Commit | Line | Data |
---|---|---|
54af8e6e | 1 | /* Target-dependent code for the Acorn Risc Machine, for GDB, the GNU Debugger. |
e01b4200 | 2 | Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998 |
72c9954b | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
54af8e6e | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
54af8e6e SC |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
54af8e6e | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
54af8e6e | 18 | along with this program; if not, write to the Free Software |
72c9954b | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 RP |
20 | |
21 | #include "defs.h" | |
bd5635a1 RP |
22 | #include "frame.h" |
23 | #include "inferior.h" | |
72c9954b | 24 | #include "gdbcmd.h" |
e01b4200 ZR |
25 | #include "gdbcore.h" |
26 | #include "symfile.h" | |
27 | #include "gdb_string.h" | |
28 | #include "coff/internal.h" /* Internal format of COFF symbols in BFD */ | |
29 | ||
30 | /* Thumb function addresses are odd (bit 0 is set). Here are some | |
31 | macros to test, set, or clear bit 0 of addresses. */ | |
32 | #define IS_THUMB_ADDR(addr) ((addr) & 1) | |
33 | #define MAKE_THUMB_ADDR(addr) ((addr) | 1) | |
34 | #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) | |
35 | ||
36 | /* Macros to round N up or down to the next A boundary; A must be | |
37 | a power of two. */ | |
38 | #define ROUND_DOWN(n,a) ((n) & ~((a) - 1)) | |
39 | #define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1)) | |
40 | ||
72c9954b | 41 | /* Set to true if the 32-bit mode is in use. */ |
bd5635a1 | 42 | |
72c9954b | 43 | int arm_apcs_32 = 1; |
bd5635a1 | 44 | |
e01b4200 ZR |
45 | /* Flag set by arm_fix_call_dummy that tells whether the target function |
46 | is a Thumb function. This flag is checked by arm_push_arguments. | |
47 | FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to | |
48 | pass the function address as an additional parameter. */ | |
49 | ||
50 | static int target_is_thumb; | |
51 | ||
52 | /* Flag set by arm_fix_call_dummy that tells whether the calling function | |
53 | is a Thumb function. This flag is checked by arm_pc_is_thumb | |
54 | and arm_call_dummy_breakpoint_offset. */ | |
55 | ||
56 | static int caller_is_thumb; | |
57 | ||
58 | /* Tell if the program counter value in MEMADDR is in a Thumb function. */ | |
59 | ||
60 | int | |
61 | arm_pc_is_thumb (memaddr) | |
62 | bfd_vma memaddr; | |
63 | { | |
64 | struct minimal_symbol * sym; | |
65 | CORE_ADDR sp; | |
66 | ||
67 | /* If bit 0 of the address is set, assume this is a Thumb address. */ | |
68 | if (IS_THUMB_ADDR (memaddr)) | |
69 | return 1; | |
70 | ||
71 | /* Thumb function have a "special" bit set in minimal symbols */ | |
72 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
73 | if (sym) | |
74 | { | |
75 | return (MSYMBOL_IS_SPECIAL(sym)); | |
76 | } | |
77 | else | |
78 | return 0; | |
79 | } | |
80 | ||
81 | /* Tell if the program counter value in MEMADDR is in a call dummy that | |
82 | is being called from a Thumb function. */ | |
83 | ||
84 | int | |
85 | arm_pc_is_thumb_dummy (memaddr) | |
86 | bfd_vma memaddr; | |
87 | { | |
88 | CORE_ADDR sp = read_sp(); | |
89 | ||
90 | if (PC_IN_CALL_DUMMY (memaddr, sp, sp+64)) | |
91 | return caller_is_thumb; | |
92 | else | |
93 | return 0; | |
94 | } | |
95 | ||
72c9954b SS |
96 | CORE_ADDR |
97 | arm_addr_bits_remove (val) | |
e01b4200 | 98 | CORE_ADDR val; |
bd5635a1 | 99 | { |
e01b4200 ZR |
100 | if (arm_pc_is_thumb (val)) |
101 | return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); | |
102 | else | |
103 | return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); | |
bd5635a1 | 104 | } |
bd5635a1 | 105 | |
72c9954b SS |
106 | CORE_ADDR |
107 | arm_saved_pc_after_call (frame) | |
108 | struct frame_info *frame; | |
bd5635a1 | 109 | { |
72c9954b | 110 | return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); |
bd5635a1 | 111 | } |
72c9954b | 112 | |
e01b4200 ZR |
113 | /* A typical Thumb prologue looks like this: |
114 | push {r7, lr} | |
115 | add sp, sp, #-28 | |
116 | add r7, sp, #12 | |
117 | Sometimes the latter instruction may be replaced by: | |
118 | mov r7, sp | |
119 | */ | |
120 | ||
121 | static CORE_ADDR | |
122 | thumb_skip_prologue (pc) | |
123 | CORE_ADDR pc; | |
124 | { | |
125 | CORE_ADDR current_pc; | |
126 | ||
127 | for (current_pc = pc; current_pc < pc + 20; current_pc += 2) | |
128 | { | |
129 | unsigned short insn = read_memory_unsigned_integer (current_pc, 2); | |
130 | ||
131 | if ( (insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */ | |
132 | && (insn & 0xff00) != 0xb000 /* add sp, #simm */ | |
133 | && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */ | |
134 | && insn != 0x466f /* mov r7, sp */ | |
135 | && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */ | |
136 | break; | |
137 | } | |
138 | ||
139 | return current_pc; | |
140 | } | |
141 | ||
bd5635a1 RP |
142 | /* APCS (ARM procedure call standard) defines the following prologue: |
143 | ||
144 | mov ip, sp | |
145 | [stmfd sp!, {a1,a2,a3,a4}] | |
146 | stmfd sp!, {...,fp,ip,lr,pc} | |
147 | [stfe f7, [sp, #-12]!] | |
148 | [stfe f6, [sp, #-12]!] | |
149 | [stfe f5, [sp, #-12]!] | |
150 | [stfe f4, [sp, #-12]!] | |
151 | sub fp, ip, #nn // nn == 20 or 4 depending on second ins | |
152 | */ | |
153 | ||
154 | CORE_ADDR | |
72c9954b | 155 | arm_skip_prologue (pc) |
e01b4200 | 156 | CORE_ADDR pc; |
bd5635a1 | 157 | { |
72c9954b | 158 | unsigned long inst; |
e01b4200 ZR |
159 | CORE_ADDR skip_pc; |
160 | CORE_ADDR func_addr, func_end; | |
161 | struct symtab_and_line sal; | |
162 | ||
163 | /* See what the symbol table says. */ | |
164 | if (find_pc_partial_function (pc, NULL, & func_addr, & func_end)) | |
165 | { | |
166 | sal = find_pc_line (func_addr, 0); | |
167 | if (sal.line != 0 && sal.end < func_end) | |
168 | return sal.end; | |
169 | } | |
170 | ||
171 | /* Check if this is Thumb code. */ | |
172 | if (arm_pc_is_thumb (pc)) | |
173 | return thumb_skip_prologue (pc); | |
72c9954b | 174 | |
e01b4200 ZR |
175 | /* Can't find the prologue end in the symbol table, try it the hard way |
176 | by disassembling the instructions. */ | |
177 | skip_pc = pc; | |
72c9954b SS |
178 | inst = read_memory_integer (skip_pc, 4); |
179 | if (inst != 0xe1a0c00d) /* mov ip, sp */ | |
180 | return pc; | |
181 | ||
182 | skip_pc += 4; | |
183 | inst = read_memory_integer (skip_pc, 4); | |
184 | if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ | |
185 | { | |
186 | skip_pc += 4; | |
187 | inst = read_memory_integer (skip_pc, 4); | |
188 | } | |
189 | ||
190 | if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ | |
191 | return pc; | |
192 | ||
193 | skip_pc += 4; | |
194 | inst = read_memory_integer (skip_pc, 4); | |
195 | ||
196 | /* Any insns after this point may float into the code, if it makes | |
197 | for better instruction scheduling, so we skip them only if | |
198 | we find them, but still consdier the function to be frame-ful */ | |
199 | ||
200 | /* We may have either one sfmfd instruction here, or several stfe insns, | |
201 | depending on the version of floating point code we support. */ | |
202 | if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ | |
203 | { | |
204 | skip_pc += 4; | |
205 | inst = read_memory_integer (skip_pc, 4); | |
206 | } | |
207 | else | |
208 | { | |
209 | while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ | |
210 | { | |
211 | skip_pc += 4; | |
212 | inst = read_memory_integer (skip_pc, 4); | |
213 | } | |
214 | } | |
215 | ||
216 | if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ | |
bd5635a1 | 217 | skip_pc += 4; |
72c9954b SS |
218 | |
219 | return skip_pc; | |
bd5635a1 RP |
220 | } |
221 | ||
e01b4200 ZR |
222 | |
223 | ||
224 | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) | |
225 | This function decodes a Thumb function prologue to determine: | |
226 | 1) the size of the stack frame | |
227 | 2) which registers are saved on it | |
228 | 3) the offsets of saved regs | |
229 | 4) the offset from the stack pointer to the frame pointer | |
230 | This information is stored in the "extra" fields of the frame_info. | |
231 | ||
232 | A typical Thumb function prologue might look like this: | |
233 | push {r7, lr} | |
234 | sub sp, #28, | |
235 | add r7, sp, #12 | |
236 | Which would create this stack frame (offsets relative to FP) | |
237 | old SP -> 24 stack parameters | |
238 | 20 LR | |
239 | 16 R7 | |
240 | R7 -> 0 local variables (16 bytes) | |
241 | SP -> -12 additional stack space (12 bytes) | |
242 | The frame size would thus be 36 bytes, and the frame offset would be | |
243 | 12 bytes. The frame register is R7. */ | |
244 | ||
245 | static void | |
246 | thumb_scan_prologue (fi) | |
247 | struct frame_info * fi; | |
54af8e6e | 248 | { |
e01b4200 ZR |
249 | CORE_ADDR prologue_start; |
250 | CORE_ADDR prologue_end; | |
251 | CORE_ADDR current_pc; | |
252 | int saved_reg[16]; /* which register has been copied to register n? */ | |
253 | int i; | |
54af8e6e | 254 | |
e01b4200 | 255 | if (find_pc_partial_function (fi->pc, NULL, & prologue_start, & prologue_end)) |
54af8e6e | 256 | { |
e01b4200 ZR |
257 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); |
258 | ||
259 | if (sal.line == 0) /* no line info, use current PC */ | |
260 | prologue_end = fi->pc; | |
261 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
262 | prologue_end = sal.end; /* (probably means no prologue) */ | |
54af8e6e | 263 | } |
e01b4200 ZR |
264 | else |
265 | prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ | |
266 | /* 16 pushes, an add, and "mv fp,sp" */ | |
267 | ||
268 | prologue_end = min (prologue_end, fi->pc); | |
269 | ||
270 | /* Initialize the saved register map. When register H is copied to | |
271 | register L, we will put H in saved_reg[L]. */ | |
272 | for (i = 0; i < 16; i++) | |
273 | saved_reg[i] = i; | |
274 | ||
275 | /* Search the prologue looking for instructions that set up the | |
276 | frame pointer, adjust the stack pointer, and save registers. */ | |
277 | ||
278 | fi->framesize = 0; | |
279 | for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2) | |
54af8e6e | 280 | { |
e01b4200 ZR |
281 | unsigned short insn; |
282 | int regno; | |
283 | int offset; | |
284 | ||
285 | insn = read_memory_unsigned_integer (current_pc, 2); | |
286 | ||
287 | if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ | |
288 | { | |
289 | /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says | |
290 | whether to save LR (R14). */ | |
291 | int mask = (insn & 0xff) | ((insn & 0x100) << 6); | |
292 | ||
293 | /* Calculate offsets of saved R0-R7 and LR. */ | |
294 | for (regno = LR_REGNUM; regno >= 0; regno--) | |
295 | if (mask & (1 << regno)) | |
296 | { | |
297 | fi->framesize += 4; | |
298 | fi->fsr.regs[saved_reg[regno]] = -(fi->framesize); | |
299 | saved_reg[regno] = regno; /* reset saved register map */ | |
300 | } | |
301 | } | |
302 | else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */ | |
303 | { | |
304 | offset = (insn & 0x7f) << 2; /* get scaled offset */ | |
305 | if (insn & 0x80) /* is it signed? */ | |
306 | offset = -offset; | |
307 | fi->framesize -= offset; | |
308 | } | |
309 | else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ | |
310 | { | |
311 | fi->framereg = THUMB_FP_REGNUM; | |
312 | fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */ | |
313 | } | |
314 | else if (insn == 0x466f) /* mov r7, sp */ | |
315 | { | |
316 | fi->framereg = THUMB_FP_REGNUM; | |
317 | fi->frameoffset = 0; | |
318 | saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; | |
319 | } | |
320 | else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ | |
321 | { | |
322 | int lo_reg = insn & 7; /* dest. register (r0-r7) */ | |
323 | int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ | |
324 | saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ | |
325 | } | |
326 | else | |
327 | break; /* anything else isn't prologue */ | |
54af8e6e | 328 | } |
e01b4200 ZR |
329 | } |
330 | ||
331 | /* Function: check_prologue_cache | |
332 | Check if prologue for this frame's PC has already been scanned. | |
333 | If it has, copy the relevant information about that prologue and | |
334 | return non-zero. Otherwise do not copy anything and return zero. | |
335 | ||
336 | The information saved in the cache includes: | |
337 | * the frame register number; | |
338 | * the size of the stack frame; | |
339 | * the offsets of saved regs (relative to the old SP); and | |
340 | * the offset from the stack pointer to the frame pointer | |
341 | ||
342 | The cache contains only one entry, since this is adequate | |
343 | for the typical sequence of prologue scan requests we get. | |
344 | When performing a backtrace, GDB will usually ask to scan | |
345 | the same function twice in a row (once to get the frame chain, | |
346 | and once to fill in the extra frame information). | |
347 | */ | |
348 | ||
349 | static struct frame_info prologue_cache; | |
350 | ||
351 | static int | |
352 | check_prologue_cache (fi) | |
353 | struct frame_info * fi; | |
354 | { | |
355 | int i; | |
356 | ||
357 | if (fi->pc == prologue_cache.pc) | |
54af8e6e | 358 | { |
e01b4200 ZR |
359 | fi->framereg = prologue_cache.framereg; |
360 | fi->framesize = prologue_cache.framesize; | |
361 | fi->frameoffset = prologue_cache.frameoffset; | |
362 | for (i = 0; i <= NUM_REGS; i++) | |
363 | fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; | |
364 | return 1; | |
54af8e6e | 365 | } |
e01b4200 ZR |
366 | else |
367 | return 0; | |
368 | } | |
369 | ||
370 | ||
371 | /* Function: save_prologue_cache | |
372 | Copy the prologue information from fi to the prologue cache. | |
373 | */ | |
374 | ||
375 | static void | |
376 | save_prologue_cache (fi) | |
377 | struct frame_info * fi; | |
378 | { | |
379 | int i; | |
380 | ||
381 | prologue_cache.pc = fi->pc; | |
382 | prologue_cache.framereg = fi->framereg; | |
383 | prologue_cache.framesize = fi->framesize; | |
384 | prologue_cache.frameoffset = fi->frameoffset; | |
385 | ||
386 | for (i = 0; i <= NUM_REGS; i++) | |
387 | prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; | |
388 | } | |
389 | ||
390 | ||
391 | /* Function: arm_scan_prologue | |
392 | This function decodes an ARM function prologue to determine: | |
393 | 1) the size of the stack frame | |
394 | 2) which registers are saved on it | |
395 | 3) the offsets of saved regs | |
396 | 4) the offset from the stack pointer to the frame pointer | |
397 | This information is stored in the "extra" fields of the frame_info. | |
398 | ||
399 | A typical Arm function prologue might look like this: | |
400 | mov ip, sp | |
401 | stmfd sp!, {fp, ip, lr, pc} | |
402 | sub fp, ip, #4 | |
403 | sub sp, sp, #16 | |
404 | Which would create this stack frame (offsets relative to FP): | |
405 | IP -> 4 (caller's stack) | |
406 | FP -> 0 PC (points to address of stmfd instruction + 12 in callee) | |
407 | -4 LR (return address in caller) | |
408 | -8 IP (copy of caller's SP) | |
409 | -12 FP (caller's FP) | |
410 | SP -> -28 Local variables | |
411 | The frame size would thus be 32 bytes, and the frame offset would be | |
412 | 28 bytes. */ | |
413 | ||
414 | static void | |
415 | arm_scan_prologue (fi) | |
416 | struct frame_info * fi; | |
417 | { | |
418 | int regno, sp_offset, fp_offset; | |
419 | CORE_ADDR prologue_start, prologue_end, current_pc; | |
420 | ||
421 | /* Check if this function is already in the cache of frame information. */ | |
422 | if (check_prologue_cache (fi)) | |
423 | return; | |
424 | ||
425 | /* Assume there is no frame until proven otherwise. */ | |
426 | fi->framereg = SP_REGNUM; | |
427 | fi->framesize = 0; | |
428 | fi->frameoffset = 0; | |
429 | ||
430 | /* Check for Thumb prologue. */ | |
431 | if (arm_pc_is_thumb (fi->pc)) | |
432 | { | |
433 | thumb_scan_prologue (fi); | |
434 | save_prologue_cache (fi); | |
435 | return; | |
436 | } | |
437 | ||
438 | /* Find the function prologue. If we can't find the function in | |
439 | the symbol table, peek in the stack frame to find the PC. */ | |
440 | if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) | |
441 | { | |
442 | /* Assume the prologue is everything between the first instruction | |
443 | in the function and the first source line. */ | |
444 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
445 | ||
446 | if (sal.line == 0) /* no line info, use current PC */ | |
447 | prologue_end = fi->pc; | |
448 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
449 | prologue_end = sal.end; /* (probably means no prologue) */ | |
450 | } | |
451 | else | |
452 | { | |
453 | /* Get address of the stmfd in the prologue of the callee; the saved | |
454 | PC is the address of the stmfd + 12. */ | |
455 | prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12; | |
456 | prologue_end = prologue_start + 40; /* FIXME: should be big enough */ | |
457 | } | |
458 | ||
459 | /* Now search the prologue looking for instructions that set up the | |
460 | frame pointer, adjust the stack pointer, and save registers. */ | |
461 | ||
462 | sp_offset = fp_offset = 0; | |
463 | for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4) | |
464 | { | |
465 | unsigned int insn = read_memory_unsigned_integer (current_pc, 4); | |
466 | ||
467 | if ((insn & 0xffff0000) == 0xe92d0000) /* stmfd sp!, {..., r7, lr} */ | |
468 | { | |
469 | int mask = insn & 0xffff; | |
470 | ||
471 | /* Calculate offsets of saved registers. */ | |
472 | for (regno = PC_REGNUM; regno >= 0; regno--) | |
473 | if (mask & (1 << regno)) | |
474 | { | |
475 | sp_offset -= 4; | |
476 | fi->fsr.regs[regno] = sp_offset; | |
477 | } | |
478 | } | |
479 | else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ | |
480 | { | |
481 | unsigned imm = insn & 0xff; /* immediate value */ | |
482 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
483 | imm = (imm >> rot) | (imm << (32-rot)); | |
484 | fp_offset = -imm; | |
485 | fi->framereg = FP_REGNUM; | |
486 | } | |
487 | else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ | |
488 | { | |
489 | unsigned imm = insn & 0xff; /* immediate value */ | |
490 | unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ | |
491 | imm = (imm >> rot) | (imm << (32-rot)); | |
492 | sp_offset -= imm; | |
493 | } | |
494 | else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ | |
495 | { | |
496 | sp_offset -= 12; | |
497 | regno = F0_REGNUM + ((insn >> 12) & 0x07); | |
498 | fi->fsr.regs[regno] = sp_offset; | |
499 | } | |
500 | else if (insn == 0xe1a0c00d) /* mov ip, sp */ | |
501 | continue; | |
502 | else | |
503 | break; /* not a recognized prologue instruction */ | |
504 | } | |
505 | ||
506 | /* The frame size is just the negative of the offset (from the original SP) | |
507 | of the last thing thing we pushed on the stack. The frame offset is | |
508 | [new FP] - [new SP]. */ | |
509 | fi->framesize = -sp_offset; | |
510 | fi->frameoffset = fp_offset - sp_offset; | |
511 | ||
512 | save_prologue_cache (fi); | |
513 | } | |
514 | ||
515 | ||
516 | /* Function: find_callers_reg | |
517 | Find REGNUM on the stack. Otherwise, it's in an active register. One thing | |
518 | we might want to do here is to check REGNUM against the clobber mask, and | |
519 | somehow flag it as invalid if it isn't saved on the stack somewhere. This | |
520 | would provide a graceful failure mode when trying to get the value of | |
521 | caller-saves registers for an inner frame. */ | |
522 | ||
523 | static CORE_ADDR | |
524 | arm_find_callers_reg (fi, regnum) | |
525 | struct frame_info * fi; | |
526 | int regnum; | |
527 | { | |
528 | for (; fi; fi = fi->next) | |
529 | ||
530 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
531 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
532 | return generic_read_register_dummy (fi->pc, fi->frame, regnum); | |
533 | else | |
534 | #endif | |
535 | if (fi->fsr.regs[regnum] != 0) | |
536 | return read_memory_integer (fi->fsr.regs[regnum], | |
537 | REGISTER_RAW_SIZE(regnum)); | |
538 | return read_register (regnum); | |
539 | } | |
540 | ||
541 | ||
542 | /* Function: frame_chain | |
543 | Given a GDB frame, determine the address of the calling function's frame. | |
544 | This will be used to create a new GDB frame struct, and then | |
545 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
546 | For ARM, we save the frame size when we initialize the frame_info. | |
547 | ||
548 | The original definition of this function was a macro in tm-arm.h: | |
549 | { In the case of the ARM, the frame's nominal address is the FP value, | |
550 | and 12 bytes before comes the saved previous FP value as a 4-byte word. } | |
551 | ||
552 | #define FRAME_CHAIN(thisframe) \ | |
553 | ((thisframe)->pc >= LOWEST_PC ? \ | |
554 | read_memory_integer ((thisframe)->frame - 12, 4) :\ | |
555 | 0) | |
556 | */ | |
557 | ||
558 | CORE_ADDR | |
559 | arm_frame_chain (fi) | |
560 | struct frame_info * fi; | |
561 | { | |
562 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
563 | CORE_ADDR fn_start, callers_pc, fp; | |
564 | ||
565 | /* is this a dummy frame? */ | |
566 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
567 | return fi->frame; /* dummy frame same as caller's frame */ | |
568 | ||
569 | /* is caller-of-this a dummy frame? */ | |
570 | callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */ | |
571 | fp = arm_find_callers_reg (fi, FP_REGNUM); | |
572 | if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) | |
573 | return fp; /* dummy frame's frame may bear no relation to ours */ | |
574 | ||
575 | if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) | |
576 | if (fn_start == entry_point_address ()) | |
577 | return 0; /* in _start fn, don't chain further */ | |
578 | #endif | |
579 | CORE_ADDR caller_pc, fn_start; | |
580 | struct frame_info caller_fi; | |
581 | int framereg = fi->framereg; | |
582 | ||
583 | if (fi->pc < LOWEST_PC) | |
584 | return 0; | |
585 | ||
586 | /* If the caller is the startup code, we're at the end of the chain. */ | |
587 | caller_pc = FRAME_SAVED_PC (fi); | |
588 | if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) | |
589 | if (fn_start == entry_point_address ()) | |
590 | return 0; | |
591 | ||
592 | /* If the caller is Thumb and the caller is ARM, or vice versa, | |
593 | the frame register of the caller is different from ours. | |
594 | So we must scan the prologue of the caller to determine its | |
595 | frame register number. */ | |
596 | if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) | |
54af8e6e | 597 | { |
e01b4200 ZR |
598 | memset (& caller_fi, 0, sizeof (caller_fi)); |
599 | caller_fi.pc = caller_pc; | |
600 | arm_scan_prologue (& caller_fi); | |
601 | framereg = caller_fi.framereg; | |
54af8e6e | 602 | } |
e01b4200 ZR |
603 | |
604 | /* If the caller used a frame register, return its value. | |
605 | Otherwise, return the caller's stack pointer. */ | |
606 | if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) | |
607 | return arm_find_callers_reg (fi, framereg); | |
608 | else | |
609 | return fi->frame + fi->framesize; | |
54af8e6e SC |
610 | } |
611 | ||
e01b4200 ZR |
612 | /* Function: init_extra_frame_info |
613 | This function actually figures out the frame address for a given pc and | |
614 | sp. This is tricky because we sometimes don't use an explicit | |
615 | frame pointer, and the previous stack pointer isn't necessarily recorded | |
616 | on the stack. The only reliable way to get this info is to | |
617 | examine the prologue. */ | |
618 | ||
72c9954b | 619 | void |
e01b4200 ZR |
620 | arm_init_extra_frame_info (fi) |
621 | struct frame_info * fi; | |
72c9954b | 622 | { |
e01b4200 ZR |
623 | int reg; |
624 | ||
625 | if (fi->next) | |
626 | fi->pc = FRAME_SAVED_PC (fi->next); | |
627 | ||
628 | memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); | |
629 | ||
630 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
631 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
632 | { | |
633 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
634 | by assuming it's always FP. */ | |
635 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); | |
636 | fi->framesize = 0; | |
637 | fi->frameoffset = 0; | |
638 | return; | |
639 | } | |
640 | else | |
641 | #endif | |
642 | { | |
643 | arm_scan_prologue (fi); | |
644 | ||
645 | if (!fi->next) /* this is the innermost frame? */ | |
646 | fi->frame = read_register (fi->framereg); | |
647 | else /* not the innermost frame */ | |
648 | /* If we have an FP, the callee saved it. */ | |
649 | if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM) | |
650 | if (fi->next->fsr.regs[fi->framereg] != 0) | |
651 | fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], | |
652 | 4); | |
653 | ||
654 | /* Calculate actual addresses of saved registers using offsets determined | |
655 | by arm_scan_prologue. */ | |
656 | for (reg = 0; reg < NUM_REGS; reg++) | |
657 | if (fi->fsr.regs[reg] != 0) | |
658 | fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; | |
659 | } | |
660 | } | |
661 | ||
662 | ||
663 | /* Function: frame_saved_pc | |
664 | Find the caller of this frame. We do this by seeing if LR_REGNUM is saved | |
665 | in the stack anywhere, otherwise we get it from the registers. | |
72c9954b | 666 | |
e01b4200 ZR |
667 | The old definition of this function was a macro: |
668 | #define FRAME_SAVED_PC(FRAME) \ | |
669 | ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) | |
670 | */ | |
671 | ||
672 | CORE_ADDR | |
673 | arm_frame_saved_pc (fi) | |
674 | struct frame_info * fi; | |
675 | { | |
676 | #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ | |
677 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
678 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
679 | else | |
680 | #endif | |
681 | { | |
682 | CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); | |
683 | return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; | |
684 | } | |
685 | } | |
686 | ||
687 | ||
688 | /* Return the frame address. On ARM, it is R11; on Thumb it is R7. | |
689 | Examine the Program Status Register to decide which state we're in. */ | |
690 | ||
691 | CORE_ADDR | |
692 | arm_target_read_fp () | |
693 | { | |
694 | if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ | |
695 | return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ | |
696 | else | |
697 | return read_register (FP_REGNUM); /* R11 if ARM */ | |
698 | } | |
699 | ||
700 | ||
701 | /* Calculate the frame offsets of the saved registers (ARM version). */ | |
702 | void | |
703 | arm_frame_find_saved_regs (fi, regaddr) | |
704 | struct frame_info *fi; | |
705 | struct frame_saved_regs *regaddr; | |
706 | { | |
707 | memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); | |
708 | } | |
709 | ||
710 | ||
711 | void | |
712 | arm_push_dummy_frame () | |
713 | { | |
714 | CORE_ADDR old_sp = read_register (SP_REGNUM); | |
715 | CORE_ADDR sp = old_sp; | |
716 | CORE_ADDR fp, prologue_start; | |
717 | int regnum; | |
718 | ||
719 | /* Push the two dummy prologue instructions in reverse order, | |
720 | so that they'll be in the correct low-to-high order in memory. */ | |
721 | /* sub fp, ip, #4 */ | |
722 | sp = push_word (sp, 0xe24cb004); | |
723 | /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ | |
724 | prologue_start = sp = push_word (sp, 0xe92ddfff); | |
725 | ||
726 | /* push a pointer to the dummy prologue + 12, because when | |
727 | stm instruction stores the PC, it stores the address of the stm | |
728 | instruction itself plus 12. */ | |
729 | fp = sp = push_word (sp, prologue_start + 12); | |
730 | sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */ | |
731 | sp = push_word (sp, old_sp); | |
72c9954b | 732 | sp = push_word (sp, read_register (FP_REGNUM)); |
e01b4200 ZR |
733 | |
734 | for (regnum = 10; regnum >= 0; regnum --) | |
72c9954b | 735 | sp = push_word (sp, read_register (regnum)); |
e01b4200 ZR |
736 | |
737 | write_register (FP_REGNUM, fp); | |
738 | write_register (THUMB_FP_REGNUM, fp); | |
72c9954b SS |
739 | write_register (SP_REGNUM, sp); |
740 | } | |
741 | ||
e01b4200 ZR |
742 | /* Fix up the call dummy, based on whether the processor is currently |
743 | in Thumb or ARM mode, and whether the target function is Thumb | |
744 | or ARM. There are three different situations requiring three | |
745 | different dummies: | |
746 | ||
747 | * ARM calling ARM: uses the call dummy in tm-arm.h, which has already | |
748 | been copied into the dummy parameter to this function. | |
749 | * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the | |
750 | "mov pc,r4" instruction patched to be a "bx r4" instead. | |
751 | * Thumb calling anything: uses the Thumb dummy defined below, which | |
752 | works for calling both ARM and Thumb functions. | |
753 | ||
754 | All three call dummies expect to receive the target function address | |
755 | in R4, with the low bit set if it's a Thumb function. | |
756 | */ | |
757 | ||
72c9954b | 758 | void |
e01b4200 ZR |
759 | arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) |
760 | char * dummy; | |
761 | CORE_ADDR pc; | |
762 | CORE_ADDR fun; | |
763 | int nargs; | |
764 | value_ptr * args; | |
765 | struct type * type; | |
766 | int gcc_p; | |
72c9954b | 767 | { |
e01b4200 ZR |
768 | static short thumb_dummy[4] = |
769 | { | |
770 | 0xf000, 0xf801, /* bl label */ | |
771 | 0xdf18, /* swi 24 */ | |
772 | 0x4720, /* label: bx r4 */ | |
773 | }; | |
774 | static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ | |
775 | ||
776 | /* Set flag indicating whether the current PC is in a Thumb function. */ | |
777 | caller_is_thumb = arm_pc_is_thumb (read_pc()); | |
778 | ||
779 | /* If the target function is Thumb, set the low bit of the function address. | |
780 | And if the CPU is currently in ARM mode, patch the second instruction | |
781 | of call dummy to use a BX instruction to switch to Thumb mode. */ | |
782 | target_is_thumb = arm_pc_is_thumb (fun); | |
783 | if (target_is_thumb) | |
784 | { | |
785 | fun |= 1; | |
786 | if (!caller_is_thumb) | |
787 | store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); | |
788 | } | |
72c9954b | 789 | |
e01b4200 ZR |
790 | /* If the CPU is currently in Thumb mode, use the Thumb call dummy |
791 | instead of the ARM one that's already been copied. This will | |
792 | work for both Thumb and ARM target functions. */ | |
793 | if (caller_is_thumb) | |
72c9954b | 794 | { |
e01b4200 ZR |
795 | int i; |
796 | char *p = dummy; | |
797 | int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); | |
798 | ||
799 | for (i = 0; i < len; i++) | |
72c9954b | 800 | { |
e01b4200 ZR |
801 | store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); |
802 | p += sizeof (thumb_dummy[0]); | |
803 | } | |
804 | } | |
805 | ||
806 | /* Put the target address in r4; the call dummy will copy this to the PC. */ | |
807 | write_register (4, fun); | |
808 | } | |
809 | ||
810 | ||
811 | /* Return the offset in the call dummy of the instruction that needs | |
812 | to have a breakpoint placed on it. This is the offset of the 'swi 24' | |
813 | instruction, which is no longer actually used, but simply acts | |
814 | as a place-holder now. | |
815 | ||
816 | This implements the CALL_DUMMY_BREAK_OFFSET macro. | |
817 | */ | |
818 | ||
819 | int | |
820 | arm_call_dummy_breakpoint_offset () | |
821 | { | |
822 | if (caller_is_thumb) | |
823 | return 4; | |
824 | else | |
825 | return 8; | |
826 | } | |
827 | ||
828 | ||
829 | CORE_ADDR | |
830 | arm_push_arguments(nargs, args, sp, struct_return, struct_addr) | |
831 | int nargs; | |
832 | value_ptr * args; | |
833 | CORE_ADDR sp; | |
834 | int struct_return; | |
835 | CORE_ADDR struct_addr; | |
836 | { | |
837 | int argreg; | |
838 | int float_argreg; | |
839 | int argnum; | |
840 | int stack_offset; | |
841 | ||
842 | /* Initialize the integer and float register pointers. */ | |
843 | argreg = A1_REGNUM; | |
844 | float_argreg = F0_REGNUM; | |
845 | ||
846 | /* the struct_return pointer occupies the first parameter-passing reg */ | |
847 | if (struct_return) | |
848 | write_register (argreg++, struct_addr); | |
849 | ||
850 | /* The offset onto the stack at which we will start copying parameters | |
851 | (after the registers are used up) begins at 16 in the old ABI. | |
852 | This leaves room for the "home" area for register parameters. */ | |
853 | stack_offset = REGISTER_SIZE * 4; | |
854 | ||
855 | /* Now load as many as possible of the first arguments into | |
856 | registers, and push the rest onto the stack. Loop thru args | |
857 | from first to last. */ | |
858 | for (argnum = 0; argnum < nargs; argnum++) | |
859 | { | |
860 | char * val; | |
861 | value_ptr arg = args[argnum]; | |
862 | struct type * arg_type = check_typedef (VALUE_TYPE (arg)); | |
863 | struct type * target_type = TYPE_TARGET_TYPE (arg_type); | |
864 | int len = TYPE_LENGTH (arg_type); | |
865 | enum type_code typecode = TYPE_CODE (arg_type); | |
866 | CORE_ADDR regval; | |
867 | ||
868 | val = (char *) VALUE_CONTENTS (arg); | |
869 | ||
870 | /* If the argument is a pointer to a function, and it's a Thumb | |
871 | function, set the low bit of the pointer. */ | |
872 | if (typecode == TYPE_CODE_PTR | |
873 | && target_type != NULL | |
874 | && TYPE_CODE (target_type) == TYPE_CODE_FUNC) | |
875 | { | |
876 | regval = extract_address (val, len); | |
877 | if (arm_pc_is_thumb (regval)) | |
878 | store_address (val, len, MAKE_THUMB_ADDR (regval)); | |
879 | } | |
880 | ||
881 | #define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */ | |
882 | #if MAPCS_FLOAT | |
883 | /* Up to four floating point arguments can be passed in floating | |
884 | point registers on ARM (not on Thumb). */ | |
885 | if (typecode == TYPE_CODE_FLT | |
886 | && float_argreg <= ARM_LAST_FP_ARG_REGNUM | |
887 | && !target_is_thumb) | |
888 | { | |
889 | /* This is a floating point value that fits entirely | |
890 | in a single register. */ | |
891 | regval = extract_address (val, len); | |
892 | write_register (float_argreg++, regval); | |
893 | } | |
894 | else | |
895 | #endif | |
896 | { | |
897 | /* Copy the argument to general registers or the stack in | |
898 | register-sized pieces. Large arguments are split between | |
899 | registers and stack. */ | |
900 | while (len > 0) | |
901 | { | |
902 | int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; | |
903 | ||
904 | if (argreg <= ARM_LAST_ARG_REGNUM) | |
905 | { | |
906 | regval = extract_address (val, partial_len); | |
907 | ||
908 | /* It's a simple argument being passed in a general | |
909 | register. */ | |
910 | write_register (argreg, regval); | |
911 | argreg++; | |
912 | } | |
913 | else | |
914 | { | |
915 | /* Write this portion of the argument to the stack. */ | |
916 | partial_len = len; | |
917 | sp -= partial_len; | |
918 | write_memory (sp, val, partial_len); | |
919 | } | |
920 | ||
921 | len -= partial_len; | |
922 | val += partial_len; | |
923 | } | |
72c9954b SS |
924 | } |
925 | } | |
e01b4200 ZR |
926 | |
927 | /* Return adjusted stack pointer. */ | |
928 | return sp; | |
929 | } | |
930 | ||
931 | void | |
932 | arm_pop_frame () | |
933 | { | |
934 | struct frame_info *frame = get_current_frame(); | |
935 | int regnum; | |
936 | ||
937 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
938 | if (frame->fsr.regs[regnum] != 0) | |
939 | write_register (regnum, | |
940 | read_memory_integer (frame->fsr.regs[regnum], 4)); | |
941 | ||
942 | write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); | |
943 | write_register (SP_REGNUM, read_register (frame->framereg)); | |
944 | ||
72c9954b SS |
945 | flush_cached_frames (); |
946 | } | |
947 | ||
bd5635a1 | 948 | static void |
72c9954b | 949 | print_fpu_flags (flags) |
e01b4200 | 950 | int flags; |
bd5635a1 | 951 | { |
72c9954b SS |
952 | if (flags & (1 << 0)) fputs ("IVO ", stdout); |
953 | if (flags & (1 << 1)) fputs ("DVZ ", stdout); | |
954 | if (flags & (1 << 2)) fputs ("OFL ", stdout); | |
955 | if (flags & (1 << 3)) fputs ("UFL ", stdout); | |
956 | if (flags & (1 << 4)) fputs ("INX ", stdout); | |
957 | putchar ('\n'); | |
bd5635a1 RP |
958 | } |
959 | ||
960 | void | |
72c9954b | 961 | arm_float_info () |
bd5635a1 | 962 | { |
72c9954b | 963 | register unsigned long status = read_register (FPS_REGNUM); |
bd5635a1 RP |
964 | int type; |
965 | ||
966 | type = (status >> 24) & 127; | |
72c9954b SS |
967 | printf ("%s FPU type %d\n", |
968 | (status & (1<<31)) ? "Hardware" : "Software", | |
969 | type); | |
970 | fputs ("mask: ", stdout); | |
971 | print_fpu_flags (status >> 16); | |
972 | fputs ("flags: ", stdout); | |
973 | print_fpu_flags (status); | |
bd5635a1 | 974 | } |
54af8e6e | 975 | |
72c9954b SS |
976 | static void |
977 | arm_othernames () | |
54af8e6e | 978 | { |
72c9954b SS |
979 | static int toggle; |
980 | static char *original[] = ORIGINAL_REGISTER_NAMES; | |
981 | static char *extra_crispy[] = ADDITIONAL_REGISTER_NAMES; | |
54af8e6e | 982 | |
72c9954b SS |
983 | memcpy (reg_names, toggle ? extra_crispy : original, sizeof(original)); |
984 | toggle = !toggle; | |
985 | } | |
54af8e6e SC |
986 | |
987 | /* FIXME: Fill in with the 'right thing', see asm | |
988 | template in arm-convert.s */ | |
989 | ||
990 | void | |
991 | convert_from_extended (ptr, dbl) | |
e01b4200 ZR |
992 | void * ptr; |
993 | double * dbl; | |
54af8e6e SC |
994 | { |
995 | *dbl = *(double*)ptr; | |
996 | } | |
997 | ||
54af8e6e SC |
998 | void |
999 | convert_to_extended (dbl, ptr) | |
e01b4200 ZR |
1000 | void * ptr; |
1001 | double * dbl; | |
54af8e6e SC |
1002 | { |
1003 | *(double*)ptr = *dbl; | |
1004 | } | |
1005 | ||
e01b4200 ZR |
1006 | static int |
1007 | condition_true (cond, status_reg) | |
1008 | unsigned long cond; | |
1009 | unsigned long status_reg; | |
72c9954b | 1010 | { |
72c9954b | 1011 | if (cond == INST_AL || cond == INST_NV) |
e01b4200 | 1012 | return 1; |
72c9954b SS |
1013 | |
1014 | switch (cond) | |
1015 | { | |
1016 | case INST_EQ: | |
72c9954b | 1017 | return ((status_reg & FLAG_Z) != 0); |
e01b4200 ZR |
1018 | case INST_NE: |
1019 | return ((status_reg & FLAG_Z) == 0); | |
72c9954b | 1020 | case INST_CS: |
72c9954b | 1021 | return ((status_reg & FLAG_C) != 0); |
e01b4200 ZR |
1022 | case INST_CC: |
1023 | return ((status_reg & FLAG_C) == 0); | |
72c9954b | 1024 | case INST_MI: |
72c9954b | 1025 | return ((status_reg & FLAG_N) != 0); |
e01b4200 ZR |
1026 | case INST_PL: |
1027 | return ((status_reg & FLAG_N) == 0); | |
72c9954b | 1028 | case INST_VS: |
72c9954b | 1029 | return ((status_reg & FLAG_V) != 0); |
e01b4200 ZR |
1030 | case INST_VC: |
1031 | return ((status_reg & FLAG_V) == 0); | |
72c9954b | 1032 | case INST_HI: |
e01b4200 | 1033 | return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); |
72c9954b | 1034 | case INST_LS: |
e01b4200 | 1035 | return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); |
72c9954b | 1036 | case INST_GE: |
72c9954b | 1037 | return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); |
e01b4200 ZR |
1038 | case INST_LT: |
1039 | return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); | |
72c9954b | 1040 | case INST_GT: |
72c9954b SS |
1041 | return (((status_reg & FLAG_Z) == 0) && |
1042 | (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); | |
e01b4200 ZR |
1043 | case INST_LE: |
1044 | return (((status_reg & FLAG_Z) != 0) || | |
1045 | (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); | |
72c9954b | 1046 | } |
e01b4200 | 1047 | return 1; |
72c9954b SS |
1048 | } |
1049 | ||
1050 | #define submask(x) ((1L << ((x) + 1)) - 1) | |
e01b4200 ZR |
1051 | #define bit(obj,st) (((obj) >> (st)) & 1) |
1052 | #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) | |
72c9954b SS |
1053 | #define sbits(obj,st,fn) \ |
1054 | ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) | |
1055 | #define BranchDest(addr,instr) \ | |
1056 | ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) | |
1057 | #define ARM_PC_32 1 | |
1058 | ||
1059 | static unsigned long | |
e01b4200 | 1060 | shifted_reg_val (inst, carry, pc_val, status_reg) |
72c9954b SS |
1061 | unsigned long inst; |
1062 | int carry; | |
1063 | unsigned long pc_val; | |
e01b4200 | 1064 | unsigned long status_reg; |
72c9954b SS |
1065 | { |
1066 | unsigned long res, shift; | |
1067 | int rm = bits (inst, 0, 3); | |
1068 | unsigned long shifttype = bits (inst, 5, 6); | |
1069 | ||
1070 | if (bit(inst, 4)) | |
1071 | { | |
1072 | int rs = bits (inst, 8, 11); | |
1073 | shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; | |
1074 | } | |
1075 | else | |
1076 | shift = bits (inst, 7, 11); | |
1077 | ||
1078 | res = (rm == 15 | |
e01b4200 | 1079 | ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) |
72c9954b SS |
1080 | + (bit (inst, 4) ? 12 : 8)) |
1081 | : read_register (rm)); | |
1082 | ||
1083 | switch (shifttype) | |
1084 | { | |
1085 | case 0: /* LSL */ | |
1086 | res = shift >= 32 ? 0 : res << shift; | |
1087 | break; | |
1088 | ||
1089 | case 1: /* LSR */ | |
1090 | res = shift >= 32 ? 0 : res >> shift; | |
1091 | break; | |
1092 | ||
1093 | case 2: /* ASR */ | |
1094 | if (shift >= 32) shift = 31; | |
1095 | res = ((res & 0x80000000L) | |
1096 | ? ~((~res) >> shift) : res >> shift); | |
1097 | break; | |
1098 | ||
1099 | case 3: /* ROR/RRX */ | |
1100 | shift &= 31; | |
1101 | if (shift == 0) | |
1102 | res = (res >> 1) | (carry ? 0x80000000L : 0); | |
1103 | else | |
1104 | res = (res >> shift) | (res << (32-shift)); | |
1105 | break; | |
1106 | } | |
1107 | ||
1108 | return res & 0xffffffff; | |
1109 | } | |
1110 | ||
1111 | ||
e01b4200 ZR |
1112 | /* Return number of 1-bits in VAL. */ |
1113 | ||
1114 | static int | |
1115 | bitcount (val) | |
1116 | unsigned long val; | |
1117 | { | |
1118 | int nbits; | |
1119 | for (nbits = 0; val != 0; nbits++) | |
1120 | val &= val - 1; /* delete rightmost 1-bit in val */ | |
1121 | return nbits; | |
1122 | } | |
1123 | ||
1124 | ||
1125 | static CORE_ADDR | |
1126 | thumb_get_next_pc (pc) | |
1127 | CORE_ADDR pc; | |
1128 | { | |
1129 | unsigned long pc_val = ((unsigned long)pc) + 4; /* PC after prefetch */ | |
1130 | unsigned short inst1 = read_memory_integer (pc, 2); | |
1131 | CORE_ADDR nextpc = pc + 2; /* default is next instruction */ | |
1132 | unsigned long offset; | |
1133 | ||
1134 | if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ | |
1135 | { | |
1136 | CORE_ADDR sp; | |
1137 | ||
1138 | /* Fetch the saved PC from the stack. It's stored above | |
1139 | all of the other registers. */ | |
1140 | offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; | |
1141 | sp = read_register (SP_REGNUM); | |
1142 | nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); | |
1143 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1144 | if (nextpc == pc) | |
1145 | error ("Infinite loop detected"); | |
1146 | } | |
1147 | else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ | |
1148 | { | |
1149 | unsigned long status = read_register (PS_REGNUM); | |
1150 | unsigned long cond = bits (inst1, 8, 11); | |
1151 | if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ | |
1152 | nextpc = pc_val + (sbits (inst1, 0, 7) << 1); | |
1153 | } | |
1154 | else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ | |
1155 | { | |
1156 | nextpc = pc_val + (sbits (inst1, 0, 10) << 1); | |
1157 | } | |
1158 | else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ | |
1159 | { | |
1160 | unsigned short inst2 = read_memory_integer (pc + 2, 2); | |
1161 | offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); | |
1162 | nextpc = pc_val + offset; | |
1163 | } | |
1164 | ||
1165 | return nextpc; | |
1166 | } | |
1167 | ||
1168 | ||
72c9954b SS |
1169 | CORE_ADDR |
1170 | arm_get_next_pc (pc) | |
1171 | CORE_ADDR pc; | |
1172 | { | |
e01b4200 ZR |
1173 | unsigned long pc_val; |
1174 | unsigned long this_instr; | |
1175 | unsigned long status; | |
1176 | CORE_ADDR nextpc; | |
1177 | ||
1178 | if (arm_pc_is_thumb (pc)) | |
1179 | return thumb_get_next_pc (pc); | |
1180 | ||
1181 | pc_val = (unsigned long) pc; | |
1182 | this_instr = read_memory_integer (pc, 4); | |
1183 | status = read_register (PS_REGNUM); | |
1184 | nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ | |
72c9954b | 1185 | |
e01b4200 | 1186 | if (condition_true (bits (this_instr, 28, 31), status)) |
72c9954b | 1187 | { |
e01b4200 | 1188 | switch (bits (this_instr, 24, 27)) |
72c9954b SS |
1189 | { |
1190 | case 0x0: case 0x1: /* data processing */ | |
1191 | case 0x2: case 0x3: | |
1192 | { | |
1193 | unsigned long operand1, operand2, result = 0; | |
1194 | unsigned long rn; | |
1195 | int c; | |
1196 | ||
e01b4200 | 1197 | if (bits (this_instr, 12, 15) != 15) |
72c9954b SS |
1198 | break; |
1199 | ||
1200 | if (bits (this_instr, 22, 25) == 0 | |
1201 | && bits (this_instr, 4, 7) == 9) /* multiply */ | |
1202 | error ("Illegal update to pc in instruction"); | |
1203 | ||
1204 | /* Multiply into PC */ | |
1205 | c = (status & FLAG_C) ? 1 : 0; | |
1206 | rn = bits (this_instr, 16, 19); | |
1207 | operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1208 | ||
1209 | if (bit (this_instr, 25)) | |
1210 | { | |
1211 | unsigned long immval = bits (this_instr, 0, 7); | |
1212 | unsigned long rotate = 2 * bits (this_instr, 8, 11); | |
e01b4200 ZR |
1213 | operand2 = ((immval >> rotate) | (immval << (32-rotate))) |
1214 | & 0xffffffff; | |
72c9954b SS |
1215 | } |
1216 | else /* operand 2 is a shifted register */ | |
e01b4200 | 1217 | operand2 = shifted_reg_val (this_instr, c, pc_val, status); |
72c9954b SS |
1218 | |
1219 | switch (bits (this_instr, 21, 24)) | |
1220 | { | |
1221 | case 0x0: /*and*/ | |
1222 | result = operand1 & operand2; | |
1223 | break; | |
1224 | ||
1225 | case 0x1: /*eor*/ | |
1226 | result = operand1 ^ operand2; | |
1227 | break; | |
1228 | ||
1229 | case 0x2: /*sub*/ | |
1230 | result = operand1 - operand2; | |
1231 | break; | |
1232 | ||
1233 | case 0x3: /*rsb*/ | |
1234 | result = operand2 - operand1; | |
1235 | break; | |
1236 | ||
1237 | case 0x4: /*add*/ | |
1238 | result = operand1 + operand2; | |
1239 | break; | |
1240 | ||
1241 | case 0x5: /*adc*/ | |
1242 | result = operand1 + operand2 + c; | |
1243 | break; | |
1244 | ||
1245 | case 0x6: /*sbc*/ | |
1246 | result = operand1 - operand2 + c; | |
1247 | break; | |
1248 | ||
1249 | case 0x7: /*rsc*/ | |
1250 | result = operand2 - operand1 + c; | |
1251 | break; | |
1252 | ||
1253 | case 0x8: case 0x9: case 0xa: case 0xb: /* tst, teq, cmp, cmn */ | |
1254 | result = (unsigned long) nextpc; | |
1255 | break; | |
1256 | ||
1257 | case 0xc: /*orr*/ | |
1258 | result = operand1 | operand2; | |
1259 | break; | |
1260 | ||
1261 | case 0xd: /*mov*/ | |
1262 | /* Always step into a function. */ | |
1263 | result = operand2; | |
1264 | break; | |
1265 | ||
1266 | case 0xe: /*bic*/ | |
1267 | result = operand1 & ~operand2; | |
1268 | break; | |
1269 | ||
1270 | case 0xf: /*mvn*/ | |
1271 | result = ~operand2; | |
1272 | break; | |
1273 | } | |
1274 | nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); | |
1275 | ||
1276 | if (nextpc == pc) | |
1277 | error ("Infinite loop detected"); | |
1278 | break; | |
1279 | } | |
1280 | ||
1281 | case 0x4: case 0x5: /* data transfer */ | |
1282 | case 0x6: case 0x7: | |
1283 | if (bit (this_instr, 20)) | |
1284 | { | |
1285 | /* load */ | |
1286 | if (bits (this_instr, 12, 15) == 15) | |
1287 | { | |
1288 | /* rd == pc */ | |
1289 | unsigned long rn; | |
1290 | unsigned long base; | |
1291 | ||
1292 | if (bit (this_instr, 22)) | |
1293 | error ("Illegal update to pc in instruction"); | |
1294 | ||
1295 | /* byte write to PC */ | |
1296 | rn = bits (this_instr, 16, 19); | |
1297 | base = (rn == 15) ? pc_val + 8 : read_register (rn); | |
1298 | if (bit (this_instr, 24)) | |
1299 | { | |
1300 | /* pre-indexed */ | |
1301 | int c = (status & FLAG_C) ? 1 : 0; | |
1302 | unsigned long offset = | |
1303 | (bit (this_instr, 25) | |
1304 | ? shifted_reg_val (this_instr, c, pc_val) | |
1305 | : bits (this_instr, 0, 11)); | |
1306 | ||
1307 | if (bit (this_instr, 23)) | |
1308 | base += offset; | |
1309 | else | |
1310 | base -= offset; | |
1311 | } | |
1312 | nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, | |
1313 | 4); | |
1314 | ||
1315 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1316 | ||
1317 | if (nextpc == pc) | |
1318 | error ("Infinite loop detected"); | |
1319 | } | |
1320 | } | |
1321 | break; | |
1322 | ||
1323 | case 0x8: case 0x9: /* block transfer */ | |
1324 | if (bit (this_instr, 20)) | |
1325 | { | |
1326 | /* LDM */ | |
1327 | if (bit (this_instr, 15)) | |
1328 | { | |
1329 | /* loading pc */ | |
1330 | int offset = 0; | |
1331 | ||
1332 | if (bit (this_instr, 23)) | |
1333 | { | |
1334 | /* up */ | |
1335 | unsigned long reglist = bits (this_instr, 0, 14); | |
e01b4200 | 1336 | offset = bitcount (reglist) * 4; |
72c9954b SS |
1337 | if (bit (this_instr, 24)) /* pre */ |
1338 | offset += 4; | |
1339 | } | |
1340 | else if (bit (this_instr, 24)) | |
1341 | offset = -4; | |
1342 | ||
1343 | { | |
1344 | unsigned long rn_val = | |
1345 | read_register (bits (this_instr, 16, 19)); | |
1346 | nextpc = | |
1347 | (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val | |
1348 | + offset), | |
1349 | 4); | |
1350 | } | |
1351 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1352 | if (nextpc == pc) | |
1353 | error ("Infinite loop detected"); | |
1354 | } | |
1355 | } | |
1356 | break; | |
1357 | ||
1358 | case 0xb: /* branch & link */ | |
1359 | case 0xa: /* branch */ | |
1360 | { | |
1361 | nextpc = BranchDest (pc, this_instr); | |
1362 | ||
1363 | nextpc = ADDR_BITS_REMOVE (nextpc); | |
1364 | if (nextpc == pc) | |
1365 | error ("Infinite loop detected"); | |
1366 | break; | |
1367 | } | |
1368 | ||
1369 | case 0xc: case 0xd: | |
1370 | case 0xe: /* coproc ops */ | |
1371 | case 0xf: /* SWI */ | |
1372 | break; | |
1373 | ||
1374 | default: | |
1375 | fprintf (stderr, "Bad bit-field extraction\n"); | |
1376 | return (pc); | |
1377 | } | |
1378 | } | |
1379 | ||
1380 | return nextpc; | |
1381 | } | |
1382 | ||
e01b4200 ZR |
1383 | #include "bfd-in2.h" |
1384 | #include "libcoff.h" | |
1385 | ||
1386 | static int | |
1387 | gdb_print_insn_arm (memaddr, info) | |
1388 | bfd_vma memaddr; | |
1389 | disassemble_info * info; | |
1390 | { | |
1391 | if (arm_pc_is_thumb (memaddr)) | |
1392 | { | |
1393 | static asymbol * asym; | |
1394 | static combined_entry_type ce; | |
1395 | static struct coff_symbol_struct csym; | |
1396 | static struct _bfd fake_bfd; | |
1397 | static bfd_target fake_target; | |
1398 | ||
1399 | if (csym.native == NULL) | |
1400 | { | |
1401 | /* Create a fake symbol vector containing a Thumb symbol. This is | |
1402 | solely so that the code in print_insn_little_arm() and | |
1403 | print_insn_big_arm() in opcodes/arm-dis.c will detect the presence | |
1404 | of a Thumb symbol and switch to decoding Thumb instructions. */ | |
1405 | ||
1406 | fake_target.flavour = bfd_target_coff_flavour; | |
1407 | fake_bfd.xvec = & fake_target; | |
1408 | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | |
1409 | csym.native = & ce; | |
1410 | csym.symbol.the_bfd = & fake_bfd; | |
1411 | csym.symbol.name = "fake"; | |
1412 | asym = (asymbol *) & csym; | |
1413 | } | |
1414 | ||
1415 | memaddr = UNMAKE_THUMB_ADDR (memaddr); | |
1416 | info->symbols = & asym; | |
1417 | } | |
1418 | else | |
1419 | info->symbols = NULL; | |
1420 | ||
1421 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1422 | return print_insn_big_arm (memaddr, info); | |
1423 | else | |
1424 | return print_insn_little_arm (memaddr, info); | |
1425 | } | |
1426 | ||
1427 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program | |
1428 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
1429 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
1430 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
1431 | (if necessary) to point to the actual memory location where the | |
1432 | breakpoint should be inserted. */ | |
1433 | ||
1434 | unsigned char * | |
1435 | arm_breakpoint_from_pc (pcptr, lenptr) | |
1436 | CORE_ADDR * pcptr; | |
1437 | int * lenptr; | |
1438 | { | |
1439 | CORE_ADDR sp = read_sp(); | |
1440 | ||
1441 | if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) | |
1442 | { | |
1443 | static char thumb_breakpoint[] = THUMB_BREAKPOINT; | |
1444 | ||
1445 | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | |
1446 | *lenptr = sizeof (thumb_breakpoint); | |
1447 | ||
1448 | return thumb_breakpoint; | |
1449 | } | |
1450 | else | |
1451 | { | |
1452 | static char arm_breakpoint[] = ARM_BREAKPOINT; | |
1453 | ||
1454 | *lenptr = sizeof (arm_breakpoint); | |
1455 | ||
1456 | return arm_breakpoint; | |
1457 | } | |
1458 | } | |
1459 | ||
1460 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
1461 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
1462 | ||
1463 | int | |
1464 | arm_in_call_stub (pc, name) | |
1465 | CORE_ADDR pc; | |
1466 | char * name; | |
1467 | { | |
1468 | CORE_ADDR start_addr; | |
1469 | ||
1470 | /* Find the starting address of the function containing the PC. If the | |
1471 | caller didn't give us a name, look it up at the same time. */ | |
1472 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
1473 | return 0; | |
1474 | ||
1475 | return strncmp (name, "_call_via_r", 11) == 0; | |
1476 | } | |
1477 | ||
1478 | ||
1479 | /* If PC is in a Thumb call or return stub, return the address of the target | |
1480 | PC, which is in a register. The thunk functions are called _called_via_xx, | |
1481 | where x is the register name. The possible names are r0-r9, sl, fp, ip, | |
1482 | sp, and lr. */ | |
1483 | ||
1484 | CORE_ADDR | |
1485 | arm_skip_stub (pc) | |
1486 | CORE_ADDR pc; | |
1487 | { | |
1488 | char * name; | |
1489 | CORE_ADDR start_addr; | |
1490 | ||
1491 | /* Find the starting address and name of the function containing the PC. */ | |
1492 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
1493 | return 0; | |
1494 | ||
1495 | /* Call thunks always start with "_call_via_". */ | |
1496 | if (strncmp (name, "_call_via_", 10) == 0) | |
1497 | { | |
1498 | /* Use the name suffix to determine which register contains | |
1499 | the target PC. */ | |
1500 | static char *table[15] = | |
1501 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
1502 | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | |
1503 | }; | |
1504 | int regno; | |
1505 | ||
1506 | for (regno = 0; regno <= 14; regno++) | |
1507 | if (strcmp (&name[10], table[regno]) == 0) | |
1508 | return read_register (regno); | |
1509 | } | |
1510 | return 0; /* not a stub */ | |
1511 | } | |
1512 | ||
1513 | ||
72c9954b SS |
1514 | void |
1515 | _initialize_arm_tdep () | |
1516 | { | |
e01b4200 | 1517 | tm_print_insn = gdb_print_insn_arm; |
72c9954b SS |
1518 | |
1519 | add_com ("othernames", class_obscure, arm_othernames, | |
1520 | "Switch to the other set of register names."); | |
1521 | ||
e01b4200 | 1522 | /* ??? Maybe this should be a boolean. */ |
72c9954b | 1523 | add_show_from_set (add_set_cmd ("apcs32", no_class, |
e01b4200 | 1524 | var_zinteger, (char *)&arm_apcs_32, |
72c9954b | 1525 | "Set usage of ARM 32-bit mode.\n", &setlist), |
e01b4200 ZR |
1526 | & showlist); |
1527 | ||
1528 | } | |
72c9954b | 1529 | |
e01b4200 ZR |
1530 | /* Test whether the coff symbol specific value corresponds to a Thumb function */ |
1531 | int | |
1532 | coff_sym_is_thumb(int val) | |
1533 | { | |
1534 | return (val == C_THUMBEXT || | |
1535 | val == C_THUMBSTAT || | |
1536 | val == C_THUMBEXTFUNC || | |
1537 | val == C_THUMBSTATFUNC || | |
1538 | val == C_THUMBLABEL); | |
72c9954b | 1539 | } |