Update i386 and amd64 ports for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
9b254dd1
DJ
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
842e1f1e
DJ
39#include "objfiles.h"
40#include "dwarf2-frame.h"
e4c16157 41#include "gdbtypes.h"
29d73ae4 42#include "prologue-value.h"
123dc839
DJ
43#include "target-descriptions.h"
44#include "user-regs.h"
34e8f22d
RE
45
46#include "arm-tdep.h"
26216b98 47#include "gdb/sim-arm.h"
34e8f22d 48
082fc60d
RE
49#include "elf-bfd.h"
50#include "coff/internal.h"
97e03143 51#include "elf/arm.h"
c906108c 52
26216b98
AC
53#include "gdb_assert.h"
54
6529d2dd
AC
55static int arm_debug;
56
082fc60d
RE
57/* Macros for setting and testing a bit in a minimal symbol that marks
58 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 59 is used for this purpose.
082fc60d
RE
60
61 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 62 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
63
64#define MSYMBOL_SET_SPECIAL(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68#define MSYMBOL_IS_SPECIAL(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
afd7eef0
RE
71/* The list of available "set arm ..." and "show arm ..." commands. */
72static struct cmd_list_element *setarmcmdlist = NULL;
73static struct cmd_list_element *showarmcmdlist = NULL;
74
fd50bc42
RE
75/* The type of floating-point to use. Keep this in sync with enum
76 arm_float_model, and the help string in _initialize_arm_tdep. */
77static const char *fp_model_strings[] =
78{
79 "auto",
80 "softfpa",
81 "fpa",
82 "softvfp",
28e97307
DJ
83 "vfp",
84 NULL
fd50bc42
RE
85};
86
87/* A variable that can be configured by the user. */
88static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
89static const char *current_fp_model = "auto";
90
28e97307
DJ
91/* The ABI to use. Keep this in sync with arm_abi_kind. */
92static const char *arm_abi_strings[] =
93{
94 "auto",
95 "APCS",
96 "AAPCS",
97 NULL
98};
99
100/* A variable that can be configured by the user. */
101static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
102static const char *arm_abi_string = "auto";
103
94c30b78 104/* Number of different reg name sets (options). */
afd7eef0 105static int num_disassembly_options;
bc90b915 106
123dc839
DJ
107/* The standard register names, and all the valid aliases for them. */
108static const struct
109{
110 const char *name;
111 int regnum;
112} arm_register_aliases[] = {
113 /* Basic register numbers. */
114 { "r0", 0 },
115 { "r1", 1 },
116 { "r2", 2 },
117 { "r3", 3 },
118 { "r4", 4 },
119 { "r5", 5 },
120 { "r6", 6 },
121 { "r7", 7 },
122 { "r8", 8 },
123 { "r9", 9 },
124 { "r10", 10 },
125 { "r11", 11 },
126 { "r12", 12 },
127 { "r13", 13 },
128 { "r14", 14 },
129 { "r15", 15 },
130 /* Synonyms (argument and variable registers). */
131 { "a1", 0 },
132 { "a2", 1 },
133 { "a3", 2 },
134 { "a4", 3 },
135 { "v1", 4 },
136 { "v2", 5 },
137 { "v3", 6 },
138 { "v4", 7 },
139 { "v5", 8 },
140 { "v6", 9 },
141 { "v7", 10 },
142 { "v8", 11 },
143 /* Other platform-specific names for r9. */
144 { "sb", 9 },
145 { "tr", 9 },
146 /* Special names. */
147 { "ip", 12 },
148 { "sp", 13 },
149 { "lr", 14 },
150 { "pc", 15 },
151 /* Names used by GCC (not listed in the ARM EABI). */
152 { "sl", 10 },
153 { "fp", 11 },
154 /* A special name from the older ATPCS. */
155 { "wr", 7 },
156};
bc90b915 157
123dc839 158static const char *const arm_register_names[] =
da59e081
JM
159{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
160 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
161 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
162 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
163 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
164 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 165 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 166
afd7eef0
RE
167/* Valid register name styles. */
168static const char **valid_disassembly_styles;
ed9a39eb 169
afd7eef0
RE
170/* Disassembly style to use. Default to "std" register names. */
171static const char *disassembly_style;
96baa820 172
ed9a39eb 173/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
174 style. */
175static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 176 struct cmd_list_element *);
afd7eef0 177static void set_disassembly_style (void);
ed9a39eb 178
b508a996 179static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 180 void *, int);
b508a996 181static void convert_to_extended (const struct floatformat *, void *,
be8626e0 182 const void *, int);
ed9a39eb 183
9b8d791a 184struct arm_prologue_cache
c3b4394c 185{
eb5492fa
DJ
186 /* The stack pointer at the time this frame was created; i.e. the
187 caller's stack pointer when this function was called. It is used
188 to identify this frame. */
189 CORE_ADDR prev_sp;
190
4be43953
DJ
191 /* The frame base for this frame is just prev_sp - frame size.
192 FRAMESIZE is the distance from the frame pointer to the
193 initial stack pointer. */
eb5492fa 194
c3b4394c 195 int framesize;
eb5492fa
DJ
196
197 /* The register used to hold the frame pointer for this frame. */
c3b4394c 198 int framereg;
eb5492fa
DJ
199
200 /* Saved register offsets. */
201 struct trad_frame_saved_reg *saved_regs;
c3b4394c 202};
ed9a39eb 203
bc90b915
FN
204/* Addresses for calling Thumb functions have the bit 0 set.
205 Here are some macros to test, set, or clear bit 0 of addresses. */
206#define IS_THUMB_ADDR(addr) ((addr) & 1)
207#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
208#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
209
94c30b78 210/* Set to true if the 32-bit mode is in use. */
c906108c
SS
211
212int arm_apcs_32 = 1;
213
ed9a39eb
JM
214/* Determine if the program counter specified in MEMADDR is in a Thumb
215 function. */
c906108c 216
ad527d2e 217static int
2a451106 218arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 219{
c5aa993b 220 struct minimal_symbol *sym;
c906108c 221
ed9a39eb 222 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
223 if (IS_THUMB_ADDR (memaddr))
224 return 1;
225
ed9a39eb 226 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
227 sym = lookup_minimal_symbol_by_pc (memaddr);
228 if (sym)
229 {
c5aa993b 230 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
231 }
232 else
ed9a39eb
JM
233 {
234 return 0;
235 }
c906108c
SS
236}
237
181c1381 238/* Remove useless bits from addresses in a running program. */
34e8f22d 239static CORE_ADDR
ed9a39eb 240arm_addr_bits_remove (CORE_ADDR val)
c906108c 241{
a3a2ee65 242 if (arm_apcs_32)
dd6be234 243 return UNMAKE_THUMB_ADDR (val);
c906108c 244 else
a3a2ee65 245 return (val & 0x03fffffc);
c906108c
SS
246}
247
181c1381
RE
248/* When reading symbols, we need to zap the low bit of the address,
249 which may be set to 1 for Thumb functions. */
34e8f22d 250static CORE_ADDR
181c1381
RE
251arm_smash_text_address (CORE_ADDR val)
252{
253 return val & ~1;
254}
255
29d73ae4
DJ
256/* Analyze a Thumb prologue, looking for a recognizable stack frame
257 and frame pointer. Scan until we encounter a store that could
258 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
259
260static CORE_ADDR
29d73ae4
DJ
261thumb_analyze_prologue (struct gdbarch *gdbarch,
262 CORE_ADDR start, CORE_ADDR limit,
263 struct arm_prologue_cache *cache)
c906108c 264{
29d73ae4
DJ
265 int i;
266 pv_t regs[16];
267 struct pv_area *stack;
268 struct cleanup *back_to;
269 CORE_ADDR offset;
da3c6d4a 270
29d73ae4
DJ
271 for (i = 0; i < 16; i++)
272 regs[i] = pv_register (i, 0);
273 stack = make_pv_area (ARM_SP_REGNUM);
274 back_to = make_cleanup_free_pv_area (stack);
275
276 /* The call instruction saved PC in LR, and the current PC is not
277 interesting. Due to this file's conventions, we want the value
278 of LR at this function's entry, not at the call site, so we do
279 not record the save of the PC - when the ARM prologue analyzer
280 has also been converted to the pv mechanism, we could record the
281 save here and remove the hack in prev_register. */
282 regs[ARM_PC_REGNUM] = pv_unknown ();
283
284 while (start < limit)
c906108c 285 {
29d73ae4
DJ
286 unsigned short insn;
287
288 insn = read_memory_unsigned_integer (start, 2);
c906108c 289
94c30b78 290 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 291 {
29d73ae4
DJ
292 int regno;
293 int mask;
4be43953
DJ
294
295 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
296 break;
29d73ae4
DJ
297
298 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
299 whether to save LR (R14). */
300 mask = (insn & 0xff) | ((insn & 0x100) << 6);
301
302 /* Calculate offsets of saved R0-R7 and LR. */
303 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
304 if (mask & (1 << regno))
305 {
29d73ae4
DJ
306 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
307 -4);
308 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
309 }
da59e081 310 }
da3c6d4a
MS
311 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
312 sub sp, #simm */
da59e081 313 {
29d73ae4
DJ
314 offset = (insn & 0x7f) << 2; /* get scaled offset */
315 if (insn & 0x80) /* Check for SUB. */
316 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
317 -offset);
da59e081 318 else
29d73ae4
DJ
319 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
320 offset);
da59e081
JM
321 }
322 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
323 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
324 (insn & 0xff) << 2);
325 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 326 {
29d73ae4
DJ
327 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
328 int src_reg = (insn & 0x78) >> 3;
329 regs[dst_reg] = regs[src_reg];
da59e081 330 }
29d73ae4 331 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 332 {
29d73ae4
DJ
333 /* Handle stores to the stack. Normally pushes are used,
334 but with GCC -mtpcs-frame, there may be other stores
335 in the prologue to create the frame. */
336 int regno = (insn >> 8) & 0x7;
337 pv_t addr;
338
339 offset = (insn & 0xff) << 2;
340 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
341
342 if (pv_area_store_would_trash (stack, addr))
343 break;
344
345 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 346 }
29d73ae4 347 else
3d74b771 348 {
29d73ae4
DJ
349 /* We don't know what this instruction is. We're finished
350 scanning. NOTE: Recognizing more safe-to-ignore
351 instructions here will improve support for optimized
352 code. */
da3c6d4a 353 break;
3d74b771 354 }
29d73ae4
DJ
355
356 start += 2;
c906108c
SS
357 }
358
29d73ae4
DJ
359 if (cache == NULL)
360 {
361 do_cleanups (back_to);
362 return start;
363 }
364
29d73ae4
DJ
365 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
366 {
367 /* Frame pointer is fp. Frame size is constant. */
368 cache->framereg = ARM_FP_REGNUM;
369 cache->framesize = -regs[ARM_FP_REGNUM].k;
370 }
371 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
372 {
373 /* Frame pointer is r7. Frame size is constant. */
374 cache->framereg = THUMB_FP_REGNUM;
375 cache->framesize = -regs[THUMB_FP_REGNUM].k;
376 }
377 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
378 {
379 /* Try the stack pointer... this is a bit desperate. */
380 cache->framereg = ARM_SP_REGNUM;
381 cache->framesize = -regs[ARM_SP_REGNUM].k;
382 }
383 else
384 {
385 /* We're just out of luck. We don't know where the frame is. */
386 cache->framereg = -1;
387 cache->framesize = 0;
388 }
389
390 for (i = 0; i < 16; i++)
391 if (pv_area_find_reg (stack, gdbarch, i, &offset))
392 cache->saved_regs[i].addr = offset;
393
394 do_cleanups (back_to);
395 return start;
c906108c
SS
396}
397
da3c6d4a
MS
398/* Advance the PC across any function entry prologue instructions to
399 reach some "real" code.
34e8f22d
RE
400
401 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 402 prologue:
c906108c 403
c5aa993b
JM
404 mov ip, sp
405 [stmfd sp!, {a1,a2,a3,a4}]
406 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
407 [stfe f7, [sp, #-12]!]
408 [stfe f6, [sp, #-12]!]
409 [stfe f5, [sp, #-12]!]
410 [stfe f4, [sp, #-12]!]
411 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 412
34e8f22d 413static CORE_ADDR
6093d2eb 414arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c
SS
415{
416 unsigned long inst;
417 CORE_ADDR skip_pc;
b8d5e71d 418 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 419 char *func_name;
c906108c
SS
420 struct symtab_and_line sal;
421
848cfffb 422 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 423 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
424 return pc;
425
96baa820 426 /* See what the symbol table says. */
ed9a39eb 427
50f6fb4b 428 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 429 {
50f6fb4b
CV
430 struct symbol *sym;
431
432 /* Found a function. */
176620f1 433 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
434 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
435 {
94c30b78 436 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
437 sal = find_pc_line (func_addr, 0);
438 if ((sal.line != 0) && (sal.end < func_end))
439 return sal.end;
440 }
c906108c
SS
441 }
442
c906108c 443 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 444 by disassembling the instructions. */
c906108c 445
b8d5e71d
MS
446 /* Like arm_scan_prologue, stop no later than pc + 64. */
447 if (func_end == 0 || func_end > pc + 64)
448 func_end = pc + 64;
c906108c 449
29d73ae4
DJ
450 /* Check if this is Thumb code. */
451 if (arm_pc_is_thumb (pc))
6093d2eb 452 return thumb_analyze_prologue (gdbarch, pc, func_end, NULL);
29d73ae4 453
b8d5e71d 454 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 455 {
1c5bada0 456 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 457
b8d5e71d
MS
458 /* "mov ip, sp" is no longer a required part of the prologue. */
459 if (inst == 0xe1a0c00d) /* mov ip, sp */
460 continue;
c906108c 461
28cd8767
JG
462 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
463 continue;
464
465 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
466 continue;
467
b8d5e71d
MS
468 /* Some prologues begin with "str lr, [sp, #-4]!". */
469 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
470 continue;
c906108c 471
b8d5e71d
MS
472 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
473 continue;
c906108c 474
b8d5e71d
MS
475 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
476 continue;
11d3b27d 477
b8d5e71d
MS
478 /* Any insns after this point may float into the code, if it makes
479 for better instruction scheduling, so we skip them only if we
480 find them, but still consider the function to be frame-ful. */
f43845b3 481
b8d5e71d
MS
482 /* We may have either one sfmfd instruction here, or several stfe
483 insns, depending on the version of floating point code we
484 support. */
485 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
486 continue;
487
488 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
489 continue;
490
491 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
492 continue;
493
494 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
495 continue;
496
497 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
498 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
499 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
500 continue;
501
502 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
503 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
504 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
505 continue;
506
507 /* Un-recognized instruction; stop scanning. */
508 break;
f43845b3 509 }
c906108c 510
b8d5e71d 511 return skip_pc; /* End of prologue */
c906108c 512}
94c30b78 513
c5aa993b 514/* *INDENT-OFF* */
c906108c
SS
515/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
516 This function decodes a Thumb function prologue to determine:
517 1) the size of the stack frame
518 2) which registers are saved on it
519 3) the offsets of saved regs
520 4) the offset from the stack pointer to the frame pointer
c906108c 521
da59e081
JM
522 A typical Thumb function prologue would create this stack frame
523 (offsets relative to FP)
c906108c
SS
524 old SP -> 24 stack parameters
525 20 LR
526 16 R7
527 R7 -> 0 local variables (16 bytes)
528 SP -> -12 additional stack space (12 bytes)
529 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
530 12 bytes. The frame register is R7.
531
da3c6d4a
MS
532 The comments for thumb_skip_prolog() describe the algorithm we use
533 to detect the end of the prolog. */
c5aa993b
JM
534/* *INDENT-ON* */
535
c906108c 536static void
be8626e0
MD
537thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
538 struct arm_prologue_cache *cache)
c906108c
SS
539{
540 CORE_ADDR prologue_start;
541 CORE_ADDR prologue_end;
542 CORE_ADDR current_pc;
94c30b78 543 /* Which register has been copied to register n? */
da3c6d4a
MS
544 int saved_reg[16];
545 /* findmask:
546 bit 0 - push { rlist }
547 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
548 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
549 */
550 int findmask = 0;
c5aa993b 551 int i;
c906108c 552
eb5492fa 553 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
554 {
555 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
556
94c30b78 557 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 558 prologue_end = prev_pc;
c906108c 559 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 560 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
561 }
562 else
f7060f85
DJ
563 /* We're in the boondocks: we have no idea where the start of the
564 function is. */
565 return;
c906108c 566
eb5492fa 567 prologue_end = min (prologue_end, prev_pc);
c906108c 568
be8626e0 569 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
570}
571
ed9a39eb 572/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
573 1) the size of the stack frame
574 2) which registers are saved on it
575 3) the offsets of saved regs
576 4) the offset from the stack pointer to the frame pointer
c906108c
SS
577 This information is stored in the "extra" fields of the frame_info.
578
96baa820
JM
579 There are two basic forms for the ARM prologue. The fixed argument
580 function call will look like:
ed9a39eb
JM
581
582 mov ip, sp
583 stmfd sp!, {fp, ip, lr, pc}
584 sub fp, ip, #4
585 [sub sp, sp, #4]
96baa820 586
c906108c 587 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
588 IP -> 4 (caller's stack)
589 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
590 -4 LR (return address in caller)
591 -8 IP (copy of caller's SP)
592 -12 FP (caller's FP)
593 SP -> -28 Local variables
594
c906108c 595 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
596 28 bytes. The stmfd call can also save any of the vN registers it
597 plans to use, which increases the frame size accordingly.
598
599 Note: The stored PC is 8 off of the STMFD instruction that stored it
600 because the ARM Store instructions always store PC + 8 when you read
601 the PC register.
ed9a39eb 602
96baa820
JM
603 A variable argument function call will look like:
604
ed9a39eb
JM
605 mov ip, sp
606 stmfd sp!, {a1, a2, a3, a4}
607 stmfd sp!, {fp, ip, lr, pc}
608 sub fp, ip, #20
609
96baa820 610 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
611 IP -> 20 (caller's stack)
612 16 A4
613 12 A3
614 8 A2
615 4 A1
616 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
617 -4 LR (return address in caller)
618 -8 IP (copy of caller's SP)
619 -12 FP (caller's FP)
620 SP -> -28 Local variables
96baa820
JM
621
622 The frame size would thus be 48 bytes, and the frame offset would be
623 28 bytes.
624
625 There is another potential complication, which is that the optimizer
626 will try to separate the store of fp in the "stmfd" instruction from
627 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
628 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
629
630 Also, note, the original version of the ARM toolchain claimed that there
631 should be an
632
633 instruction at the end of the prologue. I have never seen GCC produce
634 this, and the ARM docs don't mention it. We still test for it below in
635 case it happens...
ed9a39eb
JM
636
637 */
c906108c
SS
638
639static void
2af46ca0
UW
640arm_scan_prologue (struct frame_info *next_frame,
641 struct arm_prologue_cache *cache)
c906108c 642{
2af46ca0 643 struct gdbarch *gdbarch = get_frame_arch (next_frame);
4be43953 644 int regno;
c906108c 645 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 646 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
4be43953
DJ
647 pv_t regs[ARM_FPS_REGNUM];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
c906108c 651
c906108c 652 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
653 cache->framereg = ARM_SP_REGNUM;
654 cache->framesize = 0;
c906108c
SS
655
656 /* Check for Thumb prologue. */
eb5492fa 657 if (arm_pc_is_thumb (prev_pc))
c906108c 658 {
be8626e0 659 thumb_scan_prologue (gdbarch, prev_pc, cache);
c906108c
SS
660 return;
661 }
662
663 /* Find the function prologue. If we can't find the function in
664 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 665 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 666 {
2a451106
KB
667 /* One way to find the end of the prologue (which works well
668 for unoptimized code) is to do the following:
669
670 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
671
672 if (sal.line == 0)
eb5492fa 673 prologue_end = prev_pc;
2a451106
KB
674 else if (sal.end < prologue_end)
675 prologue_end = sal.end;
676
677 This mechanism is very accurate so long as the optimizer
678 doesn't move any instructions from the function body into the
679 prologue. If this happens, sal.end will be the last
680 instruction in the first hunk of prologue code just before
681 the first instruction that the scheduler has moved from
682 the body to the prologue.
683
684 In order to make sure that we scan all of the prologue
685 instructions, we use a slightly less accurate mechanism which
686 may scan more than necessary. To help compensate for this
687 lack of accuracy, the prologue scanning loop below contains
688 several clauses which'll cause the loop to terminate early if
689 an implausible prologue instruction is encountered.
690
691 The expression
692
693 prologue_start + 64
694
695 is a suitable endpoint since it accounts for the largest
696 possible prologue plus up to five instructions inserted by
94c30b78 697 the scheduler. */
2a451106
KB
698
699 if (prologue_end > prologue_start + 64)
700 {
94c30b78 701 prologue_end = prologue_start + 64; /* See above. */
2a451106 702 }
c906108c
SS
703 }
704 else
705 {
eb5492fa
DJ
706 /* We have no symbol information. Our only option is to assume this
707 function has a standard stack frame and the normal frame register.
708 Then, we can find the value of our frame pointer on entrance to
709 the callee (or at the present moment if this is the innermost frame).
710 The value stored there should be the address of the stmfd + 8. */
711 CORE_ADDR frame_loc;
712 LONGEST return_value;
713
714 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
715 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
716 return;
717 else
718 {
bf6ae464 719 prologue_start = gdbarch_addr_bits_remove
2af46ca0 720 (gdbarch, return_value) - 8;
94c30b78 721 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 722 }
c906108c
SS
723 }
724
eb5492fa
DJ
725 if (prev_pc < prologue_end)
726 prologue_end = prev_pc;
727
c906108c 728 /* Now search the prologue looking for instructions that set up the
96baa820 729 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 730
96baa820
JM
731 Be careful, however, and if it doesn't look like a prologue,
732 don't try to scan it. If, for instance, a frameless function
733 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 734 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
735 and other operations that rely on a knowledge of the stack
736 traceback.
737
738 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 739 if we don't see this as the first insn, we will stop.
c906108c 740
f43845b3
MS
741 [Note: This doesn't seem to be true any longer, so it's now an
742 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 743
f43845b3
MS
744 [Note further: The "mov ip,sp" only seems to be missing in
745 frameless functions at optimization level "-O2" or above,
746 in which case it is often (but not always) replaced by
b8d5e71d 747 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 748
4be43953
DJ
749 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
750 regs[regno] = pv_register (regno, 0);
751 stack = make_pv_area (ARM_SP_REGNUM);
752 back_to = make_cleanup_free_pv_area (stack);
753
754 regs[ARM_PC_REGNUM] = pv_unknown ();
f43845b3 755
94c30b78
MS
756 for (current_pc = prologue_start;
757 current_pc < prologue_end;
f43845b3 758 current_pc += 4)
96baa820 759 {
d4473757
KB
760 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
761
94c30b78 762 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 763 {
4be43953 764 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
765 continue;
766 }
767 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
768 {
769 unsigned imm = insn & 0xff; /* immediate value */
770 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
771 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 772 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
28cd8767
JG
773 continue;
774 }
775 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
776 {
777 unsigned imm = insn & 0xff; /* immediate value */
778 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
779 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 780 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
f43845b3
MS
781 continue;
782 }
94c30b78 783 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 784 {
4be43953
DJ
785 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
786 break;
787 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
788 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
f43845b3
MS
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
c906108c 795 {
d4473757 796 int mask = insn & 0xffff;
ed9a39eb 797
4be43953
DJ
798 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
799 break;
800
94c30b78 801 /* Calculate offsets of saved registers. */
34e8f22d 802 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
803 if (mask & (1 << regno))
804 {
4be43953
DJ
805 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
806 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
807 }
808 }
b8d5e71d
MS
809 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
810 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
811 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
812 {
813 /* No need to add this to saved_regs -- it's just an arg reg. */
814 continue;
815 }
816 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
817 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
818 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
819 {
820 /* No need to add this to saved_regs -- it's just an arg reg. */
821 continue;
822 }
d4473757
KB
823 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
824 {
94c30b78
MS
825 unsigned imm = insn & 0xff; /* immediate value */
826 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 827 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 828 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
829 }
830 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 {
94c30b78
MS
832 unsigned imm = insn & 0xff; /* immediate value */
833 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 834 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 835 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 836 }
ff6f572f 837 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
2af46ca0 838 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 839 {
4be43953
DJ
840 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
841 break;
842
843 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 844 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 845 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 846 }
ff6f572f 847 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
2af46ca0 848 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
849 {
850 int n_saved_fp_regs;
851 unsigned int fp_start_reg, fp_bound_reg;
852
4be43953
DJ
853 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
854 break;
855
94c30b78 856 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 857 {
d4473757
KB
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 3;
860 else
861 n_saved_fp_regs = 1;
96baa820 862 }
d4473757 863 else
96baa820 864 {
d4473757
KB
865 if ((insn & 0x40000) == 0x40000) /* N1 is set */
866 n_saved_fp_regs = 2;
867 else
868 n_saved_fp_regs = 4;
96baa820 869 }
d4473757 870
34e8f22d 871 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
872 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
873 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 874 {
4be43953
DJ
875 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
876 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
877 regs[fp_start_reg++]);
96baa820 878 }
c906108c 879 }
d4473757 880 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 881 break; /* Condition not true, exit early */
b8d5e71d 882 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 883 break; /* Don't scan past a block load */
d4473757
KB
884 else
885 /* The optimizer might shove anything into the prologue,
94c30b78 886 so we just skip what we don't recognize. */
d4473757 887 continue;
c906108c
SS
888 }
889
4be43953
DJ
890 /* The frame size is just the distance from the frame register
891 to the original stack pointer. */
892 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
893 {
894 /* Frame pointer is fp. */
895 cache->framereg = ARM_FP_REGNUM;
896 cache->framesize = -regs[ARM_FP_REGNUM].k;
897 }
898 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
899 {
900 /* Try the stack pointer... this is a bit desperate. */
901 cache->framereg = ARM_SP_REGNUM;
902 cache->framesize = -regs[ARM_SP_REGNUM].k;
903 }
d4473757 904 else
4be43953
DJ
905 {
906 /* We're just out of luck. We don't know where the frame is. */
907 cache->framereg = -1;
908 cache->framesize = 0;
909 }
910
911 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
912 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
913 cache->saved_regs[regno].addr = offset;
914
915 do_cleanups (back_to);
c906108c
SS
916}
917
eb5492fa
DJ
918static struct arm_prologue_cache *
919arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 920{
eb5492fa
DJ
921 int reg;
922 struct arm_prologue_cache *cache;
923 CORE_ADDR unwound_fp;
c5aa993b 924
35d5d4ee 925 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 926 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 927
eb5492fa 928 arm_scan_prologue (next_frame, cache);
848cfffb 929
eb5492fa
DJ
930 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
931 if (unwound_fp == 0)
932 return cache;
c906108c 933
4be43953 934 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 935
eb5492fa
DJ
936 /* Calculate actual addresses of saved registers using offsets
937 determined by arm_scan_prologue. */
2af46ca0 938 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
e28a332c 939 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
940 cache->saved_regs[reg].addr += cache->prev_sp;
941
942 return cache;
c906108c
SS
943}
944
eb5492fa
DJ
945/* Our frame ID for a normal frame is the current function's starting PC
946 and the caller's SP when we were called. */
c906108c 947
148754e5 948static void
eb5492fa
DJ
949arm_prologue_this_id (struct frame_info *next_frame,
950 void **this_cache,
951 struct frame_id *this_id)
c906108c 952{
eb5492fa
DJ
953 struct arm_prologue_cache *cache;
954 struct frame_id id;
955 CORE_ADDR func;
f079148d 956
eb5492fa
DJ
957 if (*this_cache == NULL)
958 *this_cache = arm_make_prologue_cache (next_frame);
959 cache = *this_cache;
2a451106 960
93d42b30 961 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 962
eb5492fa
DJ
963 /* This is meant to halt the backtrace at "_start". Make sure we
964 don't halt it at a generic dummy frame. */
2301df11 965 if (func <= gdbarch_tdep (get_frame_arch (next_frame))->lowest_pc)
eb5492fa 966 return;
5a203e44 967
eb5492fa
DJ
968 /* If we've hit a wall, stop. */
969 if (cache->prev_sp == 0)
970 return;
24de872b 971
eb5492fa 972 id = frame_id_build (cache->prev_sp, func);
eb5492fa 973 *this_id = id;
c906108c
SS
974}
975
eb5492fa
DJ
976static void
977arm_prologue_prev_register (struct frame_info *next_frame,
978 void **this_cache,
979 int prev_regnum,
980 int *optimized,
981 enum lval_type *lvalp,
982 CORE_ADDR *addrp,
983 int *realnump,
9af75ef6 984 gdb_byte *valuep)
24de872b
DJ
985{
986 struct arm_prologue_cache *cache;
987
eb5492fa
DJ
988 if (*this_cache == NULL)
989 *this_cache = arm_make_prologue_cache (next_frame);
990 cache = *this_cache;
24de872b 991
eb5492fa
DJ
992 /* If we are asked to unwind the PC, then we need to return the LR
993 instead. The saved value of PC points into this frame's
994 prologue, not the next frame's resume location. */
995 if (prev_regnum == ARM_PC_REGNUM)
996 prev_regnum = ARM_LR_REGNUM;
24de872b 997
eb5492fa
DJ
998 /* SP is generally not saved to the stack, but this frame is
999 identified by NEXT_FRAME's stack pointer at the time of the call.
1000 The value was already reconstructed into PREV_SP. */
1001 if (prev_regnum == ARM_SP_REGNUM)
1002 {
1003 *lvalp = not_lval;
1004 if (valuep)
1005 store_unsigned_integer (valuep, 4, cache->prev_sp);
1006 return;
1007 }
1008
1f67027d
AC
1009 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1010 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
1011}
1012
1013struct frame_unwind arm_prologue_unwind = {
1014 NORMAL_FRAME,
1015 arm_prologue_this_id,
1016 arm_prologue_prev_register
1017};
1018
1019static const struct frame_unwind *
1020arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1021{
1022 return &arm_prologue_unwind;
24de872b
DJ
1023}
1024
909cf6ea
DJ
1025static struct arm_prologue_cache *
1026arm_make_stub_cache (struct frame_info *next_frame)
1027{
1028 int reg;
1029 struct arm_prologue_cache *cache;
1030 CORE_ADDR unwound_fp;
1031
35d5d4ee 1032 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1033 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1034
1035 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1036
1037 return cache;
1038}
1039
1040/* Our frame ID for a stub frame is the current SP and LR. */
1041
1042static void
1043arm_stub_this_id (struct frame_info *next_frame,
1044 void **this_cache,
1045 struct frame_id *this_id)
1046{
1047 struct arm_prologue_cache *cache;
1048
1049 if (*this_cache == NULL)
1050 *this_cache = arm_make_stub_cache (next_frame);
1051 cache = *this_cache;
1052
1053 *this_id = frame_id_build (cache->prev_sp,
1054 frame_pc_unwind (next_frame));
1055}
1056
1057struct frame_unwind arm_stub_unwind = {
1058 NORMAL_FRAME,
1059 arm_stub_this_id,
1060 arm_prologue_prev_register
1061};
1062
1063static const struct frame_unwind *
1064arm_stub_unwind_sniffer (struct frame_info *next_frame)
1065{
93d42b30 1066 CORE_ADDR addr_in_block;
909cf6ea
DJ
1067 char dummy[4];
1068
93d42b30
DJ
1069 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1070 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1071 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1072 return &arm_stub_unwind;
1073
1074 return NULL;
1075}
1076
24de872b 1077static CORE_ADDR
eb5492fa 1078arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1079{
1080 struct arm_prologue_cache *cache;
1081
eb5492fa
DJ
1082 if (*this_cache == NULL)
1083 *this_cache = arm_make_prologue_cache (next_frame);
1084 cache = *this_cache;
1085
4be43953 1086 return cache->prev_sp - cache->framesize;
24de872b
DJ
1087}
1088
eb5492fa
DJ
1089struct frame_base arm_normal_base = {
1090 &arm_prologue_unwind,
1091 arm_normal_frame_base,
1092 arm_normal_frame_base,
1093 arm_normal_frame_base
1094};
1095
eb5492fa
DJ
1096/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1097 dummy frame. The frame ID's base needs to match the TOS value
1098 saved by save_dummy_frame_tos() and returned from
1099 arm_push_dummy_call, and the PC needs to match the dummy frame's
1100 breakpoint. */
c906108c 1101
eb5492fa
DJ
1102static struct frame_id
1103arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1104{
eb5492fa
DJ
1105 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1106 frame_pc_unwind (next_frame));
1107}
c3b4394c 1108
eb5492fa
DJ
1109/* Given THIS_FRAME, find the previous frame's resume PC (which will
1110 be used to construct the previous frame's ID, after looking up the
1111 containing function). */
c3b4394c 1112
eb5492fa
DJ
1113static CORE_ADDR
1114arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1115{
1116 CORE_ADDR pc;
1117 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1118 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1119}
1120
1121static CORE_ADDR
1122arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1123{
1124 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1125}
1126
2dd604e7
RE
1127/* When arguments must be pushed onto the stack, they go on in reverse
1128 order. The code below implements a FILO (stack) to do this. */
1129
1130struct stack_item
1131{
1132 int len;
1133 struct stack_item *prev;
1134 void *data;
1135};
1136
1137static struct stack_item *
1138push_stack_item (struct stack_item *prev, void *contents, int len)
1139{
1140 struct stack_item *si;
1141 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1142 si->data = xmalloc (len);
2dd604e7
RE
1143 si->len = len;
1144 si->prev = prev;
1145 memcpy (si->data, contents, len);
1146 return si;
1147}
1148
1149static struct stack_item *
1150pop_stack_item (struct stack_item *si)
1151{
1152 struct stack_item *dead = si;
1153 si = si->prev;
1154 xfree (dead->data);
1155 xfree (dead);
1156 return si;
1157}
1158
2af48f68
PB
1159
1160/* Return the alignment (in bytes) of the given type. */
1161
1162static int
1163arm_type_align (struct type *t)
1164{
1165 int n;
1166 int align;
1167 int falign;
1168
1169 t = check_typedef (t);
1170 switch (TYPE_CODE (t))
1171 {
1172 default:
1173 /* Should never happen. */
1174 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1175 return 4;
1176
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_ENUM:
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_FLT:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_REF:
1185 case TYPE_CODE_CHAR:
1186 case TYPE_CODE_BOOL:
1187 return TYPE_LENGTH (t);
1188
1189 case TYPE_CODE_ARRAY:
1190 case TYPE_CODE_COMPLEX:
1191 /* TODO: What about vector types? */
1192 return arm_type_align (TYPE_TARGET_TYPE (t));
1193
1194 case TYPE_CODE_STRUCT:
1195 case TYPE_CODE_UNION:
1196 align = 1;
1197 for (n = 0; n < TYPE_NFIELDS (t); n++)
1198 {
1199 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1200 if (falign > align)
1201 align = falign;
1202 }
1203 return align;
1204 }
1205}
1206
2dd604e7
RE
1207/* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211static CORE_ADDR
7d9b040b 1212arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
2dd604e7
RE
1216{
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
6a65450a
AC
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
2dd604e7 1224 /* XXX Fix for Thumb. */
6a65450a 1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
2dd604e7
RE
1235 /* The struct_return pointer occupies the first parameter
1236 passing register. */
1237 if (struct_return)
1238 {
1239 if (arm_debug)
1240 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
2af46ca0 1241 gdbarch_register_name (gdbarch, argreg),
c9f4d572 1242 paddr (struct_addr));
2dd604e7
RE
1243 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1244 argreg++;
1245 }
1246
1247 for (argnum = 0; argnum < nargs; argnum++)
1248 {
1249 int len;
1250 struct type *arg_type;
1251 struct type *target_type;
1252 enum type_code typecode;
0fd88904 1253 bfd_byte *val;
2af48f68 1254 int align;
2dd604e7 1255
df407dfe 1256 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1257 len = TYPE_LENGTH (arg_type);
1258 target_type = TYPE_TARGET_TYPE (arg_type);
1259 typecode = TYPE_CODE (arg_type);
0fd88904 1260 val = value_contents_writeable (args[argnum]);
2dd604e7 1261
2af48f68
PB
1262 align = arm_type_align (arg_type);
1263 /* Round alignment up to a whole number of words. */
1264 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1265 /* Different ABIs have different maximum alignments. */
1266 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1267 {
1268 /* The APCS ABI only requires word alignment. */
1269 align = INT_REGISTER_SIZE;
1270 }
1271 else
1272 {
1273 /* The AAPCS requires at most doubleword alignment. */
1274 if (align > INT_REGISTER_SIZE * 2)
1275 align = INT_REGISTER_SIZE * 2;
1276 }
1277
1278 /* Push stack padding for dowubleword alignment. */
1279 if (nstack & (align - 1))
1280 {
1281 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1282 nstack += INT_REGISTER_SIZE;
1283 }
1284
1285 /* Doubleword aligned quantities must go in even register pairs. */
1286 if (argreg <= ARM_LAST_ARG_REGNUM
1287 && align > INT_REGISTER_SIZE
1288 && argreg & 1)
1289 argreg++;
1290
2dd604e7
RE
1291 /* If the argument is a pointer to a function, and it is a
1292 Thumb function, create a LOCAL copy of the value and set
1293 the THUMB bit in it. */
1294 if (TYPE_CODE_PTR == typecode
1295 && target_type != NULL
1296 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1297 {
7c0b4a20 1298 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1299 if (arm_pc_is_thumb (regval))
1300 {
1301 val = alloca (len);
fbd9dcd3 1302 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1303 }
1304 }
1305
1306 /* Copy the argument to general registers or the stack in
1307 register-sized pieces. Large arguments are split between
1308 registers and stack. */
1309 while (len > 0)
1310 {
f0c9063c 1311 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7
RE
1312
1313 if (argreg <= ARM_LAST_ARG_REGNUM)
1314 {
1315 /* The argument is being passed in a general purpose
1316 register. */
7c0b4a20 1317 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2af46ca0 1318 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8bf8793c 1319 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
1320 if (arm_debug)
1321 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
1322 argnum,
1323 gdbarch_register_name
2af46ca0 1324 (gdbarch, argreg),
f0c9063c 1325 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
1326 regcache_cooked_write_unsigned (regcache, argreg, regval);
1327 argreg++;
1328 }
1329 else
1330 {
1331 /* Push the arguments onto the stack. */
1332 if (arm_debug)
1333 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1334 argnum, nstack);
f0c9063c
UW
1335 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1336 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
1337 }
1338
1339 len -= partial_len;
1340 val += partial_len;
1341 }
1342 }
1343 /* If we have an odd number of words to push, then decrement the stack
1344 by one word now, so first stack argument will be dword aligned. */
1345 if (nstack & 4)
1346 sp -= 4;
1347
1348 while (si)
1349 {
1350 sp -= si->len;
1351 write_memory (sp, si->data, si->len);
1352 si = pop_stack_item (si);
1353 }
1354
1355 /* Finally, update teh SP register. */
1356 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1357
1358 return sp;
1359}
1360
f53f0d0b
PB
1361
1362/* Always align the frame to an 8-byte boundary. This is required on
1363 some platforms and harmless on the rest. */
1364
1365static CORE_ADDR
1366arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1367{
1368 /* Align the stack to eight bytes. */
1369 return sp & ~ (CORE_ADDR) 7;
1370}
1371
c906108c 1372static void
ed9a39eb 1373print_fpu_flags (int flags)
c906108c 1374{
c5aa993b
JM
1375 if (flags & (1 << 0))
1376 fputs ("IVO ", stdout);
1377 if (flags & (1 << 1))
1378 fputs ("DVZ ", stdout);
1379 if (flags & (1 << 2))
1380 fputs ("OFL ", stdout);
1381 if (flags & (1 << 3))
1382 fputs ("UFL ", stdout);
1383 if (flags & (1 << 4))
1384 fputs ("INX ", stdout);
1385 putchar ('\n');
c906108c
SS
1386}
1387
5e74b15c
RE
1388/* Print interesting information about the floating point processor
1389 (if present) or emulator. */
34e8f22d 1390static void
d855c300 1391arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1392 struct frame_info *frame, const char *args)
c906108c 1393{
9c9acae0 1394 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
1395 int type;
1396
1397 type = (status >> 24) & 127;
edefbb7c
AC
1398 if (status & (1 << 31))
1399 printf (_("Hardware FPU type %d\n"), type);
1400 else
1401 printf (_("Software FPU type %d\n"), type);
1402 /* i18n: [floating point unit] mask */
1403 fputs (_("mask: "), stdout);
c5aa993b 1404 print_fpu_flags (status >> 16);
edefbb7c
AC
1405 /* i18n: [floating point unit] flags */
1406 fputs (_("flags: "), stdout);
c5aa993b 1407 print_fpu_flags (status);
c906108c
SS
1408}
1409
34e8f22d
RE
1410/* Return the GDB type object for the "standard" data type of data in
1411 register N. */
1412
1413static struct type *
7a5ea0d4 1414arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1415{
34e8f22d 1416 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1417 return builtin_type_arm_ext;
e4c16157
DJ
1418 else if (regnum == ARM_SP_REGNUM)
1419 return builtin_type_void_data_ptr;
1420 else if (regnum == ARM_PC_REGNUM)
1421 return builtin_type_void_func_ptr;
ff6f572f
DJ
1422 else if (regnum >= ARRAY_SIZE (arm_register_names))
1423 /* These registers are only supported on targets which supply
1424 an XML description. */
1425 return builtin_type_int0;
032758dc 1426 else
e4c16157 1427 return builtin_type_uint32;
032758dc
AC
1428}
1429
ff6f572f
DJ
1430/* Map a DWARF register REGNUM onto the appropriate GDB register
1431 number. */
1432
1433static int
d3f73121 1434arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
1435{
1436 /* Core integer regs. */
1437 if (reg >= 0 && reg <= 15)
1438 return reg;
1439
1440 /* Legacy FPA encoding. These were once used in a way which
1441 overlapped with VFP register numbering, so their use is
1442 discouraged, but GDB doesn't support the ARM toolchain
1443 which used them for VFP. */
1444 if (reg >= 16 && reg <= 23)
1445 return ARM_F0_REGNUM + reg - 16;
1446
1447 /* New assignments for the FPA registers. */
1448 if (reg >= 96 && reg <= 103)
1449 return ARM_F0_REGNUM + reg - 96;
1450
1451 /* WMMX register assignments. */
1452 if (reg >= 104 && reg <= 111)
1453 return ARM_WCGR0_REGNUM + reg - 104;
1454
1455 if (reg >= 112 && reg <= 127)
1456 return ARM_WR0_REGNUM + reg - 112;
1457
1458 if (reg >= 192 && reg <= 199)
1459 return ARM_WC0_REGNUM + reg - 192;
1460
1461 return -1;
1462}
1463
26216b98
AC
1464/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1465static int
e7faf938 1466arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
1467{
1468 int reg = regnum;
e7faf938 1469 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 1470
ff6f572f
DJ
1471 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1472 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1473
1474 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1475 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1476
1477 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1478 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1479
26216b98
AC
1480 if (reg < NUM_GREGS)
1481 return SIM_ARM_R0_REGNUM + reg;
1482 reg -= NUM_GREGS;
1483
1484 if (reg < NUM_FREGS)
1485 return SIM_ARM_FP0_REGNUM + reg;
1486 reg -= NUM_FREGS;
1487
1488 if (reg < NUM_SREGS)
1489 return SIM_ARM_FPS_REGNUM + reg;
1490 reg -= NUM_SREGS;
1491
edefbb7c 1492 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1493}
34e8f22d 1494
a37b3cc0
AC
1495/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1496 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1497 It is thought that this is is the floating-point register format on
1498 little-endian systems. */
c906108c 1499
ed9a39eb 1500static void
b508a996 1501convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 1502 void *dbl, int endianess)
c906108c 1503{
a37b3cc0 1504 DOUBLEST d;
be8626e0
MD
1505
1506 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
1507 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1508 else
1509 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1510 ptr, &d);
b508a996 1511 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1512}
1513
34e8f22d 1514static void
be8626e0
MD
1515convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
1516 int endianess)
c906108c 1517{
a37b3cc0 1518 DOUBLEST d;
be8626e0 1519
b508a996 1520 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 1521 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
1522 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1523 else
1524 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1525 &d, dbl);
c906108c 1526}
ed9a39eb 1527
c906108c 1528static int
ed9a39eb 1529condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1530{
1531 if (cond == INST_AL || cond == INST_NV)
1532 return 1;
1533
1534 switch (cond)
1535 {
1536 case INST_EQ:
1537 return ((status_reg & FLAG_Z) != 0);
1538 case INST_NE:
1539 return ((status_reg & FLAG_Z) == 0);
1540 case INST_CS:
1541 return ((status_reg & FLAG_C) != 0);
1542 case INST_CC:
1543 return ((status_reg & FLAG_C) == 0);
1544 case INST_MI:
1545 return ((status_reg & FLAG_N) != 0);
1546 case INST_PL:
1547 return ((status_reg & FLAG_N) == 0);
1548 case INST_VS:
1549 return ((status_reg & FLAG_V) != 0);
1550 case INST_VC:
1551 return ((status_reg & FLAG_V) == 0);
1552 case INST_HI:
1553 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1554 case INST_LS:
1555 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1556 case INST_GE:
1557 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1558 case INST_LT:
1559 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1560 case INST_GT:
1561 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1562 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1563 case INST_LE:
1564 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1565 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1566 }
1567 return 1;
1568}
1569
9512d7fd 1570/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1571#define submask(x) ((1L << ((x) + 1)) - 1)
1572#define bit(obj,st) (((obj) >> (st)) & 1)
1573#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1574#define sbits(obj,st,fn) \
1575 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1576#define BranchDest(addr,instr) \
1577 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1578#define ARM_PC_32 1
1579
1580static unsigned long
0b1b3e42
UW
1581shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1582 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
1583{
1584 unsigned long res, shift;
1585 int rm = bits (inst, 0, 3);
1586 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1587
1588 if (bit (inst, 4))
c906108c
SS
1589 {
1590 int rs = bits (inst, 8, 11);
0b1b3e42
UW
1591 shift = (rs == 15 ? pc_val + 8
1592 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
1593 }
1594 else
1595 shift = bits (inst, 7, 11);
c5aa993b
JM
1596
1597 res = (rm == 15
c906108c 1598 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1599 + (bit (inst, 4) ? 12 : 8))
0b1b3e42 1600 : get_frame_register_unsigned (frame, rm));
c906108c
SS
1601
1602 switch (shifttype)
1603 {
c5aa993b 1604 case 0: /* LSL */
c906108c
SS
1605 res = shift >= 32 ? 0 : res << shift;
1606 break;
c5aa993b
JM
1607
1608 case 1: /* LSR */
c906108c
SS
1609 res = shift >= 32 ? 0 : res >> shift;
1610 break;
1611
c5aa993b
JM
1612 case 2: /* ASR */
1613 if (shift >= 32)
1614 shift = 31;
c906108c
SS
1615 res = ((res & 0x80000000L)
1616 ? ~((~res) >> shift) : res >> shift);
1617 break;
1618
c5aa993b 1619 case 3: /* ROR/RRX */
c906108c
SS
1620 shift &= 31;
1621 if (shift == 0)
1622 res = (res >> 1) | (carry ? 0x80000000L : 0);
1623 else
c5aa993b 1624 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1625 break;
1626 }
1627
1628 return res & 0xffffffff;
1629}
1630
c906108c
SS
1631/* Return number of 1-bits in VAL. */
1632
1633static int
ed9a39eb 1634bitcount (unsigned long val)
c906108c
SS
1635{
1636 int nbits;
1637 for (nbits = 0; val != 0; nbits++)
c5aa993b 1638 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1639 return nbits;
1640}
1641
ad527d2e 1642static CORE_ADDR
0b1b3e42 1643thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1644{
2af46ca0 1645 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b 1646 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1647 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1648 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1649 unsigned long offset;
1650
1651 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1652 {
1653 CORE_ADDR sp;
1654
1655 /* Fetch the saved PC from the stack. It's stored above
1656 all of the other registers. */
f0c9063c 1657 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 1658 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1c5bada0 1659 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
2af46ca0 1660 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1661 if (nextpc == pc)
edefbb7c 1662 error (_("Infinite loop detected"));
c906108c
SS
1663 }
1664 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1665 {
0b1b3e42 1666 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1667 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1668 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1669 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1670 }
1671 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1672 {
1673 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1674 }
aa17d93e 1675 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1676 {
1c5bada0 1677 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1678 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1679 nextpc = pc_val + offset;
aa17d93e
DJ
1680 /* For BLX make sure to clear the low bits. */
1681 if (bits (inst2, 11, 12) == 1)
1682 nextpc = nextpc & 0xfffffffc;
c906108c 1683 }
aa17d93e 1684 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1685 {
1686 if (bits (inst1, 3, 6) == 0x0f)
1687 nextpc = pc_val;
1688 else
0b1b3e42 1689 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 1690
2af46ca0 1691 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
9498281f 1692 if (nextpc == pc)
edefbb7c 1693 error (_("Infinite loop detected"));
9498281f 1694 }
c906108c
SS
1695
1696 return nextpc;
1697}
1698
daddc3c1 1699CORE_ADDR
0b1b3e42 1700arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1701{
2af46ca0 1702 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c
SS
1703 unsigned long pc_val;
1704 unsigned long this_instr;
1705 unsigned long status;
1706 CORE_ADDR nextpc;
1707
1708 if (arm_pc_is_thumb (pc))
0b1b3e42 1709 return thumb_get_next_pc (frame, pc);
c906108c
SS
1710
1711 pc_val = (unsigned long) pc;
1c5bada0 1712 this_instr = read_memory_unsigned_integer (pc, 4);
0b1b3e42 1713 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1714 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 1715
daddc3c1
DJ
1716 if (bits (this_instr, 28, 31) == INST_NV)
1717 switch (bits (this_instr, 24, 27))
1718 {
1719 case 0xa:
1720 case 0xb:
1721 {
1722 /* Branch with Link and change to Thumb. */
1723 nextpc = BranchDest (pc, this_instr);
1724 nextpc |= bit (this_instr, 24) << 1;
1725
e1e01acd 1726 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
daddc3c1
DJ
1727 if (nextpc == pc)
1728 error (_("Infinite loop detected"));
1729 break;
1730 }
1731 case 0xc:
1732 case 0xd:
1733 case 0xe:
1734 /* Coprocessor register transfer. */
1735 if (bits (this_instr, 12, 15) == 15)
1736 error (_("Invalid update to pc in instruction"));
1737 break;
1738 }
1739 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
1740 {
1741 switch (bits (this_instr, 24, 27))
1742 {
c5aa993b 1743 case 0x0:
94c30b78 1744 case 0x1: /* data processing */
c5aa993b
JM
1745 case 0x2:
1746 case 0x3:
c906108c
SS
1747 {
1748 unsigned long operand1, operand2, result = 0;
1749 unsigned long rn;
1750 int c;
c5aa993b 1751
c906108c
SS
1752 if (bits (this_instr, 12, 15) != 15)
1753 break;
1754
1755 if (bits (this_instr, 22, 25) == 0
c5aa993b 1756 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1757 error (_("Invalid update to pc in instruction"));
c906108c 1758
9498281f 1759 /* BX <reg>, BLX <reg> */
e150acc7
PB
1760 if (bits (this_instr, 4, 27) == 0x12fff1
1761 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1762 {
1763 rn = bits (this_instr, 0, 3);
0b1b3e42
UW
1764 result = (rn == 15) ? pc_val + 8
1765 : get_frame_register_unsigned (frame, rn);
bf6ae464 1766 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1767 (gdbarch, result);
9498281f
DJ
1768
1769 if (nextpc == pc)
edefbb7c 1770 error (_("Infinite loop detected"));
9498281f
DJ
1771
1772 return nextpc;
1773 }
1774
c906108c
SS
1775 /* Multiply into PC */
1776 c = (status & FLAG_C) ? 1 : 0;
1777 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1778 operand1 = (rn == 15) ? pc_val + 8
1779 : get_frame_register_unsigned (frame, rn);
c5aa993b 1780
c906108c
SS
1781 if (bit (this_instr, 25))
1782 {
1783 unsigned long immval = bits (this_instr, 0, 7);
1784 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1785 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1786 & 0xffffffff;
c906108c 1787 }
c5aa993b 1788 else /* operand 2 is a shifted register */
0b1b3e42 1789 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
c5aa993b 1790
c906108c
SS
1791 switch (bits (this_instr, 21, 24))
1792 {
c5aa993b 1793 case 0x0: /*and */
c906108c
SS
1794 result = operand1 & operand2;
1795 break;
1796
c5aa993b 1797 case 0x1: /*eor */
c906108c
SS
1798 result = operand1 ^ operand2;
1799 break;
1800
c5aa993b 1801 case 0x2: /*sub */
c906108c
SS
1802 result = operand1 - operand2;
1803 break;
1804
c5aa993b 1805 case 0x3: /*rsb */
c906108c
SS
1806 result = operand2 - operand1;
1807 break;
1808
c5aa993b 1809 case 0x4: /*add */
c906108c
SS
1810 result = operand1 + operand2;
1811 break;
1812
c5aa993b 1813 case 0x5: /*adc */
c906108c
SS
1814 result = operand1 + operand2 + c;
1815 break;
1816
c5aa993b 1817 case 0x6: /*sbc */
c906108c
SS
1818 result = operand1 - operand2 + c;
1819 break;
1820
c5aa993b 1821 case 0x7: /*rsc */
c906108c
SS
1822 result = operand2 - operand1 + c;
1823 break;
1824
c5aa993b
JM
1825 case 0x8:
1826 case 0x9:
1827 case 0xa:
1828 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1829 result = (unsigned long) nextpc;
1830 break;
1831
c5aa993b 1832 case 0xc: /*orr */
c906108c
SS
1833 result = operand1 | operand2;
1834 break;
1835
c5aa993b 1836 case 0xd: /*mov */
c906108c
SS
1837 /* Always step into a function. */
1838 result = operand2;
c5aa993b 1839 break;
c906108c 1840
c5aa993b 1841 case 0xe: /*bic */
c906108c
SS
1842 result = operand1 & ~operand2;
1843 break;
1844
c5aa993b 1845 case 0xf: /*mvn */
c906108c
SS
1846 result = ~operand2;
1847 break;
1848 }
bf6ae464 1849 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1850 (gdbarch, result);
c906108c
SS
1851
1852 if (nextpc == pc)
edefbb7c 1853 error (_("Infinite loop detected"));
c906108c
SS
1854 break;
1855 }
c5aa993b
JM
1856
1857 case 0x4:
1858 case 0x5: /* data transfer */
1859 case 0x6:
1860 case 0x7:
c906108c
SS
1861 if (bit (this_instr, 20))
1862 {
1863 /* load */
1864 if (bits (this_instr, 12, 15) == 15)
1865 {
1866 /* rd == pc */
c5aa993b 1867 unsigned long rn;
c906108c 1868 unsigned long base;
c5aa993b 1869
c906108c 1870 if (bit (this_instr, 22))
edefbb7c 1871 error (_("Invalid update to pc in instruction"));
c906108c
SS
1872
1873 /* byte write to PC */
1874 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1875 base = (rn == 15) ? pc_val + 8
1876 : get_frame_register_unsigned (frame, rn);
c906108c
SS
1877 if (bit (this_instr, 24))
1878 {
1879 /* pre-indexed */
1880 int c = (status & FLAG_C) ? 1 : 0;
1881 unsigned long offset =
c5aa993b 1882 (bit (this_instr, 25)
0b1b3e42 1883 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 1884 : bits (this_instr, 0, 11));
c906108c
SS
1885
1886 if (bit (this_instr, 23))
1887 base += offset;
1888 else
1889 base -= offset;
1890 }
c5aa993b 1891 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1892 4);
c5aa993b 1893
2af46ca0 1894 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c
SS
1895
1896 if (nextpc == pc)
edefbb7c 1897 error (_("Infinite loop detected"));
c906108c
SS
1898 }
1899 }
1900 break;
c5aa993b
JM
1901
1902 case 0x8:
1903 case 0x9: /* block transfer */
c906108c
SS
1904 if (bit (this_instr, 20))
1905 {
1906 /* LDM */
1907 if (bit (this_instr, 15))
1908 {
1909 /* loading pc */
1910 int offset = 0;
1911
1912 if (bit (this_instr, 23))
1913 {
1914 /* up */
1915 unsigned long reglist = bits (this_instr, 0, 14);
1916 offset = bitcount (reglist) * 4;
c5aa993b 1917 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1918 offset += 4;
1919 }
1920 else if (bit (this_instr, 24))
1921 offset = -4;
c5aa993b 1922
c906108c 1923 {
c5aa993b 1924 unsigned long rn_val =
0b1b3e42
UW
1925 get_frame_register_unsigned (frame,
1926 bits (this_instr, 16, 19));
c906108c
SS
1927 nextpc =
1928 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1929 + offset),
c906108c
SS
1930 4);
1931 }
bf6ae464 1932 nextpc = gdbarch_addr_bits_remove
2af46ca0 1933 (gdbarch, nextpc);
c906108c 1934 if (nextpc == pc)
edefbb7c 1935 error (_("Infinite loop detected"));
c906108c
SS
1936 }
1937 }
1938 break;
c5aa993b
JM
1939
1940 case 0xb: /* branch & link */
1941 case 0xa: /* branch */
c906108c
SS
1942 {
1943 nextpc = BranchDest (pc, this_instr);
1944
2af46ca0 1945 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1946 if (nextpc == pc)
edefbb7c 1947 error (_("Infinite loop detected"));
c906108c
SS
1948 break;
1949 }
c5aa993b
JM
1950
1951 case 0xc:
1952 case 0xd:
1953 case 0xe: /* coproc ops */
1954 case 0xf: /* SWI */
c906108c
SS
1955 break;
1956
1957 default:
edefbb7c 1958 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1959 return (pc);
1960 }
1961 }
1962
1963 return nextpc;
1964}
1965
9512d7fd
FN
1966/* single_step() is called just before we want to resume the inferior,
1967 if we want to single-step it but there is no hardware or kernel
1968 single-step support. We find the target of the coming instruction
e0cd558a 1969 and breakpoint it. */
9512d7fd 1970
190dce09 1971int
0b1b3e42 1972arm_software_single_step (struct frame_info *frame)
9512d7fd 1973{
8181d85f
DJ
1974 /* NOTE: This may insert the wrong breakpoint instruction when
1975 single-stepping over a mode-changing instruction, if the
1976 CPSR heuristics are used. */
9512d7fd 1977
0b1b3e42 1978 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
e0cd558a 1979 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1980
1981 return 1;
9512d7fd 1982}
9512d7fd 1983
c906108c
SS
1984#include "bfd-in2.h"
1985#include "libcoff.h"
1986
1987static int
ed9a39eb 1988gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1989{
1990 if (arm_pc_is_thumb (memaddr))
1991 {
c5aa993b
JM
1992 static asymbol *asym;
1993 static combined_entry_type ce;
1994 static struct coff_symbol_struct csym;
27cddce2 1995 static struct bfd fake_bfd;
c5aa993b 1996 static bfd_target fake_target;
c906108c
SS
1997
1998 if (csym.native == NULL)
1999 {
da3c6d4a
MS
2000 /* Create a fake symbol vector containing a Thumb symbol.
2001 This is solely so that the code in print_insn_little_arm()
2002 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2003 the presence of a Thumb symbol and switch to decoding
2004 Thumb instructions. */
c5aa993b
JM
2005
2006 fake_target.flavour = bfd_target_coff_flavour;
2007 fake_bfd.xvec = &fake_target;
c906108c 2008 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2009 csym.native = &ce;
2010 csym.symbol.the_bfd = &fake_bfd;
2011 csym.symbol.name = "fake";
2012 asym = (asymbol *) & csym;
c906108c 2013 }
c5aa993b 2014
c906108c 2015 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2016 info->symbols = &asym;
c906108c
SS
2017 }
2018 else
2019 info->symbols = NULL;
c5aa993b 2020
40887e1a 2021 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
2022 return print_insn_big_arm (memaddr, info);
2023 else
2024 return print_insn_little_arm (memaddr, info);
2025}
2026
66e810cd
RE
2027/* The following define instruction sequences that will cause ARM
2028 cpu's to take an undefined instruction trap. These are used to
2029 signal a breakpoint to GDB.
2030
2031 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2032 modes. A different instruction is required for each mode. The ARM
2033 cpu's can also be big or little endian. Thus four different
2034 instructions are needed to support all cases.
2035
2036 Note: ARMv4 defines several new instructions that will take the
2037 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2038 not in fact add the new instructions. The new undefined
2039 instructions in ARMv4 are all instructions that had no defined
2040 behaviour in earlier chips. There is no guarantee that they will
2041 raise an exception, but may be treated as NOP's. In practice, it
2042 may only safe to rely on instructions matching:
2043
2044 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2045 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2046 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2047
2048 Even this may only true if the condition predicate is true. The
2049 following use a condition predicate of ALWAYS so it is always TRUE.
2050
2051 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2052 and NetBSD all use a software interrupt rather than an undefined
2053 instruction to force a trap. This can be handled by by the
2054 abi-specific code during establishment of the gdbarch vector. */
2055
66e810cd 2056#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
66e810cd 2057#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
190dce09
UW
2058#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2059#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
66e810cd
RE
2060
2061static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2062static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2063static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2064static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2065
34e8f22d
RE
2066/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2067 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2068 breakpoint should be used. It returns a pointer to a string of
2069 bytes that encode a breakpoint instruction, stores the length of
2070 the string to *lenptr, and adjusts the program counter (if
2071 necessary) to point to the actual memory location where the
c906108c
SS
2072 breakpoint should be inserted. */
2073
ab89facf 2074static const unsigned char *
67d57894 2075arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
c906108c 2076{
67d57894 2077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
66e810cd 2078
4bf7064c 2079 if (arm_pc_is_thumb (*pcptr))
c906108c 2080 {
66e810cd
RE
2081 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2082 *lenptr = tdep->thumb_breakpoint_size;
2083 return tdep->thumb_breakpoint;
c906108c
SS
2084 }
2085 else
2086 {
66e810cd
RE
2087 *lenptr = tdep->arm_breakpoint_size;
2088 return tdep->arm_breakpoint;
c906108c
SS
2089 }
2090}
ed9a39eb
JM
2091
2092/* Extract from an array REGBUF containing the (raw) register state a
2093 function return value of type TYPE, and copy that, in virtual
2094 format, into VALBUF. */
2095
34e8f22d 2096static void
5238cf52
MK
2097arm_extract_return_value (struct type *type, struct regcache *regs,
2098 gdb_byte *valbuf)
ed9a39eb 2099{
be8626e0
MD
2100 struct gdbarch *gdbarch = get_regcache_arch (regs);
2101
ed9a39eb 2102 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2103 {
be8626e0 2104 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
2105 {
2106 case ARM_FLOAT_FPA:
b508a996
RE
2107 {
2108 /* The value is in register F0 in internal format. We need to
2109 extract the raw value and then convert it to the desired
2110 internal type. */
7a5ea0d4 2111 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2112
2113 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2114 convert_from_extended (floatformat_from_type (type), tmpbuf,
be8626e0 2115 valbuf, gdbarch_byte_order (gdbarch));
b508a996 2116 }
08216dd7
RE
2117 break;
2118
fd50bc42 2119 case ARM_FLOAT_SOFT_FPA:
08216dd7 2120 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2121 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2122 if (TYPE_LENGTH (type) > 4)
2123 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2124 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2125 break;
2126
2127 default:
2128 internal_error
2129 (__FILE__, __LINE__,
edefbb7c 2130 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2131 break;
2132 }
2133 }
b508a996
RE
2134 else if (TYPE_CODE (type) == TYPE_CODE_INT
2135 || TYPE_CODE (type) == TYPE_CODE_CHAR
2136 || TYPE_CODE (type) == TYPE_CODE_BOOL
2137 || TYPE_CODE (type) == TYPE_CODE_PTR
2138 || TYPE_CODE (type) == TYPE_CODE_REF
2139 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2140 {
2141 /* If the the type is a plain integer, then the access is
2142 straight-forward. Otherwise we have to play around a bit more. */
2143 int len = TYPE_LENGTH (type);
2144 int regno = ARM_A1_REGNUM;
2145 ULONGEST tmp;
2146
2147 while (len > 0)
2148 {
2149 /* By using store_unsigned_integer we avoid having to do
2150 anything special for small big-endian values. */
2151 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2152 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2153 (len > INT_REGISTER_SIZE
2154 ? INT_REGISTER_SIZE : len),
b508a996 2155 tmp);
7a5ea0d4
DJ
2156 len -= INT_REGISTER_SIZE;
2157 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2158 }
2159 }
ed9a39eb 2160 else
b508a996
RE
2161 {
2162 /* For a structure or union the behaviour is as if the value had
2163 been stored to word-aligned memory and then loaded into
2164 registers with 32-bit load instruction(s). */
2165 int len = TYPE_LENGTH (type);
2166 int regno = ARM_A1_REGNUM;
7a5ea0d4 2167 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2168
2169 while (len > 0)
2170 {
2171 regcache_cooked_read (regs, regno++, tmpbuf);
2172 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2173 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2174 len -= INT_REGISTER_SIZE;
2175 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2176 }
2177 }
34e8f22d
RE
2178}
2179
67255d04
RE
2180
2181/* Will a function return an aggregate type in memory or in a
2182 register? Return 0 if an aggregate type can be returned in a
2183 register, 1 if it must be returned in memory. */
2184
2185static int
2af48f68 2186arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2187{
2188 int nRc;
52f0bd74 2189 enum type_code code;
67255d04 2190
44e1a9eb
DJ
2191 CHECK_TYPEDEF (type);
2192
67255d04
RE
2193 /* In the ARM ABI, "integer" like aggregate types are returned in
2194 registers. For an aggregate type to be integer like, its size
f0c9063c 2195 must be less than or equal to INT_REGISTER_SIZE and the
b1e29e33
AC
2196 offset of each addressable subfield must be zero. Note that bit
2197 fields are not addressable, and all addressable subfields of
2198 unions always start at offset zero.
67255d04
RE
2199
2200 This function is based on the behaviour of GCC 2.95.1.
2201 See: gcc/arm.c: arm_return_in_memory() for details.
2202
2203 Note: All versions of GCC before GCC 2.95.2 do not set up the
2204 parameters correctly for a function returning the following
2205 structure: struct { float f;}; This should be returned in memory,
2206 not a register. Richard Earnshaw sent me a patch, but I do not
2207 know of any way to detect if a function like the above has been
2208 compiled with the correct calling convention. */
2209
2210 /* All aggregate types that won't fit in a register must be returned
2211 in memory. */
f0c9063c 2212 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
67255d04
RE
2213 {
2214 return 1;
2215 }
2216
2af48f68
PB
2217 /* The AAPCS says all aggregates not larger than a word are returned
2218 in a register. */
2219 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2220 return 0;
2221
67255d04
RE
2222 /* The only aggregate types that can be returned in a register are
2223 structs and unions. Arrays must be returned in memory. */
2224 code = TYPE_CODE (type);
2225 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2226 {
2227 return 1;
2228 }
2229
2230 /* Assume all other aggregate types can be returned in a register.
2231 Run a check for structures, unions and arrays. */
2232 nRc = 0;
2233
2234 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2235 {
2236 int i;
2237 /* Need to check if this struct/union is "integer" like. For
2238 this to be true, its size must be less than or equal to
f0c9063c 2239 INT_REGISTER_SIZE and the offset of each addressable
b1e29e33
AC
2240 subfield must be zero. Note that bit fields are not
2241 addressable, and unions always start at offset zero. If any
2242 of the subfields is a floating point type, the struct/union
2243 cannot be an integer type. */
67255d04
RE
2244
2245 /* For each field in the object, check:
2246 1) Is it FP? --> yes, nRc = 1;
2247 2) Is it addressable (bitpos != 0) and
2248 not packed (bitsize == 0)?
2249 --> yes, nRc = 1
2250 */
2251
2252 for (i = 0; i < TYPE_NFIELDS (type); i++)
2253 {
2254 enum type_code field_type_code;
44e1a9eb 2255 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2256
2257 /* Is it a floating point type field? */
2258 if (field_type_code == TYPE_CODE_FLT)
2259 {
2260 nRc = 1;
2261 break;
2262 }
2263
2264 /* If bitpos != 0, then we have to care about it. */
2265 if (TYPE_FIELD_BITPOS (type, i) != 0)
2266 {
2267 /* Bitfields are not addressable. If the field bitsize is
2268 zero, then the field is not packed. Hence it cannot be
2269 a bitfield or any other packed type. */
2270 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2271 {
2272 nRc = 1;
2273 break;
2274 }
2275 }
2276 }
2277 }
2278
2279 return nRc;
2280}
2281
34e8f22d
RE
2282/* Write into appropriate registers a function return value of type
2283 TYPE, given in virtual format. */
2284
2285static void
b508a996 2286arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2287 const gdb_byte *valbuf)
34e8f22d 2288{
be8626e0
MD
2289 struct gdbarch *gdbarch = get_regcache_arch (regs);
2290
34e8f22d
RE
2291 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2292 {
7a5ea0d4 2293 char buf[MAX_REGISTER_SIZE];
34e8f22d 2294
be8626e0 2295 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
2296 {
2297 case ARM_FLOAT_FPA:
2298
be8626e0
MD
2299 convert_to_extended (floatformat_from_type (type), buf, valbuf,
2300 gdbarch_byte_order (gdbarch));
b508a996 2301 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2302 break;
2303
fd50bc42 2304 case ARM_FLOAT_SOFT_FPA:
08216dd7 2305 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2306 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2307 if (TYPE_LENGTH (type) > 4)
2308 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2309 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2310 break;
2311
2312 default:
2313 internal_error
2314 (__FILE__, __LINE__,
edefbb7c 2315 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2316 break;
2317 }
34e8f22d 2318 }
b508a996
RE
2319 else if (TYPE_CODE (type) == TYPE_CODE_INT
2320 || TYPE_CODE (type) == TYPE_CODE_CHAR
2321 || TYPE_CODE (type) == TYPE_CODE_BOOL
2322 || TYPE_CODE (type) == TYPE_CODE_PTR
2323 || TYPE_CODE (type) == TYPE_CODE_REF
2324 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2325 {
2326 if (TYPE_LENGTH (type) <= 4)
2327 {
2328 /* Values of one word or less are zero/sign-extended and
2329 returned in r0. */
7a5ea0d4 2330 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2331 LONGEST val = unpack_long (type, valbuf);
2332
7a5ea0d4 2333 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2334 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2335 }
2336 else
2337 {
2338 /* Integral values greater than one word are stored in consecutive
2339 registers starting with r0. This will always be a multiple of
2340 the regiser size. */
2341 int len = TYPE_LENGTH (type);
2342 int regno = ARM_A1_REGNUM;
2343
2344 while (len > 0)
2345 {
2346 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2347 len -= INT_REGISTER_SIZE;
2348 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2349 }
2350 }
2351 }
34e8f22d 2352 else
b508a996
RE
2353 {
2354 /* For a structure or union the behaviour is as if the value had
2355 been stored to word-aligned memory and then loaded into
2356 registers with 32-bit load instruction(s). */
2357 int len = TYPE_LENGTH (type);
2358 int regno = ARM_A1_REGNUM;
7a5ea0d4 2359 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2360
2361 while (len > 0)
2362 {
2363 memcpy (tmpbuf, valbuf,
7a5ea0d4 2364 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2365 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2366 len -= INT_REGISTER_SIZE;
2367 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2368 }
2369 }
34e8f22d
RE
2370}
2371
2af48f68
PB
2372
2373/* Handle function return values. */
2374
2375static enum return_value_convention
c055b101
CV
2376arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
2377 struct type *valtype, struct regcache *regcache,
2378 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 2379{
7c00367c
MK
2380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381
2af48f68
PB
2382 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2383 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2384 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2385 {
7c00367c
MK
2386 if (tdep->struct_return == pcc_struct_return
2387 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2388 return RETURN_VALUE_STRUCT_CONVENTION;
2389 }
2390
2391 if (writebuf)
2392 arm_store_return_value (valtype, regcache, writebuf);
2393
2394 if (readbuf)
2395 arm_extract_return_value (valtype, regcache, readbuf);
2396
2397 return RETURN_VALUE_REGISTER_CONVENTION;
2398}
2399
2400
9df628e0 2401static int
60ade65d 2402arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0
RE
2403{
2404 CORE_ADDR jb_addr;
7a5ea0d4 2405 char buf[INT_REGISTER_SIZE];
60ade65d 2406 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
9df628e0 2407
60ade65d 2408 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
2409
2410 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2411 INT_REGISTER_SIZE))
9df628e0
RE
2412 return 0;
2413
7a5ea0d4 2414 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2415 return 1;
2416}
2417
faa95490
DJ
2418/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2419 return the target PC. Otherwise return 0. */
c906108c
SS
2420
2421CORE_ADDR
52f729a7 2422arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 2423{
c5aa993b 2424 char *name;
faa95490 2425 int namelen;
c906108c
SS
2426 CORE_ADDR start_addr;
2427
2428 /* Find the starting address and name of the function containing the PC. */
2429 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2430 return 0;
2431
faa95490
DJ
2432 /* If PC is in a Thumb call or return stub, return the address of the
2433 target PC, which is in a register. The thunk functions are called
2434 _call_via_xx, where x is the register name. The possible names
2435 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2436 if (strncmp (name, "_call_via_", 10) == 0)
2437 {
ed9a39eb
JM
2438 /* Use the name suffix to determine which register contains the
2439 target PC. */
c5aa993b
JM
2440 static char *table[15] =
2441 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2442 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2443 };
c906108c 2444 int regno;
faa95490 2445 int offset = strlen (name) - 2;
c906108c
SS
2446
2447 for (regno = 0; regno <= 14; regno++)
faa95490 2448 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 2449 return get_frame_register_unsigned (frame, regno);
c906108c 2450 }
ed9a39eb 2451
faa95490
DJ
2452 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2453 non-interworking calls to foo. We could decode the stubs
2454 to find the target but it's easier to use the symbol table. */
2455 namelen = strlen (name);
2456 if (name[0] == '_' && name[1] == '_'
2457 && ((namelen > 2 + strlen ("_from_thumb")
2458 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2459 strlen ("_from_thumb")) == 0)
2460 || (namelen > 2 + strlen ("_from_arm")
2461 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2462 strlen ("_from_arm")) == 0)))
2463 {
2464 char *target_name;
2465 int target_len = namelen - 2;
2466 struct minimal_symbol *minsym;
2467 struct objfile *objfile;
2468 struct obj_section *sec;
2469
2470 if (name[namelen - 1] == 'b')
2471 target_len -= strlen ("_from_thumb");
2472 else
2473 target_len -= strlen ("_from_arm");
2474
2475 target_name = alloca (target_len + 1);
2476 memcpy (target_name, name + 2, target_len);
2477 target_name[target_len] = '\0';
2478
2479 sec = find_pc_section (pc);
2480 objfile = (sec == NULL) ? NULL : sec->objfile;
2481 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2482 if (minsym != NULL)
2483 return SYMBOL_VALUE_ADDRESS (minsym);
2484 else
2485 return 0;
2486 }
2487
c5aa993b 2488 return 0; /* not a stub */
c906108c
SS
2489}
2490
afd7eef0
RE
2491static void
2492set_arm_command (char *args, int from_tty)
2493{
edefbb7c
AC
2494 printf_unfiltered (_("\
2495\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2496 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2497}
2498
2499static void
2500show_arm_command (char *args, int from_tty)
2501{
26304000 2502 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2503}
2504
28e97307
DJ
2505static void
2506arm_update_current_architecture (void)
fd50bc42 2507{
28e97307 2508 struct gdbarch_info info;
fd50bc42 2509
28e97307
DJ
2510 /* If the current architecture is not ARM, we have nothing to do. */
2511 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2512 return;
fd50bc42 2513
28e97307
DJ
2514 /* Update the architecture. */
2515 gdbarch_info_init (&info);
fd50bc42 2516
28e97307
DJ
2517 if (!gdbarch_update_p (info))
2518 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2519}
2520
2521static void
2522set_fp_model_sfunc (char *args, int from_tty,
2523 struct cmd_list_element *c)
2524{
2525 enum arm_float_model fp_model;
2526
2527 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2528 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2529 {
2530 arm_fp_model = fp_model;
2531 break;
2532 }
2533
2534 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2535 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2536 current_fp_model);
2537
28e97307 2538 arm_update_current_architecture ();
fd50bc42
RE
2539}
2540
2541static void
08546159
AC
2542show_fp_model (struct ui_file *file, int from_tty,
2543 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2544{
2545 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2546
28e97307 2547 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2548 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2549 fprintf_filtered (file, _("\
2550The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2551 fp_model_strings[tdep->fp_model]);
2552 else
2553 fprintf_filtered (file, _("\
2554The current ARM floating point model is \"%s\".\n"),
2555 fp_model_strings[arm_fp_model]);
2556}
2557
2558static void
2559arm_set_abi (char *args, int from_tty,
2560 struct cmd_list_element *c)
2561{
2562 enum arm_abi_kind arm_abi;
2563
2564 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2565 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2566 {
2567 arm_abi_global = arm_abi;
2568 break;
2569 }
2570
2571 if (arm_abi == ARM_ABI_LAST)
2572 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2573 arm_abi_string);
2574
2575 arm_update_current_architecture ();
2576}
2577
2578static void
2579arm_show_abi (struct ui_file *file, int from_tty,
2580 struct cmd_list_element *c, const char *value)
2581{
2582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2583
2584 if (arm_abi_global == ARM_ABI_AUTO
2585 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2586 fprintf_filtered (file, _("\
2587The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2588 arm_abi_strings[tdep->arm_abi]);
2589 else
2590 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2591 arm_abi_string);
fd50bc42
RE
2592}
2593
afd7eef0
RE
2594/* If the user changes the register disassembly style used for info
2595 register and other commands, we have to also switch the style used
2596 in opcodes for disassembly output. This function is run in the "set
2597 arm disassembly" command, and does that. */
bc90b915
FN
2598
2599static void
afd7eef0 2600set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2601 struct cmd_list_element *c)
2602{
afd7eef0 2603 set_disassembly_style ();
bc90b915
FN
2604}
2605\f
966fbf70 2606/* Return the ARM register name corresponding to register I. */
a208b0cb 2607static const char *
d93859e2 2608arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 2609{
ff6f572f
DJ
2610 if (i >= ARRAY_SIZE (arm_register_names))
2611 /* These registers are only supported on targets which supply
2612 an XML description. */
2613 return "";
2614
966fbf70
RE
2615 return arm_register_names[i];
2616}
2617
bc90b915 2618static void
afd7eef0 2619set_disassembly_style (void)
bc90b915 2620{
123dc839 2621 int current;
bc90b915 2622
123dc839
DJ
2623 /* Find the style that the user wants. */
2624 for (current = 0; current < num_disassembly_options; current++)
2625 if (disassembly_style == valid_disassembly_styles[current])
2626 break;
2627 gdb_assert (current < num_disassembly_options);
bc90b915 2628
94c30b78 2629 /* Synchronize the disassembler. */
bc90b915
FN
2630 set_arm_regname_option (current);
2631}
2632
082fc60d
RE
2633/* Test whether the coff symbol specific value corresponds to a Thumb
2634 function. */
2635
2636static int
2637coff_sym_is_thumb (int val)
2638{
2639 return (val == C_THUMBEXT ||
2640 val == C_THUMBSTAT ||
2641 val == C_THUMBEXTFUNC ||
2642 val == C_THUMBSTATFUNC ||
2643 val == C_THUMBLABEL);
2644}
2645
2646/* arm_coff_make_msymbol_special()
2647 arm_elf_make_msymbol_special()
2648
2649 These functions test whether the COFF or ELF symbol corresponds to
2650 an address in thumb code, and set a "special" bit in a minimal
2651 symbol to indicate that it does. */
2652
34e8f22d 2653static void
082fc60d
RE
2654arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2655{
2656 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2657 STT_ARM_TFUNC). */
2658 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2659 == STT_LOPROC)
2660 MSYMBOL_SET_SPECIAL (msym);
2661}
2662
34e8f22d 2663static void
082fc60d
RE
2664arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2665{
2666 if (coff_sym_is_thumb (val))
2667 MSYMBOL_SET_SPECIAL (msym);
2668}
2669
756fe439 2670static void
61a1198a 2671arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 2672{
61a1198a 2673 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
2674
2675 /* If necessary, set the T bit. */
2676 if (arm_apcs_32)
2677 {
61a1198a
UW
2678 ULONGEST val;
2679 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
756fe439 2680 if (arm_pc_is_thumb (pc))
61a1198a 2681 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
756fe439 2682 else
61a1198a
UW
2683 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2684 val & ~(ULONGEST) 0x20);
756fe439
DJ
2685 }
2686}
123dc839
DJ
2687
2688static struct value *
2689value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2690{
2691 const int *reg_p = baton;
2692 return value_of_register (*reg_p, frame);
2693}
97e03143 2694\f
70f80edf
JT
2695static enum gdb_osabi
2696arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2697{
2af48f68 2698 unsigned int elfosabi;
70f80edf 2699 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2700
70f80edf 2701 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2702
28e97307
DJ
2703 if (elfosabi == ELFOSABI_ARM)
2704 /* GNU tools use this value. Check note sections in this case,
2705 as well. */
2706 bfd_map_over_sections (abfd,
2707 generic_elf_osabi_sniff_abi_tag_sections,
2708 &osabi);
97e03143 2709
28e97307 2710 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2711 return osabi;
97e03143
RE
2712}
2713
70f80edf 2714\f
da3c6d4a
MS
2715/* Initialize the current architecture based on INFO. If possible,
2716 re-use an architecture from ARCHES, which is a list of
2717 architectures already created during this debugging session.
97e03143 2718
da3c6d4a
MS
2719 Called e.g. at program startup, when reading a core file, and when
2720 reading a binary file. */
97e03143 2721
39bbf761
RE
2722static struct gdbarch *
2723arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2724{
97e03143 2725 struct gdbarch_tdep *tdep;
39bbf761 2726 struct gdbarch *gdbarch;
28e97307
DJ
2727 struct gdbarch_list *best_arch;
2728 enum arm_abi_kind arm_abi = arm_abi_global;
2729 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2730 struct tdesc_arch_data *tdesc_data = NULL;
2731 int i;
ff6f572f 2732 int have_fpa_registers = 1;
123dc839
DJ
2733
2734 /* Check any target description for validity. */
2735 if (tdesc_has_registers (info.target_desc))
2736 {
2737 /* For most registers we require GDB's default names; but also allow
2738 the numeric names for sp / lr / pc, as a convenience. */
2739 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2740 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2741 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2742
2743 const struct tdesc_feature *feature;
2744 int i, valid_p;
2745
2746 feature = tdesc_find_feature (info.target_desc,
2747 "org.gnu.gdb.arm.core");
2748 if (feature == NULL)
2749 return NULL;
2750
2751 tdesc_data = tdesc_data_alloc ();
2752
2753 valid_p = 1;
2754 for (i = 0; i < ARM_SP_REGNUM; i++)
2755 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2756 arm_register_names[i]);
2757 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2758 ARM_SP_REGNUM,
2759 arm_sp_names);
2760 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2761 ARM_LR_REGNUM,
2762 arm_lr_names);
2763 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2764 ARM_PC_REGNUM,
2765 arm_pc_names);
2766 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2767 ARM_PS_REGNUM, "cpsr");
2768
2769 if (!valid_p)
2770 {
2771 tdesc_data_cleanup (tdesc_data);
2772 return NULL;
2773 }
2774
2775 feature = tdesc_find_feature (info.target_desc,
2776 "org.gnu.gdb.arm.fpa");
2777 if (feature != NULL)
2778 {
2779 valid_p = 1;
2780 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2781 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2782 arm_register_names[i]);
2783 if (!valid_p)
2784 {
2785 tdesc_data_cleanup (tdesc_data);
2786 return NULL;
2787 }
2788 }
ff6f572f
DJ
2789 else
2790 have_fpa_registers = 0;
2791
2792 feature = tdesc_find_feature (info.target_desc,
2793 "org.gnu.gdb.xscale.iwmmxt");
2794 if (feature != NULL)
2795 {
2796 static const char *const iwmmxt_names[] = {
2797 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2798 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2799 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2800 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2801 };
2802
2803 valid_p = 1;
2804 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2805 valid_p
2806 &= tdesc_numbered_register (feature, tdesc_data, i,
2807 iwmmxt_names[i - ARM_WR0_REGNUM]);
2808
2809 /* Check for the control registers, but do not fail if they
2810 are missing. */
2811 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2812 tdesc_numbered_register (feature, tdesc_data, i,
2813 iwmmxt_names[i - ARM_WR0_REGNUM]);
2814
2815 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2816 valid_p
2817 &= tdesc_numbered_register (feature, tdesc_data, i,
2818 iwmmxt_names[i - ARM_WR0_REGNUM]);
2819
2820 if (!valid_p)
2821 {
2822 tdesc_data_cleanup (tdesc_data);
2823 return NULL;
2824 }
2825 }
123dc839 2826 }
39bbf761 2827
28e97307
DJ
2828 /* If we have an object to base this architecture on, try to determine
2829 its ABI. */
39bbf761 2830
28e97307 2831 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2832 {
6b26d61a 2833 int ei_osabi, e_flags;
28e97307 2834
4be87837 2835 switch (bfd_get_flavour (info.abfd))
97e03143 2836 {
4be87837
DJ
2837 case bfd_target_aout_flavour:
2838 /* Assume it's an old APCS-style ABI. */
28e97307 2839 arm_abi = ARM_ABI_APCS;
4be87837 2840 break;
97e03143 2841
4be87837
DJ
2842 case bfd_target_coff_flavour:
2843 /* Assume it's an old APCS-style ABI. */
2844 /* XXX WinCE? */
28e97307
DJ
2845 arm_abi = ARM_ABI_APCS;
2846 break;
2847
2848 case bfd_target_elf_flavour:
2849 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2850 e_flags = elf_elfheader (info.abfd)->e_flags;
2851
28e97307
DJ
2852 if (ei_osabi == ELFOSABI_ARM)
2853 {
2854 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2855 objects. There's nowhere to tag an EABI version
2856 anyway, so assume APCS. */
28e97307
DJ
2857 arm_abi = ARM_ABI_APCS;
2858 }
2859 else if (ei_osabi == ELFOSABI_NONE)
2860 {
6b26d61a 2861 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2862
2863 switch (eabi_ver)
2864 {
2865 case EF_ARM_EABI_UNKNOWN:
2866 /* Assume GNU tools. */
2867 arm_abi = ARM_ABI_APCS;
2868 break;
2869
2870 case EF_ARM_EABI_VER4:
625b5003 2871 case EF_ARM_EABI_VER5:
28e97307 2872 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2873 /* EABI binaries default to VFP float ordering. */
2874 if (fp_model == ARM_FLOAT_AUTO)
2875 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2876 break;
2877
2878 default:
6b26d61a 2879 /* Leave it as "auto". */
28e97307 2880 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2881 break;
2882 }
2883 }
2884
2885 if (fp_model == ARM_FLOAT_AUTO)
2886 {
2887 int e_flags = elf_elfheader (info.abfd)->e_flags;
2888
2889 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2890 {
2891 case 0:
2892 /* Leave it as "auto". Strictly speaking this case
2893 means FPA, but almost nobody uses that now, and
2894 many toolchains fail to set the appropriate bits
2895 for the floating-point model they use. */
2896 break;
2897 case EF_ARM_SOFT_FLOAT:
2898 fp_model = ARM_FLOAT_SOFT_FPA;
2899 break;
2900 case EF_ARM_VFP_FLOAT:
2901 fp_model = ARM_FLOAT_VFP;
2902 break;
2903 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2904 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2905 break;
2906 }
2907 }
4be87837 2908 break;
97e03143 2909
4be87837 2910 default:
28e97307 2911 /* Leave it as "auto". */
50ceaba5 2912 break;
97e03143
RE
2913 }
2914 }
2915
28e97307
DJ
2916 /* If there is already a candidate, use it. */
2917 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2918 best_arch != NULL;
2919 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2920 {
b8926edc
DJ
2921 if (arm_abi != ARM_ABI_AUTO
2922 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
2923 continue;
2924
b8926edc
DJ
2925 if (fp_model != ARM_FLOAT_AUTO
2926 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
2927 continue;
2928
2929 /* Found a match. */
2930 break;
2931 }
97e03143 2932
28e97307 2933 if (best_arch != NULL)
123dc839
DJ
2934 {
2935 if (tdesc_data != NULL)
2936 tdesc_data_cleanup (tdesc_data);
2937 return best_arch->gdbarch;
2938 }
28e97307
DJ
2939
2940 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2941 gdbarch = gdbarch_alloc (&info, tdep);
2942
28e97307
DJ
2943 /* Record additional information about the architecture we are defining.
2944 These are gdbarch discriminators, like the OSABI. */
2945 tdep->arm_abi = arm_abi;
2946 tdep->fp_model = fp_model;
ff6f572f 2947 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2948
2949 /* Breakpoints. */
67255d04
RE
2950 switch (info.byte_order)
2951 {
2952 case BFD_ENDIAN_BIG:
66e810cd
RE
2953 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2954 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2955 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2956 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2957
67255d04
RE
2958 break;
2959
2960 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2961 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2962 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2963 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2964 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2965
67255d04
RE
2966 break;
2967
2968 default:
2969 internal_error (__FILE__, __LINE__,
edefbb7c 2970 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2971 }
2972
d7b486e7
RE
2973 /* On ARM targets char defaults to unsigned. */
2974 set_gdbarch_char_signed (gdbarch, 0);
2975
9df628e0 2976 /* This should be low enough for everything. */
97e03143 2977 tdep->lowest_pc = 0x20;
94c30b78 2978 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2979
7c00367c
MK
2980 /* The default, for both APCS and AAPCS, is to return small
2981 structures in registers. */
2982 tdep->struct_return = reg_struct_return;
2983
2dd604e7 2984 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2985 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2986
756fe439
DJ
2987 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2988
148754e5 2989 /* Frame handling. */
eb5492fa
DJ
2990 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2991 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2992 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2993
eb5492fa 2994 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2995
34e8f22d
RE
2996 /* Address manipulation. */
2997 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2998 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2999
34e8f22d
RE
3000 /* Advance PC across function entry code. */
3001 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
3002
190dce09
UW
3003 /* Skip trampolines. */
3004 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
3005
34e8f22d
RE
3006 /* The stack grows downward. */
3007 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3008
3009 /* Breakpoint manipulation. */
3010 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
3011
3012 /* Information about registers, etc. */
0ba6dca9 3013 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
3014 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3015 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 3016 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 3017 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 3018
ff6f572f
DJ
3019 /* This "info float" is FPA-specific. Use the generic version if we
3020 do not have FPA. */
3021 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3022 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3023
26216b98 3024 /* Internal <-> external register number maps. */
ff6f572f
DJ
3025 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
3027 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3028
34e8f22d
RE
3029 set_gdbarch_register_name (gdbarch, arm_register_name);
3030
3031 /* Returning results. */
2af48f68 3032 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 3033
03d48a7d
RE
3034 /* Disassembly. */
3035 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3036
34e8f22d
RE
3037 /* Minsymbol frobbing. */
3038 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3039 set_gdbarch_coff_make_msymbol_special (gdbarch,
3040 arm_coff_make_msymbol_special);
3041
0d5de010
DJ
3042 /* Virtual tables. */
3043 set_gdbarch_vbit_in_delta (gdbarch, 1);
3044
97e03143 3045 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3046 gdbarch_init_osabi (info, gdbarch);
97e03143 3047
eb5492fa 3048 /* Add some default predicates. */
909cf6ea 3049 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 3050 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
3051 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3052
97e03143
RE
3053 /* Now we have tuned the configuration, set a few final things,
3054 based on what the OS ABI has told us. */
3055
b8926edc
DJ
3056 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3057 binaries are always marked. */
3058 if (tdep->arm_abi == ARM_ABI_AUTO)
3059 tdep->arm_abi = ARM_ABI_APCS;
3060
3061 /* We used to default to FPA for generic ARM, but almost nobody
3062 uses that now, and we now provide a way for the user to force
3063 the model. So default to the most useful variant. */
3064 if (tdep->fp_model == ARM_FLOAT_AUTO)
3065 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3066
9df628e0
RE
3067 if (tdep->jb_pc >= 0)
3068 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3069
08216dd7 3070 /* Floating point sizes and format. */
8da61cc4 3071 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 3072 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 3073 {
8da61cc4
DJ
3074 set_gdbarch_double_format
3075 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3076 set_gdbarch_long_double_format
3077 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3078 }
3079 else
3080 {
3081 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3082 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3083 }
3084
123dc839 3085 if (tdesc_data)
7cc46491 3086 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
123dc839
DJ
3087
3088 /* Add standard register aliases. We add aliases even for those
3089 nanes which are used by the current architecture - it's simpler,
3090 and does no harm, since nothing ever lists user registers. */
3091 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3092 user_reg_add (gdbarch, arm_register_aliases[i].name,
3093 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3094
39bbf761
RE
3095 return gdbarch;
3096}
3097
97e03143 3098static void
2af46ca0 3099arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 3100{
2af46ca0 3101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
3102
3103 if (tdep == NULL)
3104 return;
3105
edefbb7c 3106 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3107 (unsigned long) tdep->lowest_pc);
3108}
3109
a78f21af
AC
3110extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3111
c906108c 3112void
ed9a39eb 3113_initialize_arm_tdep (void)
c906108c 3114{
bc90b915
FN
3115 struct ui_file *stb;
3116 long length;
26304000 3117 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3118 const char *setname;
3119 const char *setdesc;
4bd7b427 3120 const char *const *regnames;
bc90b915
FN
3121 int numregs, i, j;
3122 static char *helptext;
edefbb7c
AC
3123 char regdesc[1024], *rdptr = regdesc;
3124 size_t rest = sizeof (regdesc);
085dd6e6 3125
42cf1509 3126 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3127
70f80edf
JT
3128 /* Register an ELF OS ABI sniffer for ARM binaries. */
3129 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3130 bfd_target_elf_flavour,
3131 arm_elf_osabi_sniffer);
3132
94c30b78 3133 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3134 num_disassembly_options = get_arm_regname_num_options ();
3135
3136 /* Add root prefix command for all "set arm"/"show arm" commands. */
3137 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3138 _("Various ARM-specific commands."),
afd7eef0
RE
3139 &setarmcmdlist, "set arm ", 0, &setlist);
3140
3141 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3142 _("Various ARM-specific commands."),
afd7eef0 3143 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3144
94c30b78 3145 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3146 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3147
eefe576e
AC
3148 /* Initialize the array that will be passed to
3149 add_setshow_enum_cmd(). */
afd7eef0
RE
3150 valid_disassembly_styles
3151 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3152 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3153 {
3154 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3155 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3156 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3157 rdptr += length;
3158 rest -= length;
123dc839
DJ
3159 /* When we find the default names, tell the disassembler to use
3160 them. */
bc90b915
FN
3161 if (!strcmp (setname, "std"))
3162 {
afd7eef0 3163 disassembly_style = setname;
bc90b915
FN
3164 set_arm_regname_option (i);
3165 }
3166 }
94c30b78 3167 /* Mark the end of valid options. */
afd7eef0 3168 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3169
edefbb7c
AC
3170 /* Create the help text. */
3171 stb = mem_fileopen ();
3172 fprintf_unfiltered (stb, "%s%s%s",
3173 _("The valid values are:\n"),
3174 regdesc,
3175 _("The default is \"std\"."));
bc90b915
FN
3176 helptext = ui_file_xstrdup (stb, &length);
3177 ui_file_delete (stb);
ed9a39eb 3178
edefbb7c
AC
3179 add_setshow_enum_cmd("disassembler", no_class,
3180 valid_disassembly_styles, &disassembly_style,
3181 _("Set the disassembly style."),
3182 _("Show the disassembly style."),
3183 helptext,
2c5b56ce 3184 set_disassembly_style_sfunc,
7915a72c 3185 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3186 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3187
3188 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3189 _("Set usage of ARM 32-bit mode."),
3190 _("Show usage of ARM 32-bit mode."),
3191 _("When off, a 26-bit PC will be used."),
2c5b56ce 3192 NULL,
7915a72c 3193 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3194 &setarmcmdlist, &showarmcmdlist);
c906108c 3195
fd50bc42 3196 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3197 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3198 _("Set the floating point type."),
3199 _("Show the floating point type."),
3200 _("auto - Determine the FP typefrom the OS-ABI.\n\
3201softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3202fpa - FPA co-processor (GCC compiled).\n\
3203softvfp - Software FP with pure-endian doubles.\n\
3204vfp - VFP co-processor."),
edefbb7c 3205 set_fp_model_sfunc, show_fp_model,
7376b4c2 3206 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3207
28e97307
DJ
3208 /* Add a command to allow the user to force the ABI. */
3209 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3210 _("Set the ABI."),
3211 _("Show the ABI."),
3212 NULL, arm_set_abi, arm_show_abi,
3213 &setarmcmdlist, &showarmcmdlist);
3214
6529d2dd 3215 /* Debugging flag. */
edefbb7c
AC
3216 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3217 _("Set ARM debugging."),
3218 _("Show ARM debugging."),
3219 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3220 NULL,
7915a72c 3221 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3222 &setdebuglist, &showdebuglist);
c906108c 3223}
This page took 0.717688 seconds and 4 git commands to generate.