* frame.c (deprecated_selected_frame): Rename to...
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
34e8f22d
RE
46
47#include "arm-tdep.h"
26216b98 48#include "gdb/sim-arm.h"
34e8f22d 49
082fc60d
RE
50#include "elf-bfd.h"
51#include "coff/internal.h"
97e03143 52#include "elf/arm.h"
c906108c 53
26216b98
AC
54#include "gdb_assert.h"
55
6529d2dd
AC
56static int arm_debug;
57
082fc60d
RE
58/* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 60 is used for this purpose.
082fc60d
RE
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
64
65#define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69#define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
afd7eef0
RE
72/* The list of available "set arm ..." and "show arm ..." commands. */
73static struct cmd_list_element *setarmcmdlist = NULL;
74static struct cmd_list_element *showarmcmdlist = NULL;
75
fd50bc42
RE
76/* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78static const char *fp_model_strings[] =
79{
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
28e97307
DJ
84 "vfp",
85 NULL
fd50bc42
RE
86};
87
88/* A variable that can be configured by the user. */
89static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90static const char *current_fp_model = "auto";
91
28e97307
DJ
92/* The ABI to use. Keep this in sync with arm_abi_kind. */
93static const char *arm_abi_strings[] =
94{
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99};
100
101/* A variable that can be configured by the user. */
102static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103static const char *arm_abi_string = "auto";
104
94c30b78 105/* Number of different reg name sets (options). */
afd7eef0 106static int num_disassembly_options;
bc90b915 107
123dc839
DJ
108/* The standard register names, and all the valid aliases for them. */
109static const struct
110{
111 const char *name;
112 int regnum;
113} arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157};
bc90b915 158
123dc839 159static const char *const arm_register_names[] =
da59e081
JM
160{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 166 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 167
afd7eef0
RE
168/* Valid register name styles. */
169static const char **valid_disassembly_styles;
ed9a39eb 170
afd7eef0
RE
171/* Disassembly style to use. Default to "std" register names. */
172static const char *disassembly_style;
96baa820 173
ed9a39eb 174/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
175 style. */
176static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 177 struct cmd_list_element *);
afd7eef0 178static void set_disassembly_style (void);
ed9a39eb 179
b508a996
RE
180static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
ed9a39eb 184
9b8d791a 185struct arm_prologue_cache
c3b4394c 186{
eb5492fa
DJ
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
c3b4394c
RE
197 int framesize;
198 int frameoffset;
eb5492fa
DJ
199
200 /* The register used to hold the frame pointer for this frame. */
c3b4394c 201 int framereg;
eb5492fa
DJ
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
c3b4394c 205};
ed9a39eb 206
bc90b915
FN
207/* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209#define IS_THUMB_ADDR(addr) ((addr) & 1)
210#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
94c30b78 213/* Set to true if the 32-bit mode is in use. */
c906108c
SS
214
215int arm_apcs_32 = 1;
216
ed9a39eb
JM
217/* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
c906108c 219
34e8f22d 220int
2a451106 221arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 222{
c5aa993b 223 struct minimal_symbol *sym;
c906108c 224
ed9a39eb 225 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
ed9a39eb 229 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
c5aa993b 233 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
234 }
235 else
ed9a39eb
JM
236 {
237 return 0;
238 }
c906108c
SS
239}
240
181c1381 241/* Remove useless bits from addresses in a running program. */
34e8f22d 242static CORE_ADDR
ed9a39eb 243arm_addr_bits_remove (CORE_ADDR val)
c906108c 244{
a3a2ee65
JT
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 247 else
a3a2ee65 248 return (val & 0x03fffffc);
c906108c
SS
249}
250
181c1381
RE
251/* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
34e8f22d 253static CORE_ADDR
181c1381
RE
254arm_smash_text_address (CORE_ADDR val)
255{
256 return val & ~1;
257}
258
29d73ae4
DJ
259/* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
262
263static CORE_ADDR
29d73ae4
DJ
264thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
c906108c 267{
29d73ae4
DJ
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
da3c6d4a 273
29d73ae4
DJ
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
c906108c 288 {
29d73ae4
DJ
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
c906108c 292
94c30b78 293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 294 {
29d73ae4
DJ
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
da59e081 320 }
da3c6d4a
MS
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
da59e081 323 {
29d73ae4
DJ
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
da59e081 328 else
29d73ae4
DJ
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
da59e081
JM
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 336 {
29d73ae4
DJ
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
da59e081 340 }
29d73ae4 341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 342 {
29d73ae4
DJ
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 356 }
29d73ae4 357 else
3d74b771 358 {
29d73ae4
DJ
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
da3c6d4a 363 break;
3d74b771 364 }
29d73ae4
DJ
365
366 start += 2;
c906108c
SS
367 }
368
29d73ae4
DJ
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
c906108c
SS
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 436 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
176620f1 446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
c906108c 456 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 457 by disassembling the instructions. */
c906108c 458
b8d5e71d
MS
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
c906108c 462
29d73ae4
DJ
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
1c5bada0 469 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
28cd8767
JG
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
b8d5e71d
MS
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
c906108c 484
b8d5e71d
MS
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
c906108c 487
b8d5e71d
MS
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
11d3b27d 490
b8d5e71d
MS
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
f43845b3 494
b8d5e71d
MS
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
f43845b3 522 }
c906108c 523
b8d5e71d 524 return skip_pc; /* End of prologue */
c906108c 525}
94c30b78 526
c5aa993b 527/* *INDENT-OFF* */
c906108c
SS
528/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
c906108c 534
da59e081
JM
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
c906108c
SS
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
543 12 bytes. The frame register is R7.
544
da3c6d4a
MS
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
c5aa993b
JM
547/* *INDENT-ON* */
548
c906108c 549static void
eb5492fa 550thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
551{
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
94c30b78 555 /* Which register has been copied to register n? */
da3c6d4a
MS
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
c5aa993b 563 int i;
c906108c 564
eb5492fa 565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 570 prologue_end = prev_pc;
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
f7060f85
DJ
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
c906108c 578
eb5492fa 579 prologue_end = min (prologue_end, prev_pc);
c906108c 580
29d73ae4
DJ
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
c906108c
SS
583}
584
ed9a39eb 585/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
c906108c
SS
590 This information is stored in the "extra" fields of the frame_info.
591
96baa820
JM
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
ed9a39eb
JM
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
96baa820 599
c906108c 600 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
c906108c 608 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
ed9a39eb 615
96baa820
JM
616 A variable argument function call will look like:
617
ed9a39eb
JM
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
96baa820 623 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
96baa820
JM
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
ed9a39eb
JM
649
650 */
c906108c
SS
651
652static void
eb5492fa 653arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 654{
28cd8767 655 int regno, sp_offset, fp_offset, ip_offset;
c906108c 656 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 658
c906108c 659 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
c906108c
SS
663
664 /* Check for Thumb prologue. */
eb5492fa 665 if (arm_pc_is_thumb (prev_pc))
c906108c 666 {
eb5492fa 667 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 674 {
2a451106
KB
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
eb5492fa 681 prologue_end = prev_pc;
2a451106
KB
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
94c30b78 705 the scheduler. */
2a451106
KB
706
707 if (prologue_end > prologue_start + 64)
708 {
94c30b78 709 prologue_end = prologue_start + 64; /* See above. */
2a451106 710 }
c906108c
SS
711 }
712 else
713 {
eb5492fa
DJ
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 728 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 729 }
c906108c
SS
730 }
731
eb5492fa
DJ
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
c906108c 735 /* Now search the prologue looking for instructions that set up the
96baa820 736 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 737
96baa820
JM
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 741 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 746 if we don't see this as the first insn, we will stop.
c906108c 747
f43845b3
MS
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 750
f43845b3
MS
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
b8d5e71d 754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 755
28cd8767 756 sp_offset = fp_offset = ip_offset = 0;
f43845b3 757
94c30b78
MS
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
f43845b3 760 current_pc += 4)
96baa820 761 {
d4473757
KB
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
94c30b78 764 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 765 {
28cd8767
JG
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
f43845b3
MS
783 continue;
784 }
94c30b78 785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 786 {
e28a332c
JG
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
c906108c 795 {
d4473757 796 int mask = insn & 0xffff;
ed9a39eb 797
94c30b78 798 /* Calculate offsets of saved registers. */
34e8f22d 799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
eb5492fa 803 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
804 }
805 }
b8d5e71d
MS
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
d4473757
KB
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
94c30b78
MS
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 824 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 825 fp_offset = -imm + ip_offset;
9b8d791a 826 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
94c30b78
MS
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
ff6f572f
DJ
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
837 {
838 sp_offset -= 12;
34e8f22d 839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 840 cache->saved_regs[regno].addr = sp_offset;
d4473757 841 }
ff6f572f
DJ
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
94c30b78 848 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 849 {
d4473757
KB
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
96baa820 854 }
d4473757 855 else
96baa820 856 {
d4473757
KB
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
96baa820 861 }
d4473757 862
34e8f22d 863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
866 {
867 sp_offset -= 12;
eb5492fa 868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 869 }
c906108c 870 }
d4473757 871 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 872 break; /* Condition not true, exit early */
b8d5e71d 873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 874 break; /* Don't scan past a block load */
d4473757
KB
875 else
876 /* The optimizer might shove anything into the prologue,
94c30b78 877 so we just skip what we don't recognize. */
d4473757 878 continue;
c906108c
SS
879 }
880
94c30b78
MS
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
d4473757 887 else
9b8d791a 888 cache->frameoffset = 0;
c906108c
SS
889}
890
eb5492fa
DJ
891static struct arm_prologue_cache *
892arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 893{
eb5492fa
DJ
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
c5aa993b 897
35d5d4ee 898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 900
eb5492fa 901 arm_scan_prologue (next_frame, cache);
848cfffb 902
eb5492fa
DJ
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
c906108c 906
eb5492fa 907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 908
eb5492fa
DJ
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 912 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
c906108c
SS
916}
917
eb5492fa
DJ
918/* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
c906108c 920
148754e5 921static void
eb5492fa
DJ
922arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
eb5492fa
DJ
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
f079148d 929
eb5492fa
DJ
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
2a451106 933
eb5492fa 934 func = frame_func_unwind (next_frame);
2a451106 935
eb5492fa
DJ
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
9e815ec2 938 if (func <= LOWEST_PC)
eb5492fa 939 return;
5a203e44 940
eb5492fa
DJ
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
24de872b 944
eb5492fa 945 id = frame_id_build (cache->prev_sp, func);
eb5492fa 946 *this_id = id;
c906108c
SS
947}
948
eb5492fa
DJ
949static void
950arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
9af75ef6 957 gdb_byte *valuep)
24de872b
DJ
958{
959 struct arm_prologue_cache *cache;
960
eb5492fa
DJ
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
24de872b 964
eb5492fa
DJ
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
24de872b 970
eb5492fa
DJ
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
1f67027d
AC
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
984}
985
986struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990};
991
992static const struct frame_unwind *
993arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994{
995 return &arm_prologue_unwind;
24de872b
DJ
996}
997
909cf6ea
DJ
998static struct arm_prologue_cache *
999arm_make_stub_cache (struct frame_info *next_frame)
1000{
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
35d5d4ee 1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011}
1012
1013/* Our frame ID for a stub frame is the current SP and LR. */
1014
1015static void
1016arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019{
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028}
1029
1030struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034};
1035
1036static const struct frame_unwind *
1037arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038{
1039 char dummy[4];
1040
1041 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1042 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1043 return &arm_stub_unwind;
1044
1045 return NULL;
1046}
1047
24de872b 1048static CORE_ADDR
eb5492fa 1049arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1050{
1051 struct arm_prologue_cache *cache;
1052
eb5492fa
DJ
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1058}
1059
eb5492fa
DJ
1060struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065};
1066
eb5492fa
DJ
1067/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1068 dummy frame. The frame ID's base needs to match the TOS value
1069 saved by save_dummy_frame_tos() and returned from
1070 arm_push_dummy_call, and the PC needs to match the dummy frame's
1071 breakpoint. */
c906108c 1072
eb5492fa
DJ
1073static struct frame_id
1074arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1075{
eb5492fa
DJ
1076 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1077 frame_pc_unwind (next_frame));
1078}
c3b4394c 1079
eb5492fa
DJ
1080/* Given THIS_FRAME, find the previous frame's resume PC (which will
1081 be used to construct the previous frame's ID, after looking up the
1082 containing function). */
c3b4394c 1083
eb5492fa
DJ
1084static CORE_ADDR
1085arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1086{
1087 CORE_ADDR pc;
1088 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1089 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1090}
1091
1092static CORE_ADDR
1093arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1094{
1095 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1096}
1097
2dd604e7
RE
1098/* When arguments must be pushed onto the stack, they go on in reverse
1099 order. The code below implements a FILO (stack) to do this. */
1100
1101struct stack_item
1102{
1103 int len;
1104 struct stack_item *prev;
1105 void *data;
1106};
1107
1108static struct stack_item *
1109push_stack_item (struct stack_item *prev, void *contents, int len)
1110{
1111 struct stack_item *si;
1112 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1113 si->data = xmalloc (len);
2dd604e7
RE
1114 si->len = len;
1115 si->prev = prev;
1116 memcpy (si->data, contents, len);
1117 return si;
1118}
1119
1120static struct stack_item *
1121pop_stack_item (struct stack_item *si)
1122{
1123 struct stack_item *dead = si;
1124 si = si->prev;
1125 xfree (dead->data);
1126 xfree (dead);
1127 return si;
1128}
1129
2af48f68
PB
1130
1131/* Return the alignment (in bytes) of the given type. */
1132
1133static int
1134arm_type_align (struct type *t)
1135{
1136 int n;
1137 int align;
1138 int falign;
1139
1140 t = check_typedef (t);
1141 switch (TYPE_CODE (t))
1142 {
1143 default:
1144 /* Should never happen. */
1145 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1146 return 4;
1147
1148 case TYPE_CODE_PTR:
1149 case TYPE_CODE_ENUM:
1150 case TYPE_CODE_INT:
1151 case TYPE_CODE_FLT:
1152 case TYPE_CODE_SET:
1153 case TYPE_CODE_RANGE:
1154 case TYPE_CODE_BITSTRING:
1155 case TYPE_CODE_REF:
1156 case TYPE_CODE_CHAR:
1157 case TYPE_CODE_BOOL:
1158 return TYPE_LENGTH (t);
1159
1160 case TYPE_CODE_ARRAY:
1161 case TYPE_CODE_COMPLEX:
1162 /* TODO: What about vector types? */
1163 return arm_type_align (TYPE_TARGET_TYPE (t));
1164
1165 case TYPE_CODE_STRUCT:
1166 case TYPE_CODE_UNION:
1167 align = 1;
1168 for (n = 0; n < TYPE_NFIELDS (t); n++)
1169 {
1170 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1171 if (falign > align)
1172 align = falign;
1173 }
1174 return align;
1175 }
1176}
1177
2dd604e7
RE
1178/* We currently only support passing parameters in integer registers. This
1179 conforms with GCC's default model. Several other variants exist and
1180 we should probably support some of them based on the selected ABI. */
1181
1182static CORE_ADDR
7d9b040b 1183arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1184 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1185 struct value **args, CORE_ADDR sp, int struct_return,
1186 CORE_ADDR struct_addr)
2dd604e7
RE
1187{
1188 int argnum;
1189 int argreg;
1190 int nstack;
1191 struct stack_item *si = NULL;
1192
6a65450a
AC
1193 /* Set the return address. For the ARM, the return breakpoint is
1194 always at BP_ADDR. */
2dd604e7 1195 /* XXX Fix for Thumb. */
6a65450a 1196 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1197
1198 /* Walk through the list of args and determine how large a temporary
1199 stack is required. Need to take care here as structs may be
1200 passed on the stack, and we have to to push them. */
1201 nstack = 0;
1202
1203 argreg = ARM_A1_REGNUM;
1204 nstack = 0;
1205
2dd604e7
RE
1206 /* The struct_return pointer occupies the first parameter
1207 passing register. */
1208 if (struct_return)
1209 {
1210 if (arm_debug)
1211 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1212 REGISTER_NAME (argreg), paddr (struct_addr));
1213 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1214 argreg++;
1215 }
1216
1217 for (argnum = 0; argnum < nargs; argnum++)
1218 {
1219 int len;
1220 struct type *arg_type;
1221 struct type *target_type;
1222 enum type_code typecode;
0fd88904 1223 bfd_byte *val;
2af48f68 1224 int align;
2dd604e7 1225
df407dfe 1226 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1227 len = TYPE_LENGTH (arg_type);
1228 target_type = TYPE_TARGET_TYPE (arg_type);
1229 typecode = TYPE_CODE (arg_type);
0fd88904 1230 val = value_contents_writeable (args[argnum]);
2dd604e7 1231
2af48f68
PB
1232 align = arm_type_align (arg_type);
1233 /* Round alignment up to a whole number of words. */
1234 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1235 /* Different ABIs have different maximum alignments. */
1236 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1237 {
1238 /* The APCS ABI only requires word alignment. */
1239 align = INT_REGISTER_SIZE;
1240 }
1241 else
1242 {
1243 /* The AAPCS requires at most doubleword alignment. */
1244 if (align > INT_REGISTER_SIZE * 2)
1245 align = INT_REGISTER_SIZE * 2;
1246 }
1247
1248 /* Push stack padding for dowubleword alignment. */
1249 if (nstack & (align - 1))
1250 {
1251 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1252 nstack += INT_REGISTER_SIZE;
1253 }
1254
1255 /* Doubleword aligned quantities must go in even register pairs. */
1256 if (argreg <= ARM_LAST_ARG_REGNUM
1257 && align > INT_REGISTER_SIZE
1258 && argreg & 1)
1259 argreg++;
1260
2dd604e7
RE
1261 /* If the argument is a pointer to a function, and it is a
1262 Thumb function, create a LOCAL copy of the value and set
1263 the THUMB bit in it. */
1264 if (TYPE_CODE_PTR == typecode
1265 && target_type != NULL
1266 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1267 {
7c0b4a20 1268 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1269 if (arm_pc_is_thumb (regval))
1270 {
1271 val = alloca (len);
fbd9dcd3 1272 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1273 }
1274 }
1275
1276 /* Copy the argument to general registers or the stack in
1277 register-sized pieces. Large arguments are split between
1278 registers and stack. */
1279 while (len > 0)
1280 {
b1e29e33 1281 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1282
1283 if (argreg <= ARM_LAST_ARG_REGNUM)
1284 {
1285 /* The argument is being passed in a general purpose
1286 register. */
7c0b4a20 1287 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1288 if (arm_debug)
1289 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1290 argnum, REGISTER_NAME (argreg),
b1e29e33 1291 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1292 regcache_cooked_write_unsigned (regcache, argreg, regval);
1293 argreg++;
1294 }
1295 else
1296 {
1297 /* Push the arguments onto the stack. */
1298 if (arm_debug)
1299 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1300 argnum, nstack);
b1e29e33
AC
1301 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1302 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1303 }
1304
1305 len -= partial_len;
1306 val += partial_len;
1307 }
1308 }
1309 /* If we have an odd number of words to push, then decrement the stack
1310 by one word now, so first stack argument will be dword aligned. */
1311 if (nstack & 4)
1312 sp -= 4;
1313
1314 while (si)
1315 {
1316 sp -= si->len;
1317 write_memory (sp, si->data, si->len);
1318 si = pop_stack_item (si);
1319 }
1320
1321 /* Finally, update teh SP register. */
1322 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1323
1324 return sp;
1325}
1326
f53f0d0b
PB
1327
1328/* Always align the frame to an 8-byte boundary. This is required on
1329 some platforms and harmless on the rest. */
1330
1331static CORE_ADDR
1332arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1333{
1334 /* Align the stack to eight bytes. */
1335 return sp & ~ (CORE_ADDR) 7;
1336}
1337
c906108c 1338static void
ed9a39eb 1339print_fpu_flags (int flags)
c906108c 1340{
c5aa993b
JM
1341 if (flags & (1 << 0))
1342 fputs ("IVO ", stdout);
1343 if (flags & (1 << 1))
1344 fputs ("DVZ ", stdout);
1345 if (flags & (1 << 2))
1346 fputs ("OFL ", stdout);
1347 if (flags & (1 << 3))
1348 fputs ("UFL ", stdout);
1349 if (flags & (1 << 4))
1350 fputs ("INX ", stdout);
1351 putchar ('\n');
c906108c
SS
1352}
1353
5e74b15c
RE
1354/* Print interesting information about the floating point processor
1355 (if present) or emulator. */
34e8f22d 1356static void
d855c300 1357arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1358 struct frame_info *frame, const char *args)
c906108c 1359{
52f0bd74 1360 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1361 int type;
1362
1363 type = (status >> 24) & 127;
edefbb7c
AC
1364 if (status & (1 << 31))
1365 printf (_("Hardware FPU type %d\n"), type);
1366 else
1367 printf (_("Software FPU type %d\n"), type);
1368 /* i18n: [floating point unit] mask */
1369 fputs (_("mask: "), stdout);
c5aa993b 1370 print_fpu_flags (status >> 16);
edefbb7c
AC
1371 /* i18n: [floating point unit] flags */
1372 fputs (_("flags: "), stdout);
c5aa993b 1373 print_fpu_flags (status);
c906108c
SS
1374}
1375
34e8f22d
RE
1376/* Return the GDB type object for the "standard" data type of data in
1377 register N. */
1378
1379static struct type *
7a5ea0d4 1380arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1381{
34e8f22d 1382 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1383 return builtin_type_arm_ext;
e4c16157
DJ
1384 else if (regnum == ARM_SP_REGNUM)
1385 return builtin_type_void_data_ptr;
1386 else if (regnum == ARM_PC_REGNUM)
1387 return builtin_type_void_func_ptr;
ff6f572f
DJ
1388 else if (regnum >= ARRAY_SIZE (arm_register_names))
1389 /* These registers are only supported on targets which supply
1390 an XML description. */
1391 return builtin_type_int0;
032758dc 1392 else
e4c16157 1393 return builtin_type_uint32;
032758dc
AC
1394}
1395
ff6f572f
DJ
1396/* Map a DWARF register REGNUM onto the appropriate GDB register
1397 number. */
1398
1399static int
1400arm_dwarf_reg_to_regnum (int reg)
1401{
1402 /* Core integer regs. */
1403 if (reg >= 0 && reg <= 15)
1404 return reg;
1405
1406 /* Legacy FPA encoding. These were once used in a way which
1407 overlapped with VFP register numbering, so their use is
1408 discouraged, but GDB doesn't support the ARM toolchain
1409 which used them for VFP. */
1410 if (reg >= 16 && reg <= 23)
1411 return ARM_F0_REGNUM + reg - 16;
1412
1413 /* New assignments for the FPA registers. */
1414 if (reg >= 96 && reg <= 103)
1415 return ARM_F0_REGNUM + reg - 96;
1416
1417 /* WMMX register assignments. */
1418 if (reg >= 104 && reg <= 111)
1419 return ARM_WCGR0_REGNUM + reg - 104;
1420
1421 if (reg >= 112 && reg <= 127)
1422 return ARM_WR0_REGNUM + reg - 112;
1423
1424 if (reg >= 192 && reg <= 199)
1425 return ARM_WC0_REGNUM + reg - 192;
1426
1427 return -1;
1428}
1429
26216b98
AC
1430/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1431static int
1432arm_register_sim_regno (int regnum)
1433{
1434 int reg = regnum;
1435 gdb_assert (reg >= 0 && reg < NUM_REGS);
1436
ff6f572f
DJ
1437 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1438 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1439
1440 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1441 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1442
1443 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1444 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1445
26216b98
AC
1446 if (reg < NUM_GREGS)
1447 return SIM_ARM_R0_REGNUM + reg;
1448 reg -= NUM_GREGS;
1449
1450 if (reg < NUM_FREGS)
1451 return SIM_ARM_FP0_REGNUM + reg;
1452 reg -= NUM_FREGS;
1453
1454 if (reg < NUM_SREGS)
1455 return SIM_ARM_FPS_REGNUM + reg;
1456 reg -= NUM_SREGS;
1457
edefbb7c 1458 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1459}
34e8f22d 1460
a37b3cc0
AC
1461/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1462 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1463 It is thought that this is is the floating-point register format on
1464 little-endian systems. */
c906108c 1465
ed9a39eb 1466static void
b508a996
RE
1467convert_from_extended (const struct floatformat *fmt, const void *ptr,
1468 void *dbl)
c906108c 1469{
a37b3cc0 1470 DOUBLEST d;
d7449b42 1471 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1472 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1473 else
1474 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1475 ptr, &d);
b508a996 1476 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1477}
1478
34e8f22d 1479static void
b508a996 1480convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1481{
a37b3cc0 1482 DOUBLEST d;
b508a996 1483 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1484 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1485 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1486 else
1487 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1488 &d, dbl);
c906108c 1489}
ed9a39eb 1490
c906108c 1491static int
ed9a39eb 1492condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1493{
1494 if (cond == INST_AL || cond == INST_NV)
1495 return 1;
1496
1497 switch (cond)
1498 {
1499 case INST_EQ:
1500 return ((status_reg & FLAG_Z) != 0);
1501 case INST_NE:
1502 return ((status_reg & FLAG_Z) == 0);
1503 case INST_CS:
1504 return ((status_reg & FLAG_C) != 0);
1505 case INST_CC:
1506 return ((status_reg & FLAG_C) == 0);
1507 case INST_MI:
1508 return ((status_reg & FLAG_N) != 0);
1509 case INST_PL:
1510 return ((status_reg & FLAG_N) == 0);
1511 case INST_VS:
1512 return ((status_reg & FLAG_V) != 0);
1513 case INST_VC:
1514 return ((status_reg & FLAG_V) == 0);
1515 case INST_HI:
1516 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1517 case INST_LS:
1518 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1519 case INST_GE:
1520 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1521 case INST_LT:
1522 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1523 case INST_GT:
1524 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1525 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1526 case INST_LE:
1527 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1528 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1529 }
1530 return 1;
1531}
1532
9512d7fd 1533/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1534#define submask(x) ((1L << ((x) + 1)) - 1)
1535#define bit(obj,st) (((obj) >> (st)) & 1)
1536#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1537#define sbits(obj,st,fn) \
1538 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1539#define BranchDest(addr,instr) \
1540 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1541#define ARM_PC_32 1
1542
1543static unsigned long
ed9a39eb
JM
1544shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1545 unsigned long status_reg)
c906108c
SS
1546{
1547 unsigned long res, shift;
1548 int rm = bits (inst, 0, 3);
1549 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1550
1551 if (bit (inst, 4))
c906108c
SS
1552 {
1553 int rs = bits (inst, 8, 11);
1554 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1555 }
1556 else
1557 shift = bits (inst, 7, 11);
c5aa993b
JM
1558
1559 res = (rm == 15
c906108c 1560 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1561 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1562 : read_register (rm));
1563
1564 switch (shifttype)
1565 {
c5aa993b 1566 case 0: /* LSL */
c906108c
SS
1567 res = shift >= 32 ? 0 : res << shift;
1568 break;
c5aa993b
JM
1569
1570 case 1: /* LSR */
c906108c
SS
1571 res = shift >= 32 ? 0 : res >> shift;
1572 break;
1573
c5aa993b
JM
1574 case 2: /* ASR */
1575 if (shift >= 32)
1576 shift = 31;
c906108c
SS
1577 res = ((res & 0x80000000L)
1578 ? ~((~res) >> shift) : res >> shift);
1579 break;
1580
c5aa993b 1581 case 3: /* ROR/RRX */
c906108c
SS
1582 shift &= 31;
1583 if (shift == 0)
1584 res = (res >> 1) | (carry ? 0x80000000L : 0);
1585 else
c5aa993b 1586 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1587 break;
1588 }
1589
1590 return res & 0xffffffff;
1591}
1592
c906108c
SS
1593/* Return number of 1-bits in VAL. */
1594
1595static int
ed9a39eb 1596bitcount (unsigned long val)
c906108c
SS
1597{
1598 int nbits;
1599 for (nbits = 0; val != 0; nbits++)
c5aa993b 1600 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1601 return nbits;
1602}
1603
34e8f22d 1604CORE_ADDR
ed9a39eb 1605thumb_get_next_pc (CORE_ADDR pc)
c906108c 1606{
c5aa993b 1607 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1608 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1609 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1610 unsigned long offset;
1611
1612 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1613 {
1614 CORE_ADDR sp;
1615
1616 /* Fetch the saved PC from the stack. It's stored above
1617 all of the other registers. */
b1e29e33 1618 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1619 sp = read_register (ARM_SP_REGNUM);
1c5bada0 1620 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
c906108c
SS
1621 nextpc = ADDR_BITS_REMOVE (nextpc);
1622 if (nextpc == pc)
edefbb7c 1623 error (_("Infinite loop detected"));
c906108c
SS
1624 }
1625 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1626 {
34e8f22d 1627 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1628 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1629 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1630 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1631 }
1632 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1633 {
1634 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1635 }
aa17d93e 1636 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1637 {
1c5bada0 1638 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1639 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1640 nextpc = pc_val + offset;
aa17d93e
DJ
1641 /* For BLX make sure to clear the low bits. */
1642 if (bits (inst2, 11, 12) == 1)
1643 nextpc = nextpc & 0xfffffffc;
c906108c 1644 }
aa17d93e 1645 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1646 {
1647 if (bits (inst1, 3, 6) == 0x0f)
1648 nextpc = pc_val;
1649 else
1650 nextpc = read_register (bits (inst1, 3, 6));
1651
1652 nextpc = ADDR_BITS_REMOVE (nextpc);
1653 if (nextpc == pc)
edefbb7c 1654 error (_("Infinite loop detected"));
9498281f 1655 }
c906108c
SS
1656
1657 return nextpc;
1658}
1659
34e8f22d 1660CORE_ADDR
ed9a39eb 1661arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1662{
1663 unsigned long pc_val;
1664 unsigned long this_instr;
1665 unsigned long status;
1666 CORE_ADDR nextpc;
1667
1668 if (arm_pc_is_thumb (pc))
1669 return thumb_get_next_pc (pc);
1670
1671 pc_val = (unsigned long) pc;
1c5bada0 1672 this_instr = read_memory_unsigned_integer (pc, 4);
34e8f22d 1673 status = read_register (ARM_PS_REGNUM);
c5aa993b 1674 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1675
1676 if (condition_true (bits (this_instr, 28, 31), status))
1677 {
1678 switch (bits (this_instr, 24, 27))
1679 {
c5aa993b 1680 case 0x0:
94c30b78 1681 case 0x1: /* data processing */
c5aa993b
JM
1682 case 0x2:
1683 case 0x3:
c906108c
SS
1684 {
1685 unsigned long operand1, operand2, result = 0;
1686 unsigned long rn;
1687 int c;
c5aa993b 1688
c906108c
SS
1689 if (bits (this_instr, 12, 15) != 15)
1690 break;
1691
1692 if (bits (this_instr, 22, 25) == 0
c5aa993b 1693 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1694 error (_("Invalid update to pc in instruction"));
c906108c 1695
9498281f 1696 /* BX <reg>, BLX <reg> */
e150acc7
PB
1697 if (bits (this_instr, 4, 27) == 0x12fff1
1698 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1699 {
1700 rn = bits (this_instr, 0, 3);
1701 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1702 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1703
1704 if (nextpc == pc)
edefbb7c 1705 error (_("Infinite loop detected"));
9498281f
DJ
1706
1707 return nextpc;
1708 }
1709
c906108c
SS
1710 /* Multiply into PC */
1711 c = (status & FLAG_C) ? 1 : 0;
1712 rn = bits (this_instr, 16, 19);
1713 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1714
c906108c
SS
1715 if (bit (this_instr, 25))
1716 {
1717 unsigned long immval = bits (this_instr, 0, 7);
1718 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1719 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1720 & 0xffffffff;
c906108c 1721 }
c5aa993b 1722 else /* operand 2 is a shifted register */
c906108c 1723 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1724
c906108c
SS
1725 switch (bits (this_instr, 21, 24))
1726 {
c5aa993b 1727 case 0x0: /*and */
c906108c
SS
1728 result = operand1 & operand2;
1729 break;
1730
c5aa993b 1731 case 0x1: /*eor */
c906108c
SS
1732 result = operand1 ^ operand2;
1733 break;
1734
c5aa993b 1735 case 0x2: /*sub */
c906108c
SS
1736 result = operand1 - operand2;
1737 break;
1738
c5aa993b 1739 case 0x3: /*rsb */
c906108c
SS
1740 result = operand2 - operand1;
1741 break;
1742
c5aa993b 1743 case 0x4: /*add */
c906108c
SS
1744 result = operand1 + operand2;
1745 break;
1746
c5aa993b 1747 case 0x5: /*adc */
c906108c
SS
1748 result = operand1 + operand2 + c;
1749 break;
1750
c5aa993b 1751 case 0x6: /*sbc */
c906108c
SS
1752 result = operand1 - operand2 + c;
1753 break;
1754
c5aa993b 1755 case 0x7: /*rsc */
c906108c
SS
1756 result = operand2 - operand1 + c;
1757 break;
1758
c5aa993b
JM
1759 case 0x8:
1760 case 0x9:
1761 case 0xa:
1762 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1763 result = (unsigned long) nextpc;
1764 break;
1765
c5aa993b 1766 case 0xc: /*orr */
c906108c
SS
1767 result = operand1 | operand2;
1768 break;
1769
c5aa993b 1770 case 0xd: /*mov */
c906108c
SS
1771 /* Always step into a function. */
1772 result = operand2;
c5aa993b 1773 break;
c906108c 1774
c5aa993b 1775 case 0xe: /*bic */
c906108c
SS
1776 result = operand1 & ~operand2;
1777 break;
1778
c5aa993b 1779 case 0xf: /*mvn */
c906108c
SS
1780 result = ~operand2;
1781 break;
1782 }
1783 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1784
1785 if (nextpc == pc)
edefbb7c 1786 error (_("Infinite loop detected"));
c906108c
SS
1787 break;
1788 }
c5aa993b
JM
1789
1790 case 0x4:
1791 case 0x5: /* data transfer */
1792 case 0x6:
1793 case 0x7:
c906108c
SS
1794 if (bit (this_instr, 20))
1795 {
1796 /* load */
1797 if (bits (this_instr, 12, 15) == 15)
1798 {
1799 /* rd == pc */
c5aa993b 1800 unsigned long rn;
c906108c 1801 unsigned long base;
c5aa993b 1802
c906108c 1803 if (bit (this_instr, 22))
edefbb7c 1804 error (_("Invalid update to pc in instruction"));
c906108c
SS
1805
1806 /* byte write to PC */
1807 rn = bits (this_instr, 16, 19);
1808 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1809 if (bit (this_instr, 24))
1810 {
1811 /* pre-indexed */
1812 int c = (status & FLAG_C) ? 1 : 0;
1813 unsigned long offset =
c5aa993b 1814 (bit (this_instr, 25)
ed9a39eb 1815 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1816 : bits (this_instr, 0, 11));
c906108c
SS
1817
1818 if (bit (this_instr, 23))
1819 base += offset;
1820 else
1821 base -= offset;
1822 }
c5aa993b 1823 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1824 4);
c5aa993b 1825
c906108c
SS
1826 nextpc = ADDR_BITS_REMOVE (nextpc);
1827
1828 if (nextpc == pc)
edefbb7c 1829 error (_("Infinite loop detected"));
c906108c
SS
1830 }
1831 }
1832 break;
c5aa993b
JM
1833
1834 case 0x8:
1835 case 0x9: /* block transfer */
c906108c
SS
1836 if (bit (this_instr, 20))
1837 {
1838 /* LDM */
1839 if (bit (this_instr, 15))
1840 {
1841 /* loading pc */
1842 int offset = 0;
1843
1844 if (bit (this_instr, 23))
1845 {
1846 /* up */
1847 unsigned long reglist = bits (this_instr, 0, 14);
1848 offset = bitcount (reglist) * 4;
c5aa993b 1849 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1850 offset += 4;
1851 }
1852 else if (bit (this_instr, 24))
1853 offset = -4;
c5aa993b 1854
c906108c 1855 {
c5aa993b
JM
1856 unsigned long rn_val =
1857 read_register (bits (this_instr, 16, 19));
c906108c
SS
1858 nextpc =
1859 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1860 + offset),
c906108c
SS
1861 4);
1862 }
1863 nextpc = ADDR_BITS_REMOVE (nextpc);
1864 if (nextpc == pc)
edefbb7c 1865 error (_("Infinite loop detected"));
c906108c
SS
1866 }
1867 }
1868 break;
c5aa993b
JM
1869
1870 case 0xb: /* branch & link */
1871 case 0xa: /* branch */
c906108c
SS
1872 {
1873 nextpc = BranchDest (pc, this_instr);
1874
9498281f
DJ
1875 /* BLX */
1876 if (bits (this_instr, 28, 31) == INST_NV)
1877 nextpc |= bit (this_instr, 24) << 1;
1878
c906108c
SS
1879 nextpc = ADDR_BITS_REMOVE (nextpc);
1880 if (nextpc == pc)
edefbb7c 1881 error (_("Infinite loop detected"));
c906108c
SS
1882 break;
1883 }
c5aa993b
JM
1884
1885 case 0xc:
1886 case 0xd:
1887 case 0xe: /* coproc ops */
1888 case 0xf: /* SWI */
c906108c
SS
1889 break;
1890
1891 default:
edefbb7c 1892 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1893 return (pc);
1894 }
1895 }
1896
1897 return nextpc;
1898}
1899
9512d7fd
FN
1900/* single_step() is called just before we want to resume the inferior,
1901 if we want to single-step it but there is no hardware or kernel
1902 single-step support. We find the target of the coming instruction
1903 and breakpoint it.
1904
94c30b78
MS
1905 single_step() is also called just after the inferior stops. If we
1906 had set up a simulated single-step, we undo our damage. */
9512d7fd 1907
34e8f22d
RE
1908static void
1909arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1910{
8181d85f
DJ
1911 /* NOTE: This may insert the wrong breakpoint instruction when
1912 single-stepping over a mode-changing instruction, if the
1913 CPSR heuristics are used. */
9512d7fd
FN
1914
1915 if (insert_bpt)
1916 {
8181d85f
DJ
1917 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1918
1919 insert_single_step_breakpoint (next_pc);
9512d7fd
FN
1920 }
1921 else
8181d85f 1922 remove_single_step_breakpoints ();
9512d7fd 1923}
9512d7fd 1924
c906108c
SS
1925#include "bfd-in2.h"
1926#include "libcoff.h"
1927
1928static int
ed9a39eb 1929gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1930{
1931 if (arm_pc_is_thumb (memaddr))
1932 {
c5aa993b
JM
1933 static asymbol *asym;
1934 static combined_entry_type ce;
1935 static struct coff_symbol_struct csym;
27cddce2 1936 static struct bfd fake_bfd;
c5aa993b 1937 static bfd_target fake_target;
c906108c
SS
1938
1939 if (csym.native == NULL)
1940 {
da3c6d4a
MS
1941 /* Create a fake symbol vector containing a Thumb symbol.
1942 This is solely so that the code in print_insn_little_arm()
1943 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1944 the presence of a Thumb symbol and switch to decoding
1945 Thumb instructions. */
c5aa993b
JM
1946
1947 fake_target.flavour = bfd_target_coff_flavour;
1948 fake_bfd.xvec = &fake_target;
c906108c 1949 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1950 csym.native = &ce;
1951 csym.symbol.the_bfd = &fake_bfd;
1952 csym.symbol.name = "fake";
1953 asym = (asymbol *) & csym;
c906108c 1954 }
c5aa993b 1955
c906108c 1956 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1957 info->symbols = &asym;
c906108c
SS
1958 }
1959 else
1960 info->symbols = NULL;
c5aa993b 1961
d7449b42 1962 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1963 return print_insn_big_arm (memaddr, info);
1964 else
1965 return print_insn_little_arm (memaddr, info);
1966}
1967
66e810cd
RE
1968/* The following define instruction sequences that will cause ARM
1969 cpu's to take an undefined instruction trap. These are used to
1970 signal a breakpoint to GDB.
1971
1972 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1973 modes. A different instruction is required for each mode. The ARM
1974 cpu's can also be big or little endian. Thus four different
1975 instructions are needed to support all cases.
1976
1977 Note: ARMv4 defines several new instructions that will take the
1978 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1979 not in fact add the new instructions. The new undefined
1980 instructions in ARMv4 are all instructions that had no defined
1981 behaviour in earlier chips. There is no guarantee that they will
1982 raise an exception, but may be treated as NOP's. In practice, it
1983 may only safe to rely on instructions matching:
1984
1985 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1986 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1987 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1988
1989 Even this may only true if the condition predicate is true. The
1990 following use a condition predicate of ALWAYS so it is always TRUE.
1991
1992 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1993 and NetBSD all use a software interrupt rather than an undefined
1994 instruction to force a trap. This can be handled by by the
1995 abi-specific code during establishment of the gdbarch vector. */
1996
1997
d7b486e7
RE
1998/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1999 override these definitions. */
66e810cd
RE
2000#ifndef ARM_LE_BREAKPOINT
2001#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2002#endif
2003#ifndef ARM_BE_BREAKPOINT
2004#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2005#endif
2006#ifndef THUMB_LE_BREAKPOINT
2007#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2008#endif
2009#ifndef THUMB_BE_BREAKPOINT
2010#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2011#endif
2012
2013static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2014static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2015static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2016static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2017
34e8f22d
RE
2018/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2019 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2020 breakpoint should be used. It returns a pointer to a string of
2021 bytes that encode a breakpoint instruction, stores the length of
2022 the string to *lenptr, and adjusts the program counter (if
2023 necessary) to point to the actual memory location where the
c906108c
SS
2024 breakpoint should be inserted. */
2025
ab89facf 2026static const unsigned char *
ed9a39eb 2027arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2028{
66e810cd
RE
2029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2030
4bf7064c 2031 if (arm_pc_is_thumb (*pcptr))
c906108c 2032 {
66e810cd
RE
2033 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2034 *lenptr = tdep->thumb_breakpoint_size;
2035 return tdep->thumb_breakpoint;
c906108c
SS
2036 }
2037 else
2038 {
66e810cd
RE
2039 *lenptr = tdep->arm_breakpoint_size;
2040 return tdep->arm_breakpoint;
c906108c
SS
2041 }
2042}
ed9a39eb
JM
2043
2044/* Extract from an array REGBUF containing the (raw) register state a
2045 function return value of type TYPE, and copy that, in virtual
2046 format, into VALBUF. */
2047
34e8f22d 2048static void
5238cf52
MK
2049arm_extract_return_value (struct type *type, struct regcache *regs,
2050 gdb_byte *valbuf)
ed9a39eb
JM
2051{
2052 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2053 {
28e97307 2054 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2055 {
2056 case ARM_FLOAT_FPA:
b508a996
RE
2057 {
2058 /* The value is in register F0 in internal format. We need to
2059 extract the raw value and then convert it to the desired
2060 internal type. */
7a5ea0d4 2061 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2062
2063 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2064 convert_from_extended (floatformat_from_type (type), tmpbuf,
2065 valbuf);
2066 }
08216dd7
RE
2067 break;
2068
fd50bc42 2069 case ARM_FLOAT_SOFT_FPA:
08216dd7 2070 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2071 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2072 if (TYPE_LENGTH (type) > 4)
2073 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2074 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2075 break;
2076
2077 default:
2078 internal_error
2079 (__FILE__, __LINE__,
edefbb7c 2080 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2081 break;
2082 }
2083 }
b508a996
RE
2084 else if (TYPE_CODE (type) == TYPE_CODE_INT
2085 || TYPE_CODE (type) == TYPE_CODE_CHAR
2086 || TYPE_CODE (type) == TYPE_CODE_BOOL
2087 || TYPE_CODE (type) == TYPE_CODE_PTR
2088 || TYPE_CODE (type) == TYPE_CODE_REF
2089 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2090 {
2091 /* If the the type is a plain integer, then the access is
2092 straight-forward. Otherwise we have to play around a bit more. */
2093 int len = TYPE_LENGTH (type);
2094 int regno = ARM_A1_REGNUM;
2095 ULONGEST tmp;
2096
2097 while (len > 0)
2098 {
2099 /* By using store_unsigned_integer we avoid having to do
2100 anything special for small big-endian values. */
2101 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2102 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2103 (len > INT_REGISTER_SIZE
2104 ? INT_REGISTER_SIZE : len),
b508a996 2105 tmp);
7a5ea0d4
DJ
2106 len -= INT_REGISTER_SIZE;
2107 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2108 }
2109 }
ed9a39eb 2110 else
b508a996
RE
2111 {
2112 /* For a structure or union the behaviour is as if the value had
2113 been stored to word-aligned memory and then loaded into
2114 registers with 32-bit load instruction(s). */
2115 int len = TYPE_LENGTH (type);
2116 int regno = ARM_A1_REGNUM;
7a5ea0d4 2117 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2118
2119 while (len > 0)
2120 {
2121 regcache_cooked_read (regs, regno++, tmpbuf);
2122 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2123 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2124 len -= INT_REGISTER_SIZE;
2125 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2126 }
2127 }
34e8f22d
RE
2128}
2129
67255d04
RE
2130
2131/* Will a function return an aggregate type in memory or in a
2132 register? Return 0 if an aggregate type can be returned in a
2133 register, 1 if it must be returned in memory. */
2134
2135static int
2af48f68 2136arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2137{
2138 int nRc;
52f0bd74 2139 enum type_code code;
67255d04 2140
44e1a9eb
DJ
2141 CHECK_TYPEDEF (type);
2142
67255d04
RE
2143 /* In the ARM ABI, "integer" like aggregate types are returned in
2144 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2145 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2146 offset of each addressable subfield must be zero. Note that bit
2147 fields are not addressable, and all addressable subfields of
2148 unions always start at offset zero.
67255d04
RE
2149
2150 This function is based on the behaviour of GCC 2.95.1.
2151 See: gcc/arm.c: arm_return_in_memory() for details.
2152
2153 Note: All versions of GCC before GCC 2.95.2 do not set up the
2154 parameters correctly for a function returning the following
2155 structure: struct { float f;}; This should be returned in memory,
2156 not a register. Richard Earnshaw sent me a patch, but I do not
2157 know of any way to detect if a function like the above has been
2158 compiled with the correct calling convention. */
2159
2160 /* All aggregate types that won't fit in a register must be returned
2161 in memory. */
b1e29e33 2162 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2163 {
2164 return 1;
2165 }
2166
2af48f68
PB
2167 /* The AAPCS says all aggregates not larger than a word are returned
2168 in a register. */
2169 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2170 return 0;
2171
67255d04
RE
2172 /* The only aggregate types that can be returned in a register are
2173 structs and unions. Arrays must be returned in memory. */
2174 code = TYPE_CODE (type);
2175 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2176 {
2177 return 1;
2178 }
2179
2180 /* Assume all other aggregate types can be returned in a register.
2181 Run a check for structures, unions and arrays. */
2182 nRc = 0;
2183
2184 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2185 {
2186 int i;
2187 /* Need to check if this struct/union is "integer" like. For
2188 this to be true, its size must be less than or equal to
b1e29e33
AC
2189 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2190 subfield must be zero. Note that bit fields are not
2191 addressable, and unions always start at offset zero. If any
2192 of the subfields is a floating point type, the struct/union
2193 cannot be an integer type. */
67255d04
RE
2194
2195 /* For each field in the object, check:
2196 1) Is it FP? --> yes, nRc = 1;
2197 2) Is it addressable (bitpos != 0) and
2198 not packed (bitsize == 0)?
2199 --> yes, nRc = 1
2200 */
2201
2202 for (i = 0; i < TYPE_NFIELDS (type); i++)
2203 {
2204 enum type_code field_type_code;
44e1a9eb 2205 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2206
2207 /* Is it a floating point type field? */
2208 if (field_type_code == TYPE_CODE_FLT)
2209 {
2210 nRc = 1;
2211 break;
2212 }
2213
2214 /* If bitpos != 0, then we have to care about it. */
2215 if (TYPE_FIELD_BITPOS (type, i) != 0)
2216 {
2217 /* Bitfields are not addressable. If the field bitsize is
2218 zero, then the field is not packed. Hence it cannot be
2219 a bitfield or any other packed type. */
2220 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2221 {
2222 nRc = 1;
2223 break;
2224 }
2225 }
2226 }
2227 }
2228
2229 return nRc;
2230}
2231
34e8f22d
RE
2232/* Write into appropriate registers a function return value of type
2233 TYPE, given in virtual format. */
2234
2235static void
b508a996 2236arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2237 const gdb_byte *valbuf)
34e8f22d
RE
2238{
2239 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2240 {
7a5ea0d4 2241 char buf[MAX_REGISTER_SIZE];
34e8f22d 2242
28e97307 2243 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2244 {
2245 case ARM_FLOAT_FPA:
2246
b508a996
RE
2247 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2248 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2249 break;
2250
fd50bc42 2251 case ARM_FLOAT_SOFT_FPA:
08216dd7 2252 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2253 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2254 if (TYPE_LENGTH (type) > 4)
2255 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2256 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2257 break;
2258
2259 default:
2260 internal_error
2261 (__FILE__, __LINE__,
edefbb7c 2262 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2263 break;
2264 }
34e8f22d 2265 }
b508a996
RE
2266 else if (TYPE_CODE (type) == TYPE_CODE_INT
2267 || TYPE_CODE (type) == TYPE_CODE_CHAR
2268 || TYPE_CODE (type) == TYPE_CODE_BOOL
2269 || TYPE_CODE (type) == TYPE_CODE_PTR
2270 || TYPE_CODE (type) == TYPE_CODE_REF
2271 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2272 {
2273 if (TYPE_LENGTH (type) <= 4)
2274 {
2275 /* Values of one word or less are zero/sign-extended and
2276 returned in r0. */
7a5ea0d4 2277 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2278 LONGEST val = unpack_long (type, valbuf);
2279
7a5ea0d4 2280 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2281 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2282 }
2283 else
2284 {
2285 /* Integral values greater than one word are stored in consecutive
2286 registers starting with r0. This will always be a multiple of
2287 the regiser size. */
2288 int len = TYPE_LENGTH (type);
2289 int regno = ARM_A1_REGNUM;
2290
2291 while (len > 0)
2292 {
2293 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2294 len -= INT_REGISTER_SIZE;
2295 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2296 }
2297 }
2298 }
34e8f22d 2299 else
b508a996
RE
2300 {
2301 /* For a structure or union the behaviour is as if the value had
2302 been stored to word-aligned memory and then loaded into
2303 registers with 32-bit load instruction(s). */
2304 int len = TYPE_LENGTH (type);
2305 int regno = ARM_A1_REGNUM;
7a5ea0d4 2306 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2307
2308 while (len > 0)
2309 {
2310 memcpy (tmpbuf, valbuf,
7a5ea0d4 2311 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2312 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2313 len -= INT_REGISTER_SIZE;
2314 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2315 }
2316 }
34e8f22d
RE
2317}
2318
2af48f68
PB
2319
2320/* Handle function return values. */
2321
2322static enum return_value_convention
2323arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2324 struct regcache *regcache, gdb_byte *readbuf,
2325 const gdb_byte *writebuf)
2af48f68 2326{
7c00367c
MK
2327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2328
2af48f68
PB
2329 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2330 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2331 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2332 {
7c00367c
MK
2333 if (tdep->struct_return == pcc_struct_return
2334 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2335 return RETURN_VALUE_STRUCT_CONVENTION;
2336 }
2337
2338 if (writebuf)
2339 arm_store_return_value (valtype, regcache, writebuf);
2340
2341 if (readbuf)
2342 arm_extract_return_value (valtype, regcache, readbuf);
2343
2344 return RETURN_VALUE_REGISTER_CONVENTION;
2345}
2346
2347
9df628e0
RE
2348static int
2349arm_get_longjmp_target (CORE_ADDR *pc)
2350{
2351 CORE_ADDR jb_addr;
7a5ea0d4 2352 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2354
2355 jb_addr = read_register (ARM_A1_REGNUM);
2356
2357 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2358 INT_REGISTER_SIZE))
9df628e0
RE
2359 return 0;
2360
7a5ea0d4 2361 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2362 return 1;
2363}
2364
ed9a39eb 2365/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2366
2367int
ed9a39eb 2368arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2369{
2370 CORE_ADDR start_addr;
2371
ed9a39eb
JM
2372 /* Find the starting address of the function containing the PC. If
2373 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2374 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2375 &start_addr, NULL))
c906108c
SS
2376 return 0;
2377
2378 return strncmp (name, "_call_via_r", 11) == 0;
2379}
2380
ed9a39eb
JM
2381/* If PC is in a Thumb call or return stub, return the address of the
2382 target PC, which is in a register. The thunk functions are called
2383 _called_via_xx, where x is the register name. The possible names
2384 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2385
2386CORE_ADDR
ed9a39eb 2387arm_skip_stub (CORE_ADDR pc)
c906108c 2388{
c5aa993b 2389 char *name;
c906108c
SS
2390 CORE_ADDR start_addr;
2391
2392 /* Find the starting address and name of the function containing the PC. */
2393 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2394 return 0;
2395
2396 /* Call thunks always start with "_call_via_". */
2397 if (strncmp (name, "_call_via_", 10) == 0)
2398 {
ed9a39eb
JM
2399 /* Use the name suffix to determine which register contains the
2400 target PC. */
c5aa993b
JM
2401 static char *table[15] =
2402 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2403 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2404 };
c906108c
SS
2405 int regno;
2406
2407 for (regno = 0; regno <= 14; regno++)
2408 if (strcmp (&name[10], table[regno]) == 0)
2409 return read_register (regno);
2410 }
ed9a39eb 2411
c5aa993b 2412 return 0; /* not a stub */
c906108c
SS
2413}
2414
afd7eef0
RE
2415static void
2416set_arm_command (char *args, int from_tty)
2417{
edefbb7c
AC
2418 printf_unfiltered (_("\
2419\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2420 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2421}
2422
2423static void
2424show_arm_command (char *args, int from_tty)
2425{
26304000 2426 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2427}
2428
28e97307
DJ
2429static void
2430arm_update_current_architecture (void)
fd50bc42 2431{
28e97307 2432 struct gdbarch_info info;
fd50bc42 2433
28e97307
DJ
2434 /* If the current architecture is not ARM, we have nothing to do. */
2435 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2436 return;
fd50bc42 2437
28e97307
DJ
2438 /* Update the architecture. */
2439 gdbarch_info_init (&info);
fd50bc42 2440
28e97307
DJ
2441 if (!gdbarch_update_p (info))
2442 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2443}
2444
2445static void
2446set_fp_model_sfunc (char *args, int from_tty,
2447 struct cmd_list_element *c)
2448{
2449 enum arm_float_model fp_model;
2450
2451 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2452 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2453 {
2454 arm_fp_model = fp_model;
2455 break;
2456 }
2457
2458 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2459 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2460 current_fp_model);
2461
28e97307 2462 arm_update_current_architecture ();
fd50bc42
RE
2463}
2464
2465static void
08546159
AC
2466show_fp_model (struct ui_file *file, int from_tty,
2467 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2468{
2469 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2470
28e97307 2471 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2472 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2473 fprintf_filtered (file, _("\
2474The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2475 fp_model_strings[tdep->fp_model]);
2476 else
2477 fprintf_filtered (file, _("\
2478The current ARM floating point model is \"%s\".\n"),
2479 fp_model_strings[arm_fp_model]);
2480}
2481
2482static void
2483arm_set_abi (char *args, int from_tty,
2484 struct cmd_list_element *c)
2485{
2486 enum arm_abi_kind arm_abi;
2487
2488 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2489 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2490 {
2491 arm_abi_global = arm_abi;
2492 break;
2493 }
2494
2495 if (arm_abi == ARM_ABI_LAST)
2496 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2497 arm_abi_string);
2498
2499 arm_update_current_architecture ();
2500}
2501
2502static void
2503arm_show_abi (struct ui_file *file, int from_tty,
2504 struct cmd_list_element *c, const char *value)
2505{
2506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2507
2508 if (arm_abi_global == ARM_ABI_AUTO
2509 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2510 fprintf_filtered (file, _("\
2511The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2512 arm_abi_strings[tdep->arm_abi]);
2513 else
2514 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2515 arm_abi_string);
fd50bc42
RE
2516}
2517
afd7eef0
RE
2518/* If the user changes the register disassembly style used for info
2519 register and other commands, we have to also switch the style used
2520 in opcodes for disassembly output. This function is run in the "set
2521 arm disassembly" command, and does that. */
bc90b915
FN
2522
2523static void
afd7eef0 2524set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2525 struct cmd_list_element *c)
2526{
afd7eef0 2527 set_disassembly_style ();
bc90b915
FN
2528}
2529\f
966fbf70 2530/* Return the ARM register name corresponding to register I. */
a208b0cb 2531static const char *
34e8f22d 2532arm_register_name (int i)
966fbf70 2533{
ff6f572f
DJ
2534 if (i >= ARRAY_SIZE (arm_register_names))
2535 /* These registers are only supported on targets which supply
2536 an XML description. */
2537 return "";
2538
966fbf70
RE
2539 return arm_register_names[i];
2540}
2541
bc90b915 2542static void
afd7eef0 2543set_disassembly_style (void)
bc90b915 2544{
123dc839 2545 int current;
bc90b915 2546
123dc839
DJ
2547 /* Find the style that the user wants. */
2548 for (current = 0; current < num_disassembly_options; current++)
2549 if (disassembly_style == valid_disassembly_styles[current])
2550 break;
2551 gdb_assert (current < num_disassembly_options);
bc90b915 2552
94c30b78 2553 /* Synchronize the disassembler. */
bc90b915
FN
2554 set_arm_regname_option (current);
2555}
2556
082fc60d
RE
2557/* Test whether the coff symbol specific value corresponds to a Thumb
2558 function. */
2559
2560static int
2561coff_sym_is_thumb (int val)
2562{
2563 return (val == C_THUMBEXT ||
2564 val == C_THUMBSTAT ||
2565 val == C_THUMBEXTFUNC ||
2566 val == C_THUMBSTATFUNC ||
2567 val == C_THUMBLABEL);
2568}
2569
2570/* arm_coff_make_msymbol_special()
2571 arm_elf_make_msymbol_special()
2572
2573 These functions test whether the COFF or ELF symbol corresponds to
2574 an address in thumb code, and set a "special" bit in a minimal
2575 symbol to indicate that it does. */
2576
34e8f22d 2577static void
082fc60d
RE
2578arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2579{
2580 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2581 STT_ARM_TFUNC). */
2582 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2583 == STT_LOPROC)
2584 MSYMBOL_SET_SPECIAL (msym);
2585}
2586
34e8f22d 2587static void
082fc60d
RE
2588arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2589{
2590 if (coff_sym_is_thumb (val))
2591 MSYMBOL_SET_SPECIAL (msym);
2592}
2593
756fe439
DJ
2594static void
2595arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2596{
2597 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2598
2599 /* If necessary, set the T bit. */
2600 if (arm_apcs_32)
2601 {
2602 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2603 if (arm_pc_is_thumb (pc))
2604 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2605 else
2606 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2607 }
2608}
123dc839
DJ
2609
2610static struct value *
2611value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2612{
2613 const int *reg_p = baton;
2614 return value_of_register (*reg_p, frame);
2615}
97e03143 2616\f
70f80edf
JT
2617static enum gdb_osabi
2618arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2619{
2af48f68 2620 unsigned int elfosabi;
70f80edf 2621 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2622
70f80edf 2623 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2624
28e97307
DJ
2625 if (elfosabi == ELFOSABI_ARM)
2626 /* GNU tools use this value. Check note sections in this case,
2627 as well. */
2628 bfd_map_over_sections (abfd,
2629 generic_elf_osabi_sniff_abi_tag_sections,
2630 &osabi);
97e03143 2631
28e97307 2632 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2633 return osabi;
97e03143
RE
2634}
2635
70f80edf 2636\f
da3c6d4a
MS
2637/* Initialize the current architecture based on INFO. If possible,
2638 re-use an architecture from ARCHES, which is a list of
2639 architectures already created during this debugging session.
97e03143 2640
da3c6d4a
MS
2641 Called e.g. at program startup, when reading a core file, and when
2642 reading a binary file. */
97e03143 2643
39bbf761
RE
2644static struct gdbarch *
2645arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646{
97e03143 2647 struct gdbarch_tdep *tdep;
39bbf761 2648 struct gdbarch *gdbarch;
28e97307
DJ
2649 struct gdbarch_list *best_arch;
2650 enum arm_abi_kind arm_abi = arm_abi_global;
2651 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2652 struct tdesc_arch_data *tdesc_data = NULL;
2653 int i;
ff6f572f 2654 int have_fpa_registers = 1;
123dc839
DJ
2655
2656 /* Check any target description for validity. */
2657 if (tdesc_has_registers (info.target_desc))
2658 {
2659 /* For most registers we require GDB's default names; but also allow
2660 the numeric names for sp / lr / pc, as a convenience. */
2661 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2662 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2663 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2664
2665 const struct tdesc_feature *feature;
2666 int i, valid_p;
2667
2668 feature = tdesc_find_feature (info.target_desc,
2669 "org.gnu.gdb.arm.core");
2670 if (feature == NULL)
2671 return NULL;
2672
2673 tdesc_data = tdesc_data_alloc ();
2674
2675 valid_p = 1;
2676 for (i = 0; i < ARM_SP_REGNUM; i++)
2677 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2678 arm_register_names[i]);
2679 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2680 ARM_SP_REGNUM,
2681 arm_sp_names);
2682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2683 ARM_LR_REGNUM,
2684 arm_lr_names);
2685 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2686 ARM_PC_REGNUM,
2687 arm_pc_names);
2688 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2689 ARM_PS_REGNUM, "cpsr");
2690
2691 if (!valid_p)
2692 {
2693 tdesc_data_cleanup (tdesc_data);
2694 return NULL;
2695 }
2696
2697 feature = tdesc_find_feature (info.target_desc,
2698 "org.gnu.gdb.arm.fpa");
2699 if (feature != NULL)
2700 {
2701 valid_p = 1;
2702 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2703 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2704 arm_register_names[i]);
2705 if (!valid_p)
2706 {
2707 tdesc_data_cleanup (tdesc_data);
2708 return NULL;
2709 }
2710 }
ff6f572f
DJ
2711 else
2712 have_fpa_registers = 0;
2713
2714 feature = tdesc_find_feature (info.target_desc,
2715 "org.gnu.gdb.xscale.iwmmxt");
2716 if (feature != NULL)
2717 {
2718 static const char *const iwmmxt_names[] = {
2719 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2720 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2721 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2722 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2723 };
2724
2725 valid_p = 1;
2726 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2727 valid_p
2728 &= tdesc_numbered_register (feature, tdesc_data, i,
2729 iwmmxt_names[i - ARM_WR0_REGNUM]);
2730
2731 /* Check for the control registers, but do not fail if they
2732 are missing. */
2733 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2734 tdesc_numbered_register (feature, tdesc_data, i,
2735 iwmmxt_names[i - ARM_WR0_REGNUM]);
2736
2737 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2738 valid_p
2739 &= tdesc_numbered_register (feature, tdesc_data, i,
2740 iwmmxt_names[i - ARM_WR0_REGNUM]);
2741
2742 if (!valid_p)
2743 {
2744 tdesc_data_cleanup (tdesc_data);
2745 return NULL;
2746 }
2747 }
123dc839 2748 }
39bbf761 2749
28e97307
DJ
2750 /* If we have an object to base this architecture on, try to determine
2751 its ABI. */
39bbf761 2752
28e97307 2753 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2754 {
6b26d61a 2755 int ei_osabi, e_flags;
28e97307 2756
4be87837 2757 switch (bfd_get_flavour (info.abfd))
97e03143 2758 {
4be87837
DJ
2759 case bfd_target_aout_flavour:
2760 /* Assume it's an old APCS-style ABI. */
28e97307 2761 arm_abi = ARM_ABI_APCS;
4be87837 2762 break;
97e03143 2763
4be87837
DJ
2764 case bfd_target_coff_flavour:
2765 /* Assume it's an old APCS-style ABI. */
2766 /* XXX WinCE? */
28e97307
DJ
2767 arm_abi = ARM_ABI_APCS;
2768 break;
2769
2770 case bfd_target_elf_flavour:
2771 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2772 e_flags = elf_elfheader (info.abfd)->e_flags;
2773
28e97307
DJ
2774 if (ei_osabi == ELFOSABI_ARM)
2775 {
2776 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2777 objects. There's nowhere to tag an EABI version
2778 anyway, so assume APCS. */
28e97307
DJ
2779 arm_abi = ARM_ABI_APCS;
2780 }
2781 else if (ei_osabi == ELFOSABI_NONE)
2782 {
6b26d61a 2783 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2784
2785 switch (eabi_ver)
2786 {
2787 case EF_ARM_EABI_UNKNOWN:
2788 /* Assume GNU tools. */
2789 arm_abi = ARM_ABI_APCS;
2790 break;
2791
2792 case EF_ARM_EABI_VER4:
625b5003 2793 case EF_ARM_EABI_VER5:
28e97307 2794 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2795 /* EABI binaries default to VFP float ordering. */
2796 if (fp_model == ARM_FLOAT_AUTO)
2797 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2798 break;
2799
2800 default:
6b26d61a 2801 /* Leave it as "auto". */
28e97307 2802 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2803 break;
2804 }
2805 }
2806
2807 if (fp_model == ARM_FLOAT_AUTO)
2808 {
2809 int e_flags = elf_elfheader (info.abfd)->e_flags;
2810
2811 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2812 {
2813 case 0:
2814 /* Leave it as "auto". Strictly speaking this case
2815 means FPA, but almost nobody uses that now, and
2816 many toolchains fail to set the appropriate bits
2817 for the floating-point model they use. */
2818 break;
2819 case EF_ARM_SOFT_FLOAT:
2820 fp_model = ARM_FLOAT_SOFT_FPA;
2821 break;
2822 case EF_ARM_VFP_FLOAT:
2823 fp_model = ARM_FLOAT_VFP;
2824 break;
2825 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2826 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2827 break;
2828 }
2829 }
4be87837 2830 break;
97e03143 2831
4be87837 2832 default:
28e97307 2833 /* Leave it as "auto". */
50ceaba5 2834 break;
97e03143
RE
2835 }
2836 }
2837
28e97307
DJ
2838 /* Now that we have inferred any architecture settings that we
2839 can, try to inherit from the last ARM ABI. */
4be87837 2840 if (arches != NULL)
28e97307
DJ
2841 {
2842 if (arm_abi == ARM_ABI_AUTO)
2843 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2844
2845 if (fp_model == ARM_FLOAT_AUTO)
2846 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2847 }
2848 else
2849 {
2850 /* There was no prior ARM architecture; fill in default values. */
2851
2852 if (arm_abi == ARM_ABI_AUTO)
2853 arm_abi = ARM_ABI_APCS;
2854
2855 /* We used to default to FPA for generic ARM, but almost nobody
2856 uses that now, and we now provide a way for the user to force
2857 the model. So default to the most useful variant. */
2858 if (fp_model == ARM_FLOAT_AUTO)
2859 fp_model = ARM_FLOAT_SOFT_FPA;
2860 }
2861
2862 /* If there is already a candidate, use it. */
2863 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2864 best_arch != NULL;
2865 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2866 {
2867 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2868 continue;
2869
2870 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2871 continue;
2872
2873 /* Found a match. */
2874 break;
2875 }
97e03143 2876
28e97307 2877 if (best_arch != NULL)
123dc839
DJ
2878 {
2879 if (tdesc_data != NULL)
2880 tdesc_data_cleanup (tdesc_data);
2881 return best_arch->gdbarch;
2882 }
28e97307
DJ
2883
2884 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2885 gdbarch = gdbarch_alloc (&info, tdep);
2886
28e97307
DJ
2887 /* Record additional information about the architecture we are defining.
2888 These are gdbarch discriminators, like the OSABI. */
2889 tdep->arm_abi = arm_abi;
2890 tdep->fp_model = fp_model;
ff6f572f 2891 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2892
2893 /* Breakpoints. */
67255d04
RE
2894 switch (info.byte_order)
2895 {
2896 case BFD_ENDIAN_BIG:
66e810cd
RE
2897 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2898 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2899 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2900 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2901
67255d04
RE
2902 break;
2903
2904 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2905 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2906 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2907 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2908 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2909
67255d04
RE
2910 break;
2911
2912 default:
2913 internal_error (__FILE__, __LINE__,
edefbb7c 2914 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2915 }
2916
d7b486e7
RE
2917 /* On ARM targets char defaults to unsigned. */
2918 set_gdbarch_char_signed (gdbarch, 0);
2919
9df628e0 2920 /* This should be low enough for everything. */
97e03143 2921 tdep->lowest_pc = 0x20;
94c30b78 2922 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2923
7c00367c
MK
2924 /* The default, for both APCS and AAPCS, is to return small
2925 structures in registers. */
2926 tdep->struct_return = reg_struct_return;
2927
2dd604e7 2928 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2929 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2930
756fe439
DJ
2931 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2932
148754e5 2933 /* Frame handling. */
eb5492fa
DJ
2934 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2935 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2936 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2937
eb5492fa 2938 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2939
34e8f22d
RE
2940 /* Address manipulation. */
2941 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2942 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2943
34e8f22d
RE
2944 /* Advance PC across function entry code. */
2945 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2946
34e8f22d
RE
2947 /* The stack grows downward. */
2948 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2949
2950 /* Breakpoint manipulation. */
2951 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2952
2953 /* Information about registers, etc. */
0ba6dca9 2954 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2955 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2956 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2957 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2958 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2959
ff6f572f
DJ
2960 /* This "info float" is FPA-specific. Use the generic version if we
2961 do not have FPA. */
2962 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2963 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2964
26216b98 2965 /* Internal <-> external register number maps. */
ff6f572f
DJ
2966 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2967 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2968 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2969
34e8f22d 2970 /* Integer registers are 4 bytes. */
b1e29e33 2971 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2972 set_gdbarch_register_name (gdbarch, arm_register_name);
2973
2974 /* Returning results. */
2af48f68 2975 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2976
2977 /* Single stepping. */
2978 /* XXX For an RDI target we should ask the target if it can single-step. */
2979 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2980
03d48a7d
RE
2981 /* Disassembly. */
2982 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2983
34e8f22d
RE
2984 /* Minsymbol frobbing. */
2985 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2986 set_gdbarch_coff_make_msymbol_special (gdbarch,
2987 arm_coff_make_msymbol_special);
2988
0d5de010
DJ
2989 /* Virtual tables. */
2990 set_gdbarch_vbit_in_delta (gdbarch, 1);
2991
97e03143 2992 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2993 gdbarch_init_osabi (info, gdbarch);
97e03143 2994
eb5492fa 2995 /* Add some default predicates. */
909cf6ea 2996 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2997 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2998 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2999
97e03143
RE
3000 /* Now we have tuned the configuration, set a few final things,
3001 based on what the OS ABI has told us. */
3002
9df628e0
RE
3003 if (tdep->jb_pc >= 0)
3004 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3005
08216dd7 3006 /* Floating point sizes and format. */
8da61cc4
DJ
3007 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3008 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
08216dd7 3009 {
8da61cc4
DJ
3010 set_gdbarch_double_format
3011 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3012 set_gdbarch_long_double_format
3013 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3014 }
3015 else
3016 {
3017 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3018 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3019 }
3020
123dc839
DJ
3021 if (tdesc_data)
3022 tdesc_use_registers (gdbarch, tdesc_data);
3023
3024 /* Add standard register aliases. We add aliases even for those
3025 nanes which are used by the current architecture - it's simpler,
3026 and does no harm, since nothing ever lists user registers. */
3027 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3028 user_reg_add (gdbarch, arm_register_aliases[i].name,
3029 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3030
39bbf761
RE
3031 return gdbarch;
3032}
3033
97e03143
RE
3034static void
3035arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3036{
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3038
3039 if (tdep == NULL)
3040 return;
3041
edefbb7c 3042 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3043 (unsigned long) tdep->lowest_pc);
3044}
3045
a78f21af
AC
3046extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3047
c906108c 3048void
ed9a39eb 3049_initialize_arm_tdep (void)
c906108c 3050{
bc90b915
FN
3051 struct ui_file *stb;
3052 long length;
26304000 3053 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3054 const char *setname;
3055 const char *setdesc;
4bd7b427 3056 const char *const *regnames;
bc90b915
FN
3057 int numregs, i, j;
3058 static char *helptext;
edefbb7c
AC
3059 char regdesc[1024], *rdptr = regdesc;
3060 size_t rest = sizeof (regdesc);
085dd6e6 3061
42cf1509 3062 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3063
70f80edf
JT
3064 /* Register an ELF OS ABI sniffer for ARM binaries. */
3065 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3066 bfd_target_elf_flavour,
3067 arm_elf_osabi_sniffer);
3068
94c30b78 3069 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3070 num_disassembly_options = get_arm_regname_num_options ();
3071
3072 /* Add root prefix command for all "set arm"/"show arm" commands. */
3073 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3074 _("Various ARM-specific commands."),
afd7eef0
RE
3075 &setarmcmdlist, "set arm ", 0, &setlist);
3076
3077 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3078 _("Various ARM-specific commands."),
afd7eef0 3079 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3080
94c30b78 3081 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3082 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3083
eefe576e
AC
3084 /* Initialize the array that will be passed to
3085 add_setshow_enum_cmd(). */
afd7eef0
RE
3086 valid_disassembly_styles
3087 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3088 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3089 {
3090 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3091 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3092 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3093 rdptr += length;
3094 rest -= length;
123dc839
DJ
3095 /* When we find the default names, tell the disassembler to use
3096 them. */
bc90b915
FN
3097 if (!strcmp (setname, "std"))
3098 {
afd7eef0 3099 disassembly_style = setname;
bc90b915
FN
3100 set_arm_regname_option (i);
3101 }
3102 }
94c30b78 3103 /* Mark the end of valid options. */
afd7eef0 3104 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3105
edefbb7c
AC
3106 /* Create the help text. */
3107 stb = mem_fileopen ();
3108 fprintf_unfiltered (stb, "%s%s%s",
3109 _("The valid values are:\n"),
3110 regdesc,
3111 _("The default is \"std\"."));
bc90b915
FN
3112 helptext = ui_file_xstrdup (stb, &length);
3113 ui_file_delete (stb);
ed9a39eb 3114
edefbb7c
AC
3115 add_setshow_enum_cmd("disassembler", no_class,
3116 valid_disassembly_styles, &disassembly_style,
3117 _("Set the disassembly style."),
3118 _("Show the disassembly style."),
3119 helptext,
2c5b56ce 3120 set_disassembly_style_sfunc,
7915a72c 3121 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3122 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3123
3124 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3125 _("Set usage of ARM 32-bit mode."),
3126 _("Show usage of ARM 32-bit mode."),
3127 _("When off, a 26-bit PC will be used."),
2c5b56ce 3128 NULL,
7915a72c 3129 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3130 &setarmcmdlist, &showarmcmdlist);
c906108c 3131
fd50bc42 3132 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3133 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3134 _("Set the floating point type."),
3135 _("Show the floating point type."),
3136 _("auto - Determine the FP typefrom the OS-ABI.\n\
3137softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3138fpa - FPA co-processor (GCC compiled).\n\
3139softvfp - Software FP with pure-endian doubles.\n\
3140vfp - VFP co-processor."),
edefbb7c 3141 set_fp_model_sfunc, show_fp_model,
7376b4c2 3142 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3143
28e97307
DJ
3144 /* Add a command to allow the user to force the ABI. */
3145 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3146 _("Set the ABI."),
3147 _("Show the ABI."),
3148 NULL, arm_set_abi, arm_show_abi,
3149 &setarmcmdlist, &showarmcmdlist);
3150
6529d2dd 3151 /* Debugging flag. */
edefbb7c
AC
3152 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3153 _("Set ARM debugging."),
3154 _("Show ARM debugging."),
3155 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3156 NULL,
7915a72c 3157 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3158 &setdebuglist, &showdebuglist);
c906108c 3159}
This page took 0.870767 seconds and 4 git commands to generate.