Compile gdb.perf/skip-prologue.c with and without debug info
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
0baeab03
PA
20#include "defs.h"
21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
45741a9c 26#include "infrun.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "gdbcore.h"
0963b4bd 29#include "dis-asm.h" /* For register styles. */
4e052eda 30#include "regcache.h"
54483882 31#include "reggroups.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
842e1f1e
DJ
39#include "objfiles.h"
40#include "dwarf2-frame.h"
e4c16157 41#include "gdbtypes.h"
29d73ae4 42#include "prologue-value.h"
25f8c692 43#include "remote.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d 47
8689682c 48#include "arch/arm.h"
d9311bfa 49#include "arch/arm-get-next-pcs.h"
34e8f22d 50#include "arm-tdep.h"
26216b98 51#include "gdb/sim-arm.h"
34e8f22d 52
082fc60d
RE
53#include "elf-bfd.h"
54#include "coff/internal.h"
97e03143 55#include "elf/arm.h"
c906108c 56
60c5725c 57#include "vec.h"
26216b98 58
72508ac0 59#include "record.h"
d02ed0bb 60#include "record-full.h"
325fac50 61#include <algorithm>
72508ac0 62
0a69eedb
YQ
63#include "features/arm/arm-with-m.c"
64#include "features/arm/arm-with-m-fpa-layout.c"
65#include "features/arm/arm-with-m-vfp-d16.c"
66#include "features/arm/arm-with-iwmmxt.c"
67#include "features/arm/arm-with-vfpv2.c"
68#include "features/arm/arm-with-vfpv3.c"
69#include "features/arm/arm-with-neon.c"
9779414d 70
6529d2dd
AC
71static int arm_debug;
72
082fc60d
RE
73/* Macros for setting and testing a bit in a minimal symbol that marks
74 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 75 is used for this purpose.
082fc60d
RE
76
77 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 78 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 79
0963b4bd 80#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 81 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
82
83#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 84 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 85
60c5725c
DJ
86/* Per-objfile data used for mapping symbols. */
87static const struct objfile_data *arm_objfile_data_key;
88
89struct arm_mapping_symbol
90{
91 bfd_vma value;
92 char type;
93};
94typedef struct arm_mapping_symbol arm_mapping_symbol_s;
95DEF_VEC_O(arm_mapping_symbol_s);
96
97struct arm_per_objfile
98{
99 VEC(arm_mapping_symbol_s) **section_maps;
100};
101
afd7eef0
RE
102/* The list of available "set arm ..." and "show arm ..." commands. */
103static struct cmd_list_element *setarmcmdlist = NULL;
104static struct cmd_list_element *showarmcmdlist = NULL;
105
fd50bc42
RE
106/* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
40478521 108static const char *const fp_model_strings[] =
fd50bc42
RE
109{
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
28e97307
DJ
114 "vfp",
115 NULL
fd50bc42
RE
116};
117
118/* A variable that can be configured by the user. */
119static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
120static const char *current_fp_model = "auto";
121
28e97307 122/* The ABI to use. Keep this in sync with arm_abi_kind. */
40478521 123static const char *const arm_abi_strings[] =
28e97307
DJ
124{
125 "auto",
126 "APCS",
127 "AAPCS",
128 NULL
129};
130
131/* A variable that can be configured by the user. */
132static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
133static const char *arm_abi_string = "auto";
134
0428b8f5 135/* The execution mode to assume. */
40478521 136static const char *const arm_mode_strings[] =
0428b8f5
DJ
137 {
138 "auto",
139 "arm",
68770265
MGD
140 "thumb",
141 NULL
0428b8f5
DJ
142 };
143
144static const char *arm_fallback_mode_string = "auto";
145static const char *arm_force_mode_string = "auto";
146
94c30b78 147/* Number of different reg name sets (options). */
afd7eef0 148static int num_disassembly_options;
bc90b915 149
f32bf4a4
YQ
150/* The standard register names, and all the valid aliases for them. Note
151 that `fp', `sp' and `pc' are not added in this alias list, because they
152 have been added as builtin user registers in
153 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
154static const struct
155{
156 const char *name;
157 int regnum;
158} arm_register_aliases[] = {
159 /* Basic register numbers. */
160 { "r0", 0 },
161 { "r1", 1 },
162 { "r2", 2 },
163 { "r3", 3 },
164 { "r4", 4 },
165 { "r5", 5 },
166 { "r6", 6 },
167 { "r7", 7 },
168 { "r8", 8 },
169 { "r9", 9 },
170 { "r10", 10 },
171 { "r11", 11 },
172 { "r12", 12 },
173 { "r13", 13 },
174 { "r14", 14 },
175 { "r15", 15 },
176 /* Synonyms (argument and variable registers). */
177 { "a1", 0 },
178 { "a2", 1 },
179 { "a3", 2 },
180 { "a4", 3 },
181 { "v1", 4 },
182 { "v2", 5 },
183 { "v3", 6 },
184 { "v4", 7 },
185 { "v5", 8 },
186 { "v6", 9 },
187 { "v7", 10 },
188 { "v8", 11 },
189 /* Other platform-specific names for r9. */
190 { "sb", 9 },
191 { "tr", 9 },
192 /* Special names. */
193 { "ip", 12 },
123dc839 194 { "lr", 14 },
123dc839
DJ
195 /* Names used by GCC (not listed in the ARM EABI). */
196 { "sl", 10 },
123dc839
DJ
197 /* A special name from the older ATPCS. */
198 { "wr", 7 },
199};
bc90b915 200
123dc839 201static const char *const arm_register_names[] =
da59e081
JM
202{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
203 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
204 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
205 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
206 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
207 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 208 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 209
afd7eef0
RE
210/* Valid register name styles. */
211static const char **valid_disassembly_styles;
ed9a39eb 212
afd7eef0
RE
213/* Disassembly style to use. Default to "std" register names. */
214static const char *disassembly_style;
96baa820 215
ed9a39eb 216/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
217 style. */
218static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 219 struct cmd_list_element *);
afd7eef0 220static void set_disassembly_style (void);
ed9a39eb 221
b508a996 222static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 223 void *, int);
b508a996 224static void convert_to_extended (const struct floatformat *, void *,
be8626e0 225 const void *, int);
ed9a39eb 226
05d1431c
PA
227static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
228 struct regcache *regcache,
229 int regnum, gdb_byte *buf);
58d6951d
DJ
230static void arm_neon_quad_write (struct gdbarch *gdbarch,
231 struct regcache *regcache,
232 int regnum, const gdb_byte *buf);
233
e7cf25a8 234static CORE_ADDR
553cb527 235 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
e7cf25a8
YQ
236
237
d9311bfa
AT
238/* get_next_pcs operations. */
239static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
240 arm_get_next_pcs_read_memory_unsigned_integer,
241 arm_get_next_pcs_syscall_next_pc,
242 arm_get_next_pcs_addr_bits_remove,
ed443b61
YQ
243 arm_get_next_pcs_is_thumb,
244 NULL,
d9311bfa
AT
245};
246
9b8d791a 247struct arm_prologue_cache
c3b4394c 248{
eb5492fa
DJ
249 /* The stack pointer at the time this frame was created; i.e. the
250 caller's stack pointer when this function was called. It is used
251 to identify this frame. */
252 CORE_ADDR prev_sp;
253
4be43953
DJ
254 /* The frame base for this frame is just prev_sp - frame size.
255 FRAMESIZE is the distance from the frame pointer to the
256 initial stack pointer. */
eb5492fa 257
c3b4394c 258 int framesize;
eb5492fa
DJ
259
260 /* The register used to hold the frame pointer for this frame. */
c3b4394c 261 int framereg;
eb5492fa
DJ
262
263 /* Saved register offsets. */
264 struct trad_frame_saved_reg *saved_regs;
c3b4394c 265};
ed9a39eb 266
0d39a070
DJ
267static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
268 CORE_ADDR prologue_start,
269 CORE_ADDR prologue_end,
270 struct arm_prologue_cache *cache);
271
cca44b1b
JB
272/* Architecture version for displaced stepping. This effects the behaviour of
273 certain instructions, and really should not be hard-wired. */
274
275#define DISPLACED_STEPPING_ARCH_VERSION 5
276
94c30b78 277/* Set to true if the 32-bit mode is in use. */
c906108c
SS
278
279int arm_apcs_32 = 1;
280
9779414d
DJ
281/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
282
478fd957 283int
9779414d
DJ
284arm_psr_thumb_bit (struct gdbarch *gdbarch)
285{
286 if (gdbarch_tdep (gdbarch)->is_m)
287 return XPSR_T;
288 else
289 return CPSR_T;
290}
291
d0e59a68
AT
292/* Determine if the processor is currently executing in Thumb mode. */
293
294int
295arm_is_thumb (struct regcache *regcache)
296{
297 ULONGEST cpsr;
298 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
299
300 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
301
302 return (cpsr & t_bit) != 0;
303}
304
b39cc962
DJ
305/* Determine if FRAME is executing in Thumb mode. */
306
25b41d01 307int
b39cc962
DJ
308arm_frame_is_thumb (struct frame_info *frame)
309{
310 CORE_ADDR cpsr;
9779414d 311 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
312
313 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
314 directly (from a signal frame or dummy frame) or by interpreting
315 the saved LR (from a prologue or DWARF frame). So consult it and
316 trust the unwinders. */
317 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
318
9779414d 319 return (cpsr & t_bit) != 0;
b39cc962
DJ
320}
321
60c5725c
DJ
322/* Callback for VEC_lower_bound. */
323
324static inline int
325arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
326 const struct arm_mapping_symbol *rhs)
327{
328 return lhs->value < rhs->value;
329}
330
f9d67f43
DJ
331/* Search for the mapping symbol covering MEMADDR. If one is found,
332 return its type. Otherwise, return 0. If START is non-NULL,
333 set *START to the location of the mapping symbol. */
c906108c 334
f9d67f43
DJ
335static char
336arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 337{
60c5725c 338 struct obj_section *sec;
0428b8f5 339
60c5725c
DJ
340 /* If there are mapping symbols, consult them. */
341 sec = find_pc_section (memaddr);
342 if (sec != NULL)
343 {
344 struct arm_per_objfile *data;
345 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
346 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
347 0 };
60c5725c
DJ
348 unsigned int idx;
349
9a3c8263
SM
350 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
351 arm_objfile_data_key);
60c5725c
DJ
352 if (data != NULL)
353 {
354 map = data->section_maps[sec->the_bfd_section->index];
355 if (!VEC_empty (arm_mapping_symbol_s, map))
356 {
357 struct arm_mapping_symbol *map_sym;
358
359 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
360 arm_compare_mapping_symbols);
361
362 /* VEC_lower_bound finds the earliest ordered insertion
363 point. If the following symbol starts at this exact
364 address, we use that; otherwise, the preceding
365 mapping symbol covers this address. */
366 if (idx < VEC_length (arm_mapping_symbol_s, map))
367 {
368 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
369 if (map_sym->value == map_key.value)
f9d67f43
DJ
370 {
371 if (start)
372 *start = map_sym->value + obj_section_addr (sec);
373 return map_sym->type;
374 }
60c5725c
DJ
375 }
376
377 if (idx > 0)
378 {
379 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
380 if (start)
381 *start = map_sym->value + obj_section_addr (sec);
382 return map_sym->type;
60c5725c
DJ
383 }
384 }
385 }
386 }
387
f9d67f43
DJ
388 return 0;
389}
390
391/* Determine if the program counter specified in MEMADDR is in a Thumb
392 function. This function should be called for addresses unrelated to
393 any executing frame; otherwise, prefer arm_frame_is_thumb. */
394
e3039479 395int
9779414d 396arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43 397{
7cbd4a93 398 struct bound_minimal_symbol sym;
f9d67f43 399 char type;
a42244db
YQ
400 struct displaced_step_closure* dsc
401 = get_displaced_step_closure_by_addr(memaddr);
402
403 /* If checking the mode of displaced instruction in copy area, the mode
404 should be determined by instruction on the original address. */
405 if (dsc)
406 {
407 if (debug_displaced)
408 fprintf_unfiltered (gdb_stdlog,
409 "displaced: check mode of %.8lx instead of %.8lx\n",
410 (unsigned long) dsc->insn_addr,
411 (unsigned long) memaddr);
412 memaddr = dsc->insn_addr;
413 }
f9d67f43
DJ
414
415 /* If bit 0 of the address is set, assume this is a Thumb address. */
416 if (IS_THUMB_ADDR (memaddr))
417 return 1;
418
419 /* If the user wants to override the symbol table, let him. */
420 if (strcmp (arm_force_mode_string, "arm") == 0)
421 return 0;
422 if (strcmp (arm_force_mode_string, "thumb") == 0)
423 return 1;
424
9779414d
DJ
425 /* ARM v6-M and v7-M are always in Thumb mode. */
426 if (gdbarch_tdep (gdbarch)->is_m)
427 return 1;
428
f9d67f43
DJ
429 /* If there are mapping symbols, consult them. */
430 type = arm_find_mapping_symbol (memaddr, NULL);
431 if (type)
432 return type == 't';
433
ed9a39eb 434 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c 435 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
436 if (sym.minsym)
437 return (MSYMBOL_IS_SPECIAL (sym.minsym));
0428b8f5
DJ
438
439 /* If the user wants to override the fallback mode, let them. */
440 if (strcmp (arm_fallback_mode_string, "arm") == 0)
441 return 0;
442 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
443 return 1;
444
445 /* If we couldn't find any symbol, but we're talking to a running
446 target, then trust the current value of $cpsr. This lets
447 "display/i $pc" always show the correct mode (though if there is
448 a symbol table we will not reach here, so it still may not be
18819fa6 449 displayed in the mode it will be executed). */
0428b8f5 450 if (target_has_registers)
18819fa6 451 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
452
453 /* Otherwise we're out of luck; we assume ARM. */
454 return 0;
c906108c
SS
455}
456
ca90e760
FH
457/* Determine if the address specified equals any of these magic return
458 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
459 architectures.
460
461 From ARMv6-M Reference Manual B1.5.8
462 Table B1-5 Exception return behavior
463
464 EXC_RETURN Return To Return Stack
465 0xFFFFFFF1 Handler mode Main
466 0xFFFFFFF9 Thread mode Main
467 0xFFFFFFFD Thread mode Process
468
469 From ARMv7-M Reference Manual B1.5.8
470 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
471
472 EXC_RETURN Return To Return Stack
473 0xFFFFFFF1 Handler mode Main
474 0xFFFFFFF9 Thread mode Main
475 0xFFFFFFFD Thread mode Process
476
477 Table B1-9 EXC_RETURN definition of exception return behavior, with
478 FP
479
480 EXC_RETURN Return To Return Stack Frame Type
481 0xFFFFFFE1 Handler mode Main Extended
482 0xFFFFFFE9 Thread mode Main Extended
483 0xFFFFFFED Thread mode Process Extended
484 0xFFFFFFF1 Handler mode Main Basic
485 0xFFFFFFF9 Thread mode Main Basic
486 0xFFFFFFFD Thread mode Process Basic
487
488 For more details see "B1.5.8 Exception return behavior"
489 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
490
491static int
492arm_m_addr_is_magic (CORE_ADDR addr)
493{
494 switch (addr)
495 {
496 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
497 the exception return behavior. */
498 case 0xffffffe1:
499 case 0xffffffe9:
500 case 0xffffffed:
501 case 0xfffffff1:
502 case 0xfffffff9:
503 case 0xfffffffd:
504 /* Address is magic. */
505 return 1;
506
507 default:
508 /* Address is not magic. */
509 return 0;
510 }
511}
512
181c1381 513/* Remove useless bits from addresses in a running program. */
34e8f22d 514static CORE_ADDR
24568a2c 515arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 516{
2ae28aa9
YQ
517 /* On M-profile devices, do not strip the low bit from EXC_RETURN
518 (the magic exception return address). */
519 if (gdbarch_tdep (gdbarch)->is_m
ca90e760 520 && arm_m_addr_is_magic (val))
2ae28aa9
YQ
521 return val;
522
a3a2ee65 523 if (arm_apcs_32)
dd6be234 524 return UNMAKE_THUMB_ADDR (val);
c906108c 525 else
a3a2ee65 526 return (val & 0x03fffffc);
c906108c
SS
527}
528
0d39a070 529/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
530 can be safely ignored during prologue skipping. IS_THUMB is true
531 if the function is known to be a Thumb function due to the way it
532 is being called. */
0d39a070 533static int
e0634ccf 534skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 535{
e0634ccf 536 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7cbd4a93 537 struct bound_minimal_symbol msym;
0d39a070
DJ
538
539 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 540 if (msym.minsym != NULL
77e371c0 541 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
efd66ac6 542 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
e0634ccf 543 {
efd66ac6 544 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
0d39a070 545
e0634ccf
UW
546 /* The GNU linker's Thumb call stub to foo is named
547 __foo_from_thumb. */
548 if (strstr (name, "_from_thumb") != NULL)
549 name += 2;
0d39a070 550
e0634ccf
UW
551 /* On soft-float targets, __truncdfsf2 is called to convert promoted
552 arguments to their argument types in non-prototyped
553 functions. */
61012eef 554 if (startswith (name, "__truncdfsf2"))
e0634ccf 555 return 1;
61012eef 556 if (startswith (name, "__aeabi_d2f"))
e0634ccf 557 return 1;
0d39a070 558
e0634ccf 559 /* Internal functions related to thread-local storage. */
61012eef 560 if (startswith (name, "__tls_get_addr"))
e0634ccf 561 return 1;
61012eef 562 if (startswith (name, "__aeabi_read_tp"))
e0634ccf
UW
563 return 1;
564 }
565 else
566 {
567 /* If we run against a stripped glibc, we may be unable to identify
568 special functions by name. Check for one important case,
569 __aeabi_read_tp, by comparing the *code* against the default
570 implementation (this is hand-written ARM assembler in glibc). */
571
572 if (!is_thumb
573 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
574 == 0xe3e00a0f /* mov r0, #0xffff0fff */
575 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
576 == 0xe240f01f) /* sub pc, r0, #31 */
577 return 1;
578 }
ec3d575a 579
0d39a070
DJ
580 return 0;
581}
582
621c6d5b
YQ
583/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
584 the first 16-bit of instruction, and INSN2 is the second 16-bit of
585 instruction. */
586#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
587 ((bits ((insn1), 0, 3) << 12) \
588 | (bits ((insn1), 10, 10) << 11) \
589 | (bits ((insn2), 12, 14) << 8) \
590 | bits ((insn2), 0, 7))
591
592/* Extract the immediate from instruction movw/movt of encoding A. INSN is
593 the 32-bit instruction. */
594#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
595 ((bits ((insn), 16, 19) << 12) \
596 | bits ((insn), 0, 11))
597
ec3d575a
UW
598/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
599
600static unsigned int
601thumb_expand_immediate (unsigned int imm)
602{
603 unsigned int count = imm >> 7;
604
605 if (count < 8)
606 switch (count / 2)
607 {
608 case 0:
609 return imm & 0xff;
610 case 1:
611 return (imm & 0xff) | ((imm & 0xff) << 16);
612 case 2:
613 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
614 case 3:
615 return (imm & 0xff) | ((imm & 0xff) << 8)
616 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
617 }
618
619 return (0x80 | (imm & 0x7f)) << (32 - count);
620}
621
540314bd
YQ
622/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
623 epilogue, 0 otherwise. */
624
625static int
626thumb_instruction_restores_sp (unsigned short insn)
627{
628 return (insn == 0x46bd /* mov sp, r7 */
629 || (insn & 0xff80) == 0xb000 /* add sp, imm */
630 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
631}
632
29d73ae4
DJ
633/* Analyze a Thumb prologue, looking for a recognizable stack frame
634 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
635 clobber the stack frame unexpectedly, or an unknown instruction.
636 Return the last address which is definitely safe to skip for an
637 initial breakpoint. */
c906108c
SS
638
639static CORE_ADDR
29d73ae4
DJ
640thumb_analyze_prologue (struct gdbarch *gdbarch,
641 CORE_ADDR start, CORE_ADDR limit,
642 struct arm_prologue_cache *cache)
c906108c 643{
0d39a070 644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 645 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
646 int i;
647 pv_t regs[16];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
ec3d575a 651 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 652
29d73ae4
DJ
653 for (i = 0; i < 16; i++)
654 regs[i] = pv_register (i, 0);
55f960e1 655 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
656 back_to = make_cleanup_free_pv_area (stack);
657
29d73ae4 658 while (start < limit)
c906108c 659 {
29d73ae4
DJ
660 unsigned short insn;
661
e17a4113 662 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 663
94c30b78 664 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 665 {
29d73ae4
DJ
666 int regno;
667 int mask;
4be43953
DJ
668
669 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
670 break;
29d73ae4
DJ
671
672 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
673 whether to save LR (R14). */
674 mask = (insn & 0xff) | ((insn & 0x100) << 6);
675
676 /* Calculate offsets of saved R0-R7 and LR. */
677 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
678 if (mask & (1 << regno))
679 {
29d73ae4
DJ
680 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
681 -4);
682 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
683 }
da59e081 684 }
1db01f22 685 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
da59e081 686 {
29d73ae4 687 offset = (insn & 0x7f) << 2; /* get scaled offset */
1db01f22
YQ
688 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
689 -offset);
da59e081 690 }
808f7ab1
YQ
691 else if (thumb_instruction_restores_sp (insn))
692 {
693 /* Don't scan past the epilogue. */
694 break;
695 }
0d39a070
DJ
696 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
697 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
698 (insn & 0xff) << 2);
699 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
700 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
701 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
702 bits (insn, 6, 8));
703 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
704 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
705 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
706 bits (insn, 0, 7));
707 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
708 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
709 && pv_is_constant (regs[bits (insn, 3, 5)]))
710 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
711 regs[bits (insn, 6, 8)]);
712 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
713 && pv_is_constant (regs[bits (insn, 3, 6)]))
714 {
715 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
716 int rm = bits (insn, 3, 6);
717 regs[rd] = pv_add (regs[rd], regs[rm]);
718 }
29d73ae4 719 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 720 {
29d73ae4
DJ
721 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
722 int src_reg = (insn & 0x78) >> 3;
723 regs[dst_reg] = regs[src_reg];
da59e081 724 }
29d73ae4 725 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 726 {
29d73ae4
DJ
727 /* Handle stores to the stack. Normally pushes are used,
728 but with GCC -mtpcs-frame, there may be other stores
729 in the prologue to create the frame. */
730 int regno = (insn >> 8) & 0x7;
731 pv_t addr;
732
733 offset = (insn & 0xff) << 2;
734 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
735
736 if (pv_area_store_would_trash (stack, addr))
737 break;
738
739 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 740 }
0d39a070
DJ
741 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
742 {
743 int rd = bits (insn, 0, 2);
744 int rn = bits (insn, 3, 5);
745 pv_t addr;
746
747 offset = bits (insn, 6, 10) << 2;
748 addr = pv_add_constant (regs[rn], offset);
749
750 if (pv_area_store_would_trash (stack, addr))
751 break;
752
753 pv_area_store (stack, addr, 4, regs[rd]);
754 }
755 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
756 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
757 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
758 /* Ignore stores of argument registers to the stack. */
759 ;
760 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
761 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
762 /* Ignore block loads from the stack, potentially copying
763 parameters from memory. */
764 ;
765 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
766 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
767 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
768 /* Similarly ignore single loads from the stack. */
769 ;
770 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
771 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
772 /* Skip register copies, i.e. saves to another register
773 instead of the stack. */
774 ;
775 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
776 /* Recognize constant loads; even with small stacks these are necessary
777 on Thumb. */
778 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
779 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
780 {
781 /* Constant pool loads, for the same reason. */
782 unsigned int constant;
783 CORE_ADDR loc;
784
785 loc = start + 4 + bits (insn, 0, 7) * 4;
786 constant = read_memory_unsigned_integer (loc, 4, byte_order);
787 regs[bits (insn, 8, 10)] = pv_constant (constant);
788 }
db24da6d 789 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
0d39a070 790 {
0d39a070
DJ
791 unsigned short inst2;
792
793 inst2 = read_memory_unsigned_integer (start + 2, 2,
794 byte_order_for_code);
795
796 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
797 {
798 /* BL, BLX. Allow some special function calls when
799 skipping the prologue; GCC generates these before
800 storing arguments to the stack. */
801 CORE_ADDR nextpc;
802 int j1, j2, imm1, imm2;
803
804 imm1 = sbits (insn, 0, 10);
805 imm2 = bits (inst2, 0, 10);
806 j1 = bit (inst2, 13);
807 j2 = bit (inst2, 11);
808
809 offset = ((imm1 << 12) + (imm2 << 1));
810 offset ^= ((!j2) << 22) | ((!j1) << 23);
811
812 nextpc = start + 4 + offset;
813 /* For BLX make sure to clear the low bits. */
814 if (bit (inst2, 12) == 0)
815 nextpc = nextpc & 0xfffffffc;
816
e0634ccf
UW
817 if (!skip_prologue_function (gdbarch, nextpc,
818 bit (inst2, 12) != 0))
0d39a070
DJ
819 break;
820 }
ec3d575a 821
0963b4bd
MS
822 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
823 { registers } */
ec3d575a
UW
824 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
825 {
826 pv_t addr = regs[bits (insn, 0, 3)];
827 int regno;
828
829 if (pv_area_store_would_trash (stack, addr))
830 break;
831
832 /* Calculate offsets of saved registers. */
833 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
834 if (inst2 & (1 << regno))
835 {
836 addr = pv_add_constant (addr, -4);
837 pv_area_store (stack, addr, 4, regs[regno]);
838 }
839
840 if (insn & 0x0020)
841 regs[bits (insn, 0, 3)] = addr;
842 }
843
0963b4bd
MS
844 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
845 [Rn, #+/-imm]{!} */
ec3d575a
UW
846 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
847 {
848 int regno1 = bits (inst2, 12, 15);
849 int regno2 = bits (inst2, 8, 11);
850 pv_t addr = regs[bits (insn, 0, 3)];
851
852 offset = inst2 & 0xff;
853 if (insn & 0x0080)
854 addr = pv_add_constant (addr, offset);
855 else
856 addr = pv_add_constant (addr, -offset);
857
858 if (pv_area_store_would_trash (stack, addr))
859 break;
860
861 pv_area_store (stack, addr, 4, regs[regno1]);
862 pv_area_store (stack, pv_add_constant (addr, 4),
863 4, regs[regno2]);
864
865 if (insn & 0x0020)
866 regs[bits (insn, 0, 3)] = addr;
867 }
868
869 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
870 && (inst2 & 0x0c00) == 0x0c00
871 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
872 {
873 int regno = bits (inst2, 12, 15);
874 pv_t addr = regs[bits (insn, 0, 3)];
875
876 offset = inst2 & 0xff;
877 if (inst2 & 0x0200)
878 addr = pv_add_constant (addr, offset);
879 else
880 addr = pv_add_constant (addr, -offset);
881
882 if (pv_area_store_would_trash (stack, addr))
883 break;
884
885 pv_area_store (stack, addr, 4, regs[regno]);
886
887 if (inst2 & 0x0100)
888 regs[bits (insn, 0, 3)] = addr;
889 }
890
891 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
892 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
893 {
894 int regno = bits (inst2, 12, 15);
895 pv_t addr;
896
897 offset = inst2 & 0xfff;
898 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
899
900 if (pv_area_store_would_trash (stack, addr))
901 break;
902
903 pv_area_store (stack, addr, 4, regs[regno]);
904 }
905
906 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 907 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 908 /* Ignore stores of argument registers to the stack. */
0d39a070 909 ;
ec3d575a
UW
910
911 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
912 && (inst2 & 0x0d00) == 0x0c00
0d39a070 913 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 914 /* Ignore stores of argument registers to the stack. */
0d39a070 915 ;
ec3d575a 916
0963b4bd
MS
917 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
918 { registers } */
ec3d575a
UW
919 && (inst2 & 0x8000) == 0x0000
920 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
921 /* Ignore block loads from the stack, potentially copying
922 parameters from memory. */
0d39a070 923 ;
ec3d575a 924
0963b4bd
MS
925 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
926 [Rn, #+/-imm] */
0d39a070 927 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 928 /* Similarly ignore dual loads from the stack. */
0d39a070 929 ;
ec3d575a
UW
930
931 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
932 && (inst2 & 0x0d00) == 0x0c00
0d39a070 933 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 934 /* Similarly ignore single loads from the stack. */
0d39a070 935 ;
ec3d575a
UW
936
937 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 938 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 939 /* Similarly ignore single loads from the stack. */
0d39a070 940 ;
ec3d575a
UW
941
942 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
943 && (inst2 & 0x8000) == 0x0000)
944 {
945 unsigned int imm = ((bits (insn, 10, 10) << 11)
946 | (bits (inst2, 12, 14) << 8)
947 | bits (inst2, 0, 7));
948
949 regs[bits (inst2, 8, 11)]
950 = pv_add_constant (regs[bits (insn, 0, 3)],
951 thumb_expand_immediate (imm));
952 }
953
954 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
955 && (inst2 & 0x8000) == 0x0000)
0d39a070 956 {
ec3d575a
UW
957 unsigned int imm = ((bits (insn, 10, 10) << 11)
958 | (bits (inst2, 12, 14) << 8)
959 | bits (inst2, 0, 7));
960
961 regs[bits (inst2, 8, 11)]
962 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
963 }
964
965 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
966 && (inst2 & 0x8000) == 0x0000)
967 {
968 unsigned int imm = ((bits (insn, 10, 10) << 11)
969 | (bits (inst2, 12, 14) << 8)
970 | bits (inst2, 0, 7));
971
972 regs[bits (inst2, 8, 11)]
973 = pv_add_constant (regs[bits (insn, 0, 3)],
974 - (CORE_ADDR) thumb_expand_immediate (imm));
975 }
976
977 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
978 && (inst2 & 0x8000) == 0x0000)
979 {
980 unsigned int imm = ((bits (insn, 10, 10) << 11)
981 | (bits (inst2, 12, 14) << 8)
982 | bits (inst2, 0, 7));
983
984 regs[bits (inst2, 8, 11)]
985 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
986 }
987
988 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
989 {
990 unsigned int imm = ((bits (insn, 10, 10) << 11)
991 | (bits (inst2, 12, 14) << 8)
992 | bits (inst2, 0, 7));
993
994 regs[bits (inst2, 8, 11)]
995 = pv_constant (thumb_expand_immediate (imm));
996 }
997
998 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
999 {
621c6d5b
YQ
1000 unsigned int imm
1001 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1002
1003 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1004 }
1005
1006 else if (insn == 0xea5f /* mov.w Rd,Rm */
1007 && (inst2 & 0xf0f0) == 0)
1008 {
1009 int dst_reg = (inst2 & 0x0f00) >> 8;
1010 int src_reg = inst2 & 0xf;
1011 regs[dst_reg] = regs[src_reg];
1012 }
1013
1014 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1015 {
1016 /* Constant pool loads. */
1017 unsigned int constant;
1018 CORE_ADDR loc;
1019
cac395ea 1020 offset = bits (inst2, 0, 11);
ec3d575a
UW
1021 if (insn & 0x0080)
1022 loc = start + 4 + offset;
1023 else
1024 loc = start + 4 - offset;
1025
1026 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1027 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1028 }
1029
1030 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1031 {
1032 /* Constant pool loads. */
1033 unsigned int constant;
1034 CORE_ADDR loc;
1035
cac395ea 1036 offset = bits (inst2, 0, 7) << 2;
ec3d575a
UW
1037 if (insn & 0x0080)
1038 loc = start + 4 + offset;
1039 else
1040 loc = start + 4 - offset;
1041
1042 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1043 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1044
1045 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1046 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1047 }
1048
1049 else if (thumb2_instruction_changes_pc (insn, inst2))
1050 {
1051 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1052 break;
1053 }
ec3d575a
UW
1054 else
1055 {
1056 /* The optimizer might shove anything into the prologue,
1057 so we just skip what we don't recognize. */
1058 unrecognized_pc = start;
1059 }
0d39a070
DJ
1060
1061 start += 2;
1062 }
ec3d575a 1063 else if (thumb_instruction_changes_pc (insn))
3d74b771 1064 {
ec3d575a 1065 /* Don't scan past anything that might change control flow. */
da3c6d4a 1066 break;
3d74b771 1067 }
ec3d575a
UW
1068 else
1069 {
1070 /* The optimizer might shove anything into the prologue,
1071 so we just skip what we don't recognize. */
1072 unrecognized_pc = start;
1073 }
29d73ae4
DJ
1074
1075 start += 2;
c906108c
SS
1076 }
1077
0d39a070
DJ
1078 if (arm_debug)
1079 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1080 paddress (gdbarch, start));
1081
ec3d575a
UW
1082 if (unrecognized_pc == 0)
1083 unrecognized_pc = start;
1084
29d73ae4
DJ
1085 if (cache == NULL)
1086 {
1087 do_cleanups (back_to);
ec3d575a 1088 return unrecognized_pc;
29d73ae4
DJ
1089 }
1090
29d73ae4
DJ
1091 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1092 {
1093 /* Frame pointer is fp. Frame size is constant. */
1094 cache->framereg = ARM_FP_REGNUM;
1095 cache->framesize = -regs[ARM_FP_REGNUM].k;
1096 }
1097 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1098 {
1099 /* Frame pointer is r7. Frame size is constant. */
1100 cache->framereg = THUMB_FP_REGNUM;
1101 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1102 }
72a2e3dc 1103 else
29d73ae4
DJ
1104 {
1105 /* Try the stack pointer... this is a bit desperate. */
1106 cache->framereg = ARM_SP_REGNUM;
1107 cache->framesize = -regs[ARM_SP_REGNUM].k;
1108 }
29d73ae4
DJ
1109
1110 for (i = 0; i < 16; i++)
1111 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1112 cache->saved_regs[i].addr = offset;
1113
1114 do_cleanups (back_to);
ec3d575a 1115 return unrecognized_pc;
c906108c
SS
1116}
1117
621c6d5b
YQ
1118
1119/* Try to analyze the instructions starting from PC, which load symbol
1120 __stack_chk_guard. Return the address of instruction after loading this
1121 symbol, set the dest register number to *BASEREG, and set the size of
1122 instructions for loading symbol in OFFSET. Return 0 if instructions are
1123 not recognized. */
1124
1125static CORE_ADDR
1126arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1127 unsigned int *destreg, int *offset)
1128{
1129 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1130 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1131 unsigned int low, high, address;
1132
1133 address = 0;
1134 if (is_thumb)
1135 {
1136 unsigned short insn1
1137 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1138
1139 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1140 {
1141 *destreg = bits (insn1, 8, 10);
1142 *offset = 2;
6ae274b7
YQ
1143 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1144 address = read_memory_unsigned_integer (address, 4,
1145 byte_order_for_code);
621c6d5b
YQ
1146 }
1147 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1148 {
1149 unsigned short insn2
1150 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1151
1152 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1153
1154 insn1
1155 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1156 insn2
1157 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1158
1159 /* movt Rd, #const */
1160 if ((insn1 & 0xfbc0) == 0xf2c0)
1161 {
1162 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1163 *destreg = bits (insn2, 8, 11);
1164 *offset = 8;
1165 address = (high << 16 | low);
1166 }
1167 }
1168 }
1169 else
1170 {
2e9e421f
UW
1171 unsigned int insn
1172 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1173
6ae274b7 1174 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
2e9e421f 1175 {
6ae274b7
YQ
1176 address = bits (insn, 0, 11) + pc + 8;
1177 address = read_memory_unsigned_integer (address, 4,
1178 byte_order_for_code);
1179
2e9e421f
UW
1180 *destreg = bits (insn, 12, 15);
1181 *offset = 4;
1182 }
1183 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1184 {
1185 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1186
1187 insn
1188 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1189
1190 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1191 {
1192 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1193 *destreg = bits (insn, 12, 15);
1194 *offset = 8;
1195 address = (high << 16 | low);
1196 }
1197 }
621c6d5b
YQ
1198 }
1199
1200 return address;
1201}
1202
1203/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1204 points to the first instruction of this sequence, return the address of
1205 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1206
1207 On arm, this sequence of instructions is composed of mainly three steps,
1208 Step 1: load symbol __stack_chk_guard,
1209 Step 2: load from address of __stack_chk_guard,
1210 Step 3: store it to somewhere else.
1211
1212 Usually, instructions on step 2 and step 3 are the same on various ARM
1213 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1214 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1215 instructions in step 1 vary from different ARM architectures. On ARMv7,
1216 they are,
1217
1218 movw Rn, #:lower16:__stack_chk_guard
1219 movt Rn, #:upper16:__stack_chk_guard
1220
1221 On ARMv5t, it is,
1222
1223 ldr Rn, .Label
1224 ....
1225 .Lable:
1226 .word __stack_chk_guard
1227
1228 Since ldr/str is a very popular instruction, we can't use them as
1229 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1230 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1231 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1232
1233static CORE_ADDR
1234arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1235{
1236 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
22e048c9 1237 unsigned int basereg;
7cbd4a93 1238 struct bound_minimal_symbol stack_chk_guard;
621c6d5b
YQ
1239 int offset;
1240 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1241 CORE_ADDR addr;
1242
1243 /* Try to parse the instructions in Step 1. */
1244 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1245 &basereg, &offset);
1246 if (!addr)
1247 return pc;
1248
1249 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
6041179a
JB
1250 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1251 Otherwise, this sequence cannot be for stack protector. */
1252 if (stack_chk_guard.minsym == NULL
61012eef 1253 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
621c6d5b
YQ
1254 return pc;
1255
1256 if (is_thumb)
1257 {
1258 unsigned int destreg;
1259 unsigned short insn
1260 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1261
1262 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1263 if ((insn & 0xf800) != 0x6800)
1264 return pc;
1265 if (bits (insn, 3, 5) != basereg)
1266 return pc;
1267 destreg = bits (insn, 0, 2);
1268
1269 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1270 byte_order_for_code);
1271 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1272 if ((insn & 0xf800) != 0x6000)
1273 return pc;
1274 if (destreg != bits (insn, 0, 2))
1275 return pc;
1276 }
1277 else
1278 {
1279 unsigned int destreg;
1280 unsigned int insn
1281 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1282
1283 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1284 if ((insn & 0x0e500000) != 0x04100000)
1285 return pc;
1286 if (bits (insn, 16, 19) != basereg)
1287 return pc;
1288 destreg = bits (insn, 12, 15);
1289 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1290 insn = read_memory_unsigned_integer (pc + offset + 4,
1291 4, byte_order_for_code);
1292 if ((insn & 0x0e500000) != 0x04000000)
1293 return pc;
1294 if (bits (insn, 12, 15) != destreg)
1295 return pc;
1296 }
1297 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1298 on arm. */
1299 if (is_thumb)
1300 return pc + offset + 4;
1301 else
1302 return pc + offset + 8;
1303}
1304
da3c6d4a
MS
1305/* Advance the PC across any function entry prologue instructions to
1306 reach some "real" code.
34e8f22d
RE
1307
1308 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1309 prologue:
c906108c 1310
c5aa993b
JM
1311 mov ip, sp
1312 [stmfd sp!, {a1,a2,a3,a4}]
1313 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1314 [stfe f7, [sp, #-12]!]
1315 [stfe f6, [sp, #-12]!]
1316 [stfe f5, [sp, #-12]!]
1317 [stfe f4, [sp, #-12]!]
0963b4bd 1318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1319
34e8f22d 1320static CORE_ADDR
6093d2eb 1321arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1322{
a89fea3c 1323 CORE_ADDR func_addr, limit_pc;
c906108c 1324
a89fea3c
JL
1325 /* See if we can determine the end of the prologue via the symbol table.
1326 If so, then return either PC, or the PC after the prologue, whichever
1327 is greater. */
1328 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1329 {
d80b854b
UW
1330 CORE_ADDR post_prologue_pc
1331 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1332 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
0d39a070 1333
621c6d5b
YQ
1334 if (post_prologue_pc)
1335 post_prologue_pc
1336 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1337
1338
0d39a070
DJ
1339 /* GCC always emits a line note before the prologue and another
1340 one after, even if the two are at the same address or on the
1341 same line. Take advantage of this so that we do not need to
1342 know every instruction that might appear in the prologue. We
1343 will have producer information for most binaries; if it is
1344 missing (e.g. for -gstabs), assuming the GNU tools. */
1345 if (post_prologue_pc
43f3e411
DE
1346 && (cust == NULL
1347 || COMPUNIT_PRODUCER (cust) == NULL
61012eef
GB
1348 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1349 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
0d39a070
DJ
1350 return post_prologue_pc;
1351
a89fea3c 1352 if (post_prologue_pc != 0)
0d39a070
DJ
1353 {
1354 CORE_ADDR analyzed_limit;
1355
1356 /* For non-GCC compilers, make sure the entire line is an
1357 acceptable prologue; GDB will round this function's
1358 return value up to the end of the following line so we
1359 can not skip just part of a line (and we do not want to).
1360
1361 RealView does not treat the prologue specially, but does
1362 associate prologue code with the opening brace; so this
1363 lets us skip the first line if we think it is the opening
1364 brace. */
9779414d 1365 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1366 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1367 post_prologue_pc, NULL);
1368 else
1369 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1370 post_prologue_pc, NULL);
1371
1372 if (analyzed_limit != post_prologue_pc)
1373 return func_addr;
1374
1375 return post_prologue_pc;
1376 }
c906108c
SS
1377 }
1378
a89fea3c
JL
1379 /* Can't determine prologue from the symbol table, need to examine
1380 instructions. */
c906108c 1381
a89fea3c
JL
1382 /* Find an upper limit on the function prologue using the debug
1383 information. If the debug information could not be used to provide
1384 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1385 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1386 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1387 if (limit_pc == 0)
1388 limit_pc = pc + 64; /* Magic. */
1389
c906108c 1390
29d73ae4 1391 /* Check if this is Thumb code. */
9779414d 1392 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1393 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
21daaaaf
YQ
1394 else
1395 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
c906108c 1396}
94c30b78 1397
c5aa993b 1398/* *INDENT-OFF* */
c906108c
SS
1399/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1400 This function decodes a Thumb function prologue to determine:
1401 1) the size of the stack frame
1402 2) which registers are saved on it
1403 3) the offsets of saved regs
1404 4) the offset from the stack pointer to the frame pointer
c906108c 1405
da59e081
JM
1406 A typical Thumb function prologue would create this stack frame
1407 (offsets relative to FP)
c906108c
SS
1408 old SP -> 24 stack parameters
1409 20 LR
1410 16 R7
1411 R7 -> 0 local variables (16 bytes)
1412 SP -> -12 additional stack space (12 bytes)
1413 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1414 12 bytes. The frame register is R7.
da59e081 1415
da3c6d4a
MS
1416 The comments for thumb_skip_prolog() describe the algorithm we use
1417 to detect the end of the prolog. */
c5aa993b
JM
1418/* *INDENT-ON* */
1419
c906108c 1420static void
be8626e0 1421thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1422 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1423{
1424 CORE_ADDR prologue_start;
1425 CORE_ADDR prologue_end;
c906108c 1426
b39cc962
DJ
1427 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1428 &prologue_end))
c906108c 1429 {
ec3d575a
UW
1430 /* See comment in arm_scan_prologue for an explanation of
1431 this heuristics. */
1432 if (prologue_end > prologue_start + 64)
1433 {
1434 prologue_end = prologue_start + 64;
1435 }
c906108c
SS
1436 }
1437 else
f7060f85
DJ
1438 /* We're in the boondocks: we have no idea where the start of the
1439 function is. */
1440 return;
c906108c 1441
325fac50 1442 prologue_end = std::min (prologue_end, prev_pc);
c906108c 1443
be8626e0 1444 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1445}
1446
f303bc3e
YQ
1447/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1448 otherwise. */
1449
1450static int
1451arm_instruction_restores_sp (unsigned int insn)
1452{
1453 if (bits (insn, 28, 31) != INST_NV)
1454 {
1455 if ((insn & 0x0df0f000) == 0x0080d000
1456 /* ADD SP (register or immediate). */
1457 || (insn & 0x0df0f000) == 0x0040d000
1458 /* SUB SP (register or immediate). */
1459 || (insn & 0x0ffffff0) == 0x01a0d000
1460 /* MOV SP. */
1461 || (insn & 0x0fff0000) == 0x08bd0000
1462 /* POP (LDMIA). */
1463 || (insn & 0x0fff0000) == 0x049d0000)
1464 /* POP of a single register. */
1465 return 1;
1466 }
1467
1468 return 0;
1469}
1470
0d39a070
DJ
1471/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1472 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1473 fill it in. Return the first address not recognized as a prologue
1474 instruction.
eb5492fa 1475
0d39a070
DJ
1476 We recognize all the instructions typically found in ARM prologues,
1477 plus harmless instructions which can be skipped (either for analysis
1478 purposes, or a more restrictive set that can be skipped when finding
1479 the end of the prologue). */
1480
1481static CORE_ADDR
1482arm_analyze_prologue (struct gdbarch *gdbarch,
1483 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1484 struct arm_prologue_cache *cache)
1485{
0d39a070
DJ
1486 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1487 int regno;
1488 CORE_ADDR offset, current_pc;
1489 pv_t regs[ARM_FPS_REGNUM];
1490 struct pv_area *stack;
1491 struct cleanup *back_to;
0d39a070
DJ
1492 CORE_ADDR unrecognized_pc = 0;
1493
1494 /* Search the prologue looking for instructions that set up the
96baa820 1495 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1496
96baa820
JM
1497 Be careful, however, and if it doesn't look like a prologue,
1498 don't try to scan it. If, for instance, a frameless function
1499 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1500 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1501 and other operations that rely on a knowledge of the stack
0d39a070 1502 traceback. */
d4473757 1503
4be43953
DJ
1504 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1505 regs[regno] = pv_register (regno, 0);
55f960e1 1506 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1507 back_to = make_cleanup_free_pv_area (stack);
1508
94c30b78
MS
1509 for (current_pc = prologue_start;
1510 current_pc < prologue_end;
f43845b3 1511 current_pc += 4)
96baa820 1512 {
e17a4113
UW
1513 unsigned int insn
1514 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1515
94c30b78 1516 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1517 {
4be43953 1518 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1519 continue;
1520 }
0d39a070
DJ
1521 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1522 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1523 {
1524 unsigned imm = insn & 0xff; /* immediate value */
1525 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1526 int rd = bits (insn, 12, 15);
28cd8767 1527 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1528 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1529 continue;
1530 }
0d39a070
DJ
1531 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1532 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1533 {
1534 unsigned imm = insn & 0xff; /* immediate value */
1535 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1536 int rd = bits (insn, 12, 15);
28cd8767 1537 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1538 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1539 continue;
1540 }
0963b4bd
MS
1541 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1542 [sp, #-4]! */
f43845b3 1543 {
4be43953
DJ
1544 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1545 break;
1546 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1547 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1548 regs[bits (insn, 12, 15)]);
f43845b3
MS
1549 continue;
1550 }
1551 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1552 /* stmfd sp!, {..., fp, ip, lr, pc}
1553 or
1554 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1555 {
d4473757 1556 int mask = insn & 0xffff;
ed9a39eb 1557
4be43953
DJ
1558 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1559 break;
1560
94c30b78 1561 /* Calculate offsets of saved registers. */
34e8f22d 1562 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1563 if (mask & (1 << regno))
1564 {
0963b4bd
MS
1565 regs[ARM_SP_REGNUM]
1566 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1567 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1568 }
1569 }
0d39a070
DJ
1570 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1571 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1572 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1573 {
1574 /* No need to add this to saved_regs -- it's just an arg reg. */
1575 continue;
1576 }
0d39a070
DJ
1577 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1578 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1579 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1580 {
1581 /* No need to add this to saved_regs -- it's just an arg reg. */
1582 continue;
1583 }
0963b4bd
MS
1584 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1585 { registers } */
0d39a070
DJ
1586 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1587 {
1588 /* No need to add this to saved_regs -- it's just arg regs. */
1589 continue;
1590 }
d4473757
KB
1591 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1592 {
94c30b78
MS
1593 unsigned imm = insn & 0xff; /* immediate value */
1594 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1595 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1596 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1597 }
1598 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1599 {
94c30b78
MS
1600 unsigned imm = insn & 0xff; /* immediate value */
1601 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1602 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1603 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1604 }
0963b4bd
MS
1605 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1606 [sp, -#c]! */
2af46ca0 1607 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1608 {
4be43953
DJ
1609 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1610 break;
1611
1612 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1613 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1614 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1615 }
0963b4bd
MS
1616 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1617 [sp!] */
2af46ca0 1618 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1619 {
1620 int n_saved_fp_regs;
1621 unsigned int fp_start_reg, fp_bound_reg;
1622
4be43953
DJ
1623 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1624 break;
1625
94c30b78 1626 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1627 {
d4473757
KB
1628 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1629 n_saved_fp_regs = 3;
1630 else
1631 n_saved_fp_regs = 1;
96baa820 1632 }
d4473757 1633 else
96baa820 1634 {
d4473757
KB
1635 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1636 n_saved_fp_regs = 2;
1637 else
1638 n_saved_fp_regs = 4;
96baa820 1639 }
d4473757 1640
34e8f22d 1641 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1642 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1643 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1644 {
4be43953
DJ
1645 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1646 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1647 regs[fp_start_reg++]);
96baa820 1648 }
c906108c 1649 }
0d39a070
DJ
1650 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1651 {
1652 /* Allow some special function calls when skipping the
1653 prologue; GCC generates these before storing arguments to
1654 the stack. */
1655 CORE_ADDR dest = BranchDest (current_pc, insn);
1656
e0634ccf 1657 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1658 continue;
1659 else
1660 break;
1661 }
d4473757 1662 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1663 break; /* Condition not true, exit early. */
0d39a070
DJ
1664 else if (arm_instruction_changes_pc (insn))
1665 /* Don't scan past anything that might change control flow. */
1666 break;
f303bc3e
YQ
1667 else if (arm_instruction_restores_sp (insn))
1668 {
1669 /* Don't scan past the epilogue. */
1670 break;
1671 }
d19f7eee
UW
1672 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1673 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1674 /* Ignore block loads from the stack, potentially copying
1675 parameters from memory. */
1676 continue;
1677 else if ((insn & 0xfc500000) == 0xe4100000
1678 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1679 /* Similarly ignore single loads from the stack. */
1680 continue;
0d39a070
DJ
1681 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1682 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1683 register instead of the stack. */
d4473757 1684 continue;
0d39a070
DJ
1685 else
1686 {
21daaaaf
YQ
1687 /* The optimizer might shove anything into the prologue, if
1688 we build up cache (cache != NULL) from scanning prologue,
1689 we just skip what we don't recognize and scan further to
1690 make cache as complete as possible. However, if we skip
1691 prologue, we'll stop immediately on unrecognized
1692 instruction. */
0d39a070 1693 unrecognized_pc = current_pc;
21daaaaf
YQ
1694 if (cache != NULL)
1695 continue;
1696 else
1697 break;
0d39a070 1698 }
c906108c
SS
1699 }
1700
0d39a070
DJ
1701 if (unrecognized_pc == 0)
1702 unrecognized_pc = current_pc;
1703
0d39a070
DJ
1704 if (cache)
1705 {
4072f920
YQ
1706 int framereg, framesize;
1707
1708 /* The frame size is just the distance from the frame register
1709 to the original stack pointer. */
1710 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1711 {
1712 /* Frame pointer is fp. */
1713 framereg = ARM_FP_REGNUM;
1714 framesize = -regs[ARM_FP_REGNUM].k;
1715 }
1716 else
1717 {
1718 /* Try the stack pointer... this is a bit desperate. */
1719 framereg = ARM_SP_REGNUM;
1720 framesize = -regs[ARM_SP_REGNUM].k;
1721 }
1722
0d39a070
DJ
1723 cache->framereg = framereg;
1724 cache->framesize = framesize;
1725
1726 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1727 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1728 cache->saved_regs[regno].addr = offset;
1729 }
1730
1731 if (arm_debug)
1732 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1733 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1734
1735 do_cleanups (back_to);
0d39a070
DJ
1736 return unrecognized_pc;
1737}
1738
1739static void
1740arm_scan_prologue (struct frame_info *this_frame,
1741 struct arm_prologue_cache *cache)
1742{
1743 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bec2ab5a 1745 CORE_ADDR prologue_start, prologue_end;
0d39a070
DJ
1746 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1747 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
0d39a070
DJ
1748
1749 /* Assume there is no frame until proven otherwise. */
1750 cache->framereg = ARM_SP_REGNUM;
1751 cache->framesize = 0;
1752
1753 /* Check for Thumb prologue. */
1754 if (arm_frame_is_thumb (this_frame))
1755 {
1756 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1757 return;
1758 }
1759
1760 /* Find the function prologue. If we can't find the function in
1761 the symbol table, peek in the stack frame to find the PC. */
1762 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1763 &prologue_end))
1764 {
1765 /* One way to find the end of the prologue (which works well
1766 for unoptimized code) is to do the following:
1767
1768 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1769
1770 if (sal.line == 0)
1771 prologue_end = prev_pc;
1772 else if (sal.end < prologue_end)
1773 prologue_end = sal.end;
1774
1775 This mechanism is very accurate so long as the optimizer
1776 doesn't move any instructions from the function body into the
1777 prologue. If this happens, sal.end will be the last
1778 instruction in the first hunk of prologue code just before
1779 the first instruction that the scheduler has moved from
1780 the body to the prologue.
1781
1782 In order to make sure that we scan all of the prologue
1783 instructions, we use a slightly less accurate mechanism which
1784 may scan more than necessary. To help compensate for this
1785 lack of accuracy, the prologue scanning loop below contains
1786 several clauses which'll cause the loop to terminate early if
1787 an implausible prologue instruction is encountered.
1788
1789 The expression
1790
1791 prologue_start + 64
1792
1793 is a suitable endpoint since it accounts for the largest
1794 possible prologue plus up to five instructions inserted by
1795 the scheduler. */
1796
1797 if (prologue_end > prologue_start + 64)
1798 {
1799 prologue_end = prologue_start + 64; /* See above. */
1800 }
1801 }
1802 else
1803 {
1804 /* We have no symbol information. Our only option is to assume this
1805 function has a standard stack frame and the normal frame register.
1806 Then, we can find the value of our frame pointer on entrance to
1807 the callee (or at the present moment if this is the innermost frame).
1808 The value stored there should be the address of the stmfd + 8. */
1809 CORE_ADDR frame_loc;
7913a64c 1810 ULONGEST return_value;
0d39a070
DJ
1811
1812 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
7913a64c
YQ
1813 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1814 &return_value))
0d39a070
DJ
1815 return;
1816 else
1817 {
1818 prologue_start = gdbarch_addr_bits_remove
1819 (gdbarch, return_value) - 8;
1820 prologue_end = prologue_start + 64; /* See above. */
1821 }
1822 }
1823
1824 if (prev_pc < prologue_end)
1825 prologue_end = prev_pc;
1826
1827 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1828}
1829
eb5492fa 1830static struct arm_prologue_cache *
a262aec2 1831arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 1832{
eb5492fa
DJ
1833 int reg;
1834 struct arm_prologue_cache *cache;
1835 CORE_ADDR unwound_fp;
c5aa993b 1836
35d5d4ee 1837 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 1838 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1839
a262aec2 1840 arm_scan_prologue (this_frame, cache);
848cfffb 1841
a262aec2 1842 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
1843 if (unwound_fp == 0)
1844 return cache;
c906108c 1845
4be43953 1846 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 1847
eb5492fa
DJ
1848 /* Calculate actual addresses of saved registers using offsets
1849 determined by arm_scan_prologue. */
a262aec2 1850 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 1851 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
1852 cache->saved_regs[reg].addr += cache->prev_sp;
1853
1854 return cache;
c906108c
SS
1855}
1856
c1ee9414
LM
1857/* Implementation of the stop_reason hook for arm_prologue frames. */
1858
1859static enum unwind_stop_reason
1860arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1861 void **this_cache)
1862{
1863 struct arm_prologue_cache *cache;
1864 CORE_ADDR pc;
1865
1866 if (*this_cache == NULL)
1867 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1868 cache = (struct arm_prologue_cache *) *this_cache;
c1ee9414
LM
1869
1870 /* This is meant to halt the backtrace at "_start". */
1871 pc = get_frame_pc (this_frame);
1872 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1873 return UNWIND_OUTERMOST;
1874
1875 /* If we've hit a wall, stop. */
1876 if (cache->prev_sp == 0)
1877 return UNWIND_OUTERMOST;
1878
1879 return UNWIND_NO_REASON;
1880}
1881
eb5492fa
DJ
1882/* Our frame ID for a normal frame is the current function's starting PC
1883 and the caller's SP when we were called. */
c906108c 1884
148754e5 1885static void
a262aec2 1886arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
1887 void **this_cache,
1888 struct frame_id *this_id)
c906108c 1889{
eb5492fa
DJ
1890 struct arm_prologue_cache *cache;
1891 struct frame_id id;
2c404490 1892 CORE_ADDR pc, func;
f079148d 1893
eb5492fa 1894 if (*this_cache == NULL)
a262aec2 1895 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1896 cache = (struct arm_prologue_cache *) *this_cache;
2a451106 1897
0e9e9abd
UW
1898 /* Use function start address as part of the frame ID. If we cannot
1899 identify the start address (due to missing symbol information),
1900 fall back to just using the current PC. */
c1ee9414 1901 pc = get_frame_pc (this_frame);
2c404490 1902 func = get_frame_func (this_frame);
0e9e9abd
UW
1903 if (!func)
1904 func = pc;
1905
eb5492fa 1906 id = frame_id_build (cache->prev_sp, func);
eb5492fa 1907 *this_id = id;
c906108c
SS
1908}
1909
a262aec2
DJ
1910static struct value *
1911arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 1912 void **this_cache,
a262aec2 1913 int prev_regnum)
24de872b 1914{
24568a2c 1915 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
1916 struct arm_prologue_cache *cache;
1917
eb5492fa 1918 if (*this_cache == NULL)
a262aec2 1919 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1920 cache = (struct arm_prologue_cache *) *this_cache;
24de872b 1921
eb5492fa 1922 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
1923 instead. The prologue may save PC, but it will point into this
1924 frame's prologue, not the next frame's resume location. Also
1925 strip the saved T bit. A valid LR may have the low bit set, but
1926 a valid PC never does. */
eb5492fa 1927 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
1928 {
1929 CORE_ADDR lr;
1930
1931 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1932 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 1933 arm_addr_bits_remove (gdbarch, lr));
b39cc962 1934 }
24de872b 1935
eb5492fa 1936 /* SP is generally not saved to the stack, but this frame is
a262aec2 1937 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
1938 The value was already reconstructed into PREV_SP. */
1939 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 1940 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 1941
b39cc962
DJ
1942 /* The CPSR may have been changed by the call instruction and by the
1943 called function. The only bit we can reconstruct is the T bit,
1944 by checking the low bit of LR as of the call. This is a reliable
1945 indicator of Thumb-ness except for some ARM v4T pre-interworking
1946 Thumb code, which could get away with a clear low bit as long as
1947 the called function did not use bx. Guess that all other
1948 bits are unchanged; the condition flags are presumably lost,
1949 but the processor status is likely valid. */
1950 if (prev_regnum == ARM_PS_REGNUM)
1951 {
1952 CORE_ADDR lr, cpsr;
9779414d 1953 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
1954
1955 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1956 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1957 if (IS_THUMB_ADDR (lr))
9779414d 1958 cpsr |= t_bit;
b39cc962 1959 else
9779414d 1960 cpsr &= ~t_bit;
b39cc962
DJ
1961 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1962 }
1963
a262aec2
DJ
1964 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1965 prev_regnum);
eb5492fa
DJ
1966}
1967
1968struct frame_unwind arm_prologue_unwind = {
1969 NORMAL_FRAME,
c1ee9414 1970 arm_prologue_unwind_stop_reason,
eb5492fa 1971 arm_prologue_this_id,
a262aec2
DJ
1972 arm_prologue_prev_register,
1973 NULL,
1974 default_frame_sniffer
eb5492fa
DJ
1975};
1976
0e9e9abd
UW
1977/* Maintain a list of ARM exception table entries per objfile, similar to the
1978 list of mapping symbols. We only cache entries for standard ARM-defined
1979 personality routines; the cache will contain only the frame unwinding
1980 instructions associated with the entry (not the descriptors). */
1981
1982static const struct objfile_data *arm_exidx_data_key;
1983
1984struct arm_exidx_entry
1985{
1986 bfd_vma addr;
1987 gdb_byte *entry;
1988};
1989typedef struct arm_exidx_entry arm_exidx_entry_s;
1990DEF_VEC_O(arm_exidx_entry_s);
1991
1992struct arm_exidx_data
1993{
1994 VEC(arm_exidx_entry_s) **section_maps;
1995};
1996
1997static void
1998arm_exidx_data_free (struct objfile *objfile, void *arg)
1999{
9a3c8263 2000 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
0e9e9abd
UW
2001 unsigned int i;
2002
2003 for (i = 0; i < objfile->obfd->section_count; i++)
2004 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2005}
2006
2007static inline int
2008arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2009 const struct arm_exidx_entry *rhs)
2010{
2011 return lhs->addr < rhs->addr;
2012}
2013
2014static struct obj_section *
2015arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2016{
2017 struct obj_section *osect;
2018
2019 ALL_OBJFILE_OSECTIONS (objfile, osect)
2020 if (bfd_get_section_flags (objfile->obfd,
2021 osect->the_bfd_section) & SEC_ALLOC)
2022 {
2023 bfd_vma start, size;
2024 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2025 size = bfd_get_section_size (osect->the_bfd_section);
2026
2027 if (start <= vma && vma < start + size)
2028 return osect;
2029 }
2030
2031 return NULL;
2032}
2033
2034/* Parse contents of exception table and exception index sections
2035 of OBJFILE, and fill in the exception table entry cache.
2036
2037 For each entry that refers to a standard ARM-defined personality
2038 routine, extract the frame unwinding instructions (from either
2039 the index or the table section). The unwinding instructions
2040 are normalized by:
2041 - extracting them from the rest of the table data
2042 - converting to host endianness
2043 - appending the implicit 0xb0 ("Finish") code
2044
2045 The extracted and normalized instructions are stored for later
2046 retrieval by the arm_find_exidx_entry routine. */
2047
2048static void
2049arm_exidx_new_objfile (struct objfile *objfile)
2050{
3bb47e8b 2051 struct cleanup *cleanups;
0e9e9abd
UW
2052 struct arm_exidx_data *data;
2053 asection *exidx, *extab;
2054 bfd_vma exidx_vma = 0, extab_vma = 0;
2055 bfd_size_type exidx_size = 0, extab_size = 0;
2056 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2057 LONGEST i;
2058
2059 /* If we've already touched this file, do nothing. */
2060 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2061 return;
3bb47e8b 2062 cleanups = make_cleanup (null_cleanup, NULL);
0e9e9abd
UW
2063
2064 /* Read contents of exception table and index. */
a5eda10c 2065 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
0e9e9abd
UW
2066 if (exidx)
2067 {
2068 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2069 exidx_size = bfd_get_section_size (exidx);
224c3ddb 2070 exidx_data = (gdb_byte *) xmalloc (exidx_size);
0e9e9abd
UW
2071 make_cleanup (xfree, exidx_data);
2072
2073 if (!bfd_get_section_contents (objfile->obfd, exidx,
2074 exidx_data, 0, exidx_size))
2075 {
2076 do_cleanups (cleanups);
2077 return;
2078 }
2079 }
2080
2081 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2082 if (extab)
2083 {
2084 extab_vma = bfd_section_vma (objfile->obfd, extab);
2085 extab_size = bfd_get_section_size (extab);
224c3ddb 2086 extab_data = (gdb_byte *) xmalloc (extab_size);
0e9e9abd
UW
2087 make_cleanup (xfree, extab_data);
2088
2089 if (!bfd_get_section_contents (objfile->obfd, extab,
2090 extab_data, 0, extab_size))
2091 {
2092 do_cleanups (cleanups);
2093 return;
2094 }
2095 }
2096
2097 /* Allocate exception table data structure. */
2098 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2099 set_objfile_data (objfile, arm_exidx_data_key, data);
2100 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2101 objfile->obfd->section_count,
2102 VEC(arm_exidx_entry_s) *);
2103
2104 /* Fill in exception table. */
2105 for (i = 0; i < exidx_size / 8; i++)
2106 {
2107 struct arm_exidx_entry new_exidx_entry;
2108 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2109 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2110 bfd_vma addr = 0, word = 0;
2111 int n_bytes = 0, n_words = 0;
2112 struct obj_section *sec;
2113 gdb_byte *entry = NULL;
2114
2115 /* Extract address of start of function. */
2116 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2117 idx += exidx_vma + i * 8;
2118
2119 /* Find section containing function and compute section offset. */
2120 sec = arm_obj_section_from_vma (objfile, idx);
2121 if (sec == NULL)
2122 continue;
2123 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2124
2125 /* Determine address of exception table entry. */
2126 if (val == 1)
2127 {
2128 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2129 }
2130 else if ((val & 0xff000000) == 0x80000000)
2131 {
2132 /* Exception table entry embedded in .ARM.exidx
2133 -- must be short form. */
2134 word = val;
2135 n_bytes = 3;
2136 }
2137 else if (!(val & 0x80000000))
2138 {
2139 /* Exception table entry in .ARM.extab. */
2140 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2141 addr += exidx_vma + i * 8 + 4;
2142
2143 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2144 {
2145 word = bfd_h_get_32 (objfile->obfd,
2146 extab_data + addr - extab_vma);
2147 addr += 4;
2148
2149 if ((word & 0xff000000) == 0x80000000)
2150 {
2151 /* Short form. */
2152 n_bytes = 3;
2153 }
2154 else if ((word & 0xff000000) == 0x81000000
2155 || (word & 0xff000000) == 0x82000000)
2156 {
2157 /* Long form. */
2158 n_bytes = 2;
2159 n_words = ((word >> 16) & 0xff);
2160 }
2161 else if (!(word & 0x80000000))
2162 {
2163 bfd_vma pers;
2164 struct obj_section *pers_sec;
2165 int gnu_personality = 0;
2166
2167 /* Custom personality routine. */
2168 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2169 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2170
2171 /* Check whether we've got one of the variants of the
2172 GNU personality routines. */
2173 pers_sec = arm_obj_section_from_vma (objfile, pers);
2174 if (pers_sec)
2175 {
2176 static const char *personality[] =
2177 {
2178 "__gcc_personality_v0",
2179 "__gxx_personality_v0",
2180 "__gcj_personality_v0",
2181 "__gnu_objc_personality_v0",
2182 NULL
2183 };
2184
2185 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2186 int k;
2187
2188 for (k = 0; personality[k]; k++)
2189 if (lookup_minimal_symbol_by_pc_name
2190 (pc, personality[k], objfile))
2191 {
2192 gnu_personality = 1;
2193 break;
2194 }
2195 }
2196
2197 /* If so, the next word contains a word count in the high
2198 byte, followed by the same unwind instructions as the
2199 pre-defined forms. */
2200 if (gnu_personality
2201 && addr + 4 <= extab_vma + extab_size)
2202 {
2203 word = bfd_h_get_32 (objfile->obfd,
2204 extab_data + addr - extab_vma);
2205 addr += 4;
2206 n_bytes = 3;
2207 n_words = ((word >> 24) & 0xff);
2208 }
2209 }
2210 }
2211 }
2212
2213 /* Sanity check address. */
2214 if (n_words)
2215 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2216 n_words = n_bytes = 0;
2217
2218 /* The unwind instructions reside in WORD (only the N_BYTES least
2219 significant bytes are valid), followed by N_WORDS words in the
2220 extab section starting at ADDR. */
2221 if (n_bytes || n_words)
2222 {
224c3ddb
SM
2223 gdb_byte *p = entry
2224 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2225 n_bytes + n_words * 4 + 1);
0e9e9abd
UW
2226
2227 while (n_bytes--)
2228 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2229
2230 while (n_words--)
2231 {
2232 word = bfd_h_get_32 (objfile->obfd,
2233 extab_data + addr - extab_vma);
2234 addr += 4;
2235
2236 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2237 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2238 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2239 *p++ = (gdb_byte) (word & 0xff);
2240 }
2241
2242 /* Implied "Finish" to terminate the list. */
2243 *p++ = 0xb0;
2244 }
2245
2246 /* Push entry onto vector. They are guaranteed to always
2247 appear in order of increasing addresses. */
2248 new_exidx_entry.addr = idx;
2249 new_exidx_entry.entry = entry;
2250 VEC_safe_push (arm_exidx_entry_s,
2251 data->section_maps[sec->the_bfd_section->index],
2252 &new_exidx_entry);
2253 }
2254
2255 do_cleanups (cleanups);
2256}
2257
2258/* Search for the exception table entry covering MEMADDR. If one is found,
2259 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2260 set *START to the start of the region covered by this entry. */
2261
2262static gdb_byte *
2263arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2264{
2265 struct obj_section *sec;
2266
2267 sec = find_pc_section (memaddr);
2268 if (sec != NULL)
2269 {
2270 struct arm_exidx_data *data;
2271 VEC(arm_exidx_entry_s) *map;
2272 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2273 unsigned int idx;
2274
9a3c8263
SM
2275 data = ((struct arm_exidx_data *)
2276 objfile_data (sec->objfile, arm_exidx_data_key));
0e9e9abd
UW
2277 if (data != NULL)
2278 {
2279 map = data->section_maps[sec->the_bfd_section->index];
2280 if (!VEC_empty (arm_exidx_entry_s, map))
2281 {
2282 struct arm_exidx_entry *map_sym;
2283
2284 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2285 arm_compare_exidx_entries);
2286
2287 /* VEC_lower_bound finds the earliest ordered insertion
2288 point. If the following symbol starts at this exact
2289 address, we use that; otherwise, the preceding
2290 exception table entry covers this address. */
2291 if (idx < VEC_length (arm_exidx_entry_s, map))
2292 {
2293 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2294 if (map_sym->addr == map_key.addr)
2295 {
2296 if (start)
2297 *start = map_sym->addr + obj_section_addr (sec);
2298 return map_sym->entry;
2299 }
2300 }
2301
2302 if (idx > 0)
2303 {
2304 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2305 if (start)
2306 *start = map_sym->addr + obj_section_addr (sec);
2307 return map_sym->entry;
2308 }
2309 }
2310 }
2311 }
2312
2313 return NULL;
2314}
2315
2316/* Given the current frame THIS_FRAME, and its associated frame unwinding
2317 instruction list from the ARM exception table entry ENTRY, allocate and
2318 return a prologue cache structure describing how to unwind this frame.
2319
2320 Return NULL if the unwinding instruction list contains a "spare",
2321 "reserved" or "refuse to unwind" instruction as defined in section
2322 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2323 for the ARM Architecture" document. */
2324
2325static struct arm_prologue_cache *
2326arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2327{
2328 CORE_ADDR vsp = 0;
2329 int vsp_valid = 0;
2330
2331 struct arm_prologue_cache *cache;
2332 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2333 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2334
2335 for (;;)
2336 {
2337 gdb_byte insn;
2338
2339 /* Whenever we reload SP, we actually have to retrieve its
2340 actual value in the current frame. */
2341 if (!vsp_valid)
2342 {
2343 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2344 {
2345 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2346 vsp = get_frame_register_unsigned (this_frame, reg);
2347 }
2348 else
2349 {
2350 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2351 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2352 }
2353
2354 vsp_valid = 1;
2355 }
2356
2357 /* Decode next unwind instruction. */
2358 insn = *entry++;
2359
2360 if ((insn & 0xc0) == 0)
2361 {
2362 int offset = insn & 0x3f;
2363 vsp += (offset << 2) + 4;
2364 }
2365 else if ((insn & 0xc0) == 0x40)
2366 {
2367 int offset = insn & 0x3f;
2368 vsp -= (offset << 2) + 4;
2369 }
2370 else if ((insn & 0xf0) == 0x80)
2371 {
2372 int mask = ((insn & 0xf) << 8) | *entry++;
2373 int i;
2374
2375 /* The special case of an all-zero mask identifies
2376 "Refuse to unwind". We return NULL to fall back
2377 to the prologue analyzer. */
2378 if (mask == 0)
2379 return NULL;
2380
2381 /* Pop registers r4..r15 under mask. */
2382 for (i = 0; i < 12; i++)
2383 if (mask & (1 << i))
2384 {
2385 cache->saved_regs[4 + i].addr = vsp;
2386 vsp += 4;
2387 }
2388
2389 /* Special-case popping SP -- we need to reload vsp. */
2390 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2391 vsp_valid = 0;
2392 }
2393 else if ((insn & 0xf0) == 0x90)
2394 {
2395 int reg = insn & 0xf;
2396
2397 /* Reserved cases. */
2398 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2399 return NULL;
2400
2401 /* Set SP from another register and mark VSP for reload. */
2402 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2403 vsp_valid = 0;
2404 }
2405 else if ((insn & 0xf0) == 0xa0)
2406 {
2407 int count = insn & 0x7;
2408 int pop_lr = (insn & 0x8) != 0;
2409 int i;
2410
2411 /* Pop r4..r[4+count]. */
2412 for (i = 0; i <= count; i++)
2413 {
2414 cache->saved_regs[4 + i].addr = vsp;
2415 vsp += 4;
2416 }
2417
2418 /* If indicated by flag, pop LR as well. */
2419 if (pop_lr)
2420 {
2421 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2422 vsp += 4;
2423 }
2424 }
2425 else if (insn == 0xb0)
2426 {
2427 /* We could only have updated PC by popping into it; if so, it
2428 will show up as address. Otherwise, copy LR into PC. */
2429 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2430 cache->saved_regs[ARM_PC_REGNUM]
2431 = cache->saved_regs[ARM_LR_REGNUM];
2432
2433 /* We're done. */
2434 break;
2435 }
2436 else if (insn == 0xb1)
2437 {
2438 int mask = *entry++;
2439 int i;
2440
2441 /* All-zero mask and mask >= 16 is "spare". */
2442 if (mask == 0 || mask >= 16)
2443 return NULL;
2444
2445 /* Pop r0..r3 under mask. */
2446 for (i = 0; i < 4; i++)
2447 if (mask & (1 << i))
2448 {
2449 cache->saved_regs[i].addr = vsp;
2450 vsp += 4;
2451 }
2452 }
2453 else if (insn == 0xb2)
2454 {
2455 ULONGEST offset = 0;
2456 unsigned shift = 0;
2457
2458 do
2459 {
2460 offset |= (*entry & 0x7f) << shift;
2461 shift += 7;
2462 }
2463 while (*entry++ & 0x80);
2464
2465 vsp += 0x204 + (offset << 2);
2466 }
2467 else if (insn == 0xb3)
2468 {
2469 int start = *entry >> 4;
2470 int count = (*entry++) & 0xf;
2471 int i;
2472
2473 /* Only registers D0..D15 are valid here. */
2474 if (start + count >= 16)
2475 return NULL;
2476
2477 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2478 for (i = 0; i <= count; i++)
2479 {
2480 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2481 vsp += 8;
2482 }
2483
2484 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2485 vsp += 4;
2486 }
2487 else if ((insn & 0xf8) == 0xb8)
2488 {
2489 int count = insn & 0x7;
2490 int i;
2491
2492 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2493 for (i = 0; i <= count; i++)
2494 {
2495 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2496 vsp += 8;
2497 }
2498
2499 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2500 vsp += 4;
2501 }
2502 else if (insn == 0xc6)
2503 {
2504 int start = *entry >> 4;
2505 int count = (*entry++) & 0xf;
2506 int i;
2507
2508 /* Only registers WR0..WR15 are valid. */
2509 if (start + count >= 16)
2510 return NULL;
2511
2512 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2513 for (i = 0; i <= count; i++)
2514 {
2515 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2516 vsp += 8;
2517 }
2518 }
2519 else if (insn == 0xc7)
2520 {
2521 int mask = *entry++;
2522 int i;
2523
2524 /* All-zero mask and mask >= 16 is "spare". */
2525 if (mask == 0 || mask >= 16)
2526 return NULL;
2527
2528 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2529 for (i = 0; i < 4; i++)
2530 if (mask & (1 << i))
2531 {
2532 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2533 vsp += 4;
2534 }
2535 }
2536 else if ((insn & 0xf8) == 0xc0)
2537 {
2538 int count = insn & 0x7;
2539 int i;
2540
2541 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2542 for (i = 0; i <= count; i++)
2543 {
2544 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2545 vsp += 8;
2546 }
2547 }
2548 else if (insn == 0xc8)
2549 {
2550 int start = *entry >> 4;
2551 int count = (*entry++) & 0xf;
2552 int i;
2553
2554 /* Only registers D0..D31 are valid. */
2555 if (start + count >= 16)
2556 return NULL;
2557
2558 /* Pop VFP double-precision registers
2559 D[16+start]..D[16+start+count]. */
2560 for (i = 0; i <= count; i++)
2561 {
2562 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2563 vsp += 8;
2564 }
2565 }
2566 else if (insn == 0xc9)
2567 {
2568 int start = *entry >> 4;
2569 int count = (*entry++) & 0xf;
2570 int i;
2571
2572 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2573 for (i = 0; i <= count; i++)
2574 {
2575 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2576 vsp += 8;
2577 }
2578 }
2579 else if ((insn & 0xf8) == 0xd0)
2580 {
2581 int count = insn & 0x7;
2582 int i;
2583
2584 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2585 for (i = 0; i <= count; i++)
2586 {
2587 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2588 vsp += 8;
2589 }
2590 }
2591 else
2592 {
2593 /* Everything else is "spare". */
2594 return NULL;
2595 }
2596 }
2597
2598 /* If we restore SP from a register, assume this was the frame register.
2599 Otherwise just fall back to SP as frame register. */
2600 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2601 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2602 else
2603 cache->framereg = ARM_SP_REGNUM;
2604
2605 /* Determine offset to previous frame. */
2606 cache->framesize
2607 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2608
2609 /* We already got the previous SP. */
2610 cache->prev_sp = vsp;
2611
2612 return cache;
2613}
2614
2615/* Unwinding via ARM exception table entries. Note that the sniffer
2616 already computes a filled-in prologue cache, which is then used
2617 with the same arm_prologue_this_id and arm_prologue_prev_register
2618 routines also used for prologue-parsing based unwinding. */
2619
2620static int
2621arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2622 struct frame_info *this_frame,
2623 void **this_prologue_cache)
2624{
2625 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2626 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2627 CORE_ADDR addr_in_block, exidx_region, func_start;
2628 struct arm_prologue_cache *cache;
2629 gdb_byte *entry;
2630
2631 /* See if we have an ARM exception table entry covering this address. */
2632 addr_in_block = get_frame_address_in_block (this_frame);
2633 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2634 if (!entry)
2635 return 0;
2636
2637 /* The ARM exception table does not describe unwind information
2638 for arbitrary PC values, but is guaranteed to be correct only
2639 at call sites. We have to decide here whether we want to use
2640 ARM exception table information for this frame, or fall back
2641 to using prologue parsing. (Note that if we have DWARF CFI,
2642 this sniffer isn't even called -- CFI is always preferred.)
2643
2644 Before we make this decision, however, we check whether we
2645 actually have *symbol* information for the current frame.
2646 If not, prologue parsing would not work anyway, so we might
2647 as well use the exception table and hope for the best. */
2648 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2649 {
2650 int exc_valid = 0;
2651
2652 /* If the next frame is "normal", we are at a call site in this
2653 frame, so exception information is guaranteed to be valid. */
2654 if (get_next_frame (this_frame)
2655 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2656 exc_valid = 1;
2657
2658 /* We also assume exception information is valid if we're currently
2659 blocked in a system call. The system library is supposed to
d9311bfa
AT
2660 ensure this, so that e.g. pthread cancellation works. */
2661 if (arm_frame_is_thumb (this_frame))
0e9e9abd 2662 {
7913a64c 2663 ULONGEST insn;
416dc9c6 2664
7913a64c
YQ
2665 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2666 2, byte_order_for_code, &insn)
d9311bfa
AT
2667 && (insn & 0xff00) == 0xdf00 /* svc */)
2668 exc_valid = 1;
0e9e9abd 2669 }
d9311bfa
AT
2670 else
2671 {
7913a64c 2672 ULONGEST insn;
416dc9c6 2673
7913a64c
YQ
2674 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2675 4, byte_order_for_code, &insn)
d9311bfa
AT
2676 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2677 exc_valid = 1;
2678 }
2679
0e9e9abd
UW
2680 /* Bail out if we don't know that exception information is valid. */
2681 if (!exc_valid)
2682 return 0;
2683
2684 /* The ARM exception index does not mark the *end* of the region
2685 covered by the entry, and some functions will not have any entry.
2686 To correctly recognize the end of the covered region, the linker
2687 should have inserted dummy records with a CANTUNWIND marker.
2688
2689 Unfortunately, current versions of GNU ld do not reliably do
2690 this, and thus we may have found an incorrect entry above.
2691 As a (temporary) sanity check, we only use the entry if it
2692 lies *within* the bounds of the function. Note that this check
2693 might reject perfectly valid entries that just happen to cover
2694 multiple functions; therefore this check ought to be removed
2695 once the linker is fixed. */
2696 if (func_start > exidx_region)
2697 return 0;
2698 }
2699
2700 /* Decode the list of unwinding instructions into a prologue cache.
2701 Note that this may fail due to e.g. a "refuse to unwind" code. */
2702 cache = arm_exidx_fill_cache (this_frame, entry);
2703 if (!cache)
2704 return 0;
2705
2706 *this_prologue_cache = cache;
2707 return 1;
2708}
2709
2710struct frame_unwind arm_exidx_unwind = {
2711 NORMAL_FRAME,
8fbca658 2712 default_frame_unwind_stop_reason,
0e9e9abd
UW
2713 arm_prologue_this_id,
2714 arm_prologue_prev_register,
2715 NULL,
2716 arm_exidx_unwind_sniffer
2717};
2718
779aa56f
YQ
2719static struct arm_prologue_cache *
2720arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2721{
2722 struct arm_prologue_cache *cache;
779aa56f
YQ
2723 int reg;
2724
2725 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2726 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2727
2728 /* Still rely on the offset calculated from prologue. */
2729 arm_scan_prologue (this_frame, cache);
2730
2731 /* Since we are in epilogue, the SP has been restored. */
2732 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2733
2734 /* Calculate actual addresses of saved registers using offsets
2735 determined by arm_scan_prologue. */
2736 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2737 if (trad_frame_addr_p (cache->saved_regs, reg))
2738 cache->saved_regs[reg].addr += cache->prev_sp;
2739
2740 return cache;
2741}
2742
2743/* Implementation of function hook 'this_id' in
2744 'struct frame_uwnind' for epilogue unwinder. */
2745
2746static void
2747arm_epilogue_frame_this_id (struct frame_info *this_frame,
2748 void **this_cache,
2749 struct frame_id *this_id)
2750{
2751 struct arm_prologue_cache *cache;
2752 CORE_ADDR pc, func;
2753
2754 if (*this_cache == NULL)
2755 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2756 cache = (struct arm_prologue_cache *) *this_cache;
2757
2758 /* Use function start address as part of the frame ID. If we cannot
2759 identify the start address (due to missing symbol information),
2760 fall back to just using the current PC. */
2761 pc = get_frame_pc (this_frame);
2762 func = get_frame_func (this_frame);
fb3f3d25 2763 if (func == 0)
779aa56f
YQ
2764 func = pc;
2765
2766 (*this_id) = frame_id_build (cache->prev_sp, pc);
2767}
2768
2769/* Implementation of function hook 'prev_register' in
2770 'struct frame_uwnind' for epilogue unwinder. */
2771
2772static struct value *
2773arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2774 void **this_cache, int regnum)
2775{
779aa56f
YQ
2776 if (*this_cache == NULL)
2777 *this_cache = arm_make_epilogue_frame_cache (this_frame);
779aa56f
YQ
2778
2779 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2780}
2781
2782static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2783 CORE_ADDR pc);
2784static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2785 CORE_ADDR pc);
2786
2787/* Implementation of function hook 'sniffer' in
2788 'struct frame_uwnind' for epilogue unwinder. */
2789
2790static int
2791arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2792 struct frame_info *this_frame,
2793 void **this_prologue_cache)
2794{
2795 if (frame_relative_level (this_frame) == 0)
2796 {
2797 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2798 CORE_ADDR pc = get_frame_pc (this_frame);
2799
2800 if (arm_frame_is_thumb (this_frame))
2801 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2802 else
2803 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2804 }
2805 else
2806 return 0;
2807}
2808
2809/* Frame unwinder from epilogue. */
2810
2811static const struct frame_unwind arm_epilogue_frame_unwind =
2812{
2813 NORMAL_FRAME,
2814 default_frame_unwind_stop_reason,
2815 arm_epilogue_frame_this_id,
2816 arm_epilogue_frame_prev_register,
2817 NULL,
2818 arm_epilogue_frame_sniffer,
2819};
2820
80d8d390
YQ
2821/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2822 trampoline, return the target PC. Otherwise return 0.
2823
2824 void call0a (char c, short s, int i, long l) {}
2825
2826 int main (void)
2827 {
2828 (*pointer_to_call0a) (c, s, i, l);
2829 }
2830
2831 Instead of calling a stub library function _call_via_xx (xx is
2832 the register name), GCC may inline the trampoline in the object
2833 file as below (register r2 has the address of call0a).
2834
2835 .global main
2836 .type main, %function
2837 ...
2838 bl .L1
2839 ...
2840 .size main, .-main
2841
2842 .L1:
2843 bx r2
2844
2845 The trampoline 'bx r2' doesn't belong to main. */
2846
2847static CORE_ADDR
2848arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2849{
2850 /* The heuristics of recognizing such trampoline is that FRAME is
2851 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2852 if (arm_frame_is_thumb (frame))
2853 {
2854 gdb_byte buf[2];
2855
2856 if (target_read_memory (pc, buf, 2) == 0)
2857 {
2858 struct gdbarch *gdbarch = get_frame_arch (frame);
2859 enum bfd_endian byte_order_for_code
2860 = gdbarch_byte_order_for_code (gdbarch);
2861 uint16_t insn
2862 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2863
2864 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2865 {
2866 CORE_ADDR dest
2867 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2868
2869 /* Clear the LSB so that gdb core sets step-resume
2870 breakpoint at the right address. */
2871 return UNMAKE_THUMB_ADDR (dest);
2872 }
2873 }
2874 }
2875
2876 return 0;
2877}
2878
909cf6ea 2879static struct arm_prologue_cache *
a262aec2 2880arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2881{
909cf6ea 2882 struct arm_prologue_cache *cache;
909cf6ea 2883
35d5d4ee 2884 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2885 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2886
a262aec2 2887 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2888
2889 return cache;
2890}
2891
2892/* Our frame ID for a stub frame is the current SP and LR. */
2893
2894static void
a262aec2 2895arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2896 void **this_cache,
2897 struct frame_id *this_id)
2898{
2899 struct arm_prologue_cache *cache;
2900
2901 if (*this_cache == NULL)
a262aec2 2902 *this_cache = arm_make_stub_cache (this_frame);
9a3c8263 2903 cache = (struct arm_prologue_cache *) *this_cache;
909cf6ea 2904
a262aec2 2905 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2906}
2907
a262aec2
DJ
2908static int
2909arm_stub_unwind_sniffer (const struct frame_unwind *self,
2910 struct frame_info *this_frame,
2911 void **this_prologue_cache)
909cf6ea 2912{
93d42b30 2913 CORE_ADDR addr_in_block;
948f8e3d 2914 gdb_byte dummy[4];
18d18ac8
YQ
2915 CORE_ADDR pc, start_addr;
2916 const char *name;
909cf6ea 2917
a262aec2 2918 addr_in_block = get_frame_address_in_block (this_frame);
18d18ac8 2919 pc = get_frame_pc (this_frame);
3e5d3a5a 2920 if (in_plt_section (addr_in_block)
fc36e839
DE
2921 /* We also use the stub winder if the target memory is unreadable
2922 to avoid having the prologue unwinder trying to read it. */
18d18ac8
YQ
2923 || target_read_memory (pc, dummy, 4) != 0)
2924 return 1;
2925
2926 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2927 && arm_skip_bx_reg (this_frame, pc) != 0)
a262aec2 2928 return 1;
909cf6ea 2929
a262aec2 2930 return 0;
909cf6ea
DJ
2931}
2932
a262aec2
DJ
2933struct frame_unwind arm_stub_unwind = {
2934 NORMAL_FRAME,
8fbca658 2935 default_frame_unwind_stop_reason,
a262aec2
DJ
2936 arm_stub_this_id,
2937 arm_prologue_prev_register,
2938 NULL,
2939 arm_stub_unwind_sniffer
2940};
2941
2ae28aa9
YQ
2942/* Put here the code to store, into CACHE->saved_regs, the addresses
2943 of the saved registers of frame described by THIS_FRAME. CACHE is
2944 returned. */
2945
2946static struct arm_prologue_cache *
2947arm_m_exception_cache (struct frame_info *this_frame)
2948{
2949 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2951 struct arm_prologue_cache *cache;
2952 CORE_ADDR unwound_sp;
2953 LONGEST xpsr;
2954
2955 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2956 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2957
2958 unwound_sp = get_frame_register_unsigned (this_frame,
2959 ARM_SP_REGNUM);
2960
2961 /* The hardware saves eight 32-bit words, comprising xPSR,
2962 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2963 "B1.5.6 Exception entry behavior" in
2964 "ARMv7-M Architecture Reference Manual". */
2965 cache->saved_regs[0].addr = unwound_sp;
2966 cache->saved_regs[1].addr = unwound_sp + 4;
2967 cache->saved_regs[2].addr = unwound_sp + 8;
2968 cache->saved_regs[3].addr = unwound_sp + 12;
2969 cache->saved_regs[12].addr = unwound_sp + 16;
2970 cache->saved_regs[14].addr = unwound_sp + 20;
2971 cache->saved_regs[15].addr = unwound_sp + 24;
2972 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2973
2974 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2975 aligner between the top of the 32-byte stack frame and the
2976 previous context's stack pointer. */
2977 cache->prev_sp = unwound_sp + 32;
2978 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2979 && (xpsr & (1 << 9)) != 0)
2980 cache->prev_sp += 4;
2981
2982 return cache;
2983}
2984
2985/* Implementation of function hook 'this_id' in
2986 'struct frame_uwnind'. */
2987
2988static void
2989arm_m_exception_this_id (struct frame_info *this_frame,
2990 void **this_cache,
2991 struct frame_id *this_id)
2992{
2993 struct arm_prologue_cache *cache;
2994
2995 if (*this_cache == NULL)
2996 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 2997 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
2998
2999 /* Our frame ID for a stub frame is the current SP and LR. */
3000 *this_id = frame_id_build (cache->prev_sp,
3001 get_frame_pc (this_frame));
3002}
3003
3004/* Implementation of function hook 'prev_register' in
3005 'struct frame_uwnind'. */
3006
3007static struct value *
3008arm_m_exception_prev_register (struct frame_info *this_frame,
3009 void **this_cache,
3010 int prev_regnum)
3011{
2ae28aa9
YQ
3012 struct arm_prologue_cache *cache;
3013
3014 if (*this_cache == NULL)
3015 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3016 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3017
3018 /* The value was already reconstructed into PREV_SP. */
3019 if (prev_regnum == ARM_SP_REGNUM)
3020 return frame_unwind_got_constant (this_frame, prev_regnum,
3021 cache->prev_sp);
3022
3023 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3024 prev_regnum);
3025}
3026
3027/* Implementation of function hook 'sniffer' in
3028 'struct frame_uwnind'. */
3029
3030static int
3031arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3032 struct frame_info *this_frame,
3033 void **this_prologue_cache)
3034{
3035 CORE_ADDR this_pc = get_frame_pc (this_frame);
3036
3037 /* No need to check is_m; this sniffer is only registered for
3038 M-profile architectures. */
3039
ca90e760
FH
3040 /* Check if exception frame returns to a magic PC value. */
3041 return arm_m_addr_is_magic (this_pc);
2ae28aa9
YQ
3042}
3043
3044/* Frame unwinder for M-profile exceptions. */
3045
3046struct frame_unwind arm_m_exception_unwind =
3047{
3048 SIGTRAMP_FRAME,
3049 default_frame_unwind_stop_reason,
3050 arm_m_exception_this_id,
3051 arm_m_exception_prev_register,
3052 NULL,
3053 arm_m_exception_unwind_sniffer
3054};
3055
24de872b 3056static CORE_ADDR
a262aec2 3057arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
3058{
3059 struct arm_prologue_cache *cache;
3060
eb5492fa 3061 if (*this_cache == NULL)
a262aec2 3062 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 3063 cache = (struct arm_prologue_cache *) *this_cache;
eb5492fa 3064
4be43953 3065 return cache->prev_sp - cache->framesize;
24de872b
DJ
3066}
3067
eb5492fa
DJ
3068struct frame_base arm_normal_base = {
3069 &arm_prologue_unwind,
3070 arm_normal_frame_base,
3071 arm_normal_frame_base,
3072 arm_normal_frame_base
3073};
3074
a262aec2 3075/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
3076 dummy frame. The frame ID's base needs to match the TOS value
3077 saved by save_dummy_frame_tos() and returned from
3078 arm_push_dummy_call, and the PC needs to match the dummy frame's
3079 breakpoint. */
c906108c 3080
eb5492fa 3081static struct frame_id
a262aec2 3082arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 3083{
0963b4bd
MS
3084 return frame_id_build (get_frame_register_unsigned (this_frame,
3085 ARM_SP_REGNUM),
a262aec2 3086 get_frame_pc (this_frame));
eb5492fa 3087}
c3b4394c 3088
eb5492fa
DJ
3089/* Given THIS_FRAME, find the previous frame's resume PC (which will
3090 be used to construct the previous frame's ID, after looking up the
3091 containing function). */
c3b4394c 3092
eb5492fa
DJ
3093static CORE_ADDR
3094arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3095{
3096 CORE_ADDR pc;
3097 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 3098 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
3099}
3100
3101static CORE_ADDR
3102arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3103{
3104 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
3105}
3106
b39cc962
DJ
3107static struct value *
3108arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3109 int regnum)
3110{
24568a2c 3111 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3112 CORE_ADDR lr, cpsr;
9779414d 3113 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3114
3115 switch (regnum)
3116 {
3117 case ARM_PC_REGNUM:
3118 /* The PC is normally copied from the return column, which
3119 describes saves of LR. However, that version may have an
3120 extra bit set to indicate Thumb state. The bit is not
3121 part of the PC. */
3122 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3123 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3124 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3125
3126 case ARM_PS_REGNUM:
3127 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3128 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3129 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3130 if (IS_THUMB_ADDR (lr))
9779414d 3131 cpsr |= t_bit;
b39cc962 3132 else
9779414d 3133 cpsr &= ~t_bit;
ca38c58e 3134 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3135
3136 default:
3137 internal_error (__FILE__, __LINE__,
3138 _("Unexpected register %d"), regnum);
3139 }
3140}
3141
3142static void
3143arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3144 struct dwarf2_frame_state_reg *reg,
3145 struct frame_info *this_frame)
3146{
3147 switch (regnum)
3148 {
3149 case ARM_PC_REGNUM:
3150 case ARM_PS_REGNUM:
3151 reg->how = DWARF2_FRAME_REG_FN;
3152 reg->loc.fn = arm_dwarf2_prev_register;
3153 break;
3154 case ARM_SP_REGNUM:
3155 reg->how = DWARF2_FRAME_REG_CFA;
3156 break;
3157 }
3158}
3159
c9cf6e20 3160/* Implement the stack_frame_destroyed_p gdbarch method. */
4024ca99
UW
3161
3162static int
c9cf6e20 3163thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3164{
3165 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3166 unsigned int insn, insn2;
3167 int found_return = 0, found_stack_adjust = 0;
3168 CORE_ADDR func_start, func_end;
3169 CORE_ADDR scan_pc;
3170 gdb_byte buf[4];
3171
3172 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3173 return 0;
3174
3175 /* The epilogue is a sequence of instructions along the following lines:
3176
3177 - add stack frame size to SP or FP
3178 - [if frame pointer used] restore SP from FP
3179 - restore registers from SP [may include PC]
3180 - a return-type instruction [if PC wasn't already restored]
3181
3182 In a first pass, we scan forward from the current PC and verify the
3183 instructions we find as compatible with this sequence, ending in a
3184 return instruction.
3185
3186 However, this is not sufficient to distinguish indirect function calls
3187 within a function from indirect tail calls in the epilogue in some cases.
3188 Therefore, if we didn't already find any SP-changing instruction during
3189 forward scan, we add a backward scanning heuristic to ensure we actually
3190 are in the epilogue. */
3191
3192 scan_pc = pc;
3193 while (scan_pc < func_end && !found_return)
3194 {
3195 if (target_read_memory (scan_pc, buf, 2))
3196 break;
3197
3198 scan_pc += 2;
3199 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3200
3201 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3202 found_return = 1;
3203 else if (insn == 0x46f7) /* mov pc, lr */
3204 found_return = 1;
540314bd 3205 else if (thumb_instruction_restores_sp (insn))
4024ca99 3206 {
b7576e5c 3207 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
4024ca99
UW
3208 found_return = 1;
3209 }
db24da6d 3210 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
4024ca99
UW
3211 {
3212 if (target_read_memory (scan_pc, buf, 2))
3213 break;
3214
3215 scan_pc += 2;
3216 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3217
3218 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3219 {
4024ca99
UW
3220 if (insn2 & 0x8000) /* <registers> include PC. */
3221 found_return = 1;
3222 }
3223 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3224 && (insn2 & 0x0fff) == 0x0b04)
3225 {
4024ca99
UW
3226 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3227 found_return = 1;
3228 }
3229 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3230 && (insn2 & 0x0e00) == 0x0a00)
6b65d1b6 3231 ;
4024ca99
UW
3232 else
3233 break;
3234 }
3235 else
3236 break;
3237 }
3238
3239 if (!found_return)
3240 return 0;
3241
3242 /* Since any instruction in the epilogue sequence, with the possible
3243 exception of return itself, updates the stack pointer, we need to
3244 scan backwards for at most one instruction. Try either a 16-bit or
3245 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3246 too much about false positives. */
4024ca99 3247
6b65d1b6
YQ
3248 if (pc - 4 < func_start)
3249 return 0;
3250 if (target_read_memory (pc - 4, buf, 4))
3251 return 0;
4024ca99 3252
6b65d1b6
YQ
3253 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3254 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3255
3256 if (thumb_instruction_restores_sp (insn2))
3257 found_stack_adjust = 1;
3258 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3259 found_stack_adjust = 1;
3260 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3261 && (insn2 & 0x0fff) == 0x0b04)
3262 found_stack_adjust = 1;
3263 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3264 && (insn2 & 0x0e00) == 0x0a00)
3265 found_stack_adjust = 1;
4024ca99
UW
3266
3267 return found_stack_adjust;
3268}
3269
4024ca99 3270static int
c58b006a 3271arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3272{
3273 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3274 unsigned int insn;
f303bc3e 3275 int found_return;
4024ca99
UW
3276 CORE_ADDR func_start, func_end;
3277
4024ca99
UW
3278 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3279 return 0;
3280
3281 /* We are in the epilogue if the previous instruction was a stack
3282 adjustment and the next instruction is a possible return (bx, mov
3283 pc, or pop). We could have to scan backwards to find the stack
3284 adjustment, or forwards to find the return, but this is a decent
3285 approximation. First scan forwards. */
3286
3287 found_return = 0;
3288 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3289 if (bits (insn, 28, 31) != INST_NV)
3290 {
3291 if ((insn & 0x0ffffff0) == 0x012fff10)
3292 /* BX. */
3293 found_return = 1;
3294 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3295 /* MOV PC. */
3296 found_return = 1;
3297 else if ((insn & 0x0fff0000) == 0x08bd0000
3298 && (insn & 0x0000c000) != 0)
3299 /* POP (LDMIA), including PC or LR. */
3300 found_return = 1;
3301 }
3302
3303 if (!found_return)
3304 return 0;
3305
3306 /* Scan backwards. This is just a heuristic, so do not worry about
3307 false positives from mode changes. */
3308
3309 if (pc < func_start + 4)
3310 return 0;
3311
3312 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
f303bc3e 3313 if (arm_instruction_restores_sp (insn))
4024ca99
UW
3314 return 1;
3315
3316 return 0;
3317}
3318
c58b006a
YQ
3319/* Implement the stack_frame_destroyed_p gdbarch method. */
3320
3321static int
3322arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3323{
3324 if (arm_pc_is_thumb (gdbarch, pc))
3325 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3326 else
3327 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3328}
4024ca99 3329
2dd604e7
RE
3330/* When arguments must be pushed onto the stack, they go on in reverse
3331 order. The code below implements a FILO (stack) to do this. */
3332
3333struct stack_item
3334{
3335 int len;
3336 struct stack_item *prev;
7c543f7b 3337 gdb_byte *data;
2dd604e7
RE
3338};
3339
3340static struct stack_item *
df3b6708 3341push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
2dd604e7
RE
3342{
3343 struct stack_item *si;
8d749320 3344 si = XNEW (struct stack_item);
7c543f7b 3345 si->data = (gdb_byte *) xmalloc (len);
2dd604e7
RE
3346 si->len = len;
3347 si->prev = prev;
3348 memcpy (si->data, contents, len);
3349 return si;
3350}
3351
3352static struct stack_item *
3353pop_stack_item (struct stack_item *si)
3354{
3355 struct stack_item *dead = si;
3356 si = si->prev;
3357 xfree (dead->data);
3358 xfree (dead);
3359 return si;
3360}
3361
2af48f68
PB
3362
3363/* Return the alignment (in bytes) of the given type. */
3364
3365static int
3366arm_type_align (struct type *t)
3367{
3368 int n;
3369 int align;
3370 int falign;
3371
3372 t = check_typedef (t);
3373 switch (TYPE_CODE (t))
3374 {
3375 default:
3376 /* Should never happen. */
3377 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3378 return 4;
3379
3380 case TYPE_CODE_PTR:
3381 case TYPE_CODE_ENUM:
3382 case TYPE_CODE_INT:
3383 case TYPE_CODE_FLT:
3384 case TYPE_CODE_SET:
3385 case TYPE_CODE_RANGE:
2af48f68
PB
3386 case TYPE_CODE_REF:
3387 case TYPE_CODE_CHAR:
3388 case TYPE_CODE_BOOL:
3389 return TYPE_LENGTH (t);
3390
3391 case TYPE_CODE_ARRAY:
c4312b19
YQ
3392 if (TYPE_VECTOR (t))
3393 {
3394 /* Use the natural alignment for vector types (the same for
3395 scalar type), but the maximum alignment is 64-bit. */
3396 if (TYPE_LENGTH (t) > 8)
3397 return 8;
3398 else
3399 return TYPE_LENGTH (t);
3400 }
3401 else
3402 return arm_type_align (TYPE_TARGET_TYPE (t));
2af48f68 3403 case TYPE_CODE_COMPLEX:
2af48f68
PB
3404 return arm_type_align (TYPE_TARGET_TYPE (t));
3405
3406 case TYPE_CODE_STRUCT:
3407 case TYPE_CODE_UNION:
3408 align = 1;
3409 for (n = 0; n < TYPE_NFIELDS (t); n++)
3410 {
3411 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3412 if (falign > align)
3413 align = falign;
3414 }
3415 return align;
3416 }
3417}
3418
90445bd3
DJ
3419/* Possible base types for a candidate for passing and returning in
3420 VFP registers. */
3421
3422enum arm_vfp_cprc_base_type
3423{
3424 VFP_CPRC_UNKNOWN,
3425 VFP_CPRC_SINGLE,
3426 VFP_CPRC_DOUBLE,
3427 VFP_CPRC_VEC64,
3428 VFP_CPRC_VEC128
3429};
3430
3431/* The length of one element of base type B. */
3432
3433static unsigned
3434arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3435{
3436 switch (b)
3437 {
3438 case VFP_CPRC_SINGLE:
3439 return 4;
3440 case VFP_CPRC_DOUBLE:
3441 return 8;
3442 case VFP_CPRC_VEC64:
3443 return 8;
3444 case VFP_CPRC_VEC128:
3445 return 16;
3446 default:
3447 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3448 (int) b);
3449 }
3450}
3451
3452/* The character ('s', 'd' or 'q') for the type of VFP register used
3453 for passing base type B. */
3454
3455static int
3456arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3457{
3458 switch (b)
3459 {
3460 case VFP_CPRC_SINGLE:
3461 return 's';
3462 case VFP_CPRC_DOUBLE:
3463 return 'd';
3464 case VFP_CPRC_VEC64:
3465 return 'd';
3466 case VFP_CPRC_VEC128:
3467 return 'q';
3468 default:
3469 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3470 (int) b);
3471 }
3472}
3473
3474/* Determine whether T may be part of a candidate for passing and
3475 returning in VFP registers, ignoring the limit on the total number
3476 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3477 classification of the first valid component found; if it is not
3478 VFP_CPRC_UNKNOWN, all components must have the same classification
3479 as *BASE_TYPE. If it is found that T contains a type not permitted
3480 for passing and returning in VFP registers, a type differently
3481 classified from *BASE_TYPE, or two types differently classified
3482 from each other, return -1, otherwise return the total number of
3483 base-type elements found (possibly 0 in an empty structure or
817e0957
YQ
3484 array). Vector types are not currently supported, matching the
3485 generic AAPCS support. */
90445bd3
DJ
3486
3487static int
3488arm_vfp_cprc_sub_candidate (struct type *t,
3489 enum arm_vfp_cprc_base_type *base_type)
3490{
3491 t = check_typedef (t);
3492 switch (TYPE_CODE (t))
3493 {
3494 case TYPE_CODE_FLT:
3495 switch (TYPE_LENGTH (t))
3496 {
3497 case 4:
3498 if (*base_type == VFP_CPRC_UNKNOWN)
3499 *base_type = VFP_CPRC_SINGLE;
3500 else if (*base_type != VFP_CPRC_SINGLE)
3501 return -1;
3502 return 1;
3503
3504 case 8:
3505 if (*base_type == VFP_CPRC_UNKNOWN)
3506 *base_type = VFP_CPRC_DOUBLE;
3507 else if (*base_type != VFP_CPRC_DOUBLE)
3508 return -1;
3509 return 1;
3510
3511 default:
3512 return -1;
3513 }
3514 break;
3515
817e0957
YQ
3516 case TYPE_CODE_COMPLEX:
3517 /* Arguments of complex T where T is one of the types float or
3518 double get treated as if they are implemented as:
3519
3520 struct complexT
3521 {
3522 T real;
3523 T imag;
5f52445b
YQ
3524 };
3525
3526 */
817e0957
YQ
3527 switch (TYPE_LENGTH (t))
3528 {
3529 case 8:
3530 if (*base_type == VFP_CPRC_UNKNOWN)
3531 *base_type = VFP_CPRC_SINGLE;
3532 else if (*base_type != VFP_CPRC_SINGLE)
3533 return -1;
3534 return 2;
3535
3536 case 16:
3537 if (*base_type == VFP_CPRC_UNKNOWN)
3538 *base_type = VFP_CPRC_DOUBLE;
3539 else if (*base_type != VFP_CPRC_DOUBLE)
3540 return -1;
3541 return 2;
3542
3543 default:
3544 return -1;
3545 }
3546 break;
3547
90445bd3
DJ
3548 case TYPE_CODE_ARRAY:
3549 {
c4312b19 3550 if (TYPE_VECTOR (t))
90445bd3 3551 {
c4312b19
YQ
3552 /* A 64-bit or 128-bit containerized vector type are VFP
3553 CPRCs. */
3554 switch (TYPE_LENGTH (t))
3555 {
3556 case 8:
3557 if (*base_type == VFP_CPRC_UNKNOWN)
3558 *base_type = VFP_CPRC_VEC64;
3559 return 1;
3560 case 16:
3561 if (*base_type == VFP_CPRC_UNKNOWN)
3562 *base_type = VFP_CPRC_VEC128;
3563 return 1;
3564 default:
3565 return -1;
3566 }
3567 }
3568 else
3569 {
3570 int count;
3571 unsigned unitlen;
3572
3573 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3574 base_type);
3575 if (count == -1)
3576 return -1;
3577 if (TYPE_LENGTH (t) == 0)
3578 {
3579 gdb_assert (count == 0);
3580 return 0;
3581 }
3582 else if (count == 0)
3583 return -1;
3584 unitlen = arm_vfp_cprc_unit_length (*base_type);
3585 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3586 return TYPE_LENGTH (t) / unitlen;
90445bd3 3587 }
90445bd3
DJ
3588 }
3589 break;
3590
3591 case TYPE_CODE_STRUCT:
3592 {
3593 int count = 0;
3594 unsigned unitlen;
3595 int i;
3596 for (i = 0; i < TYPE_NFIELDS (t); i++)
3597 {
1040b979
YQ
3598 int sub_count = 0;
3599
3600 if (!field_is_static (&TYPE_FIELD (t, i)))
3601 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3602 base_type);
90445bd3
DJ
3603 if (sub_count == -1)
3604 return -1;
3605 count += sub_count;
3606 }
3607 if (TYPE_LENGTH (t) == 0)
3608 {
3609 gdb_assert (count == 0);
3610 return 0;
3611 }
3612 else if (count == 0)
3613 return -1;
3614 unitlen = arm_vfp_cprc_unit_length (*base_type);
3615 if (TYPE_LENGTH (t) != unitlen * count)
3616 return -1;
3617 return count;
3618 }
3619
3620 case TYPE_CODE_UNION:
3621 {
3622 int count = 0;
3623 unsigned unitlen;
3624 int i;
3625 for (i = 0; i < TYPE_NFIELDS (t); i++)
3626 {
3627 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3628 base_type);
3629 if (sub_count == -1)
3630 return -1;
3631 count = (count > sub_count ? count : sub_count);
3632 }
3633 if (TYPE_LENGTH (t) == 0)
3634 {
3635 gdb_assert (count == 0);
3636 return 0;
3637 }
3638 else if (count == 0)
3639 return -1;
3640 unitlen = arm_vfp_cprc_unit_length (*base_type);
3641 if (TYPE_LENGTH (t) != unitlen * count)
3642 return -1;
3643 return count;
3644 }
3645
3646 default:
3647 break;
3648 }
3649
3650 return -1;
3651}
3652
3653/* Determine whether T is a VFP co-processor register candidate (CPRC)
3654 if passed to or returned from a non-variadic function with the VFP
3655 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3656 *BASE_TYPE to the base type for T and *COUNT to the number of
3657 elements of that base type before returning. */
3658
3659static int
3660arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3661 int *count)
3662{
3663 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3664 int c = arm_vfp_cprc_sub_candidate (t, &b);
3665 if (c <= 0 || c > 4)
3666 return 0;
3667 *base_type = b;
3668 *count = c;
3669 return 1;
3670}
3671
3672/* Return 1 if the VFP ABI should be used for passing arguments to and
3673 returning values from a function of type FUNC_TYPE, 0
3674 otherwise. */
3675
3676static int
3677arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3678{
3679 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3680 /* Variadic functions always use the base ABI. Assume that functions
3681 without debug info are not variadic. */
3682 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3683 return 0;
3684 /* The VFP ABI is only supported as a variant of AAPCS. */
3685 if (tdep->arm_abi != ARM_ABI_AAPCS)
3686 return 0;
3687 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3688}
3689
3690/* We currently only support passing parameters in integer registers, which
3691 conforms with GCC's default model, and VFP argument passing following
3692 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3693 we should probably support some of them based on the selected ABI. */
3694
3695static CORE_ADDR
7d9b040b 3696arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3697 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3698 struct value **args, CORE_ADDR sp, int struct_return,
3699 CORE_ADDR struct_addr)
2dd604e7 3700{
e17a4113 3701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3702 int argnum;
3703 int argreg;
3704 int nstack;
3705 struct stack_item *si = NULL;
90445bd3
DJ
3706 int use_vfp_abi;
3707 struct type *ftype;
3708 unsigned vfp_regs_free = (1 << 16) - 1;
3709
3710 /* Determine the type of this function and whether the VFP ABI
3711 applies. */
3712 ftype = check_typedef (value_type (function));
3713 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3714 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3715 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3716
6a65450a
AC
3717 /* Set the return address. For the ARM, the return breakpoint is
3718 always at BP_ADDR. */
9779414d 3719 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3720 bp_addr |= 1;
6a65450a 3721 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3722
3723 /* Walk through the list of args and determine how large a temporary
3724 stack is required. Need to take care here as structs may be
7a9dd1b2 3725 passed on the stack, and we have to push them. */
2dd604e7
RE
3726 nstack = 0;
3727
3728 argreg = ARM_A1_REGNUM;
3729 nstack = 0;
3730
2dd604e7
RE
3731 /* The struct_return pointer occupies the first parameter
3732 passing register. */
3733 if (struct_return)
3734 {
3735 if (arm_debug)
5af949e3 3736 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3737 gdbarch_register_name (gdbarch, argreg),
5af949e3 3738 paddress (gdbarch, struct_addr));
2dd604e7
RE
3739 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3740 argreg++;
3741 }
3742
3743 for (argnum = 0; argnum < nargs; argnum++)
3744 {
3745 int len;
3746 struct type *arg_type;
3747 struct type *target_type;
3748 enum type_code typecode;
8c6363cf 3749 const bfd_byte *val;
2af48f68 3750 int align;
90445bd3
DJ
3751 enum arm_vfp_cprc_base_type vfp_base_type;
3752 int vfp_base_count;
3753 int may_use_core_reg = 1;
2dd604e7 3754
df407dfe 3755 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3756 len = TYPE_LENGTH (arg_type);
3757 target_type = TYPE_TARGET_TYPE (arg_type);
3758 typecode = TYPE_CODE (arg_type);
8c6363cf 3759 val = value_contents (args[argnum]);
2dd604e7 3760
2af48f68
PB
3761 align = arm_type_align (arg_type);
3762 /* Round alignment up to a whole number of words. */
3763 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3764 /* Different ABIs have different maximum alignments. */
3765 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3766 {
3767 /* The APCS ABI only requires word alignment. */
3768 align = INT_REGISTER_SIZE;
3769 }
3770 else
3771 {
3772 /* The AAPCS requires at most doubleword alignment. */
3773 if (align > INT_REGISTER_SIZE * 2)
3774 align = INT_REGISTER_SIZE * 2;
3775 }
3776
90445bd3
DJ
3777 if (use_vfp_abi
3778 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3779 &vfp_base_count))
3780 {
3781 int regno;
3782 int unit_length;
3783 int shift;
3784 unsigned mask;
3785
3786 /* Because this is a CPRC it cannot go in a core register or
3787 cause a core register to be skipped for alignment.
3788 Either it goes in VFP registers and the rest of this loop
3789 iteration is skipped for this argument, or it goes on the
3790 stack (and the stack alignment code is correct for this
3791 case). */
3792 may_use_core_reg = 0;
3793
3794 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3795 shift = unit_length / 4;
3796 mask = (1 << (shift * vfp_base_count)) - 1;
3797 for (regno = 0; regno < 16; regno += shift)
3798 if (((vfp_regs_free >> regno) & mask) == mask)
3799 break;
3800
3801 if (regno < 16)
3802 {
3803 int reg_char;
3804 int reg_scaled;
3805 int i;
3806
3807 vfp_regs_free &= ~(mask << regno);
3808 reg_scaled = regno / shift;
3809 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3810 for (i = 0; i < vfp_base_count; i++)
3811 {
3812 char name_buf[4];
3813 int regnum;
58d6951d
DJ
3814 if (reg_char == 'q')
3815 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3816 val + i * unit_length);
58d6951d
DJ
3817 else
3818 {
8c042590
PM
3819 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3820 reg_char, reg_scaled + i);
58d6951d
DJ
3821 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3822 strlen (name_buf));
3823 regcache_cooked_write (regcache, regnum,
3824 val + i * unit_length);
3825 }
90445bd3
DJ
3826 }
3827 continue;
3828 }
3829 else
3830 {
3831 /* This CPRC could not go in VFP registers, so all VFP
3832 registers are now marked as used. */
3833 vfp_regs_free = 0;
3834 }
3835 }
3836
2af48f68
PB
3837 /* Push stack padding for dowubleword alignment. */
3838 if (nstack & (align - 1))
3839 {
3840 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3841 nstack += INT_REGISTER_SIZE;
3842 }
3843
3844 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3845 if (may_use_core_reg
3846 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3847 && align > INT_REGISTER_SIZE
3848 && argreg & 1)
3849 argreg++;
3850
2dd604e7
RE
3851 /* If the argument is a pointer to a function, and it is a
3852 Thumb function, create a LOCAL copy of the value and set
3853 the THUMB bit in it. */
3854 if (TYPE_CODE_PTR == typecode
3855 && target_type != NULL
f96b8fa0 3856 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3857 {
e17a4113 3858 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3859 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3860 {
224c3ddb 3861 bfd_byte *copy = (bfd_byte *) alloca (len);
8c6363cf 3862 store_unsigned_integer (copy, len, byte_order,
e17a4113 3863 MAKE_THUMB_ADDR (regval));
8c6363cf 3864 val = copy;
2dd604e7
RE
3865 }
3866 }
3867
3868 /* Copy the argument to general registers or the stack in
3869 register-sized pieces. Large arguments are split between
3870 registers and stack. */
3871 while (len > 0)
3872 {
f0c9063c 3873 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
ef9bd0b8
YQ
3874 CORE_ADDR regval
3875 = extract_unsigned_integer (val, partial_len, byte_order);
2dd604e7 3876
90445bd3 3877 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3878 {
3879 /* The argument is being passed in a general purpose
3880 register. */
e17a4113 3881 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3882 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3883 if (arm_debug)
3884 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3885 argnum,
3886 gdbarch_register_name
2af46ca0 3887 (gdbarch, argreg),
f0c9063c 3888 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3889 regcache_cooked_write_unsigned (regcache, argreg, regval);
3890 argreg++;
3891 }
3892 else
3893 {
ef9bd0b8
YQ
3894 gdb_byte buf[INT_REGISTER_SIZE];
3895
3896 memset (buf, 0, sizeof (buf));
3897 store_unsigned_integer (buf, partial_len, byte_order, regval);
3898
2dd604e7
RE
3899 /* Push the arguments onto the stack. */
3900 if (arm_debug)
3901 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3902 argnum, nstack);
ef9bd0b8 3903 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
f0c9063c 3904 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3905 }
3906
3907 len -= partial_len;
3908 val += partial_len;
3909 }
3910 }
3911 /* If we have an odd number of words to push, then decrement the stack
3912 by one word now, so first stack argument will be dword aligned. */
3913 if (nstack & 4)
3914 sp -= 4;
3915
3916 while (si)
3917 {
3918 sp -= si->len;
3919 write_memory (sp, si->data, si->len);
3920 si = pop_stack_item (si);
3921 }
3922
3923 /* Finally, update teh SP register. */
3924 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3925
3926 return sp;
3927}
3928
f53f0d0b
PB
3929
3930/* Always align the frame to an 8-byte boundary. This is required on
3931 some platforms and harmless on the rest. */
3932
3933static CORE_ADDR
3934arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3935{
3936 /* Align the stack to eight bytes. */
3937 return sp & ~ (CORE_ADDR) 7;
3938}
3939
c906108c 3940static void
12b27276 3941print_fpu_flags (struct ui_file *file, int flags)
c906108c 3942{
c5aa993b 3943 if (flags & (1 << 0))
12b27276 3944 fputs_filtered ("IVO ", file);
c5aa993b 3945 if (flags & (1 << 1))
12b27276 3946 fputs_filtered ("DVZ ", file);
c5aa993b 3947 if (flags & (1 << 2))
12b27276 3948 fputs_filtered ("OFL ", file);
c5aa993b 3949 if (flags & (1 << 3))
12b27276 3950 fputs_filtered ("UFL ", file);
c5aa993b 3951 if (flags & (1 << 4))
12b27276
WN
3952 fputs_filtered ("INX ", file);
3953 fputc_filtered ('\n', file);
c906108c
SS
3954}
3955
5e74b15c
RE
3956/* Print interesting information about the floating point processor
3957 (if present) or emulator. */
34e8f22d 3958static void
d855c300 3959arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3960 struct frame_info *frame, const char *args)
c906108c 3961{
9c9acae0 3962 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3963 int type;
3964
3965 type = (status >> 24) & 127;
edefbb7c 3966 if (status & (1 << 31))
12b27276 3967 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
edefbb7c 3968 else
12b27276 3969 fprintf_filtered (file, _("Software FPU type %d\n"), type);
edefbb7c 3970 /* i18n: [floating point unit] mask */
12b27276
WN
3971 fputs_filtered (_("mask: "), file);
3972 print_fpu_flags (file, status >> 16);
edefbb7c 3973 /* i18n: [floating point unit] flags */
12b27276
WN
3974 fputs_filtered (_("flags: "), file);
3975 print_fpu_flags (file, status);
c906108c
SS
3976}
3977
27067745
UW
3978/* Construct the ARM extended floating point type. */
3979static struct type *
3980arm_ext_type (struct gdbarch *gdbarch)
3981{
3982 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3983
3984 if (!tdep->arm_ext_type)
3985 tdep->arm_ext_type
e9bb382b 3986 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3987 floatformats_arm_ext);
3988
3989 return tdep->arm_ext_type;
3990}
3991
58d6951d
DJ
3992static struct type *
3993arm_neon_double_type (struct gdbarch *gdbarch)
3994{
3995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3996
3997 if (tdep->neon_double_type == NULL)
3998 {
3999 struct type *t, *elem;
4000
4001 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4002 TYPE_CODE_UNION);
4003 elem = builtin_type (gdbarch)->builtin_uint8;
4004 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4005 elem = builtin_type (gdbarch)->builtin_uint16;
4006 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4007 elem = builtin_type (gdbarch)->builtin_uint32;
4008 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4009 elem = builtin_type (gdbarch)->builtin_uint64;
4010 append_composite_type_field (t, "u64", elem);
4011 elem = builtin_type (gdbarch)->builtin_float;
4012 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4013 elem = builtin_type (gdbarch)->builtin_double;
4014 append_composite_type_field (t, "f64", elem);
4015
4016 TYPE_VECTOR (t) = 1;
4017 TYPE_NAME (t) = "neon_d";
4018 tdep->neon_double_type = t;
4019 }
4020
4021 return tdep->neon_double_type;
4022}
4023
4024/* FIXME: The vector types are not correctly ordered on big-endian
4025 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4026 bits of d0 - regardless of what unit size is being held in d0. So
4027 the offset of the first uint8 in d0 is 7, but the offset of the
4028 first float is 4. This code works as-is for little-endian
4029 targets. */
4030
4031static struct type *
4032arm_neon_quad_type (struct gdbarch *gdbarch)
4033{
4034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4035
4036 if (tdep->neon_quad_type == NULL)
4037 {
4038 struct type *t, *elem;
4039
4040 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4041 TYPE_CODE_UNION);
4042 elem = builtin_type (gdbarch)->builtin_uint8;
4043 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4044 elem = builtin_type (gdbarch)->builtin_uint16;
4045 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4046 elem = builtin_type (gdbarch)->builtin_uint32;
4047 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4048 elem = builtin_type (gdbarch)->builtin_uint64;
4049 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4050 elem = builtin_type (gdbarch)->builtin_float;
4051 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4052 elem = builtin_type (gdbarch)->builtin_double;
4053 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4054
4055 TYPE_VECTOR (t) = 1;
4056 TYPE_NAME (t) = "neon_q";
4057 tdep->neon_quad_type = t;
4058 }
4059
4060 return tdep->neon_quad_type;
4061}
4062
34e8f22d
RE
4063/* Return the GDB type object for the "standard" data type of data in
4064 register N. */
4065
4066static struct type *
7a5ea0d4 4067arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 4068{
58d6951d
DJ
4069 int num_regs = gdbarch_num_regs (gdbarch);
4070
4071 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4072 && regnum >= num_regs && regnum < num_regs + 32)
4073 return builtin_type (gdbarch)->builtin_float;
4074
4075 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4076 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4077 return arm_neon_quad_type (gdbarch);
4078
4079 /* If the target description has register information, we are only
4080 in this function so that we can override the types of
4081 double-precision registers for NEON. */
4082 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4083 {
4084 struct type *t = tdesc_register_type (gdbarch, regnum);
4085
4086 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4087 && TYPE_CODE (t) == TYPE_CODE_FLT
4088 && gdbarch_tdep (gdbarch)->have_neon)
4089 return arm_neon_double_type (gdbarch);
4090 else
4091 return t;
4092 }
4093
34e8f22d 4094 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
4095 {
4096 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4097 return builtin_type (gdbarch)->builtin_void;
4098
4099 return arm_ext_type (gdbarch);
4100 }
e4c16157 4101 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 4102 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 4103 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 4104 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
4105 else if (regnum >= ARRAY_SIZE (arm_register_names))
4106 /* These registers are only supported on targets which supply
4107 an XML description. */
df4df182 4108 return builtin_type (gdbarch)->builtin_int0;
032758dc 4109 else
df4df182 4110 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
4111}
4112
ff6f572f
DJ
4113/* Map a DWARF register REGNUM onto the appropriate GDB register
4114 number. */
4115
4116static int
d3f73121 4117arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
4118{
4119 /* Core integer regs. */
4120 if (reg >= 0 && reg <= 15)
4121 return reg;
4122
4123 /* Legacy FPA encoding. These were once used in a way which
4124 overlapped with VFP register numbering, so their use is
4125 discouraged, but GDB doesn't support the ARM toolchain
4126 which used them for VFP. */
4127 if (reg >= 16 && reg <= 23)
4128 return ARM_F0_REGNUM + reg - 16;
4129
4130 /* New assignments for the FPA registers. */
4131 if (reg >= 96 && reg <= 103)
4132 return ARM_F0_REGNUM + reg - 96;
4133
4134 /* WMMX register assignments. */
4135 if (reg >= 104 && reg <= 111)
4136 return ARM_WCGR0_REGNUM + reg - 104;
4137
4138 if (reg >= 112 && reg <= 127)
4139 return ARM_WR0_REGNUM + reg - 112;
4140
4141 if (reg >= 192 && reg <= 199)
4142 return ARM_WC0_REGNUM + reg - 192;
4143
58d6951d
DJ
4144 /* VFP v2 registers. A double precision value is actually
4145 in d1 rather than s2, but the ABI only defines numbering
4146 for the single precision registers. This will "just work"
4147 in GDB for little endian targets (we'll read eight bytes,
4148 starting in s0 and then progressing to s1), but will be
4149 reversed on big endian targets with VFP. This won't
4150 be a problem for the new Neon quad registers; you're supposed
4151 to use DW_OP_piece for those. */
4152 if (reg >= 64 && reg <= 95)
4153 {
4154 char name_buf[4];
4155
8c042590 4156 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
58d6951d
DJ
4157 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4158 strlen (name_buf));
4159 }
4160
4161 /* VFP v3 / Neon registers. This range is also used for VFP v2
4162 registers, except that it now describes d0 instead of s0. */
4163 if (reg >= 256 && reg <= 287)
4164 {
4165 char name_buf[4];
4166
8c042590 4167 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
58d6951d
DJ
4168 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4169 strlen (name_buf));
4170 }
4171
ff6f572f
DJ
4172 return -1;
4173}
4174
26216b98
AC
4175/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4176static int
e7faf938 4177arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4178{
4179 int reg = regnum;
e7faf938 4180 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4181
ff6f572f
DJ
4182 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4183 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4184
4185 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4186 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4187
4188 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4189 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4190
26216b98
AC
4191 if (reg < NUM_GREGS)
4192 return SIM_ARM_R0_REGNUM + reg;
4193 reg -= NUM_GREGS;
4194
4195 if (reg < NUM_FREGS)
4196 return SIM_ARM_FP0_REGNUM + reg;
4197 reg -= NUM_FREGS;
4198
4199 if (reg < NUM_SREGS)
4200 return SIM_ARM_FPS_REGNUM + reg;
4201 reg -= NUM_SREGS;
4202
edefbb7c 4203 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4204}
34e8f22d 4205
a37b3cc0
AC
4206/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4207 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4208 It is thought that this is is the floating-point register format on
4209 little-endian systems. */
c906108c 4210
ed9a39eb 4211static void
b508a996 4212convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4213 void *dbl, int endianess)
c906108c 4214{
a37b3cc0 4215 DOUBLEST d;
be8626e0
MD
4216
4217 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4218 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4219 else
4220 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4221 ptr, &d);
b508a996 4222 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4223}
4224
34e8f22d 4225static void
be8626e0
MD
4226convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4227 int endianess)
c906108c 4228{
a37b3cc0 4229 DOUBLEST d;
be8626e0 4230
b508a996 4231 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4232 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4233 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4234 else
4235 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4236 &d, dbl);
c906108c 4237}
ed9a39eb 4238
d9311bfa
AT
4239/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4240 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4241 NULL if an error occurs. BUF is freed. */
c906108c 4242
d9311bfa
AT
4243static gdb_byte *
4244extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4245 int old_len, int new_len)
4246{
4247 gdb_byte *new_buf;
4248 int bytes_to_read = new_len - old_len;
c906108c 4249
d9311bfa
AT
4250 new_buf = (gdb_byte *) xmalloc (new_len);
4251 memcpy (new_buf + bytes_to_read, buf, old_len);
4252 xfree (buf);
4253 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4254 {
4255 xfree (new_buf);
4256 return NULL;
c906108c 4257 }
d9311bfa 4258 return new_buf;
c906108c
SS
4259}
4260
d9311bfa
AT
4261/* An IT block is at most the 2-byte IT instruction followed by
4262 four 4-byte instructions. The furthest back we must search to
4263 find an IT block that affects the current instruction is thus
4264 2 + 3 * 4 == 14 bytes. */
4265#define MAX_IT_BLOCK_PREFIX 14
177321bd 4266
d9311bfa
AT
4267/* Use a quick scan if there are more than this many bytes of
4268 code. */
4269#define IT_SCAN_THRESHOLD 32
177321bd 4270
d9311bfa
AT
4271/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4272 A breakpoint in an IT block may not be hit, depending on the
4273 condition flags. */
ad527d2e 4274static CORE_ADDR
d9311bfa 4275arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
c906108c 4276{
d9311bfa
AT
4277 gdb_byte *buf;
4278 char map_type;
4279 CORE_ADDR boundary, func_start;
4280 int buf_len;
4281 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4282 int i, any, last_it, last_it_count;
177321bd 4283
d9311bfa
AT
4284 /* If we are using BKPT breakpoints, none of this is necessary. */
4285 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4286 return bpaddr;
177321bd 4287
d9311bfa
AT
4288 /* ARM mode does not have this problem. */
4289 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4290 return bpaddr;
177321bd 4291
d9311bfa
AT
4292 /* We are setting a breakpoint in Thumb code that could potentially
4293 contain an IT block. The first step is to find how much Thumb
4294 code there is; we do not need to read outside of known Thumb
4295 sequences. */
4296 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4297 if (map_type == 0)
4298 /* Thumb-2 code must have mapping symbols to have a chance. */
4299 return bpaddr;
9dca5578 4300
d9311bfa 4301 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
177321bd 4302
d9311bfa
AT
4303 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4304 && func_start > boundary)
4305 boundary = func_start;
9dca5578 4306
d9311bfa
AT
4307 /* Search for a candidate IT instruction. We have to do some fancy
4308 footwork to distinguish a real IT instruction from the second
4309 half of a 32-bit instruction, but there is no need for that if
4310 there's no candidate. */
325fac50 4311 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
d9311bfa
AT
4312 if (buf_len == 0)
4313 /* No room for an IT instruction. */
4314 return bpaddr;
c906108c 4315
d9311bfa
AT
4316 buf = (gdb_byte *) xmalloc (buf_len);
4317 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4318 return bpaddr;
4319 any = 0;
4320 for (i = 0; i < buf_len; i += 2)
c906108c 4321 {
d9311bfa
AT
4322 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4323 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
25b41d01 4324 {
d9311bfa
AT
4325 any = 1;
4326 break;
25b41d01 4327 }
c906108c 4328 }
d9311bfa
AT
4329
4330 if (any == 0)
c906108c 4331 {
d9311bfa
AT
4332 xfree (buf);
4333 return bpaddr;
f9d67f43
DJ
4334 }
4335
4336 /* OK, the code bytes before this instruction contain at least one
4337 halfword which resembles an IT instruction. We know that it's
4338 Thumb code, but there are still two possibilities. Either the
4339 halfword really is an IT instruction, or it is the second half of
4340 a 32-bit Thumb instruction. The only way we can tell is to
4341 scan forwards from a known instruction boundary. */
4342 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4343 {
4344 int definite;
4345
4346 /* There's a lot of code before this instruction. Start with an
4347 optimistic search; it's easy to recognize halfwords that can
4348 not be the start of a 32-bit instruction, and use that to
4349 lock on to the instruction boundaries. */
4350 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4351 if (buf == NULL)
4352 return bpaddr;
4353 buf_len = IT_SCAN_THRESHOLD;
4354
4355 definite = 0;
4356 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4357 {
4358 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4359 if (thumb_insn_size (inst1) == 2)
4360 {
4361 definite = 1;
4362 break;
4363 }
4364 }
4365
4366 /* At this point, if DEFINITE, BUF[I] is the first place we
4367 are sure that we know the instruction boundaries, and it is far
4368 enough from BPADDR that we could not miss an IT instruction
4369 affecting BPADDR. If ! DEFINITE, give up - start from a
4370 known boundary. */
4371 if (! definite)
4372 {
0963b4bd
MS
4373 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4374 bpaddr - boundary);
f9d67f43
DJ
4375 if (buf == NULL)
4376 return bpaddr;
4377 buf_len = bpaddr - boundary;
4378 i = 0;
4379 }
4380 }
4381 else
4382 {
4383 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4384 if (buf == NULL)
4385 return bpaddr;
4386 buf_len = bpaddr - boundary;
4387 i = 0;
4388 }
4389
4390 /* Scan forwards. Find the last IT instruction before BPADDR. */
4391 last_it = -1;
4392 last_it_count = 0;
4393 while (i < buf_len)
4394 {
4395 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4396 last_it_count--;
4397 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4398 {
4399 last_it = i;
4400 if (inst1 & 0x0001)
4401 last_it_count = 4;
4402 else if (inst1 & 0x0002)
4403 last_it_count = 3;
4404 else if (inst1 & 0x0004)
4405 last_it_count = 2;
4406 else
4407 last_it_count = 1;
4408 }
4409 i += thumb_insn_size (inst1);
4410 }
4411
4412 xfree (buf);
4413
4414 if (last_it == -1)
4415 /* There wasn't really an IT instruction after all. */
4416 return bpaddr;
4417
4418 if (last_it_count < 1)
4419 /* It was too far away. */
4420 return bpaddr;
4421
4422 /* This really is a trouble spot. Move the breakpoint to the IT
4423 instruction. */
4424 return bpaddr - buf_len + last_it;
4425}
4426
cca44b1b 4427/* ARM displaced stepping support.
c906108c 4428
cca44b1b 4429 Generally ARM displaced stepping works as follows:
c906108c 4430
cca44b1b 4431 1. When an instruction is to be single-stepped, it is first decoded by
2ba163c8
SM
4432 arm_process_displaced_insn. Depending on the type of instruction, it is
4433 then copied to a scratch location, possibly in a modified form. The
4434 copy_* set of functions performs such modification, as necessary. A
4435 breakpoint is placed after the modified instruction in the scratch space
4436 to return control to GDB. Note in particular that instructions which
4437 modify the PC will no longer do so after modification.
c5aa993b 4438
cca44b1b
JB
4439 2. The instruction is single-stepped, by setting the PC to the scratch
4440 location address, and resuming. Control returns to GDB when the
4441 breakpoint is hit.
c5aa993b 4442
cca44b1b
JB
4443 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4444 function used for the current instruction. This function's job is to
4445 put the CPU/memory state back to what it would have been if the
4446 instruction had been executed unmodified in its original location. */
c5aa993b 4447
cca44b1b
JB
4448/* NOP instruction (mov r0, r0). */
4449#define ARM_NOP 0xe1a00000
34518530 4450#define THUMB_NOP 0x4600
cca44b1b
JB
4451
4452/* Helper for register reads for displaced stepping. In particular, this
4453 returns the PC as it would be seen by the instruction at its original
4454 location. */
4455
4456ULONGEST
36073a92
YQ
4457displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4458 int regno)
cca44b1b
JB
4459{
4460 ULONGEST ret;
36073a92 4461 CORE_ADDR from = dsc->insn_addr;
cca44b1b 4462
bf9f652a 4463 if (regno == ARM_PC_REGNUM)
cca44b1b 4464 {
4db71c0b
YQ
4465 /* Compute pipeline offset:
4466 - When executing an ARM instruction, PC reads as the address of the
4467 current instruction plus 8.
4468 - When executing a Thumb instruction, PC reads as the address of the
4469 current instruction plus 4. */
4470
36073a92 4471 if (!dsc->is_thumb)
4db71c0b
YQ
4472 from += 8;
4473 else
4474 from += 4;
4475
cca44b1b
JB
4476 if (debug_displaced)
4477 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
4478 (unsigned long) from);
4479 return (ULONGEST) from;
cca44b1b 4480 }
c906108c 4481 else
cca44b1b
JB
4482 {
4483 regcache_cooked_read_unsigned (regs, regno, &ret);
4484 if (debug_displaced)
4485 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4486 regno, (unsigned long) ret);
4487 return ret;
4488 }
c906108c
SS
4489}
4490
cca44b1b
JB
4491static int
4492displaced_in_arm_mode (struct regcache *regs)
4493{
4494 ULONGEST ps;
9779414d 4495 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 4496
cca44b1b 4497 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 4498
9779414d 4499 return (ps & t_bit) == 0;
cca44b1b 4500}
66e810cd 4501
cca44b1b 4502/* Write to the PC as from a branch instruction. */
c906108c 4503
cca44b1b 4504static void
36073a92
YQ
4505branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4506 ULONGEST val)
c906108c 4507{
36073a92 4508 if (!dsc->is_thumb)
cca44b1b
JB
4509 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4510 architecture versions < 6. */
0963b4bd
MS
4511 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4512 val & ~(ULONGEST) 0x3);
cca44b1b 4513 else
0963b4bd
MS
4514 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4515 val & ~(ULONGEST) 0x1);
cca44b1b 4516}
66e810cd 4517
cca44b1b
JB
4518/* Write to the PC as from a branch-exchange instruction. */
4519
4520static void
4521bx_write_pc (struct regcache *regs, ULONGEST val)
4522{
4523 ULONGEST ps;
9779414d 4524 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
4525
4526 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4527
4528 if ((val & 1) == 1)
c906108c 4529 {
9779414d 4530 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
4531 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4532 }
4533 else if ((val & 2) == 0)
4534 {
9779414d 4535 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4536 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
4537 }
4538 else
4539 {
cca44b1b
JB
4540 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4541 mode, align dest to 4 bytes). */
4542 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 4543 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4544 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
4545 }
4546}
ed9a39eb 4547
cca44b1b 4548/* Write to the PC as if from a load instruction. */
ed9a39eb 4549
34e8f22d 4550static void
36073a92
YQ
4551load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4552 ULONGEST val)
ed9a39eb 4553{
cca44b1b
JB
4554 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4555 bx_write_pc (regs, val);
4556 else
36073a92 4557 branch_write_pc (regs, dsc, val);
cca44b1b 4558}
be8626e0 4559
cca44b1b
JB
4560/* Write to the PC as if from an ALU instruction. */
4561
4562static void
36073a92
YQ
4563alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4564 ULONGEST val)
cca44b1b 4565{
36073a92 4566 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
4567 bx_write_pc (regs, val);
4568 else
36073a92 4569 branch_write_pc (regs, dsc, val);
cca44b1b
JB
4570}
4571
4572/* Helper for writing to registers for displaced stepping. Writing to the PC
4573 has a varying effects depending on the instruction which does the write:
4574 this is controlled by the WRITE_PC argument. */
4575
4576void
4577displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4578 int regno, ULONGEST val, enum pc_write_style write_pc)
4579{
bf9f652a 4580 if (regno == ARM_PC_REGNUM)
08216dd7 4581 {
cca44b1b
JB
4582 if (debug_displaced)
4583 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4584 (unsigned long) val);
4585 switch (write_pc)
08216dd7 4586 {
cca44b1b 4587 case BRANCH_WRITE_PC:
36073a92 4588 branch_write_pc (regs, dsc, val);
08216dd7
RE
4589 break;
4590
cca44b1b
JB
4591 case BX_WRITE_PC:
4592 bx_write_pc (regs, val);
4593 break;
4594
4595 case LOAD_WRITE_PC:
36073a92 4596 load_write_pc (regs, dsc, val);
cca44b1b
JB
4597 break;
4598
4599 case ALU_WRITE_PC:
36073a92 4600 alu_write_pc (regs, dsc, val);
cca44b1b
JB
4601 break;
4602
4603 case CANNOT_WRITE_PC:
4604 warning (_("Instruction wrote to PC in an unexpected way when "
4605 "single-stepping"));
08216dd7
RE
4606 break;
4607
4608 default:
97b9747c
JB
4609 internal_error (__FILE__, __LINE__,
4610 _("Invalid argument to displaced_write_reg"));
08216dd7 4611 }
b508a996 4612
cca44b1b 4613 dsc->wrote_to_pc = 1;
b508a996 4614 }
ed9a39eb 4615 else
b508a996 4616 {
cca44b1b
JB
4617 if (debug_displaced)
4618 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4619 regno, (unsigned long) val);
4620 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 4621 }
34e8f22d
RE
4622}
4623
cca44b1b
JB
4624/* This function is used to concisely determine if an instruction INSN
4625 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
4626 corresponding fields of BITMASK set to 0b1111. The function
4627 returns return 1 if any of these fields in INSN reference the PC
4628 (also 0b1111, r15), else it returns 0. */
67255d04
RE
4629
4630static int
cca44b1b 4631insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 4632{
cca44b1b 4633 uint32_t lowbit = 1;
67255d04 4634
cca44b1b
JB
4635 while (bitmask != 0)
4636 {
4637 uint32_t mask;
44e1a9eb 4638
cca44b1b
JB
4639 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4640 ;
67255d04 4641
cca44b1b
JB
4642 if (!lowbit)
4643 break;
67255d04 4644
cca44b1b 4645 mask = lowbit * 0xf;
67255d04 4646
cca44b1b
JB
4647 if ((insn & mask) == mask)
4648 return 1;
4649
4650 bitmask &= ~mask;
67255d04
RE
4651 }
4652
cca44b1b
JB
4653 return 0;
4654}
2af48f68 4655
cca44b1b
JB
4656/* The simplest copy function. Many instructions have the same effect no
4657 matter what address they are executed at: in those cases, use this. */
67255d04 4658
cca44b1b 4659static int
7ff120b4
YQ
4660arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4661 const char *iname, struct displaced_step_closure *dsc)
cca44b1b
JB
4662{
4663 if (debug_displaced)
4664 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4665 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4666 iname);
67255d04 4667
cca44b1b 4668 dsc->modinsn[0] = insn;
67255d04 4669
cca44b1b
JB
4670 return 0;
4671}
4672
34518530
YQ
4673static int
4674thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4675 uint16_t insn2, const char *iname,
4676 struct displaced_step_closure *dsc)
4677{
4678 if (debug_displaced)
4679 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4680 "opcode/class '%s' unmodified\n", insn1, insn2,
4681 iname);
4682
4683 dsc->modinsn[0] = insn1;
4684 dsc->modinsn[1] = insn2;
4685 dsc->numinsns = 2;
4686
4687 return 0;
4688}
4689
4690/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4691 modification. */
4692static int
615234c1 4693thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
4694 const char *iname,
4695 struct displaced_step_closure *dsc)
4696{
4697 if (debug_displaced)
4698 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4699 "opcode/class '%s' unmodified\n", insn,
4700 iname);
4701
4702 dsc->modinsn[0] = insn;
4703
4704 return 0;
4705}
4706
cca44b1b
JB
4707/* Preload instructions with immediate offset. */
4708
4709static void
6e39997a 4710cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
4711 struct regcache *regs, struct displaced_step_closure *dsc)
4712{
4713 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4714 if (!dsc->u.preload.immed)
4715 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4716}
4717
7ff120b4
YQ
4718static void
4719install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4720 struct displaced_step_closure *dsc, unsigned int rn)
cca44b1b 4721{
cca44b1b 4722 ULONGEST rn_val;
cca44b1b
JB
4723 /* Preload instructions:
4724
4725 {pli/pld} [rn, #+/-imm]
4726 ->
4727 {pli/pld} [r0, #+/-imm]. */
4728
36073a92
YQ
4729 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4730 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 4731 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
4732 dsc->u.preload.immed = 1;
4733
cca44b1b 4734 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
4735}
4736
cca44b1b 4737static int
7ff120b4 4738arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
cca44b1b
JB
4739 struct displaced_step_closure *dsc)
4740{
4741 unsigned int rn = bits (insn, 16, 19);
cca44b1b 4742
7ff120b4
YQ
4743 if (!insn_references_pc (insn, 0x000f0000ul))
4744 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b
JB
4745
4746 if (debug_displaced)
4747 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4748 (unsigned long) insn);
4749
7ff120b4
YQ
4750 dsc->modinsn[0] = insn & 0xfff0ffff;
4751
4752 install_preload (gdbarch, regs, dsc, rn);
4753
4754 return 0;
4755}
4756
34518530
YQ
4757static int
4758thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4759 struct regcache *regs, struct displaced_step_closure *dsc)
4760{
4761 unsigned int rn = bits (insn1, 0, 3);
4762 unsigned int u_bit = bit (insn1, 7);
4763 int imm12 = bits (insn2, 0, 11);
4764 ULONGEST pc_val;
4765
4766 if (rn != ARM_PC_REGNUM)
4767 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4768
4769 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4770 PLD (literal) Encoding T1. */
4771 if (debug_displaced)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4774 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4775 imm12);
4776
4777 if (!u_bit)
4778 imm12 = -1 * imm12;
4779
4780 /* Rewrite instruction {pli/pld} PC imm12 into:
4781 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4782
4783 {pli/pld} [r0, r1]
4784
4785 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4786
4787 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4788 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4789
4790 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4791
4792 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4793 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4794 dsc->u.preload.immed = 0;
4795
4796 /* {pli/pld} [r0, r1] */
4797 dsc->modinsn[0] = insn1 & 0xfff0;
4798 dsc->modinsn[1] = 0xf001;
4799 dsc->numinsns = 2;
4800
4801 dsc->cleanup = &cleanup_preload;
4802 return 0;
4803}
4804
7ff120b4
YQ
4805/* Preload instructions with register offset. */
4806
4807static void
4808install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4809 struct displaced_step_closure *dsc, unsigned int rn,
4810 unsigned int rm)
4811{
4812 ULONGEST rn_val, rm_val;
4813
cca44b1b
JB
4814 /* Preload register-offset instructions:
4815
4816 {pli/pld} [rn, rm {, shift}]
4817 ->
4818 {pli/pld} [r0, r1 {, shift}]. */
4819
36073a92
YQ
4820 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4821 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4822 rn_val = displaced_read_reg (regs, dsc, rn);
4823 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
4824 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4825 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
4826 dsc->u.preload.immed = 0;
4827
cca44b1b 4828 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
4829}
4830
4831static int
4832arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4833 struct regcache *regs,
4834 struct displaced_step_closure *dsc)
4835{
4836 unsigned int rn = bits (insn, 16, 19);
4837 unsigned int rm = bits (insn, 0, 3);
4838
4839
4840 if (!insn_references_pc (insn, 0x000f000ful))
4841 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4842
4843 if (debug_displaced)
4844 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4845 (unsigned long) insn);
4846
4847 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 4848
7ff120b4 4849 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
4850 return 0;
4851}
4852
4853/* Copy/cleanup coprocessor load and store instructions. */
4854
4855static void
6e39997a 4856cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
4857 struct regcache *regs,
4858 struct displaced_step_closure *dsc)
4859{
36073a92 4860 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
4861
4862 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4863
4864 if (dsc->u.ldst.writeback)
4865 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4866}
4867
7ff120b4
YQ
4868static void
4869install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4870 struct displaced_step_closure *dsc,
4871 int writeback, unsigned int rn)
cca44b1b 4872{
cca44b1b 4873 ULONGEST rn_val;
cca44b1b 4874
cca44b1b
JB
4875 /* Coprocessor load/store instructions:
4876
4877 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4878 ->
4879 {stc/stc2} [r0, #+/-imm].
4880
4881 ldc/ldc2 are handled identically. */
4882
36073a92
YQ
4883 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4884 rn_val = displaced_read_reg (regs, dsc, rn);
2b16b2e3
YQ
4885 /* PC should be 4-byte aligned. */
4886 rn_val = rn_val & 0xfffffffc;
cca44b1b
JB
4887 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4888
7ff120b4 4889 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
4890 dsc->u.ldst.rn = rn;
4891
7ff120b4
YQ
4892 dsc->cleanup = &cleanup_copro_load_store;
4893}
4894
4895static int
4896arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4897 struct regcache *regs,
4898 struct displaced_step_closure *dsc)
4899{
4900 unsigned int rn = bits (insn, 16, 19);
4901
4902 if (!insn_references_pc (insn, 0x000f0000ul))
4903 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4904
4905 if (debug_displaced)
4906 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4907 "load/store insn %.8lx\n", (unsigned long) insn);
4908
cca44b1b
JB
4909 dsc->modinsn[0] = insn & 0xfff0ffff;
4910
7ff120b4 4911 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
4912
4913 return 0;
4914}
4915
34518530
YQ
4916static int
4917thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4918 uint16_t insn2, struct regcache *regs,
4919 struct displaced_step_closure *dsc)
4920{
4921 unsigned int rn = bits (insn1, 0, 3);
4922
4923 if (rn != ARM_PC_REGNUM)
4924 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4925 "copro load/store", dsc);
4926
4927 if (debug_displaced)
4928 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4929 "load/store insn %.4x%.4x\n", insn1, insn2);
4930
4931 dsc->modinsn[0] = insn1 & 0xfff0;
4932 dsc->modinsn[1] = insn2;
4933 dsc->numinsns = 2;
4934
4935 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4936 doesn't support writeback, so pass 0. */
4937 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4938
4939 return 0;
4940}
4941
cca44b1b
JB
4942/* Clean up branch instructions (actually perform the branch, by setting
4943 PC). */
4944
4945static void
6e39997a 4946cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
4947 struct displaced_step_closure *dsc)
4948{
36073a92 4949 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
4950 int branch_taken = condition_true (dsc->u.branch.cond, status);
4951 enum pc_write_style write_pc = dsc->u.branch.exchange
4952 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4953
4954 if (!branch_taken)
4955 return;
4956
4957 if (dsc->u.branch.link)
4958 {
8c8dba6d
YQ
4959 /* The value of LR should be the next insn of current one. In order
4960 not to confuse logic hanlding later insn `bx lr', if current insn mode
4961 is Thumb, the bit 0 of LR value should be set to 1. */
4962 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4963
4964 if (dsc->is_thumb)
4965 next_insn_addr |= 0x1;
4966
4967 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4968 CANNOT_WRITE_PC);
cca44b1b
JB
4969 }
4970
bf9f652a 4971 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
4972}
4973
4974/* Copy B/BL/BLX instructions with immediate destinations. */
4975
7ff120b4
YQ
4976static void
4977install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4978 struct displaced_step_closure *dsc,
4979 unsigned int cond, int exchange, int link, long offset)
4980{
4981 /* Implement "BL<cond> <label>" as:
4982
4983 Preparation: cond <- instruction condition
4984 Insn: mov r0, r0 (nop)
4985 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4986
4987 B<cond> similar, but don't set r14 in cleanup. */
4988
4989 dsc->u.branch.cond = cond;
4990 dsc->u.branch.link = link;
4991 dsc->u.branch.exchange = exchange;
4992
2b16b2e3
YQ
4993 dsc->u.branch.dest = dsc->insn_addr;
4994 if (link && exchange)
4995 /* For BLX, offset is computed from the Align (PC, 4). */
4996 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
4997
7ff120b4 4998 if (dsc->is_thumb)
2b16b2e3 4999 dsc->u.branch.dest += 4 + offset;
7ff120b4 5000 else
2b16b2e3 5001 dsc->u.branch.dest += 8 + offset;
7ff120b4
YQ
5002
5003 dsc->cleanup = &cleanup_branch;
5004}
cca44b1b 5005static int
7ff120b4
YQ
5006arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5007 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5008{
5009 unsigned int cond = bits (insn, 28, 31);
5010 int exchange = (cond == 0xf);
5011 int link = exchange || bit (insn, 24);
cca44b1b
JB
5012 long offset;
5013
5014 if (debug_displaced)
5015 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5016 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5017 (unsigned long) insn);
cca44b1b
JB
5018 if (exchange)
5019 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5020 then arrange the switch into Thumb mode. */
5021 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5022 else
5023 offset = bits (insn, 0, 23) << 2;
5024
5025 if (bit (offset, 25))
5026 offset = offset | ~0x3ffffff;
5027
cca44b1b
JB
5028 dsc->modinsn[0] = ARM_NOP;
5029
7ff120b4 5030 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
5031 return 0;
5032}
5033
34518530
YQ
5034static int
5035thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5036 uint16_t insn2, struct regcache *regs,
5037 struct displaced_step_closure *dsc)
5038{
5039 int link = bit (insn2, 14);
5040 int exchange = link && !bit (insn2, 12);
5041 int cond = INST_AL;
5042 long offset = 0;
5043 int j1 = bit (insn2, 13);
5044 int j2 = bit (insn2, 11);
5045 int s = sbits (insn1, 10, 10);
5046 int i1 = !(j1 ^ bit (insn1, 10));
5047 int i2 = !(j2 ^ bit (insn1, 10));
5048
5049 if (!link && !exchange) /* B */
5050 {
5051 offset = (bits (insn2, 0, 10) << 1);
5052 if (bit (insn2, 12)) /* Encoding T4 */
5053 {
5054 offset |= (bits (insn1, 0, 9) << 12)
5055 | (i2 << 22)
5056 | (i1 << 23)
5057 | (s << 24);
5058 cond = INST_AL;
5059 }
5060 else /* Encoding T3 */
5061 {
5062 offset |= (bits (insn1, 0, 5) << 12)
5063 | (j1 << 18)
5064 | (j2 << 19)
5065 | (s << 20);
5066 cond = bits (insn1, 6, 9);
5067 }
5068 }
5069 else
5070 {
5071 offset = (bits (insn1, 0, 9) << 12);
5072 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5073 offset |= exchange ?
5074 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5075 }
5076
5077 if (debug_displaced)
5078 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5079 "%.4x %.4x with offset %.8lx\n",
5080 link ? (exchange) ? "blx" : "bl" : "b",
5081 insn1, insn2, offset);
5082
5083 dsc->modinsn[0] = THUMB_NOP;
5084
5085 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5086 return 0;
5087}
5088
5089/* Copy B Thumb instructions. */
5090static int
615234c1 5091thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
5092 struct displaced_step_closure *dsc)
5093{
5094 unsigned int cond = 0;
5095 int offset = 0;
5096 unsigned short bit_12_15 = bits (insn, 12, 15);
5097 CORE_ADDR from = dsc->insn_addr;
5098
5099 if (bit_12_15 == 0xd)
5100 {
5101 /* offset = SignExtend (imm8:0, 32) */
5102 offset = sbits ((insn << 1), 0, 8);
5103 cond = bits (insn, 8, 11);
5104 }
5105 else if (bit_12_15 == 0xe) /* Encoding T2 */
5106 {
5107 offset = sbits ((insn << 1), 0, 11);
5108 cond = INST_AL;
5109 }
5110
5111 if (debug_displaced)
5112 fprintf_unfiltered (gdb_stdlog,
5113 "displaced: copying b immediate insn %.4x "
5114 "with offset %d\n", insn, offset);
5115
5116 dsc->u.branch.cond = cond;
5117 dsc->u.branch.link = 0;
5118 dsc->u.branch.exchange = 0;
5119 dsc->u.branch.dest = from + 4 + offset;
5120
5121 dsc->modinsn[0] = THUMB_NOP;
5122
5123 dsc->cleanup = &cleanup_branch;
5124
5125 return 0;
5126}
5127
cca44b1b
JB
5128/* Copy BX/BLX with register-specified destinations. */
5129
7ff120b4
YQ
5130static void
5131install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5132 struct displaced_step_closure *dsc, int link,
5133 unsigned int cond, unsigned int rm)
cca44b1b 5134{
cca44b1b
JB
5135 /* Implement {BX,BLX}<cond> <reg>" as:
5136
5137 Preparation: cond <- instruction condition
5138 Insn: mov r0, r0 (nop)
5139 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5140
5141 Don't set r14 in cleanup for BX. */
5142
36073a92 5143 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5144
5145 dsc->u.branch.cond = cond;
5146 dsc->u.branch.link = link;
cca44b1b 5147
7ff120b4 5148 dsc->u.branch.exchange = 1;
cca44b1b
JB
5149
5150 dsc->cleanup = &cleanup_branch;
7ff120b4 5151}
cca44b1b 5152
7ff120b4
YQ
5153static int
5154arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5155 struct regcache *regs, struct displaced_step_closure *dsc)
5156{
5157 unsigned int cond = bits (insn, 28, 31);
5158 /* BX: x12xxx1x
5159 BLX: x12xxx3x. */
5160 int link = bit (insn, 5);
5161 unsigned int rm = bits (insn, 0, 3);
5162
5163 if (debug_displaced)
5164 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5165 (unsigned long) insn);
5166
5167 dsc->modinsn[0] = ARM_NOP;
5168
5169 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
5170 return 0;
5171}
5172
34518530
YQ
5173static int
5174thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5175 struct regcache *regs,
5176 struct displaced_step_closure *dsc)
5177{
5178 int link = bit (insn, 7);
5179 unsigned int rm = bits (insn, 3, 6);
5180
5181 if (debug_displaced)
5182 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5183 (unsigned short) insn);
5184
5185 dsc->modinsn[0] = THUMB_NOP;
5186
5187 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5188
5189 return 0;
5190}
5191
5192
0963b4bd 5193/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5194
5195static void
6e39997a 5196cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5197 struct regcache *regs, struct displaced_step_closure *dsc)
5198{
36073a92 5199 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5200 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5201 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5202 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5203}
5204
5205static int
7ff120b4
YQ
5206arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5207 struct displaced_step_closure *dsc)
cca44b1b
JB
5208{
5209 unsigned int rn = bits (insn, 16, 19);
5210 unsigned int rd = bits (insn, 12, 15);
5211 unsigned int op = bits (insn, 21, 24);
5212 int is_mov = (op == 0xd);
5213 ULONGEST rd_val, rn_val;
cca44b1b
JB
5214
5215 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 5216 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b
JB
5217
5218 if (debug_displaced)
5219 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5220 "%.8lx\n", is_mov ? "move" : "ALU",
5221 (unsigned long) insn);
5222
5223 /* Instruction is of form:
5224
5225 <op><cond> rd, [rn,] #imm
5226
5227 Rewrite as:
5228
5229 Preparation: tmp1, tmp2 <- r0, r1;
5230 r0, r1 <- rd, rn
5231 Insn: <op><cond> r0, r1, #imm
5232 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5233 */
5234
36073a92
YQ
5235 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5236 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5237 rn_val = displaced_read_reg (regs, dsc, rn);
5238 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
5239 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5240 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5241 dsc->rd = rd;
5242
5243 if (is_mov)
5244 dsc->modinsn[0] = insn & 0xfff00fff;
5245 else
5246 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5247
5248 dsc->cleanup = &cleanup_alu_imm;
5249
5250 return 0;
5251}
5252
34518530
YQ
5253static int
5254thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5255 uint16_t insn2, struct regcache *regs,
5256 struct displaced_step_closure *dsc)
5257{
5258 unsigned int op = bits (insn1, 5, 8);
5259 unsigned int rn, rm, rd;
5260 ULONGEST rd_val, rn_val;
5261
5262 rn = bits (insn1, 0, 3); /* Rn */
5263 rm = bits (insn2, 0, 3); /* Rm */
5264 rd = bits (insn2, 8, 11); /* Rd */
5265
5266 /* This routine is only called for instruction MOV. */
5267 gdb_assert (op == 0x2 && rn == 0xf);
5268
5269 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5270 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5271
5272 if (debug_displaced)
5273 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5274 "ALU", insn1, insn2);
5275
5276 /* Instruction is of form:
5277
5278 <op><cond> rd, [rn,] #imm
5279
5280 Rewrite as:
5281
5282 Preparation: tmp1, tmp2 <- r0, r1;
5283 r0, r1 <- rd, rn
5284 Insn: <op><cond> r0, r1, #imm
5285 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5286 */
5287
5288 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5289 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5290 rn_val = displaced_read_reg (regs, dsc, rn);
5291 rd_val = displaced_read_reg (regs, dsc, rd);
5292 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5293 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5294 dsc->rd = rd;
5295
5296 dsc->modinsn[0] = insn1;
5297 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5298 dsc->numinsns = 2;
5299
5300 dsc->cleanup = &cleanup_alu_imm;
5301
5302 return 0;
5303}
5304
cca44b1b
JB
5305/* Copy/cleanup arithmetic/logic insns with register RHS. */
5306
5307static void
6e39997a 5308cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5309 struct regcache *regs, struct displaced_step_closure *dsc)
5310{
5311 ULONGEST rd_val;
5312 int i;
5313
36073a92 5314 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5315
5316 for (i = 0; i < 3; i++)
5317 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5318
5319 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5320}
5321
7ff120b4
YQ
5322static void
5323install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5324 struct displaced_step_closure *dsc,
5325 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 5326{
cca44b1b 5327 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 5328
cca44b1b
JB
5329 /* Instruction is of form:
5330
5331 <op><cond> rd, [rn,] rm [, <shift>]
5332
5333 Rewrite as:
5334
5335 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5336 r0, r1, r2 <- rd, rn, rm
ef713951 5337 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
cca44b1b
JB
5338 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5339 */
5340
36073a92
YQ
5341 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5342 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5343 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5344 rd_val = displaced_read_reg (regs, dsc, rd);
5345 rn_val = displaced_read_reg (regs, dsc, rn);
5346 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5347 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5348 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5349 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5350 dsc->rd = rd;
5351
7ff120b4
YQ
5352 dsc->cleanup = &cleanup_alu_reg;
5353}
5354
5355static int
5356arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5357 struct displaced_step_closure *dsc)
5358{
5359 unsigned int op = bits (insn, 21, 24);
5360 int is_mov = (op == 0xd);
5361
5362 if (!insn_references_pc (insn, 0x000ff00ful))
5363 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5364
5365 if (debug_displaced)
5366 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5367 is_mov ? "move" : "ALU", (unsigned long) insn);
5368
cca44b1b
JB
5369 if (is_mov)
5370 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5371 else
5372 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5373
7ff120b4
YQ
5374 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5375 bits (insn, 0, 3));
cca44b1b
JB
5376 return 0;
5377}
5378
34518530
YQ
5379static int
5380thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5381 struct regcache *regs,
5382 struct displaced_step_closure *dsc)
5383{
ef713951 5384 unsigned rm, rd;
34518530 5385
ef713951
YQ
5386 rm = bits (insn, 3, 6);
5387 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
34518530 5388
ef713951 5389 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
34518530
YQ
5390 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5391
5392 if (debug_displaced)
ef713951
YQ
5393 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5394 (unsigned short) insn);
34518530 5395
ef713951 5396 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
34518530 5397
ef713951 5398 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
34518530
YQ
5399
5400 return 0;
5401}
5402
cca44b1b
JB
5403/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5404
5405static void
6e39997a 5406cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5407 struct regcache *regs,
5408 struct displaced_step_closure *dsc)
5409{
36073a92 5410 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5411 int i;
5412
5413 for (i = 0; i < 4; i++)
5414 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5415
5416 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5417}
5418
7ff120b4
YQ
5419static void
5420install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5421 struct displaced_step_closure *dsc,
5422 unsigned int rd, unsigned int rn, unsigned int rm,
5423 unsigned rs)
cca44b1b 5424{
7ff120b4 5425 int i;
cca44b1b 5426 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 5427
cca44b1b
JB
5428 /* Instruction is of form:
5429
5430 <op><cond> rd, [rn,] rm, <shift> rs
5431
5432 Rewrite as:
5433
5434 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5435 r0, r1, r2, r3 <- rd, rn, rm, rs
5436 Insn: <op><cond> r0, r1, r2, <shift> r3
5437 Cleanup: tmp5 <- r0
5438 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5439 rd <- tmp5
5440 */
5441
5442 for (i = 0; i < 4; i++)
36073a92 5443 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 5444
36073a92
YQ
5445 rd_val = displaced_read_reg (regs, dsc, rd);
5446 rn_val = displaced_read_reg (regs, dsc, rn);
5447 rm_val = displaced_read_reg (regs, dsc, rm);
5448 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
5449 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5450 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5451 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5452 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5453 dsc->rd = rd;
7ff120b4
YQ
5454 dsc->cleanup = &cleanup_alu_shifted_reg;
5455}
5456
5457static int
5458arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5459 struct regcache *regs,
5460 struct displaced_step_closure *dsc)
5461{
5462 unsigned int op = bits (insn, 21, 24);
5463 int is_mov = (op == 0xd);
5464 unsigned int rd, rn, rm, rs;
5465
5466 if (!insn_references_pc (insn, 0x000fff0ful))
5467 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5468
5469 if (debug_displaced)
5470 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5471 "%.8lx\n", is_mov ? "move" : "ALU",
5472 (unsigned long) insn);
5473
5474 rn = bits (insn, 16, 19);
5475 rm = bits (insn, 0, 3);
5476 rs = bits (insn, 8, 11);
5477 rd = bits (insn, 12, 15);
cca44b1b
JB
5478
5479 if (is_mov)
5480 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5481 else
5482 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5483
7ff120b4 5484 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
5485
5486 return 0;
5487}
5488
5489/* Clean up load instructions. */
5490
5491static void
6e39997a 5492cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5493 struct displaced_step_closure *dsc)
5494{
5495 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 5496
36073a92 5497 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 5498 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
5499 rt_val2 = displaced_read_reg (regs, dsc, 1);
5500 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5501
5502 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5503 if (dsc->u.ldst.xfersize > 4)
5504 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5505 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5506 if (!dsc->u.ldst.immed)
5507 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5508
5509 /* Handle register writeback. */
5510 if (dsc->u.ldst.writeback)
5511 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5512 /* Put result in right place. */
5513 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5514 if (dsc->u.ldst.xfersize == 8)
5515 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5516}
5517
5518/* Clean up store instructions. */
5519
5520static void
6e39997a 5521cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5522 struct displaced_step_closure *dsc)
5523{
36073a92 5524 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5525
5526 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5527 if (dsc->u.ldst.xfersize > 4)
5528 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5529 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5530 if (!dsc->u.ldst.immed)
5531 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5532 if (!dsc->u.ldst.restore_r4)
5533 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5534
5535 /* Writeback. */
5536 if (dsc->u.ldst.writeback)
5537 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5538}
5539
5540/* Copy "extra" load/store instructions. These are halfword/doubleword
5541 transfers, which have a different encoding to byte/word transfers. */
5542
5543static int
550dc4e2 5544arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
7ff120b4 5545 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5546{
5547 unsigned int op1 = bits (insn, 20, 24);
5548 unsigned int op2 = bits (insn, 5, 6);
5549 unsigned int rt = bits (insn, 12, 15);
5550 unsigned int rn = bits (insn, 16, 19);
5551 unsigned int rm = bits (insn, 0, 3);
5552 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5553 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5554 int immed = (op1 & 0x4) != 0;
5555 int opcode;
5556 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
5557
5558 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 5559 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b
JB
5560
5561 if (debug_displaced)
5562 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
550dc4e2 5563 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
cca44b1b
JB
5564 (unsigned long) insn);
5565
5566 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5567
5568 if (opcode < 0)
5569 internal_error (__FILE__, __LINE__,
5570 _("copy_extra_ld_st: instruction decode error"));
5571
36073a92
YQ
5572 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5573 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5574 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5575 if (!immed)
36073a92 5576 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5577
36073a92 5578 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 5579 if (bytesize[opcode] == 8)
36073a92
YQ
5580 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5581 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5582 if (!immed)
36073a92 5583 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5584
5585 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5586 if (bytesize[opcode] == 8)
5587 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5588 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5589 if (!immed)
5590 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5591
5592 dsc->rd = rt;
5593 dsc->u.ldst.xfersize = bytesize[opcode];
5594 dsc->u.ldst.rn = rn;
5595 dsc->u.ldst.immed = immed;
5596 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5597 dsc->u.ldst.restore_r4 = 0;
5598
5599 if (immed)
5600 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5601 ->
5602 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5603 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5604 else
5605 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5606 ->
5607 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5608 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5609
5610 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5611
5612 return 0;
5613}
5614
0f6f04ba 5615/* Copy byte/half word/word loads and stores. */
cca44b1b 5616
7ff120b4 5617static void
0f6f04ba
YQ
5618install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5619 struct displaced_step_closure *dsc, int load,
5620 int immed, int writeback, int size, int usermode,
5621 int rt, int rm, int rn)
cca44b1b 5622{
cca44b1b 5623 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 5624
36073a92
YQ
5625 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5626 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5627 if (!immed)
36073a92 5628 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5629 if (!load)
36073a92 5630 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 5631
36073a92
YQ
5632 rt_val = displaced_read_reg (regs, dsc, rt);
5633 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5634 if (!immed)
36073a92 5635 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5636
5637 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5638 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5639 if (!immed)
5640 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b 5641 dsc->rd = rt;
0f6f04ba 5642 dsc->u.ldst.xfersize = size;
cca44b1b
JB
5643 dsc->u.ldst.rn = rn;
5644 dsc->u.ldst.immed = immed;
7ff120b4 5645 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5646
5647 /* To write PC we can do:
5648
494e194e
YQ
5649 Before this sequence of instructions:
5650 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5651 r2 is the Rn value got from dispalced_read_reg.
5652
5653 Insn1: push {pc} Write address of STR instruction + offset on stack
5654 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5655 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5656 = addr(Insn1) + offset - addr(Insn3) - 8
5657 = offset - 16
5658 Insn4: add r4, r4, #8 r4 = offset - 8
5659 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5660 = from + offset
5661 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
5662
5663 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
5664 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5665 of this can be found in Section "Saving from r15" in
5666 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 5667
7ff120b4
YQ
5668 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5669}
5670
34518530
YQ
5671
5672static int
5673thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5674 uint16_t insn2, struct regcache *regs,
5675 struct displaced_step_closure *dsc, int size)
5676{
5677 unsigned int u_bit = bit (insn1, 7);
5678 unsigned int rt = bits (insn2, 12, 15);
5679 int imm12 = bits (insn2, 0, 11);
5680 ULONGEST pc_val;
5681
5682 if (debug_displaced)
5683 fprintf_unfiltered (gdb_stdlog,
5684 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5685 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5686 imm12);
5687
5688 if (!u_bit)
5689 imm12 = -1 * imm12;
5690
5691 /* Rewrite instruction LDR Rt imm12 into:
5692
5693 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5694
5695 LDR R0, R2, R3,
5696
5697 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5698
5699
5700 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5701 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5702 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5703
5704 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5705
5706 pc_val = pc_val & 0xfffffffc;
5707
5708 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5709 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5710
5711 dsc->rd = rt;
5712
5713 dsc->u.ldst.xfersize = size;
5714 dsc->u.ldst.immed = 0;
5715 dsc->u.ldst.writeback = 0;
5716 dsc->u.ldst.restore_r4 = 0;
5717
5718 /* LDR R0, R2, R3 */
5719 dsc->modinsn[0] = 0xf852;
5720 dsc->modinsn[1] = 0x3;
5721 dsc->numinsns = 2;
5722
5723 dsc->cleanup = &cleanup_load;
5724
5725 return 0;
5726}
5727
5728static int
5729thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5730 uint16_t insn2, struct regcache *regs,
5731 struct displaced_step_closure *dsc,
5732 int writeback, int immed)
5733{
5734 unsigned int rt = bits (insn2, 12, 15);
5735 unsigned int rn = bits (insn1, 0, 3);
5736 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5737 /* In LDR (register), there is also a register Rm, which is not allowed to
5738 be PC, so we don't have to check it. */
5739
5740 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5741 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5742 dsc);
5743
5744 if (debug_displaced)
5745 fprintf_unfiltered (gdb_stdlog,
5746 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5747 rt, rn, insn1, insn2);
5748
5749 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5750 0, rt, rm, rn);
5751
5752 dsc->u.ldst.restore_r4 = 0;
5753
5754 if (immed)
5755 /* ldr[b]<cond> rt, [rn, #imm], etc.
5756 ->
5757 ldr[b]<cond> r0, [r2, #imm]. */
5758 {
5759 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5760 dsc->modinsn[1] = insn2 & 0x0fff;
5761 }
5762 else
5763 /* ldr[b]<cond> rt, [rn, rm], etc.
5764 ->
5765 ldr[b]<cond> r0, [r2, r3]. */
5766 {
5767 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5768 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5769 }
5770
5771 dsc->numinsns = 2;
5772
5773 return 0;
5774}
5775
5776
7ff120b4
YQ
5777static int
5778arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5779 struct regcache *regs,
5780 struct displaced_step_closure *dsc,
0f6f04ba 5781 int load, int size, int usermode)
7ff120b4
YQ
5782{
5783 int immed = !bit (insn, 25);
5784 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5785 unsigned int rt = bits (insn, 12, 15);
5786 unsigned int rn = bits (insn, 16, 19);
5787 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5788
5789 if (!insn_references_pc (insn, 0x000ff00ful))
5790 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5791
5792 if (debug_displaced)
5793 fprintf_unfiltered (gdb_stdlog,
5794 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
0f6f04ba
YQ
5795 load ? (size == 1 ? "ldrb" : "ldr")
5796 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
7ff120b4
YQ
5797 rt, rn,
5798 (unsigned long) insn);
5799
0f6f04ba
YQ
5800 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5801 usermode, rt, rm, rn);
7ff120b4 5802
bf9f652a 5803 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
5804 {
5805 dsc->u.ldst.restore_r4 = 0;
5806
5807 if (immed)
5808 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5809 ->
5810 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5811 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5812 else
5813 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5814 ->
5815 {ldr,str}[b]<cond> r0, [r2, r3]. */
5816 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5817 }
5818 else
5819 {
5820 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5821 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
5822 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5823 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
5824 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5825 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5826 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5827
5828 /* As above. */
5829 if (immed)
5830 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5831 else
5832 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5833
cca44b1b
JB
5834 dsc->numinsns = 6;
5835 }
5836
5837 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5838
5839 return 0;
5840}
5841
5842/* Cleanup LDM instructions with fully-populated register list. This is an
5843 unfortunate corner case: it's impossible to implement correctly by modifying
5844 the instruction. The issue is as follows: we have an instruction,
5845
5846 ldm rN, {r0-r15}
5847
5848 which we must rewrite to avoid loading PC. A possible solution would be to
5849 do the load in two halves, something like (with suitable cleanup
5850 afterwards):
5851
5852 mov r8, rN
5853 ldm[id][ab] r8!, {r0-r7}
5854 str r7, <temp>
5855 ldm[id][ab] r8, {r7-r14}
5856 <bkpt>
5857
5858 but at present there's no suitable place for <temp>, since the scratch space
5859 is overwritten before the cleanup routine is called. For now, we simply
5860 emulate the instruction. */
5861
5862static void
5863cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5864 struct displaced_step_closure *dsc)
5865{
cca44b1b
JB
5866 int inc = dsc->u.block.increment;
5867 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5868 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5869 uint32_t regmask = dsc->u.block.regmask;
5870 int regno = inc ? 0 : 15;
5871 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5872 int exception_return = dsc->u.block.load && dsc->u.block.user
5873 && (regmask & 0x8000) != 0;
36073a92 5874 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5875 int do_transfer = condition_true (dsc->u.block.cond, status);
5876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5877
5878 if (!do_transfer)
5879 return;
5880
5881 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5882 sensible we can do here. Complain loudly. */
5883 if (exception_return)
5884 error (_("Cannot single-step exception return"));
5885
5886 /* We don't handle any stores here for now. */
5887 gdb_assert (dsc->u.block.load != 0);
5888
5889 if (debug_displaced)
5890 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5891 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5892 dsc->u.block.increment ? "inc" : "dec",
5893 dsc->u.block.before ? "before" : "after");
5894
5895 while (regmask)
5896 {
5897 uint32_t memword;
5898
5899 if (inc)
bf9f652a 5900 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
5901 regno++;
5902 else
5903 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5904 regno--;
5905
5906 xfer_addr += bump_before;
5907
5908 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5909 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5910
5911 xfer_addr += bump_after;
5912
5913 regmask &= ~(1 << regno);
5914 }
5915
5916 if (dsc->u.block.writeback)
5917 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5918 CANNOT_WRITE_PC);
5919}
5920
5921/* Clean up an STM which included the PC in the register list. */
5922
5923static void
5924cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5925 struct displaced_step_closure *dsc)
5926{
36073a92 5927 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5928 int store_executed = condition_true (dsc->u.block.cond, status);
5929 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5930 CORE_ADDR stm_insn_addr;
5931 uint32_t pc_val;
5932 long offset;
5933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5934
5935 /* If condition code fails, there's nothing else to do. */
5936 if (!store_executed)
5937 return;
5938
5939 if (dsc->u.block.increment)
5940 {
5941 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5942
5943 if (dsc->u.block.before)
5944 pc_stored_at += 4;
5945 }
5946 else
5947 {
5948 pc_stored_at = dsc->u.block.xfer_addr;
5949
5950 if (dsc->u.block.before)
5951 pc_stored_at -= 4;
5952 }
5953
5954 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5955 stm_insn_addr = dsc->scratch_base;
5956 offset = pc_val - stm_insn_addr;
5957
5958 if (debug_displaced)
5959 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5960 "STM instruction\n", offset);
5961
5962 /* Rewrite the stored PC to the proper value for the non-displaced original
5963 instruction. */
5964 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5965 dsc->insn_addr + offset);
5966}
5967
5968/* Clean up an LDM which includes the PC in the register list. We clumped all
5969 the registers in the transferred list into a contiguous range r0...rX (to
5970 avoid loading PC directly and losing control of the debugged program), so we
5971 must undo that here. */
5972
5973static void
6e39997a 5974cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
5975 struct regcache *regs,
5976 struct displaced_step_closure *dsc)
5977{
36073a92 5978 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
22e048c9 5979 int load_executed = condition_true (dsc->u.block.cond, status);
bf9f652a 5980 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
5981 unsigned int regs_loaded = bitcount (mask);
5982 unsigned int num_to_shuffle = regs_loaded, clobbered;
5983
5984 /* The method employed here will fail if the register list is fully populated
5985 (we need to avoid loading PC directly). */
5986 gdb_assert (num_to_shuffle < 16);
5987
5988 if (!load_executed)
5989 return;
5990
5991 clobbered = (1 << num_to_shuffle) - 1;
5992
5993 while (num_to_shuffle > 0)
5994 {
5995 if ((mask & (1 << write_reg)) != 0)
5996 {
5997 unsigned int read_reg = num_to_shuffle - 1;
5998
5999 if (read_reg != write_reg)
6000 {
36073a92 6001 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b
JB
6002 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6003 if (debug_displaced)
6004 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6005 "loaded register r%d to r%d\n"), read_reg,
6006 write_reg);
6007 }
6008 else if (debug_displaced)
6009 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6010 "r%d already in the right place\n"),
6011 write_reg);
6012
6013 clobbered &= ~(1 << write_reg);
6014
6015 num_to_shuffle--;
6016 }
6017
6018 write_reg--;
6019 }
6020
6021 /* Restore any registers we scribbled over. */
6022 for (write_reg = 0; clobbered != 0; write_reg++)
6023 {
6024 if ((clobbered & (1 << write_reg)) != 0)
6025 {
6026 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6027 CANNOT_WRITE_PC);
6028 if (debug_displaced)
6029 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6030 "clobbered register r%d\n"), write_reg);
6031 clobbered &= ~(1 << write_reg);
6032 }
6033 }
6034
6035 /* Perform register writeback manually. */
6036 if (dsc->u.block.writeback)
6037 {
6038 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6039
6040 if (dsc->u.block.increment)
6041 new_rn_val += regs_loaded * 4;
6042 else
6043 new_rn_val -= regs_loaded * 4;
6044
6045 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6046 CANNOT_WRITE_PC);
6047 }
6048}
6049
6050/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6051 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6052
6053static int
7ff120b4
YQ
6054arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6055 struct regcache *regs,
6056 struct displaced_step_closure *dsc)
cca44b1b
JB
6057{
6058 int load = bit (insn, 20);
6059 int user = bit (insn, 22);
6060 int increment = bit (insn, 23);
6061 int before = bit (insn, 24);
6062 int writeback = bit (insn, 21);
6063 int rn = bits (insn, 16, 19);
cca44b1b 6064
0963b4bd
MS
6065 /* Block transfers which don't mention PC can be run directly
6066 out-of-line. */
bf9f652a 6067 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 6068 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 6069
bf9f652a 6070 if (rn == ARM_PC_REGNUM)
cca44b1b 6071 {
0963b4bd
MS
6072 warning (_("displaced: Unpredictable LDM or STM with "
6073 "base register r15"));
7ff120b4 6074 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
6075 }
6076
6077 if (debug_displaced)
6078 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6079 "%.8lx\n", (unsigned long) insn);
6080
36073a92 6081 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
6082 dsc->u.block.rn = rn;
6083
6084 dsc->u.block.load = load;
6085 dsc->u.block.user = user;
6086 dsc->u.block.increment = increment;
6087 dsc->u.block.before = before;
6088 dsc->u.block.writeback = writeback;
6089 dsc->u.block.cond = bits (insn, 28, 31);
6090
6091 dsc->u.block.regmask = insn & 0xffff;
6092
6093 if (load)
6094 {
6095 if ((insn & 0xffff) == 0xffff)
6096 {
6097 /* LDM with a fully-populated register list. This case is
6098 particularly tricky. Implement for now by fully emulating the
6099 instruction (which might not behave perfectly in all cases, but
6100 these instructions should be rare enough for that not to matter
6101 too much). */
6102 dsc->modinsn[0] = ARM_NOP;
6103
6104 dsc->cleanup = &cleanup_block_load_all;
6105 }
6106 else
6107 {
6108 /* LDM of a list of registers which includes PC. Implement by
6109 rewriting the list of registers to be transferred into a
6110 contiguous chunk r0...rX before doing the transfer, then shuffling
6111 registers into the correct places in the cleanup routine. */
6112 unsigned int regmask = insn & 0xffff;
bec2ab5a
SM
6113 unsigned int num_in_list = bitcount (regmask), new_regmask;
6114 unsigned int i;
cca44b1b
JB
6115
6116 for (i = 0; i < num_in_list; i++)
36073a92 6117 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
6118
6119 /* Writeback makes things complicated. We need to avoid clobbering
6120 the base register with one of the registers in our modified
6121 register list, but just using a different register can't work in
6122 all cases, e.g.:
6123
6124 ldm r14!, {r0-r13,pc}
6125
6126 which would need to be rewritten as:
6127
6128 ldm rN!, {r0-r14}
6129
6130 but that can't work, because there's no free register for N.
6131
6132 Solve this by turning off the writeback bit, and emulating
6133 writeback manually in the cleanup routine. */
6134
6135 if (writeback)
6136 insn &= ~(1 << 21);
6137
6138 new_regmask = (1 << num_in_list) - 1;
6139
6140 if (debug_displaced)
6141 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6142 "{..., pc}: original reg list %.4x, modified "
6143 "list %.4x\n"), rn, writeback ? "!" : "",
6144 (int) insn & 0xffff, new_regmask);
6145
6146 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6147
6148 dsc->cleanup = &cleanup_block_load_pc;
6149 }
6150 }
6151 else
6152 {
6153 /* STM of a list of registers which includes PC. Run the instruction
6154 as-is, but out of line: this will store the wrong value for the PC,
6155 so we must manually fix up the memory in the cleanup routine.
6156 Doing things this way has the advantage that we can auto-detect
6157 the offset of the PC write (which is architecture-dependent) in
6158 the cleanup routine. */
6159 dsc->modinsn[0] = insn;
6160
6161 dsc->cleanup = &cleanup_block_store_pc;
6162 }
6163
6164 return 0;
6165}
6166
34518530
YQ
6167static int
6168thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6169 struct regcache *regs,
6170 struct displaced_step_closure *dsc)
cca44b1b 6171{
34518530
YQ
6172 int rn = bits (insn1, 0, 3);
6173 int load = bit (insn1, 4);
6174 int writeback = bit (insn1, 5);
cca44b1b 6175
34518530
YQ
6176 /* Block transfers which don't mention PC can be run directly
6177 out-of-line. */
6178 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6179 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
7ff120b4 6180
34518530
YQ
6181 if (rn == ARM_PC_REGNUM)
6182 {
6183 warning (_("displaced: Unpredictable LDM or STM with "
6184 "base register r15"));
6185 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6186 "unpredictable ldm/stm", dsc);
6187 }
cca44b1b
JB
6188
6189 if (debug_displaced)
34518530
YQ
6190 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6191 "%.4x%.4x\n", insn1, insn2);
cca44b1b 6192
34518530
YQ
6193 /* Clear bit 13, since it should be always zero. */
6194 dsc->u.block.regmask = (insn2 & 0xdfff);
6195 dsc->u.block.rn = rn;
cca44b1b 6196
34518530
YQ
6197 dsc->u.block.load = load;
6198 dsc->u.block.user = 0;
6199 dsc->u.block.increment = bit (insn1, 7);
6200 dsc->u.block.before = bit (insn1, 8);
6201 dsc->u.block.writeback = writeback;
6202 dsc->u.block.cond = INST_AL;
6203 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b 6204
34518530
YQ
6205 if (load)
6206 {
6207 if (dsc->u.block.regmask == 0xffff)
6208 {
6209 /* This branch is impossible to happen. */
6210 gdb_assert (0);
6211 }
6212 else
6213 {
6214 unsigned int regmask = dsc->u.block.regmask;
bec2ab5a
SM
6215 unsigned int num_in_list = bitcount (regmask), new_regmask;
6216 unsigned int i;
34518530
YQ
6217
6218 for (i = 0; i < num_in_list; i++)
6219 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6220
6221 if (writeback)
6222 insn1 &= ~(1 << 5);
6223
6224 new_regmask = (1 << num_in_list) - 1;
6225
6226 if (debug_displaced)
6227 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6228 "{..., pc}: original reg list %.4x, modified "
6229 "list %.4x\n"), rn, writeback ? "!" : "",
6230 (int) dsc->u.block.regmask, new_regmask);
6231
6232 dsc->modinsn[0] = insn1;
6233 dsc->modinsn[1] = (new_regmask & 0xffff);
6234 dsc->numinsns = 2;
6235
6236 dsc->cleanup = &cleanup_block_load_pc;
6237 }
6238 }
6239 else
6240 {
6241 dsc->modinsn[0] = insn1;
6242 dsc->modinsn[1] = insn2;
6243 dsc->numinsns = 2;
6244 dsc->cleanup = &cleanup_block_store_pc;
6245 }
6246 return 0;
6247}
6248
d9311bfa
AT
6249/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6250 This is used to avoid a dependency on BFD's bfd_endian enum. */
6251
6252ULONGEST
6253arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6254 int byte_order)
6255{
5f2dfcfd
AT
6256 return read_memory_unsigned_integer (memaddr, len,
6257 (enum bfd_endian) byte_order);
d9311bfa
AT
6258}
6259
6260/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6261
6262CORE_ADDR
6263arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6264 CORE_ADDR val)
6265{
6266 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6267}
6268
6269/* Wrapper over syscall_next_pc for use in get_next_pcs. */
6270
e7cf25a8 6271static CORE_ADDR
553cb527 6272arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
d9311bfa 6273{
d9311bfa
AT
6274 return 0;
6275}
6276
6277/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6278
6279int
6280arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6281{
6282 return arm_is_thumb (self->regcache);
6283}
6284
6285/* single_step() is called just before we want to resume the inferior,
6286 if we want to single-step it but there is no hardware or kernel
6287 single-step support. We find the target of the coming instructions
6288 and breakpoint them. */
6289
93f9a11f 6290VEC (CORE_ADDR) *
f5ea389a 6291arm_software_single_step (struct regcache *regcache)
d9311bfa 6292{
d9311bfa 6293 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d9311bfa
AT
6294 struct arm_get_next_pcs next_pcs_ctx;
6295 CORE_ADDR pc;
6296 int i;
6297 VEC (CORE_ADDR) *next_pcs = NULL;
6298 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6299
6300 arm_get_next_pcs_ctor (&next_pcs_ctx,
6301 &arm_get_next_pcs_ops,
6302 gdbarch_byte_order (gdbarch),
6303 gdbarch_byte_order_for_code (gdbarch),
1b451dda 6304 0,
d9311bfa
AT
6305 regcache);
6306
4d18591b 6307 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
d9311bfa
AT
6308
6309 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
771da62d
YQ
6310 {
6311 pc = gdbarch_addr_bits_remove (gdbarch, pc);
0bc5d801 6312 VEC_replace (CORE_ADDR, next_pcs, i, pc);
771da62d 6313 }
d9311bfa 6314
93f9a11f 6315 discard_cleanups (old_chain);
d9311bfa 6316
93f9a11f 6317 return next_pcs;
d9311bfa
AT
6318}
6319
34518530
YQ
6320/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6321 for Linux, where some SVC instructions must be treated specially. */
6322
6323static void
6324cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6325 struct displaced_step_closure *dsc)
6326{
6327 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6328
6329 if (debug_displaced)
6330 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6331 "%.8lx\n", (unsigned long) resume_addr);
6332
6333 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6334}
6335
6336
6337/* Common copy routine for svc instruciton. */
6338
6339static int
6340install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6341 struct displaced_step_closure *dsc)
6342{
6343 /* Preparation: none.
6344 Insn: unmodified svc.
6345 Cleanup: pc <- insn_addr + insn_size. */
6346
6347 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6348 instruction. */
6349 dsc->wrote_to_pc = 1;
6350
6351 /* Allow OS-specific code to override SVC handling. */
bd18283a
YQ
6352 if (dsc->u.svc.copy_svc_os)
6353 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6354 else
6355 {
6356 dsc->cleanup = &cleanup_svc;
6357 return 0;
6358 }
34518530
YQ
6359}
6360
6361static int
6362arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6363 struct regcache *regs, struct displaced_step_closure *dsc)
6364{
6365
6366 if (debug_displaced)
6367 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6368 (unsigned long) insn);
6369
6370 dsc->modinsn[0] = insn;
6371
6372 return install_svc (gdbarch, regs, dsc);
6373}
6374
6375static int
6376thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6377 struct regcache *regs, struct displaced_step_closure *dsc)
6378{
6379
6380 if (debug_displaced)
6381 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6382 insn);
bd18283a 6383
34518530
YQ
6384 dsc->modinsn[0] = insn;
6385
6386 return install_svc (gdbarch, regs, dsc);
cca44b1b
JB
6387}
6388
6389/* Copy undefined instructions. */
6390
6391static int
7ff120b4
YQ
6392arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6393 struct displaced_step_closure *dsc)
cca44b1b
JB
6394{
6395 if (debug_displaced)
0963b4bd
MS
6396 fprintf_unfiltered (gdb_stdlog,
6397 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6398 (unsigned long) insn);
6399
6400 dsc->modinsn[0] = insn;
6401
6402 return 0;
6403}
6404
34518530
YQ
6405static int
6406thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6407 struct displaced_step_closure *dsc)
6408{
6409
6410 if (debug_displaced)
6411 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6412 "%.4x %.4x\n", (unsigned short) insn1,
6413 (unsigned short) insn2);
6414
6415 dsc->modinsn[0] = insn1;
6416 dsc->modinsn[1] = insn2;
6417 dsc->numinsns = 2;
6418
6419 return 0;
6420}
6421
cca44b1b
JB
6422/* Copy unpredictable instructions. */
6423
6424static int
7ff120b4
YQ
6425arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6426 struct displaced_step_closure *dsc)
cca44b1b
JB
6427{
6428 if (debug_displaced)
6429 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6430 "%.8lx\n", (unsigned long) insn);
6431
6432 dsc->modinsn[0] = insn;
6433
6434 return 0;
6435}
6436
6437/* The decode_* functions are instruction decoding helpers. They mostly follow
6438 the presentation in the ARM ARM. */
6439
6440static int
7ff120b4
YQ
6441arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6442 struct regcache *regs,
6443 struct displaced_step_closure *dsc)
cca44b1b
JB
6444{
6445 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6446 unsigned int rn = bits (insn, 16, 19);
6447
6448 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
7ff120b4 6449 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
cca44b1b 6450 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
7ff120b4 6451 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 6452 else if ((op1 & 0x60) == 0x20)
7ff120b4 6453 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 6454 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
6455 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6456 dsc);
cca44b1b 6457 else if ((op1 & 0x77) == 0x41)
7ff120b4 6458 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6459 else if ((op1 & 0x77) == 0x45)
7ff120b4 6460 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
6461 else if ((op1 & 0x77) == 0x51)
6462 {
6463 if (rn != 0xf)
7ff120b4 6464 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 6465 else
7ff120b4 6466 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6467 }
6468 else if ((op1 & 0x77) == 0x55)
7ff120b4 6469 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
6470 else if (op1 == 0x57)
6471 switch (op2)
6472 {
7ff120b4
YQ
6473 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6474 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6475 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6476 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6477 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6478 }
6479 else if ((op1 & 0x63) == 0x43)
7ff120b4 6480 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6481 else if ((op2 & 0x1) == 0x0)
6482 switch (op1 & ~0x80)
6483 {
6484 case 0x61:
7ff120b4 6485 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6486 case 0x65:
7ff120b4 6487 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b
JB
6488 case 0x71: case 0x75:
6489 /* pld/pldw reg. */
7ff120b4 6490 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 6491 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 6492 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 6493 default:
7ff120b4 6494 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6495 }
6496 else
7ff120b4 6497 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
6498}
6499
6500static int
7ff120b4
YQ
6501arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6502 struct regcache *regs,
6503 struct displaced_step_closure *dsc)
cca44b1b
JB
6504{
6505 if (bit (insn, 27) == 0)
7ff120b4 6506 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
6507 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6508 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6509 {
6510 case 0x0: case 0x2:
7ff120b4 6511 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
6512
6513 case 0x1: case 0x3:
7ff120b4 6514 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
6515
6516 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 6517 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
6518
6519 case 0x8:
6520 switch ((insn & 0xe00000) >> 21)
6521 {
6522 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6523 /* stc/stc2. */
7ff120b4 6524 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6525
6526 case 0x2:
7ff120b4 6527 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
6528
6529 default:
7ff120b4 6530 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6531 }
6532
6533 case 0x9:
6534 {
6535 int rn_f = (bits (insn, 16, 19) == 0xf);
6536 switch ((insn & 0xe00000) >> 21)
6537 {
6538 case 0x1: case 0x3:
6539 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
6540 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6541 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6542
6543 case 0x2:
7ff120b4 6544 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6545
6546 case 0x4: case 0x5: case 0x6: case 0x7:
6547 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
6548 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6549 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6550
6551 default:
7ff120b4 6552 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6553 }
6554 }
6555
6556 case 0xa:
7ff120b4 6557 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
6558
6559 case 0xb:
6560 if (bits (insn, 16, 19) == 0xf)
6561 /* ldc/ldc2 lit. */
7ff120b4 6562 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6563 else
7ff120b4 6564 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6565
6566 case 0xc:
6567 if (bit (insn, 4))
7ff120b4 6568 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6569 else
7ff120b4 6570 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6571
6572 case 0xd:
6573 if (bit (insn, 4))
7ff120b4 6574 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6575 else
7ff120b4 6576 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6577
6578 default:
7ff120b4 6579 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6580 }
6581}
6582
6583/* Decode miscellaneous instructions in dp/misc encoding space. */
6584
6585static int
7ff120b4
YQ
6586arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6587 struct regcache *regs,
6588 struct displaced_step_closure *dsc)
cca44b1b
JB
6589{
6590 unsigned int op2 = bits (insn, 4, 6);
6591 unsigned int op = bits (insn, 21, 22);
cca44b1b
JB
6592
6593 switch (op2)
6594 {
6595 case 0x0:
7ff120b4 6596 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
6597
6598 case 0x1:
6599 if (op == 0x1) /* bx. */
7ff120b4 6600 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 6601 else if (op == 0x3)
7ff120b4 6602 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 6603 else
7ff120b4 6604 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6605
6606 case 0x2:
6607 if (op == 0x1)
6608 /* Not really supported. */
7ff120b4 6609 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 6610 else
7ff120b4 6611 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6612
6613 case 0x3:
6614 if (op == 0x1)
7ff120b4 6615 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 6616 regs, dsc); /* blx register. */
cca44b1b 6617 else
7ff120b4 6618 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6619
6620 case 0x5:
7ff120b4 6621 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
6622
6623 case 0x7:
6624 if (op == 0x1)
7ff120b4 6625 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b
JB
6626 else if (op == 0x3)
6627 /* Not really supported. */
7ff120b4 6628 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
cca44b1b
JB
6629
6630 default:
7ff120b4 6631 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6632 }
6633}
6634
6635static int
7ff120b4
YQ
6636arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6637 struct regcache *regs,
6638 struct displaced_step_closure *dsc)
cca44b1b
JB
6639{
6640 if (bit (insn, 25))
6641 switch (bits (insn, 20, 24))
6642 {
6643 case 0x10:
7ff120b4 6644 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
6645
6646 case 0x14:
7ff120b4 6647 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
6648
6649 case 0x12: case 0x16:
7ff120b4 6650 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
6651
6652 default:
7ff120b4 6653 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
6654 }
6655 else
6656 {
6657 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6658
6659 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 6660 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 6661 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 6662 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 6663 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 6664 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 6665 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 6666 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 6667 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 6668 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 6669 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 6670 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b 6671 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
550dc4e2 6672 /* 2nd arg means "unprivileged". */
7ff120b4
YQ
6673 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6674 dsc);
cca44b1b
JB
6675 }
6676
6677 /* Should be unreachable. */
6678 return 1;
6679}
6680
6681static int
7ff120b4
YQ
6682arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6683 struct regcache *regs,
6684 struct displaced_step_closure *dsc)
cca44b1b
JB
6685{
6686 int a = bit (insn, 25), b = bit (insn, 4);
6687 uint32_t op1 = bits (insn, 20, 24);
cca44b1b
JB
6688
6689 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6690 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
0f6f04ba 6691 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
cca44b1b
JB
6692 else if ((!a && (op1 & 0x17) == 0x02)
6693 || (a && (op1 & 0x17) == 0x02 && !b))
0f6f04ba 6694 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
cca44b1b
JB
6695 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6696 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
0f6f04ba 6697 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
cca44b1b
JB
6698 else if ((!a && (op1 & 0x17) == 0x03)
6699 || (a && (op1 & 0x17) == 0x03 && !b))
0f6f04ba 6700 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
cca44b1b
JB
6701 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6702 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 6703 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
6704 else if ((!a && (op1 & 0x17) == 0x06)
6705 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 6706 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
6707 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6708 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 6709 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
6710 else if ((!a && (op1 & 0x17) == 0x07)
6711 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 6712 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
6713
6714 /* Should be unreachable. */
6715 return 1;
6716}
6717
6718static int
7ff120b4
YQ
6719arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6720 struct displaced_step_closure *dsc)
cca44b1b
JB
6721{
6722 switch (bits (insn, 20, 24))
6723 {
6724 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 6725 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
6726
6727 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 6728 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
6729
6730 case 0x08: case 0x09: case 0x0a: case 0x0b:
6731 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 6732 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
6733 "decode/pack/unpack/saturate/reverse", dsc);
6734
6735 case 0x18:
6736 if (bits (insn, 5, 7) == 0) /* op2. */
6737 {
6738 if (bits (insn, 12, 15) == 0xf)
7ff120b4 6739 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 6740 else
7ff120b4 6741 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
6742 }
6743 else
7ff120b4 6744 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6745
6746 case 0x1a: case 0x1b:
6747 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6748 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 6749 else
7ff120b4 6750 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6751
6752 case 0x1c: case 0x1d:
6753 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6754 {
6755 if (bits (insn, 0, 3) == 0xf)
7ff120b4 6756 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 6757 else
7ff120b4 6758 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
6759 }
6760 else
7ff120b4 6761 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6762
6763 case 0x1e: case 0x1f:
6764 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6765 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 6766 else
7ff120b4 6767 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6768 }
6769
6770 /* Should be unreachable. */
6771 return 1;
6772}
6773
6774static int
615234c1 6775arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4
YQ
6776 struct regcache *regs,
6777 struct displaced_step_closure *dsc)
cca44b1b
JB
6778{
6779 if (bit (insn, 25))
7ff120b4 6780 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 6781 else
7ff120b4 6782 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
6783}
6784
6785static int
7ff120b4
YQ
6786arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6787 struct regcache *regs,
6788 struct displaced_step_closure *dsc)
cca44b1b
JB
6789{
6790 unsigned int opcode = bits (insn, 20, 24);
6791
6792 switch (opcode)
6793 {
6794 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 6795 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
6796
6797 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6798 case 0x12: case 0x16:
7ff120b4 6799 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
6800
6801 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6802 case 0x13: case 0x17:
7ff120b4 6803 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
6804
6805 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6806 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6807 /* Note: no writeback for these instructions. Bit 25 will always be
6808 zero though (via caller), so the following works OK. */
7ff120b4 6809 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6810 }
6811
6812 /* Should be unreachable. */
6813 return 1;
6814}
6815
34518530
YQ
6816/* Decode shifted register instructions. */
6817
6818static int
6819thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6820 uint16_t insn2, struct regcache *regs,
6821 struct displaced_step_closure *dsc)
6822{
6823 /* PC is only allowed to be used in instruction MOV. */
6824
6825 unsigned int op = bits (insn1, 5, 8);
6826 unsigned int rn = bits (insn1, 0, 3);
6827
6828 if (op == 0x2 && rn == 0xf) /* MOV */
6829 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6830 else
6831 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6832 "dp (shift reg)", dsc);
6833}
6834
6835
6836/* Decode extension register load/store. Exactly the same as
6837 arm_decode_ext_reg_ld_st. */
6838
6839static int
6840thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6841 uint16_t insn2, struct regcache *regs,
6842 struct displaced_step_closure *dsc)
6843{
6844 unsigned int opcode = bits (insn1, 4, 8);
6845
6846 switch (opcode)
6847 {
6848 case 0x04: case 0x05:
6849 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6850 "vfp/neon vmov", dsc);
6851
6852 case 0x08: case 0x0c: /* 01x00 */
6853 case 0x0a: case 0x0e: /* 01x10 */
6854 case 0x12: case 0x16: /* 10x10 */
6855 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6856 "vfp/neon vstm/vpush", dsc);
6857
6858 case 0x09: case 0x0d: /* 01x01 */
6859 case 0x0b: case 0x0f: /* 01x11 */
6860 case 0x13: case 0x17: /* 10x11 */
6861 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6862 "vfp/neon vldm/vpop", dsc);
6863
6864 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6865 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6866 "vstr", dsc);
6867 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6868 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6869 }
6870
6871 /* Should be unreachable. */
6872 return 1;
6873}
6874
cca44b1b 6875static int
12545665 6876arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4 6877 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6878{
6879 unsigned int op1 = bits (insn, 20, 25);
6880 int op = bit (insn, 4);
6881 unsigned int coproc = bits (insn, 8, 11);
cca44b1b
JB
6882
6883 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 6884 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
6885 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6886 && (coproc & 0xe) != 0xa)
6887 /* stc/stc2. */
7ff120b4 6888 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6889 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6890 && (coproc & 0xe) != 0xa)
6891 /* ldc/ldc2 imm/lit. */
7ff120b4 6892 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6893 else if ((op1 & 0x3e) == 0x00)
7ff120b4 6894 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 6895 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 6896 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 6897 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 6898 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 6899 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 6900 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6901 else if ((op1 & 0x30) == 0x20 && !op)
6902 {
6903 if ((coproc & 0xe) == 0xa)
7ff120b4 6904 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 6905 else
7ff120b4 6906 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6907 }
6908 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 6909 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 6910 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 6911 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6912 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 6913 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6914 else if ((op1 & 0x30) == 0x30)
7ff120b4 6915 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 6916 else
7ff120b4 6917 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
6918}
6919
34518530
YQ
6920static int
6921thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6922 uint16_t insn2, struct regcache *regs,
6923 struct displaced_step_closure *dsc)
6924{
6925 unsigned int coproc = bits (insn2, 8, 11);
34518530
YQ
6926 unsigned int bit_5_8 = bits (insn1, 5, 8);
6927 unsigned int bit_9 = bit (insn1, 9);
6928 unsigned int bit_4 = bit (insn1, 4);
34518530
YQ
6929
6930 if (bit_9 == 0)
6931 {
6932 if (bit_5_8 == 2)
6933 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6934 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6935 dsc);
6936 else if (bit_5_8 == 0) /* UNDEFINED. */
6937 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6938 else
6939 {
6940 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6941 if ((coproc & 0xe) == 0xa)
6942 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6943 dsc);
6944 else /* coproc is not 101x. */
6945 {
6946 if (bit_4 == 0) /* STC/STC2. */
6947 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6948 "stc/stc2", dsc);
6949 else /* LDC/LDC2 {literal, immeidate}. */
6950 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6951 regs, dsc);
6952 }
6953 }
6954 }
6955 else
6956 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6957
6958 return 0;
6959}
6960
6961static void
6962install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6963 struct displaced_step_closure *dsc, int rd)
6964{
6965 /* ADR Rd, #imm
6966
6967 Rewrite as:
6968
6969 Preparation: Rd <- PC
6970 Insn: ADD Rd, #imm
6971 Cleanup: Null.
6972 */
6973
6974 /* Rd <- PC */
6975 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6976 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6977}
6978
6979static int
6980thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6981 struct displaced_step_closure *dsc,
6982 int rd, unsigned int imm)
6983{
6984
6985 /* Encoding T2: ADDS Rd, #imm */
6986 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6987
6988 install_pc_relative (gdbarch, regs, dsc, rd);
6989
6990 return 0;
6991}
6992
6993static int
6994thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6995 struct regcache *regs,
6996 struct displaced_step_closure *dsc)
6997{
6998 unsigned int rd = bits (insn, 8, 10);
6999 unsigned int imm8 = bits (insn, 0, 7);
7000
7001 if (debug_displaced)
7002 fprintf_unfiltered (gdb_stdlog,
7003 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7004 rd, imm8, insn);
7005
7006 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7007}
7008
7009static int
7010thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7011 uint16_t insn2, struct regcache *regs,
7012 struct displaced_step_closure *dsc)
7013{
7014 unsigned int rd = bits (insn2, 8, 11);
7015 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7016 extract raw immediate encoding rather than computing immediate. When
7017 generating ADD or SUB instruction, we can simply perform OR operation to
7018 set immediate into ADD. */
7019 unsigned int imm_3_8 = insn2 & 0x70ff;
7020 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7021
7022 if (debug_displaced)
7023 fprintf_unfiltered (gdb_stdlog,
7024 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7025 rd, imm_i, imm_3_8, insn1, insn2);
7026
7027 if (bit (insn1, 7)) /* Encoding T2 */
7028 {
7029 /* Encoding T3: SUB Rd, Rd, #imm */
7030 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7031 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7032 }
7033 else /* Encoding T3 */
7034 {
7035 /* Encoding T3: ADD Rd, Rd, #imm */
7036 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7037 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7038 }
7039 dsc->numinsns = 2;
7040
7041 install_pc_relative (gdbarch, regs, dsc, rd);
7042
7043 return 0;
7044}
7045
7046static int
615234c1 7047thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7048 struct regcache *regs,
7049 struct displaced_step_closure *dsc)
7050{
7051 unsigned int rt = bits (insn1, 8, 10);
7052 unsigned int pc;
7053 int imm8 = (bits (insn1, 0, 7) << 2);
34518530
YQ
7054
7055 /* LDR Rd, #imm8
7056
7057 Rwrite as:
7058
7059 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7060
7061 Insn: LDR R0, [R2, R3];
7062 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7063
7064 if (debug_displaced)
7065 fprintf_unfiltered (gdb_stdlog,
7066 "displaced: copying thumb ldr r%d [pc #%d]\n"
7067 , rt, imm8);
7068
7069 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7070 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7071 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7072 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7073 /* The assembler calculates the required value of the offset from the
7074 Align(PC,4) value of this instruction to the label. */
7075 pc = pc & 0xfffffffc;
7076
7077 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7078 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7079
7080 dsc->rd = rt;
7081 dsc->u.ldst.xfersize = 4;
7082 dsc->u.ldst.rn = 0;
7083 dsc->u.ldst.immed = 0;
7084 dsc->u.ldst.writeback = 0;
7085 dsc->u.ldst.restore_r4 = 0;
7086
7087 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7088
7089 dsc->cleanup = &cleanup_load;
7090
7091 return 0;
7092}
7093
7094/* Copy Thumb cbnz/cbz insruction. */
7095
7096static int
7097thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7098 struct regcache *regs,
7099 struct displaced_step_closure *dsc)
7100{
7101 int non_zero = bit (insn1, 11);
7102 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7103 CORE_ADDR from = dsc->insn_addr;
7104 int rn = bits (insn1, 0, 2);
7105 int rn_val = displaced_read_reg (regs, dsc, rn);
7106
7107 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7108 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7109 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7110 condition is false, let it be, cleanup_branch will do nothing. */
7111 if (dsc->u.branch.cond)
7112 {
7113 dsc->u.branch.cond = INST_AL;
7114 dsc->u.branch.dest = from + 4 + imm5;
7115 }
7116 else
7117 dsc->u.branch.dest = from + 2;
7118
7119 dsc->u.branch.link = 0;
7120 dsc->u.branch.exchange = 0;
7121
7122 if (debug_displaced)
7123 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7124 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7125 rn, rn_val, insn1, dsc->u.branch.dest);
7126
7127 dsc->modinsn[0] = THUMB_NOP;
7128
7129 dsc->cleanup = &cleanup_branch;
7130 return 0;
7131}
7132
7133/* Copy Table Branch Byte/Halfword */
7134static int
7135thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7136 uint16_t insn2, struct regcache *regs,
7137 struct displaced_step_closure *dsc)
7138{
7139 ULONGEST rn_val, rm_val;
7140 int is_tbh = bit (insn2, 4);
7141 CORE_ADDR halfwords = 0;
7142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7143
7144 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7145 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7146
7147 if (is_tbh)
7148 {
7149 gdb_byte buf[2];
7150
7151 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7152 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7153 }
7154 else
7155 {
7156 gdb_byte buf[1];
7157
7158 target_read_memory (rn_val + rm_val, buf, 1);
7159 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7160 }
7161
7162 if (debug_displaced)
7163 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7164 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7165 (unsigned int) rn_val, (unsigned int) rm_val,
7166 (unsigned int) halfwords);
7167
7168 dsc->u.branch.cond = INST_AL;
7169 dsc->u.branch.link = 0;
7170 dsc->u.branch.exchange = 0;
7171 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7172
7173 dsc->cleanup = &cleanup_branch;
7174
7175 return 0;
7176}
7177
7178static void
7179cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7180 struct displaced_step_closure *dsc)
7181{
7182 /* PC <- r7 */
7183 int val = displaced_read_reg (regs, dsc, 7);
7184 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7185
7186 /* r7 <- r8 */
7187 val = displaced_read_reg (regs, dsc, 8);
7188 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7189
7190 /* r8 <- tmp[0] */
7191 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7192
7193}
7194
7195static int
615234c1 7196thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7197 struct regcache *regs,
7198 struct displaced_step_closure *dsc)
7199{
7200 dsc->u.block.regmask = insn1 & 0x00ff;
7201
7202 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7203 to :
7204
7205 (1) register list is full, that is, r0-r7 are used.
7206 Prepare: tmp[0] <- r8
7207
7208 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7209 MOV r8, r7; Move value of r7 to r8;
7210 POP {r7}; Store PC value into r7.
7211
7212 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7213
7214 (2) register list is not full, supposing there are N registers in
7215 register list (except PC, 0 <= N <= 7).
7216 Prepare: for each i, 0 - N, tmp[i] <- ri.
7217
7218 POP {r0, r1, ...., rN};
7219
7220 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7221 from tmp[] properly.
7222 */
7223 if (debug_displaced)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7226 dsc->u.block.regmask, insn1);
7227
7228 if (dsc->u.block.regmask == 0xff)
7229 {
7230 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7231
7232 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7233 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7234 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7235
7236 dsc->numinsns = 3;
7237 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7238 }
7239 else
7240 {
7241 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
bec2ab5a
SM
7242 unsigned int i;
7243 unsigned int new_regmask;
34518530
YQ
7244
7245 for (i = 0; i < num_in_list + 1; i++)
7246 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7247
7248 new_regmask = (1 << (num_in_list + 1)) - 1;
7249
7250 if (debug_displaced)
7251 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7252 "{..., pc}: original reg list %.4x,"
7253 " modified list %.4x\n"),
7254 (int) dsc->u.block.regmask, new_regmask);
7255
7256 dsc->u.block.regmask |= 0x8000;
7257 dsc->u.block.writeback = 0;
7258 dsc->u.block.cond = INST_AL;
7259
7260 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7261
7262 dsc->cleanup = &cleanup_block_load_pc;
7263 }
7264
7265 return 0;
7266}
7267
7268static void
7269thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7270 struct regcache *regs,
7271 struct displaced_step_closure *dsc)
7272{
7273 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7274 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7275 int err = 0;
7276
7277 /* 16-bit thumb instructions. */
7278 switch (op_bit_12_15)
7279 {
7280 /* Shift (imme), add, subtract, move and compare. */
7281 case 0: case 1: case 2: case 3:
7282 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7283 "shift/add/sub/mov/cmp",
7284 dsc);
7285 break;
7286 case 4:
7287 switch (op_bit_10_11)
7288 {
7289 case 0: /* Data-processing */
7290 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7291 "data-processing",
7292 dsc);
7293 break;
7294 case 1: /* Special data instructions and branch and exchange. */
7295 {
7296 unsigned short op = bits (insn1, 7, 9);
7297 if (op == 6 || op == 7) /* BX or BLX */
7298 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7299 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7300 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7301 else
7302 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7303 dsc);
7304 }
7305 break;
7306 default: /* LDR (literal) */
7307 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7308 }
7309 break;
7310 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7311 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7312 break;
7313 case 10:
7314 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7315 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7316 else /* Generate SP-relative address */
7317 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7318 break;
7319 case 11: /* Misc 16-bit instructions */
7320 {
7321 switch (bits (insn1, 8, 11))
7322 {
7323 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7324 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7325 break;
7326 case 12: case 13: /* POP */
7327 if (bit (insn1, 8)) /* PC is in register list. */
7328 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7329 else
7330 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7331 break;
7332 case 15: /* If-Then, and hints */
7333 if (bits (insn1, 0, 3))
7334 /* If-Then makes up to four following instructions conditional.
7335 IT instruction itself is not conditional, so handle it as a
7336 common unmodified instruction. */
7337 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7338 dsc);
7339 else
7340 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7341 break;
7342 default:
7343 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7344 }
7345 }
7346 break;
7347 case 12:
7348 if (op_bit_10_11 < 2) /* Store multiple registers */
7349 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7350 else /* Load multiple registers */
7351 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7352 break;
7353 case 13: /* Conditional branch and supervisor call */
7354 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7355 err = thumb_copy_b (gdbarch, insn1, dsc);
7356 else
7357 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7358 break;
7359 case 14: /* Unconditional branch */
7360 err = thumb_copy_b (gdbarch, insn1, dsc);
7361 break;
7362 default:
7363 err = 1;
7364 }
7365
7366 if (err)
7367 internal_error (__FILE__, __LINE__,
7368 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7369}
7370
7371static int
7372decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7373 uint16_t insn1, uint16_t insn2,
7374 struct regcache *regs,
7375 struct displaced_step_closure *dsc)
7376{
7377 int rt = bits (insn2, 12, 15);
7378 int rn = bits (insn1, 0, 3);
7379 int op1 = bits (insn1, 7, 8);
34518530
YQ
7380
7381 switch (bits (insn1, 5, 6))
7382 {
7383 case 0: /* Load byte and memory hints */
7384 if (rt == 0xf) /* PLD/PLI */
7385 {
7386 if (rn == 0xf)
7387 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7388 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7389 else
7390 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7391 "pli/pld", dsc);
7392 }
7393 else
7394 {
7395 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7396 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7397 1);
7398 else
7399 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7400 "ldrb{reg, immediate}/ldrbt",
7401 dsc);
7402 }
7403
7404 break;
7405 case 1: /* Load halfword and memory hints. */
7406 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7407 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7408 "pld/unalloc memhint", dsc);
7409 else
7410 {
7411 if (rn == 0xf)
7412 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7413 2);
7414 else
7415 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7416 "ldrh/ldrht", dsc);
7417 }
7418 break;
7419 case 2: /* Load word */
7420 {
7421 int insn2_bit_8_11 = bits (insn2, 8, 11);
7422
7423 if (rn == 0xf)
7424 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7425 else if (op1 == 0x1) /* Encoding T3 */
7426 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7427 0, 1);
7428 else /* op1 == 0x0 */
7429 {
7430 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7431 /* LDR (immediate) */
7432 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7433 dsc, bit (insn2, 8), 1);
7434 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7435 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7436 "ldrt", dsc);
7437 else
7438 /* LDR (register) */
7439 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7440 dsc, 0, 0);
7441 }
7442 break;
7443 }
7444 default:
7445 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7446 break;
7447 }
7448 return 0;
7449}
7450
7451static void
7452thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7453 uint16_t insn2, struct regcache *regs,
7454 struct displaced_step_closure *dsc)
7455{
7456 int err = 0;
7457 unsigned short op = bit (insn2, 15);
7458 unsigned int op1 = bits (insn1, 11, 12);
7459
7460 switch (op1)
7461 {
7462 case 1:
7463 {
7464 switch (bits (insn1, 9, 10))
7465 {
7466 case 0:
7467 if (bit (insn1, 6))
7468 {
7469 /* Load/store {dual, execlusive}, table branch. */
7470 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7471 && bits (insn2, 5, 7) == 0)
7472 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7473 dsc);
7474 else
7475 /* PC is not allowed to use in load/store {dual, exclusive}
7476 instructions. */
7477 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7478 "load/store dual/ex", dsc);
7479 }
7480 else /* load/store multiple */
7481 {
7482 switch (bits (insn1, 7, 8))
7483 {
7484 case 0: case 3: /* SRS, RFE */
7485 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7486 "srs/rfe", dsc);
7487 break;
7488 case 1: case 2: /* LDM/STM/PUSH/POP */
7489 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7490 break;
7491 }
7492 }
7493 break;
7494
7495 case 1:
7496 /* Data-processing (shift register). */
7497 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7498 dsc);
7499 break;
7500 default: /* Coprocessor instructions. */
7501 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7502 break;
7503 }
7504 break;
7505 }
7506 case 2: /* op1 = 2 */
7507 if (op) /* Branch and misc control. */
7508 {
7509 if (bit (insn2, 14) /* BLX/BL */
7510 || bit (insn2, 12) /* Unconditional branch */
7511 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7512 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7513 else
7514 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7515 "misc ctrl", dsc);
7516 }
7517 else
7518 {
7519 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7520 {
7521 int op = bits (insn1, 4, 8);
7522 int rn = bits (insn1, 0, 3);
7523 if ((op == 0 || op == 0xa) && rn == 0xf)
7524 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7525 regs, dsc);
7526 else
7527 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7528 "dp/pb", dsc);
7529 }
7530 else /* Data processing (modified immeidate) */
7531 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7532 "dp/mi", dsc);
7533 }
7534 break;
7535 case 3: /* op1 = 3 */
7536 switch (bits (insn1, 9, 10))
7537 {
7538 case 0:
7539 if (bit (insn1, 4))
7540 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7541 regs, dsc);
7542 else /* NEON Load/Store and Store single data item */
7543 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7544 "neon elt/struct load/store",
7545 dsc);
7546 break;
7547 case 1: /* op1 = 3, bits (9, 10) == 1 */
7548 switch (bits (insn1, 7, 8))
7549 {
7550 case 0: case 1: /* Data processing (register) */
7551 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7552 "dp(reg)", dsc);
7553 break;
7554 case 2: /* Multiply and absolute difference */
7555 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7556 "mul/mua/diff", dsc);
7557 break;
7558 case 3: /* Long multiply and divide */
7559 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7560 "lmul/lmua", dsc);
7561 break;
7562 }
7563 break;
7564 default: /* Coprocessor instructions */
7565 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7566 break;
7567 }
7568 break;
7569 default:
7570 err = 1;
7571 }
7572
7573 if (err)
7574 internal_error (__FILE__, __LINE__,
7575 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7576
7577}
7578
b434a28f
YQ
7579static void
7580thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
12545665 7581 struct regcache *regs,
b434a28f
YQ
7582 struct displaced_step_closure *dsc)
7583{
34518530
YQ
7584 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7585 uint16_t insn1
7586 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7587
7588 if (debug_displaced)
7589 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7590 "at %.8lx\n", insn1, (unsigned long) from);
7591
7592 dsc->is_thumb = 1;
7593 dsc->insn_size = thumb_insn_size (insn1);
7594 if (thumb_insn_size (insn1) == 4)
7595 {
7596 uint16_t insn2
7597 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7598 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7599 }
7600 else
7601 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
b434a28f
YQ
7602}
7603
cca44b1b 7604void
b434a28f
YQ
7605arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7606 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
7607 struct displaced_step_closure *dsc)
7608{
7609 int err = 0;
b434a28f
YQ
7610 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7611 uint32_t insn;
cca44b1b
JB
7612
7613 /* Most displaced instructions use a 1-instruction scratch space, so set this
7614 here and override below if/when necessary. */
7615 dsc->numinsns = 1;
7616 dsc->insn_addr = from;
7617 dsc->scratch_base = to;
7618 dsc->cleanup = NULL;
7619 dsc->wrote_to_pc = 0;
7620
b434a28f 7621 if (!displaced_in_arm_mode (regs))
12545665 7622 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
b434a28f 7623
4db71c0b
YQ
7624 dsc->is_thumb = 0;
7625 dsc->insn_size = 4;
b434a28f
YQ
7626 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7627 if (debug_displaced)
7628 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7629 "at %.8lx\n", (unsigned long) insn,
7630 (unsigned long) from);
7631
cca44b1b 7632 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 7633 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
7634 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7635 {
7636 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 7637 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
7638 break;
7639
7640 case 0x4: case 0x5: case 0x6:
7ff120b4 7641 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
7642 break;
7643
7644 case 0x7:
7ff120b4 7645 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
7646 break;
7647
7648 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 7649 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
7650 break;
7651
7652 case 0xc: case 0xd: case 0xe: case 0xf:
12545665 7653 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
cca44b1b
JB
7654 break;
7655 }
7656
7657 if (err)
7658 internal_error (__FILE__, __LINE__,
7659 _("arm_process_displaced_insn: Instruction decode error"));
7660}
7661
7662/* Actually set up the scratch space for a displaced instruction. */
7663
7664void
7665arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7666 CORE_ADDR to, struct displaced_step_closure *dsc)
7667{
7668 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 7669 unsigned int i, len, offset;
cca44b1b 7670 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b 7671 int size = dsc->is_thumb? 2 : 4;
948f8e3d 7672 const gdb_byte *bkp_insn;
cca44b1b 7673
4db71c0b 7674 offset = 0;
cca44b1b
JB
7675 /* Poke modified instruction(s). */
7676 for (i = 0; i < dsc->numinsns; i++)
7677 {
7678 if (debug_displaced)
4db71c0b
YQ
7679 {
7680 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7681 if (size == 4)
7682 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7683 dsc->modinsn[i]);
7684 else if (size == 2)
7685 fprintf_unfiltered (gdb_stdlog, "%.4x",
7686 (unsigned short)dsc->modinsn[i]);
7687
7688 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7689 (unsigned long) to + offset);
7690
7691 }
7692 write_memory_unsigned_integer (to + offset, size,
7693 byte_order_for_code,
cca44b1b 7694 dsc->modinsn[i]);
4db71c0b
YQ
7695 offset += size;
7696 }
7697
7698 /* Choose the correct breakpoint instruction. */
7699 if (dsc->is_thumb)
7700 {
7701 bkp_insn = tdep->thumb_breakpoint;
7702 len = tdep->thumb_breakpoint_size;
7703 }
7704 else
7705 {
7706 bkp_insn = tdep->arm_breakpoint;
7707 len = tdep->arm_breakpoint_size;
cca44b1b
JB
7708 }
7709
7710 /* Put breakpoint afterwards. */
4db71c0b 7711 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
7712
7713 if (debug_displaced)
7714 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7715 paddress (gdbarch, from), paddress (gdbarch, to));
7716}
7717
cca44b1b
JB
7718/* Entry point for cleaning things up after a displaced instruction has been
7719 single-stepped. */
7720
7721void
7722arm_displaced_step_fixup (struct gdbarch *gdbarch,
7723 struct displaced_step_closure *dsc,
7724 CORE_ADDR from, CORE_ADDR to,
7725 struct regcache *regs)
7726{
7727 if (dsc->cleanup)
7728 dsc->cleanup (gdbarch, regs, dsc);
7729
7730 if (!dsc->wrote_to_pc)
4db71c0b
YQ
7731 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7732 dsc->insn_addr + dsc->insn_size);
7733
cca44b1b
JB
7734}
7735
7736#include "bfd-in2.h"
7737#include "libcoff.h"
7738
7739static int
7740gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7741{
9a3c8263 7742 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
9779414d
DJ
7743
7744 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
7745 {
7746 static asymbol *asym;
7747 static combined_entry_type ce;
7748 static struct coff_symbol_struct csym;
7749 static struct bfd fake_bfd;
7750 static bfd_target fake_target;
7751
7752 if (csym.native == NULL)
7753 {
7754 /* Create a fake symbol vector containing a Thumb symbol.
7755 This is solely so that the code in print_insn_little_arm()
7756 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7757 the presence of a Thumb symbol and switch to decoding
7758 Thumb instructions. */
7759
7760 fake_target.flavour = bfd_target_coff_flavour;
7761 fake_bfd.xvec = &fake_target;
7762 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7763 csym.native = &ce;
7764 csym.symbol.the_bfd = &fake_bfd;
7765 csym.symbol.name = "fake";
7766 asym = (asymbol *) & csym;
7767 }
7768
7769 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7770 info->symbols = &asym;
7771 }
7772 else
7773 info->symbols = NULL;
7774
7775 if (info->endian == BFD_ENDIAN_BIG)
7776 return print_insn_big_arm (memaddr, info);
7777 else
7778 return print_insn_little_arm (memaddr, info);
7779}
7780
7781/* The following define instruction sequences that will cause ARM
7782 cpu's to take an undefined instruction trap. These are used to
7783 signal a breakpoint to GDB.
7784
7785 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7786 modes. A different instruction is required for each mode. The ARM
7787 cpu's can also be big or little endian. Thus four different
7788 instructions are needed to support all cases.
7789
7790 Note: ARMv4 defines several new instructions that will take the
7791 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7792 not in fact add the new instructions. The new undefined
7793 instructions in ARMv4 are all instructions that had no defined
7794 behaviour in earlier chips. There is no guarantee that they will
7795 raise an exception, but may be treated as NOP's. In practice, it
7796 may only safe to rely on instructions matching:
7797
7798 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7799 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7800 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7801
0963b4bd 7802 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7803 following use a condition predicate of ALWAYS so it is always TRUE.
7804
7805 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7806 and NetBSD all use a software interrupt rather than an undefined
7807 instruction to force a trap. This can be handled by by the
7808 abi-specific code during establishment of the gdbarch vector. */
7809
7810#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7811#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7812#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7813#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7814
948f8e3d
PA
7815static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7816static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7817static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7818static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
cca44b1b 7819
cd6c3b4f
YQ
7820/* Implement the breakpoint_kind_from_pc gdbarch method. */
7821
d19280ad
YQ
7822static int
7823arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cca44b1b
JB
7824{
7825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7826 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7827
9779414d 7828 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7829 {
7830 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7831
7832 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7833 check whether we are replacing a 32-bit instruction. */
7834 if (tdep->thumb2_breakpoint != NULL)
7835 {
7836 gdb_byte buf[2];
d19280ad 7837
177321bd
DJ
7838 if (target_read_memory (*pcptr, buf, 2) == 0)
7839 {
7840 unsigned short inst1;
d19280ad 7841
177321bd 7842 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
db24da6d 7843 if (thumb_insn_size (inst1) == 4)
d19280ad 7844 return ARM_BP_KIND_THUMB2;
177321bd
DJ
7845 }
7846 }
7847
d19280ad 7848 return ARM_BP_KIND_THUMB;
cca44b1b
JB
7849 }
7850 else
d19280ad
YQ
7851 return ARM_BP_KIND_ARM;
7852
7853}
7854
cd6c3b4f
YQ
7855/* Implement the sw_breakpoint_from_kind gdbarch method. */
7856
d19280ad
YQ
7857static const gdb_byte *
7858arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7859{
7860 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7861
7862 switch (kind)
cca44b1b 7863 {
d19280ad
YQ
7864 case ARM_BP_KIND_ARM:
7865 *size = tdep->arm_breakpoint_size;
cca44b1b 7866 return tdep->arm_breakpoint;
d19280ad
YQ
7867 case ARM_BP_KIND_THUMB:
7868 *size = tdep->thumb_breakpoint_size;
7869 return tdep->thumb_breakpoint;
7870 case ARM_BP_KIND_THUMB2:
7871 *size = tdep->thumb2_breakpoint_size;
7872 return tdep->thumb2_breakpoint;
7873 default:
7874 gdb_assert_not_reached ("unexpected arm breakpoint kind");
cca44b1b
JB
7875 }
7876}
7877
833b7ab5
YQ
7878/* Implement the breakpoint_kind_from_current_state gdbarch method. */
7879
7880static int
7881arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7882 struct regcache *regcache,
7883 CORE_ADDR *pcptr)
7884{
7885 gdb_byte buf[4];
7886
7887 /* Check the memory pointed by PC is readable. */
7888 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7889 {
7890 struct arm_get_next_pcs next_pcs_ctx;
7891 CORE_ADDR pc;
7892 int i;
7893 VEC (CORE_ADDR) *next_pcs = NULL;
7894 struct cleanup *old_chain
7895 = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
7896
7897 arm_get_next_pcs_ctor (&next_pcs_ctx,
7898 &arm_get_next_pcs_ops,
7899 gdbarch_byte_order (gdbarch),
7900 gdbarch_byte_order_for_code (gdbarch),
7901 0,
7902 regcache);
7903
7904 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7905
7906 /* If MEMADDR is the next instruction of current pc, do the
7907 software single step computation, and get the thumb mode by
7908 the destination address. */
7909 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
7910 {
7911 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7912 {
7913 do_cleanups (old_chain);
7914
7915 if (IS_THUMB_ADDR (pc))
7916 {
7917 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7918 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7919 }
7920 else
7921 return ARM_BP_KIND_ARM;
7922 }
7923 }
7924
7925 do_cleanups (old_chain);
7926 }
7927
7928 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7929}
7930
cca44b1b
JB
7931/* Extract from an array REGBUF containing the (raw) register state a
7932 function return value of type TYPE, and copy that, in virtual
7933 format, into VALBUF. */
7934
7935static void
7936arm_extract_return_value (struct type *type, struct regcache *regs,
7937 gdb_byte *valbuf)
7938{
7939 struct gdbarch *gdbarch = get_regcache_arch (regs);
7940 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7941
7942 if (TYPE_CODE_FLT == TYPE_CODE (type))
7943 {
7944 switch (gdbarch_tdep (gdbarch)->fp_model)
7945 {
7946 case ARM_FLOAT_FPA:
7947 {
7948 /* The value is in register F0 in internal format. We need to
7949 extract the raw value and then convert it to the desired
7950 internal type. */
7951 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7952
7953 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7954 convert_from_extended (floatformat_from_type (type), tmpbuf,
7955 valbuf, gdbarch_byte_order (gdbarch));
7956 }
7957 break;
7958
7959 case ARM_FLOAT_SOFT_FPA:
7960 case ARM_FLOAT_SOFT_VFP:
7961 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7962 not using the VFP ABI code. */
7963 case ARM_FLOAT_VFP:
7964 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7965 if (TYPE_LENGTH (type) > 4)
7966 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7967 valbuf + INT_REGISTER_SIZE);
7968 break;
7969
7970 default:
0963b4bd
MS
7971 internal_error (__FILE__, __LINE__,
7972 _("arm_extract_return_value: "
7973 "Floating point model not supported"));
cca44b1b
JB
7974 break;
7975 }
7976 }
7977 else if (TYPE_CODE (type) == TYPE_CODE_INT
7978 || TYPE_CODE (type) == TYPE_CODE_CHAR
7979 || TYPE_CODE (type) == TYPE_CODE_BOOL
7980 || TYPE_CODE (type) == TYPE_CODE_PTR
7981 || TYPE_CODE (type) == TYPE_CODE_REF
7982 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7983 {
b021a221
MS
7984 /* If the type is a plain integer, then the access is
7985 straight-forward. Otherwise we have to play around a bit
7986 more. */
cca44b1b
JB
7987 int len = TYPE_LENGTH (type);
7988 int regno = ARM_A1_REGNUM;
7989 ULONGEST tmp;
7990
7991 while (len > 0)
7992 {
7993 /* By using store_unsigned_integer we avoid having to do
7994 anything special for small big-endian values. */
7995 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7996 store_unsigned_integer (valbuf,
7997 (len > INT_REGISTER_SIZE
7998 ? INT_REGISTER_SIZE : len),
7999 byte_order, tmp);
8000 len -= INT_REGISTER_SIZE;
8001 valbuf += INT_REGISTER_SIZE;
8002 }
8003 }
8004 else
8005 {
8006 /* For a structure or union the behaviour is as if the value had
8007 been stored to word-aligned memory and then loaded into
8008 registers with 32-bit load instruction(s). */
8009 int len = TYPE_LENGTH (type);
8010 int regno = ARM_A1_REGNUM;
8011 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8012
8013 while (len > 0)
8014 {
8015 regcache_cooked_read (regs, regno++, tmpbuf);
8016 memcpy (valbuf, tmpbuf,
8017 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8018 len -= INT_REGISTER_SIZE;
8019 valbuf += INT_REGISTER_SIZE;
8020 }
8021 }
8022}
8023
8024
8025/* Will a function return an aggregate type in memory or in a
8026 register? Return 0 if an aggregate type can be returned in a
8027 register, 1 if it must be returned in memory. */
8028
8029static int
8030arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8031{
cca44b1b
JB
8032 enum type_code code;
8033
f168693b 8034 type = check_typedef (type);
cca44b1b 8035
b13c8ab2
YQ
8036 /* Simple, non-aggregate types (ie not including vectors and
8037 complex) are always returned in a register (or registers). */
8038 code = TYPE_CODE (type);
8039 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8040 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8041 return 0;
cca44b1b 8042
c4312b19
YQ
8043 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8044 {
8045 /* Vector values should be returned using ARM registers if they
8046 are not over 16 bytes. */
8047 return (TYPE_LENGTH (type) > 16);
8048 }
8049
b13c8ab2 8050 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
cca44b1b 8051 {
b13c8ab2
YQ
8052 /* The AAPCS says all aggregates not larger than a word are returned
8053 in a register. */
8054 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8055 return 0;
8056
cca44b1b
JB
8057 return 1;
8058 }
b13c8ab2
YQ
8059 else
8060 {
8061 int nRc;
cca44b1b 8062
b13c8ab2
YQ
8063 /* All aggregate types that won't fit in a register must be returned
8064 in memory. */
8065 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8066 return 1;
cca44b1b 8067
b13c8ab2
YQ
8068 /* In the ARM ABI, "integer" like aggregate types are returned in
8069 registers. For an aggregate type to be integer like, its size
8070 must be less than or equal to INT_REGISTER_SIZE and the
8071 offset of each addressable subfield must be zero. Note that bit
8072 fields are not addressable, and all addressable subfields of
8073 unions always start at offset zero.
cca44b1b 8074
b13c8ab2
YQ
8075 This function is based on the behaviour of GCC 2.95.1.
8076 See: gcc/arm.c: arm_return_in_memory() for details.
cca44b1b 8077
b13c8ab2
YQ
8078 Note: All versions of GCC before GCC 2.95.2 do not set up the
8079 parameters correctly for a function returning the following
8080 structure: struct { float f;}; This should be returned in memory,
8081 not a register. Richard Earnshaw sent me a patch, but I do not
8082 know of any way to detect if a function like the above has been
8083 compiled with the correct calling convention. */
8084
8085 /* Assume all other aggregate types can be returned in a register.
8086 Run a check for structures, unions and arrays. */
8087 nRc = 0;
67255d04 8088
b13c8ab2
YQ
8089 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8090 {
8091 int i;
8092 /* Need to check if this struct/union is "integer" like. For
8093 this to be true, its size must be less than or equal to
8094 INT_REGISTER_SIZE and the offset of each addressable
8095 subfield must be zero. Note that bit fields are not
8096 addressable, and unions always start at offset zero. If any
8097 of the subfields is a floating point type, the struct/union
8098 cannot be an integer type. */
8099
8100 /* For each field in the object, check:
8101 1) Is it FP? --> yes, nRc = 1;
8102 2) Is it addressable (bitpos != 0) and
8103 not packed (bitsize == 0)?
8104 --> yes, nRc = 1
8105 */
8106
8107 for (i = 0; i < TYPE_NFIELDS (type); i++)
67255d04 8108 {
b13c8ab2
YQ
8109 enum type_code field_type_code;
8110
8111 field_type_code
8112 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8113 i)));
8114
8115 /* Is it a floating point type field? */
8116 if (field_type_code == TYPE_CODE_FLT)
67255d04
RE
8117 {
8118 nRc = 1;
8119 break;
8120 }
b13c8ab2
YQ
8121
8122 /* If bitpos != 0, then we have to care about it. */
8123 if (TYPE_FIELD_BITPOS (type, i) != 0)
8124 {
8125 /* Bitfields are not addressable. If the field bitsize is
8126 zero, then the field is not packed. Hence it cannot be
8127 a bitfield or any other packed type. */
8128 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8129 {
8130 nRc = 1;
8131 break;
8132 }
8133 }
67255d04
RE
8134 }
8135 }
67255d04 8136
b13c8ab2
YQ
8137 return nRc;
8138 }
67255d04
RE
8139}
8140
34e8f22d
RE
8141/* Write into appropriate registers a function return value of type
8142 TYPE, given in virtual format. */
8143
8144static void
b508a996 8145arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 8146 const gdb_byte *valbuf)
34e8f22d 8147{
be8626e0 8148 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 8149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 8150
34e8f22d
RE
8151 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8152 {
e362b510 8153 gdb_byte buf[MAX_REGISTER_SIZE];
34e8f22d 8154
be8626e0 8155 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
8156 {
8157 case ARM_FLOAT_FPA:
8158
be8626e0
MD
8159 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8160 gdbarch_byte_order (gdbarch));
b508a996 8161 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
8162 break;
8163
fd50bc42 8164 case ARM_FLOAT_SOFT_FPA:
08216dd7 8165 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
8166 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8167 not using the VFP ABI code. */
8168 case ARM_FLOAT_VFP:
b508a996
RE
8169 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8170 if (TYPE_LENGTH (type) > 4)
8171 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 8172 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
8173 break;
8174
8175 default:
9b20d036
MS
8176 internal_error (__FILE__, __LINE__,
8177 _("arm_store_return_value: Floating "
8178 "point model not supported"));
08216dd7
RE
8179 break;
8180 }
34e8f22d 8181 }
b508a996
RE
8182 else if (TYPE_CODE (type) == TYPE_CODE_INT
8183 || TYPE_CODE (type) == TYPE_CODE_CHAR
8184 || TYPE_CODE (type) == TYPE_CODE_BOOL
8185 || TYPE_CODE (type) == TYPE_CODE_PTR
8186 || TYPE_CODE (type) == TYPE_CODE_REF
8187 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8188 {
8189 if (TYPE_LENGTH (type) <= 4)
8190 {
8191 /* Values of one word or less are zero/sign-extended and
8192 returned in r0. */
7a5ea0d4 8193 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8194 LONGEST val = unpack_long (type, valbuf);
8195
e17a4113 8196 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
8197 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8198 }
8199 else
8200 {
8201 /* Integral values greater than one word are stored in consecutive
8202 registers starting with r0. This will always be a multiple of
8203 the regiser size. */
8204 int len = TYPE_LENGTH (type);
8205 int regno = ARM_A1_REGNUM;
8206
8207 while (len > 0)
8208 {
8209 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
8210 len -= INT_REGISTER_SIZE;
8211 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8212 }
8213 }
8214 }
34e8f22d 8215 else
b508a996
RE
8216 {
8217 /* For a structure or union the behaviour is as if the value had
8218 been stored to word-aligned memory and then loaded into
8219 registers with 32-bit load instruction(s). */
8220 int len = TYPE_LENGTH (type);
8221 int regno = ARM_A1_REGNUM;
7a5ea0d4 8222 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8223
8224 while (len > 0)
8225 {
8226 memcpy (tmpbuf, valbuf,
7a5ea0d4 8227 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 8228 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
8229 len -= INT_REGISTER_SIZE;
8230 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8231 }
8232 }
34e8f22d
RE
8233}
8234
2af48f68
PB
8235
8236/* Handle function return values. */
8237
8238static enum return_value_convention
6a3a010b 8239arm_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
8240 struct type *valtype, struct regcache *regcache,
8241 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 8242{
7c00367c 8243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 8244 struct type *func_type = function ? value_type (function) : NULL;
90445bd3
DJ
8245 enum arm_vfp_cprc_base_type vfp_base_type;
8246 int vfp_base_count;
8247
8248 if (arm_vfp_abi_for_function (gdbarch, func_type)
8249 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8250 {
8251 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8252 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8253 int i;
8254 for (i = 0; i < vfp_base_count; i++)
8255 {
58d6951d
DJ
8256 if (reg_char == 'q')
8257 {
8258 if (writebuf)
8259 arm_neon_quad_write (gdbarch, regcache, i,
8260 writebuf + i * unit_length);
8261
8262 if (readbuf)
8263 arm_neon_quad_read (gdbarch, regcache, i,
8264 readbuf + i * unit_length);
8265 }
8266 else
8267 {
8268 char name_buf[4];
8269 int regnum;
8270
8c042590 8271 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
58d6951d
DJ
8272 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8273 strlen (name_buf));
8274 if (writebuf)
8275 regcache_cooked_write (regcache, regnum,
8276 writebuf + i * unit_length);
8277 if (readbuf)
8278 regcache_cooked_read (regcache, regnum,
8279 readbuf + i * unit_length);
8280 }
90445bd3
DJ
8281 }
8282 return RETURN_VALUE_REGISTER_CONVENTION;
8283 }
7c00367c 8284
2af48f68
PB
8285 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8286 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8287 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8288 {
7c00367c
MK
8289 if (tdep->struct_return == pcc_struct_return
8290 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
8291 return RETURN_VALUE_STRUCT_CONVENTION;
8292 }
b13c8ab2
YQ
8293 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8294 {
8295 if (arm_return_in_memory (gdbarch, valtype))
8296 return RETURN_VALUE_STRUCT_CONVENTION;
8297 }
7052e42c 8298
2af48f68
PB
8299 if (writebuf)
8300 arm_store_return_value (valtype, regcache, writebuf);
8301
8302 if (readbuf)
8303 arm_extract_return_value (valtype, regcache, readbuf);
8304
8305 return RETURN_VALUE_REGISTER_CONVENTION;
8306}
8307
8308
9df628e0 8309static int
60ade65d 8310arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 8311{
e17a4113
UW
8312 struct gdbarch *gdbarch = get_frame_arch (frame);
8313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 8315 CORE_ADDR jb_addr;
e362b510 8316 gdb_byte buf[INT_REGISTER_SIZE];
9df628e0 8317
60ade65d 8318 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
8319
8320 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 8321 INT_REGISTER_SIZE))
9df628e0
RE
8322 return 0;
8323
e17a4113 8324 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
8325 return 1;
8326}
8327
faa95490
DJ
8328/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8329 return the target PC. Otherwise return 0. */
c906108c
SS
8330
8331CORE_ADDR
52f729a7 8332arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 8333{
2c02bd72 8334 const char *name;
faa95490 8335 int namelen;
c906108c
SS
8336 CORE_ADDR start_addr;
8337
8338 /* Find the starting address and name of the function containing the PC. */
8339 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
80d8d390
YQ
8340 {
8341 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8342 check here. */
8343 start_addr = arm_skip_bx_reg (frame, pc);
8344 if (start_addr != 0)
8345 return start_addr;
8346
8347 return 0;
8348 }
c906108c 8349
faa95490
DJ
8350 /* If PC is in a Thumb call or return stub, return the address of the
8351 target PC, which is in a register. The thunk functions are called
8352 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
8353 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8354 functions, named __ARM_call_via_r[0-7]. */
61012eef
GB
8355 if (startswith (name, "_call_via_")
8356 || startswith (name, "__ARM_call_via_"))
c906108c 8357 {
ed9a39eb
JM
8358 /* Use the name suffix to determine which register contains the
8359 target PC. */
c5aa993b
JM
8360 static char *table[15] =
8361 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8362 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8363 };
c906108c 8364 int regno;
faa95490 8365 int offset = strlen (name) - 2;
c906108c
SS
8366
8367 for (regno = 0; regno <= 14; regno++)
faa95490 8368 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 8369 return get_frame_register_unsigned (frame, regno);
c906108c 8370 }
ed9a39eb 8371
faa95490
DJ
8372 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8373 non-interworking calls to foo. We could decode the stubs
8374 to find the target but it's easier to use the symbol table. */
8375 namelen = strlen (name);
8376 if (name[0] == '_' && name[1] == '_'
8377 && ((namelen > 2 + strlen ("_from_thumb")
61012eef 8378 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
faa95490 8379 || (namelen > 2 + strlen ("_from_arm")
61012eef 8380 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
faa95490
DJ
8381 {
8382 char *target_name;
8383 int target_len = namelen - 2;
3b7344d5 8384 struct bound_minimal_symbol minsym;
faa95490
DJ
8385 struct objfile *objfile;
8386 struct obj_section *sec;
8387
8388 if (name[namelen - 1] == 'b')
8389 target_len -= strlen ("_from_thumb");
8390 else
8391 target_len -= strlen ("_from_arm");
8392
224c3ddb 8393 target_name = (char *) alloca (target_len + 1);
faa95490
DJ
8394 memcpy (target_name, name + 2, target_len);
8395 target_name[target_len] = '\0';
8396
8397 sec = find_pc_section (pc);
8398 objfile = (sec == NULL) ? NULL : sec->objfile;
8399 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
3b7344d5 8400 if (minsym.minsym != NULL)
77e371c0 8401 return BMSYMBOL_VALUE_ADDRESS (minsym);
faa95490
DJ
8402 else
8403 return 0;
8404 }
8405
c5aa993b 8406 return 0; /* not a stub */
c906108c
SS
8407}
8408
afd7eef0
RE
8409static void
8410set_arm_command (char *args, int from_tty)
8411{
edefbb7c
AC
8412 printf_unfiltered (_("\
8413\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
8414 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8415}
8416
8417static void
8418show_arm_command (char *args, int from_tty)
8419{
26304000 8420 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
8421}
8422
28e97307
DJ
8423static void
8424arm_update_current_architecture (void)
fd50bc42 8425{
28e97307 8426 struct gdbarch_info info;
fd50bc42 8427
28e97307 8428 /* If the current architecture is not ARM, we have nothing to do. */
f5656ead 8429 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
28e97307 8430 return;
fd50bc42 8431
28e97307
DJ
8432 /* Update the architecture. */
8433 gdbarch_info_init (&info);
fd50bc42 8434
28e97307 8435 if (!gdbarch_update_p (info))
9b20d036 8436 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
8437}
8438
8439static void
8440set_fp_model_sfunc (char *args, int from_tty,
8441 struct cmd_list_element *c)
8442{
570dc176 8443 int fp_model;
fd50bc42
RE
8444
8445 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8446 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8447 {
aead7601 8448 arm_fp_model = (enum arm_float_model) fp_model;
fd50bc42
RE
8449 break;
8450 }
8451
8452 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 8453 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
8454 current_fp_model);
8455
28e97307 8456 arm_update_current_architecture ();
fd50bc42
RE
8457}
8458
8459static void
08546159
AC
8460show_fp_model (struct ui_file *file, int from_tty,
8461 struct cmd_list_element *c, const char *value)
fd50bc42 8462{
f5656ead 8463 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
fd50bc42 8464
28e97307 8465 if (arm_fp_model == ARM_FLOAT_AUTO
f5656ead 8466 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8467 fprintf_filtered (file, _("\
8468The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8469 fp_model_strings[tdep->fp_model]);
8470 else
8471 fprintf_filtered (file, _("\
8472The current ARM floating point model is \"%s\".\n"),
8473 fp_model_strings[arm_fp_model]);
8474}
8475
8476static void
8477arm_set_abi (char *args, int from_tty,
8478 struct cmd_list_element *c)
8479{
570dc176 8480 int arm_abi;
28e97307
DJ
8481
8482 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8483 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8484 {
aead7601 8485 arm_abi_global = (enum arm_abi_kind) arm_abi;
28e97307
DJ
8486 break;
8487 }
8488
8489 if (arm_abi == ARM_ABI_LAST)
8490 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8491 arm_abi_string);
8492
8493 arm_update_current_architecture ();
8494}
8495
8496static void
8497arm_show_abi (struct ui_file *file, int from_tty,
8498 struct cmd_list_element *c, const char *value)
8499{
f5656ead 8500 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
28e97307
DJ
8501
8502 if (arm_abi_global == ARM_ABI_AUTO
f5656ead 8503 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8504 fprintf_filtered (file, _("\
8505The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8506 arm_abi_strings[tdep->arm_abi]);
8507 else
8508 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8509 arm_abi_string);
fd50bc42
RE
8510}
8511
0428b8f5
DJ
8512static void
8513arm_show_fallback_mode (struct ui_file *file, int from_tty,
8514 struct cmd_list_element *c, const char *value)
8515{
0963b4bd
MS
8516 fprintf_filtered (file,
8517 _("The current execution mode assumed "
8518 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
8519 arm_fallback_mode_string);
8520}
8521
8522static void
8523arm_show_force_mode (struct ui_file *file, int from_tty,
8524 struct cmd_list_element *c, const char *value)
8525{
0963b4bd
MS
8526 fprintf_filtered (file,
8527 _("The current execution mode assumed "
8528 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
8529 arm_force_mode_string);
8530}
8531
afd7eef0
RE
8532/* If the user changes the register disassembly style used for info
8533 register and other commands, we have to also switch the style used
8534 in opcodes for disassembly output. This function is run in the "set
8535 arm disassembly" command, and does that. */
bc90b915
FN
8536
8537static void
afd7eef0 8538set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
8539 struct cmd_list_element *c)
8540{
afd7eef0 8541 set_disassembly_style ();
bc90b915
FN
8542}
8543\f
966fbf70 8544/* Return the ARM register name corresponding to register I. */
a208b0cb 8545static const char *
d93859e2 8546arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 8547{
58d6951d
DJ
8548 const int num_regs = gdbarch_num_regs (gdbarch);
8549
8550 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8551 && i >= num_regs && i < num_regs + 32)
8552 {
8553 static const char *const vfp_pseudo_names[] = {
8554 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8555 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8556 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8557 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8558 };
8559
8560 return vfp_pseudo_names[i - num_regs];
8561 }
8562
8563 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8564 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8565 {
8566 static const char *const neon_pseudo_names[] = {
8567 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8568 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8569 };
8570
8571 return neon_pseudo_names[i - num_regs - 32];
8572 }
8573
ff6f572f
DJ
8574 if (i >= ARRAY_SIZE (arm_register_names))
8575 /* These registers are only supported on targets which supply
8576 an XML description. */
8577 return "";
8578
966fbf70
RE
8579 return arm_register_names[i];
8580}
8581
bc90b915 8582static void
afd7eef0 8583set_disassembly_style (void)
bc90b915 8584{
123dc839 8585 int current;
bc90b915 8586
123dc839
DJ
8587 /* Find the style that the user wants. */
8588 for (current = 0; current < num_disassembly_options; current++)
8589 if (disassembly_style == valid_disassembly_styles[current])
8590 break;
8591 gdb_assert (current < num_disassembly_options);
bc90b915 8592
94c30b78 8593 /* Synchronize the disassembler. */
bc90b915
FN
8594 set_arm_regname_option (current);
8595}
8596
082fc60d
RE
8597/* Test whether the coff symbol specific value corresponds to a Thumb
8598 function. */
8599
8600static int
8601coff_sym_is_thumb (int val)
8602{
f8bf5763
PM
8603 return (val == C_THUMBEXT
8604 || val == C_THUMBSTAT
8605 || val == C_THUMBEXTFUNC
8606 || val == C_THUMBSTATFUNC
8607 || val == C_THUMBLABEL);
082fc60d
RE
8608}
8609
8610/* arm_coff_make_msymbol_special()
8611 arm_elf_make_msymbol_special()
8612
8613 These functions test whether the COFF or ELF symbol corresponds to
8614 an address in thumb code, and set a "special" bit in a minimal
8615 symbol to indicate that it does. */
8616
34e8f22d 8617static void
082fc60d
RE
8618arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8619{
39d911fc
TP
8620 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8621
8622 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
467d42c4 8623 == ST_BRANCH_TO_THUMB)
082fc60d
RE
8624 MSYMBOL_SET_SPECIAL (msym);
8625}
8626
34e8f22d 8627static void
082fc60d
RE
8628arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8629{
8630 if (coff_sym_is_thumb (val))
8631 MSYMBOL_SET_SPECIAL (msym);
8632}
8633
60c5725c 8634static void
c1bd65d0 8635arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c 8636{
9a3c8263 8637 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
60c5725c
DJ
8638 unsigned int i;
8639
8640 for (i = 0; i < objfile->obfd->section_count; i++)
8641 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8642}
8643
8644static void
8645arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8646 asymbol *sym)
8647{
8648 const char *name = bfd_asymbol_name (sym);
8649 struct arm_per_objfile *data;
8650 VEC(arm_mapping_symbol_s) **map_p;
8651 struct arm_mapping_symbol new_map_sym;
8652
8653 gdb_assert (name[0] == '$');
8654 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8655 return;
8656
9a3c8263
SM
8657 data = (struct arm_per_objfile *) objfile_data (objfile,
8658 arm_objfile_data_key);
60c5725c
DJ
8659 if (data == NULL)
8660 {
8661 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8662 struct arm_per_objfile);
8663 set_objfile_data (objfile, arm_objfile_data_key, data);
8664 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8665 objfile->obfd->section_count,
8666 VEC(arm_mapping_symbol_s) *);
8667 }
8668 map_p = &data->section_maps[bfd_get_section (sym)->index];
8669
8670 new_map_sym.value = sym->value;
8671 new_map_sym.type = name[1];
8672
8673 /* Assume that most mapping symbols appear in order of increasing
8674 value. If they were randomly distributed, it would be faster to
8675 always push here and then sort at first use. */
8676 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8677 {
8678 struct arm_mapping_symbol *prev_map_sym;
8679
8680 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8681 if (prev_map_sym->value >= sym->value)
8682 {
8683 unsigned int idx;
8684 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8685 arm_compare_mapping_symbols);
8686 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8687 return;
8688 }
8689 }
8690
8691 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8692}
8693
756fe439 8694static void
61a1198a 8695arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 8696{
9779414d 8697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 8698 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
8699
8700 /* If necessary, set the T bit. */
8701 if (arm_apcs_32)
8702 {
9779414d 8703 ULONGEST val, t_bit;
61a1198a 8704 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
8705 t_bit = arm_psr_thumb_bit (gdbarch);
8706 if (arm_pc_is_thumb (gdbarch, pc))
8707 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8708 val | t_bit);
756fe439 8709 else
61a1198a 8710 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 8711 val & ~t_bit);
756fe439
DJ
8712 }
8713}
123dc839 8714
58d6951d
DJ
8715/* Read the contents of a NEON quad register, by reading from two
8716 double registers. This is used to implement the quad pseudo
8717 registers, and for argument passing in case the quad registers are
8718 missing; vectors are passed in quad registers when using the VFP
8719 ABI, even if a NEON unit is not present. REGNUM is the index of
8720 the quad register, in [0, 15]. */
8721
05d1431c 8722static enum register_status
58d6951d
DJ
8723arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8724 int regnum, gdb_byte *buf)
8725{
8726 char name_buf[4];
8727 gdb_byte reg_buf[8];
8728 int offset, double_regnum;
05d1431c 8729 enum register_status status;
58d6951d 8730
8c042590 8731 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8732 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8733 strlen (name_buf));
8734
8735 /* d0 is always the least significant half of q0. */
8736 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8737 offset = 8;
8738 else
8739 offset = 0;
8740
05d1431c
PA
8741 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8742 if (status != REG_VALID)
8743 return status;
58d6951d
DJ
8744 memcpy (buf + offset, reg_buf, 8);
8745
8746 offset = 8 - offset;
05d1431c
PA
8747 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8748 if (status != REG_VALID)
8749 return status;
58d6951d 8750 memcpy (buf + offset, reg_buf, 8);
05d1431c
PA
8751
8752 return REG_VALID;
58d6951d
DJ
8753}
8754
05d1431c 8755static enum register_status
58d6951d
DJ
8756arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8757 int regnum, gdb_byte *buf)
8758{
8759 const int num_regs = gdbarch_num_regs (gdbarch);
8760 char name_buf[4];
8761 gdb_byte reg_buf[8];
8762 int offset, double_regnum;
8763
8764 gdb_assert (regnum >= num_regs);
8765 regnum -= num_regs;
8766
8767 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8768 /* Quad-precision register. */
05d1431c 8769 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
58d6951d
DJ
8770 else
8771 {
05d1431c
PA
8772 enum register_status status;
8773
58d6951d
DJ
8774 /* Single-precision register. */
8775 gdb_assert (regnum < 32);
8776
8777 /* s0 is always the least significant half of d0. */
8778 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8779 offset = (regnum & 1) ? 0 : 4;
8780 else
8781 offset = (regnum & 1) ? 4 : 0;
8782
8c042590 8783 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8784 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8785 strlen (name_buf));
8786
05d1431c
PA
8787 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8788 if (status == REG_VALID)
8789 memcpy (buf, reg_buf + offset, 4);
8790 return status;
58d6951d
DJ
8791 }
8792}
8793
8794/* Store the contents of BUF to a NEON quad register, by writing to
8795 two double registers. This is used to implement the quad pseudo
8796 registers, and for argument passing in case the quad registers are
8797 missing; vectors are passed in quad registers when using the VFP
8798 ABI, even if a NEON unit is not present. REGNUM is the index
8799 of the quad register, in [0, 15]. */
8800
8801static void
8802arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8803 int regnum, const gdb_byte *buf)
8804{
8805 char name_buf[4];
58d6951d
DJ
8806 int offset, double_regnum;
8807
8c042590 8808 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8809 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8810 strlen (name_buf));
8811
8812 /* d0 is always the least significant half of q0. */
8813 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8814 offset = 8;
8815 else
8816 offset = 0;
8817
8818 regcache_raw_write (regcache, double_regnum, buf + offset);
8819 offset = 8 - offset;
8820 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8821}
8822
8823static void
8824arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8825 int regnum, const gdb_byte *buf)
8826{
8827 const int num_regs = gdbarch_num_regs (gdbarch);
8828 char name_buf[4];
8829 gdb_byte reg_buf[8];
8830 int offset, double_regnum;
8831
8832 gdb_assert (regnum >= num_regs);
8833 regnum -= num_regs;
8834
8835 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8836 /* Quad-precision register. */
8837 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8838 else
8839 {
8840 /* Single-precision register. */
8841 gdb_assert (regnum < 32);
8842
8843 /* s0 is always the least significant half of d0. */
8844 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8845 offset = (regnum & 1) ? 0 : 4;
8846 else
8847 offset = (regnum & 1) ? 4 : 0;
8848
8c042590 8849 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8850 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8851 strlen (name_buf));
8852
8853 regcache_raw_read (regcache, double_regnum, reg_buf);
8854 memcpy (reg_buf + offset, buf, 4);
8855 regcache_raw_write (regcache, double_regnum, reg_buf);
8856 }
8857}
8858
123dc839
DJ
8859static struct value *
8860value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8861{
9a3c8263 8862 const int *reg_p = (const int *) baton;
123dc839
DJ
8863 return value_of_register (*reg_p, frame);
8864}
97e03143 8865\f
70f80edf
JT
8866static enum gdb_osabi
8867arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8868{
2af48f68 8869 unsigned int elfosabi;
70f80edf 8870 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8871
70f80edf 8872 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8873
28e97307
DJ
8874 if (elfosabi == ELFOSABI_ARM)
8875 /* GNU tools use this value. Check note sections in this case,
8876 as well. */
8877 bfd_map_over_sections (abfd,
8878 generic_elf_osabi_sniff_abi_tag_sections,
8879 &osabi);
97e03143 8880
28e97307 8881 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8882 return osabi;
97e03143
RE
8883}
8884
54483882
YQ
8885static int
8886arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8887 struct reggroup *group)
8888{
2c291032
YQ
8889 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8890 this, FPS register belongs to save_regroup, restore_reggroup, and
8891 all_reggroup, of course. */
54483882 8892 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8893 return (group == float_reggroup
8894 || group == save_reggroup
8895 || group == restore_reggroup
8896 || group == all_reggroup);
54483882
YQ
8897 else
8898 return default_register_reggroup_p (gdbarch, regnum, group);
8899}
8900
25f8c692
JL
8901\f
8902/* For backward-compatibility we allow two 'g' packet lengths with
8903 the remote protocol depending on whether FPA registers are
8904 supplied. M-profile targets do not have FPA registers, but some
8905 stubs already exist in the wild which use a 'g' packet which
8906 supplies them albeit with dummy values. The packet format which
8907 includes FPA registers should be considered deprecated for
8908 M-profile targets. */
8909
8910static void
8911arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8912{
8913 if (gdbarch_tdep (gdbarch)->is_m)
8914 {
8915 /* If we know from the executable this is an M-profile target,
8916 cater for remote targets whose register set layout is the
8917 same as the FPA layout. */
8918 register_remote_g_packet_guess (gdbarch,
03145bf4 8919 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
25f8c692
JL
8920 (16 * INT_REGISTER_SIZE)
8921 + (8 * FP_REGISTER_SIZE)
8922 + (2 * INT_REGISTER_SIZE),
8923 tdesc_arm_with_m_fpa_layout);
8924
8925 /* The regular M-profile layout. */
8926 register_remote_g_packet_guess (gdbarch,
8927 /* r0-r12,sp,lr,pc; xpsr */
8928 (16 * INT_REGISTER_SIZE)
8929 + INT_REGISTER_SIZE,
8930 tdesc_arm_with_m);
3184d3f9
JL
8931
8932 /* M-profile plus M4F VFP. */
8933 register_remote_g_packet_guess (gdbarch,
8934 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8935 (16 * INT_REGISTER_SIZE)
8936 + (16 * VFP_REGISTER_SIZE)
8937 + (2 * INT_REGISTER_SIZE),
8938 tdesc_arm_with_m_vfp_d16);
25f8c692
JL
8939 }
8940
8941 /* Otherwise we don't have a useful guess. */
8942}
8943
7eb89530
YQ
8944/* Implement the code_of_frame_writable gdbarch method. */
8945
8946static int
8947arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8948{
8949 if (gdbarch_tdep (gdbarch)->is_m
8950 && get_frame_type (frame) == SIGTRAMP_FRAME)
8951 {
8952 /* M-profile exception frames return to some magic PCs, where
8953 isn't writable at all. */
8954 return 0;
8955 }
8956 else
8957 return 1;
8958}
8959
70f80edf 8960\f
da3c6d4a
MS
8961/* Initialize the current architecture based on INFO. If possible,
8962 re-use an architecture from ARCHES, which is a list of
8963 architectures already created during this debugging session.
97e03143 8964
da3c6d4a
MS
8965 Called e.g. at program startup, when reading a core file, and when
8966 reading a binary file. */
97e03143 8967
39bbf761
RE
8968static struct gdbarch *
8969arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8970{
97e03143 8971 struct gdbarch_tdep *tdep;
39bbf761 8972 struct gdbarch *gdbarch;
28e97307
DJ
8973 struct gdbarch_list *best_arch;
8974 enum arm_abi_kind arm_abi = arm_abi_global;
8975 enum arm_float_model fp_model = arm_fp_model;
123dc839 8976 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8977 int i, is_m = 0;
330c6ca9 8978 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
a56cc1ce 8979 int have_wmmx_registers = 0;
58d6951d 8980 int have_neon = 0;
ff6f572f 8981 int have_fpa_registers = 1;
9779414d
DJ
8982 const struct target_desc *tdesc = info.target_desc;
8983
8984 /* If we have an object to base this architecture on, try to determine
8985 its ABI. */
8986
8987 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8988 {
8989 int ei_osabi, e_flags;
8990
8991 switch (bfd_get_flavour (info.abfd))
8992 {
8993 case bfd_target_aout_flavour:
8994 /* Assume it's an old APCS-style ABI. */
8995 arm_abi = ARM_ABI_APCS;
8996 break;
8997
8998 case bfd_target_coff_flavour:
8999 /* Assume it's an old APCS-style ABI. */
9000 /* XXX WinCE? */
9001 arm_abi = ARM_ABI_APCS;
9002 break;
9003
9004 case bfd_target_elf_flavour:
9005 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9006 e_flags = elf_elfheader (info.abfd)->e_flags;
9007
9008 if (ei_osabi == ELFOSABI_ARM)
9009 {
9010 /* GNU tools used to use this value, but do not for EABI
9011 objects. There's nowhere to tag an EABI version
9012 anyway, so assume APCS. */
9013 arm_abi = ARM_ABI_APCS;
9014 }
d403db27 9015 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9779414d
DJ
9016 {
9017 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9018 int attr_arch, attr_profile;
9019
9020 switch (eabi_ver)
9021 {
9022 case EF_ARM_EABI_UNKNOWN:
9023 /* Assume GNU tools. */
9024 arm_abi = ARM_ABI_APCS;
9025 break;
9026
9027 case EF_ARM_EABI_VER4:
9028 case EF_ARM_EABI_VER5:
9029 arm_abi = ARM_ABI_AAPCS;
9030 /* EABI binaries default to VFP float ordering.
9031 They may also contain build attributes that can
9032 be used to identify if the VFP argument-passing
9033 ABI is in use. */
9034 if (fp_model == ARM_FLOAT_AUTO)
9035 {
9036#ifdef HAVE_ELF
9037 switch (bfd_elf_get_obj_attr_int (info.abfd,
9038 OBJ_ATTR_PROC,
9039 Tag_ABI_VFP_args))
9040 {
b35b0298 9041 case AEABI_VFP_args_base:
9779414d
DJ
9042 /* "The user intended FP parameter/result
9043 passing to conform to AAPCS, base
9044 variant". */
9045 fp_model = ARM_FLOAT_SOFT_VFP;
9046 break;
b35b0298 9047 case AEABI_VFP_args_vfp:
9779414d
DJ
9048 /* "The user intended FP parameter/result
9049 passing to conform to AAPCS, VFP
9050 variant". */
9051 fp_model = ARM_FLOAT_VFP;
9052 break;
b35b0298 9053 case AEABI_VFP_args_toolchain:
9779414d
DJ
9054 /* "The user intended FP parameter/result
9055 passing to conform to tool chain-specific
9056 conventions" - we don't know any such
9057 conventions, so leave it as "auto". */
9058 break;
b35b0298 9059 case AEABI_VFP_args_compatible:
5c294fee
TG
9060 /* "Code is compatible with both the base
9061 and VFP variants; the user did not permit
9062 non-variadic functions to pass FP
9063 parameters/results" - leave it as
9064 "auto". */
9065 break;
9779414d
DJ
9066 default:
9067 /* Attribute value not mentioned in the
5c294fee 9068 November 2012 ABI, so leave it as
9779414d
DJ
9069 "auto". */
9070 break;
9071 }
9072#else
9073 fp_model = ARM_FLOAT_SOFT_VFP;
9074#endif
9075 }
9076 break;
9077
9078 default:
9079 /* Leave it as "auto". */
9080 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9081 break;
9082 }
9083
9084#ifdef HAVE_ELF
9085 /* Detect M-profile programs. This only works if the
9086 executable file includes build attributes; GCC does
9087 copy them to the executable, but e.g. RealView does
9088 not. */
9089 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9090 Tag_CPU_arch);
0963b4bd
MS
9091 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9092 OBJ_ATTR_PROC,
9779414d
DJ
9093 Tag_CPU_arch_profile);
9094 /* GCC specifies the profile for v6-M; RealView only
9095 specifies the profile for architectures starting with
9096 V7 (as opposed to architectures with a tag
9097 numerically greater than TAG_CPU_ARCH_V7). */
9098 if (!tdesc_has_registers (tdesc)
9099 && (attr_arch == TAG_CPU_ARCH_V6_M
9100 || attr_arch == TAG_CPU_ARCH_V6S_M
9101 || attr_profile == 'M'))
25f8c692 9102 is_m = 1;
9779414d
DJ
9103#endif
9104 }
9105
9106 if (fp_model == ARM_FLOAT_AUTO)
9107 {
9108 int e_flags = elf_elfheader (info.abfd)->e_flags;
9109
9110 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9111 {
9112 case 0:
9113 /* Leave it as "auto". Strictly speaking this case
9114 means FPA, but almost nobody uses that now, and
9115 many toolchains fail to set the appropriate bits
9116 for the floating-point model they use. */
9117 break;
9118 case EF_ARM_SOFT_FLOAT:
9119 fp_model = ARM_FLOAT_SOFT_FPA;
9120 break;
9121 case EF_ARM_VFP_FLOAT:
9122 fp_model = ARM_FLOAT_VFP;
9123 break;
9124 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9125 fp_model = ARM_FLOAT_SOFT_VFP;
9126 break;
9127 }
9128 }
9129
9130 if (e_flags & EF_ARM_BE8)
9131 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9132
9133 break;
9134
9135 default:
9136 /* Leave it as "auto". */
9137 break;
9138 }
9139 }
123dc839
DJ
9140
9141 /* Check any target description for validity. */
9779414d 9142 if (tdesc_has_registers (tdesc))
123dc839
DJ
9143 {
9144 /* For most registers we require GDB's default names; but also allow
9145 the numeric names for sp / lr / pc, as a convenience. */
9146 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9147 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9148 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9149
9150 const struct tdesc_feature *feature;
58d6951d 9151 int valid_p;
123dc839 9152
9779414d 9153 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9154 "org.gnu.gdb.arm.core");
9155 if (feature == NULL)
9779414d
DJ
9156 {
9157 feature = tdesc_find_feature (tdesc,
9158 "org.gnu.gdb.arm.m-profile");
9159 if (feature == NULL)
9160 return NULL;
9161 else
9162 is_m = 1;
9163 }
123dc839
DJ
9164
9165 tdesc_data = tdesc_data_alloc ();
9166
9167 valid_p = 1;
9168 for (i = 0; i < ARM_SP_REGNUM; i++)
9169 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9170 arm_register_names[i]);
9171 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9172 ARM_SP_REGNUM,
9173 arm_sp_names);
9174 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9175 ARM_LR_REGNUM,
9176 arm_lr_names);
9177 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9178 ARM_PC_REGNUM,
9179 arm_pc_names);
9779414d
DJ
9180 if (is_m)
9181 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9182 ARM_PS_REGNUM, "xpsr");
9183 else
9184 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9185 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
9186
9187 if (!valid_p)
9188 {
9189 tdesc_data_cleanup (tdesc_data);
9190 return NULL;
9191 }
9192
9779414d 9193 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9194 "org.gnu.gdb.arm.fpa");
9195 if (feature != NULL)
9196 {
9197 valid_p = 1;
9198 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9199 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9200 arm_register_names[i]);
9201 if (!valid_p)
9202 {
9203 tdesc_data_cleanup (tdesc_data);
9204 return NULL;
9205 }
9206 }
ff6f572f
DJ
9207 else
9208 have_fpa_registers = 0;
9209
9779414d 9210 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
9211 "org.gnu.gdb.xscale.iwmmxt");
9212 if (feature != NULL)
9213 {
9214 static const char *const iwmmxt_names[] = {
9215 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9216 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9217 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9218 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9219 };
9220
9221 valid_p = 1;
9222 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9223 valid_p
9224 &= tdesc_numbered_register (feature, tdesc_data, i,
9225 iwmmxt_names[i - ARM_WR0_REGNUM]);
9226
9227 /* Check for the control registers, but do not fail if they
9228 are missing. */
9229 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9230 tdesc_numbered_register (feature, tdesc_data, i,
9231 iwmmxt_names[i - ARM_WR0_REGNUM]);
9232
9233 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9234 valid_p
9235 &= tdesc_numbered_register (feature, tdesc_data, i,
9236 iwmmxt_names[i - ARM_WR0_REGNUM]);
9237
9238 if (!valid_p)
9239 {
9240 tdesc_data_cleanup (tdesc_data);
9241 return NULL;
9242 }
a56cc1ce
YQ
9243
9244 have_wmmx_registers = 1;
ff6f572f 9245 }
58d6951d
DJ
9246
9247 /* If we have a VFP unit, check whether the single precision registers
9248 are present. If not, then we will synthesize them as pseudo
9249 registers. */
9779414d 9250 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9251 "org.gnu.gdb.arm.vfp");
9252 if (feature != NULL)
9253 {
9254 static const char *const vfp_double_names[] = {
9255 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9256 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9257 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9258 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9259 };
9260
9261 /* Require the double precision registers. There must be either
9262 16 or 32. */
9263 valid_p = 1;
9264 for (i = 0; i < 32; i++)
9265 {
9266 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9267 ARM_D0_REGNUM + i,
9268 vfp_double_names[i]);
9269 if (!valid_p)
9270 break;
9271 }
2b9e5ea6
UW
9272 if (!valid_p && i == 16)
9273 valid_p = 1;
58d6951d 9274
2b9e5ea6
UW
9275 /* Also require FPSCR. */
9276 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9277 ARM_FPSCR_REGNUM, "fpscr");
9278 if (!valid_p)
58d6951d
DJ
9279 {
9280 tdesc_data_cleanup (tdesc_data);
9281 return NULL;
9282 }
9283
9284 if (tdesc_unnumbered_register (feature, "s0") == 0)
9285 have_vfp_pseudos = 1;
9286
330c6ca9 9287 vfp_register_count = i;
58d6951d
DJ
9288
9289 /* If we have VFP, also check for NEON. The architecture allows
9290 NEON without VFP (integer vector operations only), but GDB
9291 does not support that. */
9779414d 9292 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9293 "org.gnu.gdb.arm.neon");
9294 if (feature != NULL)
9295 {
9296 /* NEON requires 32 double-precision registers. */
9297 if (i != 32)
9298 {
9299 tdesc_data_cleanup (tdesc_data);
9300 return NULL;
9301 }
9302
9303 /* If there are quad registers defined by the stub, use
9304 their type; otherwise (normally) provide them with
9305 the default type. */
9306 if (tdesc_unnumbered_register (feature, "q0") == 0)
9307 have_neon_pseudos = 1;
9308
9309 have_neon = 1;
9310 }
9311 }
123dc839 9312 }
39bbf761 9313
28e97307
DJ
9314 /* If there is already a candidate, use it. */
9315 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9316 best_arch != NULL;
9317 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9318 {
b8926edc
DJ
9319 if (arm_abi != ARM_ABI_AUTO
9320 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
9321 continue;
9322
b8926edc
DJ
9323 if (fp_model != ARM_FLOAT_AUTO
9324 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
9325 continue;
9326
58d6951d
DJ
9327 /* There are various other properties in tdep that we do not
9328 need to check here: those derived from a target description,
9329 since gdbarches with a different target description are
9330 automatically disqualified. */
9331
9779414d
DJ
9332 /* Do check is_m, though, since it might come from the binary. */
9333 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9334 continue;
9335
28e97307
DJ
9336 /* Found a match. */
9337 break;
9338 }
97e03143 9339
28e97307 9340 if (best_arch != NULL)
123dc839
DJ
9341 {
9342 if (tdesc_data != NULL)
9343 tdesc_data_cleanup (tdesc_data);
9344 return best_arch->gdbarch;
9345 }
28e97307 9346
8d749320 9347 tdep = XCNEW (struct gdbarch_tdep);
97e03143
RE
9348 gdbarch = gdbarch_alloc (&info, tdep);
9349
28e97307
DJ
9350 /* Record additional information about the architecture we are defining.
9351 These are gdbarch discriminators, like the OSABI. */
9352 tdep->arm_abi = arm_abi;
9353 tdep->fp_model = fp_model;
9779414d 9354 tdep->is_m = is_m;
ff6f572f 9355 tdep->have_fpa_registers = have_fpa_registers;
a56cc1ce 9356 tdep->have_wmmx_registers = have_wmmx_registers;
330c6ca9
YQ
9357 gdb_assert (vfp_register_count == 0
9358 || vfp_register_count == 16
9359 || vfp_register_count == 32);
9360 tdep->vfp_register_count = vfp_register_count;
58d6951d
DJ
9361 tdep->have_vfp_pseudos = have_vfp_pseudos;
9362 tdep->have_neon_pseudos = have_neon_pseudos;
9363 tdep->have_neon = have_neon;
08216dd7 9364
25f8c692
JL
9365 arm_register_g_packet_guesses (gdbarch);
9366
08216dd7 9367 /* Breakpoints. */
9d4fde75 9368 switch (info.byte_order_for_code)
67255d04
RE
9369 {
9370 case BFD_ENDIAN_BIG:
66e810cd
RE
9371 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9372 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9373 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9374 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9375
67255d04
RE
9376 break;
9377
9378 case BFD_ENDIAN_LITTLE:
66e810cd
RE
9379 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9380 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9381 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9382 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9383
67255d04
RE
9384 break;
9385
9386 default:
9387 internal_error (__FILE__, __LINE__,
edefbb7c 9388 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
9389 }
9390
d7b486e7
RE
9391 /* On ARM targets char defaults to unsigned. */
9392 set_gdbarch_char_signed (gdbarch, 0);
9393
cca44b1b
JB
9394 /* Note: for displaced stepping, this includes the breakpoint, and one word
9395 of additional scratch space. This setting isn't used for anything beside
9396 displaced stepping at present. */
9397 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9398
9df628e0 9399 /* This should be low enough for everything. */
97e03143 9400 tdep->lowest_pc = 0x20;
94c30b78 9401 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 9402
7c00367c
MK
9403 /* The default, for both APCS and AAPCS, is to return small
9404 structures in registers. */
9405 tdep->struct_return = reg_struct_return;
9406
2dd604e7 9407 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 9408 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 9409
7eb89530
YQ
9410 if (is_m)
9411 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9412
756fe439
DJ
9413 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9414
148754e5 9415 /* Frame handling. */
a262aec2 9416 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
9417 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9418 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9419
eb5492fa 9420 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 9421
34e8f22d 9422 /* Address manipulation. */
34e8f22d
RE
9423 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9424
34e8f22d
RE
9425 /* Advance PC across function entry code. */
9426 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9427
c9cf6e20
MG
9428 /* Detect whether PC is at a point where the stack has been destroyed. */
9429 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
4024ca99 9430
190dce09
UW
9431 /* Skip trampolines. */
9432 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9433
34e8f22d
RE
9434 /* The stack grows downward. */
9435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9436
9437 /* Breakpoint manipulation. */
04180708
YQ
9438 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9439 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
833b7ab5
YQ
9440 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9441 arm_breakpoint_kind_from_current_state);
34e8f22d
RE
9442
9443 /* Information about registers, etc. */
34e8f22d
RE
9444 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9445 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 9446 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 9447 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 9448 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 9449
ff6f572f
DJ
9450 /* This "info float" is FPA-specific. Use the generic version if we
9451 do not have FPA. */
9452 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9453 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9454
26216b98 9455 /* Internal <-> external register number maps. */
ff6f572f 9456 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
9457 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9458
34e8f22d
RE
9459 set_gdbarch_register_name (gdbarch, arm_register_name);
9460
9461 /* Returning results. */
2af48f68 9462 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 9463
03d48a7d
RE
9464 /* Disassembly. */
9465 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9466
34e8f22d
RE
9467 /* Minsymbol frobbing. */
9468 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9469 set_gdbarch_coff_make_msymbol_special (gdbarch,
9470 arm_coff_make_msymbol_special);
60c5725c 9471 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 9472
f9d67f43
DJ
9473 /* Thumb-2 IT block support. */
9474 set_gdbarch_adjust_breakpoint_address (gdbarch,
9475 arm_adjust_breakpoint_address);
9476
0d5de010
DJ
9477 /* Virtual tables. */
9478 set_gdbarch_vbit_in_delta (gdbarch, 1);
9479
97e03143 9480 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 9481 gdbarch_init_osabi (info, gdbarch);
97e03143 9482
b39cc962
DJ
9483 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9484
eb5492fa 9485 /* Add some default predicates. */
2ae28aa9
YQ
9486 if (is_m)
9487 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
a262aec2
DJ
9488 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9489 dwarf2_append_unwinders (gdbarch);
0e9e9abd 9490 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
779aa56f 9491 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
a262aec2 9492 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 9493
97e03143
RE
9494 /* Now we have tuned the configuration, set a few final things,
9495 based on what the OS ABI has told us. */
9496
b8926edc
DJ
9497 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9498 binaries are always marked. */
9499 if (tdep->arm_abi == ARM_ABI_AUTO)
9500 tdep->arm_abi = ARM_ABI_APCS;
9501
e3039479
UW
9502 /* Watchpoints are not steppable. */
9503 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9504
b8926edc
DJ
9505 /* We used to default to FPA for generic ARM, but almost nobody
9506 uses that now, and we now provide a way for the user to force
9507 the model. So default to the most useful variant. */
9508 if (tdep->fp_model == ARM_FLOAT_AUTO)
9509 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9510
9df628e0
RE
9511 if (tdep->jb_pc >= 0)
9512 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9513
08216dd7 9514 /* Floating point sizes and format. */
8da61cc4 9515 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 9516 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 9517 {
8da61cc4
DJ
9518 set_gdbarch_double_format
9519 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9520 set_gdbarch_long_double_format
9521 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9522 }
9523 else
9524 {
9525 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9526 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
9527 }
9528
58d6951d
DJ
9529 if (have_vfp_pseudos)
9530 {
9531 /* NOTE: These are the only pseudo registers used by
9532 the ARM target at the moment. If more are added, a
9533 little more care in numbering will be needed. */
9534
9535 int num_pseudos = 32;
9536 if (have_neon_pseudos)
9537 num_pseudos += 16;
9538 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9539 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9540 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9541 }
9542
123dc839 9543 if (tdesc_data)
58d6951d
DJ
9544 {
9545 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9546
9779414d 9547 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
9548
9549 /* Override tdesc_register_type to adjust the types of VFP
9550 registers for NEON. */
9551 set_gdbarch_register_type (gdbarch, arm_register_type);
9552 }
123dc839
DJ
9553
9554 /* Add standard register aliases. We add aliases even for those
9555 nanes which are used by the current architecture - it's simpler,
9556 and does no harm, since nothing ever lists user registers. */
9557 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9558 user_reg_add (gdbarch, arm_register_aliases[i].name,
9559 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9560
39bbf761
RE
9561 return gdbarch;
9562}
9563
97e03143 9564static void
2af46ca0 9565arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 9566{
2af46ca0 9567 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
9568
9569 if (tdep == NULL)
9570 return;
9571
edefbb7c 9572 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
9573 (unsigned long) tdep->lowest_pc);
9574}
9575
a78f21af
AC
9576extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9577
c906108c 9578void
ed9a39eb 9579_initialize_arm_tdep (void)
c906108c 9580{
bc90b915
FN
9581 struct ui_file *stb;
9582 long length;
53904c9e
AC
9583 const char *setname;
9584 const char *setdesc;
4bd7b427 9585 const char *const *regnames;
bec2ab5a 9586 int i;
09b0e4b0 9587 static std::string helptext;
edefbb7c
AC
9588 char regdesc[1024], *rdptr = regdesc;
9589 size_t rest = sizeof (regdesc);
085dd6e6 9590
42cf1509 9591 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 9592
60c5725c 9593 arm_objfile_data_key
c1bd65d0 9594 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 9595
0e9e9abd
UW
9596 /* Add ourselves to objfile event chain. */
9597 observer_attach_new_objfile (arm_exidx_new_objfile);
9598 arm_exidx_data_key
9599 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9600
70f80edf
JT
9601 /* Register an ELF OS ABI sniffer for ARM binaries. */
9602 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9603 bfd_target_elf_flavour,
9604 arm_elf_osabi_sniffer);
9605
9779414d
DJ
9606 /* Initialize the standard target descriptions. */
9607 initialize_tdesc_arm_with_m ();
25f8c692 9608 initialize_tdesc_arm_with_m_fpa_layout ();
3184d3f9 9609 initialize_tdesc_arm_with_m_vfp_d16 ();
ef7e8358
UW
9610 initialize_tdesc_arm_with_iwmmxt ();
9611 initialize_tdesc_arm_with_vfpv2 ();
9612 initialize_tdesc_arm_with_vfpv3 ();
9613 initialize_tdesc_arm_with_neon ();
9779414d 9614
94c30b78 9615 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
9616 num_disassembly_options = get_arm_regname_num_options ();
9617
9618 /* Add root prefix command for all "set arm"/"show arm" commands. */
9619 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 9620 _("Various ARM-specific commands."),
afd7eef0
RE
9621 &setarmcmdlist, "set arm ", 0, &setlist);
9622
9623 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 9624 _("Various ARM-specific commands."),
afd7eef0 9625 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 9626
94c30b78 9627 /* Sync the opcode insn printer with our register viewer. */
bc90b915 9628 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 9629
eefe576e
AC
9630 /* Initialize the array that will be passed to
9631 add_setshow_enum_cmd(). */
8d749320
SM
9632 valid_disassembly_styles = XNEWVEC (const char *,
9633 num_disassembly_options + 1);
afd7eef0 9634 for (i = 0; i < num_disassembly_options; i++)
bc90b915 9635 {
bec2ab5a 9636 get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 9637 valid_disassembly_styles[i] = setname;
edefbb7c
AC
9638 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9639 rdptr += length;
9640 rest -= length;
123dc839
DJ
9641 /* When we find the default names, tell the disassembler to use
9642 them. */
bc90b915
FN
9643 if (!strcmp (setname, "std"))
9644 {
afd7eef0 9645 disassembly_style = setname;
bc90b915
FN
9646 set_arm_regname_option (i);
9647 }
9648 }
94c30b78 9649 /* Mark the end of valid options. */
afd7eef0 9650 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 9651
edefbb7c
AC
9652 /* Create the help text. */
9653 stb = mem_fileopen ();
9654 fprintf_unfiltered (stb, "%s%s%s",
9655 _("The valid values are:\n"),
9656 regdesc,
9657 _("The default is \"std\"."));
09b0e4b0 9658 helptext = ui_file_as_string (stb);
bc90b915 9659 ui_file_delete (stb);
ed9a39eb 9660
edefbb7c
AC
9661 add_setshow_enum_cmd("disassembler", no_class,
9662 valid_disassembly_styles, &disassembly_style,
9663 _("Set the disassembly style."),
9664 _("Show the disassembly style."),
09b0e4b0 9665 helptext.c_str (),
2c5b56ce 9666 set_disassembly_style_sfunc,
0963b4bd
MS
9667 NULL, /* FIXME: i18n: The disassembly style is
9668 \"%s\". */
7376b4c2 9669 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
9670
9671 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9672 _("Set usage of ARM 32-bit mode."),
9673 _("Show usage of ARM 32-bit mode."),
9674 _("When off, a 26-bit PC will be used."),
2c5b56ce 9675 NULL,
0963b4bd
MS
9676 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9677 mode is %s. */
26304000 9678 &setarmcmdlist, &showarmcmdlist);
c906108c 9679
fd50bc42 9680 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
9681 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9682 _("Set the floating point type."),
9683 _("Show the floating point type."),
9684 _("auto - Determine the FP typefrom the OS-ABI.\n\
9685softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9686fpa - FPA co-processor (GCC compiled).\n\
9687softvfp - Software FP with pure-endian doubles.\n\
9688vfp - VFP co-processor."),
edefbb7c 9689 set_fp_model_sfunc, show_fp_model,
7376b4c2 9690 &setarmcmdlist, &showarmcmdlist);
fd50bc42 9691
28e97307
DJ
9692 /* Add a command to allow the user to force the ABI. */
9693 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9694 _("Set the ABI."),
9695 _("Show the ABI."),
9696 NULL, arm_set_abi, arm_show_abi,
9697 &setarmcmdlist, &showarmcmdlist);
9698
0428b8f5
DJ
9699 /* Add two commands to allow the user to force the assumed
9700 execution mode. */
9701 add_setshow_enum_cmd ("fallback-mode", class_support,
9702 arm_mode_strings, &arm_fallback_mode_string,
9703 _("Set the mode assumed when symbols are unavailable."),
9704 _("Show the mode assumed when symbols are unavailable."),
9705 NULL, NULL, arm_show_fallback_mode,
9706 &setarmcmdlist, &showarmcmdlist);
9707 add_setshow_enum_cmd ("force-mode", class_support,
9708 arm_mode_strings, &arm_force_mode_string,
9709 _("Set the mode assumed even when symbols are available."),
9710 _("Show the mode assumed even when symbols are available."),
9711 NULL, NULL, arm_show_force_mode,
9712 &setarmcmdlist, &showarmcmdlist);
9713
6529d2dd 9714 /* Debugging flag. */
edefbb7c
AC
9715 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9716 _("Set ARM debugging."),
9717 _("Show ARM debugging."),
9718 _("When on, arm-specific debugging is enabled."),
2c5b56ce 9719 NULL,
7915a72c 9720 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 9721 &setdebuglist, &showdebuglist);
c906108c 9722}
72508ac0
PO
9723
9724/* ARM-reversible process record data structures. */
9725
9726#define ARM_INSN_SIZE_BYTES 4
9727#define THUMB_INSN_SIZE_BYTES 2
9728#define THUMB2_INSN_SIZE_BYTES 4
9729
9730
71e396f9
LM
9731/* Position of the bit within a 32-bit ARM instruction
9732 that defines whether the instruction is a load or store. */
72508ac0
PO
9733#define INSN_S_L_BIT_NUM 20
9734
9735#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9736 do \
9737 { \
9738 unsigned int reg_len = LENGTH; \
9739 if (reg_len) \
9740 { \
9741 REGS = XNEWVEC (uint32_t, reg_len); \
9742 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9743 } \
9744 } \
9745 while (0)
9746
9747#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9748 do \
9749 { \
9750 unsigned int mem_len = LENGTH; \
9751 if (mem_len) \
9752 { \
9753 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9754 memcpy(&MEMS->len, &RECORD_BUF[0], \
9755 sizeof(struct arm_mem_r) * LENGTH); \
9756 } \
9757 } \
9758 while (0)
9759
9760/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9761#define INSN_RECORDED(ARM_RECORD) \
9762 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9763
9764/* ARM memory record structure. */
9765struct arm_mem_r
9766{
9767 uint32_t len; /* Record length. */
bfbbec00 9768 uint32_t addr; /* Memory address. */
72508ac0
PO
9769};
9770
9771/* ARM instruction record contains opcode of current insn
9772 and execution state (before entry to decode_insn()),
9773 contains list of to-be-modified registers and
9774 memory blocks (on return from decode_insn()). */
9775
9776typedef struct insn_decode_record_t
9777{
9778 struct gdbarch *gdbarch;
9779 struct regcache *regcache;
9780 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9781 uint32_t arm_insn; /* Should accommodate thumb. */
9782 uint32_t cond; /* Condition code. */
9783 uint32_t opcode; /* Insn opcode. */
9784 uint32_t decode; /* Insn decode bits. */
9785 uint32_t mem_rec_count; /* No of mem records. */
9786 uint32_t reg_rec_count; /* No of reg records. */
9787 uint32_t *arm_regs; /* Registers to be saved for this record. */
9788 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9789} insn_decode_record;
9790
9791
9792/* Checks ARM SBZ and SBO mandatory fields. */
9793
9794static int
9795sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9796{
9797 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9798
9799 if (!len)
9800 return 1;
9801
9802 if (!sbo)
9803 ones = ~ones;
9804
9805 while (ones)
9806 {
9807 if (!(ones & sbo))
9808 {
9809 return 0;
9810 }
9811 ones = ones >> 1;
9812 }
9813 return 1;
9814}
9815
c6ec2b30
OJ
9816enum arm_record_result
9817{
9818 ARM_RECORD_SUCCESS = 0,
9819 ARM_RECORD_FAILURE = 1
9820};
9821
72508ac0
PO
9822typedef enum
9823{
9824 ARM_RECORD_STRH=1,
9825 ARM_RECORD_STRD
9826} arm_record_strx_t;
9827
9828typedef enum
9829{
9830 ARM_RECORD=1,
9831 THUMB_RECORD,
9832 THUMB2_RECORD
9833} record_type_t;
9834
9835
9836static int
9837arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9838 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9839{
9840
9841 struct regcache *reg_cache = arm_insn_r->regcache;
9842 ULONGEST u_regval[2]= {0};
9843
9844 uint32_t reg_src1 = 0, reg_src2 = 0;
9845 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
72508ac0
PO
9846
9847 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9848 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
72508ac0
PO
9849
9850 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9851 {
9852 /* 1) Handle misc store, immediate offset. */
9853 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9854 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9855 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9856 regcache_raw_read_unsigned (reg_cache, reg_src1,
9857 &u_regval[0]);
9858 if (ARM_PC_REGNUM == reg_src1)
9859 {
9860 /* If R15 was used as Rn, hence current PC+8. */
9861 u_regval[0] = u_regval[0] + 8;
9862 }
9863 offset_8 = (immed_high << 4) | immed_low;
9864 /* Calculate target store address. */
9865 if (14 == arm_insn_r->opcode)
9866 {
9867 tgt_mem_addr = u_regval[0] + offset_8;
9868 }
9869 else
9870 {
9871 tgt_mem_addr = u_regval[0] - offset_8;
9872 }
9873 if (ARM_RECORD_STRH == str_type)
9874 {
9875 record_buf_mem[0] = 2;
9876 record_buf_mem[1] = tgt_mem_addr;
9877 arm_insn_r->mem_rec_count = 1;
9878 }
9879 else if (ARM_RECORD_STRD == str_type)
9880 {
9881 record_buf_mem[0] = 4;
9882 record_buf_mem[1] = tgt_mem_addr;
9883 record_buf_mem[2] = 4;
9884 record_buf_mem[3] = tgt_mem_addr + 4;
9885 arm_insn_r->mem_rec_count = 2;
9886 }
9887 }
9888 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9889 {
9890 /* 2) Store, register offset. */
9891 /* Get Rm. */
9892 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9893 /* Get Rn. */
9894 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9895 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9896 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9897 if (15 == reg_src2)
9898 {
9899 /* If R15 was used as Rn, hence current PC+8. */
9900 u_regval[0] = u_regval[0] + 8;
9901 }
9902 /* Calculate target store address, Rn +/- Rm, register offset. */
9903 if (12 == arm_insn_r->opcode)
9904 {
9905 tgt_mem_addr = u_regval[0] + u_regval[1];
9906 }
9907 else
9908 {
9909 tgt_mem_addr = u_regval[1] - u_regval[0];
9910 }
9911 if (ARM_RECORD_STRH == str_type)
9912 {
9913 record_buf_mem[0] = 2;
9914 record_buf_mem[1] = tgt_mem_addr;
9915 arm_insn_r->mem_rec_count = 1;
9916 }
9917 else if (ARM_RECORD_STRD == str_type)
9918 {
9919 record_buf_mem[0] = 4;
9920 record_buf_mem[1] = tgt_mem_addr;
9921 record_buf_mem[2] = 4;
9922 record_buf_mem[3] = tgt_mem_addr + 4;
9923 arm_insn_r->mem_rec_count = 2;
9924 }
9925 }
9926 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9927 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9928 {
9929 /* 3) Store, immediate pre-indexed. */
9930 /* 5) Store, immediate post-indexed. */
9931 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9932 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9933 offset_8 = (immed_high << 4) | immed_low;
9934 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9935 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9936 /* Calculate target store address, Rn +/- Rm, register offset. */
9937 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9938 {
9939 tgt_mem_addr = u_regval[0] + offset_8;
9940 }
9941 else
9942 {
9943 tgt_mem_addr = u_regval[0] - offset_8;
9944 }
9945 if (ARM_RECORD_STRH == str_type)
9946 {
9947 record_buf_mem[0] = 2;
9948 record_buf_mem[1] = tgt_mem_addr;
9949 arm_insn_r->mem_rec_count = 1;
9950 }
9951 else if (ARM_RECORD_STRD == str_type)
9952 {
9953 record_buf_mem[0] = 4;
9954 record_buf_mem[1] = tgt_mem_addr;
9955 record_buf_mem[2] = 4;
9956 record_buf_mem[3] = tgt_mem_addr + 4;
9957 arm_insn_r->mem_rec_count = 2;
9958 }
9959 /* Record Rn also as it changes. */
9960 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9961 arm_insn_r->reg_rec_count = 1;
9962 }
9963 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9964 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9965 {
9966 /* 4) Store, register pre-indexed. */
9967 /* 6) Store, register post -indexed. */
9968 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9969 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9970 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9971 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9972 /* Calculate target store address, Rn +/- Rm, register offset. */
9973 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9974 {
9975 tgt_mem_addr = u_regval[0] + u_regval[1];
9976 }
9977 else
9978 {
9979 tgt_mem_addr = u_regval[1] - u_regval[0];
9980 }
9981 if (ARM_RECORD_STRH == str_type)
9982 {
9983 record_buf_mem[0] = 2;
9984 record_buf_mem[1] = tgt_mem_addr;
9985 arm_insn_r->mem_rec_count = 1;
9986 }
9987 else if (ARM_RECORD_STRD == str_type)
9988 {
9989 record_buf_mem[0] = 4;
9990 record_buf_mem[1] = tgt_mem_addr;
9991 record_buf_mem[2] = 4;
9992 record_buf_mem[3] = tgt_mem_addr + 4;
9993 arm_insn_r->mem_rec_count = 2;
9994 }
9995 /* Record Rn also as it changes. */
9996 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9997 arm_insn_r->reg_rec_count = 1;
9998 }
9999 return 0;
10000}
10001
10002/* Handling ARM extension space insns. */
10003
10004static int
10005arm_record_extension_space (insn_decode_record *arm_insn_r)
10006{
10007 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10008 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10009 uint32_t record_buf[8], record_buf_mem[8];
10010 uint32_t reg_src1 = 0;
72508ac0
PO
10011 struct regcache *reg_cache = arm_insn_r->regcache;
10012 ULONGEST u_regval = 0;
10013
10014 gdb_assert (!INSN_RECORDED(arm_insn_r));
10015 /* Handle unconditional insn extension space. */
10016
10017 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10018 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10019 if (arm_insn_r->cond)
10020 {
10021 /* PLD has no affect on architectural state, it just affects
10022 the caches. */
10023 if (5 == ((opcode1 & 0xE0) >> 5))
10024 {
10025 /* BLX(1) */
10026 record_buf[0] = ARM_PS_REGNUM;
10027 record_buf[1] = ARM_LR_REGNUM;
10028 arm_insn_r->reg_rec_count = 2;
10029 }
10030 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10031 }
10032
10033
10034 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10035 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10036 {
10037 ret = -1;
10038 /* Undefined instruction on ARM V5; need to handle if later
10039 versions define it. */
10040 }
10041
10042 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10043 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10044 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10045
10046 /* Handle arithmetic insn extension space. */
10047 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10048 && !INSN_RECORDED(arm_insn_r))
10049 {
10050 /* Handle MLA(S) and MUL(S). */
10051 if (0 <= insn_op1 && 3 >= insn_op1)
10052 {
10053 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10054 record_buf[1] = ARM_PS_REGNUM;
10055 arm_insn_r->reg_rec_count = 2;
10056 }
10057 else if (4 <= insn_op1 && 15 >= insn_op1)
10058 {
10059 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10060 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10061 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10062 record_buf[2] = ARM_PS_REGNUM;
10063 arm_insn_r->reg_rec_count = 3;
10064 }
10065 }
10066
10067 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10068 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10069 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10070
10071 /* Handle control insn extension space. */
10072
10073 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10074 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10075 {
10076 if (!bit (arm_insn_r->arm_insn,25))
10077 {
10078 if (!bits (arm_insn_r->arm_insn, 4, 7))
10079 {
10080 if ((0 == insn_op1) || (2 == insn_op1))
10081 {
10082 /* MRS. */
10083 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10084 arm_insn_r->reg_rec_count = 1;
10085 }
10086 else if (1 == insn_op1)
10087 {
10088 /* CSPR is going to be changed. */
10089 record_buf[0] = ARM_PS_REGNUM;
10090 arm_insn_r->reg_rec_count = 1;
10091 }
10092 else if (3 == insn_op1)
10093 {
10094 /* SPSR is going to be changed. */
10095 /* We need to get SPSR value, which is yet to be done. */
72508ac0
PO
10096 return -1;
10097 }
10098 }
10099 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10100 {
10101 if (1 == insn_op1)
10102 {
10103 /* BX. */
10104 record_buf[0] = ARM_PS_REGNUM;
10105 arm_insn_r->reg_rec_count = 1;
10106 }
10107 else if (3 == insn_op1)
10108 {
10109 /* CLZ. */
10110 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10111 arm_insn_r->reg_rec_count = 1;
10112 }
10113 }
10114 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10115 {
10116 /* BLX. */
10117 record_buf[0] = ARM_PS_REGNUM;
10118 record_buf[1] = ARM_LR_REGNUM;
10119 arm_insn_r->reg_rec_count = 2;
10120 }
10121 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10122 {
10123 /* QADD, QSUB, QDADD, QDSUB */
10124 record_buf[0] = ARM_PS_REGNUM;
10125 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10126 arm_insn_r->reg_rec_count = 2;
10127 }
10128 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10129 {
10130 /* BKPT. */
10131 record_buf[0] = ARM_PS_REGNUM;
10132 record_buf[1] = ARM_LR_REGNUM;
10133 arm_insn_r->reg_rec_count = 2;
10134
10135 /* Save SPSR also;how? */
72508ac0
PO
10136 return -1;
10137 }
10138 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10139 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10140 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10141 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10142 )
10143 {
10144 if (0 == insn_op1 || 1 == insn_op1)
10145 {
10146 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10147 /* We dont do optimization for SMULW<y> where we
10148 need only Rd. */
10149 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10150 record_buf[1] = ARM_PS_REGNUM;
10151 arm_insn_r->reg_rec_count = 2;
10152 }
10153 else if (2 == insn_op1)
10154 {
10155 /* SMLAL<x><y>. */
10156 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10157 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10158 arm_insn_r->reg_rec_count = 2;
10159 }
10160 else if (3 == insn_op1)
10161 {
10162 /* SMUL<x><y>. */
10163 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10164 arm_insn_r->reg_rec_count = 1;
10165 }
10166 }
10167 }
10168 else
10169 {
10170 /* MSR : immediate form. */
10171 if (1 == insn_op1)
10172 {
10173 /* CSPR is going to be changed. */
10174 record_buf[0] = ARM_PS_REGNUM;
10175 arm_insn_r->reg_rec_count = 1;
10176 }
10177 else if (3 == insn_op1)
10178 {
10179 /* SPSR is going to be changed. */
10180 /* we need to get SPSR value, which is yet to be done */
72508ac0
PO
10181 return -1;
10182 }
10183 }
10184 }
10185
10186 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10187 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10188 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10189
10190 /* Handle load/store insn extension space. */
10191
10192 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10193 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10194 && !INSN_RECORDED(arm_insn_r))
10195 {
10196 /* SWP/SWPB. */
10197 if (0 == insn_op1)
10198 {
10199 /* These insn, changes register and memory as well. */
10200 /* SWP or SWPB insn. */
10201 /* Get memory address given by Rn. */
10202 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10203 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10204 /* SWP insn ?, swaps word. */
10205 if (8 == arm_insn_r->opcode)
10206 {
10207 record_buf_mem[0] = 4;
10208 }
10209 else
10210 {
10211 /* SWPB insn, swaps only byte. */
10212 record_buf_mem[0] = 1;
10213 }
10214 record_buf_mem[1] = u_regval;
10215 arm_insn_r->mem_rec_count = 1;
10216 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10217 arm_insn_r->reg_rec_count = 1;
10218 }
10219 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10220 {
10221 /* STRH. */
10222 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10223 ARM_RECORD_STRH);
10224 }
10225 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10226 {
10227 /* LDRD. */
10228 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10229 record_buf[1] = record_buf[0] + 1;
10230 arm_insn_r->reg_rec_count = 2;
10231 }
10232 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10233 {
10234 /* STRD. */
10235 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10236 ARM_RECORD_STRD);
10237 }
10238 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10239 {
10240 /* LDRH, LDRSB, LDRSH. */
10241 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10242 arm_insn_r->reg_rec_count = 1;
10243 }
10244
10245 }
10246
10247 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10248 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10249 && !INSN_RECORDED(arm_insn_r))
10250 {
10251 ret = -1;
10252 /* Handle coprocessor insn extension space. */
10253 }
10254
10255 /* To be done for ARMv5 and later; as of now we return -1. */
10256 if (-1 == ret)
ca92db2d 10257 return ret;
72508ac0
PO
10258
10259 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10260 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10261
10262 return ret;
10263}
10264
10265/* Handling opcode 000 insns. */
10266
10267static int
10268arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10269{
10270 struct regcache *reg_cache = arm_insn_r->regcache;
10271 uint32_t record_buf[8], record_buf_mem[8];
10272 ULONGEST u_regval[2] = {0};
10273
bec2ab5a 10274 uint32_t reg_src1 = 0, reg_dest = 0;
72508ac0
PO
10275 uint32_t opcode1 = 0;
10276
10277 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10278 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10279 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10280
10281 /* Data processing insn /multiply insn. */
10282 if (9 == arm_insn_r->decode
10283 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10284 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10285 {
10286 /* Handle multiply instructions. */
10287 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10288 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10289 {
10290 /* Handle MLA and MUL. */
10291 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10292 record_buf[1] = ARM_PS_REGNUM;
10293 arm_insn_r->reg_rec_count = 2;
10294 }
10295 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10296 {
10297 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10298 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10299 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10300 record_buf[2] = ARM_PS_REGNUM;
10301 arm_insn_r->reg_rec_count = 3;
10302 }
10303 }
10304 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10305 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10306 {
10307 /* Handle misc load insns, as 20th bit (L = 1). */
10308 /* LDR insn has a capability to do branching, if
10309 MOV LR, PC is precceded by LDR insn having Rn as R15
10310 in that case, it emulates branch and link insn, and hence we
10311 need to save CSPR and PC as well. I am not sure this is right
10312 place; as opcode = 010 LDR insn make this happen, if R15 was
10313 used. */
10314 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10315 if (15 != reg_dest)
10316 {
10317 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10318 arm_insn_r->reg_rec_count = 1;
10319 }
10320 else
10321 {
10322 record_buf[0] = reg_dest;
10323 record_buf[1] = ARM_PS_REGNUM;
10324 arm_insn_r->reg_rec_count = 2;
10325 }
10326 }
10327 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10328 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10329 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10330 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10331 {
10332 /* Handle MSR insn. */
10333 if (9 == arm_insn_r->opcode)
10334 {
10335 /* CSPR is going to be changed. */
10336 record_buf[0] = ARM_PS_REGNUM;
10337 arm_insn_r->reg_rec_count = 1;
10338 }
10339 else
10340 {
10341 /* SPSR is going to be changed. */
10342 /* How to read SPSR value? */
72508ac0
PO
10343 return -1;
10344 }
10345 }
10346 else if (9 == arm_insn_r->decode
10347 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10348 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10349 {
10350 /* Handling SWP, SWPB. */
10351 /* These insn, changes register and memory as well. */
10352 /* SWP or SWPB insn. */
10353
10354 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10355 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10356 /* SWP insn ?, swaps word. */
10357 if (8 == arm_insn_r->opcode)
10358 {
10359 record_buf_mem[0] = 4;
10360 }
10361 else
10362 {
10363 /* SWPB insn, swaps only byte. */
10364 record_buf_mem[0] = 1;
10365 }
10366 record_buf_mem[1] = u_regval[0];
10367 arm_insn_r->mem_rec_count = 1;
10368 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10369 arm_insn_r->reg_rec_count = 1;
10370 }
10371 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10372 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10373 {
10374 /* Handle BLX, branch and link/exchange. */
10375 if (9 == arm_insn_r->opcode)
10376 {
10377 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10378 and R14 stores the return address. */
10379 record_buf[0] = ARM_PS_REGNUM;
10380 record_buf[1] = ARM_LR_REGNUM;
10381 arm_insn_r->reg_rec_count = 2;
10382 }
10383 }
10384 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10385 {
10386 /* Handle enhanced software breakpoint insn, BKPT. */
10387 /* CPSR is changed to be executed in ARM state, disabling normal
10388 interrupts, entering abort mode. */
10389 /* According to high vector configuration PC is set. */
10390 /* user hit breakpoint and type reverse, in
10391 that case, we need to go back with previous CPSR and
10392 Program Counter. */
10393 record_buf[0] = ARM_PS_REGNUM;
10394 record_buf[1] = ARM_LR_REGNUM;
10395 arm_insn_r->reg_rec_count = 2;
10396
10397 /* Save SPSR also; how? */
72508ac0
PO
10398 return -1;
10399 }
10400 else if (11 == arm_insn_r->decode
10401 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10402 {
10403 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10404
10405 /* Handle str(x) insn */
10406 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10407 ARM_RECORD_STRH);
10408 }
10409 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10410 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10411 {
10412 /* Handle BX, branch and link/exchange. */
10413 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10414 record_buf[0] = ARM_PS_REGNUM;
10415 arm_insn_r->reg_rec_count = 1;
10416 }
10417 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10418 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10419 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10420 {
10421 /* Count leading zeros: CLZ. */
10422 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10423 arm_insn_r->reg_rec_count = 1;
10424 }
10425 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10426 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10427 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10428 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10429 )
10430 {
10431 /* Handle MRS insn. */
10432 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10433 arm_insn_r->reg_rec_count = 1;
10434 }
10435 else if (arm_insn_r->opcode <= 15)
10436 {
10437 /* Normal data processing insns. */
10438 /* Out of 11 shifter operands mode, all the insn modifies destination
10439 register, which is specified by 13-16 decode. */
10440 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10441 record_buf[1] = ARM_PS_REGNUM;
10442 arm_insn_r->reg_rec_count = 2;
10443 }
10444 else
10445 {
10446 return -1;
10447 }
10448
10449 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10450 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10451 return 0;
10452}
10453
10454/* Handling opcode 001 insns. */
10455
10456static int
10457arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10458{
10459 uint32_t record_buf[8], record_buf_mem[8];
10460
10461 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10462 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10463
10464 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10465 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10466 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10467 )
10468 {
10469 /* Handle MSR insn. */
10470 if (9 == arm_insn_r->opcode)
10471 {
10472 /* CSPR is going to be changed. */
10473 record_buf[0] = ARM_PS_REGNUM;
10474 arm_insn_r->reg_rec_count = 1;
10475 }
10476 else
10477 {
10478 /* SPSR is going to be changed. */
10479 }
10480 }
10481 else if (arm_insn_r->opcode <= 15)
10482 {
10483 /* Normal data processing insns. */
10484 /* Out of 11 shifter operands mode, all the insn modifies destination
10485 register, which is specified by 13-16 decode. */
10486 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10487 record_buf[1] = ARM_PS_REGNUM;
10488 arm_insn_r->reg_rec_count = 2;
10489 }
10490 else
10491 {
10492 return -1;
10493 }
10494
10495 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10496 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10497 return 0;
10498}
10499
c55978a6
YQ
10500static int
10501arm_record_media (insn_decode_record *arm_insn_r)
10502{
10503 uint32_t record_buf[8];
10504
10505 switch (bits (arm_insn_r->arm_insn, 22, 24))
10506 {
10507 case 0:
10508 /* Parallel addition and subtraction, signed */
10509 case 1:
10510 /* Parallel addition and subtraction, unsigned */
10511 case 2:
10512 case 3:
10513 /* Packing, unpacking, saturation and reversal */
10514 {
10515 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10516
10517 record_buf[arm_insn_r->reg_rec_count++] = rd;
10518 }
10519 break;
10520
10521 case 4:
10522 case 5:
10523 /* Signed multiplies */
10524 {
10525 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10526 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10527
10528 record_buf[arm_insn_r->reg_rec_count++] = rd;
10529 if (op1 == 0x0)
10530 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10531 else if (op1 == 0x4)
10532 record_buf[arm_insn_r->reg_rec_count++]
10533 = bits (arm_insn_r->arm_insn, 12, 15);
10534 }
10535 break;
10536
10537 case 6:
10538 {
10539 if (bit (arm_insn_r->arm_insn, 21)
10540 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10541 {
10542 /* SBFX */
10543 record_buf[arm_insn_r->reg_rec_count++]
10544 = bits (arm_insn_r->arm_insn, 12, 15);
10545 }
10546 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10547 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10548 {
10549 /* USAD8 and USADA8 */
10550 record_buf[arm_insn_r->reg_rec_count++]
10551 = bits (arm_insn_r->arm_insn, 16, 19);
10552 }
10553 }
10554 break;
10555
10556 case 7:
10557 {
10558 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10559 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10560 {
10561 /* Permanently UNDEFINED */
10562 return -1;
10563 }
10564 else
10565 {
10566 /* BFC, BFI and UBFX */
10567 record_buf[arm_insn_r->reg_rec_count++]
10568 = bits (arm_insn_r->arm_insn, 12, 15);
10569 }
10570 }
10571 break;
10572
10573 default:
10574 return -1;
10575 }
10576
10577 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10578
10579 return 0;
10580}
10581
71e396f9 10582/* Handle ARM mode instructions with opcode 010. */
72508ac0
PO
10583
10584static int
10585arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10586{
10587 struct regcache *reg_cache = arm_insn_r->regcache;
10588
71e396f9
LM
10589 uint32_t reg_base , reg_dest;
10590 uint32_t offset_12, tgt_mem_addr;
72508ac0 10591 uint32_t record_buf[8], record_buf_mem[8];
71e396f9
LM
10592 unsigned char wback;
10593 ULONGEST u_regval;
72508ac0 10594
71e396f9
LM
10595 /* Calculate wback. */
10596 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10597 || (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0 10598
71e396f9
LM
10599 arm_insn_r->reg_rec_count = 0;
10600 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0
PO
10601
10602 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10603 {
71e396f9
LM
10604 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10605 and LDRT. */
10606
72508ac0 10607 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
71e396f9
LM
10608 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10609
10610 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10611 preceeds a LDR instruction having R15 as reg_base, it
10612 emulates a branch and link instruction, and hence we need to save
10613 CPSR and PC as well. */
10614 if (ARM_PC_REGNUM == reg_dest)
10615 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10616
10617 /* If wback is true, also save the base register, which is going to be
10618 written to. */
10619 if (wback)
10620 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10621 }
10622 else
10623 {
71e396f9
LM
10624 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10625
72508ac0 10626 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
71e396f9
LM
10627 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10628
10629 /* Handle bit U. */
72508ac0 10630 if (bit (arm_insn_r->arm_insn, 23))
71e396f9
LM
10631 {
10632 /* U == 1: Add the offset. */
10633 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10634 }
72508ac0 10635 else
71e396f9
LM
10636 {
10637 /* U == 0: subtract the offset. */
10638 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10639 }
10640
10641 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10642 bytes. */
10643 if (bit (arm_insn_r->arm_insn, 22))
10644 {
10645 /* STRB and STRBT: 1 byte. */
10646 record_buf_mem[0] = 1;
10647 }
10648 else
10649 {
10650 /* STR and STRT: 4 bytes. */
10651 record_buf_mem[0] = 4;
10652 }
10653
10654 /* Handle bit P. */
10655 if (bit (arm_insn_r->arm_insn, 24))
10656 record_buf_mem[1] = tgt_mem_addr;
10657 else
10658 record_buf_mem[1] = (uint32_t) u_regval;
72508ac0 10659
72508ac0
PO
10660 arm_insn_r->mem_rec_count = 1;
10661
71e396f9
LM
10662 /* If wback is true, also save the base register, which is going to be
10663 written to. */
10664 if (wback)
10665 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10666 }
10667
10668 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10669 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10670 return 0;
10671}
10672
10673/* Handling opcode 011 insns. */
10674
10675static int
10676arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10677{
10678 struct regcache *reg_cache = arm_insn_r->regcache;
10679
10680 uint32_t shift_imm = 0;
10681 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10682 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10683 uint32_t record_buf[8], record_buf_mem[8];
10684
10685 LONGEST s_word;
10686 ULONGEST u_regval[2];
10687
c55978a6
YQ
10688 if (bit (arm_insn_r->arm_insn, 4))
10689 return arm_record_media (arm_insn_r);
10690
72508ac0
PO
10691 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10692 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10693
10694 /* Handle enhanced store insns and LDRD DSP insn,
10695 order begins according to addressing modes for store insns
10696 STRH insn. */
10697
10698 /* LDR or STR? */
10699 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10700 {
10701 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10702 /* LDR insn has a capability to do branching, if
10703 MOV LR, PC is precedded by LDR insn having Rn as R15
10704 in that case, it emulates branch and link insn, and hence we
10705 need to save CSPR and PC as well. */
10706 if (15 != reg_dest)
10707 {
10708 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10709 arm_insn_r->reg_rec_count = 1;
10710 }
10711 else
10712 {
10713 record_buf[0] = reg_dest;
10714 record_buf[1] = ARM_PS_REGNUM;
10715 arm_insn_r->reg_rec_count = 2;
10716 }
10717 }
10718 else
10719 {
10720 if (! bits (arm_insn_r->arm_insn, 4, 11))
10721 {
10722 /* Store insn, register offset and register pre-indexed,
10723 register post-indexed. */
10724 /* Get Rm. */
10725 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10726 /* Get Rn. */
10727 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10728 regcache_raw_read_unsigned (reg_cache, reg_src1
10729 , &u_regval[0]);
10730 regcache_raw_read_unsigned (reg_cache, reg_src2
10731 , &u_regval[1]);
10732 if (15 == reg_src2)
10733 {
10734 /* If R15 was used as Rn, hence current PC+8. */
10735 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10736 u_regval[0] = u_regval[0] + 8;
10737 }
10738 /* Calculate target store address, Rn +/- Rm, register offset. */
10739 /* U == 1. */
10740 if (bit (arm_insn_r->arm_insn, 23))
10741 {
10742 tgt_mem_addr = u_regval[0] + u_regval[1];
10743 }
10744 else
10745 {
10746 tgt_mem_addr = u_regval[1] - u_regval[0];
10747 }
10748
10749 switch (arm_insn_r->opcode)
10750 {
10751 /* STR. */
10752 case 8:
10753 case 12:
10754 /* STR. */
10755 case 9:
10756 case 13:
10757 /* STRT. */
10758 case 1:
10759 case 5:
10760 /* STR. */
10761 case 0:
10762 case 4:
10763 record_buf_mem[0] = 4;
10764 break;
10765
10766 /* STRB. */
10767 case 10:
10768 case 14:
10769 /* STRB. */
10770 case 11:
10771 case 15:
10772 /* STRBT. */
10773 case 3:
10774 case 7:
10775 /* STRB. */
10776 case 2:
10777 case 6:
10778 record_buf_mem[0] = 1;
10779 break;
10780
10781 default:
10782 gdb_assert_not_reached ("no decoding pattern found");
10783 break;
10784 }
10785 record_buf_mem[1] = tgt_mem_addr;
10786 arm_insn_r->mem_rec_count = 1;
10787
10788 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10789 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10790 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10791 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10792 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10793 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10794 )
10795 {
10796 /* Rn is going to be changed in pre-indexed mode and
10797 post-indexed mode as well. */
10798 record_buf[0] = reg_src2;
10799 arm_insn_r->reg_rec_count = 1;
10800 }
10801 }
10802 else
10803 {
10804 /* Store insn, scaled register offset; scaled pre-indexed. */
10805 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10806 /* Get Rm. */
10807 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10808 /* Get Rn. */
10809 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10810 /* Get shift_imm. */
10811 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10812 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10813 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10814 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10815 /* Offset_12 used as shift. */
10816 switch (offset_12)
10817 {
10818 case 0:
10819 /* Offset_12 used as index. */
10820 offset_12 = u_regval[0] << shift_imm;
10821 break;
10822
10823 case 1:
10824 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10825 break;
10826
10827 case 2:
10828 if (!shift_imm)
10829 {
10830 if (bit (u_regval[0], 31))
10831 {
10832 offset_12 = 0xFFFFFFFF;
10833 }
10834 else
10835 {
10836 offset_12 = 0;
10837 }
10838 }
10839 else
10840 {
10841 /* This is arithmetic shift. */
10842 offset_12 = s_word >> shift_imm;
10843 }
10844 break;
10845
10846 case 3:
10847 if (!shift_imm)
10848 {
10849 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10850 &u_regval[1]);
10851 /* Get C flag value and shift it by 31. */
10852 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10853 | (u_regval[0]) >> 1);
10854 }
10855 else
10856 {
10857 offset_12 = (u_regval[0] >> shift_imm) \
10858 | (u_regval[0] <<
10859 (sizeof(uint32_t) - shift_imm));
10860 }
10861 break;
10862
10863 default:
10864 gdb_assert_not_reached ("no decoding pattern found");
10865 break;
10866 }
10867
10868 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10869 /* bit U set. */
10870 if (bit (arm_insn_r->arm_insn, 23))
10871 {
10872 tgt_mem_addr = u_regval[1] + offset_12;
10873 }
10874 else
10875 {
10876 tgt_mem_addr = u_regval[1] - offset_12;
10877 }
10878
10879 switch (arm_insn_r->opcode)
10880 {
10881 /* STR. */
10882 case 8:
10883 case 12:
10884 /* STR. */
10885 case 9:
10886 case 13:
10887 /* STRT. */
10888 case 1:
10889 case 5:
10890 /* STR. */
10891 case 0:
10892 case 4:
10893 record_buf_mem[0] = 4;
10894 break;
10895
10896 /* STRB. */
10897 case 10:
10898 case 14:
10899 /* STRB. */
10900 case 11:
10901 case 15:
10902 /* STRBT. */
10903 case 3:
10904 case 7:
10905 /* STRB. */
10906 case 2:
10907 case 6:
10908 record_buf_mem[0] = 1;
10909 break;
10910
10911 default:
10912 gdb_assert_not_reached ("no decoding pattern found");
10913 break;
10914 }
10915 record_buf_mem[1] = tgt_mem_addr;
10916 arm_insn_r->mem_rec_count = 1;
10917
10918 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10919 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10920 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10921 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10922 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10923 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10924 )
10925 {
10926 /* Rn is going to be changed in register scaled pre-indexed
10927 mode,and scaled post indexed mode. */
10928 record_buf[0] = reg_src2;
10929 arm_insn_r->reg_rec_count = 1;
10930 }
10931 }
10932 }
10933
10934 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10935 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10936 return 0;
10937}
10938
71e396f9 10939/* Handle ARM mode instructions with opcode 100. */
72508ac0
PO
10940
10941static int
10942arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10943{
10944 struct regcache *reg_cache = arm_insn_r->regcache;
71e396f9
LM
10945 uint32_t register_count = 0, register_bits;
10946 uint32_t reg_base, addr_mode;
72508ac0 10947 uint32_t record_buf[24], record_buf_mem[48];
71e396f9
LM
10948 uint32_t wback;
10949 ULONGEST u_regval;
72508ac0 10950
71e396f9
LM
10951 /* Fetch the list of registers. */
10952 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10953 arm_insn_r->reg_rec_count = 0;
10954
10955 /* Fetch the base register that contains the address we are loading data
10956 to. */
10957 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0 10958
71e396f9
LM
10959 /* Calculate wback. */
10960 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0
PO
10961
10962 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10963 {
71e396f9 10964 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
72508ac0 10965
71e396f9 10966 /* Find out which registers are going to be loaded from memory. */
72508ac0 10967 while (register_bits)
71e396f9
LM
10968 {
10969 if (register_bits & 0x00000001)
10970 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10971 register_bits = register_bits >> 1;
10972 register_count++;
10973 }
72508ac0 10974
71e396f9
LM
10975
10976 /* If wback is true, also save the base register, which is going to be
10977 written to. */
10978 if (wback)
10979 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10980
10981 /* Save the CPSR register. */
10982 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
72508ac0
PO
10983 }
10984 else
10985 {
71e396f9 10986 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
72508ac0 10987
71e396f9
LM
10988 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10989
10990 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10991
10992 /* Find out how many registers are going to be stored to memory. */
72508ac0 10993 while (register_bits)
71e396f9
LM
10994 {
10995 if (register_bits & 0x00000001)
10996 register_count++;
10997 register_bits = register_bits >> 1;
10998 }
72508ac0
PO
10999
11000 switch (addr_mode)
71e396f9
LM
11001 {
11002 /* STMDA (STMED): Decrement after. */
11003 case 0:
11004 record_buf_mem[1] = (uint32_t) u_regval
11005 - register_count * INT_REGISTER_SIZE + 4;
11006 break;
11007 /* STM (STMIA, STMEA): Increment after. */
11008 case 1:
11009 record_buf_mem[1] = (uint32_t) u_regval;
11010 break;
11011 /* STMDB (STMFD): Decrement before. */
11012 case 2:
11013 record_buf_mem[1] = (uint32_t) u_regval
11014 - register_count * INT_REGISTER_SIZE;
11015 break;
11016 /* STMIB (STMFA): Increment before. */
11017 case 3:
11018 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11019 break;
11020 default:
11021 gdb_assert_not_reached ("no decoding pattern found");
11022 break;
11023 }
72508ac0 11024
71e396f9
LM
11025 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11026 arm_insn_r->mem_rec_count = 1;
11027
11028 /* If wback is true, also save the base register, which is going to be
11029 written to. */
11030 if (wback)
11031 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
11032 }
11033
11034 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11035 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11036 return 0;
11037}
11038
11039/* Handling opcode 101 insns. */
11040
11041static int
11042arm_record_b_bl (insn_decode_record *arm_insn_r)
11043{
11044 uint32_t record_buf[8];
11045
11046 /* Handle B, BL, BLX(1) insns. */
11047 /* B simply branches so we do nothing here. */
11048 /* Note: BLX(1) doesnt fall here but instead it falls into
11049 extension space. */
11050 if (bit (arm_insn_r->arm_insn, 24))
11051 {
11052 record_buf[0] = ARM_LR_REGNUM;
11053 arm_insn_r->reg_rec_count = 1;
11054 }
11055
11056 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11057
11058 return 0;
11059}
11060
72508ac0 11061static int
c6ec2b30 11062arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
72508ac0
PO
11063{
11064 printf_unfiltered (_("Process record does not support instruction "
01e57735
YQ
11065 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11066 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
72508ac0
PO
11067
11068 return -1;
11069}
11070
5a578da5
OJ
11071/* Record handler for vector data transfer instructions. */
11072
11073static int
11074arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11075{
11076 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11077 uint32_t record_buf[4];
11078
5a578da5
OJ
11079 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11080 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11081 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11082 bit_l = bit (arm_insn_r->arm_insn, 20);
11083 bit_c = bit (arm_insn_r->arm_insn, 8);
11084
11085 /* Handle VMOV instruction. */
11086 if (bit_l && bit_c)
11087 {
11088 record_buf[0] = reg_t;
11089 arm_insn_r->reg_rec_count = 1;
11090 }
11091 else if (bit_l && !bit_c)
11092 {
11093 /* Handle VMOV instruction. */
11094 if (bits_a == 0x00)
11095 {
f1771dce 11096 record_buf[0] = reg_t;
5a578da5
OJ
11097 arm_insn_r->reg_rec_count = 1;
11098 }
11099 /* Handle VMRS instruction. */
11100 else if (bits_a == 0x07)
11101 {
11102 if (reg_t == 15)
11103 reg_t = ARM_PS_REGNUM;
11104
11105 record_buf[0] = reg_t;
11106 arm_insn_r->reg_rec_count = 1;
11107 }
11108 }
11109 else if (!bit_l && !bit_c)
11110 {
11111 /* Handle VMOV instruction. */
11112 if (bits_a == 0x00)
11113 {
f1771dce 11114 record_buf[0] = ARM_D0_REGNUM + reg_v;
5a578da5
OJ
11115
11116 arm_insn_r->reg_rec_count = 1;
11117 }
11118 /* Handle VMSR instruction. */
11119 else if (bits_a == 0x07)
11120 {
11121 record_buf[0] = ARM_FPSCR_REGNUM;
11122 arm_insn_r->reg_rec_count = 1;
11123 }
11124 }
11125 else if (!bit_l && bit_c)
11126 {
11127 /* Handle VMOV instruction. */
11128 if (!(bits_a & 0x04))
11129 {
11130 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11131 + ARM_D0_REGNUM;
11132 arm_insn_r->reg_rec_count = 1;
11133 }
11134 /* Handle VDUP instruction. */
11135 else
11136 {
11137 if (bit (arm_insn_r->arm_insn, 21))
11138 {
11139 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11140 record_buf[0] = reg_v + ARM_D0_REGNUM;
11141 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11142 arm_insn_r->reg_rec_count = 2;
11143 }
11144 else
11145 {
11146 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11147 record_buf[0] = reg_v + ARM_D0_REGNUM;
11148 arm_insn_r->reg_rec_count = 1;
11149 }
11150 }
11151 }
11152
11153 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11154 return 0;
11155}
11156
f20f80dd
OJ
11157/* Record handler for extension register load/store instructions. */
11158
11159static int
11160arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11161{
11162 uint32_t opcode, single_reg;
11163 uint8_t op_vldm_vstm;
11164 uint32_t record_buf[8], record_buf_mem[128];
11165 ULONGEST u_regval = 0;
11166
11167 struct regcache *reg_cache = arm_insn_r->regcache;
f20f80dd
OJ
11168
11169 opcode = bits (arm_insn_r->arm_insn, 20, 24);
9fde51ed 11170 single_reg = !bit (arm_insn_r->arm_insn, 8);
f20f80dd
OJ
11171 op_vldm_vstm = opcode & 0x1b;
11172
11173 /* Handle VMOV instructions. */
11174 if ((opcode & 0x1e) == 0x04)
11175 {
9fde51ed 11176 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
01e57735
YQ
11177 {
11178 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11179 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11180 arm_insn_r->reg_rec_count = 2;
11181 }
f20f80dd 11182 else
01e57735 11183 {
9fde51ed
YQ
11184 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11185 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
f20f80dd 11186
9fde51ed 11187 if (single_reg)
01e57735 11188 {
9fde51ed
YQ
11189 /* The first S register number m is REG_M:M (M is bit 5),
11190 the corresponding D register number is REG_M:M / 2, which
11191 is REG_M. */
11192 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11193 /* The second S register number is REG_M:M + 1, the
11194 corresponding D register number is (REG_M:M + 1) / 2.
11195 IOW, if bit M is 1, the first and second S registers
11196 are mapped to different D registers, otherwise, they are
11197 in the same D register. */
11198 if (bit_m)
11199 {
11200 record_buf[arm_insn_r->reg_rec_count++]
11201 = ARM_D0_REGNUM + reg_m + 1;
11202 }
01e57735
YQ
11203 }
11204 else
11205 {
9fde51ed 11206 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
01e57735
YQ
11207 arm_insn_r->reg_rec_count = 1;
11208 }
11209 }
f20f80dd
OJ
11210 }
11211 /* Handle VSTM and VPUSH instructions. */
11212 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
01e57735 11213 || op_vldm_vstm == 0x12)
f20f80dd
OJ
11214 {
11215 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11216 uint32_t memory_index = 0;
11217
11218 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11219 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11220 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11221 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11222 memory_count = imm_off8;
11223
11224 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11225 start_address = u_regval;
f20f80dd 11226 else
01e57735 11227 start_address = u_regval - imm_off32;
f20f80dd
OJ
11228
11229 if (bit (arm_insn_r->arm_insn, 21))
01e57735
YQ
11230 {
11231 record_buf[0] = reg_rn;
11232 arm_insn_r->reg_rec_count = 1;
11233 }
f20f80dd
OJ
11234
11235 while (memory_count > 0)
01e57735 11236 {
9fde51ed 11237 if (single_reg)
01e57735 11238 {
9fde51ed
YQ
11239 record_buf_mem[memory_index] = 4;
11240 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11241 start_address = start_address + 4;
11242 memory_index = memory_index + 2;
11243 }
11244 else
11245 {
9fde51ed
YQ
11246 record_buf_mem[memory_index] = 4;
11247 record_buf_mem[memory_index + 1] = start_address;
11248 record_buf_mem[memory_index + 2] = 4;
11249 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11250 start_address = start_address + 8;
11251 memory_index = memory_index + 4;
11252 }
11253 memory_count--;
11254 }
f20f80dd
OJ
11255 arm_insn_r->mem_rec_count = (memory_index >> 1);
11256 }
11257 /* Handle VLDM instructions. */
11258 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
01e57735 11259 || op_vldm_vstm == 0x13)
f20f80dd
OJ
11260 {
11261 uint32_t reg_count, reg_vd;
11262 uint32_t reg_index = 0;
9fde51ed 11263 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
f20f80dd
OJ
11264
11265 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11266 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11267
9fde51ed
YQ
11268 /* REG_VD is the first D register number. If the instruction
11269 loads memory to S registers (SINGLE_REG is TRUE), the register
11270 number is (REG_VD << 1 | bit D), so the corresponding D
11271 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11272 if (!single_reg)
11273 reg_vd = reg_vd | (bit_d << 4);
f20f80dd 11274
9fde51ed 11275 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
01e57735 11276 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
f20f80dd 11277
9fde51ed
YQ
11278 /* If the instruction loads memory to D register, REG_COUNT should
11279 be divided by 2, according to the ARM Architecture Reference
11280 Manual. If the instruction loads memory to S register, divide by
11281 2 as well because two S registers are mapped to D register. */
11282 reg_count = reg_count / 2;
11283 if (single_reg && bit_d)
01e57735 11284 {
9fde51ed
YQ
11285 /* Increase the register count if S register list starts from
11286 an odd number (bit d is one). */
11287 reg_count++;
11288 }
f20f80dd 11289
9fde51ed
YQ
11290 while (reg_count > 0)
11291 {
11292 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
01e57735
YQ
11293 reg_count--;
11294 }
f20f80dd
OJ
11295 arm_insn_r->reg_rec_count = reg_index;
11296 }
11297 /* VSTR Vector store register. */
11298 else if ((opcode & 0x13) == 0x10)
11299 {
bec2ab5a 11300 uint32_t start_address, reg_rn, imm_off32, imm_off8;
f20f80dd
OJ
11301 uint32_t memory_index = 0;
11302
11303 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11304 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11305 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11306 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11307
11308 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11309 start_address = u_regval + imm_off32;
f20f80dd 11310 else
01e57735 11311 start_address = u_regval - imm_off32;
f20f80dd
OJ
11312
11313 if (single_reg)
01e57735 11314 {
9fde51ed
YQ
11315 record_buf_mem[memory_index] = 4;
11316 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11317 arm_insn_r->mem_rec_count = 1;
11318 }
f20f80dd 11319 else
01e57735 11320 {
9fde51ed
YQ
11321 record_buf_mem[memory_index] = 4;
11322 record_buf_mem[memory_index + 1] = start_address;
11323 record_buf_mem[memory_index + 2] = 4;
11324 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11325 arm_insn_r->mem_rec_count = 2;
11326 }
f20f80dd
OJ
11327 }
11328 /* VLDR Vector load register. */
11329 else if ((opcode & 0x13) == 0x11)
11330 {
11331 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11332
11333 if (!single_reg)
01e57735
YQ
11334 {
11335 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11336 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11337 }
f20f80dd 11338 else
01e57735
YQ
11339 {
11340 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
9fde51ed
YQ
11341 /* Record register D rather than pseudo register S. */
11342 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
01e57735 11343 }
f20f80dd
OJ
11344 arm_insn_r->reg_rec_count = 1;
11345 }
11346
11347 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11348 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11349 return 0;
11350}
11351
851f26ae
OJ
11352/* Record handler for arm/thumb mode VFP data processing instructions. */
11353
11354static int
11355arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11356{
11357 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11358 uint32_t record_buf[4];
11359 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11360 enum insn_types curr_insn_type = INSN_INV;
11361
11362 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11363 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11364 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11365 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11366 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11367 bit_d = bit (arm_insn_r->arm_insn, 22);
11368 opc1 = opc1 & 0x04;
11369
11370 /* Handle VMLA, VMLS. */
11371 if (opc1 == 0x00)
11372 {
11373 if (bit (arm_insn_r->arm_insn, 10))
11374 {
11375 if (bit (arm_insn_r->arm_insn, 6))
11376 curr_insn_type = INSN_T0;
11377 else
11378 curr_insn_type = INSN_T1;
11379 }
11380 else
11381 {
11382 if (dp_op_sz)
11383 curr_insn_type = INSN_T1;
11384 else
11385 curr_insn_type = INSN_T2;
11386 }
11387 }
11388 /* Handle VNMLA, VNMLS, VNMUL. */
11389 else if (opc1 == 0x01)
11390 {
11391 if (dp_op_sz)
11392 curr_insn_type = INSN_T1;
11393 else
11394 curr_insn_type = INSN_T2;
11395 }
11396 /* Handle VMUL. */
11397 else if (opc1 == 0x02 && !(opc3 & 0x01))
11398 {
11399 if (bit (arm_insn_r->arm_insn, 10))
11400 {
11401 if (bit (arm_insn_r->arm_insn, 6))
11402 curr_insn_type = INSN_T0;
11403 else
11404 curr_insn_type = INSN_T1;
11405 }
11406 else
11407 {
11408 if (dp_op_sz)
11409 curr_insn_type = INSN_T1;
11410 else
11411 curr_insn_type = INSN_T2;
11412 }
11413 }
11414 /* Handle VADD, VSUB. */
11415 else if (opc1 == 0x03)
11416 {
11417 if (!bit (arm_insn_r->arm_insn, 9))
11418 {
11419 if (bit (arm_insn_r->arm_insn, 6))
11420 curr_insn_type = INSN_T0;
11421 else
11422 curr_insn_type = INSN_T1;
11423 }
11424 else
11425 {
11426 if (dp_op_sz)
11427 curr_insn_type = INSN_T1;
11428 else
11429 curr_insn_type = INSN_T2;
11430 }
11431 }
11432 /* Handle VDIV. */
11433 else if (opc1 == 0x0b)
11434 {
11435 if (dp_op_sz)
11436 curr_insn_type = INSN_T1;
11437 else
11438 curr_insn_type = INSN_T2;
11439 }
11440 /* Handle all other vfp data processing instructions. */
11441 else if (opc1 == 0x0b)
11442 {
11443 /* Handle VMOV. */
11444 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11445 {
11446 if (bit (arm_insn_r->arm_insn, 4))
11447 {
11448 if (bit (arm_insn_r->arm_insn, 6))
11449 curr_insn_type = INSN_T0;
11450 else
11451 curr_insn_type = INSN_T1;
11452 }
11453 else
11454 {
11455 if (dp_op_sz)
11456 curr_insn_type = INSN_T1;
11457 else
11458 curr_insn_type = INSN_T2;
11459 }
11460 }
11461 /* Handle VNEG and VABS. */
11462 else if ((opc2 == 0x01 && opc3 == 0x01)
11463 || (opc2 == 0x00 && opc3 == 0x03))
11464 {
11465 if (!bit (arm_insn_r->arm_insn, 11))
11466 {
11467 if (bit (arm_insn_r->arm_insn, 6))
11468 curr_insn_type = INSN_T0;
11469 else
11470 curr_insn_type = INSN_T1;
11471 }
11472 else
11473 {
11474 if (dp_op_sz)
11475 curr_insn_type = INSN_T1;
11476 else
11477 curr_insn_type = INSN_T2;
11478 }
11479 }
11480 /* Handle VSQRT. */
11481 else if (opc2 == 0x01 && opc3 == 0x03)
11482 {
11483 if (dp_op_sz)
11484 curr_insn_type = INSN_T1;
11485 else
11486 curr_insn_type = INSN_T2;
11487 }
11488 /* Handle VCVT. */
11489 else if (opc2 == 0x07 && opc3 == 0x03)
11490 {
11491 if (!dp_op_sz)
11492 curr_insn_type = INSN_T1;
11493 else
11494 curr_insn_type = INSN_T2;
11495 }
11496 else if (opc3 & 0x01)
11497 {
11498 /* Handle VCVT. */
11499 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11500 {
11501 if (!bit (arm_insn_r->arm_insn, 18))
11502 curr_insn_type = INSN_T2;
11503 else
11504 {
11505 if (dp_op_sz)
11506 curr_insn_type = INSN_T1;
11507 else
11508 curr_insn_type = INSN_T2;
11509 }
11510 }
11511 /* Handle VCVT. */
11512 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11513 {
11514 if (dp_op_sz)
11515 curr_insn_type = INSN_T1;
11516 else
11517 curr_insn_type = INSN_T2;
11518 }
11519 /* Handle VCVTB, VCVTT. */
11520 else if ((opc2 & 0x0e) == 0x02)
11521 curr_insn_type = INSN_T2;
11522 /* Handle VCMP, VCMPE. */
11523 else if ((opc2 & 0x0e) == 0x04)
11524 curr_insn_type = INSN_T3;
11525 }
11526 }
11527
11528 switch (curr_insn_type)
11529 {
11530 case INSN_T0:
11531 reg_vd = reg_vd | (bit_d << 4);
11532 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11533 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11534 arm_insn_r->reg_rec_count = 2;
11535 break;
11536
11537 case INSN_T1:
11538 reg_vd = reg_vd | (bit_d << 4);
11539 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11540 arm_insn_r->reg_rec_count = 1;
11541 break;
11542
11543 case INSN_T2:
11544 reg_vd = (reg_vd << 1) | bit_d;
11545 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11546 arm_insn_r->reg_rec_count = 1;
11547 break;
11548
11549 case INSN_T3:
11550 record_buf[0] = ARM_FPSCR_REGNUM;
11551 arm_insn_r->reg_rec_count = 1;
11552 break;
11553
11554 default:
11555 gdb_assert_not_reached ("no decoding pattern found");
11556 break;
11557 }
11558
11559 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11560 return 0;
11561}
11562
60cc5e93
OJ
11563/* Handling opcode 110 insns. */
11564
11565static int
11566arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11567{
bec2ab5a 11568 uint32_t op1, op1_ebit, coproc;
60cc5e93
OJ
11569
11570 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11571 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11572 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11573
11574 if ((coproc & 0x0e) == 0x0a)
11575 {
11576 /* Handle extension register ld/st instructions. */
11577 if (!(op1 & 0x20))
f20f80dd 11578 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11579
11580 /* 64-bit transfers between arm core and extension registers. */
11581 if ((op1 & 0x3e) == 0x04)
f20f80dd 11582 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11583 }
11584 else
11585 {
11586 /* Handle coprocessor ld/st instructions. */
11587 if (!(op1 & 0x3a))
11588 {
11589 /* Store. */
11590 if (!op1_ebit)
11591 return arm_record_unsupported_insn (arm_insn_r);
11592 else
11593 /* Load. */
11594 return arm_record_unsupported_insn (arm_insn_r);
11595 }
11596
11597 /* Move to coprocessor from two arm core registers. */
11598 if (op1 == 0x4)
11599 return arm_record_unsupported_insn (arm_insn_r);
11600
11601 /* Move to two arm core registers from coprocessor. */
11602 if (op1 == 0x5)
11603 {
11604 uint32_t reg_t[2];
11605
11606 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11607 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11608 arm_insn_r->reg_rec_count = 2;
11609
11610 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11611 return 0;
11612 }
11613 }
11614 return arm_record_unsupported_insn (arm_insn_r);
11615}
11616
72508ac0
PO
11617/* Handling opcode 111 insns. */
11618
11619static int
11620arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11621{
60cc5e93 11622 uint32_t op, op1_sbit, op1_ebit, coproc;
72508ac0
PO
11623 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11624 struct regcache *reg_cache = arm_insn_r->regcache;
72508ac0
PO
11625
11626 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
60cc5e93
OJ
11627 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11628 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11629 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11630 op = bit (arm_insn_r->arm_insn, 4);
97dfe206
OJ
11631
11632 /* Handle arm SWI/SVC system call instructions. */
60cc5e93 11633 if (op1_sbit)
97dfe206
OJ
11634 {
11635 if (tdep->arm_syscall_record != NULL)
11636 {
11637 ULONGEST svc_operand, svc_number;
11638
11639 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11640
11641 if (svc_operand) /* OABI. */
11642 svc_number = svc_operand - 0x900000;
11643 else /* EABI. */
11644 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11645
60cc5e93 11646 return tdep->arm_syscall_record (reg_cache, svc_number);
97dfe206
OJ
11647 }
11648 else
11649 {
11650 printf_unfiltered (_("no syscall record support\n"));
60cc5e93 11651 return -1;
97dfe206
OJ
11652 }
11653 }
60cc5e93
OJ
11654
11655 if ((coproc & 0x0e) == 0x0a)
11656 {
11657 /* VFP data-processing instructions. */
11658 if (!op1_sbit && !op)
851f26ae 11659 return arm_record_vfp_data_proc_insn (arm_insn_r);
60cc5e93
OJ
11660
11661 /* Advanced SIMD, VFP instructions. */
11662 if (!op1_sbit && op)
5a578da5 11663 return arm_record_vdata_transfer_insn (arm_insn_r);
60cc5e93 11664 }
97dfe206
OJ
11665 else
11666 {
60cc5e93
OJ
11667 /* Coprocessor data operations. */
11668 if (!op1_sbit && !op)
11669 return arm_record_unsupported_insn (arm_insn_r);
11670
11671 /* Move to Coprocessor from ARM core register. */
11672 if (!op1_sbit && !op1_ebit && op)
11673 return arm_record_unsupported_insn (arm_insn_r);
11674
11675 /* Move to arm core register from coprocessor. */
11676 if (!op1_sbit && op1_ebit && op)
11677 {
11678 uint32_t record_buf[1];
11679
11680 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11681 if (record_buf[0] == 15)
11682 record_buf[0] = ARM_PS_REGNUM;
11683
11684 arm_insn_r->reg_rec_count = 1;
11685 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11686 record_buf);
11687 return 0;
11688 }
97dfe206 11689 }
72508ac0 11690
60cc5e93 11691 return arm_record_unsupported_insn (arm_insn_r);
72508ac0
PO
11692}
11693
11694/* Handling opcode 000 insns. */
11695
11696static int
11697thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11698{
11699 uint32_t record_buf[8];
11700 uint32_t reg_src1 = 0;
11701
11702 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11703
11704 record_buf[0] = ARM_PS_REGNUM;
11705 record_buf[1] = reg_src1;
11706 thumb_insn_r->reg_rec_count = 2;
11707
11708 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11709
11710 return 0;
11711}
11712
11713
11714/* Handling opcode 001 insns. */
11715
11716static int
11717thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11718{
11719 uint32_t record_buf[8];
11720 uint32_t reg_src1 = 0;
11721
11722 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11723
11724 record_buf[0] = ARM_PS_REGNUM;
11725 record_buf[1] = reg_src1;
11726 thumb_insn_r->reg_rec_count = 2;
11727
11728 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11729
11730 return 0;
11731}
11732
11733/* Handling opcode 010 insns. */
11734
11735static int
11736thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11737{
11738 struct regcache *reg_cache = thumb_insn_r->regcache;
11739 uint32_t record_buf[8], record_buf_mem[8];
11740
11741 uint32_t reg_src1 = 0, reg_src2 = 0;
11742 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11743
11744 ULONGEST u_regval[2] = {0};
11745
11746 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11747
11748 if (bit (thumb_insn_r->arm_insn, 12))
11749 {
11750 /* Handle load/store register offset. */
11751 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11752 if (opcode2 >= 12 && opcode2 <= 15)
11753 {
11754 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11755 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11756 record_buf[0] = reg_src1;
11757 thumb_insn_r->reg_rec_count = 1;
11758 }
11759 else if (opcode2 >= 8 && opcode2 <= 10)
11760 {
11761 /* STR(2), STRB(2), STRH(2) . */
11762 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11763 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11764 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11765 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11766 if (8 == opcode2)
11767 record_buf_mem[0] = 4; /* STR (2). */
11768 else if (10 == opcode2)
11769 record_buf_mem[0] = 1; /* STRB (2). */
11770 else if (9 == opcode2)
11771 record_buf_mem[0] = 2; /* STRH (2). */
11772 record_buf_mem[1] = u_regval[0] + u_regval[1];
11773 thumb_insn_r->mem_rec_count = 1;
11774 }
11775 }
11776 else if (bit (thumb_insn_r->arm_insn, 11))
11777 {
11778 /* Handle load from literal pool. */
11779 /* LDR(3). */
11780 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11781 record_buf[0] = reg_src1;
11782 thumb_insn_r->reg_rec_count = 1;
11783 }
11784 else if (opcode1)
11785 {
11786 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11787 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11788 if ((3 == opcode2) && (!opcode3))
11789 {
11790 /* Branch with exchange. */
11791 record_buf[0] = ARM_PS_REGNUM;
11792 thumb_insn_r->reg_rec_count = 1;
11793 }
11794 else
11795 {
1f33efec
YQ
11796 /* Format 8; special data processing insns. */
11797 record_buf[0] = ARM_PS_REGNUM;
11798 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11799 | bits (thumb_insn_r->arm_insn, 0, 2));
72508ac0
PO
11800 thumb_insn_r->reg_rec_count = 2;
11801 }
11802 }
11803 else
11804 {
11805 /* Format 5; data processing insns. */
11806 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11807 if (bit (thumb_insn_r->arm_insn, 7))
11808 {
11809 reg_src1 = reg_src1 + 8;
11810 }
11811 record_buf[0] = ARM_PS_REGNUM;
11812 record_buf[1] = reg_src1;
11813 thumb_insn_r->reg_rec_count = 2;
11814 }
11815
11816 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11817 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11818 record_buf_mem);
11819
11820 return 0;
11821}
11822
11823/* Handling opcode 001 insns. */
11824
11825static int
11826thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11827{
11828 struct regcache *reg_cache = thumb_insn_r->regcache;
11829 uint32_t record_buf[8], record_buf_mem[8];
11830
11831 uint32_t reg_src1 = 0;
11832 uint32_t opcode = 0, immed_5 = 0;
11833
11834 ULONGEST u_regval = 0;
11835
11836 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11837
11838 if (opcode)
11839 {
11840 /* LDR(1). */
11841 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11842 record_buf[0] = reg_src1;
11843 thumb_insn_r->reg_rec_count = 1;
11844 }
11845 else
11846 {
11847 /* STR(1). */
11848 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11849 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11850 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11851 record_buf_mem[0] = 4;
11852 record_buf_mem[1] = u_regval + (immed_5 * 4);
11853 thumb_insn_r->mem_rec_count = 1;
11854 }
11855
11856 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11857 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11858 record_buf_mem);
11859
11860 return 0;
11861}
11862
11863/* Handling opcode 100 insns. */
11864
11865static int
11866thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11867{
11868 struct regcache *reg_cache = thumb_insn_r->regcache;
11869 uint32_t record_buf[8], record_buf_mem[8];
11870
11871 uint32_t reg_src1 = 0;
11872 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11873
11874 ULONGEST u_regval = 0;
11875
11876 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11877
11878 if (3 == opcode)
11879 {
11880 /* LDR(4). */
11881 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11882 record_buf[0] = reg_src1;
11883 thumb_insn_r->reg_rec_count = 1;
11884 }
11885 else if (1 == opcode)
11886 {
11887 /* LDRH(1). */
11888 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11889 record_buf[0] = reg_src1;
11890 thumb_insn_r->reg_rec_count = 1;
11891 }
11892 else if (2 == opcode)
11893 {
11894 /* STR(3). */
11895 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11896 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11897 record_buf_mem[0] = 4;
11898 record_buf_mem[1] = u_regval + (immed_8 * 4);
11899 thumb_insn_r->mem_rec_count = 1;
11900 }
11901 else if (0 == opcode)
11902 {
11903 /* STRH(1). */
11904 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11905 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11906 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11907 record_buf_mem[0] = 2;
11908 record_buf_mem[1] = u_regval + (immed_5 * 2);
11909 thumb_insn_r->mem_rec_count = 1;
11910 }
11911
11912 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11913 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11914 record_buf_mem);
11915
11916 return 0;
11917}
11918
11919/* Handling opcode 101 insns. */
11920
11921static int
11922thumb_record_misc (insn_decode_record *thumb_insn_r)
11923{
11924 struct regcache *reg_cache = thumb_insn_r->regcache;
11925
11926 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11927 uint32_t register_bits = 0, register_count = 0;
bec2ab5a 11928 uint32_t index = 0, start_address = 0;
72508ac0
PO
11929 uint32_t record_buf[24], record_buf_mem[48];
11930 uint32_t reg_src1;
11931
11932 ULONGEST u_regval = 0;
11933
11934 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11935 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11936 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11937
11938 if (14 == opcode2)
11939 {
11940 /* POP. */
11941 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11942 while (register_bits)
f969241e
OJ
11943 {
11944 if (register_bits & 0x00000001)
11945 record_buf[index++] = register_count;
11946 register_bits = register_bits >> 1;
11947 register_count++;
11948 }
11949 record_buf[index++] = ARM_PS_REGNUM;
11950 record_buf[index++] = ARM_SP_REGNUM;
11951 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
11952 }
11953 else if (10 == opcode2)
11954 {
11955 /* PUSH. */
11956 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
9904a494 11957 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
72508ac0
PO
11958 while (register_bits)
11959 {
11960 if (register_bits & 0x00000001)
11961 register_count++;
11962 register_bits = register_bits >> 1;
11963 }
11964 start_address = u_regval - \
11965 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11966 thumb_insn_r->mem_rec_count = register_count;
11967 while (register_count)
11968 {
11969 record_buf_mem[(register_count * 2) - 1] = start_address;
11970 record_buf_mem[(register_count * 2) - 2] = 4;
11971 start_address = start_address + 4;
11972 register_count--;
11973 }
11974 record_buf[0] = ARM_SP_REGNUM;
11975 thumb_insn_r->reg_rec_count = 1;
11976 }
11977 else if (0x1E == opcode1)
11978 {
11979 /* BKPT insn. */
11980 /* Handle enhanced software breakpoint insn, BKPT. */
11981 /* CPSR is changed to be executed in ARM state, disabling normal
11982 interrupts, entering abort mode. */
11983 /* According to high vector configuration PC is set. */
11984 /* User hits breakpoint and type reverse, in that case, we need to go back with
11985 previous CPSR and Program Counter. */
11986 record_buf[0] = ARM_PS_REGNUM;
11987 record_buf[1] = ARM_LR_REGNUM;
11988 thumb_insn_r->reg_rec_count = 2;
11989 /* We need to save SPSR value, which is not yet done. */
11990 printf_unfiltered (_("Process record does not support instruction "
11991 "0x%0x at address %s.\n"),
11992 thumb_insn_r->arm_insn,
11993 paddress (thumb_insn_r->gdbarch,
11994 thumb_insn_r->this_addr));
11995 return -1;
11996 }
11997 else if ((0 == opcode) || (1 == opcode))
11998 {
11999 /* ADD(5), ADD(6). */
12000 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12001 record_buf[0] = reg_src1;
12002 thumb_insn_r->reg_rec_count = 1;
12003 }
12004 else if (2 == opcode)
12005 {
12006 /* ADD(7), SUB(4). */
12007 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12008 record_buf[0] = ARM_SP_REGNUM;
12009 thumb_insn_r->reg_rec_count = 1;
12010 }
12011
12012 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12013 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12014 record_buf_mem);
12015
12016 return 0;
12017}
12018
12019/* Handling opcode 110 insns. */
12020
12021static int
12022thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12023{
12024 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12025 struct regcache *reg_cache = thumb_insn_r->regcache;
12026
12027 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12028 uint32_t reg_src1 = 0;
12029 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
bec2ab5a 12030 uint32_t index = 0, start_address = 0;
72508ac0
PO
12031 uint32_t record_buf[24], record_buf_mem[48];
12032
12033 ULONGEST u_regval = 0;
12034
12035 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12036 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12037
12038 if (1 == opcode2)
12039 {
12040
12041 /* LDMIA. */
12042 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12043 /* Get Rn. */
12044 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12045 while (register_bits)
12046 {
12047 if (register_bits & 0x00000001)
f969241e 12048 record_buf[index++] = register_count;
72508ac0 12049 register_bits = register_bits >> 1;
f969241e 12050 register_count++;
72508ac0 12051 }
f969241e
OJ
12052 record_buf[index++] = reg_src1;
12053 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
12054 }
12055 else if (0 == opcode2)
12056 {
12057 /* It handles both STMIA. */
12058 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12059 /* Get Rn. */
12060 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12061 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12062 while (register_bits)
12063 {
12064 if (register_bits & 0x00000001)
12065 register_count++;
12066 register_bits = register_bits >> 1;
12067 }
12068 start_address = u_regval;
12069 thumb_insn_r->mem_rec_count = register_count;
12070 while (register_count)
12071 {
12072 record_buf_mem[(register_count * 2) - 1] = start_address;
12073 record_buf_mem[(register_count * 2) - 2] = 4;
12074 start_address = start_address + 4;
12075 register_count--;
12076 }
12077 }
12078 else if (0x1F == opcode1)
12079 {
12080 /* Handle arm syscall insn. */
97dfe206 12081 if (tdep->arm_syscall_record != NULL)
72508ac0 12082 {
97dfe206
OJ
12083 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12084 ret = tdep->arm_syscall_record (reg_cache, u_regval);
72508ac0
PO
12085 }
12086 else
12087 {
12088 printf_unfiltered (_("no syscall record support\n"));
12089 return -1;
12090 }
12091 }
12092
12093 /* B (1), conditional branch is automatically taken care in process_record,
12094 as PC is saved there. */
12095
12096 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12097 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12098 record_buf_mem);
12099
12100 return ret;
12101}
12102
12103/* Handling opcode 111 insns. */
12104
12105static int
12106thumb_record_branch (insn_decode_record *thumb_insn_r)
12107{
12108 uint32_t record_buf[8];
12109 uint32_t bits_h = 0;
12110
12111 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12112
12113 if (2 == bits_h || 3 == bits_h)
12114 {
12115 /* BL */
12116 record_buf[0] = ARM_LR_REGNUM;
12117 thumb_insn_r->reg_rec_count = 1;
12118 }
12119 else if (1 == bits_h)
12120 {
12121 /* BLX(1). */
12122 record_buf[0] = ARM_PS_REGNUM;
12123 record_buf[1] = ARM_LR_REGNUM;
12124 thumb_insn_r->reg_rec_count = 2;
12125 }
12126
12127 /* B(2) is automatically taken care in process_record, as PC is
12128 saved there. */
12129
12130 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12131
12132 return 0;
12133}
12134
c6ec2b30
OJ
12135/* Handler for thumb2 load/store multiple instructions. */
12136
12137static int
12138thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12139{
12140 struct regcache *reg_cache = thumb2_insn_r->regcache;
12141
12142 uint32_t reg_rn, op;
12143 uint32_t register_bits = 0, register_count = 0;
12144 uint32_t index = 0, start_address = 0;
12145 uint32_t record_buf[24], record_buf_mem[48];
12146
12147 ULONGEST u_regval = 0;
12148
12149 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12150 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12151
12152 if (0 == op || 3 == op)
12153 {
12154 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12155 {
12156 /* Handle RFE instruction. */
12157 record_buf[0] = ARM_PS_REGNUM;
12158 thumb2_insn_r->reg_rec_count = 1;
12159 }
12160 else
12161 {
12162 /* Handle SRS instruction after reading banked SP. */
12163 return arm_record_unsupported_insn (thumb2_insn_r);
12164 }
12165 }
12166 else if (1 == op || 2 == op)
12167 {
12168 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12169 {
12170 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12171 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12172 while (register_bits)
12173 {
12174 if (register_bits & 0x00000001)
12175 record_buf[index++] = register_count;
12176
12177 register_count++;
12178 register_bits = register_bits >> 1;
12179 }
12180 record_buf[index++] = reg_rn;
12181 record_buf[index++] = ARM_PS_REGNUM;
12182 thumb2_insn_r->reg_rec_count = index;
12183 }
12184 else
12185 {
12186 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12187 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12188 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12189 while (register_bits)
12190 {
12191 if (register_bits & 0x00000001)
12192 register_count++;
12193
12194 register_bits = register_bits >> 1;
12195 }
12196
12197 if (1 == op)
12198 {
12199 /* Start address calculation for LDMDB/LDMEA. */
12200 start_address = u_regval;
12201 }
12202 else if (2 == op)
12203 {
12204 /* Start address calculation for LDMDB/LDMEA. */
12205 start_address = u_regval - register_count * 4;
12206 }
12207
12208 thumb2_insn_r->mem_rec_count = register_count;
12209 while (register_count)
12210 {
12211 record_buf_mem[register_count * 2 - 1] = start_address;
12212 record_buf_mem[register_count * 2 - 2] = 4;
12213 start_address = start_address + 4;
12214 register_count--;
12215 }
12216 record_buf[0] = reg_rn;
12217 record_buf[1] = ARM_PS_REGNUM;
12218 thumb2_insn_r->reg_rec_count = 2;
12219 }
12220 }
12221
12222 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12223 record_buf_mem);
12224 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12225 record_buf);
12226 return ARM_RECORD_SUCCESS;
12227}
12228
12229/* Handler for thumb2 load/store (dual/exclusive) and table branch
12230 instructions. */
12231
12232static int
12233thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12234{
12235 struct regcache *reg_cache = thumb2_insn_r->regcache;
12236
12237 uint32_t reg_rd, reg_rn, offset_imm;
12238 uint32_t reg_dest1, reg_dest2;
12239 uint32_t address, offset_addr;
12240 uint32_t record_buf[8], record_buf_mem[8];
12241 uint32_t op1, op2, op3;
c6ec2b30
OJ
12242
12243 ULONGEST u_regval[2];
12244
12245 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12246 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12247 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12248
12249 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12250 {
12251 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12252 {
12253 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12254 record_buf[0] = reg_dest1;
12255 record_buf[1] = ARM_PS_REGNUM;
12256 thumb2_insn_r->reg_rec_count = 2;
12257 }
12258
12259 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12260 {
12261 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12262 record_buf[2] = reg_dest2;
12263 thumb2_insn_r->reg_rec_count = 3;
12264 }
12265 }
12266 else
12267 {
12268 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12269 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12270
12271 if (0 == op1 && 0 == op2)
12272 {
12273 /* Handle STREX. */
12274 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12275 address = u_regval[0] + (offset_imm * 4);
12276 record_buf_mem[0] = 4;
12277 record_buf_mem[1] = address;
12278 thumb2_insn_r->mem_rec_count = 1;
12279 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12280 record_buf[0] = reg_rd;
12281 thumb2_insn_r->reg_rec_count = 1;
12282 }
12283 else if (1 == op1 && 0 == op2)
12284 {
12285 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12286 record_buf[0] = reg_rd;
12287 thumb2_insn_r->reg_rec_count = 1;
12288 address = u_regval[0];
12289 record_buf_mem[1] = address;
12290
12291 if (4 == op3)
12292 {
12293 /* Handle STREXB. */
12294 record_buf_mem[0] = 1;
12295 thumb2_insn_r->mem_rec_count = 1;
12296 }
12297 else if (5 == op3)
12298 {
12299 /* Handle STREXH. */
12300 record_buf_mem[0] = 2 ;
12301 thumb2_insn_r->mem_rec_count = 1;
12302 }
12303 else if (7 == op3)
12304 {
12305 /* Handle STREXD. */
12306 address = u_regval[0];
12307 record_buf_mem[0] = 4;
12308 record_buf_mem[2] = 4;
12309 record_buf_mem[3] = address + 4;
12310 thumb2_insn_r->mem_rec_count = 2;
12311 }
12312 }
12313 else
12314 {
12315 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12316
12317 if (bit (thumb2_insn_r->arm_insn, 24))
12318 {
12319 if (bit (thumb2_insn_r->arm_insn, 23))
12320 offset_addr = u_regval[0] + (offset_imm * 4);
12321 else
12322 offset_addr = u_regval[0] - (offset_imm * 4);
12323
12324 address = offset_addr;
12325 }
12326 else
12327 address = u_regval[0];
12328
12329 record_buf_mem[0] = 4;
12330 record_buf_mem[1] = address;
12331 record_buf_mem[2] = 4;
12332 record_buf_mem[3] = address + 4;
12333 thumb2_insn_r->mem_rec_count = 2;
12334 record_buf[0] = reg_rn;
12335 thumb2_insn_r->reg_rec_count = 1;
12336 }
12337 }
12338
12339 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12340 record_buf);
12341 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12342 record_buf_mem);
12343 return ARM_RECORD_SUCCESS;
12344}
12345
12346/* Handler for thumb2 data processing (shift register and modified immediate)
12347 instructions. */
12348
12349static int
12350thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12351{
12352 uint32_t reg_rd, op;
12353 uint32_t record_buf[8];
12354
12355 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12356 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12357
12358 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12359 {
12360 record_buf[0] = ARM_PS_REGNUM;
12361 thumb2_insn_r->reg_rec_count = 1;
12362 }
12363 else
12364 {
12365 record_buf[0] = reg_rd;
12366 record_buf[1] = ARM_PS_REGNUM;
12367 thumb2_insn_r->reg_rec_count = 2;
12368 }
12369
12370 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12371 record_buf);
12372 return ARM_RECORD_SUCCESS;
12373}
12374
12375/* Generic handler for thumb2 instructions which effect destination and PS
12376 registers. */
12377
12378static int
12379thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12380{
12381 uint32_t reg_rd;
12382 uint32_t record_buf[8];
12383
12384 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12385
12386 record_buf[0] = reg_rd;
12387 record_buf[1] = ARM_PS_REGNUM;
12388 thumb2_insn_r->reg_rec_count = 2;
12389
12390 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12391 record_buf);
12392 return ARM_RECORD_SUCCESS;
12393}
12394
12395/* Handler for thumb2 branch and miscellaneous control instructions. */
12396
12397static int
12398thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12399{
12400 uint32_t op, op1, op2;
12401 uint32_t record_buf[8];
12402
12403 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12404 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12405 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12406
12407 /* Handle MSR insn. */
12408 if (!(op1 & 0x2) && 0x38 == op)
12409 {
12410 if (!(op2 & 0x3))
12411 {
12412 /* CPSR is going to be changed. */
12413 record_buf[0] = ARM_PS_REGNUM;
12414 thumb2_insn_r->reg_rec_count = 1;
12415 }
12416 else
12417 {
12418 arm_record_unsupported_insn(thumb2_insn_r);
12419 return -1;
12420 }
12421 }
12422 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12423 {
12424 /* BLX. */
12425 record_buf[0] = ARM_PS_REGNUM;
12426 record_buf[1] = ARM_LR_REGNUM;
12427 thumb2_insn_r->reg_rec_count = 2;
12428 }
12429
12430 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12431 record_buf);
12432 return ARM_RECORD_SUCCESS;
12433}
12434
12435/* Handler for thumb2 store single data item instructions. */
12436
12437static int
12438thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12439{
12440 struct regcache *reg_cache = thumb2_insn_r->regcache;
12441
12442 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12443 uint32_t address, offset_addr;
12444 uint32_t record_buf[8], record_buf_mem[8];
12445 uint32_t op1, op2;
12446
12447 ULONGEST u_regval[2];
12448
12449 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12450 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12451 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12452 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12453
12454 if (bit (thumb2_insn_r->arm_insn, 23))
12455 {
12456 /* T2 encoding. */
12457 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12458 offset_addr = u_regval[0] + offset_imm;
12459 address = offset_addr;
12460 }
12461 else
12462 {
12463 /* T3 encoding. */
12464 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12465 {
12466 /* Handle STRB (register). */
12467 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12468 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12469 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12470 offset_addr = u_regval[1] << shift_imm;
12471 address = u_regval[0] + offset_addr;
12472 }
12473 else
12474 {
12475 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12476 if (bit (thumb2_insn_r->arm_insn, 10))
12477 {
12478 if (bit (thumb2_insn_r->arm_insn, 9))
12479 offset_addr = u_regval[0] + offset_imm;
12480 else
12481 offset_addr = u_regval[0] - offset_imm;
12482
12483 address = offset_addr;
12484 }
12485 else
12486 address = u_regval[0];
12487 }
12488 }
12489
12490 switch (op1)
12491 {
12492 /* Store byte instructions. */
12493 case 4:
12494 case 0:
12495 record_buf_mem[0] = 1;
12496 break;
12497 /* Store half word instructions. */
12498 case 1:
12499 case 5:
12500 record_buf_mem[0] = 2;
12501 break;
12502 /* Store word instructions. */
12503 case 2:
12504 case 6:
12505 record_buf_mem[0] = 4;
12506 break;
12507
12508 default:
12509 gdb_assert_not_reached ("no decoding pattern found");
12510 break;
12511 }
12512
12513 record_buf_mem[1] = address;
12514 thumb2_insn_r->mem_rec_count = 1;
12515 record_buf[0] = reg_rn;
12516 thumb2_insn_r->reg_rec_count = 1;
12517
12518 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12519 record_buf);
12520 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12521 record_buf_mem);
12522 return ARM_RECORD_SUCCESS;
12523}
12524
12525/* Handler for thumb2 load memory hints instructions. */
12526
12527static int
12528thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12529{
12530 uint32_t record_buf[8];
12531 uint32_t reg_rt, reg_rn;
12532
12533 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12534 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12535
12536 if (ARM_PC_REGNUM != reg_rt)
12537 {
12538 record_buf[0] = reg_rt;
12539 record_buf[1] = reg_rn;
12540 record_buf[2] = ARM_PS_REGNUM;
12541 thumb2_insn_r->reg_rec_count = 3;
12542
12543 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12544 record_buf);
12545 return ARM_RECORD_SUCCESS;
12546 }
12547
12548 return ARM_RECORD_FAILURE;
12549}
12550
12551/* Handler for thumb2 load word instructions. */
12552
12553static int
12554thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12555{
c6ec2b30
OJ
12556 uint32_t record_buf[8];
12557
12558 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12559 record_buf[1] = ARM_PS_REGNUM;
12560 thumb2_insn_r->reg_rec_count = 2;
12561
12562 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12563 record_buf);
12564 return ARM_RECORD_SUCCESS;
12565}
12566
12567/* Handler for thumb2 long multiply, long multiply accumulate, and
12568 divide instructions. */
12569
12570static int
12571thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12572{
12573 uint32_t opcode1 = 0, opcode2 = 0;
12574 uint32_t record_buf[8];
c6ec2b30
OJ
12575
12576 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12577 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12578
12579 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12580 {
12581 /* Handle SMULL, UMULL, SMULAL. */
12582 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12583 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12584 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12585 record_buf[2] = ARM_PS_REGNUM;
12586 thumb2_insn_r->reg_rec_count = 3;
12587 }
12588 else if (1 == opcode1 || 3 == opcode2)
12589 {
12590 /* Handle SDIV and UDIV. */
12591 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12592 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12593 record_buf[2] = ARM_PS_REGNUM;
12594 thumb2_insn_r->reg_rec_count = 3;
12595 }
12596 else
12597 return ARM_RECORD_FAILURE;
12598
12599 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12600 record_buf);
12601 return ARM_RECORD_SUCCESS;
12602}
12603
60cc5e93
OJ
12604/* Record handler for thumb32 coprocessor instructions. */
12605
12606static int
12607thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12608{
12609 if (bit (thumb2_insn_r->arm_insn, 25))
12610 return arm_record_coproc_data_proc (thumb2_insn_r);
12611 else
12612 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12613}
12614
1e1b6563
OJ
12615/* Record handler for advance SIMD structure load/store instructions. */
12616
12617static int
12618thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12619{
12620 struct regcache *reg_cache = thumb2_insn_r->regcache;
12621 uint32_t l_bit, a_bit, b_bits;
12622 uint32_t record_buf[128], record_buf_mem[128];
bec2ab5a 12623 uint32_t reg_rn, reg_vd, address, f_elem;
1e1b6563
OJ
12624 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12625 uint8_t f_ebytes;
12626
12627 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12628 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12629 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12630 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12631 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12632 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12633 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
1e1b6563
OJ
12634 f_elem = 8 / f_ebytes;
12635
12636 if (!l_bit)
12637 {
12638 ULONGEST u_regval = 0;
12639 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12640 address = u_regval;
12641
12642 if (!a_bit)
12643 {
12644 /* Handle VST1. */
12645 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12646 {
12647 if (b_bits == 0x07)
12648 bf_regs = 1;
12649 else if (b_bits == 0x0a)
12650 bf_regs = 2;
12651 else if (b_bits == 0x06)
12652 bf_regs = 3;
12653 else if (b_bits == 0x02)
12654 bf_regs = 4;
12655 else
12656 bf_regs = 0;
12657
12658 for (index_r = 0; index_r < bf_regs; index_r++)
12659 {
12660 for (index_e = 0; index_e < f_elem; index_e++)
12661 {
12662 record_buf_mem[index_m++] = f_ebytes;
12663 record_buf_mem[index_m++] = address;
12664 address = address + f_ebytes;
12665 thumb2_insn_r->mem_rec_count += 1;
12666 }
12667 }
12668 }
12669 /* Handle VST2. */
12670 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12671 {
12672 if (b_bits == 0x09 || b_bits == 0x08)
12673 bf_regs = 1;
12674 else if (b_bits == 0x03)
12675 bf_regs = 2;
12676 else
12677 bf_regs = 0;
12678
12679 for (index_r = 0; index_r < bf_regs; index_r++)
12680 for (index_e = 0; index_e < f_elem; index_e++)
12681 {
12682 for (loop_t = 0; loop_t < 2; loop_t++)
12683 {
12684 record_buf_mem[index_m++] = f_ebytes;
12685 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12686 thumb2_insn_r->mem_rec_count += 1;
12687 }
12688 address = address + (2 * f_ebytes);
12689 }
12690 }
12691 /* Handle VST3. */
12692 else if ((b_bits & 0x0e) == 0x04)
12693 {
12694 for (index_e = 0; index_e < f_elem; index_e++)
12695 {
12696 for (loop_t = 0; loop_t < 3; loop_t++)
12697 {
12698 record_buf_mem[index_m++] = f_ebytes;
12699 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12700 thumb2_insn_r->mem_rec_count += 1;
12701 }
12702 address = address + (3 * f_ebytes);
12703 }
12704 }
12705 /* Handle VST4. */
12706 else if (!(b_bits & 0x0e))
12707 {
12708 for (index_e = 0; index_e < f_elem; index_e++)
12709 {
12710 for (loop_t = 0; loop_t < 4; loop_t++)
12711 {
12712 record_buf_mem[index_m++] = f_ebytes;
12713 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12714 thumb2_insn_r->mem_rec_count += 1;
12715 }
12716 address = address + (4 * f_ebytes);
12717 }
12718 }
12719 }
12720 else
12721 {
12722 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12723
12724 if (bft_size == 0x00)
12725 f_ebytes = 1;
12726 else if (bft_size == 0x01)
12727 f_ebytes = 2;
12728 else if (bft_size == 0x02)
12729 f_ebytes = 4;
12730 else
12731 f_ebytes = 0;
12732
12733 /* Handle VST1. */
12734 if (!(b_bits & 0x0b) || b_bits == 0x08)
12735 thumb2_insn_r->mem_rec_count = 1;
12736 /* Handle VST2. */
12737 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12738 thumb2_insn_r->mem_rec_count = 2;
12739 /* Handle VST3. */
12740 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12741 thumb2_insn_r->mem_rec_count = 3;
12742 /* Handle VST4. */
12743 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12744 thumb2_insn_r->mem_rec_count = 4;
12745
12746 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12747 {
12748 record_buf_mem[index_m] = f_ebytes;
12749 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12750 }
12751 }
12752 }
12753 else
12754 {
12755 if (!a_bit)
12756 {
12757 /* Handle VLD1. */
12758 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12759 thumb2_insn_r->reg_rec_count = 1;
12760 /* Handle VLD2. */
12761 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12762 thumb2_insn_r->reg_rec_count = 2;
12763 /* Handle VLD3. */
12764 else if ((b_bits & 0x0e) == 0x04)
12765 thumb2_insn_r->reg_rec_count = 3;
12766 /* Handle VLD4. */
12767 else if (!(b_bits & 0x0e))
12768 thumb2_insn_r->reg_rec_count = 4;
12769 }
12770 else
12771 {
12772 /* Handle VLD1. */
12773 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12774 thumb2_insn_r->reg_rec_count = 1;
12775 /* Handle VLD2. */
12776 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12777 thumb2_insn_r->reg_rec_count = 2;
12778 /* Handle VLD3. */
12779 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12780 thumb2_insn_r->reg_rec_count = 3;
12781 /* Handle VLD4. */
12782 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12783 thumb2_insn_r->reg_rec_count = 4;
12784
12785 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12786 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12787 }
12788 }
12789
12790 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12791 {
12792 record_buf[index_r] = reg_rn;
12793 thumb2_insn_r->reg_rec_count += 1;
12794 }
12795
12796 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12797 record_buf);
12798 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12799 record_buf_mem);
12800 return 0;
12801}
12802
c6ec2b30
OJ
12803/* Decodes thumb2 instruction type and invokes its record handler. */
12804
12805static unsigned int
12806thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12807{
12808 uint32_t op, op1, op2;
12809
12810 op = bit (thumb2_insn_r->arm_insn, 15);
12811 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12812 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12813
12814 if (op1 == 0x01)
12815 {
12816 if (!(op2 & 0x64 ))
12817 {
12818 /* Load/store multiple instruction. */
12819 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12820 }
12821 else if (!((op2 & 0x64) ^ 0x04))
12822 {
12823 /* Load/store (dual/exclusive) and table branch instruction. */
12824 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12825 }
12826 else if (!((op2 & 0x20) ^ 0x20))
12827 {
12828 /* Data-processing (shifted register). */
12829 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12830 }
12831 else if (op2 & 0x40)
12832 {
12833 /* Co-processor instructions. */
60cc5e93 12834 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12835 }
12836 }
12837 else if (op1 == 0x02)
12838 {
12839 if (op)
12840 {
12841 /* Branches and miscellaneous control instructions. */
12842 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12843 }
12844 else if (op2 & 0x20)
12845 {
12846 /* Data-processing (plain binary immediate) instruction. */
12847 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12848 }
12849 else
12850 {
12851 /* Data-processing (modified immediate). */
12852 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12853 }
12854 }
12855 else if (op1 == 0x03)
12856 {
12857 if (!(op2 & 0x71 ))
12858 {
12859 /* Store single data item. */
12860 return thumb2_record_str_single_data (thumb2_insn_r);
12861 }
12862 else if (!((op2 & 0x71) ^ 0x10))
12863 {
12864 /* Advanced SIMD or structure load/store instructions. */
1e1b6563 12865 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
c6ec2b30
OJ
12866 }
12867 else if (!((op2 & 0x67) ^ 0x01))
12868 {
12869 /* Load byte, memory hints instruction. */
12870 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12871 }
12872 else if (!((op2 & 0x67) ^ 0x03))
12873 {
12874 /* Load halfword, memory hints instruction. */
12875 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12876 }
12877 else if (!((op2 & 0x67) ^ 0x05))
12878 {
12879 /* Load word instruction. */
12880 return thumb2_record_ld_word (thumb2_insn_r);
12881 }
12882 else if (!((op2 & 0x70) ^ 0x20))
12883 {
12884 /* Data-processing (register) instruction. */
12885 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12886 }
12887 else if (!((op2 & 0x78) ^ 0x30))
12888 {
12889 /* Multiply, multiply accumulate, abs diff instruction. */
12890 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12891 }
12892 else if (!((op2 & 0x78) ^ 0x38))
12893 {
12894 /* Long multiply, long multiply accumulate, and divide. */
12895 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12896 }
12897 else if (op2 & 0x40)
12898 {
12899 /* Co-processor instructions. */
60cc5e93 12900 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12901 }
12902 }
12903
12904 return -1;
12905}
72508ac0
PO
12906
12907/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12908and positive val on fauilure. */
12909
12910static int
12911extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12912{
12913 gdb_byte buf[insn_size];
12914
12915 memset (&buf[0], 0, insn_size);
12916
12917 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12918 return 1;
12919 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12920 insn_size,
2959fed9 12921 gdbarch_byte_order_for_code (insn_record->gdbarch));
72508ac0
PO
12922 return 0;
12923}
12924
12925typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12926
12927/* Decode arm/thumb insn depending on condition cods and opcodes; and
12928 dispatch it. */
12929
12930static int
12931decode_insn (insn_decode_record *arm_record, record_type_t record_type,
01e57735 12932 uint32_t insn_size)
72508ac0
PO
12933{
12934
01e57735
YQ
12935 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12936 instruction. */
0fa9c223 12937 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
72508ac0
PO
12938 {
12939 arm_record_data_proc_misc_ld_str, /* 000. */
12940 arm_record_data_proc_imm, /* 001. */
12941 arm_record_ld_st_imm_offset, /* 010. */
12942 arm_record_ld_st_reg_offset, /* 011. */
12943 arm_record_ld_st_multiple, /* 100. */
12944 arm_record_b_bl, /* 101. */
60cc5e93 12945 arm_record_asimd_vfp_coproc, /* 110. */
72508ac0
PO
12946 arm_record_coproc_data_proc /* 111. */
12947 };
12948
01e57735
YQ
12949 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12950 instruction. */
0fa9c223 12951 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
72508ac0
PO
12952 { \
12953 thumb_record_shift_add_sub, /* 000. */
12954 thumb_record_add_sub_cmp_mov, /* 001. */
12955 thumb_record_ld_st_reg_offset, /* 010. */
12956 thumb_record_ld_st_imm_offset, /* 011. */
12957 thumb_record_ld_st_stack, /* 100. */
12958 thumb_record_misc, /* 101. */
12959 thumb_record_ldm_stm_swi, /* 110. */
12960 thumb_record_branch /* 111. */
12961 };
12962
12963 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12964 uint32_t insn_id = 0;
12965
12966 if (extract_arm_insn (arm_record, insn_size))
12967 {
12968 if (record_debug)
01e57735
YQ
12969 {
12970 printf_unfiltered (_("Process record: error reading memory at "
12971 "addr %s len = %d.\n"),
12972 paddress (arm_record->gdbarch,
12973 arm_record->this_addr), insn_size);
12974 }
72508ac0
PO
12975 return -1;
12976 }
12977 else if (ARM_RECORD == record_type)
12978 {
12979 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12980 insn_id = bits (arm_record->arm_insn, 25, 27);
ca92db2d
YQ
12981
12982 if (arm_record->cond == 0xf)
12983 ret = arm_record_extension_space (arm_record);
12984 else
01e57735 12985 {
ca92db2d
YQ
12986 /* If this insn has fallen into extension space
12987 then we need not decode it anymore. */
01e57735
YQ
12988 ret = arm_handle_insn[insn_id] (arm_record);
12989 }
ca92db2d
YQ
12990 if (ret != ARM_RECORD_SUCCESS)
12991 {
12992 arm_record_unsupported_insn (arm_record);
12993 ret = -1;
12994 }
72508ac0
PO
12995 }
12996 else if (THUMB_RECORD == record_type)
12997 {
12998 /* As thumb does not have condition codes, we set negative. */
12999 arm_record->cond = -1;
13000 insn_id = bits (arm_record->arm_insn, 13, 15);
13001 ret = thumb_handle_insn[insn_id] (arm_record);
ca92db2d
YQ
13002 if (ret != ARM_RECORD_SUCCESS)
13003 {
13004 arm_record_unsupported_insn (arm_record);
13005 ret = -1;
13006 }
72508ac0
PO
13007 }
13008 else if (THUMB2_RECORD == record_type)
13009 {
c6ec2b30
OJ
13010 /* As thumb does not have condition codes, we set negative. */
13011 arm_record->cond = -1;
13012
13013 /* Swap first half of 32bit thumb instruction with second half. */
13014 arm_record->arm_insn
01e57735 13015 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
c6ec2b30 13016
ca92db2d 13017 ret = thumb2_record_decode_insn_handler (arm_record);
c6ec2b30 13018
ca92db2d 13019 if (ret != ARM_RECORD_SUCCESS)
01e57735
YQ
13020 {
13021 arm_record_unsupported_insn (arm_record);
13022 ret = -1;
13023 }
72508ac0
PO
13024 }
13025 else
13026 {
13027 /* Throw assertion. */
13028 gdb_assert_not_reached ("not a valid instruction, could not decode");
13029 }
13030
13031 return ret;
13032}
13033
13034
13035/* Cleans up local record registers and memory allocations. */
13036
13037static void
13038deallocate_reg_mem (insn_decode_record *record)
13039{
13040 xfree (record->arm_regs);
13041 xfree (record->arm_mems);
13042}
13043
13044
01e57735 13045/* Parse the current instruction and record the values of the registers and
72508ac0
PO
13046 memory that will be changed in current instruction to record_arch_list".
13047 Return -1 if something is wrong. */
13048
13049int
01e57735
YQ
13050arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13051 CORE_ADDR insn_addr)
72508ac0
PO
13052{
13053
72508ac0
PO
13054 uint32_t no_of_rec = 0;
13055 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13056 ULONGEST t_bit = 0, insn_id = 0;
13057
13058 ULONGEST u_regval = 0;
13059
13060 insn_decode_record arm_record;
13061
13062 memset (&arm_record, 0, sizeof (insn_decode_record));
13063 arm_record.regcache = regcache;
13064 arm_record.this_addr = insn_addr;
13065 arm_record.gdbarch = gdbarch;
13066
13067
13068 if (record_debug > 1)
13069 {
13070 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
01e57735 13071 "addr = %s\n",
72508ac0
PO
13072 paddress (gdbarch, arm_record.this_addr));
13073 }
13074
13075 if (extract_arm_insn (&arm_record, 2))
13076 {
13077 if (record_debug)
01e57735
YQ
13078 {
13079 printf_unfiltered (_("Process record: error reading memory at "
13080 "addr %s len = %d.\n"),
13081 paddress (arm_record.gdbarch,
13082 arm_record.this_addr), 2);
13083 }
72508ac0
PO
13084 return -1;
13085 }
13086
13087 /* Check the insn, whether it is thumb or arm one. */
13088
13089 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13090 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13091
13092
13093 if (!(u_regval & t_bit))
13094 {
13095 /* We are decoding arm insn. */
13096 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13097 }
13098 else
13099 {
13100 insn_id = bits (arm_record.arm_insn, 11, 15);
13101 /* is it thumb2 insn? */
13102 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
01e57735
YQ
13103 {
13104 ret = decode_insn (&arm_record, THUMB2_RECORD,
13105 THUMB2_INSN_SIZE_BYTES);
13106 }
72508ac0 13107 else
01e57735
YQ
13108 {
13109 /* We are decoding thumb insn. */
13110 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13111 }
72508ac0
PO
13112 }
13113
13114 if (0 == ret)
13115 {
13116 /* Record registers. */
25ea693b 13117 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
72508ac0 13118 if (arm_record.arm_regs)
01e57735
YQ
13119 {
13120 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13121 {
13122 if (record_full_arch_list_add_reg
25ea693b 13123 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
01e57735
YQ
13124 ret = -1;
13125 }
13126 }
72508ac0
PO
13127 /* Record memories. */
13128 if (arm_record.arm_mems)
01e57735
YQ
13129 {
13130 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13131 {
13132 if (record_full_arch_list_add_mem
13133 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
25ea693b 13134 arm_record.arm_mems[no_of_rec].len))
01e57735
YQ
13135 ret = -1;
13136 }
13137 }
72508ac0 13138
25ea693b 13139 if (record_full_arch_list_add_end ())
01e57735 13140 ret = -1;
72508ac0
PO
13141 }
13142
13143
13144 deallocate_reg_mem (&arm_record);
13145
13146 return ret;
13147}
This page took 2.273243 seconds and 4 git commands to generate.