2003-04-21 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
1e698235 3 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
4be87837 37#include "osabi.h"
34e8f22d
RE
38
39#include "arm-tdep.h"
26216b98 40#include "gdb/sim-arm.h"
34e8f22d 41
082fc60d
RE
42#include "elf-bfd.h"
43#include "coff/internal.h"
97e03143 44#include "elf/arm.h"
c906108c 45
26216b98
AC
46#include "gdb_assert.h"
47
6529d2dd
AC
48static int arm_debug;
49
2a451106
KB
50/* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
3bb04bdd
AC
71#ifdef SIGCONTEXT_REGISTER_ADDRESS
72#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74#endif
75#else
76#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
78#endif
79
082fc60d
RE
80/* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92#define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96#define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99#define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 101
afd7eef0
RE
102/* The list of available "set arm ..." and "show arm ..." commands. */
103static struct cmd_list_element *setarmcmdlist = NULL;
104static struct cmd_list_element *showarmcmdlist = NULL;
105
fd50bc42
RE
106/* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108static const char *fp_model_strings[] =
109{
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp"
115};
116
117/* A variable that can be configured by the user. */
118static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
119static const char *current_fp_model = "auto";
120
94c30b78 121/* Number of different reg name sets (options). */
afd7eef0 122static int num_disassembly_options;
bc90b915
FN
123
124/* We have more registers than the disassembler as gdb can print the value
125 of special registers as well.
126 The general register names are overwritten by whatever is being used by
94c30b78 127 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 128
94c30b78 129/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 130static char * arm_register_name_strings[] =
da59e081
JM
131{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
132 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
133 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
134 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
135 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
136 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 137 "fps", "cpsr" }; /* 24 25 */
966fbf70 138static char **arm_register_names = arm_register_name_strings;
ed9a39eb 139
afd7eef0
RE
140/* Valid register name styles. */
141static const char **valid_disassembly_styles;
ed9a39eb 142
afd7eef0
RE
143/* Disassembly style to use. Default to "std" register names. */
144static const char *disassembly_style;
94c30b78 145/* Index to that option in the opcodes table. */
da3c6d4a 146static int current_option;
96baa820 147
ed9a39eb 148/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
149 style. */
150static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 151 struct cmd_list_element *);
afd7eef0 152static void set_disassembly_style (void);
ed9a39eb 153
b508a996
RE
154static void convert_from_extended (const struct floatformat *, const void *,
155 void *);
156static void convert_to_extended (const struct floatformat *, void *,
157 const void *);
ed9a39eb
JM
158
159/* Define other aspects of the stack frame. We keep the offsets of
160 all saved registers, 'cause we need 'em a lot! We also keep the
161 current size of the stack frame, and the offset of the frame
162 pointer from the stack pointer (for frameless functions, and when
94c30b78 163 we're still in the prologue of a function with a frame). */
ed9a39eb
JM
164
165struct frame_extra_info
c3b4394c
RE
166{
167 int framesize;
168 int frameoffset;
169 int framereg;
170};
ed9a39eb 171
bc90b915
FN
172/* Addresses for calling Thumb functions have the bit 0 set.
173 Here are some macros to test, set, or clear bit 0 of addresses. */
174#define IS_THUMB_ADDR(addr) ((addr) & 1)
175#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
176#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
177
39bbf761 178static int
ed9a39eb 179arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 180{
8bedc050 181 return (DEPRECATED_FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
c906108c
SS
182}
183
94c30b78 184/* Set to true if the 32-bit mode is in use. */
c906108c
SS
185
186int arm_apcs_32 = 1;
187
ed9a39eb
JM
188/* Flag set by arm_fix_call_dummy that tells whether the target
189 function is a Thumb function. This flag is checked by
190 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
191 its use in valops.c) to pass the function address as an additional
192 parameter. */
c906108c
SS
193
194static int target_is_thumb;
195
ed9a39eb
JM
196/* Flag set by arm_fix_call_dummy that tells whether the calling
197 function is a Thumb function. This flag is checked by
198 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
199
200static int caller_is_thumb;
201
ed9a39eb
JM
202/* Determine if the program counter specified in MEMADDR is in a Thumb
203 function. */
c906108c 204
34e8f22d 205int
2a451106 206arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 207{
c5aa993b 208 struct minimal_symbol *sym;
c906108c 209
ed9a39eb 210 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
211 if (IS_THUMB_ADDR (memaddr))
212 return 1;
213
ed9a39eb 214 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
215 sym = lookup_minimal_symbol_by_pc (memaddr);
216 if (sym)
217 {
c5aa993b 218 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
219 }
220 else
ed9a39eb
JM
221 {
222 return 0;
223 }
c906108c
SS
224}
225
ed9a39eb
JM
226/* Determine if the program counter specified in MEMADDR is in a call
227 dummy being called from a Thumb function. */
c906108c 228
34e8f22d 229int
2a451106 230arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 231{
c5aa993b 232 CORE_ADDR sp = read_sp ();
c906108c 233
dfcd3bfb
JM
234 /* FIXME: Until we switch for the new call dummy macros, this heuristic
235 is the best we can do. We are trying to determine if the pc is on
236 the stack, which (hopefully) will only happen in a call dummy.
237 We hope the current stack pointer is not so far alway from the dummy
238 frame location (true if we have not pushed large data structures or
239 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 240 code regions as part of the stack (true for most practical purposes). */
ae45cd16 241 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
242 return caller_is_thumb;
243 else
244 return 0;
245}
246
181c1381 247/* Remove useless bits from addresses in a running program. */
34e8f22d 248static CORE_ADDR
ed9a39eb 249arm_addr_bits_remove (CORE_ADDR val)
c906108c 250{
a3a2ee65
JT
251 if (arm_apcs_32)
252 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 253 else
a3a2ee65 254 return (val & 0x03fffffc);
c906108c
SS
255}
256
181c1381
RE
257/* When reading symbols, we need to zap the low bit of the address,
258 which may be set to 1 for Thumb functions. */
34e8f22d 259static CORE_ADDR
181c1381
RE
260arm_smash_text_address (CORE_ADDR val)
261{
262 return val & ~1;
263}
264
34e8f22d
RE
265/* Immediately after a function call, return the saved pc. Can't
266 always go through the frames for this because on some machines the
267 new frame is not set up until the new function executes some
268 instructions. */
269
270static CORE_ADDR
ed9a39eb 271arm_saved_pc_after_call (struct frame_info *frame)
c906108c 272{
34e8f22d 273 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
274}
275
0defa245
RE
276/* Determine whether the function invocation represented by FI has a
277 frame on the stack associated with it. If it does return zero,
278 otherwise return 1. */
279
148754e5 280static int
ed9a39eb 281arm_frameless_function_invocation (struct frame_info *fi)
392a587b 282{
392a587b 283 CORE_ADDR func_start, after_prologue;
96baa820 284 int frameless;
ed9a39eb 285
0defa245
RE
286 /* Sometimes we have functions that do a little setup (like saving the
287 vN registers with the stmdb instruction, but DO NOT set up a frame.
288 The symbol table will report this as a prologue. However, it is
289 important not to try to parse these partial frames as frames, or we
290 will get really confused.
291
292 So I will demand 3 instructions between the start & end of the
293 prologue before I call it a real prologue, i.e. at least
294 mov ip, sp,
295 stmdb sp!, {}
296 sub sp, ip, #4. */
297
8cf71652 298 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
7be570e7 299 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 300
96baa820 301 /* There are some frameless functions whose first two instructions
ed9a39eb 302 follow the standard APCS form, in which case after_prologue will
94c30b78 303 be func_start + 8. */
ed9a39eb 304
96baa820 305 frameless = (after_prologue < func_start + 12);
392a587b
JM
306 return frameless;
307}
308
0defa245 309/* The address of the arguments in the frame. */
148754e5 310static CORE_ADDR
0defa245
RE
311arm_frame_args_address (struct frame_info *fi)
312{
1e2330ba 313 return get_frame_base (fi);
0defa245
RE
314}
315
316/* The address of the local variables in the frame. */
148754e5 317static CORE_ADDR
0defa245
RE
318arm_frame_locals_address (struct frame_info *fi)
319{
1e2330ba 320 return get_frame_base (fi);
0defa245
RE
321}
322
323/* The number of arguments being passed in the frame. */
148754e5 324static int
0defa245
RE
325arm_frame_num_args (struct frame_info *fi)
326{
327 /* We have no way of knowing. */
328 return -1;
329}
330
c906108c 331/* A typical Thumb prologue looks like this:
c5aa993b
JM
332 push {r7, lr}
333 add sp, sp, #-28
334 add r7, sp, #12
c906108c 335 Sometimes the latter instruction may be replaced by:
da59e081
JM
336 mov r7, sp
337
338 or like this:
339 push {r7, lr}
340 mov r7, sp
341 sub sp, #12
342
343 or, on tpcs, like this:
344 sub sp,#16
345 push {r7, lr}
346 (many instructions)
347 mov r7, sp
348 sub sp, #12
349
350 There is always one instruction of three classes:
351 1 - push
352 2 - setting of r7
353 3 - adjusting of sp
354
355 When we have found at least one of each class we are done with the prolog.
356 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 357 */
c906108c
SS
358
359static CORE_ADDR
c7885828 360thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
361{
362 CORE_ADDR current_pc;
da3c6d4a
MS
363 /* findmask:
364 bit 0 - push { rlist }
365 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
366 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
367 */
368 int findmask = 0;
369
94c30b78
MS
370 for (current_pc = pc;
371 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 372 current_pc += 2)
c906108c
SS
373 {
374 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
375
94c30b78 376 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 377 {
94c30b78 378 findmask |= 1; /* push found */
da59e081 379 }
da3c6d4a
MS
380 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
381 sub sp, #simm */
da59e081 382 {
94c30b78 383 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
384 continue;
385 else
94c30b78 386 findmask |= 4; /* add/sub sp found */
da59e081
JM
387 }
388 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
389 {
94c30b78 390 findmask |= 2; /* setting of r7 found */
da59e081
JM
391 }
392 else if (insn == 0x466f) /* mov r7, sp */
393 {
94c30b78 394 findmask |= 2; /* setting of r7 found */
da59e081 395 }
3d74b771
FF
396 else if (findmask == (4+2+1))
397 {
da3c6d4a
MS
398 /* We have found one of each type of prologue instruction */
399 break;
3d74b771 400 }
da59e081 401 else
94c30b78 402 /* Something in the prolog that we don't care about or some
da3c6d4a 403 instruction from outside the prolog scheduled here for
94c30b78 404 optimization. */
da3c6d4a 405 continue;
c906108c
SS
406 }
407
408 return current_pc;
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 436 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
456 /* Check if this is Thumb code. */
457 if (arm_pc_is_thumb (pc))
c7885828 458 return thumb_skip_prologue (pc, func_end);
c906108c
SS
459
460 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 461 by disassembling the instructions. */
c906108c 462
b8d5e71d
MS
463 /* Like arm_scan_prologue, stop no later than pc + 64. */
464 if (func_end == 0 || func_end > pc + 64)
465 func_end = pc + 64;
c906108c 466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
f43845b3 469 inst = read_memory_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
b8d5e71d
MS
475 /* Some prologues begin with "str lr, [sp, #-4]!". */
476 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
477 continue;
c906108c 478
b8d5e71d
MS
479 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
480 continue;
c906108c 481
b8d5e71d
MS
482 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
483 continue;
11d3b27d 484
b8d5e71d
MS
485 /* Any insns after this point may float into the code, if it makes
486 for better instruction scheduling, so we skip them only if we
487 find them, but still consider the function to be frame-ful. */
f43845b3 488
b8d5e71d
MS
489 /* We may have either one sfmfd instruction here, or several stfe
490 insns, depending on the version of floating point code we
491 support. */
492 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
493 continue;
494
495 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
496 continue;
497
498 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
499 continue;
500
501 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
502 continue;
503
504 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
505 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
506 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
507 continue;
508
509 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
510 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
511 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
512 continue;
513
514 /* Un-recognized instruction; stop scanning. */
515 break;
f43845b3 516 }
c906108c 517
b8d5e71d 518 return skip_pc; /* End of prologue */
c906108c 519}
94c30b78 520
c5aa993b 521/* *INDENT-OFF* */
c906108c
SS
522/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
523 This function decodes a Thumb function prologue to determine:
524 1) the size of the stack frame
525 2) which registers are saved on it
526 3) the offsets of saved regs
527 4) the offset from the stack pointer to the frame pointer
528 This information is stored in the "extra" fields of the frame_info.
529
da59e081
JM
530 A typical Thumb function prologue would create this stack frame
531 (offsets relative to FP)
c906108c
SS
532 old SP -> 24 stack parameters
533 20 LR
534 16 R7
535 R7 -> 0 local variables (16 bytes)
536 SP -> -12 additional stack space (12 bytes)
537 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
538 12 bytes. The frame register is R7.
539
da3c6d4a
MS
540 The comments for thumb_skip_prolog() describe the algorithm we use
541 to detect the end of the prolog. */
c5aa993b
JM
542/* *INDENT-ON* */
543
c906108c 544static void
ed9a39eb 545thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
546{
547 CORE_ADDR prologue_start;
548 CORE_ADDR prologue_end;
549 CORE_ADDR current_pc;
94c30b78 550 /* Which register has been copied to register n? */
da3c6d4a
MS
551 int saved_reg[16];
552 /* findmask:
553 bit 0 - push { rlist }
554 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
555 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
556 */
557 int findmask = 0;
c5aa993b 558 int i;
c906108c 559
848cfffb 560 /* Don't try to scan dummy frames. */
07555a72 561 if (fi != NULL
50abf9e5 562 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb
AC
563 return;
564
50abf9e5 565 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
50abf9e5 570 prologue_end = get_frame_pc (fi);
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
da3c6d4a
MS
575 /* We're in the boondocks: allow for
576 16 pushes, an add, and "mv fp,sp". */
577 prologue_end = prologue_start + 40;
c906108c 578
50abf9e5 579 prologue_end = min (prologue_end, get_frame_pc (fi));
c906108c
SS
580
581 /* Initialize the saved register map. When register H is copied to
582 register L, we will put H in saved_reg[L]. */
583 for (i = 0; i < 16; i++)
584 saved_reg[i] = i;
585
586 /* Search the prologue looking for instructions that set up the
da59e081
JM
587 frame pointer, adjust the stack pointer, and save registers.
588 Do this until all basic prolog instructions are found. */
c906108c 589
da50a4b7 590 get_frame_extra_info (fi)->framesize = 0;
da59e081
JM
591 for (current_pc = prologue_start;
592 (current_pc < prologue_end) && ((findmask & 7) != 7);
593 current_pc += 2)
c906108c
SS
594 {
595 unsigned short insn;
596 int regno;
597 int offset;
598
599 insn = read_memory_unsigned_integer (current_pc, 2);
600
c5aa993b 601 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 602 {
da59e081 603 int mask;
94c30b78 604 findmask |= 1; /* push found */
c906108c
SS
605 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
606 whether to save LR (R14). */
da59e081 607 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 608
b8d5e71d 609 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 610 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 611 if (mask & (1 << regno))
c5aa993b 612 {
da50a4b7 613 get_frame_extra_info (fi)->framesize += 4;
b2fb4676 614 get_frame_saved_regs (fi)[saved_reg[regno]] =
da50a4b7 615 -(get_frame_extra_info (fi)->framesize);
da3c6d4a
MS
616 /* Reset saved register map. */
617 saved_reg[regno] = regno;
c906108c
SS
618 }
619 }
da3c6d4a
MS
620 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
621 sub sp, #simm */
c906108c 622 {
b8d5e71d 623 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
624 continue;
625 else
94c30b78 626 findmask |= 4; /* add/sub sp found */
da59e081 627
94c30b78
MS
628 offset = (insn & 0x7f) << 2; /* get scaled offset */
629 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 630 {
da50a4b7 631 get_frame_extra_info (fi)->frameoffset += offset;
da59e081
JM
632 offset = -offset;
633 }
da50a4b7 634 get_frame_extra_info (fi)->framesize -= offset;
c906108c
SS
635 }
636 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
637 {
94c30b78 638 findmask |= 2; /* setting of r7 found */
da50a4b7 639 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
c3b4394c 640 /* get scaled offset */
da50a4b7 641 get_frame_extra_info (fi)->frameoffset = (insn & 0xff) << 2;
c906108c 642 }
da59e081 643 else if (insn == 0x466f) /* mov r7, sp */
c906108c 644 {
94c30b78 645 findmask |= 2; /* setting of r7 found */
da50a4b7
AC
646 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
647 get_frame_extra_info (fi)->frameoffset = 0;
34e8f22d 648 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
649 }
650 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
651 {
da3c6d4a 652 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 653 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 654 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
655 }
656 else
da3c6d4a
MS
657 /* Something in the prolog that we don't care about or some
658 instruction from outside the prolog scheduled here for
659 optimization. */
660 continue;
c906108c
SS
661 }
662}
663
ed9a39eb 664/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
665 1) the size of the stack frame
666 2) which registers are saved on it
667 3) the offsets of saved regs
668 4) the offset from the stack pointer to the frame pointer
c906108c
SS
669 This information is stored in the "extra" fields of the frame_info.
670
96baa820
JM
671 There are two basic forms for the ARM prologue. The fixed argument
672 function call will look like:
ed9a39eb
JM
673
674 mov ip, sp
675 stmfd sp!, {fp, ip, lr, pc}
676 sub fp, ip, #4
677 [sub sp, sp, #4]
96baa820 678
c906108c 679 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
680 IP -> 4 (caller's stack)
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
c906108c 687 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
688 28 bytes. The stmfd call can also save any of the vN registers it
689 plans to use, which increases the frame size accordingly.
690
691 Note: The stored PC is 8 off of the STMFD instruction that stored it
692 because the ARM Store instructions always store PC + 8 when you read
693 the PC register.
ed9a39eb 694
96baa820
JM
695 A variable argument function call will look like:
696
ed9a39eb
JM
697 mov ip, sp
698 stmfd sp!, {a1, a2, a3, a4}
699 stmfd sp!, {fp, ip, lr, pc}
700 sub fp, ip, #20
701
96baa820 702 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
703 IP -> 20 (caller's stack)
704 16 A4
705 12 A3
706 8 A2
707 4 A1
708 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
709 -4 LR (return address in caller)
710 -8 IP (copy of caller's SP)
711 -12 FP (caller's FP)
712 SP -> -28 Local variables
96baa820
JM
713
714 The frame size would thus be 48 bytes, and the frame offset would be
715 28 bytes.
716
717 There is another potential complication, which is that the optimizer
718 will try to separate the store of fp in the "stmfd" instruction from
719 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
720 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
721
722 Also, note, the original version of the ARM toolchain claimed that there
723 should be an
724
725 instruction at the end of the prologue. I have never seen GCC produce
726 this, and the ARM docs don't mention it. We still test for it below in
727 case it happens...
ed9a39eb
JM
728
729 */
c906108c
SS
730
731static void
ed9a39eb 732arm_scan_prologue (struct frame_info *fi)
c906108c
SS
733{
734 int regno, sp_offset, fp_offset;
16a0f3e7 735 LONGEST return_value;
c906108c
SS
736 CORE_ADDR prologue_start, prologue_end, current_pc;
737
c906108c 738 /* Assume there is no frame until proven otherwise. */
da50a4b7
AC
739 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
740 get_frame_extra_info (fi)->framesize = 0;
741 get_frame_extra_info (fi)->frameoffset = 0;
c906108c
SS
742
743 /* Check for Thumb prologue. */
50abf9e5 744 if (arm_pc_is_thumb (get_frame_pc (fi)))
c906108c
SS
745 {
746 thumb_scan_prologue (fi);
c906108c
SS
747 return;
748 }
749
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
50abf9e5 752 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c 753 {
2a451106
KB
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
756
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
758
759 if (sal.line == 0)
50abf9e5 760 prologue_end = get_frame_pc (fi);
2a451106
KB
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
763
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
770
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
777
778 The expression
779
780 prologue_start + 64
781
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
94c30b78 784 the scheduler. */
2a451106
KB
785
786 if (prologue_end > prologue_start + 64)
787 {
94c30b78 788 prologue_end = prologue_start + 64; /* See above. */
2a451106 789 }
c906108c
SS
790 }
791 else
792 {
94c30b78
MS
793 /* Get address of the stmfd in the prologue of the callee;
794 the saved PC is the address of the stmfd + 8. */
1e2330ba 795 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
16a0f3e7
EZ
796 return;
797 else
798 {
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 800 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 801 }
c906108c
SS
802 }
803
804 /* Now search the prologue looking for instructions that set up the
96baa820 805 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 806
96baa820
JM
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 810 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 815 if we don't see this as the first insn, we will stop.
c906108c 816
f43845b3
MS
817 [Note: This doesn't seem to be true any longer, so it's now an
818 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 819
f43845b3
MS
820 [Note further: The "mov ip,sp" only seems to be missing in
821 frameless functions at optimization level "-O2" or above,
822 in which case it is often (but not always) replaced by
b8d5e71d 823 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 824
f43845b3
MS
825 sp_offset = fp_offset = 0;
826
94c30b78
MS
827 for (current_pc = prologue_start;
828 current_pc < prologue_end;
f43845b3 829 current_pc += 4)
96baa820 830 {
d4473757
KB
831 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
832
94c30b78 833 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3
MS
834 {
835 continue;
836 }
94c30b78 837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3
MS
838 {
839 /* Function is frameless: extra_info defaults OK? */
840 continue;
841 }
842 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
843 /* stmfd sp!, {..., fp, ip, lr, pc}
844 or
845 stmfd sp!, {a1, a2, a3, a4} */
c906108c 846 {
d4473757 847 int mask = insn & 0xffff;
ed9a39eb 848
94c30b78 849 /* Calculate offsets of saved registers. */
34e8f22d 850 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
851 if (mask & (1 << regno))
852 {
853 sp_offset -= 4;
b2fb4676 854 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
855 }
856 }
b8d5e71d
MS
857 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
858 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
859 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
860 {
861 /* No need to add this to saved_regs -- it's just an arg reg. */
862 continue;
863 }
864 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
865 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
866 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
867 {
868 /* No need to add this to saved_regs -- it's just an arg reg. */
869 continue;
870 }
d4473757
KB
871 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
872 {
94c30b78
MS
873 unsigned imm = insn & 0xff; /* immediate value */
874 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
875 imm = (imm >> rot) | (imm << (32 - rot));
876 fp_offset = -imm;
da50a4b7 877 get_frame_extra_info (fi)->framereg = ARM_FP_REGNUM;
d4473757
KB
878 }
879 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
880 {
94c30b78
MS
881 unsigned imm = insn & 0xff; /* immediate value */
882 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
883 imm = (imm >> rot) | (imm << (32 - rot));
884 sp_offset -= imm;
885 }
886 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
887 {
888 sp_offset -= 12;
34e8f22d 889 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
b2fb4676 890 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
891 }
892 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
893 {
894 int n_saved_fp_regs;
895 unsigned int fp_start_reg, fp_bound_reg;
896
94c30b78 897 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 898 {
d4473757
KB
899 if ((insn & 0x40000) == 0x40000) /* N1 is set */
900 n_saved_fp_regs = 3;
901 else
902 n_saved_fp_regs = 1;
96baa820 903 }
d4473757 904 else
96baa820 905 {
d4473757
KB
906 if ((insn & 0x40000) == 0x40000) /* N1 is set */
907 n_saved_fp_regs = 2;
908 else
909 n_saved_fp_regs = 4;
96baa820 910 }
d4473757 911
34e8f22d 912 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
913 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
914 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
915 {
916 sp_offset -= 12;
b2fb4676 917 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
96baa820 918 }
c906108c 919 }
d4473757 920 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 921 break; /* Condition not true, exit early */
b8d5e71d 922 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 923 break; /* Don't scan past a block load */
d4473757
KB
924 else
925 /* The optimizer might shove anything into the prologue,
94c30b78 926 so we just skip what we don't recognize. */
d4473757 927 continue;
c906108c
SS
928 }
929
94c30b78
MS
930 /* The frame size is just the negative of the offset (from the
931 original SP) of the last thing thing we pushed on the stack.
932 The frame offset is [new FP] - [new SP]. */
da50a4b7
AC
933 get_frame_extra_info (fi)->framesize = -sp_offset;
934 if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM)
935 get_frame_extra_info (fi)->frameoffset = fp_offset - sp_offset;
d4473757 936 else
da50a4b7 937 get_frame_extra_info (fi)->frameoffset = 0;
c906108c
SS
938}
939
ed9a39eb
JM
940/* Find REGNUM on the stack. Otherwise, it's in an active register.
941 One thing we might want to do here is to check REGNUM against the
942 clobber mask, and somehow flag it as invalid if it isn't saved on
943 the stack somewhere. This would provide a graceful failure mode
944 when trying to get the value of caller-saves registers for an inner
945 frame. */
c906108c
SS
946
947static CORE_ADDR
ed9a39eb 948arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c 949{
848cfffb
AC
950 /* NOTE: cagney/2002-05-03: This function really shouldn't be
951 needed. Instead the (still being written) register unwind
952 function could be called directly. */
11c02a10 953 for (; fi; fi = get_next_frame (fi))
848cfffb 954 {
50abf9e5 955 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 956 {
1e2330ba
AC
957 return deprecated_read_register_dummy (get_frame_pc (fi),
958 get_frame_base (fi), regnum);
848cfffb 959 }
b2fb4676 960 else if (get_frame_saved_regs (fi)[regnum] != 0)
848cfffb
AC
961 {
962 /* NOTE: cagney/2002-05-03: This would normally need to
963 handle ARM_SP_REGNUM as a special case as, according to
964 the frame.h comments, saved_regs[SP_REGNUM] contains the
965 SP value not its address. It appears that the ARM isn't
966 doing this though. */
b2fb4676 967 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
848cfffb
AC
968 REGISTER_RAW_SIZE (regnum));
969 }
970 }
c906108c
SS
971 return read_register (regnum);
972}
148754e5
RE
973/* Function: frame_chain Given a GDB frame, determine the address of
974 the calling function's frame. This will be used to create a new
e9582e71 975 GDB frame struct, and then DEPRECATED_INIT_EXTRA_FRAME_INFO and
a5afb99f
AC
976 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
977 ARM, we save the frame size when we initialize the frame_info. */
c5aa993b 978
148754e5 979static CORE_ADDR
ed9a39eb 980arm_frame_chain (struct frame_info *fi)
c906108c 981{
848cfffb 982 CORE_ADDR caller_pc;
da50a4b7 983 int framereg = get_frame_extra_info (fi)->framereg;
c906108c 984
50abf9e5 985 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 986 /* A generic call dummy's frame is the same as caller's. */
1e2330ba 987 return get_frame_base (fi);
848cfffb 988
50abf9e5 989 if (get_frame_pc (fi) < LOWEST_PC)
c906108c
SS
990 return 0;
991
992 /* If the caller is the startup code, we're at the end of the chain. */
8bedc050 993 caller_pc = DEPRECATED_FRAME_SAVED_PC (fi);
c906108c
SS
994
995 /* If the caller is Thumb and the caller is ARM, or vice versa,
996 the frame register of the caller is different from ours.
997 So we must scan the prologue of the caller to determine its
94c30b78 998 frame register number. */
c3b4394c
RE
999 /* XXX Fixme, we should try to do this without creating a temporary
1000 caller_fi. */
50abf9e5 1001 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
c906108c 1002 {
f6c609c4
AC
1003 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1004 struct frame_info *caller_fi =
1005 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1006 sizeof (struct frame_extra_info));
c3b4394c
RE
1007
1008 /* Now, scan the prologue and obtain the frame register. */
f6c609c4
AC
1009 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1010 arm_scan_prologue (caller_fi);
da50a4b7 1011 framereg = get_frame_extra_info (caller_fi)->framereg;
c3b4394c
RE
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
c906108c
SS
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
34e8f22d 1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1021 return arm_find_callers_reg (fi, framereg);
1022 else
da50a4b7 1023 return get_frame_base (fi) + get_frame_extra_info (fi)->framesize;
c906108c
SS
1024}
1025
ed9a39eb
JM
1026/* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
c906108c 1034
148754e5 1035static void
ed9a39eb 1036arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1037{
1038 int reg;
f079148d 1039 CORE_ADDR sp;
c906108c 1040
b2fb4676 1041 if (get_frame_saved_regs (fi) == NULL)
c3b4394c
RE
1042 frame_saved_regs_zalloc (fi);
1043
a00a19e9 1044 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
c3b4394c 1045
da50a4b7
AC
1046 get_frame_extra_info (fi)->framesize = 0;
1047 get_frame_extra_info (fi)->frameoffset = 0;
1048 get_frame_extra_info (fi)->framereg = 0;
c3b4394c 1049
11c02a10 1050 if (get_next_frame (fi))
8bedc050 1051 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
c906108c 1052
b2fb4676 1053 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
c906108c 1054
da3c6d4a
MS
1055 /* Compute stack pointer for this frame. We use this value for both
1056 the sigtramp and call dummy cases. */
11c02a10 1057 if (!get_next_frame (fi))
f079148d 1058 sp = read_sp();
11c02a10 1059 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1060 /* For generic dummy frames, pull the value direct from the frame.
1061 Having an unwind function to do this would be nice. */
11c02a10
AC
1062 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1063 get_frame_base (get_next_frame (fi)),
135c175f 1064 ARM_SP_REGNUM);
f079148d 1065 else
da50a4b7
AC
1066 sp = (get_frame_base (get_next_frame (fi))
1067 - get_frame_extra_info (get_next_frame (fi))->frameoffset
1068 + get_frame_extra_info (get_next_frame (fi))->framesize);
f079148d 1069
d7bd68ca 1070 /* Determine whether or not we're in a sigtramp frame.
5a203e44
AC
1071 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1072 == SIGTRAMP_FRAME) because this value is sometimes set after
e9582e71 1073 invoking DEPRECATED_INIT_EXTRA_FRAME_INFO. So we test *both*
5a203e44
AC
1074 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1075 determine if we need to use the sigcontext addresses for the
1076 saved registers.
2a451106 1077
d7bd68ca
AC
1078 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1079 against the name of the function, the code below will have to be
1080 changed to first fetch the name of the function and then pass
1081 this name to PC_IN_SIGTRAMP. */
2a451106 1082
5a203e44
AC
1083 /* FIXME: cagney/2002-11-18: This problem will go away once
1084 frame.c:get_prev_frame() is modified to set the frame's type
1085 before calling functions like this. */
1086
3bb04bdd 1087 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
50abf9e5 1088 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
2a451106 1089 {
2a451106 1090 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1091 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
2a451106 1092
94c30b78 1093 /* FIXME: What about thumb mode? */
da50a4b7
AC
1094 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
1095 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[get_frame_extra_info (fi)->framereg], REGISTER_RAW_SIZE (get_frame_extra_info (fi)->framereg)));
1096 get_frame_extra_info (fi)->framesize = 0;
1097 get_frame_extra_info (fi)->frameoffset = 0;
2a451106
KB
1098
1099 }
1100 else
c906108c
SS
1101 {
1102 arm_scan_prologue (fi);
1103
11c02a10 1104 if (!get_next_frame (fi))
94c30b78 1105 /* This is the innermost frame? */
da50a4b7 1106 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
11c02a10 1107 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1108 /* Next inner most frame is a dummy, just grab its frame.
1109 Dummy frames always have the same FP as their caller. */
11c02a10 1110 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
da50a4b7
AC
1111 else if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM
1112 || get_frame_extra_info (fi)->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1113 {
1114 /* not the innermost frame */
94c30b78 1115 /* If we have an FP, the callee saved it. */
da50a4b7
AC
1116 if (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg] != 0)
1117 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg], 4));
ed9a39eb
JM
1118 else if (fromleaf)
1119 /* If we were called by a frameless fn. then our frame is
94c30b78 1120 still in the frame pointer register on the board... */
b0c6b05c 1121 deprecated_update_frame_base_hack (fi, read_fp ());
ed9a39eb 1122 }
c906108c 1123
ed9a39eb
JM
1124 /* Calculate actual addresses of saved registers using offsets
1125 determined by arm_scan_prologue. */
c906108c 1126 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1127 if (get_frame_saved_regs (fi)[reg] != 0)
da50a4b7
AC
1128 get_frame_saved_regs (fi)[reg]
1129 += (get_frame_base (fi)
1130 + get_frame_extra_info (fi)->framesize
1131 - get_frame_extra_info (fi)->frameoffset);
c906108c
SS
1132 }
1133}
1134
1135
34e8f22d 1136/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1137 is saved in the stack anywhere, otherwise we get it from the
1138 registers.
c906108c
SS
1139
1140 The old definition of this function was a macro:
c5aa993b 1141 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1142 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1143
148754e5 1144static CORE_ADDR
ed9a39eb 1145arm_frame_saved_pc (struct frame_info *fi)
c906108c 1146{
848cfffb 1147 /* If a dummy frame, pull the PC out of the frame's register buffer. */
50abf9e5 1148 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1e2330ba
AC
1149 return deprecated_read_register_dummy (get_frame_pc (fi),
1150 get_frame_base (fi), ARM_PC_REGNUM);
848cfffb 1151
1e2330ba
AC
1152 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1153 (get_frame_base (fi)
da50a4b7 1154 - get_frame_extra_info (fi)->frameoffset),
1e2330ba 1155 get_frame_base (fi)))
f079148d 1156 {
b2fb4676 1157 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
34e8f22d 1158 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1159 }
1160 else
c906108c 1161 {
34e8f22d 1162 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1163 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1164 }
1165}
1166
c906108c
SS
1167/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1168 Examine the Program Status Register to decide which state we're in. */
1169
148754e5
RE
1170static CORE_ADDR
1171arm_read_fp (void)
c906108c 1172{
34e8f22d 1173 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1174 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1175 else
34e8f22d 1176 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1177}
1178
148754e5
RE
1179/* Store into a struct frame_saved_regs the addresses of the saved
1180 registers of frame described by FRAME_INFO. This includes special
1181 registers such as PC and FP saved in special ways in the stack
1182 frame. SP is even more special: the address we return for it IS
1183 the sp for the next frame. */
c906108c 1184
148754e5 1185static void
c3b4394c 1186arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1187{
c3b4394c 1188
b2fb4676 1189 if (get_frame_saved_regs (fip))
c3b4394c
RE
1190 return;
1191
1192 arm_init_extra_frame_info (0, fip);
c906108c
SS
1193}
1194
848cfffb
AC
1195/* Set the return address for a generic dummy frame. ARM uses the
1196 entry point. */
1197
1198static CORE_ADDR
1199arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1200{
1201 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1202 return sp;
1203}
1204
148754e5
RE
1205/* Push an empty stack frame, to record the current PC, etc. */
1206
1207static void
ed9a39eb 1208arm_push_dummy_frame (void)
c906108c 1209{
34e8f22d 1210 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1211 CORE_ADDR sp = old_sp;
1212 CORE_ADDR fp, prologue_start;
1213 int regnum;
1214
1215 /* Push the two dummy prologue instructions in reverse order,
1216 so that they'll be in the correct low-to-high order in memory. */
1217 /* sub fp, ip, #4 */
1218 sp = push_word (sp, 0xe24cb004);
1219 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1220 prologue_start = sp = push_word (sp, 0xe92ddfff);
1221
ed9a39eb
JM
1222 /* Push a pointer to the dummy prologue + 12, because when stm
1223 instruction stores the PC, it stores the address of the stm
c906108c
SS
1224 instruction itself plus 12. */
1225 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1226
f079148d 1227 /* Push the processor status. */
34e8f22d 1228 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1229
1230 /* Push all 16 registers starting with r15. */
34e8f22d 1231 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1232 sp = push_word (sp, read_register (regnum));
c5aa993b 1233
f079148d 1234 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1235 write_register (ARM_FP_REGNUM, fp);
c906108c 1236 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1237 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1238}
1239
6eb69eab
RE
1240/* CALL_DUMMY_WORDS:
1241 This sequence of words is the instructions
1242
1243 mov lr,pc
1244 mov pc,r4
1245 illegal
1246
1247 Note this is 12 bytes. */
1248
34e8f22d 1249static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1250{
1251 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1252};
1253
3fb4b924
RE
1254/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1255 breakpoint to the proper address in the call dummy, so that
1256 `finish' after a stop in a call dummy works.
1257
d7b486e7
RE
1258 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1259 optimal solution, but the call to arm_fix_call_dummy is immediately
04714b91
AC
1260 followed by a call to call_function_by_hand, which is the only
1261 function where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1262
1263
1264static void
1265arm_set_call_dummy_breakpoint_offset (void)
1266{
1267 if (caller_is_thumb)
1268 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1269 else
1270 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1271}
1272
c906108c 1273/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1274 in Thumb or ARM mode, and whether the target function is Thumb or
1275 ARM. There are three different situations requiring three
c906108c
SS
1276 different dummies:
1277
1278 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1279 been copied into the dummy parameter to this function.
c906108c 1280 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1281 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1282 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1283 works for calling both ARM and Thumb functions.
c906108c 1284
ed9a39eb
JM
1285 All three call dummies expect to receive the target function
1286 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1287
34e8f22d 1288static void
ed9a39eb 1289arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1290 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1291{
1292 static short thumb_dummy[4] =
1293 {
c5aa993b
JM
1294 0xf000, 0xf801, /* bl label */
1295 0xdf18, /* swi 24 */
1296 0x4720, /* label: bx r4 */
c906108c
SS
1297 };
1298 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1299
94c30b78 1300 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1301 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1302 arm_set_call_dummy_breakpoint_offset ();
c906108c 1303
ed9a39eb
JM
1304 /* If the target function is Thumb, set the low bit of the function
1305 address. And if the CPU is currently in ARM mode, patch the
1306 second instruction of call dummy to use a BX instruction to
1307 switch to Thumb mode. */
c906108c
SS
1308 target_is_thumb = arm_pc_is_thumb (fun);
1309 if (target_is_thumb)
1310 {
1311 fun |= 1;
1312 if (!caller_is_thumb)
1313 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1314 }
1315
1316 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1317 instead of the ARM one that's already been copied. This will
1318 work for both Thumb and ARM target functions. */
1319 if (caller_is_thumb)
1320 {
1321 int i;
1322 char *p = dummy;
1323 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1324
1325 for (i = 0; i < len; i++)
1326 {
1327 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1328 p += sizeof (thumb_dummy[0]);
1329 }
1330 }
1331
ed9a39eb 1332 /* Put the target address in r4; the call dummy will copy this to
94c30b78 1333 the PC. */
c906108c
SS
1334 write_register (4, fun);
1335}
1336
da3c6d4a
MS
1337/* Pop the current frame. So long as the frame info has been
1338 initialized properly (see arm_init_extra_frame_info), this code
1339 works for dummy frames as well as regular frames. I.e, there's no
1340 need to have a special case for dummy frames. */
148754e5 1341static void
ed9a39eb 1342arm_pop_frame (void)
c906108c 1343{
c906108c 1344 int regnum;
8b93c638 1345 struct frame_info *frame = get_current_frame ();
da50a4b7
AC
1346 CORE_ADDR old_SP = (get_frame_base (frame)
1347 - get_frame_extra_info (frame)->frameoffset
1348 + get_frame_extra_info (frame)->framesize);
c906108c 1349
1e2330ba
AC
1350 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1351 get_frame_base (frame),
1352 get_frame_base (frame)))
848cfffb
AC
1353 {
1354 generic_pop_dummy_frame ();
1355 flush_cached_frames ();
1356 return;
1357 }
1358
f079148d 1359 for (regnum = 0; regnum < NUM_REGS; regnum++)
b2fb4676 1360 if (get_frame_saved_regs (frame)[regnum] != 0)
f079148d 1361 write_register (regnum,
b2fb4676 1362 read_memory_integer (get_frame_saved_regs (frame)[regnum],
f079148d 1363 REGISTER_RAW_SIZE (regnum)));
8b93c638 1364
8bedc050 1365 write_register (ARM_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
34e8f22d 1366 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1367
1368 flush_cached_frames ();
1369}
1370
2dd604e7
RE
1371/* When arguments must be pushed onto the stack, they go on in reverse
1372 order. The code below implements a FILO (stack) to do this. */
1373
1374struct stack_item
1375{
1376 int len;
1377 struct stack_item *prev;
1378 void *data;
1379};
1380
1381static struct stack_item *
1382push_stack_item (struct stack_item *prev, void *contents, int len)
1383{
1384 struct stack_item *si;
1385 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1386 si->data = xmalloc (len);
2dd604e7
RE
1387 si->len = len;
1388 si->prev = prev;
1389 memcpy (si->data, contents, len);
1390 return si;
1391}
1392
1393static struct stack_item *
1394pop_stack_item (struct stack_item *si)
1395{
1396 struct stack_item *dead = si;
1397 si = si->prev;
1398 xfree (dead->data);
1399 xfree (dead);
1400 return si;
1401}
1402
1403/* We currently only support passing parameters in integer registers. This
1404 conforms with GCC's default model. Several other variants exist and
1405 we should probably support some of them based on the selected ABI. */
1406
1407static CORE_ADDR
1408arm_push_dummy_call (struct gdbarch *gdbarch, struct regcache *regcache,
1409 CORE_ADDR dummy_addr, int nargs, struct value **args,
1410 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
1411{
1412 int argnum;
1413 int argreg;
1414 int nstack;
1415 struct stack_item *si = NULL;
1416
1417 /* Set the return address. For the ARM, the return breakpoint is always
1418 at DUMMY_ADDR. */
1419 /* XXX Fix for Thumb. */
1420 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, dummy_addr);
1421
1422 /* Walk through the list of args and determine how large a temporary
1423 stack is required. Need to take care here as structs may be
1424 passed on the stack, and we have to to push them. */
1425 nstack = 0;
1426
1427 argreg = ARM_A1_REGNUM;
1428 nstack = 0;
1429
1430 /* Some platforms require a double-word aligned stack. Make sure sp
1431 is correctly aligned before we start. We always do this even if
1432 it isn't really needed -- it can never hurt things. */
1433 sp &= ~(CORE_ADDR)(2 * REGISTER_SIZE - 1);
1434
1435 /* The struct_return pointer occupies the first parameter
1436 passing register. */
1437 if (struct_return)
1438 {
1439 if (arm_debug)
1440 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1441 REGISTER_NAME (argreg), paddr (struct_addr));
1442 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1443 argreg++;
1444 }
1445
1446 for (argnum = 0; argnum < nargs; argnum++)
1447 {
1448 int len;
1449 struct type *arg_type;
1450 struct type *target_type;
1451 enum type_code typecode;
1452 char *val;
1453
1454 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1455 len = TYPE_LENGTH (arg_type);
1456 target_type = TYPE_TARGET_TYPE (arg_type);
1457 typecode = TYPE_CODE (arg_type);
1458 val = VALUE_CONTENTS (args[argnum]);
1459
1460 /* If the argument is a pointer to a function, and it is a
1461 Thumb function, create a LOCAL copy of the value and set
1462 the THUMB bit in it. */
1463 if (TYPE_CODE_PTR == typecode
1464 && target_type != NULL
1465 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1466 {
1467 CORE_ADDR regval = extract_address (val, len);
1468 if (arm_pc_is_thumb (regval))
1469 {
1470 val = alloca (len);
1471 store_address (val, len, MAKE_THUMB_ADDR (regval));
1472 }
1473 }
1474
1475 /* Copy the argument to general registers or the stack in
1476 register-sized pieces. Large arguments are split between
1477 registers and stack. */
1478 while (len > 0)
1479 {
1480 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1481
1482 if (argreg <= ARM_LAST_ARG_REGNUM)
1483 {
1484 /* The argument is being passed in a general purpose
1485 register. */
1486 CORE_ADDR regval = extract_address (val, partial_len);
1487 if (arm_debug)
1488 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1489 argnum, REGISTER_NAME (argreg),
1490 phex (regval, REGISTER_SIZE));
1491 regcache_cooked_write_unsigned (regcache, argreg, regval);
1492 argreg++;
1493 }
1494 else
1495 {
1496 /* Push the arguments onto the stack. */
1497 if (arm_debug)
1498 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1499 argnum, nstack);
1500 si = push_stack_item (si, val, REGISTER_SIZE);
1501 nstack += REGISTER_SIZE;
1502 }
1503
1504 len -= partial_len;
1505 val += partial_len;
1506 }
1507 }
1508 /* If we have an odd number of words to push, then decrement the stack
1509 by one word now, so first stack argument will be dword aligned. */
1510 if (nstack & 4)
1511 sp -= 4;
1512
1513 while (si)
1514 {
1515 sp -= si->len;
1516 write_memory (sp, si->data, si->len);
1517 si = pop_stack_item (si);
1518 }
1519
1520 /* Finally, update teh SP register. */
1521 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1522
1523 return sp;
1524}
1525
c906108c 1526static void
ed9a39eb 1527print_fpu_flags (int flags)
c906108c 1528{
c5aa993b
JM
1529 if (flags & (1 << 0))
1530 fputs ("IVO ", stdout);
1531 if (flags & (1 << 1))
1532 fputs ("DVZ ", stdout);
1533 if (flags & (1 << 2))
1534 fputs ("OFL ", stdout);
1535 if (flags & (1 << 3))
1536 fputs ("UFL ", stdout);
1537 if (flags & (1 << 4))
1538 fputs ("INX ", stdout);
1539 putchar ('\n');
c906108c
SS
1540}
1541
5e74b15c
RE
1542/* Print interesting information about the floating point processor
1543 (if present) or emulator. */
34e8f22d 1544static void
d855c300 1545arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1546 struct frame_info *frame, const char *args)
c906108c 1547{
34e8f22d 1548 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1549 int type;
1550
1551 type = (status >> 24) & 127;
1552 printf ("%s FPU type %d\n",
ed9a39eb 1553 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1554 type);
1555 fputs ("mask: ", stdout);
1556 print_fpu_flags (status >> 16);
1557 fputs ("flags: ", stdout);
1558 print_fpu_flags (status);
c906108c
SS
1559}
1560
34e8f22d
RE
1561/* Return the GDB type object for the "standard" data type of data in
1562 register N. */
1563
1564static struct type *
032758dc
AC
1565arm_register_type (int regnum)
1566{
34e8f22d 1567 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1568 {
d7449b42 1569 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1570 return builtin_type_arm_ext_big;
1571 else
1572 return builtin_type_arm_ext_littlebyte_bigword;
1573 }
1574 else
1575 return builtin_type_int32;
1576}
1577
34e8f22d
RE
1578/* Index within `registers' of the first byte of the space for
1579 register N. */
1580
1581static int
1582arm_register_byte (int regnum)
1583{
1584 if (regnum < ARM_F0_REGNUM)
1585 return regnum * INT_REGISTER_RAW_SIZE;
1586 else if (regnum < ARM_PS_REGNUM)
1587 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1588 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1589 else
1590 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1591 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1592 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1593}
1594
1595/* Number of bytes of storage in the actual machine representation for
1596 register N. All registers are 4 bytes, except fp0 - fp7, which are
1597 12 bytes in length. */
1598
1599static int
1600arm_register_raw_size (int regnum)
1601{
1602 if (regnum < ARM_F0_REGNUM)
1603 return INT_REGISTER_RAW_SIZE;
1604 else if (regnum < ARM_FPS_REGNUM)
1605 return FP_REGISTER_RAW_SIZE;
1606 else
1607 return STATUS_REGISTER_SIZE;
1608}
1609
1610/* Number of bytes of storage in a program's representation
1611 for register N. */
1612static int
1613arm_register_virtual_size (int regnum)
1614{
1615 if (regnum < ARM_F0_REGNUM)
1616 return INT_REGISTER_VIRTUAL_SIZE;
1617 else if (regnum < ARM_FPS_REGNUM)
1618 return FP_REGISTER_VIRTUAL_SIZE;
1619 else
1620 return STATUS_REGISTER_SIZE;
1621}
1622
26216b98
AC
1623/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1624static int
1625arm_register_sim_regno (int regnum)
1626{
1627 int reg = regnum;
1628 gdb_assert (reg >= 0 && reg < NUM_REGS);
1629
1630 if (reg < NUM_GREGS)
1631 return SIM_ARM_R0_REGNUM + reg;
1632 reg -= NUM_GREGS;
1633
1634 if (reg < NUM_FREGS)
1635 return SIM_ARM_FP0_REGNUM + reg;
1636 reg -= NUM_FREGS;
1637
1638 if (reg < NUM_SREGS)
1639 return SIM_ARM_FPS_REGNUM + reg;
1640 reg -= NUM_SREGS;
1641
1642 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1643}
34e8f22d 1644
a37b3cc0
AC
1645/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1646 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1647 It is thought that this is is the floating-point register format on
1648 little-endian systems. */
c906108c 1649
ed9a39eb 1650static void
b508a996
RE
1651convert_from_extended (const struct floatformat *fmt, const void *ptr,
1652 void *dbl)
c906108c 1653{
a37b3cc0 1654 DOUBLEST d;
d7449b42 1655 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1656 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1657 else
1658 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1659 ptr, &d);
b508a996 1660 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1661}
1662
34e8f22d 1663static void
b508a996 1664convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1665{
a37b3cc0 1666 DOUBLEST d;
b508a996 1667 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1668 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1669 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1670 else
1671 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1672 &d, dbl);
c906108c 1673}
ed9a39eb 1674
c906108c 1675static int
ed9a39eb 1676condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1677{
1678 if (cond == INST_AL || cond == INST_NV)
1679 return 1;
1680
1681 switch (cond)
1682 {
1683 case INST_EQ:
1684 return ((status_reg & FLAG_Z) != 0);
1685 case INST_NE:
1686 return ((status_reg & FLAG_Z) == 0);
1687 case INST_CS:
1688 return ((status_reg & FLAG_C) != 0);
1689 case INST_CC:
1690 return ((status_reg & FLAG_C) == 0);
1691 case INST_MI:
1692 return ((status_reg & FLAG_N) != 0);
1693 case INST_PL:
1694 return ((status_reg & FLAG_N) == 0);
1695 case INST_VS:
1696 return ((status_reg & FLAG_V) != 0);
1697 case INST_VC:
1698 return ((status_reg & FLAG_V) == 0);
1699 case INST_HI:
1700 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1701 case INST_LS:
1702 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1703 case INST_GE:
1704 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1705 case INST_LT:
1706 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1707 case INST_GT:
1708 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1709 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1710 case INST_LE:
1711 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1712 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1713 }
1714 return 1;
1715}
1716
9512d7fd 1717/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1718#define submask(x) ((1L << ((x) + 1)) - 1)
1719#define bit(obj,st) (((obj) >> (st)) & 1)
1720#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1721#define sbits(obj,st,fn) \
1722 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1723#define BranchDest(addr,instr) \
1724 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1725#define ARM_PC_32 1
1726
1727static unsigned long
ed9a39eb
JM
1728shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1729 unsigned long status_reg)
c906108c
SS
1730{
1731 unsigned long res, shift;
1732 int rm = bits (inst, 0, 3);
1733 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1734
1735 if (bit (inst, 4))
c906108c
SS
1736 {
1737 int rs = bits (inst, 8, 11);
1738 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1739 }
1740 else
1741 shift = bits (inst, 7, 11);
c5aa993b
JM
1742
1743 res = (rm == 15
c906108c 1744 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1745 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1746 : read_register (rm));
1747
1748 switch (shifttype)
1749 {
c5aa993b 1750 case 0: /* LSL */
c906108c
SS
1751 res = shift >= 32 ? 0 : res << shift;
1752 break;
c5aa993b
JM
1753
1754 case 1: /* LSR */
c906108c
SS
1755 res = shift >= 32 ? 0 : res >> shift;
1756 break;
1757
c5aa993b
JM
1758 case 2: /* ASR */
1759 if (shift >= 32)
1760 shift = 31;
c906108c
SS
1761 res = ((res & 0x80000000L)
1762 ? ~((~res) >> shift) : res >> shift);
1763 break;
1764
c5aa993b 1765 case 3: /* ROR/RRX */
c906108c
SS
1766 shift &= 31;
1767 if (shift == 0)
1768 res = (res >> 1) | (carry ? 0x80000000L : 0);
1769 else
c5aa993b 1770 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1771 break;
1772 }
1773
1774 return res & 0xffffffff;
1775}
1776
c906108c
SS
1777/* Return number of 1-bits in VAL. */
1778
1779static int
ed9a39eb 1780bitcount (unsigned long val)
c906108c
SS
1781{
1782 int nbits;
1783 for (nbits = 0; val != 0; nbits++)
c5aa993b 1784 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1785 return nbits;
1786}
1787
34e8f22d 1788CORE_ADDR
ed9a39eb 1789thumb_get_next_pc (CORE_ADDR pc)
c906108c 1790{
c5aa993b 1791 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1792 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1793 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1794 unsigned long offset;
1795
1796 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1797 {
1798 CORE_ADDR sp;
1799
1800 /* Fetch the saved PC from the stack. It's stored above
1801 all of the other registers. */
1802 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1803 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1804 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1805 nextpc = ADDR_BITS_REMOVE (nextpc);
1806 if (nextpc == pc)
1807 error ("Infinite loop detected");
1808 }
1809 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1810 {
34e8f22d 1811 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1812 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1813 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1814 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1815 }
1816 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1817 {
1818 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1819 }
1820 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1821 {
1822 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1823 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1824 nextpc = pc_val + offset;
1825 }
1826
1827 return nextpc;
1828}
1829
34e8f22d 1830CORE_ADDR
ed9a39eb 1831arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1832{
1833 unsigned long pc_val;
1834 unsigned long this_instr;
1835 unsigned long status;
1836 CORE_ADDR nextpc;
1837
1838 if (arm_pc_is_thumb (pc))
1839 return thumb_get_next_pc (pc);
1840
1841 pc_val = (unsigned long) pc;
1842 this_instr = read_memory_integer (pc, 4);
34e8f22d 1843 status = read_register (ARM_PS_REGNUM);
c5aa993b 1844 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1845
1846 if (condition_true (bits (this_instr, 28, 31), status))
1847 {
1848 switch (bits (this_instr, 24, 27))
1849 {
c5aa993b 1850 case 0x0:
94c30b78 1851 case 0x1: /* data processing */
c5aa993b
JM
1852 case 0x2:
1853 case 0x3:
c906108c
SS
1854 {
1855 unsigned long operand1, operand2, result = 0;
1856 unsigned long rn;
1857 int c;
c5aa993b 1858
c906108c
SS
1859 if (bits (this_instr, 12, 15) != 15)
1860 break;
1861
1862 if (bits (this_instr, 22, 25) == 0
c5aa993b 1863 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1864 error ("Illegal update to pc in instruction");
1865
1866 /* Multiply into PC */
1867 c = (status & FLAG_C) ? 1 : 0;
1868 rn = bits (this_instr, 16, 19);
1869 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1870
c906108c
SS
1871 if (bit (this_instr, 25))
1872 {
1873 unsigned long immval = bits (this_instr, 0, 7);
1874 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1875 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1876 & 0xffffffff;
c906108c 1877 }
c5aa993b 1878 else /* operand 2 is a shifted register */
c906108c 1879 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1880
c906108c
SS
1881 switch (bits (this_instr, 21, 24))
1882 {
c5aa993b 1883 case 0x0: /*and */
c906108c
SS
1884 result = operand1 & operand2;
1885 break;
1886
c5aa993b 1887 case 0x1: /*eor */
c906108c
SS
1888 result = operand1 ^ operand2;
1889 break;
1890
c5aa993b 1891 case 0x2: /*sub */
c906108c
SS
1892 result = operand1 - operand2;
1893 break;
1894
c5aa993b 1895 case 0x3: /*rsb */
c906108c
SS
1896 result = operand2 - operand1;
1897 break;
1898
c5aa993b 1899 case 0x4: /*add */
c906108c
SS
1900 result = operand1 + operand2;
1901 break;
1902
c5aa993b 1903 case 0x5: /*adc */
c906108c
SS
1904 result = operand1 + operand2 + c;
1905 break;
1906
c5aa993b 1907 case 0x6: /*sbc */
c906108c
SS
1908 result = operand1 - operand2 + c;
1909 break;
1910
c5aa993b 1911 case 0x7: /*rsc */
c906108c
SS
1912 result = operand2 - operand1 + c;
1913 break;
1914
c5aa993b
JM
1915 case 0x8:
1916 case 0x9:
1917 case 0xa:
1918 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1919 result = (unsigned long) nextpc;
1920 break;
1921
c5aa993b 1922 case 0xc: /*orr */
c906108c
SS
1923 result = operand1 | operand2;
1924 break;
1925
c5aa993b 1926 case 0xd: /*mov */
c906108c
SS
1927 /* Always step into a function. */
1928 result = operand2;
c5aa993b 1929 break;
c906108c 1930
c5aa993b 1931 case 0xe: /*bic */
c906108c
SS
1932 result = operand1 & ~operand2;
1933 break;
1934
c5aa993b 1935 case 0xf: /*mvn */
c906108c
SS
1936 result = ~operand2;
1937 break;
1938 }
1939 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1940
1941 if (nextpc == pc)
1942 error ("Infinite loop detected");
1943 break;
1944 }
c5aa993b
JM
1945
1946 case 0x4:
1947 case 0x5: /* data transfer */
1948 case 0x6:
1949 case 0x7:
c906108c
SS
1950 if (bit (this_instr, 20))
1951 {
1952 /* load */
1953 if (bits (this_instr, 12, 15) == 15)
1954 {
1955 /* rd == pc */
c5aa993b 1956 unsigned long rn;
c906108c 1957 unsigned long base;
c5aa993b 1958
c906108c
SS
1959 if (bit (this_instr, 22))
1960 error ("Illegal update to pc in instruction");
1961
1962 /* byte write to PC */
1963 rn = bits (this_instr, 16, 19);
1964 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1965 if (bit (this_instr, 24))
1966 {
1967 /* pre-indexed */
1968 int c = (status & FLAG_C) ? 1 : 0;
1969 unsigned long offset =
c5aa993b 1970 (bit (this_instr, 25)
ed9a39eb 1971 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1972 : bits (this_instr, 0, 11));
c906108c
SS
1973
1974 if (bit (this_instr, 23))
1975 base += offset;
1976 else
1977 base -= offset;
1978 }
c5aa993b 1979 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1980 4);
c5aa993b 1981
c906108c
SS
1982 nextpc = ADDR_BITS_REMOVE (nextpc);
1983
1984 if (nextpc == pc)
1985 error ("Infinite loop detected");
1986 }
1987 }
1988 break;
c5aa993b
JM
1989
1990 case 0x8:
1991 case 0x9: /* block transfer */
c906108c
SS
1992 if (bit (this_instr, 20))
1993 {
1994 /* LDM */
1995 if (bit (this_instr, 15))
1996 {
1997 /* loading pc */
1998 int offset = 0;
1999
2000 if (bit (this_instr, 23))
2001 {
2002 /* up */
2003 unsigned long reglist = bits (this_instr, 0, 14);
2004 offset = bitcount (reglist) * 4;
c5aa993b 2005 if (bit (this_instr, 24)) /* pre */
c906108c
SS
2006 offset += 4;
2007 }
2008 else if (bit (this_instr, 24))
2009 offset = -4;
c5aa993b 2010
c906108c 2011 {
c5aa993b
JM
2012 unsigned long rn_val =
2013 read_register (bits (this_instr, 16, 19));
c906108c
SS
2014 nextpc =
2015 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 2016 + offset),
c906108c
SS
2017 4);
2018 }
2019 nextpc = ADDR_BITS_REMOVE (nextpc);
2020 if (nextpc == pc)
2021 error ("Infinite loop detected");
2022 }
2023 }
2024 break;
c5aa993b
JM
2025
2026 case 0xb: /* branch & link */
2027 case 0xa: /* branch */
c906108c
SS
2028 {
2029 nextpc = BranchDest (pc, this_instr);
2030
2031 nextpc = ADDR_BITS_REMOVE (nextpc);
2032 if (nextpc == pc)
2033 error ("Infinite loop detected");
2034 break;
2035 }
c5aa993b
JM
2036
2037 case 0xc:
2038 case 0xd:
2039 case 0xe: /* coproc ops */
2040 case 0xf: /* SWI */
c906108c
SS
2041 break;
2042
2043 default:
97e03143 2044 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
2045 return (pc);
2046 }
2047 }
2048
2049 return nextpc;
2050}
2051
9512d7fd
FN
2052/* single_step() is called just before we want to resume the inferior,
2053 if we want to single-step it but there is no hardware or kernel
2054 single-step support. We find the target of the coming instruction
2055 and breakpoint it.
2056
94c30b78
MS
2057 single_step() is also called just after the inferior stops. If we
2058 had set up a simulated single-step, we undo our damage. */
9512d7fd 2059
34e8f22d
RE
2060static void
2061arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 2062{
b8d5e71d 2063 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
2064 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2065
2066 if (insert_bpt)
2067 {
34e8f22d 2068 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2069 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2070 }
2071 else
80fcf3f0 2072 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2073}
9512d7fd 2074
c906108c
SS
2075#include "bfd-in2.h"
2076#include "libcoff.h"
2077
2078static int
ed9a39eb 2079gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2080{
2081 if (arm_pc_is_thumb (memaddr))
2082 {
c5aa993b
JM
2083 static asymbol *asym;
2084 static combined_entry_type ce;
2085 static struct coff_symbol_struct csym;
27cddce2 2086 static struct bfd fake_bfd;
c5aa993b 2087 static bfd_target fake_target;
c906108c
SS
2088
2089 if (csym.native == NULL)
2090 {
da3c6d4a
MS
2091 /* Create a fake symbol vector containing a Thumb symbol.
2092 This is solely so that the code in print_insn_little_arm()
2093 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2094 the presence of a Thumb symbol and switch to decoding
2095 Thumb instructions. */
c5aa993b
JM
2096
2097 fake_target.flavour = bfd_target_coff_flavour;
2098 fake_bfd.xvec = &fake_target;
c906108c 2099 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2100 csym.native = &ce;
2101 csym.symbol.the_bfd = &fake_bfd;
2102 csym.symbol.name = "fake";
2103 asym = (asymbol *) & csym;
c906108c 2104 }
c5aa993b 2105
c906108c 2106 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2107 info->symbols = &asym;
c906108c
SS
2108 }
2109 else
2110 info->symbols = NULL;
c5aa993b 2111
d7449b42 2112 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2113 return print_insn_big_arm (memaddr, info);
2114 else
2115 return print_insn_little_arm (memaddr, info);
2116}
2117
66e810cd
RE
2118/* The following define instruction sequences that will cause ARM
2119 cpu's to take an undefined instruction trap. These are used to
2120 signal a breakpoint to GDB.
2121
2122 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2123 modes. A different instruction is required for each mode. The ARM
2124 cpu's can also be big or little endian. Thus four different
2125 instructions are needed to support all cases.
2126
2127 Note: ARMv4 defines several new instructions that will take the
2128 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2129 not in fact add the new instructions. The new undefined
2130 instructions in ARMv4 are all instructions that had no defined
2131 behaviour in earlier chips. There is no guarantee that they will
2132 raise an exception, but may be treated as NOP's. In practice, it
2133 may only safe to rely on instructions matching:
2134
2135 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2136 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2137 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2138
2139 Even this may only true if the condition predicate is true. The
2140 following use a condition predicate of ALWAYS so it is always TRUE.
2141
2142 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2143 and NetBSD all use a software interrupt rather than an undefined
2144 instruction to force a trap. This can be handled by by the
2145 abi-specific code during establishment of the gdbarch vector. */
2146
2147
d7b486e7
RE
2148/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2149 override these definitions. */
66e810cd
RE
2150#ifndef ARM_LE_BREAKPOINT
2151#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2152#endif
2153#ifndef ARM_BE_BREAKPOINT
2154#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2155#endif
2156#ifndef THUMB_LE_BREAKPOINT
2157#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2158#endif
2159#ifndef THUMB_BE_BREAKPOINT
2160#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2161#endif
2162
2163static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2164static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2165static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2166static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2167
34e8f22d
RE
2168/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2169 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2170 breakpoint should be used. It returns a pointer to a string of
2171 bytes that encode a breakpoint instruction, stores the length of
2172 the string to *lenptr, and adjusts the program counter (if
2173 necessary) to point to the actual memory location where the
c906108c
SS
2174 breakpoint should be inserted. */
2175
34e8f22d
RE
2176/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2177 breakpoints and storing their handles instread of what was in
2178 memory. It is nice that this is the same size as a handle -
94c30b78 2179 otherwise remote-rdp will have to change. */
34e8f22d 2180
ab89facf 2181static const unsigned char *
ed9a39eb 2182arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2183{
66e810cd
RE
2184 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2185
c906108c
SS
2186 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2187 {
66e810cd
RE
2188 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2189 *lenptr = tdep->thumb_breakpoint_size;
2190 return tdep->thumb_breakpoint;
c906108c
SS
2191 }
2192 else
2193 {
66e810cd
RE
2194 *lenptr = tdep->arm_breakpoint_size;
2195 return tdep->arm_breakpoint;
c906108c
SS
2196 }
2197}
ed9a39eb
JM
2198
2199/* Extract from an array REGBUF containing the (raw) register state a
2200 function return value of type TYPE, and copy that, in virtual
2201 format, into VALBUF. */
2202
34e8f22d 2203static void
ed9a39eb 2204arm_extract_return_value (struct type *type,
b508a996
RE
2205 struct regcache *regs,
2206 void *dst)
ed9a39eb 2207{
b508a996
RE
2208 bfd_byte *valbuf = dst;
2209
ed9a39eb 2210 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2211 {
fd50bc42 2212 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2213 {
2214 case ARM_FLOAT_FPA:
b508a996
RE
2215 {
2216 /* The value is in register F0 in internal format. We need to
2217 extract the raw value and then convert it to the desired
2218 internal type. */
2219 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2220
2221 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2222 convert_from_extended (floatformat_from_type (type), tmpbuf,
2223 valbuf);
2224 }
08216dd7
RE
2225 break;
2226
fd50bc42 2227 case ARM_FLOAT_SOFT_FPA:
08216dd7 2228 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2229 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2230 if (TYPE_LENGTH (type) > 4)
2231 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2232 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2233 break;
2234
2235 default:
2236 internal_error
2237 (__FILE__, __LINE__,
2238 "arm_extract_return_value: Floating point model not supported");
2239 break;
2240 }
2241 }
b508a996
RE
2242 else if (TYPE_CODE (type) == TYPE_CODE_INT
2243 || TYPE_CODE (type) == TYPE_CODE_CHAR
2244 || TYPE_CODE (type) == TYPE_CODE_BOOL
2245 || TYPE_CODE (type) == TYPE_CODE_PTR
2246 || TYPE_CODE (type) == TYPE_CODE_REF
2247 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2248 {
2249 /* If the the type is a plain integer, then the access is
2250 straight-forward. Otherwise we have to play around a bit more. */
2251 int len = TYPE_LENGTH (type);
2252 int regno = ARM_A1_REGNUM;
2253 ULONGEST tmp;
2254
2255 while (len > 0)
2256 {
2257 /* By using store_unsigned_integer we avoid having to do
2258 anything special for small big-endian values. */
2259 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2260 store_unsigned_integer (valbuf,
2261 (len > INT_REGISTER_RAW_SIZE
2262 ? INT_REGISTER_RAW_SIZE : len),
2263 tmp);
2264 len -= INT_REGISTER_RAW_SIZE;
2265 valbuf += INT_REGISTER_RAW_SIZE;
2266 }
2267 }
ed9a39eb 2268 else
b508a996
RE
2269 {
2270 /* For a structure or union the behaviour is as if the value had
2271 been stored to word-aligned memory and then loaded into
2272 registers with 32-bit load instruction(s). */
2273 int len = TYPE_LENGTH (type);
2274 int regno = ARM_A1_REGNUM;
2275 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2276
2277 while (len > 0)
2278 {
2279 regcache_cooked_read (regs, regno++, tmpbuf);
2280 memcpy (valbuf, tmpbuf,
2281 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2282 len -= INT_REGISTER_RAW_SIZE;
2283 valbuf += INT_REGISTER_RAW_SIZE;
2284 }
2285 }
34e8f22d
RE
2286}
2287
67255d04
RE
2288/* Extract from an array REGBUF containing the (raw) register state
2289 the address in which a function should return its structure value. */
2290
2291static CORE_ADDR
95f95911 2292arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2293{
95f95911
MS
2294 ULONGEST ret;
2295
2296 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2297 return ret;
67255d04
RE
2298}
2299
2300/* Will a function return an aggregate type in memory or in a
2301 register? Return 0 if an aggregate type can be returned in a
2302 register, 1 if it must be returned in memory. */
2303
2304static int
2305arm_use_struct_convention (int gcc_p, struct type *type)
2306{
2307 int nRc;
2308 register enum type_code code;
2309
2310 /* In the ARM ABI, "integer" like aggregate types are returned in
2311 registers. For an aggregate type to be integer like, its size
2312 must be less than or equal to REGISTER_SIZE and the offset of
2313 each addressable subfield must be zero. Note that bit fields are
2314 not addressable, and all addressable subfields of unions always
2315 start at offset zero.
2316
2317 This function is based on the behaviour of GCC 2.95.1.
2318 See: gcc/arm.c: arm_return_in_memory() for details.
2319
2320 Note: All versions of GCC before GCC 2.95.2 do not set up the
2321 parameters correctly for a function returning the following
2322 structure: struct { float f;}; This should be returned in memory,
2323 not a register. Richard Earnshaw sent me a patch, but I do not
2324 know of any way to detect if a function like the above has been
2325 compiled with the correct calling convention. */
2326
2327 /* All aggregate types that won't fit in a register must be returned
2328 in memory. */
2329 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2330 {
2331 return 1;
2332 }
2333
2334 /* The only aggregate types that can be returned in a register are
2335 structs and unions. Arrays must be returned in memory. */
2336 code = TYPE_CODE (type);
2337 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2338 {
2339 return 1;
2340 }
2341
2342 /* Assume all other aggregate types can be returned in a register.
2343 Run a check for structures, unions and arrays. */
2344 nRc = 0;
2345
2346 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2347 {
2348 int i;
2349 /* Need to check if this struct/union is "integer" like. For
2350 this to be true, its size must be less than or equal to
2351 REGISTER_SIZE and the offset of each addressable subfield
2352 must be zero. Note that bit fields are not addressable, and
2353 unions always start at offset zero. If any of the subfields
2354 is a floating point type, the struct/union cannot be an
2355 integer type. */
2356
2357 /* For each field in the object, check:
2358 1) Is it FP? --> yes, nRc = 1;
2359 2) Is it addressable (bitpos != 0) and
2360 not packed (bitsize == 0)?
2361 --> yes, nRc = 1
2362 */
2363
2364 for (i = 0; i < TYPE_NFIELDS (type); i++)
2365 {
2366 enum type_code field_type_code;
2367 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2368
2369 /* Is it a floating point type field? */
2370 if (field_type_code == TYPE_CODE_FLT)
2371 {
2372 nRc = 1;
2373 break;
2374 }
2375
2376 /* If bitpos != 0, then we have to care about it. */
2377 if (TYPE_FIELD_BITPOS (type, i) != 0)
2378 {
2379 /* Bitfields are not addressable. If the field bitsize is
2380 zero, then the field is not packed. Hence it cannot be
2381 a bitfield or any other packed type. */
2382 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2383 {
2384 nRc = 1;
2385 break;
2386 }
2387 }
2388 }
2389 }
2390
2391 return nRc;
2392}
2393
34e8f22d
RE
2394/* Write into appropriate registers a function return value of type
2395 TYPE, given in virtual format. */
2396
2397static void
b508a996
RE
2398arm_store_return_value (struct type *type, struct regcache *regs,
2399 const void *src)
34e8f22d 2400{
b508a996
RE
2401 const bfd_byte *valbuf = src;
2402
34e8f22d
RE
2403 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2404 {
7bbcf283 2405 char buf[ARM_MAX_REGISTER_RAW_SIZE];
34e8f22d 2406
fd50bc42 2407 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2408 {
2409 case ARM_FLOAT_FPA:
2410
b508a996
RE
2411 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2412 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2413 break;
2414
fd50bc42 2415 case ARM_FLOAT_SOFT_FPA:
08216dd7 2416 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2417 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2418 if (TYPE_LENGTH (type) > 4)
2419 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2420 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2421 break;
2422
2423 default:
2424 internal_error
2425 (__FILE__, __LINE__,
2426 "arm_store_return_value: Floating point model not supported");
2427 break;
2428 }
34e8f22d 2429 }
b508a996
RE
2430 else if (TYPE_CODE (type) == TYPE_CODE_INT
2431 || TYPE_CODE (type) == TYPE_CODE_CHAR
2432 || TYPE_CODE (type) == TYPE_CODE_BOOL
2433 || TYPE_CODE (type) == TYPE_CODE_PTR
2434 || TYPE_CODE (type) == TYPE_CODE_REF
2435 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2436 {
2437 if (TYPE_LENGTH (type) <= 4)
2438 {
2439 /* Values of one word or less are zero/sign-extended and
2440 returned in r0. */
2441 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2442 LONGEST val = unpack_long (type, valbuf);
2443
2444 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2445 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2446 }
2447 else
2448 {
2449 /* Integral values greater than one word are stored in consecutive
2450 registers starting with r0. This will always be a multiple of
2451 the regiser size. */
2452 int len = TYPE_LENGTH (type);
2453 int regno = ARM_A1_REGNUM;
2454
2455 while (len > 0)
2456 {
2457 regcache_cooked_write (regs, regno++, valbuf);
2458 len -= INT_REGISTER_RAW_SIZE;
2459 valbuf += INT_REGISTER_RAW_SIZE;
2460 }
2461 }
2462 }
34e8f22d 2463 else
b508a996
RE
2464 {
2465 /* For a structure or union the behaviour is as if the value had
2466 been stored to word-aligned memory and then loaded into
2467 registers with 32-bit load instruction(s). */
2468 int len = TYPE_LENGTH (type);
2469 int regno = ARM_A1_REGNUM;
2470 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2471
2472 while (len > 0)
2473 {
2474 memcpy (tmpbuf, valbuf,
2475 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2476 regcache_cooked_write (regs, regno++, tmpbuf);
2477 len -= INT_REGISTER_RAW_SIZE;
2478 valbuf += INT_REGISTER_RAW_SIZE;
2479 }
2480 }
34e8f22d
RE
2481}
2482
9df628e0
RE
2483static int
2484arm_get_longjmp_target (CORE_ADDR *pc)
2485{
2486 CORE_ADDR jb_addr;
2487 char buf[INT_REGISTER_RAW_SIZE];
2488 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2489
2490 jb_addr = read_register (ARM_A1_REGNUM);
2491
2492 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2493 INT_REGISTER_RAW_SIZE))
2494 return 0;
2495
2496 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2497 return 1;
2498}
2499
ed9a39eb 2500/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2501
2502int
ed9a39eb 2503arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2504{
2505 CORE_ADDR start_addr;
2506
ed9a39eb
JM
2507 /* Find the starting address of the function containing the PC. If
2508 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2509 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2510 &start_addr, NULL))
c906108c
SS
2511 return 0;
2512
2513 return strncmp (name, "_call_via_r", 11) == 0;
2514}
2515
ed9a39eb
JM
2516/* If PC is in a Thumb call or return stub, return the address of the
2517 target PC, which is in a register. The thunk functions are called
2518 _called_via_xx, where x is the register name. The possible names
2519 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2520
2521CORE_ADDR
ed9a39eb 2522arm_skip_stub (CORE_ADDR pc)
c906108c 2523{
c5aa993b 2524 char *name;
c906108c
SS
2525 CORE_ADDR start_addr;
2526
2527 /* Find the starting address and name of the function containing the PC. */
2528 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2529 return 0;
2530
2531 /* Call thunks always start with "_call_via_". */
2532 if (strncmp (name, "_call_via_", 10) == 0)
2533 {
ed9a39eb
JM
2534 /* Use the name suffix to determine which register contains the
2535 target PC. */
c5aa993b
JM
2536 static char *table[15] =
2537 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2538 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2539 };
c906108c
SS
2540 int regno;
2541
2542 for (regno = 0; regno <= 14; regno++)
2543 if (strcmp (&name[10], table[regno]) == 0)
2544 return read_register (regno);
2545 }
ed9a39eb 2546
c5aa993b 2547 return 0; /* not a stub */
c906108c
SS
2548}
2549
afd7eef0
RE
2550static void
2551set_arm_command (char *args, int from_tty)
2552{
2553 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2554 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2555}
2556
2557static void
2558show_arm_command (char *args, int from_tty)
2559{
26304000 2560 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2561}
2562
fd50bc42
RE
2563enum arm_float_model
2564arm_get_fp_model (struct gdbarch *gdbarch)
2565{
2566 if (arm_fp_model == ARM_FLOAT_AUTO)
2567 return gdbarch_tdep (gdbarch)->fp_model;
2568
2569 return arm_fp_model;
2570}
2571
2572static void
2573arm_set_fp (struct gdbarch *gdbarch)
2574{
2575 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2576
2577 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2578 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2579 {
2580 set_gdbarch_double_format (gdbarch,
2581 &floatformat_ieee_double_littlebyte_bigword);
2582 set_gdbarch_long_double_format
2583 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2584 }
2585 else
2586 {
2587 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2588 set_gdbarch_long_double_format (gdbarch,
2589 &floatformat_ieee_double_little);
2590 }
2591}
2592
2593static void
2594set_fp_model_sfunc (char *args, int from_tty,
2595 struct cmd_list_element *c)
2596{
2597 enum arm_float_model fp_model;
2598
2599 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2600 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2601 {
2602 arm_fp_model = fp_model;
2603 break;
2604 }
2605
2606 if (fp_model == ARM_FLOAT_LAST)
2607 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2608 current_fp_model);
2609
2610 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2611 arm_set_fp (current_gdbarch);
2612}
2613
2614static void
2615show_fp_model (char *args, int from_tty,
2616 struct cmd_list_element *c)
2617{
2618 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2619
2620 if (arm_fp_model == ARM_FLOAT_AUTO
2621 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2622 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2623 fp_model_strings[tdep->fp_model]);
2624}
2625
afd7eef0
RE
2626/* If the user changes the register disassembly style used for info
2627 register and other commands, we have to also switch the style used
2628 in opcodes for disassembly output. This function is run in the "set
2629 arm disassembly" command, and does that. */
bc90b915
FN
2630
2631static void
afd7eef0 2632set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2633 struct cmd_list_element *c)
2634{
afd7eef0 2635 set_disassembly_style ();
bc90b915
FN
2636}
2637\f
966fbf70 2638/* Return the ARM register name corresponding to register I. */
a208b0cb 2639static const char *
34e8f22d 2640arm_register_name (int i)
966fbf70
RE
2641{
2642 return arm_register_names[i];
2643}
2644
bc90b915 2645static void
afd7eef0 2646set_disassembly_style (void)
bc90b915
FN
2647{
2648 const char *setname, *setdesc, **regnames;
2649 int numregs, j;
2650
afd7eef0 2651 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2652 int current = 0;
2653 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2654 while ((disassembly_style != setname)
2655 && (current < num_disassembly_options))
bc90b915
FN
2656 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2657 current_option = current;
2658
94c30b78 2659 /* Fill our copy. */
bc90b915
FN
2660 for (j = 0; j < numregs; j++)
2661 arm_register_names[j] = (char *) regnames[j];
2662
94c30b78 2663 /* Adjust case. */
34e8f22d 2664 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2665 {
34e8f22d
RE
2666 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2667 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2668 }
2669 else
2670 {
34e8f22d
RE
2671 arm_register_names[ARM_FPS_REGNUM] = "fps";
2672 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2673 }
2674
94c30b78 2675 /* Synchronize the disassembler. */
bc90b915
FN
2676 set_arm_regname_option (current);
2677}
2678
afd7eef0
RE
2679/* arm_othernames implements the "othernames" command. This is deprecated
2680 by the "set arm disassembly" command. */
bc90b915
FN
2681
2682static void
2683arm_othernames (char *names, int n)
2684{
94c30b78 2685 /* Circle through the various flavors. */
afd7eef0 2686 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2687
afd7eef0
RE
2688 disassembly_style = valid_disassembly_styles[current_option];
2689 set_disassembly_style ();
bc90b915
FN
2690}
2691
a42dd537
KB
2692/* Fetch, and possibly build, an appropriate link_map_offsets structure
2693 for ARM linux targets using the struct offsets defined in <link.h>.
2694 Note, however, that link.h is not actually referred to in this file.
2695 Instead, the relevant structs offsets were obtained from examining
2696 link.h. (We can't refer to link.h from this file because the host
2697 system won't necessarily have it, or if it does, the structs which
94c30b78 2698 it defines will refer to the host system, not the target). */
a42dd537
KB
2699
2700struct link_map_offsets *
2701arm_linux_svr4_fetch_link_map_offsets (void)
2702{
2703 static struct link_map_offsets lmo;
2704 static struct link_map_offsets *lmp = 0;
2705
2706 if (lmp == 0)
2707 {
2708 lmp = &lmo;
2709
2710 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
94c30b78 2711 need. */
a42dd537
KB
2712
2713 lmo.r_map_offset = 4;
2714 lmo.r_map_size = 4;
2715
2716 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
94c30b78 2717 need. */
a42dd537
KB
2718
2719 lmo.l_addr_offset = 0;
2720 lmo.l_addr_size = 4;
2721
2722 lmo.l_name_offset = 4;
2723 lmo.l_name_size = 4;
2724
2725 lmo.l_next_offset = 12;
2726 lmo.l_next_size = 4;
2727
2728 lmo.l_prev_offset = 16;
2729 lmo.l_prev_size = 4;
2730 }
2731
2732 return lmp;
2733}
2734
082fc60d
RE
2735/* Test whether the coff symbol specific value corresponds to a Thumb
2736 function. */
2737
2738static int
2739coff_sym_is_thumb (int val)
2740{
2741 return (val == C_THUMBEXT ||
2742 val == C_THUMBSTAT ||
2743 val == C_THUMBEXTFUNC ||
2744 val == C_THUMBSTATFUNC ||
2745 val == C_THUMBLABEL);
2746}
2747
2748/* arm_coff_make_msymbol_special()
2749 arm_elf_make_msymbol_special()
2750
2751 These functions test whether the COFF or ELF symbol corresponds to
2752 an address in thumb code, and set a "special" bit in a minimal
2753 symbol to indicate that it does. */
2754
34e8f22d 2755static void
082fc60d
RE
2756arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2757{
2758 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2759 STT_ARM_TFUNC). */
2760 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2761 == STT_LOPROC)
2762 MSYMBOL_SET_SPECIAL (msym);
2763}
2764
34e8f22d 2765static void
082fc60d
RE
2766arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2767{
2768 if (coff_sym_is_thumb (val))
2769 MSYMBOL_SET_SPECIAL (msym);
2770}
2771
97e03143 2772\f
70f80edf
JT
2773static enum gdb_osabi
2774arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2775{
70f80edf
JT
2776 unsigned int elfosabi, eflags;
2777 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2778
70f80edf 2779 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2780
70f80edf 2781 switch (elfosabi)
97e03143 2782 {
70f80edf
JT
2783 case ELFOSABI_NONE:
2784 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2785 file are conforming to the base specification for that machine
2786 (there are no OS-specific extensions). In order to determine the
2787 real OS in use we must look for OS notes that have been added. */
2788 bfd_map_over_sections (abfd,
2789 generic_elf_osabi_sniff_abi_tag_sections,
2790 &osabi);
2791 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2792 {
70f80edf
JT
2793 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2794 field for more information. */
2795 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2796 switch (eflags)
97e03143 2797 {
70f80edf
JT
2798 case EF_ARM_EABI_VER1:
2799 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2800 break;
2801
70f80edf
JT
2802 case EF_ARM_EABI_VER2:
2803 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2804 break;
2805
70f80edf
JT
2806 case EF_ARM_EABI_UNKNOWN:
2807 /* Assume GNU tools. */
2808 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2809 break;
2810
70f80edf
JT
2811 default:
2812 internal_error (__FILE__, __LINE__,
2813 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2814 "version 0x%x", eflags);
97e03143
RE
2815 }
2816 }
70f80edf 2817 break;
97e03143 2818
70f80edf
JT
2819 case ELFOSABI_ARM:
2820 /* GNU tools use this value. Check note sections in this case,
2821 as well. */
97e03143 2822 bfd_map_over_sections (abfd,
70f80edf
JT
2823 generic_elf_osabi_sniff_abi_tag_sections,
2824 &osabi);
2825 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2826 {
70f80edf
JT
2827 /* Assume APCS ABI. */
2828 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2829 }
2830 break;
2831
97e03143 2832 case ELFOSABI_FREEBSD:
70f80edf
JT
2833 osabi = GDB_OSABI_FREEBSD_ELF;
2834 break;
97e03143 2835
70f80edf
JT
2836 case ELFOSABI_NETBSD:
2837 osabi = GDB_OSABI_NETBSD_ELF;
2838 break;
97e03143 2839
70f80edf
JT
2840 case ELFOSABI_LINUX:
2841 osabi = GDB_OSABI_LINUX;
2842 break;
97e03143
RE
2843 }
2844
70f80edf 2845 return osabi;
97e03143
RE
2846}
2847
70f80edf 2848\f
da3c6d4a
MS
2849/* Initialize the current architecture based on INFO. If possible,
2850 re-use an architecture from ARCHES, which is a list of
2851 architectures already created during this debugging session.
97e03143 2852
da3c6d4a
MS
2853 Called e.g. at program startup, when reading a core file, and when
2854 reading a binary file. */
97e03143 2855
39bbf761
RE
2856static struct gdbarch *
2857arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2858{
97e03143 2859 struct gdbarch_tdep *tdep;
39bbf761
RE
2860 struct gdbarch *gdbarch;
2861
97e03143 2862 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2863
4be87837 2864 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2865 {
4be87837 2866 switch (bfd_get_flavour (info.abfd))
97e03143 2867 {
4be87837
DJ
2868 case bfd_target_aout_flavour:
2869 /* Assume it's an old APCS-style ABI. */
2870 info.osabi = GDB_OSABI_ARM_APCS;
2871 break;
97e03143 2872
4be87837
DJ
2873 case bfd_target_coff_flavour:
2874 /* Assume it's an old APCS-style ABI. */
2875 /* XXX WinCE? */
2876 info.osabi = GDB_OSABI_ARM_APCS;
2877 break;
97e03143 2878
4be87837
DJ
2879 default:
2880 /* Leave it as "unknown". */
50ceaba5 2881 break;
97e03143
RE
2882 }
2883 }
2884
4be87837
DJ
2885 /* If there is already a candidate, use it. */
2886 arches = gdbarch_list_lookup_by_info (arches, &info);
2887 if (arches != NULL)
2888 return arches->gdbarch;
97e03143
RE
2889
2890 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2891 gdbarch = gdbarch_alloc (&info, tdep);
2892
a5afb99f
AC
2893 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2894 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2895 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2896
fd50bc42
RE
2897 /* We used to default to FPA for generic ARM, but almost nobody uses that
2898 now, and we now provide a way for the user to force the model. So
2899 default to the most useful variant. */
2900 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2901
2902 /* Breakpoints. */
67255d04
RE
2903 switch (info.byte_order)
2904 {
2905 case BFD_ENDIAN_BIG:
66e810cd
RE
2906 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2907 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2908 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2909 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2910
67255d04
RE
2911 break;
2912
2913 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2914 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2915 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2916 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2917 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2918
67255d04
RE
2919 break;
2920
2921 default:
2922 internal_error (__FILE__, __LINE__,
2923 "arm_gdbarch_init: bad byte order for float format");
2924 }
2925
d7b486e7
RE
2926 /* On ARM targets char defaults to unsigned. */
2927 set_gdbarch_char_signed (gdbarch, 0);
2928
9df628e0 2929 /* This should be low enough for everything. */
97e03143 2930 tdep->lowest_pc = 0x20;
94c30b78 2931 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2932
848cfffb
AC
2933 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2934 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
848cfffb 2935
2dd604e7 2936 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2937
148754e5 2938 /* Frame handling. */
618ce49f 2939 set_gdbarch_deprecated_frame_chain_valid (gdbarch, arm_frame_chain_valid);
e9582e71 2940 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
148754e5 2941 set_gdbarch_read_fp (gdbarch, arm_read_fp);
618ce49f 2942 set_gdbarch_deprecated_frame_chain (gdbarch, arm_frame_chain);
148754e5
RE
2943 set_gdbarch_frameless_function_invocation
2944 (gdbarch, arm_frameless_function_invocation);
8bedc050 2945 set_gdbarch_deprecated_frame_saved_pc (gdbarch, arm_frame_saved_pc);
148754e5
RE
2946 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2947 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2948 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2949 set_gdbarch_frame_args_skip (gdbarch, 0);
f30ee0bc 2950 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
749b82f6 2951 set_gdbarch_deprecated_pop_frame (gdbarch, arm_pop_frame);
148754e5 2952
34e8f22d
RE
2953 /* Address manipulation. */
2954 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2955 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2956
2957 /* Offset from address of function to start of its code. */
2958 set_gdbarch_function_start_offset (gdbarch, 0);
2959
2960 /* Advance PC across function entry code. */
2961 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2962
2963 /* Get the PC when a frame might not be available. */
6913c89a 2964 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2965
2966 /* The stack grows downward. */
2967 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2968
2969 /* Breakpoint manipulation. */
2970 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2971 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2972
2973 /* Information about registers, etc. */
2974 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
94c30b78 2975 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2976 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2977 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2978 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2979 set_gdbarch_register_bytes (gdbarch,
2980 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2981 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2982 + NUM_SREGS * STATUS_REGISTER_SIZE));
2983 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2984 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2985 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
a0ed5532
AC
2986 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2987 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
34e8f22d
RE
2988 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2989
26216b98
AC
2990 /* Internal <-> external register number maps. */
2991 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2992
34e8f22d
RE
2993 /* Integer registers are 4 bytes. */
2994 set_gdbarch_register_size (gdbarch, 4);
2995 set_gdbarch_register_name (gdbarch, arm_register_name);
2996
2997 /* Returning results. */
b508a996
RE
2998 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2999 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
67255d04 3000 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
95f95911 3001 set_gdbarch_extract_struct_value_address (gdbarch,
67255d04 3002 arm_extract_struct_value_address);
34e8f22d
RE
3003
3004 /* Single stepping. */
3005 /* XXX For an RDI target we should ask the target if it can single-step. */
3006 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
3007
03d48a7d
RE
3008 /* Disassembly. */
3009 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3010
34e8f22d
RE
3011 /* Minsymbol frobbing. */
3012 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3013 set_gdbarch_coff_make_msymbol_special (gdbarch,
3014 arm_coff_make_msymbol_special);
3015
97e03143 3016 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3017 gdbarch_init_osabi (info, gdbarch);
97e03143
RE
3018
3019 /* Now we have tuned the configuration, set a few final things,
3020 based on what the OS ABI has told us. */
3021
9df628e0
RE
3022 if (tdep->jb_pc >= 0)
3023 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3024
08216dd7
RE
3025 /* Floating point sizes and format. */
3026 switch (info.byte_order)
3027 {
3028 case BFD_ENDIAN_BIG:
3029 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
3030 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
3031 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
3032
3033 break;
3034
3035 case BFD_ENDIAN_LITTLE:
3036 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 3037 arm_set_fp (gdbarch);
08216dd7
RE
3038 break;
3039
3040 default:
3041 internal_error (__FILE__, __LINE__,
3042 "arm_gdbarch_init: bad byte order for float format");
3043 }
3044
39bbf761
RE
3045 return gdbarch;
3046}
3047
97e03143
RE
3048static void
3049arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3050{
3051 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3052
3053 if (tdep == NULL)
3054 return;
3055
97e03143
RE
3056 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3057 (unsigned long) tdep->lowest_pc);
3058}
3059
3060static void
3061arm_init_abi_eabi_v1 (struct gdbarch_info info,
3062 struct gdbarch *gdbarch)
3063{
3064 /* Place-holder. */
3065}
3066
3067static void
3068arm_init_abi_eabi_v2 (struct gdbarch_info info,
3069 struct gdbarch *gdbarch)
3070{
3071 /* Place-holder. */
3072}
3073
3074static void
3075arm_init_abi_apcs (struct gdbarch_info info,
3076 struct gdbarch *gdbarch)
3077{
3078 /* Place-holder. */
3079}
3080
c906108c 3081void
ed9a39eb 3082_initialize_arm_tdep (void)
c906108c 3083{
bc90b915
FN
3084 struct ui_file *stb;
3085 long length;
26304000 3086 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3087 const char *setname;
3088 const char *setdesc;
3089 const char **regnames;
bc90b915
FN
3090 int numregs, i, j;
3091 static char *helptext;
085dd6e6 3092
39bbf761 3093 if (GDB_MULTI_ARCH)
97e03143
RE
3094 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3095
70f80edf
JT
3096 /* Register an ELF OS ABI sniffer for ARM binaries. */
3097 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3098 bfd_target_elf_flavour,
3099 arm_elf_osabi_sniffer);
3100
97e03143 3101 /* Register some ABI variants for embedded systems. */
05816f70 3102 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 3103 arm_init_abi_eabi_v1);
05816f70 3104 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 3105 arm_init_abi_eabi_v2);
05816f70 3106 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 3107 arm_init_abi_apcs);
39bbf761 3108
94c30b78 3109 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3110 num_disassembly_options = get_arm_regname_num_options ();
3111
3112 /* Add root prefix command for all "set arm"/"show arm" commands. */
3113 add_prefix_cmd ("arm", no_class, set_arm_command,
3114 "Various ARM-specific commands.",
3115 &setarmcmdlist, "set arm ", 0, &setlist);
3116
3117 add_prefix_cmd ("arm", no_class, show_arm_command,
3118 "Various ARM-specific commands.",
3119 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3120
94c30b78 3121 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3122 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3123
94c30b78 3124 /* Begin creating the help text. */
bc90b915 3125 stb = mem_fileopen ();
afd7eef0
RE
3126 fprintf_unfiltered (stb, "Set the disassembly style.\n"
3127 "The valid values are:\n");
ed9a39eb 3128
94c30b78 3129 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
3130 valid_disassembly_styles
3131 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3132 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3133 {
3134 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3135 valid_disassembly_styles[i] = setname;
bc90b915
FN
3136 fprintf_unfiltered (stb, "%s - %s\n", setname,
3137 setdesc);
94c30b78 3138 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
3139 if (!strcmp (setname, "std"))
3140 {
afd7eef0 3141 disassembly_style = setname;
bc90b915
FN
3142 current_option = i;
3143 for (j = 0; j < numregs; j++)
3144 arm_register_names[j] = (char *) regnames[j];
3145 set_arm_regname_option (i);
3146 }
3147 }
94c30b78 3148 /* Mark the end of valid options. */
afd7eef0 3149 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3150
94c30b78 3151 /* Finish the creation of the help text. */
bc90b915
FN
3152 fprintf_unfiltered (stb, "The default is \"std\".");
3153 helptext = ui_file_xstrdup (stb, &length);
3154 ui_file_delete (stb);
ed9a39eb 3155
afd7eef0 3156 /* Add the deprecated disassembly-flavor command. */
26304000 3157 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
3158 valid_disassembly_styles,
3159 &disassembly_style,
bc90b915 3160 helptext,
ed9a39eb 3161 &setlist);
26304000
RE
3162 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3163 deprecate_cmd (new_set, "set arm disassembly");
3164 deprecate_cmd (add_show_from_set (new_set, &showlist),
afd7eef0
RE
3165 "show arm disassembly");
3166
3167 /* And now add the new interface. */
30757f90 3168 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
3169 valid_disassembly_styles, &disassembly_style,
3170 helptext, &setarmcmdlist);
3171
fd50bc42 3172 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
26304000
RE
3173 add_show_from_set (new_set, &showarmcmdlist);
3174
3175 add_setshow_cmd_full ("apcs32", no_class,
3176 var_boolean, (char *) &arm_apcs_32,
3177 "Set usage of ARM 32-bit mode.",
3178 "Show usage of ARM 32-bit mode.",
3179 NULL, NULL,
3180 &setlist, &showlist, &new_set, &new_show);
3181 deprecate_cmd (new_set, "set arm apcs32");
3182 deprecate_cmd (new_show, "show arm apcs32");
3183
3184 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3185 "Set usage of ARM 32-bit mode. "
3186 "When off, a 26-bit PC will be used.",
3187 "Show usage of ARM 32-bit mode. "
3188 "When off, a 26-bit PC will be used.",
3189 NULL, NULL,
3190 &setarmcmdlist, &showarmcmdlist);
c906108c 3191
fd50bc42
RE
3192 /* Add a command to allow the user to force the FPU model. */
3193 new_set = add_set_enum_cmd
3194 ("fpu", no_class, fp_model_strings, &current_fp_model,
3195 "Set the floating point type.\n"
3196 "auto - Determine the FP typefrom the OS-ABI.\n"
3197 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
3198 "fpa - FPA co-processor (GCC compiled).\n"
3199 "softvfp - Software FP with pure-endian doubles.\n"
3200 "vfp - VFP co-processor.",
3201 &setarmcmdlist);
3202 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3203 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3204
94c30b78 3205 /* Add the deprecated "othernames" command. */
afd7eef0
RE
3206 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3207 "Switch to the next set of register names."),
3208 "set arm disassembly");
c3b4394c 3209
6529d2dd 3210 /* Debugging flag. */
26304000
RE
3211 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3212 "Set ARM debugging. "
3213 "When on, arm-specific debugging is enabled.",
3214 "Show ARM debugging. "
3215 "When on, arm-specific debugging is enabled.",
3216 NULL, NULL,
3217 &setdebuglist, &showdebuglist);
c906108c 3218}
This page took 0.412103 seconds and 4 git commands to generate.