
eb5492fa | 643 | prologue_end = prev_pc; |
2a451106 KB |
644 | else if (sal.end < prologue_end) |
645 | prologue_end = sal.end; | |
646 | ||
647 | This mechanism is very accurate so long as the optimizer | |
648 | doesn't move any instructions from the function body into the | |
649 | prologue. If this happens, sal.end will be the last | |
650 | instruction in the first hunk of prologue code just before | |
651 | the first instruction that the scheduler has moved from | |
652 | the body to the prologue. | |
653 | ||
654 | In order to make sure that we scan all of the prologue | |
655 | instructions, we use a slightly less accurate mechanism which | |
656 | may scan more than necessary. To help compensate for this | |
657 | lack of accuracy, the prologue scanning loop below contains | |
658 | several clauses which'll cause the loop to terminate early if | |
659 | an implausible prologue instruction is encountered. | |
660 | ||
661 | The expression | |
662 | ||
663 | prologue_start + 64 | |
664 | ||
665 | is a suitable endpoint since it accounts for the largest | |
666 | possible prologue plus up to five instructions inserted by | |
94c30b78 | 667 | the scheduler. */ |
2a451106 KB |
668 | |
669 | if (prologue_end > prologue_start + 64) | |
670 | { | |
94c30b78 | 671 | prologue_end = prologue_start + 64; /* See above. */ |
2a451106 | 672 | } |
c906108c SS |
673 | } |
674 | else | |
675 | { | |
eb5492fa DJ |
676 | /* We have no symbol information. Our only option is to assume this |
677 | function has a standard stack frame and the normal frame register. | |
678 | Then, we can find the value of our frame pointer on entrance to | |
679 | the callee (or at the present moment if this is the innermost frame). | |
680 | The value stored there should be the address of the stmfd + 8. */ | |
681 | CORE_ADDR frame_loc; | |
682 | LONGEST return_value; | |
683 | ||
684 | frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM); | |
685 | if (!safe_read_memory_integer (frame_loc, 4, &return_value)) | |
16a0f3e7 EZ |
686 | return; |
687 | else | |
688 | { | |
689 | prologue_start = ADDR_BITS_REMOVE (return_value) - 8; | |
94c30b78 | 690 | prologue_end = prologue_start + 64; /* See above. */ |
16a0f3e7 | 691 | } |
c906108c SS |
692 | } |
693 | ||
eb5492fa DJ |
694 | if (prev_pc < prologue_end) |
695 | prologue_end = prev_pc; | |
696 | ||
c906108c | 697 | /* Now search the prologue looking for instructions that set up the |
96baa820 | 698 | frame pointer, adjust the stack pointer, and save registers. |
ed9a39eb | 699 | |
96baa820 JM |
700 | Be careful, however, and if it doesn't look like a prologue, |
701 | don't try to scan it. If, for instance, a frameless function | |
702 | begins with stmfd sp!, then we will tell ourselves there is | |
b8d5e71d | 703 | a frame, which will confuse stack traceback, as well as "finish" |
96baa820 JM |
704 | and other operations that rely on a knowledge of the stack |
705 | traceback. | |
706 | ||
707 | In the APCS, the prologue should start with "mov ip, sp" so | |
f43845b3 | 708 | if we don't see this as the first insn, we will stop. |
c906108c | 709 | |
f43845b3 MS |
710 | [Note: This doesn't seem to be true any longer, so it's now an |
711 | optional part of the prologue. - Kevin Buettner, 2001-11-20] | |
c906108c | 712 | |
f43845b3 MS |
713 | [Note further: The "mov ip,sp" only seems to be missing in |
714 | frameless functions at optimization level "-O2" or above, | |
715 | in which case it is often (but not always) replaced by | |
b8d5e71d | 716 | "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */ |
d4473757 | 717 | |
28cd8767 | 718 | sp_offset = fp_offset = ip_offset = 0; |
f43845b3 | 719 | |
94c30b78 MS |
720 | for (current_pc = prologue_start; |
721 | current_pc < prologue_end; | |
f43845b3 | 722 | current_pc += 4) |
96baa820 | 723 | { |
d4473757 KB |
724 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); |
725 | ||
94c30b78 | 726 | if (insn == 0xe1a0c00d) /* mov ip, sp */ |
f43845b3 | 727 | { |
28cd8767 JG |
728 | ip_offset = 0; |
729 | continue; | |
730 | } | |
731 | else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */ | |
732 | { | |
733 | unsigned imm = insn & 0xff; /* immediate value */ | |
734 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
735 | imm = (imm >> rot) | (imm << (32 - rot)); | |
736 | ip_offset = imm; | |
737 | continue; | |
738 | } | |
739 | else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */ | |
740 | { | |
741 | unsigned imm = insn & 0xff; /* immediate value */ | |
742 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
743 | imm = (imm >> rot) | (imm << (32 - rot)); | |
744 | ip_offset = -imm; | |
f43845b3 MS |
745 | continue; |
746 | } | |
94c30b78 | 747 | else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */ |
f43845b3 | 748 | { |
e28a332c JG |
749 | sp_offset -= 4; |
750 | cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset; | |
f43845b3 MS |
751 | continue; |
752 | } | |
753 | else if ((insn & 0xffff0000) == 0xe92d0000) | |
d4473757 KB |
754 | /* stmfd sp!, {..., fp, ip, lr, pc} |
755 | or | |
756 | stmfd sp!, {a1, a2, a3, a4} */ | |
c906108c | 757 | { |
d4473757 | 758 | int mask = insn & 0xffff; |
ed9a39eb | 759 | |
94c30b78 | 760 | /* Calculate offsets of saved registers. */ |
34e8f22d | 761 | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
d4473757 KB |
762 | if (mask & (1 << regno)) |
763 | { | |
764 | sp_offset -= 4; | |
eb5492fa | 765 | cache->saved_regs[regno].addr = sp_offset; |
d4473757 KB |
766 | } |
767 | } | |
b8d5e71d MS |
768 | else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */ |
769 | (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */ | |
770 | (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ | |
771 | { | |
772 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
773 | continue; | |
774 | } | |
775 | else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */ | |
776 | (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */ | |
777 | (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ | |
f43845b3 MS |
778 | { |
779 | /* No need to add this to saved_regs -- it's just an arg reg. */ | |
780 | continue; | |
781 | } | |
d4473757 KB |
782 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
783 | { | |
94c30b78 MS |
784 | unsigned imm = insn & 0xff; /* immediate value */ |
785 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 | 786 | imm = (imm >> rot) | (imm << (32 - rot)); |
28cd8767 | 787 | fp_offset = -imm + ip_offset; |
9b8d791a | 788 | cache->framereg = ARM_FP_REGNUM; |
d4473757 KB |
789 | } |
790 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
791 | { | |
94c30b78 MS |
792 | unsigned imm = insn & 0xff; /* immediate value */ |
793 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
d4473757 KB |
794 | imm = (imm >> rot) | (imm << (32 - rot)); |
795 | sp_offset -= imm; | |
796 | } | |
797 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
798 | { | |
799 | sp_offset -= 12; | |
34e8f22d | 800 | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
eb5492fa | 801 | cache->saved_regs[regno].addr = sp_offset; |
d4473757 KB |
802 | } |
803 | else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ | |
804 | { | |
805 | int n_saved_fp_regs; | |
806 | unsigned int fp_start_reg, fp_bound_reg; | |
807 | ||
94c30b78 | 808 | if ((insn & 0x800) == 0x800) /* N0 is set */ |
96baa820 | 809 | { |
d4473757 KB |
810 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
811 | n_saved_fp_regs = 3; | |
812 | else | |
813 | n_saved_fp_regs = 1; | |
96baa820 | 814 | } |
d4473757 | 815 | else |
96baa820 | 816 | { |
d4473757 KB |
817 | if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
818 | n_saved_fp_regs = 2; | |
819 | else | |
820 | n_saved_fp_regs = 4; | |
96baa820 | 821 | } |
d4473757 | 822 | |
34e8f22d | 823 | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
d4473757 KB |
824 | fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
825 | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | |
96baa820 JM |
826 | { |
827 | sp_offset -= 12; | |
eb5492fa | 828 | cache->saved_regs[fp_start_reg++].addr = sp_offset; |
96baa820 | 829 | } |
c906108c | 830 | } |
d4473757 | 831 | else if ((insn & 0xf0000000) != 0xe0000000) |
94c30b78 | 832 | break; /* Condition not true, exit early */ |
b8d5e71d | 833 | else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ |
94c30b78 | 834 | break; /* Don't scan past a block load */ |
d4473757 KB |
835 | else |
836 | /* The optimizer might shove anything into the prologue, | |
94c30b78 | 837 | so we just skip what we don't recognize. */ |
d4473757 | 838 | continue; |
c906108c SS |
839 | } |
840 | ||
94c30b78 MS |
841 | /* The frame size is just the negative of the offset (from the |
842 | original SP) of the last thing thing we pushed on the stack. | |
843 | The frame offset is [new FP] - [new SP]. */ | |
9b8d791a DJ |
844 | cache->framesize = -sp_offset; |
845 | if (cache->framereg == ARM_FP_REGNUM) | |
846 | cache->frameoffset = fp_offset - sp_offset; | |
d4473757 | 847 | else |
9b8d791a | 848 | cache->frameoffset = 0; |
c906108c SS |
849 | } |
850 | ||
eb5492fa DJ |
851 | static struct arm_prologue_cache * |
852 | arm_make_prologue_cache (struct frame_info *next_frame) | |
c906108c | 853 | { |
eb5492fa DJ |
854 | int reg; |
855 | struct arm_prologue_cache *cache; | |
856 | CORE_ADDR unwound_fp; | |
c5aa993b | 857 | |
35d5d4ee | 858 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
eb5492fa | 859 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); |
c906108c | 860 | |
eb5492fa | 861 | arm_scan_prologue (next_frame, cache); |
848cfffb | 862 | |
eb5492fa DJ |
863 | unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg); |
864 | if (unwound_fp == 0) | |
865 | return cache; | |
c906108c | 866 | |
eb5492fa | 867 | cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset; |
c906108c | 868 | |
eb5492fa DJ |
869 | /* Calculate actual addresses of saved registers using offsets |
870 | determined by arm_scan_prologue. */ | |
871 | for (reg = 0; reg < NUM_REGS; reg++) | |
e28a332c | 872 | if (trad_frame_addr_p (cache->saved_regs, reg)) |
eb5492fa DJ |
873 | cache->saved_regs[reg].addr += cache->prev_sp; |
874 | ||
875 | return cache; | |
c906108c SS |
876 | } |
877 | ||
eb5492fa DJ |
878 | /* Our frame ID for a normal frame is the current function's starting PC |
879 | and the caller's SP when we were called. */ | |
c906108c | 880 | |
148754e5 | 881 | static void |
eb5492fa DJ |
882 | arm_prologue_this_id (struct frame_info *next_frame, |
883 | void **this_cache, | |
884 | struct frame_id *this_id) | |
c906108c | 885 | { |
eb5492fa DJ |
886 | struct arm_prologue_cache *cache; |
887 | struct frame_id id; | |
888 | CORE_ADDR func; | |
f079148d | 889 | |
eb5492fa DJ |
890 | if (*this_cache == NULL) |
891 | *this_cache = arm_make_prologue_cache (next_frame); | |
892 | cache = *this_cache; | |
2a451106 | 893 | |
eb5492fa | 894 | func = frame_func_unwind (next_frame); |
2a451106 | 895 | |
eb5492fa DJ |
896 | /* This is meant to halt the backtrace at "_start". Make sure we |
897 | don't halt it at a generic dummy frame. */ | |
9e815ec2 | 898 | if (func <= LOWEST_PC) |
eb5492fa | 899 | return; |
5a203e44 | 900 | |
eb5492fa DJ |
901 | /* If we've hit a wall, stop. */ |
902 | if (cache->prev_sp == 0) | |
903 | return; | |
24de872b | 904 | |
eb5492fa | 905 | id = frame_id_build (cache->prev_sp, func); |
eb5492fa | 906 | *this_id = id; |
c906108c SS |
907 | } |
908 | ||
eb5492fa DJ |
909 | static void |
910 | arm_prologue_prev_register (struct frame_info *next_frame, | |
911 | void **this_cache, | |
912 | int prev_regnum, | |
913 | int *optimized, | |
914 | enum lval_type *lvalp, | |
915 | CORE_ADDR *addrp, | |
916 | int *realnump, | |
9af75ef6 | 917 | gdb_byte *valuep) |
24de872b DJ |
918 | { |
919 | struct arm_prologue_cache *cache; | |
920 | ||
eb5492fa DJ |
921 | if (*this_cache == NULL) |
922 | *this_cache = arm_make_prologue_cache (next_frame); | |
923 | cache = *this_cache; | |
24de872b | 924 | |
eb5492fa DJ |
925 | /* If we are asked to unwind the PC, then we need to return the LR |
926 | instead. The saved value of PC points into this frame's | |
927 | prologue, not the next frame's resume location. */ | |
928 | if (prev_regnum == ARM_PC_REGNUM) | |
929 | prev_regnum = ARM_LR_REGNUM; | |
24de872b | 930 | |
eb5492fa DJ |
931 | /* SP is generally not saved to the stack, but this frame is |
932 | identified by NEXT_FRAME's stack pointer at the time of the call. | |
933 | The value was already reconstructed into PREV_SP. */ | |
934 | if (prev_regnum == ARM_SP_REGNUM) | |
935 | { | |
936 | *lvalp = not_lval; | |
937 | if (valuep) | |
938 | store_unsigned_integer (valuep, 4, cache->prev_sp); | |
939 | return; | |
940 | } | |
941 | ||
1f67027d AC |
942 | trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum, |
943 | optimized, lvalp, addrp, realnump, valuep); | |
eb5492fa DJ |
944 | } |
945 | ||
946 | struct frame_unwind arm_prologue_unwind = { | |
947 | NORMAL_FRAME, | |
948 | arm_prologue_this_id, | |
949 | arm_prologue_prev_register | |
950 | }; | |
951 | ||
952 | static const struct frame_unwind * | |
953 | arm_prologue_unwind_sniffer (struct frame_info *next_frame) | |
954 | { | |
955 | return &arm_prologue_unwind; | |
24de872b DJ |
956 | } |
957 | ||
909cf6ea DJ |
958 | static struct arm_prologue_cache * |
959 | arm_make_stub_cache (struct frame_info *next_frame) | |
960 | { | |
961 | int reg; | |
962 | struct arm_prologue_cache *cache; | |
963 | CORE_ADDR unwound_fp; | |
964 | ||
35d5d4ee | 965 | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
909cf6ea DJ |
966 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); |
967 | ||
968 | cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM); | |
969 | ||
970 | return cache; | |
971 | } | |
972 | ||
973 | /* Our frame ID for a stub frame is the current SP and LR. */ | |
974 | ||
975 | static void | |
976 | arm_stub_this_id (struct frame_info *next_frame, | |
977 | void **this_cache, | |
978 | struct frame_id *this_id) | |
979 | { | |
980 | struct arm_prologue_cache *cache; | |
981 | ||
982 | if (*this_cache == NULL) | |
983 | *this_cache = arm_make_stub_cache (next_frame); | |
984 | cache = *this_cache; | |
985 | ||
986 | *this_id = frame_id_build (cache->prev_sp, | |
987 | frame_pc_unwind (next_frame)); | |
988 | } | |
989 | ||
990 | struct frame_unwind arm_stub_unwind = { | |
991 | NORMAL_FRAME, | |
992 | arm_stub_this_id, | |
993 | arm_prologue_prev_register | |
994 | }; | |
995 | ||
996 | static const struct frame_unwind * | |
997 | arm_stub_unwind_sniffer (struct frame_info *next_frame) | |
998 | { | |
999 | char dummy[4]; | |
1000 | ||
1001 | if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL) | |
1002 | || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0) | |
1003 | return &arm_stub_unwind; | |
1004 | ||
1005 | return NULL; | |
1006 | } | |
1007 | ||
24de872b | 1008 | static CORE_ADDR |
eb5492fa | 1009 | arm_normal_frame_base (struct frame_info *next_frame, void **this_cache) |
24de872b DJ |
1010 | { |
1011 | struct arm_prologue_cache *cache; | |
1012 | ||
eb5492fa DJ |
1013 | if (*this_cache == NULL) |
1014 | *this_cache = arm_make_prologue_cache (next_frame); | |
1015 | cache = *this_cache; | |
1016 | ||
1017 | return cache->prev_sp + cache->frameoffset - cache->framesize; | |
24de872b DJ |
1018 | } |
1019 | ||
eb5492fa DJ |
1020 | struct frame_base arm_normal_base = { |
1021 | &arm_prologue_unwind, | |
1022 | arm_normal_frame_base, | |
1023 | arm_normal_frame_base, | |
1024 | arm_normal_frame_base | |
1025 | }; | |
1026 | ||
eb5492fa DJ |
1027 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1028 | dummy frame. The frame ID's base needs to match the TOS value | |
1029 | saved by save_dummy_frame_tos() and returned from | |
1030 | arm_push_dummy_call, and the PC needs to match the dummy frame's | |
1031 | breakpoint. */ | |
c906108c | 1032 | |
eb5492fa DJ |
1033 | static struct frame_id |
1034 | arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
c906108c | 1035 | { |
eb5492fa DJ |
1036 | return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM), |
1037 | frame_pc_unwind (next_frame)); | |
1038 | } | |
c3b4394c | 1039 | |
eb5492fa DJ |
1040 | /* Given THIS_FRAME, find the previous frame's resume PC (which will |
1041 | be used to construct the previous frame's ID, after looking up the | |
1042 | containing function). */ | |
c3b4394c | 1043 | |
eb5492fa DJ |
1044 | static CORE_ADDR |
1045 | arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1046 | { | |
1047 | CORE_ADDR pc; | |
1048 | pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM); | |
1049 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
1050 | } | |
1051 | ||
1052 | static CORE_ADDR | |
1053 | arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1054 | { | |
1055 | return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM); | |
c906108c SS |
1056 | } |
1057 | ||
2dd604e7 RE |
1058 | /* When arguments must be pushed onto the stack, they go on in reverse |
1059 | order. The code below implements a FILO (stack) to do this. */ | |
1060 | ||
1061 | struct stack_item | |
1062 | { | |
1063 | int len; | |
1064 | struct stack_item *prev; | |
1065 | void *data; | |
1066 | }; | |
1067 | ||
1068 | static struct stack_item * | |
1069 | push_stack_item (struct stack_item *prev, void *contents, int len) | |
1070 | { | |
1071 | struct stack_item *si; | |
1072 | si = xmalloc (sizeof (struct stack_item)); | |
226c7fbc | 1073 | si->data = xmalloc (len); |
2dd604e7 RE |
1074 | si->len = len; |
1075 | si->prev = prev; | |
1076 | memcpy (si->data, contents, len); | |
1077 | return si; | |
1078 | } | |
1079 | ||
1080 | static struct stack_item * | |
1081 | pop_stack_item (struct stack_item *si) | |
1082 | { | |
1083 | struct stack_item *dead = si; | |
1084 | si = si->prev; | |
1085 | xfree (dead->data); | |
1086 | xfree (dead); | |
1087 | return si; | |
1088 | } | |
1089 | ||
2af48f68 PB |
1090 | |
1091 | /* Return the alignment (in bytes) of the given type. */ | |
1092 | ||
1093 | static int | |
1094 | arm_type_align (struct type *t) | |
1095 | { | |
1096 | int n; | |
1097 | int align; | |
1098 | int falign; | |
1099 | ||
1100 | t = check_typedef (t); | |
1101 | switch (TYPE_CODE (t)) | |
1102 | { | |
1103 | default: | |
1104 | /* Should never happen. */ | |
1105 | internal_error (__FILE__, __LINE__, _("unknown type alignment")); | |
1106 | return 4; | |
1107 | ||
1108 | case TYPE_CODE_PTR: | |
1109 | case TYPE_CODE_ENUM: | |
1110 | case TYPE_CODE_INT: | |
1111 | case TYPE_CODE_FLT: | |
1112 | case TYPE_CODE_SET: | |
1113 | case TYPE_CODE_RANGE: | |
1114 | case TYPE_CODE_BITSTRING: | |
1115 | case TYPE_CODE_REF: | |
1116 | case TYPE_CODE_CHAR: | |
1117 | case TYPE_CODE_BOOL: | |
1118 | return TYPE_LENGTH (t); | |
1119 | ||
1120 | case TYPE_CODE_ARRAY: | |
1121 | case TYPE_CODE_COMPLEX: | |
1122 | /* TODO: What about vector types? */ | |
1123 | return arm_type_align (TYPE_TARGET_TYPE (t)); | |
1124 | ||
1125 | case TYPE_CODE_STRUCT: | |
1126 | case TYPE_CODE_UNION: | |
1127 | align = 1; | |
1128 | for (n = 0; n < TYPE_NFIELDS (t); n++) | |
1129 | { | |
1130 | falign = arm_type_align (TYPE_FIELD_TYPE (t, n)); | |
1131 | if (falign > align) | |
1132 | align = falign; | |
1133 | } | |
1134 | return align; | |
1135 | } | |
1136 | } | |
1137 | ||
2dd604e7 RE |
1138 | /* We currently only support passing parameters in integer registers. This |
1139 | conforms with GCC's default model. Several other variants exist and | |
1140 | we should probably support some of them based on the selected ABI. */ | |
1141 | ||
1142 | static CORE_ADDR | |
7d9b040b | 1143 | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
6a65450a AC |
1144 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
1145 | struct value **args, CORE_ADDR sp, int struct_return, | |
1146 | CORE_ADDR struct_addr) | |
2dd604e7 RE |
1147 | { |
1148 | int argnum; | |
1149 | int argreg; | |
1150 | int nstack; | |
1151 | struct stack_item *si = NULL; | |
1152 | ||
6a65450a AC |
1153 | /* Set the return address. For the ARM, the return breakpoint is |
1154 | always at BP_ADDR. */ | |
2dd604e7 | 1155 | /* XXX Fix for Thumb. */ |
6a65450a | 1156 | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
2dd604e7 RE |
1157 | |
1158 | /* Walk through the list of args and determine how large a temporary | |
1159 | stack is required. Need to take care here as structs may be | |
1160 | passed on the stack, and we have to to push them. */ | |
1161 | nstack = 0; | |
1162 | ||
1163 | argreg = ARM_A1_REGNUM; | |
1164 | nstack = 0; | |
1165 | ||
2dd604e7 RE |
1166 | /* The struct_return pointer occupies the first parameter |
1167 | passing register. */ | |
1168 | if (struct_return) | |
1169 | { | |
1170 | if (arm_debug) | |
1171 | fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n", | |
1172 | REGISTER_NAME (argreg), paddr (struct_addr)); | |
1173 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
1174 | argreg++; | |
1175 | } | |
1176 | ||
1177 | for (argnum = 0; argnum < nargs; argnum++) | |
1178 | { | |
1179 | int len; | |
1180 | struct type *arg_type; | |
1181 | struct type *target_type; | |
1182 | enum type_code typecode; | |
0fd88904 | 1183 | bfd_byte *val; |
2af48f68 | 1184 | int align; |
2dd604e7 | 1185 | |
df407dfe | 1186 | arg_type = check_typedef (value_type (args[argnum])); |
2dd604e7 RE |
1187 | len = TYPE_LENGTH (arg_type); |
1188 | target_type = TYPE_TARGET_TYPE (arg_type); | |
1189 | typecode = TYPE_CODE (arg_type); | |
0fd88904 | 1190 | val = value_contents_writeable (args[argnum]); |
2dd604e7 | 1191 | |
2af48f68 PB |
1192 | align = arm_type_align (arg_type); |
1193 | /* Round alignment up to a whole number of words. */ | |
1194 | align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1); | |
1195 | /* Different ABIs have different maximum alignments. */ | |
1196 | if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS) | |
1197 | { | |
1198 | /* The APCS ABI only requires word alignment. */ | |
1199 | align = INT_REGISTER_SIZE; | |
1200 | } | |
1201 | else | |
1202 | { | |
1203 | /* The AAPCS requires at most doubleword alignment. */ | |
1204 | if (align > INT_REGISTER_SIZE * 2) | |
1205 | align = INT_REGISTER_SIZE * 2; | |
1206 | } | |
1207 | ||
1208 | /* Push stack padding for dowubleword alignment. */ | |
1209 | if (nstack & (align - 1)) | |
1210 | { | |
1211 | si = push_stack_item (si, val, INT_REGISTER_SIZE); | |
1212 | nstack += INT_REGISTER_SIZE; | |
1213 | } | |
1214 | ||
1215 | /* Doubleword aligned quantities must go in even register pairs. */ | |
1216 | if (argreg <= ARM_LAST_ARG_REGNUM | |
1217 | && align > INT_REGISTER_SIZE | |
1218 | && argreg & 1) | |
1219 | argreg++; | |
1220 | ||
2dd604e7 RE |
1221 | /* If the argument is a pointer to a function, and it is a |
1222 | Thumb function, create a LOCAL copy of the value and set | |
1223 | the THUMB bit in it. */ | |
1224 | if (TYPE_CODE_PTR == typecode | |
1225 | && target_type != NULL | |
1226 | && TYPE_CODE_FUNC == TYPE_CODE (target_type)) | |
1227 | { | |
7c0b4a20 | 1228 | CORE_ADDR regval = extract_unsigned_integer (val, len); |
2dd604e7 RE |
1229 | if (arm_pc_is_thumb (regval)) |
1230 | { | |
1231 | val = alloca (len); | |
fbd9dcd3 | 1232 | store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval)); |
2dd604e7 RE |
1233 | } |
1234 | } | |
1235 | ||
1236 | /* Copy the argument to general registers or the stack in | |
1237 | register-sized pieces. Large arguments are split between | |
1238 | registers and stack. */ | |
1239 | while (len > 0) | |
1240 | { | |
b1e29e33 | 1241 | int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE; |
2dd604e7 RE |
1242 | |
1243 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
1244 | { | |
1245 | /* The argument is being passed in a general purpose | |
1246 | register. */ | |
7c0b4a20 | 1247 | CORE_ADDR regval = extract_unsigned_integer (val, partial_len); |
2dd604e7 RE |
1248 | if (arm_debug) |
1249 | fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n", | |
1250 | argnum, REGISTER_NAME (argreg), | |
b1e29e33 | 1251 | phex (regval, DEPRECATED_REGISTER_SIZE)); |
2dd604e7 RE |
1252 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
1253 | argreg++; | |
1254 | } | |
1255 | else | |
1256 | { | |
1257 | /* Push the arguments onto the stack. */ | |
1258 | if (arm_debug) | |
1259 | fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n", | |
1260 | argnum, nstack); | |
b1e29e33 AC |
1261 | si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE); |
1262 | nstack += DEPRECATED_REGISTER_SIZE; | |
2dd604e7 RE |
1263 | } |
1264 | ||
1265 | len -= partial_len; | |
1266 | val += partial_len; | |
1267 | } | |
1268 | } | |
1269 | /* If we have an odd number of words to push, then decrement the stack | |
1270 | by one word now, so first stack argument will be dword aligned. */ | |
1271 | if (nstack & 4) | |
1272 | sp -= 4; | |
1273 | ||
1274 | while (si) | |
1275 | { | |
1276 | sp -= si->len; | |
1277 | write_memory (sp, si->data, si->len); | |
1278 | si = pop_stack_item (si); | |
1279 | } | |
1280 | ||
1281 | /* Finally, update teh SP register. */ | |
1282 | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | |
1283 | ||
1284 | return sp; | |
1285 | } | |
1286 | ||
f53f0d0b PB |
1287 | |
1288 | /* Always align the frame to an 8-byte boundary. This is required on | |
1289 | some platforms and harmless on the rest. */ | |
1290 | ||
1291 | static CORE_ADDR | |
1292 | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1293 | { | |
1294 | /* Align the stack to eight bytes. */ | |
1295 | return sp & ~ (CORE_ADDR) 7; | |
1296 | } | |
1297 | ||
c906108c | 1298 | static void |
ed9a39eb | 1299 | print_fpu_flags (int flags) |
c906108c | 1300 | { |
c5aa993b JM |
1301 | if (flags & (1 << 0)) |
1302 | fputs ("IVO ", stdout); | |
1303 | if (flags & (1 << 1)) | |
1304 | fputs ("DVZ ", stdout); | |
1305 | if (flags & (1 << 2)) | |
1306 | fputs ("OFL ", stdout); | |
1307 | if (flags & (1 << 3)) | |
1308 | fputs ("UFL ", stdout); | |
1309 | if (flags & (1 << 4)) | |
1310 | fputs ("INX ", stdout); | |
1311 | putchar ('\n'); | |
c906108c SS |
1312 | } |
1313 | ||
5e74b15c RE |
1314 | /* Print interesting information about the floating point processor |
1315 | (if present) or emulator. */ | |
34e8f22d | 1316 | static void |
d855c300 | 1317 | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
23e3a7ac | 1318 | struct frame_info *frame, const char *args) |
c906108c | 1319 | { |
52f0bd74 | 1320 | unsigned long status = read_register (ARM_FPS_REGNUM); |
c5aa993b JM |
1321 | int type; |
1322 | ||
1323 | type = (status >> 24) & 127; | |
edefbb7c AC |
1324 | if (status & (1 << 31)) |
1325 | printf (_("Hardware FPU type %d\n"), type); | |
1326 | else | |
1327 | printf (_("Software FPU type %d\n"), type); | |
1328 | /* i18n: [floating point unit] mask */ | |
1329 | fputs (_("mask: "), stdout); | |
c5aa993b | 1330 | print_fpu_flags (status >> 16); |
edefbb7c AC |
1331 | /* i18n: [floating point unit] flags */ |
1332 | fputs (_("flags: "), stdout); | |
c5aa993b | 1333 | print_fpu_flags (status); |
c906108c SS |
1334 | } |
1335 | ||
34e8f22d RE |
1336 | /* Return the GDB type object for the "standard" data type of data in |
1337 | register N. */ | |
1338 | ||
1339 | static struct type * | |
7a5ea0d4 | 1340 | arm_register_type (struct gdbarch *gdbarch, int regnum) |
032758dc | 1341 | { |
34e8f22d | 1342 | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
032758dc | 1343 | { |
d7449b42 | 1344 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
032758dc AC |
1345 | return builtin_type_arm_ext_big; |
1346 | else | |
1347 | return builtin_type_arm_ext_littlebyte_bigword; | |
1348 | } | |
e4c16157 DJ |
1349 | else if (regnum == ARM_SP_REGNUM) |
1350 | return builtin_type_void_data_ptr; | |
1351 | else if (regnum == ARM_PC_REGNUM) | |
1352 | return builtin_type_void_func_ptr; | |
032758dc | 1353 | else |
e4c16157 | 1354 | return builtin_type_uint32; |
032758dc AC |
1355 | } |
1356 | ||
34e8f22d RE |
1357 | /* Index within `registers' of the first byte of the space for |
1358 | register N. */ | |
1359 | ||
1360 | static int | |
1361 | arm_register_byte (int regnum) | |
1362 | { | |
1363 | if (regnum < ARM_F0_REGNUM) | |
7a5ea0d4 | 1364 | return regnum * INT_REGISTER_SIZE; |
34e8f22d | 1365 | else if (regnum < ARM_PS_REGNUM) |
7a5ea0d4 DJ |
1366 | return (NUM_GREGS * INT_REGISTER_SIZE |
1367 | + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE); | |
34e8f22d | 1368 | else |
7a5ea0d4 DJ |
1369 | return (NUM_GREGS * INT_REGISTER_SIZE |
1370 | + NUM_FREGS * FP_REGISTER_SIZE | |
34e8f22d RE |
1371 | + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE); |
1372 | } | |
1373 | ||
26216b98 AC |
1374 | /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
1375 | static int | |
1376 | arm_register_sim_regno (int regnum) | |
1377 | { | |
1378 | int reg = regnum; | |
1379 | gdb_assert (reg >= 0 && reg < NUM_REGS); | |
1380 | ||
1381 | if (reg < NUM_GREGS) | |
1382 | return SIM_ARM_R0_REGNUM + reg; | |
1383 | reg -= NUM_GREGS; | |
1384 | ||
1385 | if (reg < NUM_FREGS) | |
1386 | return SIM_ARM_FP0_REGNUM + reg; | |
1387 | reg -= NUM_FREGS; | |
1388 | ||
1389 | if (reg < NUM_SREGS) | |
1390 | return SIM_ARM_FPS_REGNUM + reg; | |
1391 | reg -= NUM_SREGS; | |
1392 | ||
edefbb7c | 1393 | internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
26216b98 | 1394 | } |
34e8f22d | 1395 | |
a37b3cc0 AC |
1396 | /* NOTE: cagney/2001-08-20: Both convert_from_extended() and |
1397 | convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. | |
1398 | It is thought that this is is the floating-point register format on | |
1399 | little-endian systems. */ | |
c906108c | 1400 | |
ed9a39eb | 1401 | static void |
b508a996 RE |
1402 | convert_from_extended (const struct floatformat *fmt, const void *ptr, |
1403 | void *dbl) | |
c906108c | 1404 | { |
a37b3cc0 | 1405 | DOUBLEST d; |
d7449b42 | 1406 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1407 | floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); |
1408 | else | |
1409 | floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1410 | ptr, &d); | |
b508a996 | 1411 | floatformat_from_doublest (fmt, &d, dbl); |
c906108c SS |
1412 | } |
1413 | ||
34e8f22d | 1414 | static void |
b508a996 | 1415 | convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr) |
c906108c | 1416 | { |
a37b3cc0 | 1417 | DOUBLEST d; |
b508a996 | 1418 | floatformat_to_doublest (fmt, ptr, &d); |
d7449b42 | 1419 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
a37b3cc0 AC |
1420 | floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); |
1421 | else | |
1422 | floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, | |
1423 | &d, dbl); | |
c906108c | 1424 | } |
ed9a39eb | 1425 | |
c906108c | 1426 | static int |
ed9a39eb | 1427 | condition_true (unsigned long cond, unsigned long status_reg) |
c906108c SS |
1428 | { |
1429 | if (cond == INST_AL || cond == INST_NV) | |
1430 | return 1; | |
1431 | ||
1432 | switch (cond) | |
1433 | { | |
1434 | case INST_EQ: | |
1435 | return ((status_reg & FLAG_Z) != 0); | |
1436 | case INST_NE: | |
1437 | return ((status_reg & FLAG_Z) == 0); | |
1438 | case INST_CS: | |
1439 | return ((status_reg & FLAG_C) != 0); | |
1440 | case INST_CC: | |
1441 | return ((status_reg & FLAG_C) == 0); | |
1442 | case INST_MI: | |
1443 | return ((status_reg & FLAG_N) != 0); | |
1444 | case INST_PL: | |
1445 | return ((status_reg & FLAG_N) == 0); | |
1446 | case INST_VS: | |
1447 | return ((status_reg & FLAG_V) != 0); | |
1448 | case INST_VC: | |
1449 | return ((status_reg & FLAG_V) == 0); | |
1450 | case INST_HI: | |
1451 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); | |
1452 | case INST_LS: | |
1453 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); | |
1454 | case INST_GE: | |
1455 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); | |
1456 | case INST_LT: | |
1457 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
1458 | case INST_GT: | |
1459 | return (((status_reg & FLAG_Z) == 0) && | |
ed9a39eb | 1460 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1461 | case INST_LE: |
1462 | return (((status_reg & FLAG_Z) != 0) || | |
ed9a39eb | 1463 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); |
c906108c SS |
1464 | } |
1465 | return 1; | |
1466 | } | |
1467 | ||
9512d7fd | 1468 | /* Support routines for single stepping. Calculate the next PC value. */ |
c906108c SS |
1469 | #define submask(x) ((1L << ((x) + 1)) - 1) |
1470 | #define bit(obj,st) (((obj) >> (st)) & 1) | |
1471 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
1472 | #define sbits(obj,st,fn) \ | |
1473 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1474 | #define BranchDest(addr,instr) \ | |
1475 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1476 | #define ARM_PC_32 1 | |
1477 | ||
1478 | static unsigned long | |
ed9a39eb JM |
1479 | shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, |
1480 | unsigned long status_reg) | |
c906108c SS |
1481 | { |
1482 | unsigned long res, shift; | |
1483 | int rm = bits (inst, 0, 3); | |
1484 | unsigned long shifttype = bits (inst, 5, 6); | |
c5aa993b JM |
1485 | |
1486 | if (bit (inst, 4)) | |
c906108c SS |
1487 | { |
1488 | int rs = bits (inst, 8, 11); | |
1489 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1490 | } | |
1491 | else | |
1492 | shift = bits (inst, 7, 11); | |
c5aa993b JM |
1493 | |
1494 | res = (rm == 15 | |
c906108c | 1495 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
c5aa993b | 1496 | + (bit (inst, 4) ? 12 : 8)) |
c906108c SS |
1497 | : read_register (rm)); |
1498 | ||
1499 | switch (shifttype) | |
1500 | { | |
c5aa993b | 1501 | case 0: /* LSL */ |
c906108c SS |
1502 | res = shift >= 32 ? 0 : res << shift; |
1503 | break; | |
c5aa993b JM |
1504 | |
1505 | case 1: /* LSR */ | |
c906108c SS |
1506 | res = shift >= 32 ? 0 : res >> shift; |
1507 | break; | |
1508 | ||
c5aa993b JM |
1509 | case 2: /* ASR */ |
1510 | if (shift >= 32) | |
1511 | shift = 31; | |
c906108c SS |
1512 | res = ((res & 0x80000000L) |
1513 | ? ~((~res) >> shift) : res >> shift); | |
1514 | break; | |
1515 | ||
c5aa993b | 1516 | case 3: /* ROR/RRX */ |
c906108c SS |
1517 | shift &= 31; |
1518 | if (shift == 0) | |
1519 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1520 | else | |
c5aa993b | 1521 | res = (res >> shift) | (res << (32 - shift)); |
c906108c SS |
1522 | break; |
1523 | } | |
1524 | ||
1525 | return res & 0xffffffff; | |
1526 | } | |
1527 | ||
c906108c SS |
1528 | /* Return number of 1-bits in VAL. */ |
1529 | ||
1530 | static int | |
ed9a39eb | 1531 | bitcount (unsigned long val) |
c906108c SS |
1532 | { |
1533 | int nbits; | |
1534 | for (nbits = 0; val != 0; nbits++) | |
c5aa993b | 1535 | val &= val - 1; /* delete rightmost 1-bit in val */ |
c906108c SS |
1536 | return nbits; |
1537 | } | |
1538 | ||
34e8f22d | 1539 | CORE_ADDR |
ed9a39eb | 1540 | thumb_get_next_pc (CORE_ADDR pc) |
c906108c | 1541 | { |
c5aa993b | 1542 | unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ |
1c5bada0 | 1543 | unsigned short inst1 = read_memory_unsigned_integer (pc, 2); |
94c30b78 | 1544 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ |
c906108c SS |
1545 | unsigned long offset; |
1546 | ||
1547 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1548 | { | |
1549 | CORE_ADDR sp; | |
1550 | ||
1551 | /* Fetch the saved PC from the stack. It's stored above | |
1552 | all of the other registers. */ | |
b1e29e33 | 1553 | offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE; |
34e8f22d | 1554 | sp = read_register (ARM_SP_REGNUM); |
1c5bada0 | 1555 | nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4); |
c906108c SS |
1556 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1557 | if (nextpc == pc) | |
edefbb7c | 1558 | error (_("Infinite loop detected")); |
c906108c SS |
1559 | } |
1560 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1561 | { | |
34e8f22d | 1562 | unsigned long status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1563 | unsigned long cond = bits (inst1, 8, 11); |
94c30b78 | 1564 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ |
c906108c SS |
1565 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); |
1566 | } | |
1567 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1568 | { | |
1569 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1570 | } | |
aa17d93e | 1571 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */ |
c906108c | 1572 | { |
1c5bada0 | 1573 | unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2); |
c5aa993b | 1574 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); |
c906108c | 1575 | nextpc = pc_val + offset; |
aa17d93e DJ |
1576 | /* For BLX make sure to clear the low bits. */ |
1577 | if (bits (inst2, 11, 12) == 1) | |
1578 | nextpc = nextpc & 0xfffffffc; | |
c906108c | 1579 | } |
aa17d93e | 1580 | else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */ |
9498281f DJ |
1581 | { |
1582 | if (bits (inst1, 3, 6) == 0x0f) | |
1583 | nextpc = pc_val; | |
1584 | else | |
1585 | nextpc = read_register (bits (inst1, 3, 6)); | |
1586 | ||
1587 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1588 | if (nextpc == pc) | |
edefbb7c | 1589 | error (_("Infinite loop detected")); |
9498281f | 1590 | } |
c906108c SS |
1591 | |
1592 | return nextpc; | |
1593 | } | |
1594 | ||
34e8f22d | 1595 | CORE_ADDR |
ed9a39eb | 1596 | arm_get_next_pc (CORE_ADDR pc) |
c906108c SS |
1597 | { |
1598 | unsigned long pc_val; | |
1599 | unsigned long this_instr; | |
1600 | unsigned long status; | |
1601 | CORE_ADDR nextpc; | |
1602 | ||
1603 | if (arm_pc_is_thumb (pc)) | |
1604 | return thumb_get_next_pc (pc); | |
1605 | ||
1606 | pc_val = (unsigned long) pc; | |
1c5bada0 | 1607 | this_instr = read_memory_unsigned_integer (pc, 4); |
34e8f22d | 1608 | status = read_register (ARM_PS_REGNUM); |
c5aa993b | 1609 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ |
c906108c SS |
1610 | |
1611 | if (condition_true (bits (this_instr, 28, 31), status)) | |
1612 | { | |
1613 | switch (bits (this_instr, 24, 27)) | |
1614 | { | |
c5aa993b | 1615 | case 0x0: |
94c30b78 | 1616 | case 0x1: /* data processing */ |
c5aa993b JM |
1617 | case 0x2: |
1618 | case 0x3: | |
c906108c SS |
1619 | { |
1620 | unsigned long operand1, operand2, result = 0; | |
1621 | unsigned long rn; | |
1622 | int c; | |
c5aa993b | 1623 | |
c906108c SS |
1624 | if (bits (this_instr, 12, 15) != 15) |
1625 | break; | |
1626 | ||
1627 | if (bits (this_instr, 22, 25) == 0 | |
c5aa993b | 1628 | && bits (this_instr, 4, 7) == 9) /* multiply */ |
edefbb7c | 1629 | error (_("Invalid update to pc in instruction")); |
c906108c | 1630 | |
9498281f DJ |
1631 | /* BX <reg>, BLX <reg> */ |
1632 | if (bits (this_instr, 4, 28) == 0x12fff1 | |
1633 | || bits (this_instr, 4, 28) == 0x12fff3) | |
1634 | { | |
1635 | rn = bits (this_instr, 0, 3); | |
1636 | result = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1637 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1638 | ||
1639 | if (nextpc == pc) | |
edefbb7c | 1640 | error (_("Infinite loop detected")); |
9498281f DJ |
1641 | |
1642 | return nextpc; | |
1643 | } | |
1644 | ||
c906108c SS |
1645 | /* Multiply into PC */ |
1646 | c = (status & FLAG_C) ? 1 : 0; | |
1647 | rn = bits (this_instr, 16, 19); | |
1648 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
c5aa993b | 1649 | |
c906108c SS |
1650 | if (bit (this_instr, 25)) |
1651 | { | |
1652 | unsigned long immval = bits (this_instr, 0, 7); | |
1653 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
c5aa993b JM |
1654 | operand2 = ((immval >> rotate) | (immval << (32 - rotate))) |
1655 | & 0xffffffff; | |
c906108c | 1656 | } |
c5aa993b | 1657 | else /* operand 2 is a shifted register */ |
c906108c | 1658 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
c5aa993b | 1659 | |
c906108c SS |
1660 | switch (bits (this_instr, 21, 24)) |
1661 | { | |
c5aa993b | 1662 | case 0x0: /*and */ |
c906108c SS |
1663 | result = operand1 & operand2; |
1664 | break; | |
1665 | ||
c5aa993b | 1666 | case 0x1: /*eor */ |
c906108c SS |
1667 | result = operand1 ^ operand2; |
1668 | break; | |
1669 | ||
c5aa993b | 1670 | case 0x2: /*sub */ |
c906108c SS |
1671 | result = operand1 - operand2; |
1672 | break; | |
1673 | ||
c5aa993b | 1674 | case 0x3: /*rsb */ |
c906108c SS |
1675 | result = operand2 - operand1; |
1676 | break; | |
1677 | ||
c5aa993b | 1678 | case 0x4: /*add */ |
c906108c SS |
1679 | result = operand1 + operand2; |
1680 | break; | |
1681 | ||
c5aa993b | 1682 | case 0x5: /*adc */ |
c906108c SS |
1683 | result = operand1 + operand2 + c; |
1684 | break; | |
1685 | ||
c5aa993b | 1686 | case 0x6: /*sbc */ |
c906108c SS |
1687 | result = operand1 - operand2 + c; |
1688 | break; | |
1689 | ||
c5aa993b | 1690 | case 0x7: /*rsc */ |
c906108c SS |
1691 | result = operand2 - operand1 + c; |
1692 | break; | |
1693 | ||
c5aa993b JM |
1694 | case 0x8: |
1695 | case 0x9: | |
1696 | case 0xa: | |
1697 | case 0xb: /* tst, teq, cmp, cmn */ | |
c906108c SS |
1698 | result = (unsigned long) nextpc; |
1699 | break; | |
1700 | ||
c5aa993b | 1701 | case 0xc: /*orr */ |
c906108c SS |
1702 | result = operand1 | operand2; |
1703 | break; | |
1704 | ||
c5aa993b | 1705 | case 0xd: /*mov */ |
c906108c SS |
1706 | /* Always step into a function. */ |
1707 | result = operand2; | |
c5aa993b | 1708 | break; |
c906108c | 1709 | |
c5aa993b | 1710 | case 0xe: /*bic */ |
c906108c SS |
1711 | result = operand1 & ~operand2; |
1712 | break; | |
1713 | ||
c5aa993b | 1714 | case 0xf: /*mvn */ |
c906108c SS |
1715 | result = ~operand2; |
1716 | break; | |
1717 | } | |
1718 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1719 | ||
1720 | if (nextpc == pc) | |
edefbb7c | 1721 | error (_("Infinite loop detected")); |
c906108c SS |
1722 | break; |
1723 | } | |
c5aa993b JM |
1724 | |
1725 | case 0x4: | |
1726 | case 0x5: /* data transfer */ | |
1727 | case 0x6: | |
1728 | case 0x7: | |
c906108c SS |
1729 | if (bit (this_instr, 20)) |
1730 | { | |
1731 | /* load */ | |
1732 | if (bits (this_instr, 12, 15) == 15) | |
1733 | { | |
1734 | /* rd == pc */ | |
c5aa993b | 1735 | unsigned long rn; |
c906108c | 1736 | unsigned long base; |
c5aa993b | 1737 | |
c906108c | 1738 | if (bit (this_instr, 22)) |
edefbb7c | 1739 | error (_("Invalid update to pc in instruction")); |
c906108c SS |
1740 | |
1741 | /* byte write to PC */ | |
1742 | rn = bits (this_instr, 16, 19); | |
1743 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1744 | if (bit (this_instr, 24)) | |
1745 | { | |
1746 | /* pre-indexed */ | |
1747 | int c = (status & FLAG_C) ? 1 : 0; | |
1748 | unsigned long offset = | |
c5aa993b | 1749 | (bit (this_instr, 25) |
ed9a39eb | 1750 | ? shifted_reg_val (this_instr, c, pc_val, status) |
c5aa993b | 1751 | : bits (this_instr, 0, 11)); |
c906108c SS |
1752 | |
1753 | if (bit (this_instr, 23)) | |
1754 | base += offset; | |
1755 | else | |
1756 | base -= offset; | |
1757 | } | |
c5aa993b | 1758 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, |
c906108c | 1759 | 4); |
c5aa993b | 1760 | |
c906108c SS |
1761 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1762 | ||
1763 | if (nextpc == pc) | |
edefbb7c | 1764 | error (_("Infinite loop detected")); |
c906108c SS |
1765 | } |
1766 | } | |
1767 | break; | |
c5aa993b JM |
1768 | |
1769 | case 0x8: | |
1770 | case 0x9: /* block transfer */ | |
c906108c SS |
1771 | if (bit (this_instr, 20)) |
1772 | { | |
1773 | /* LDM */ | |
1774 | if (bit (this_instr, 15)) | |
1775 | { | |
1776 | /* loading pc */ | |
1777 | int offset = 0; | |
1778 | ||
1779 | if (bit (this_instr, 23)) | |
1780 | { | |
1781 | /* up */ | |
1782 | unsigned long reglist = bits (this_instr, 0, 14); | |
1783 | offset = bitcount (reglist) * 4; | |
c5aa993b | 1784 | if (bit (this_instr, 24)) /* pre */ |
c906108c SS |
1785 | offset += 4; |
1786 | } | |
1787 | else if (bit (this_instr, 24)) | |
1788 | offset = -4; | |
c5aa993b | 1789 | |
c906108c | 1790 | { |
c5aa993b JM |
1791 | unsigned long rn_val = |
1792 | read_register (bits (this_instr, 16, 19)); | |
c906108c SS |
1793 | nextpc = |
1794 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
c5aa993b | 1795 | + offset), |
c906108c SS |
1796 | 4); |
1797 | } | |
1798 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1799 | if (nextpc == pc) | |
edefbb7c | 1800 | error (_("Infinite loop detected")); |
c906108c SS |
1801 | } |
1802 | } | |
1803 | break; | |
c5aa993b JM |
1804 | |
1805 | case 0xb: /* branch & link */ | |
1806 | case 0xa: /* branch */ | |
c906108c SS |
1807 | { |
1808 | nextpc = BranchDest (pc, this_instr); | |
1809 | ||
9498281f DJ |
1810 | /* BLX */ |
1811 | if (bits (this_instr, 28, 31) == INST_NV) | |
1812 | nextpc |= bit (this_instr, 24) << 1; | |
1813 | ||
c906108c SS |
1814 | nextpc = ADDR_BITS_REMOVE (nextpc); |
1815 | if (nextpc == pc) | |
edefbb7c | 1816 | error (_("Infinite loop detected")); |
c906108c SS |
1817 | break; |
1818 | } | |
c5aa993b JM |
1819 | |
1820 | case 0xc: | |
1821 | case 0xd: | |
1822 | case 0xe: /* coproc ops */ | |
1823 | case 0xf: /* SWI */ | |
c906108c SS |
1824 | break; |
1825 | ||
1826 | default: | |
edefbb7c | 1827 | fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n")); |
c906108c SS |
1828 | return (pc); |
1829 | } | |
1830 | } | |
1831 | ||
1832 | return nextpc; | |
1833 | } | |
1834 | ||
9512d7fd FN |
1835 | /* single_step() is called just before we want to resume the inferior, |
1836 | if we want to single-step it but there is no hardware or kernel | |
1837 | single-step support. We find the target of the coming instruction | |
1838 | and breakpoint it. | |
1839 | ||
94c30b78 MS |
1840 | single_step() is also called just after the inferior stops. If we |
1841 | had set up a simulated single-step, we undo our damage. */ | |
9512d7fd | 1842 | |
34e8f22d RE |
1843 | static void |
1844 | arm_software_single_step (enum target_signal sig, int insert_bpt) | |
9512d7fd | 1845 | { |
8181d85f DJ |
1846 | /* NOTE: This may insert the wrong breakpoint instruction when |
1847 | single-stepping over a mode-changing instruction, if the | |
1848 | CPSR heuristics are used. */ | |
9512d7fd FN |
1849 | |
1850 | if (insert_bpt) | |
1851 | { | |
8181d85f DJ |
1852 | CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM)); |
1853 | ||
1854 | insert_single_step_breakpoint (next_pc); | |
9512d7fd FN |
1855 | } |
1856 | else | |
8181d85f | 1857 | remove_single_step_breakpoints (); |
9512d7fd | 1858 | } |
9512d7fd | 1859 | |
c906108c SS |
1860 | #include "bfd-in2.h" |
1861 | #include "libcoff.h" | |
1862 | ||
1863 | static int | |
ed9a39eb | 1864 | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
1865 | { |
1866 | if (arm_pc_is_thumb (memaddr)) | |
1867 | { | |
c5aa993b JM |
1868 | static asymbol *asym; |
1869 | static combined_entry_type ce; | |
1870 | static struct coff_symbol_struct csym; | |
27cddce2 | 1871 | static struct bfd fake_bfd; |
c5aa993b | 1872 | static bfd_target fake_target; |
c906108c SS |
1873 | |
1874 | if (csym.native == NULL) | |
1875 | { | |
da3c6d4a MS |
1876 | /* Create a fake symbol vector containing a Thumb symbol. |
1877 | This is solely so that the code in print_insn_little_arm() | |
1878 | and print_insn_big_arm() in opcodes/arm-dis.c will detect | |
1879 | the presence of a Thumb symbol and switch to decoding | |
1880 | Thumb instructions. */ | |
c5aa993b JM |
1881 | |
1882 | fake_target.flavour = bfd_target_coff_flavour; | |
1883 | fake_bfd.xvec = &fake_target; | |
c906108c | 1884 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
c5aa993b JM |
1885 | csym.native = &ce; |
1886 | csym.symbol.the_bfd = &fake_bfd; | |
1887 | csym.symbol.name = "fake"; | |
1888 | asym = (asymbol *) & csym; | |
c906108c | 1889 | } |
c5aa993b | 1890 | |
c906108c | 1891 | memaddr = UNMAKE_THUMB_ADDR (memaddr); |
c5aa993b | 1892 | info->symbols = &asym; |
c906108c SS |
1893 | } |
1894 | else | |
1895 | info->symbols = NULL; | |
c5aa993b | 1896 | |
d7449b42 | 1897 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
1898 | return print_insn_big_arm (memaddr, info); |
1899 | else | |
1900 | return print_insn_little_arm (memaddr, info); | |
1901 | } | |
1902 | ||
66e810cd RE |
1903 | /* The following define instruction sequences that will cause ARM |
1904 | cpu's to take an undefined instruction trap. These are used to | |
1905 | signal a breakpoint to GDB. | |
1906 | ||
1907 | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | |
1908 | modes. A different instruction is required for each mode. The ARM | |
1909 | cpu's can also be big or little endian. Thus four different | |
1910 | instructions are needed to support all cases. | |
1911 | ||
1912 | Note: ARMv4 defines several new instructions that will take the | |
1913 | undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does | |
1914 | not in fact add the new instructions. The new undefined | |
1915 | instructions in ARMv4 are all instructions that had no defined | |
1916 | behaviour in earlier chips. There is no guarantee that they will | |
1917 | raise an exception, but may be treated as NOP's. In practice, it | |
1918 | may only safe to rely on instructions matching: | |
1919 | ||
1920 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | |
1921 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | |
1922 | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | |
1923 | ||
1924 | Even this may only true if the condition predicate is true. The | |
1925 | following use a condition predicate of ALWAYS so it is always TRUE. | |
1926 | ||
1927 | There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, | |
1928 | and NetBSD all use a software interrupt rather than an undefined | |
1929 | instruction to force a trap. This can be handled by by the | |
1930 | abi-specific code during establishment of the gdbarch vector. */ | |
1931 | ||
1932 | ||
d7b486e7 RE |
1933 | /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to |
1934 | override these definitions. */ | |
66e810cd RE |
1935 | #ifndef ARM_LE_BREAKPOINT |
1936 | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | |
1937 | #endif | |
1938 | #ifndef ARM_BE_BREAKPOINT | |
1939 | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | |
1940 | #endif | |
1941 | #ifndef THUMB_LE_BREAKPOINT | |
1942 | #define THUMB_LE_BREAKPOINT {0xfe,0xdf} | |
1943 | #endif | |
1944 | #ifndef THUMB_BE_BREAKPOINT | |
1945 | #define THUMB_BE_BREAKPOINT {0xdf,0xfe} | |
1946 | #endif | |
1947 | ||
1948 | static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | |
1949 | static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | |
1950 | static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | |
1951 | static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | |
1952 | ||
34e8f22d RE |
1953 | /* Determine the type and size of breakpoint to insert at PCPTR. Uses |
1954 | the program counter value to determine whether a 16-bit or 32-bit | |
ed9a39eb JM |
1955 | breakpoint should be used. It returns a pointer to a string of |
1956 | bytes that encode a breakpoint instruction, stores the length of | |
1957 | the string to *lenptr, and adjusts the program counter (if | |
1958 | necessary) to point to the actual memory location where the | |
c906108c SS |
1959 | breakpoint should be inserted. */ |
1960 | ||
ab89facf | 1961 | static const unsigned char * |
ed9a39eb | 1962 | arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
c906108c | 1963 | { |
66e810cd RE |
1964 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
1965 | ||
4bf7064c | 1966 | if (arm_pc_is_thumb (*pcptr)) |
c906108c | 1967 | { |
66e810cd RE |
1968 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); |
1969 | *lenptr = tdep->thumb_breakpoint_size; | |
1970 | return tdep->thumb_breakpoint; | |
c906108c SS |
1971 | } |
1972 | else | |
1973 | { | |
66e810cd RE |
1974 | *lenptr = tdep->arm_breakpoint_size; |
1975 | return tdep->arm_breakpoint; | |
c906108c SS |
1976 | } |
1977 | } | |
ed9a39eb JM |
1978 | |
1979 | /* Extract from an array REGBUF containing the (raw) register state a | |
1980 | function return value of type TYPE, and copy that, in virtual | |
1981 | format, into VALBUF. */ | |
1982 | ||
34e8f22d | 1983 | static void |
5238cf52 MK |
1984 | arm_extract_return_value (struct type *type, struct regcache *regs, |
1985 | gdb_byte *valbuf) | |
ed9a39eb JM |
1986 | { |
1987 | if (TYPE_CODE_FLT == TYPE_CODE (type)) | |
08216dd7 | 1988 | { |
28e97307 | 1989 | switch (gdbarch_tdep (current_gdbarch)->fp_model) |
08216dd7 RE |
1990 | { |
1991 | case ARM_FLOAT_FPA: | |
b508a996 RE |
1992 | { |
1993 | /* The value is in register F0 in internal format. We need to | |
1994 | extract the raw value and then convert it to the desired | |
1995 | internal type. */ | |
7a5ea0d4 | 1996 | bfd_byte tmpbuf[FP_REGISTER_SIZE]; |
b508a996 RE |
1997 | |
1998 | regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf); | |
1999 | convert_from_extended (floatformat_from_type (type), tmpbuf, | |
2000 | valbuf); | |
2001 | } | |
08216dd7 RE |
2002 | break; |
2003 | ||
fd50bc42 | 2004 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 2005 | case ARM_FLOAT_SOFT_VFP: |
b508a996 RE |
2006 | regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf); |
2007 | if (TYPE_LENGTH (type) > 4) | |
2008 | regcache_cooked_read (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 2009 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
2010 | break; |
2011 | ||
2012 | default: | |
2013 | internal_error | |
2014 | (__FILE__, __LINE__, | |
edefbb7c | 2015 | _("arm_extract_return_value: Floating point model not supported")); |
08216dd7 RE |
2016 | break; |
2017 | } | |
2018 | } | |
b508a996 RE |
2019 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
2020 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
2021 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
2022 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
2023 | || TYPE_CODE (type) == TYPE_CODE_REF | |
2024 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
2025 | { | |
2026 | /* If the the type is a plain integer, then the access is | |
2027 | straight-forward. Otherwise we have to play around a bit more. */ | |
2028 | int len = TYPE_LENGTH (type); | |
2029 | int regno = ARM_A1_REGNUM; | |
2030 | ULONGEST tmp; | |
2031 | ||
2032 | while (len > 0) | |
2033 | { | |
2034 | /* By using store_unsigned_integer we avoid having to do | |
2035 | anything special for small big-endian values. */ | |
2036 | regcache_cooked_read_unsigned (regs, regno++, &tmp); | |
2037 | store_unsigned_integer (valbuf, | |
7a5ea0d4 DJ |
2038 | (len > INT_REGISTER_SIZE |
2039 | ? INT_REGISTER_SIZE : len), | |
b508a996 | 2040 | tmp); |
7a5ea0d4 DJ |
2041 | len -= INT_REGISTER_SIZE; |
2042 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
2043 | } |
2044 | } | |
ed9a39eb | 2045 | else |
b508a996 RE |
2046 | { |
2047 | /* For a structure or union the behaviour is as if the value had | |
2048 | been stored to word-aligned memory and then loaded into | |
2049 | registers with 32-bit load instruction(s). */ | |
2050 | int len = TYPE_LENGTH (type); | |
2051 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 2052 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
2053 | |
2054 | while (len > 0) | |
2055 | { | |
2056 | regcache_cooked_read (regs, regno++, tmpbuf); | |
2057 | memcpy (valbuf, tmpbuf, | |
7a5ea0d4 DJ |
2058 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
2059 | len -= INT_REGISTER_SIZE; | |
2060 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
2061 | } |
2062 | } | |
34e8f22d RE |
2063 | } |
2064 | ||
67255d04 RE |
2065 | |
2066 | /* Will a function return an aggregate type in memory or in a | |
2067 | register? Return 0 if an aggregate type can be returned in a | |
2068 | register, 1 if it must be returned in memory. */ | |
2069 | ||
2070 | static int | |
2af48f68 | 2071 | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) |
67255d04 RE |
2072 | { |
2073 | int nRc; | |
52f0bd74 | 2074 | enum type_code code; |
67255d04 | 2075 | |
44e1a9eb DJ |
2076 | CHECK_TYPEDEF (type); |
2077 | ||
67255d04 RE |
2078 | /* In the ARM ABI, "integer" like aggregate types are returned in |
2079 | registers. For an aggregate type to be integer like, its size | |
b1e29e33 AC |
2080 | must be less than or equal to DEPRECATED_REGISTER_SIZE and the |
2081 | offset of each addressable subfield must be zero. Note that bit | |
2082 | fields are not addressable, and all addressable subfields of | |
2083 | unions always start at offset zero. | |
67255d04 RE |
2084 | |
2085 | This function is based on the behaviour of GCC 2.95.1. | |
2086 | See: gcc/arm.c: arm_return_in_memory() for details. | |
2087 | ||
2088 | Note: All versions of GCC before GCC 2.95.2 do not set up the | |
2089 | parameters correctly for a function returning the following | |
2090 | structure: struct { float f;}; This should be returned in memory, | |
2091 | not a register. Richard Earnshaw sent me a patch, but I do not | |
2092 | know of any way to detect if a function like the above has been | |
2093 | compiled with the correct calling convention. */ | |
2094 | ||
2095 | /* All aggregate types that won't fit in a register must be returned | |
2096 | in memory. */ | |
b1e29e33 | 2097 | if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE) |
67255d04 RE |
2098 | { |
2099 | return 1; | |
2100 | } | |
2101 | ||
2af48f68 PB |
2102 | /* The AAPCS says all aggregates not larger than a word are returned |
2103 | in a register. */ | |
2104 | if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS) | |
2105 | return 0; | |
2106 | ||
67255d04 RE |
2107 | /* The only aggregate types that can be returned in a register are |
2108 | structs and unions. Arrays must be returned in memory. */ | |
2109 | code = TYPE_CODE (type); | |
2110 | if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) | |
2111 | { | |
2112 | return 1; | |
2113 | } | |
2114 | ||
2115 | /* Assume all other aggregate types can be returned in a register. | |
2116 | Run a check for structures, unions and arrays. */ | |
2117 | nRc = 0; | |
2118 | ||
2119 | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | |
2120 | { | |
2121 | int i; | |
2122 | /* Need to check if this struct/union is "integer" like. For | |
2123 | this to be true, its size must be less than or equal to | |
b1e29e33 AC |
2124 | DEPRECATED_REGISTER_SIZE and the offset of each addressable |
2125 | subfield must be zero. Note that bit fields are not | |
2126 | addressable, and unions always start at offset zero. If any | |
2127 | of the subfields is a floating point type, the struct/union | |
2128 | cannot be an integer type. */ | |
67255d04 RE |
2129 | |
2130 | /* For each field in the object, check: | |
2131 | 1) Is it FP? --> yes, nRc = 1; | |
2132 | 2) Is it addressable (bitpos != 0) and | |
2133 | not packed (bitsize == 0)? | |
2134 | --> yes, nRc = 1 | |
2135 | */ | |
2136 | ||
2137 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2138 | { | |
2139 | enum type_code field_type_code; | |
44e1a9eb | 2140 | field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i))); |
67255d04 RE |
2141 | |
2142 | /* Is it a floating point type field? */ | |
2143 | if (field_type_code == TYPE_CODE_FLT) | |
2144 | { | |
2145 | nRc = 1; | |
2146 | break; | |
2147 | } | |
2148 | ||
2149 | /* If bitpos != 0, then we have to care about it. */ | |
2150 | if (TYPE_FIELD_BITPOS (type, i) != 0) | |
2151 | { | |
2152 | /* Bitfields are not addressable. If the field bitsize is | |
2153 | zero, then the field is not packed. Hence it cannot be | |
2154 | a bitfield or any other packed type. */ | |
2155 | if (TYPE_FIELD_BITSIZE (type, i) == 0) | |
2156 | { | |
2157 | nRc = 1; | |
2158 | break; | |
2159 | } | |
2160 | } | |
2161 | } | |
2162 | } | |
2163 | ||
2164 | return nRc; | |
2165 | } | |
2166 | ||
34e8f22d RE |
2167 | /* Write into appropriate registers a function return value of type |
2168 | TYPE, given in virtual format. */ | |
2169 | ||
2170 | static void | |
b508a996 | 2171 | arm_store_return_value (struct type *type, struct regcache *regs, |
5238cf52 | 2172 | const gdb_byte *valbuf) |
34e8f22d RE |
2173 | { |
2174 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
2175 | { | |
7a5ea0d4 | 2176 | char buf[MAX_REGISTER_SIZE]; |
34e8f22d | 2177 | |
28e97307 | 2178 | switch (gdbarch_tdep (current_gdbarch)->fp_model) |
08216dd7 RE |
2179 | { |
2180 | case ARM_FLOAT_FPA: | |
2181 | ||
b508a996 RE |
2182 | convert_to_extended (floatformat_from_type (type), buf, valbuf); |
2183 | regcache_cooked_write (regs, ARM_F0_REGNUM, buf); | |
08216dd7 RE |
2184 | break; |
2185 | ||
fd50bc42 | 2186 | case ARM_FLOAT_SOFT_FPA: |
08216dd7 | 2187 | case ARM_FLOAT_SOFT_VFP: |
b508a996 RE |
2188 | regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf); |
2189 | if (TYPE_LENGTH (type) > 4) | |
2190 | regcache_cooked_write (regs, ARM_A1_REGNUM + 1, | |
7a5ea0d4 | 2191 | valbuf + INT_REGISTER_SIZE); |
08216dd7 RE |
2192 | break; |
2193 | ||
2194 | default: | |
2195 | internal_error | |
2196 | (__FILE__, __LINE__, | |
edefbb7c | 2197 | _("arm_store_return_value: Floating point model not supported")); |
08216dd7 RE |
2198 | break; |
2199 | } | |
34e8f22d | 2200 | } |
b508a996 RE |
2201 | else if (TYPE_CODE (type) == TYPE_CODE_INT |
2202 | || TYPE_CODE (type) == TYPE_CODE_CHAR | |
2203 | || TYPE_CODE (type) == TYPE_CODE_BOOL | |
2204 | || TYPE_CODE (type) == TYPE_CODE_PTR | |
2205 | || TYPE_CODE (type) == TYPE_CODE_REF | |
2206 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
2207 | { | |
2208 | if (TYPE_LENGTH (type) <= 4) | |
2209 | { | |
2210 | /* Values of one word or less are zero/sign-extended and | |
2211 | returned in r0. */ | |
7a5ea0d4 | 2212 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
2213 | LONGEST val = unpack_long (type, valbuf); |
2214 | ||
7a5ea0d4 | 2215 | store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val); |
b508a996 RE |
2216 | regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf); |
2217 | } | |
2218 | else | |
2219 | { | |
2220 | /* Integral values greater than one word are stored in consecutive | |
2221 | registers starting with r0. This will always be a multiple of | |
2222 | the regiser size. */ | |
2223 | int len = TYPE_LENGTH (type); | |
2224 | int regno = ARM_A1_REGNUM; | |
2225 | ||
2226 | while (len > 0) | |
2227 | { | |
2228 | regcache_cooked_write (regs, regno++, valbuf); | |
7a5ea0d4 DJ |
2229 | len -= INT_REGISTER_SIZE; |
2230 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
2231 | } |
2232 | } | |
2233 | } | |
34e8f22d | 2234 | else |
b508a996 RE |
2235 | { |
2236 | /* For a structure or union the behaviour is as if the value had | |
2237 | been stored to word-aligned memory and then loaded into | |
2238 | registers with 32-bit load instruction(s). */ | |
2239 | int len = TYPE_LENGTH (type); | |
2240 | int regno = ARM_A1_REGNUM; | |
7a5ea0d4 | 2241 | bfd_byte tmpbuf[INT_REGISTER_SIZE]; |
b508a996 RE |
2242 | |
2243 | while (len > 0) | |
2244 | { | |
2245 | memcpy (tmpbuf, valbuf, | |
7a5ea0d4 | 2246 | len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len); |
b508a996 | 2247 | regcache_cooked_write (regs, regno++, tmpbuf); |
7a5ea0d4 DJ |
2248 | len -= INT_REGISTER_SIZE; |
2249 | valbuf += INT_REGISTER_SIZE; | |
b508a996 RE |
2250 | } |
2251 | } | |
34e8f22d RE |
2252 | } |
2253 | ||
2af48f68 PB |
2254 | |
2255 | /* Handle function return values. */ | |
2256 | ||
2257 | static enum return_value_convention | |
2258 | arm_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
25224166 MK |
2259 | struct regcache *regcache, gdb_byte *readbuf, |
2260 | const gdb_byte *writebuf) | |
2af48f68 | 2261 | { |
7c00367c MK |
2262 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2263 | ||
2af48f68 PB |
2264 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
2265 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
2266 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
2267 | { | |
7c00367c MK |
2268 | if (tdep->struct_return == pcc_struct_return |
2269 | || arm_return_in_memory (gdbarch, valtype)) | |
2af48f68 PB |
2270 | return RETURN_VALUE_STRUCT_CONVENTION; |
2271 | } | |
2272 | ||
2273 | if (writebuf) | |
2274 | arm_store_return_value (valtype, regcache, writebuf); | |
2275 | ||
2276 | if (readbuf) | |
2277 | arm_extract_return_value (valtype, regcache, readbuf); | |
2278 | ||
2279 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2280 | } | |
2281 | ||
2282 | ||
9df628e0 RE |
2283 | static int |
2284 | arm_get_longjmp_target (CORE_ADDR *pc) | |
2285 | { | |
2286 | CORE_ADDR jb_addr; | |
7a5ea0d4 | 2287 | char buf[INT_REGISTER_SIZE]; |
9df628e0 RE |
2288 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2289 | ||
2290 | jb_addr = read_register (ARM_A1_REGNUM); | |
2291 | ||
2292 | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | |
7a5ea0d4 | 2293 | INT_REGISTER_SIZE)) |
9df628e0 RE |
2294 | return 0; |
2295 | ||
7a5ea0d4 | 2296 | *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE); |
9df628e0 RE |
2297 | return 1; |
2298 | } | |
2299 | ||
ed9a39eb | 2300 | /* Return non-zero if the PC is inside a thumb call thunk. */ |
c906108c SS |
2301 | |
2302 | int | |
ed9a39eb | 2303 | arm_in_call_stub (CORE_ADDR pc, char *name) |
c906108c SS |
2304 | { |
2305 | CORE_ADDR start_addr; | |
2306 | ||
ed9a39eb JM |
2307 | /* Find the starting address of the function containing the PC. If |
2308 | the caller didn't give us a name, look it up at the same time. */ | |
94c30b78 MS |
2309 | if (0 == find_pc_partial_function (pc, name ? NULL : &name, |
2310 | &start_addr, NULL)) | |
c906108c SS |
2311 | return 0; |
2312 | ||
2313 | return strncmp (name, "_call_via_r", 11) == 0; | |
2314 | } | |
2315 | ||
ed9a39eb JM |
2316 | /* If PC is in a Thumb call or return stub, return the address of the |
2317 | target PC, which is in a register. The thunk functions are called | |
2318 | _called_via_xx, where x is the register name. The possible names | |
2319 | are r0-r9, sl, fp, ip, sp, and lr. */ | |
c906108c SS |
2320 | |
2321 | CORE_ADDR | |
ed9a39eb | 2322 | arm_skip_stub (CORE_ADDR pc) |
c906108c | 2323 | { |
c5aa993b | 2324 | char *name; |
c906108c SS |
2325 | CORE_ADDR start_addr; |
2326 | ||
2327 | /* Find the starting address and name of the function containing the PC. */ | |
2328 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
2329 | return 0; | |
2330 | ||
2331 | /* Call thunks always start with "_call_via_". */ | |
2332 | if (strncmp (name, "_call_via_", 10) == 0) | |
2333 | { | |
ed9a39eb JM |
2334 | /* Use the name suffix to determine which register contains the |
2335 | target PC. */ | |
c5aa993b JM |
2336 | static char *table[15] = |
2337 | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
2338 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
2339 | }; | |
c906108c SS |
2340 | int regno; |
2341 | ||
2342 | for (regno = 0; regno <= 14; regno++) | |
2343 | if (strcmp (&name[10], table[regno]) == 0) | |
2344 | return read_register (regno); | |
2345 | } | |
ed9a39eb | 2346 | |
c5aa993b | 2347 | return 0; /* not a stub */ |
c906108c SS |
2348 | } |
2349 | ||
afd7eef0 RE |
2350 | static void |
2351 | set_arm_command (char *args, int from_tty) | |
2352 | { | |
edefbb7c AC |
2353 | printf_unfiltered (_("\ |
2354 | \"set arm\" must be followed by an apporpriate subcommand.\n")); | |
afd7eef0 RE |
2355 | help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout); |
2356 | } | |
2357 | ||
2358 | static void | |
2359 | show_arm_command (char *args, int from_tty) | |
2360 | { | |
26304000 | 2361 | cmd_show_list (showarmcmdlist, from_tty, ""); |
afd7eef0 RE |
2362 | } |
2363 | ||
28e97307 DJ |
2364 | static void |
2365 | arm_update_current_architecture (void) | |
fd50bc42 | 2366 | { |
28e97307 | 2367 | struct gdbarch_info info; |
fd50bc42 | 2368 | |
28e97307 DJ |
2369 | /* If the current architecture is not ARM, we have nothing to do. */ |
2370 | if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm) | |
2371 | return; | |
fd50bc42 | 2372 | |
28e97307 DJ |
2373 | /* Update the architecture. */ |
2374 | gdbarch_info_init (&info); | |
fd50bc42 | 2375 | |
28e97307 DJ |
2376 | if (!gdbarch_update_p (info)) |
2377 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
fd50bc42 RE |
2378 | } |
2379 | ||
2380 | static void | |
2381 | set_fp_model_sfunc (char *args, int from_tty, | |
2382 | struct cmd_list_element *c) | |
2383 | { | |
2384 | enum arm_float_model fp_model; | |
2385 | ||
2386 | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | |
2387 | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | |
2388 | { | |
2389 | arm_fp_model = fp_model; | |
2390 | break; | |
2391 | } | |
2392 | ||
2393 | if (fp_model == ARM_FLOAT_LAST) | |
edefbb7c | 2394 | internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
fd50bc42 RE |
2395 | current_fp_model); |
2396 | ||
28e97307 | 2397 | arm_update_current_architecture (); |
fd50bc42 RE |
2398 | } |
2399 | ||
2400 | static void | |
08546159 AC |
2401 | show_fp_model (struct ui_file *file, int from_tty, |
2402 | struct cmd_list_element *c, const char *value) | |
fd50bc42 RE |
2403 | { |
2404 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2405 | ||
28e97307 | 2406 | if (arm_fp_model == ARM_FLOAT_AUTO |
fd50bc42 | 2407 | && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm) |
28e97307 DJ |
2408 | fprintf_filtered (file, _("\ |
2409 | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | |
2410 | fp_model_strings[tdep->fp_model]); | |
2411 | else | |
2412 | fprintf_filtered (file, _("\ | |
2413 | The current ARM floating point model is \"%s\".\n"), | |
2414 | fp_model_strings[arm_fp_model]); | |
2415 | } | |
2416 | ||
2417 | static void | |
2418 | arm_set_abi (char *args, int from_tty, | |
2419 | struct cmd_list_element *c) | |
2420 | { | |
2421 | enum arm_abi_kind arm_abi; | |
2422 | ||
2423 | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | |
2424 | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | |
2425 | { | |
2426 | arm_abi_global = arm_abi; | |
2427 | break; | |
2428 | } | |
2429 | ||
2430 | if (arm_abi == ARM_ABI_LAST) | |
2431 | internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), | |
2432 | arm_abi_string); | |
2433 | ||
2434 | arm_update_current_architecture (); | |
2435 | } | |
2436 | ||
2437 | static void | |
2438 | arm_show_abi (struct ui_file *file, int from_tty, | |
2439 | struct cmd_list_element *c, const char *value) | |
2440 | { | |
2441 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2442 | ||
2443 | if (arm_abi_global == ARM_ABI_AUTO | |
2444 | && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm) | |
2445 | fprintf_filtered (file, _("\ | |
2446 | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | |
2447 | arm_abi_strings[tdep->arm_abi]); | |
2448 | else | |
2449 | fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), | |
2450 | arm_abi_string); | |
fd50bc42 RE |
2451 | } |
2452 | ||
afd7eef0 RE |
2453 | /* If the user changes the register disassembly style used for info |
2454 | register and other commands, we have to also switch the style used | |
2455 | in opcodes for disassembly output. This function is run in the "set | |
2456 | arm disassembly" command, and does that. */ | |
bc90b915 FN |
2457 | |
2458 | static void | |
afd7eef0 | 2459 | set_disassembly_style_sfunc (char *args, int from_tty, |
bc90b915 FN |
2460 | struct cmd_list_element *c) |
2461 | { | |
afd7eef0 | 2462 | set_disassembly_style (); |
bc90b915 FN |
2463 | } |
2464 | \f | |
966fbf70 | 2465 | /* Return the ARM register name corresponding to register I. */ |
a208b0cb | 2466 | static const char * |
34e8f22d | 2467 | arm_register_name (int i) |
966fbf70 RE |
2468 | { |
2469 | return arm_register_names[i]; | |
2470 | } | |
2471 | ||
bc90b915 | 2472 | static void |
afd7eef0 | 2473 | set_disassembly_style (void) |
bc90b915 | 2474 | { |
4bd7b427 | 2475 | const char *setname, *setdesc, *const *regnames; |
bc90b915 FN |
2476 | int numregs, j; |
2477 | ||
afd7eef0 | 2478 | /* Find the style that the user wants in the opcodes table. */ |
bc90b915 FN |
2479 | int current = 0; |
2480 | numregs = get_arm_regnames (current, &setname, &setdesc, ®names); | |
afd7eef0 RE |
2481 | while ((disassembly_style != setname) |
2482 | && (current < num_disassembly_options)) | |
bc90b915 FN |
2483 | get_arm_regnames (++current, &setname, &setdesc, ®names); |
2484 | current_option = current; | |
2485 | ||
94c30b78 | 2486 | /* Fill our copy. */ |
bc90b915 FN |
2487 | for (j = 0; j < numregs; j++) |
2488 | arm_register_names[j] = (char *) regnames[j]; | |
2489 | ||
94c30b78 | 2490 | /* Adjust case. */ |
34e8f22d | 2491 | if (isupper (*regnames[ARM_PC_REGNUM])) |
bc90b915 | 2492 | { |
34e8f22d RE |
2493 | arm_register_names[ARM_FPS_REGNUM] = "FPS"; |
2494 | arm_register_names[ARM_PS_REGNUM] = "CPSR"; | |
bc90b915 FN |
2495 | } |
2496 | else | |
2497 | { | |
34e8f22d RE |
2498 | arm_register_names[ARM_FPS_REGNUM] = "fps"; |
2499 | arm_register_names[ARM_PS_REGNUM] = "cpsr"; | |
bc90b915 FN |
2500 | } |
2501 | ||
94c30b78 | 2502 | /* Synchronize the disassembler. */ |
bc90b915 FN |
2503 | set_arm_regname_option (current); |
2504 | } | |
2505 | ||
082fc60d RE |
2506 | /* Test whether the coff symbol specific value corresponds to a Thumb |
2507 | function. */ | |
2508 | ||
2509 | static int | |
2510 | coff_sym_is_thumb (int val) | |
2511 | { | |
2512 | return (val == C_THUMBEXT || | |
2513 | val == C_THUMBSTAT || | |
2514 | val == C_THUMBEXTFUNC || | |
2515 | val == C_THUMBSTATFUNC || | |
2516 | val == C_THUMBLABEL); | |
2517 | } | |
2518 | ||
2519 | /* arm_coff_make_msymbol_special() | |
2520 | arm_elf_make_msymbol_special() | |
2521 | ||
2522 | These functions test whether the COFF or ELF symbol corresponds to | |
2523 | an address in thumb code, and set a "special" bit in a minimal | |
2524 | symbol to indicate that it does. */ | |
2525 | ||
34e8f22d | 2526 | static void |
082fc60d RE |
2527 | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
2528 | { | |
2529 | /* Thumb symbols are of type STT_LOPROC, (synonymous with | |
2530 | STT_ARM_TFUNC). */ | |
2531 | if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) | |
2532 | == STT_LOPROC) | |
2533 | MSYMBOL_SET_SPECIAL (msym); | |
2534 | } | |
2535 | ||
34e8f22d | 2536 | static void |
082fc60d RE |
2537 | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
2538 | { | |
2539 | if (coff_sym_is_thumb (val)) | |
2540 | MSYMBOL_SET_SPECIAL (msym); | |
2541 | } | |
2542 | ||
756fe439 DJ |
2543 | static void |
2544 | arm_write_pc (CORE_ADDR pc, ptid_t ptid) | |
2545 | { | |
2546 | write_register_pid (ARM_PC_REGNUM, pc, ptid); | |
2547 | ||
2548 | /* If necessary, set the T bit. */ | |
2549 | if (arm_apcs_32) | |
2550 | { | |
2551 | CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid); | |
2552 | if (arm_pc_is_thumb (pc)) | |
2553 | write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid); | |
2554 | else | |
2555 | write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid); | |
2556 | } | |
2557 | } | |
97e03143 | 2558 | \f |
70f80edf JT |
2559 | static enum gdb_osabi |
2560 | arm_elf_osabi_sniffer (bfd *abfd) | |
97e03143 | 2561 | { |
2af48f68 | 2562 | unsigned int elfosabi; |
70f80edf | 2563 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
97e03143 | 2564 | |
70f80edf | 2565 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
97e03143 | 2566 | |
28e97307 DJ |
2567 | if (elfosabi == ELFOSABI_ARM) |
2568 | /* GNU tools use this value. Check note sections in this case, | |
2569 | as well. */ | |
2570 | bfd_map_over_sections (abfd, | |
2571 | generic_elf_osabi_sniff_abi_tag_sections, | |
2572 | &osabi); | |
97e03143 | 2573 | |
28e97307 | 2574 | /* Anything else will be handled by the generic ELF sniffer. */ |
70f80edf | 2575 | return osabi; |
97e03143 RE |
2576 | } |
2577 | ||
70f80edf | 2578 | \f |
da3c6d4a MS |
2579 | /* Initialize the current architecture based on INFO. If possible, |
2580 | re-use an architecture from ARCHES, which is a list of | |
2581 | architectures already created during this debugging session. | |
97e03143 | 2582 | |
da3c6d4a MS |
2583 | Called e.g. at program startup, when reading a core file, and when |
2584 | reading a binary file. */ | |
97e03143 | 2585 | |
39bbf761 RE |
2586 | static struct gdbarch * |
2587 | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2588 | { | |
97e03143 | 2589 | struct gdbarch_tdep *tdep; |
39bbf761 | 2590 | struct gdbarch *gdbarch; |
28e97307 DJ |
2591 | struct gdbarch_list *best_arch; |
2592 | enum arm_abi_kind arm_abi = arm_abi_global; | |
2593 | enum arm_float_model fp_model = arm_fp_model; | |
39bbf761 | 2594 | |
28e97307 DJ |
2595 | /* If we have an object to base this architecture on, try to determine |
2596 | its ABI. */ | |
39bbf761 | 2597 | |
28e97307 | 2598 | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) |
97e03143 | 2599 | { |
6b26d61a | 2600 | int ei_osabi, e_flags; |
28e97307 | 2601 | |
4be87837 | 2602 | switch (bfd_get_flavour (info.abfd)) |
97e03143 | 2603 | { |
4be87837 DJ |
2604 | case bfd_target_aout_flavour: |
2605 | /* Assume it's an old APCS-style ABI. */ | |
28e97307 | 2606 | arm_abi = ARM_ABI_APCS; |
4be87837 | 2607 | break; |
97e03143 | 2608 | |
4be87837 DJ |
2609 | case bfd_target_coff_flavour: |
2610 | /* Assume it's an old APCS-style ABI. */ | |
2611 | /* XXX WinCE? */ | |
28e97307 DJ |
2612 | arm_abi = ARM_ABI_APCS; |
2613 | break; | |
2614 | ||
2615 | case bfd_target_elf_flavour: | |
2616 | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
6b26d61a MK |
2617 | e_flags = elf_elfheader (info.abfd)->e_flags; |
2618 | ||
28e97307 DJ |
2619 | if (ei_osabi == ELFOSABI_ARM) |
2620 | { | |
2621 | /* GNU tools used to use this value, but do not for EABI | |
6b26d61a MK |
2622 | objects. There's nowhere to tag an EABI version |
2623 | anyway, so assume APCS. */ | |
28e97307 DJ |
2624 | arm_abi = ARM_ABI_APCS; |
2625 | } | |
2626 | else if (ei_osabi == ELFOSABI_NONE) | |
2627 | { | |
6b26d61a | 2628 | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); |
28e97307 DJ |
2629 | |
2630 | switch (eabi_ver) | |
2631 | { | |
2632 | case EF_ARM_EABI_UNKNOWN: | |
2633 | /* Assume GNU tools. */ | |
2634 | arm_abi = ARM_ABI_APCS; | |
2635 | break; | |
2636 | ||
2637 | case EF_ARM_EABI_VER4: | |
2638 | arm_abi = ARM_ABI_AAPCS; | |
2af48f68 PB |
2639 | /* EABI binaries default to VFP float ordering. */ |
2640 | if (fp_model == ARM_FLOAT_AUTO) | |
2641 | fp_model = ARM_FLOAT_SOFT_VFP; | |
28e97307 DJ |
2642 | break; |
2643 | ||
2644 | default: | |
6b26d61a | 2645 | /* Leave it as "auto". */ |
28e97307 | 2646 | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); |
6b26d61a MK |
2647 | break; |
2648 | } | |
2649 | } | |
2650 | ||
2651 | if (fp_model == ARM_FLOAT_AUTO) | |
2652 | { | |
2653 | int e_flags = elf_elfheader (info.abfd)->e_flags; | |
2654 | ||
2655 | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | |
2656 | { | |
2657 | case 0: | |
2658 | /* Leave it as "auto". Strictly speaking this case | |
2659 | means FPA, but almost nobody uses that now, and | |
2660 | many toolchains fail to set the appropriate bits | |
2661 | for the floating-point model they use. */ | |
2662 | break; | |
2663 | case EF_ARM_SOFT_FLOAT: | |
2664 | fp_model = ARM_FLOAT_SOFT_FPA; | |
2665 | break; | |
2666 | case EF_ARM_VFP_FLOAT: | |
2667 | fp_model = ARM_FLOAT_VFP; | |
2668 | break; | |
2669 | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | |
2670 | fp_model = ARM_FLOAT_SOFT_VFP; | |
28e97307 DJ |
2671 | break; |
2672 | } | |
2673 | } | |
4be87837 | 2674 | break; |
97e03143 | 2675 | |
4be87837 | 2676 | default: |
28e97307 | 2677 | /* Leave it as "auto". */ |
50ceaba5 | 2678 | break; |
97e03143 RE |
2679 | } |
2680 | } | |
2681 | ||
28e97307 DJ |
2682 | /* Now that we have inferred any architecture settings that we |
2683 | can, try to inherit from the last ARM ABI. */ | |
4be87837 | 2684 | if (arches != NULL) |
28e97307 DJ |
2685 | { |
2686 | if (arm_abi == ARM_ABI_AUTO) | |
2687 | arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi; | |
2688 | ||
2689 | if (fp_model == ARM_FLOAT_AUTO) | |
2690 | fp_model = gdbarch_tdep (arches->gdbarch)->fp_model; | |
2691 | } | |
2692 | else | |
2693 | { | |
2694 | /* There was no prior ARM architecture; fill in default values. */ | |
2695 | ||
2696 | if (arm_abi == ARM_ABI_AUTO) | |
2697 | arm_abi = ARM_ABI_APCS; | |
2698 | ||
2699 | /* We used to default to FPA for generic ARM, but almost nobody | |
2700 | uses that now, and we now provide a way for the user to force | |
2701 | the model. So default to the most useful variant. */ | |
2702 | if (fp_model == ARM_FLOAT_AUTO) | |
2703 | fp_model = ARM_FLOAT_SOFT_FPA; | |
2704 | } | |
2705 | ||
2706 | /* If there is already a candidate, use it. */ | |
2707 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
2708 | best_arch != NULL; | |
2709 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
2710 | { | |
2711 | if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi) | |
2712 | continue; | |
2713 | ||
2714 | if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model) | |
2715 | continue; | |
2716 | ||
2717 | /* Found a match. */ | |
2718 | break; | |
2719 | } | |
97e03143 | 2720 | |
28e97307 DJ |
2721 | if (best_arch != NULL) |
2722 | return best_arch->gdbarch; | |
2723 | ||
2724 | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | |
97e03143 RE |
2725 | gdbarch = gdbarch_alloc (&info, tdep); |
2726 | ||
28e97307 DJ |
2727 | /* Record additional information about the architecture we are defining. |
2728 | These are gdbarch discriminators, like the OSABI. */ | |
2729 | tdep->arm_abi = arm_abi; | |
2730 | tdep->fp_model = fp_model; | |
08216dd7 RE |
2731 | |
2732 | /* Breakpoints. */ | |
67255d04 RE |
2733 | switch (info.byte_order) |
2734 | { | |
2735 | case BFD_ENDIAN_BIG: | |
66e810cd RE |
2736 | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
2737 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | |
2738 | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | |
2739 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | |
2740 | ||
67255d04 RE |
2741 | break; |
2742 | ||
2743 | case BFD_ENDIAN_LITTLE: | |
66e810cd RE |
2744 | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
2745 | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | |
2746 | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | |
2747 | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | |
2748 | ||
67255d04 RE |
2749 | break; |
2750 | ||
2751 | default: | |
2752 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 2753 | _("arm_gdbarch_init: bad byte order for float format")); |
67255d04 RE |
2754 | } |
2755 | ||
d7b486e7 RE |
2756 | /* On ARM targets char defaults to unsigned. */ |
2757 | set_gdbarch_char_signed (gdbarch, 0); | |
2758 | ||
9df628e0 | 2759 | /* This should be low enough for everything. */ |
97e03143 | 2760 | tdep->lowest_pc = 0x20; |
94c30b78 | 2761 | tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
97e03143 | 2762 | |
7c00367c MK |
2763 | /* The default, for both APCS and AAPCS, is to return small |
2764 | structures in registers. */ | |
2765 | tdep->struct_return = reg_struct_return; | |
2766 | ||
2dd604e7 | 2767 | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
f53f0d0b | 2768 | set_gdbarch_frame_align (gdbarch, arm_frame_align); |
39bbf761 | 2769 | |
756fe439 DJ |
2770 | set_gdbarch_write_pc (gdbarch, arm_write_pc); |
2771 | ||
148754e5 | 2772 | /* Frame handling. */ |
eb5492fa DJ |
2773 | set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id); |
2774 | set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc); | |
2775 | set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp); | |
2776 | ||
eb5492fa | 2777 | frame_base_set_default (gdbarch, &arm_normal_base); |
148754e5 | 2778 | |
34e8f22d RE |
2779 | /* Address manipulation. */ |
2780 | set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address); | |
2781 | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | |
2782 | ||
34e8f22d RE |
2783 | /* Advance PC across function entry code. */ |
2784 | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | |
2785 | ||
34e8f22d RE |
2786 | /* The stack grows downward. */ |
2787 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2788 | ||
2789 | /* Breakpoint manipulation. */ | |
2790 | set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc); | |
34e8f22d RE |
2791 | |
2792 | /* Information about registers, etc. */ | |
2793 | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | |
0ba6dca9 | 2794 | set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */ |
34e8f22d RE |
2795 | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
2796 | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | |
9c04cab7 | 2797 | set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte); |
34e8f22d | 2798 | set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS); |
7a5ea0d4 | 2799 | set_gdbarch_register_type (gdbarch, arm_register_type); |
34e8f22d | 2800 | |
26216b98 AC |
2801 | /* Internal <-> external register number maps. */ |
2802 | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); | |
2803 | ||
34e8f22d | 2804 | /* Integer registers are 4 bytes. */ |
b1e29e33 | 2805 | set_gdbarch_deprecated_register_size (gdbarch, 4); |
34e8f22d RE |
2806 | set_gdbarch_register_name (gdbarch, arm_register_name); |
2807 | ||
2808 | /* Returning results. */ | |
2af48f68 | 2809 | set_gdbarch_return_value (gdbarch, arm_return_value); |
34e8f22d RE |
2810 | |
2811 | /* Single stepping. */ | |
2812 | /* XXX For an RDI target we should ask the target if it can single-step. */ | |
2813 | set_gdbarch_software_single_step (gdbarch, arm_software_single_step); | |
2814 | ||
03d48a7d RE |
2815 | /* Disassembly. */ |
2816 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | |
2817 | ||
34e8f22d RE |
2818 | /* Minsymbol frobbing. */ |
2819 | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | |
2820 | set_gdbarch_coff_make_msymbol_special (gdbarch, | |
2821 | arm_coff_make_msymbol_special); | |
2822 | ||
97e03143 | 2823 | /* Hook in the ABI-specific overrides, if they have been registered. */ |
4be87837 | 2824 | gdbarch_init_osabi (info, gdbarch); |
97e03143 | 2825 | |
eb5492fa | 2826 | /* Add some default predicates. */ |
909cf6ea | 2827 | frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer); |
842e1f1e | 2828 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); |
eb5492fa DJ |
2829 | frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer); |
2830 | ||
97e03143 RE |
2831 | /* Now we have tuned the configuration, set a few final things, |
2832 | based on what the OS ABI has told us. */ | |
2833 | ||
9df628e0 RE |
2834 | if (tdep->jb_pc >= 0) |
2835 | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | |
2836 | ||
08216dd7 RE |
2837 | /* Floating point sizes and format. */ |
2838 | switch (info.byte_order) | |
2839 | { | |
2840 | case BFD_ENDIAN_BIG: | |
2841 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); | |
2842 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big); | |
2843 | set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); | |
08216dd7 RE |
2844 | break; |
2845 | ||
2846 | case BFD_ENDIAN_LITTLE: | |
2847 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); | |
28e97307 DJ |
2848 | if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA) |
2849 | { | |
2850 | set_gdbarch_double_format | |
2851 | (gdbarch, &floatformat_ieee_double_littlebyte_bigword); | |
2852 | set_gdbarch_long_double_format | |
2853 | (gdbarch, &floatformat_ieee_double_littlebyte_bigword); | |
2854 | } | |
2855 | else | |
2856 | { | |
2857 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little); | |
2858 | set_gdbarch_long_double_format (gdbarch, | |
2859 | &floatformat_ieee_double_little); | |
2860 | } | |
08216dd7 RE |
2861 | break; |
2862 | ||
2863 | default: | |
2864 | internal_error (__FILE__, __LINE__, | |
edefbb7c | 2865 | _("arm_gdbarch_init: bad byte order for float format")); |
08216dd7 RE |
2866 | } |
2867 | ||
39bbf761 RE |
2868 | return gdbarch; |
2869 | } | |
2870 | ||
97e03143 RE |
2871 | static void |
2872 | arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2873 | { | |
2874 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2875 | ||
2876 | if (tdep == NULL) | |
2877 | return; | |
2878 | ||
edefbb7c | 2879 | fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"), |
97e03143 RE |
2880 | (unsigned long) tdep->lowest_pc); |
2881 | } | |
2882 | ||
a78f21af AC |
2883 | extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */ |
2884 | ||
c906108c | 2885 | void |
ed9a39eb | 2886 | _initialize_arm_tdep (void) |
c906108c | 2887 | { |
bc90b915 FN |
2888 | struct ui_file *stb; |
2889 | long length; | |
26304000 | 2890 | struct cmd_list_element *new_set, *new_show; |
53904c9e AC |
2891 | const char *setname; |
2892 | const char *setdesc; | |
4bd7b427 | 2893 | const char *const *regnames; |
bc90b915 FN |
2894 | int numregs, i, j; |
2895 | static char *helptext; | |
edefbb7c AC |
2896 | char regdesc[1024], *rdptr = regdesc; |
2897 | size_t rest = sizeof (regdesc); | |
085dd6e6 | 2898 | |
42cf1509 | 2899 | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
97e03143 | 2900 | |
70f80edf JT |
2901 | /* Register an ELF OS ABI sniffer for ARM binaries. */ |
2902 | gdbarch_register_osabi_sniffer (bfd_arch_arm, | |
2903 | bfd_target_elf_flavour, | |
2904 | arm_elf_osabi_sniffer); | |
2905 | ||
94c30b78 | 2906 | /* Get the number of possible sets of register names defined in opcodes. */ |
afd7eef0 RE |
2907 | num_disassembly_options = get_arm_regname_num_options (); |
2908 | ||
2909 | /* Add root prefix command for all "set arm"/"show arm" commands. */ | |
2910 | add_prefix_cmd ("arm", no_class, set_arm_command, | |
edefbb7c | 2911 | _("Various ARM-specific commands."), |
afd7eef0 RE |
2912 | &setarmcmdlist, "set arm ", 0, &setlist); |
2913 | ||
2914 | add_prefix_cmd ("arm", no_class, show_arm_command, | |
edefbb7c | 2915 | _("Various ARM-specific commands."), |
afd7eef0 | 2916 | &showarmcmdlist, "show arm ", 0, &showlist); |
bc90b915 | 2917 | |
94c30b78 | 2918 | /* Sync the opcode insn printer with our register viewer. */ |
bc90b915 | 2919 | parse_arm_disassembler_option ("reg-names-std"); |
c5aa993b | 2920 | |
eefe576e AC |
2921 | /* Initialize the array that will be passed to |
2922 | add_setshow_enum_cmd(). */ | |
afd7eef0 RE |
2923 | valid_disassembly_styles |
2924 | = xmalloc ((num_disassembly_options + 1) * sizeof (char *)); | |
2925 | for (i = 0; i < num_disassembly_options; i++) | |
bc90b915 FN |
2926 | { |
2927 | numregs = get_arm_regnames (i, &setname, &setdesc, ®names); | |
afd7eef0 | 2928 | valid_disassembly_styles[i] = setname; |
edefbb7c AC |
2929 | length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc); |
2930 | rdptr += length; | |
2931 | rest -= length; | |
94c30b78 | 2932 | /* Copy the default names (if found) and synchronize disassembler. */ |
bc90b915 FN |
2933 | if (!strcmp (setname, "std")) |
2934 | { | |
afd7eef0 | 2935 | disassembly_style = setname; |
bc90b915 FN |
2936 | current_option = i; |
2937 | for (j = 0; j < numregs; j++) | |
2938 | arm_register_names[j] = (char *) regnames[j]; | |
2939 | set_arm_regname_option (i); | |
2940 | } | |
2941 | } | |
94c30b78 | 2942 | /* Mark the end of valid options. */ |
afd7eef0 | 2943 | valid_disassembly_styles[num_disassembly_options] = NULL; |
c906108c | 2944 | |
edefbb7c AC |
2945 | /* Create the help text. */ |
2946 | stb = mem_fileopen (); | |
2947 | fprintf_unfiltered (stb, "%s%s%s", | |
2948 | _("The valid values are:\n"), | |
2949 | regdesc, | |
2950 | _("The default is \"std\".")); | |
bc90b915 FN |
2951 | helptext = ui_file_xstrdup (stb, &length); |
2952 | ui_file_delete (stb); | |
ed9a39eb | 2953 | |
edefbb7c AC |
2954 | add_setshow_enum_cmd("disassembler", no_class, |
2955 | valid_disassembly_styles, &disassembly_style, | |
2956 | _("Set the disassembly style."), | |
2957 | _("Show the disassembly style."), | |
2958 | helptext, | |
2c5b56ce | 2959 | set_disassembly_style_sfunc, |
7915a72c | 2960 | NULL, /* FIXME: i18n: The disassembly style is \"%s\". */ |
7376b4c2 | 2961 | &setarmcmdlist, &showarmcmdlist); |
edefbb7c AC |
2962 | |
2963 | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | |
2964 | _("Set usage of ARM 32-bit mode."), | |
2965 | _("Show usage of ARM 32-bit mode."), | |
2966 | _("When off, a 26-bit PC will be used."), | |
2c5b56ce | 2967 | NULL, |
7915a72c | 2968 | NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */ |
26304000 | 2969 | &setarmcmdlist, &showarmcmdlist); |
c906108c | 2970 | |
fd50bc42 | 2971 | /* Add a command to allow the user to force the FPU model. */ |
edefbb7c AC |
2972 | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
2973 | _("Set the floating point type."), | |
2974 | _("Show the floating point type."), | |
2975 | _("auto - Determine the FP typefrom the OS-ABI.\n\ | |
2976 | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | |
2977 | fpa - FPA co-processor (GCC compiled).\n\ | |
2978 | softvfp - Software FP with pure-endian doubles.\n\ | |
2979 | vfp - VFP co-processor."), | |
edefbb7c | 2980 | set_fp_model_sfunc, show_fp_model, |
7376b4c2 | 2981 | &setarmcmdlist, &showarmcmdlist); |
fd50bc42 | 2982 | |
28e97307 DJ |
2983 | /* Add a command to allow the user to force the ABI. */ |
2984 | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | |
2985 | _("Set the ABI."), | |
2986 | _("Show the ABI."), | |
2987 | NULL, arm_set_abi, arm_show_abi, | |
2988 | &setarmcmdlist, &showarmcmdlist); | |
2989 | ||
6529d2dd | 2990 | /* Debugging flag. */ |
edefbb7c AC |
2991 | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
2992 | _("Set ARM debugging."), | |
2993 | _("Show ARM debugging."), | |
2994 | _("When on, arm-specific debugging is enabled."), | |
2c5b56ce | 2995 | NULL, |
7915a72c | 2996 | NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
26304000 | 2997 | &setdebuglist, &showdebuglist); |
c906108c | 2998 | } |