2002-11-27 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
c3b4394c 3 2001, 2002 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
34e8f22d
RE
37
38#include "arm-tdep.h"
26216b98 39#include "gdb/sim-arm.h"
34e8f22d 40
082fc60d
RE
41#include "elf-bfd.h"
42#include "coff/internal.h"
97e03143 43#include "elf/arm.h"
c906108c 44
26216b98
AC
45#include "gdb_assert.h"
46
6529d2dd
AC
47static int arm_debug;
48
2a451106
KB
49/* Each OS has a different mechanism for accessing the various
50 registers stored in the sigcontext structure.
51
52 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
53 function pointer) which may be used to determine the addresses
54 of the various saved registers in the sigcontext structure.
55
56 For the ARM target, there are three parameters to this function.
57 The first is the pc value of the frame under consideration, the
58 second the stack pointer of this frame, and the last is the
59 register number to fetch.
60
61 If the tm.h file does not define this macro, then it's assumed that
62 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
63 be 0.
64
65 When it comes time to multi-arching this code, see the identically
66 named machinery in ia64-tdep.c for an example of how it could be
67 done. It should not be necessary to modify the code below where
68 this macro is used. */
69
3bb04bdd
AC
70#ifdef SIGCONTEXT_REGISTER_ADDRESS
71#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
72#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
73#endif
74#else
75#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
76#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
77#endif
78
082fc60d
RE
79/* Macros for setting and testing a bit in a minimal symbol that marks
80 it as Thumb function. The MSB of the minimal symbol's "info" field
81 is used for this purpose. This field is already being used to store
82 the symbol size, so the assumption is that the symbol size cannot
83 exceed 2^31.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
87 MSYMBOL_SIZE Returns the size of the minimal symbol,
88 i.e. the "info" field with the "special" bit
89 masked out. */
90
91#define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
93 | 0x80000000)
94
95#define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
97
98#define MSYMBOL_SIZE(msym) \
99 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 100
94c30b78 101/* Number of different reg name sets (options). */
bc90b915
FN
102static int num_flavor_options;
103
104/* We have more registers than the disassembler as gdb can print the value
105 of special registers as well.
106 The general register names are overwritten by whatever is being used by
94c30b78 107 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 108
94c30b78 109/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 110static char * arm_register_name_strings[] =
da59e081
JM
111{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
112 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
113 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
114 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
115 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
116 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 117 "fps", "cpsr" }; /* 24 25 */
966fbf70 118static char **arm_register_names = arm_register_name_strings;
ed9a39eb 119
bc90b915 120/* Valid register name flavors. */
53904c9e 121static const char **valid_flavors;
ed9a39eb 122
94c30b78 123/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 124static const char *disassembly_flavor;
94c30b78 125/* Index to that option in the opcodes table. */
da3c6d4a 126static int current_option;
96baa820 127
ed9a39eb
JM
128/* This is used to keep the bfd arch_info in sync with the disassembly
129 flavor. */
130static void set_disassembly_flavor_sfunc(char *, int,
131 struct cmd_list_element *);
132static void set_disassembly_flavor (void);
133
134static void convert_from_extended (void *ptr, void *dbl);
135
136/* Define other aspects of the stack frame. We keep the offsets of
137 all saved registers, 'cause we need 'em a lot! We also keep the
138 current size of the stack frame, and the offset of the frame
139 pointer from the stack pointer (for frameless functions, and when
94c30b78 140 we're still in the prologue of a function with a frame). */
ed9a39eb
JM
141
142struct frame_extra_info
c3b4394c
RE
143{
144 int framesize;
145 int frameoffset;
146 int framereg;
147};
ed9a39eb 148
bc90b915
FN
149/* Addresses for calling Thumb functions have the bit 0 set.
150 Here are some macros to test, set, or clear bit 0 of addresses. */
151#define IS_THUMB_ADDR(addr) ((addr) & 1)
152#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
153#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
154
39bbf761 155static int
ed9a39eb 156arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 157{
c906108c
SS
158 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
159}
160
94c30b78 161/* Set to true if the 32-bit mode is in use. */
c906108c
SS
162
163int arm_apcs_32 = 1;
164
ed9a39eb
JM
165/* Flag set by arm_fix_call_dummy that tells whether the target
166 function is a Thumb function. This flag is checked by
167 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
168 its use in valops.c) to pass the function address as an additional
169 parameter. */
c906108c
SS
170
171static int target_is_thumb;
172
ed9a39eb
JM
173/* Flag set by arm_fix_call_dummy that tells whether the calling
174 function is a Thumb function. This flag is checked by
175 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
176
177static int caller_is_thumb;
178
ed9a39eb
JM
179/* Determine if the program counter specified in MEMADDR is in a Thumb
180 function. */
c906108c 181
34e8f22d 182int
2a451106 183arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 184{
c5aa993b 185 struct minimal_symbol *sym;
c906108c 186
ed9a39eb 187 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
188 if (IS_THUMB_ADDR (memaddr))
189 return 1;
190
ed9a39eb 191 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
192 sym = lookup_minimal_symbol_by_pc (memaddr);
193 if (sym)
194 {
c5aa993b 195 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
196 }
197 else
ed9a39eb
JM
198 {
199 return 0;
200 }
c906108c
SS
201}
202
ed9a39eb
JM
203/* Determine if the program counter specified in MEMADDR is in a call
204 dummy being called from a Thumb function. */
c906108c 205
34e8f22d 206int
2a451106 207arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 208{
c5aa993b 209 CORE_ADDR sp = read_sp ();
c906108c 210
dfcd3bfb
JM
211 /* FIXME: Until we switch for the new call dummy macros, this heuristic
212 is the best we can do. We are trying to determine if the pc is on
213 the stack, which (hopefully) will only happen in a call dummy.
214 We hope the current stack pointer is not so far alway from the dummy
215 frame location (true if we have not pushed large data structures or
216 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 217 code regions as part of the stack (true for most practical purposes). */
dfcd3bfb 218 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
219 return caller_is_thumb;
220 else
221 return 0;
222}
223
181c1381 224/* Remove useless bits from addresses in a running program. */
34e8f22d 225static CORE_ADDR
ed9a39eb 226arm_addr_bits_remove (CORE_ADDR val)
c906108c 227{
a3a2ee65
JT
228 if (arm_apcs_32)
229 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 230 else
a3a2ee65 231 return (val & 0x03fffffc);
c906108c
SS
232}
233
181c1381
RE
234/* When reading symbols, we need to zap the low bit of the address,
235 which may be set to 1 for Thumb functions. */
34e8f22d 236static CORE_ADDR
181c1381
RE
237arm_smash_text_address (CORE_ADDR val)
238{
239 return val & ~1;
240}
241
34e8f22d
RE
242/* Immediately after a function call, return the saved pc. Can't
243 always go through the frames for this because on some machines the
244 new frame is not set up until the new function executes some
245 instructions. */
246
247static CORE_ADDR
ed9a39eb 248arm_saved_pc_after_call (struct frame_info *frame)
c906108c 249{
34e8f22d 250 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
251}
252
0defa245
RE
253/* Determine whether the function invocation represented by FI has a
254 frame on the stack associated with it. If it does return zero,
255 otherwise return 1. */
256
148754e5 257static int
ed9a39eb 258arm_frameless_function_invocation (struct frame_info *fi)
392a587b 259{
392a587b 260 CORE_ADDR func_start, after_prologue;
96baa820 261 int frameless;
ed9a39eb 262
0defa245
RE
263 /* Sometimes we have functions that do a little setup (like saving the
264 vN registers with the stmdb instruction, but DO NOT set up a frame.
265 The symbol table will report this as a prologue. However, it is
266 important not to try to parse these partial frames as frames, or we
267 will get really confused.
268
269 So I will demand 3 instructions between the start & end of the
270 prologue before I call it a real prologue, i.e. at least
271 mov ip, sp,
272 stmdb sp!, {}
273 sub sp, ip, #4. */
274
392a587b 275 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
7be570e7 276 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 277
96baa820 278 /* There are some frameless functions whose first two instructions
ed9a39eb 279 follow the standard APCS form, in which case after_prologue will
94c30b78 280 be func_start + 8. */
ed9a39eb 281
96baa820 282 frameless = (after_prologue < func_start + 12);
392a587b
JM
283 return frameless;
284}
285
0defa245 286/* The address of the arguments in the frame. */
148754e5 287static CORE_ADDR
0defa245
RE
288arm_frame_args_address (struct frame_info *fi)
289{
290 return fi->frame;
291}
292
293/* The address of the local variables in the frame. */
148754e5 294static CORE_ADDR
0defa245
RE
295arm_frame_locals_address (struct frame_info *fi)
296{
297 return fi->frame;
298}
299
300/* The number of arguments being passed in the frame. */
148754e5 301static int
0defa245
RE
302arm_frame_num_args (struct frame_info *fi)
303{
304 /* We have no way of knowing. */
305 return -1;
306}
307
c906108c 308/* A typical Thumb prologue looks like this:
c5aa993b
JM
309 push {r7, lr}
310 add sp, sp, #-28
311 add r7, sp, #12
c906108c 312 Sometimes the latter instruction may be replaced by:
da59e081
JM
313 mov r7, sp
314
315 or like this:
316 push {r7, lr}
317 mov r7, sp
318 sub sp, #12
319
320 or, on tpcs, like this:
321 sub sp,#16
322 push {r7, lr}
323 (many instructions)
324 mov r7, sp
325 sub sp, #12
326
327 There is always one instruction of three classes:
328 1 - push
329 2 - setting of r7
330 3 - adjusting of sp
331
332 When we have found at least one of each class we are done with the prolog.
333 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 334 */
c906108c
SS
335
336static CORE_ADDR
c7885828 337thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
338{
339 CORE_ADDR current_pc;
da3c6d4a
MS
340 /* findmask:
341 bit 0 - push { rlist }
342 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
343 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
344 */
345 int findmask = 0;
346
94c30b78
MS
347 for (current_pc = pc;
348 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 349 current_pc += 2)
c906108c
SS
350 {
351 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
352
94c30b78 353 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 354 {
94c30b78 355 findmask |= 1; /* push found */
da59e081 356 }
da3c6d4a
MS
357 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
358 sub sp, #simm */
da59e081 359 {
94c30b78 360 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
361 continue;
362 else
94c30b78 363 findmask |= 4; /* add/sub sp found */
da59e081
JM
364 }
365 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
366 {
94c30b78 367 findmask |= 2; /* setting of r7 found */
da59e081
JM
368 }
369 else if (insn == 0x466f) /* mov r7, sp */
370 {
94c30b78 371 findmask |= 2; /* setting of r7 found */
da59e081 372 }
3d74b771
FF
373 else if (findmask == (4+2+1))
374 {
da3c6d4a
MS
375 /* We have found one of each type of prologue instruction */
376 break;
3d74b771 377 }
da59e081 378 else
94c30b78 379 /* Something in the prolog that we don't care about or some
da3c6d4a 380 instruction from outside the prolog scheduled here for
94c30b78 381 optimization. */
da3c6d4a 382 continue;
c906108c
SS
383 }
384
385 return current_pc;
386}
387
da3c6d4a
MS
388/* Advance the PC across any function entry prologue instructions to
389 reach some "real" code.
34e8f22d
RE
390
391 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 392 prologue:
c906108c 393
c5aa993b
JM
394 mov ip, sp
395 [stmfd sp!, {a1,a2,a3,a4}]
396 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
397 [stfe f7, [sp, #-12]!]
398 [stfe f6, [sp, #-12]!]
399 [stfe f5, [sp, #-12]!]
400 [stfe f4, [sp, #-12]!]
401 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 402
34e8f22d 403static CORE_ADDR
ed9a39eb 404arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
405{
406 unsigned long inst;
407 CORE_ADDR skip_pc;
b8d5e71d 408 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 409 char *func_name;
c906108c
SS
410 struct symtab_and_line sal;
411
848cfffb
AC
412 /* If we're in a dummy frame, don't even try to skip the prologue. */
413 if (USE_GENERIC_DUMMY_FRAMES
414 && PC_IN_CALL_DUMMY (pc, 0, 0))
415 return pc;
416
96baa820 417 /* See what the symbol table says. */
ed9a39eb 418
50f6fb4b 419 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 420 {
50f6fb4b
CV
421 struct symbol *sym;
422
423 /* Found a function. */
424 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
425 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
426 {
94c30b78 427 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
428 sal = find_pc_line (func_addr, 0);
429 if ((sal.line != 0) && (sal.end < func_end))
430 return sal.end;
431 }
c906108c
SS
432 }
433
434 /* Check if this is Thumb code. */
435 if (arm_pc_is_thumb (pc))
c7885828 436 return thumb_skip_prologue (pc, func_end);
c906108c
SS
437
438 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 439 by disassembling the instructions. */
c906108c 440
b8d5e71d
MS
441 /* Like arm_scan_prologue, stop no later than pc + 64. */
442 if (func_end == 0 || func_end > pc + 64)
443 func_end = pc + 64;
c906108c 444
b8d5e71d 445 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 446 {
f43845b3 447 inst = read_memory_integer (skip_pc, 4);
f43845b3 448
b8d5e71d
MS
449 /* "mov ip, sp" is no longer a required part of the prologue. */
450 if (inst == 0xe1a0c00d) /* mov ip, sp */
451 continue;
c906108c 452
b8d5e71d
MS
453 /* Some prologues begin with "str lr, [sp, #-4]!". */
454 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
455 continue;
c906108c 456
b8d5e71d
MS
457 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
458 continue;
c906108c 459
b8d5e71d
MS
460 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
461 continue;
11d3b27d 462
b8d5e71d
MS
463 /* Any insns after this point may float into the code, if it makes
464 for better instruction scheduling, so we skip them only if we
465 find them, but still consider the function to be frame-ful. */
f43845b3 466
b8d5e71d
MS
467 /* We may have either one sfmfd instruction here, or several stfe
468 insns, depending on the version of floating point code we
469 support. */
470 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
471 continue;
472
473 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
474 continue;
475
476 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
477 continue;
478
479 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
480 continue;
481
482 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
483 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
484 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
485 continue;
486
487 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
488 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
489 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
490 continue;
491
492 /* Un-recognized instruction; stop scanning. */
493 break;
f43845b3 494 }
c906108c 495
b8d5e71d 496 return skip_pc; /* End of prologue */
c906108c 497}
94c30b78 498
c5aa993b 499/* *INDENT-OFF* */
c906108c
SS
500/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
501 This function decodes a Thumb function prologue to determine:
502 1) the size of the stack frame
503 2) which registers are saved on it
504 3) the offsets of saved regs
505 4) the offset from the stack pointer to the frame pointer
506 This information is stored in the "extra" fields of the frame_info.
507
da59e081
JM
508 A typical Thumb function prologue would create this stack frame
509 (offsets relative to FP)
c906108c
SS
510 old SP -> 24 stack parameters
511 20 LR
512 16 R7
513 R7 -> 0 local variables (16 bytes)
514 SP -> -12 additional stack space (12 bytes)
515 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
516 12 bytes. The frame register is R7.
517
da3c6d4a
MS
518 The comments for thumb_skip_prolog() describe the algorithm we use
519 to detect the end of the prolog. */
c5aa993b
JM
520/* *INDENT-ON* */
521
c906108c 522static void
ed9a39eb 523thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
524{
525 CORE_ADDR prologue_start;
526 CORE_ADDR prologue_end;
527 CORE_ADDR current_pc;
94c30b78 528 /* Which register has been copied to register n? */
da3c6d4a
MS
529 int saved_reg[16];
530 /* findmask:
531 bit 0 - push { rlist }
532 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
533 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
534 */
535 int findmask = 0;
c5aa993b 536 int i;
c906108c 537
848cfffb
AC
538 /* Don't try to scan dummy frames. */
539 if (USE_GENERIC_DUMMY_FRAMES
540 && fi != NULL
541 && PC_IN_CALL_DUMMY (fi->pc, 0, 0))
542 return;
543
c5aa993b 544 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
545 {
546 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
547
94c30b78 548 if (sal.line == 0) /* no line info, use current PC */
c906108c
SS
549 prologue_end = fi->pc;
550 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 551 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
552 }
553 else
da3c6d4a
MS
554 /* We're in the boondocks: allow for
555 16 pushes, an add, and "mv fp,sp". */
556 prologue_end = prologue_start + 40;
c906108c
SS
557
558 prologue_end = min (prologue_end, fi->pc);
559
560 /* Initialize the saved register map. When register H is copied to
561 register L, we will put H in saved_reg[L]. */
562 for (i = 0; i < 16; i++)
563 saved_reg[i] = i;
564
565 /* Search the prologue looking for instructions that set up the
da59e081
JM
566 frame pointer, adjust the stack pointer, and save registers.
567 Do this until all basic prolog instructions are found. */
c906108c 568
c3b4394c 569 fi->extra_info->framesize = 0;
da59e081
JM
570 for (current_pc = prologue_start;
571 (current_pc < prologue_end) && ((findmask & 7) != 7);
572 current_pc += 2)
c906108c
SS
573 {
574 unsigned short insn;
575 int regno;
576 int offset;
577
578 insn = read_memory_unsigned_integer (current_pc, 2);
579
c5aa993b 580 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 581 {
da59e081 582 int mask;
94c30b78 583 findmask |= 1; /* push found */
c906108c
SS
584 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
585 whether to save LR (R14). */
da59e081 586 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 587
b8d5e71d 588 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 589 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 590 if (mask & (1 << regno))
c5aa993b 591 {
c3b4394c
RE
592 fi->extra_info->framesize += 4;
593 fi->saved_regs[saved_reg[regno]] =
594 -(fi->extra_info->framesize);
da3c6d4a
MS
595 /* Reset saved register map. */
596 saved_reg[regno] = regno;
c906108c
SS
597 }
598 }
da3c6d4a
MS
599 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
600 sub sp, #simm */
c906108c 601 {
b8d5e71d 602 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
603 continue;
604 else
94c30b78 605 findmask |= 4; /* add/sub sp found */
da59e081 606
94c30b78
MS
607 offset = (insn & 0x7f) << 2; /* get scaled offset */
608 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 609 {
c3b4394c 610 fi->extra_info->frameoffset += offset;
da59e081
JM
611 offset = -offset;
612 }
c3b4394c 613 fi->extra_info->framesize -= offset;
c906108c
SS
614 }
615 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
616 {
94c30b78 617 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
618 fi->extra_info->framereg = THUMB_FP_REGNUM;
619 /* get scaled offset */
620 fi->extra_info->frameoffset = (insn & 0xff) << 2;
c906108c 621 }
da59e081 622 else if (insn == 0x466f) /* mov r7, sp */
c906108c 623 {
94c30b78 624 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
625 fi->extra_info->framereg = THUMB_FP_REGNUM;
626 fi->extra_info->frameoffset = 0;
34e8f22d 627 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
628 }
629 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
630 {
da3c6d4a 631 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 632 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 633 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
634 }
635 else
da3c6d4a
MS
636 /* Something in the prolog that we don't care about or some
637 instruction from outside the prolog scheduled here for
638 optimization. */
639 continue;
c906108c
SS
640 }
641}
642
ed9a39eb
JM
643/* Check if prologue for this frame's PC has already been scanned. If
644 it has, copy the relevant information about that prologue and
c906108c
SS
645 return non-zero. Otherwise do not copy anything and return zero.
646
647 The information saved in the cache includes:
c5aa993b
JM
648 * the frame register number;
649 * the size of the stack frame;
650 * the offsets of saved regs (relative to the old SP); and
651 * the offset from the stack pointer to the frame pointer
c906108c 652
ed9a39eb
JM
653 The cache contains only one entry, since this is adequate for the
654 typical sequence of prologue scan requests we get. When performing
655 a backtrace, GDB will usually ask to scan the same function twice
656 in a row (once to get the frame chain, and once to fill in the
657 extra frame information). */
c906108c
SS
658
659static struct frame_info prologue_cache;
660
661static int
ed9a39eb 662check_prologue_cache (struct frame_info *fi)
c906108c
SS
663{
664 int i;
665
666 if (fi->pc == prologue_cache.pc)
667 {
c3b4394c
RE
668 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
669 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
670 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
671 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
672 fi->saved_regs[i] = prologue_cache.saved_regs[i];
c906108c
SS
673 return 1;
674 }
675 else
676 return 0;
677}
678
679
ed9a39eb 680/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
681
682static void
ed9a39eb 683save_prologue_cache (struct frame_info *fi)
c906108c
SS
684{
685 int i;
686
c5aa993b 687 prologue_cache.pc = fi->pc;
c3b4394c
RE
688 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
689 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
690 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
c5aa993b 691
c3b4394c
RE
692 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
693 prologue_cache.saved_regs[i] = fi->saved_regs[i];
c906108c
SS
694}
695
696
ed9a39eb 697/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
698 1) the size of the stack frame
699 2) which registers are saved on it
700 3) the offsets of saved regs
701 4) the offset from the stack pointer to the frame pointer
c906108c
SS
702 This information is stored in the "extra" fields of the frame_info.
703
96baa820
JM
704 There are two basic forms for the ARM prologue. The fixed argument
705 function call will look like:
ed9a39eb
JM
706
707 mov ip, sp
708 stmfd sp!, {fp, ip, lr, pc}
709 sub fp, ip, #4
710 [sub sp, sp, #4]
96baa820 711
c906108c 712 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
713 IP -> 4 (caller's stack)
714 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
715 -4 LR (return address in caller)
716 -8 IP (copy of caller's SP)
717 -12 FP (caller's FP)
718 SP -> -28 Local variables
719
c906108c 720 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
721 28 bytes. The stmfd call can also save any of the vN registers it
722 plans to use, which increases the frame size accordingly.
723
724 Note: The stored PC is 8 off of the STMFD instruction that stored it
725 because the ARM Store instructions always store PC + 8 when you read
726 the PC register.
ed9a39eb 727
96baa820
JM
728 A variable argument function call will look like:
729
ed9a39eb
JM
730 mov ip, sp
731 stmfd sp!, {a1, a2, a3, a4}
732 stmfd sp!, {fp, ip, lr, pc}
733 sub fp, ip, #20
734
96baa820 735 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
736 IP -> 20 (caller's stack)
737 16 A4
738 12 A3
739 8 A2
740 4 A1
741 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
742 -4 LR (return address in caller)
743 -8 IP (copy of caller's SP)
744 -12 FP (caller's FP)
745 SP -> -28 Local variables
96baa820
JM
746
747 The frame size would thus be 48 bytes, and the frame offset would be
748 28 bytes.
749
750 There is another potential complication, which is that the optimizer
751 will try to separate the store of fp in the "stmfd" instruction from
752 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
753 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
754
755 Also, note, the original version of the ARM toolchain claimed that there
756 should be an
757
758 instruction at the end of the prologue. I have never seen GCC produce
759 this, and the ARM docs don't mention it. We still test for it below in
760 case it happens...
ed9a39eb
JM
761
762 */
c906108c
SS
763
764static void
ed9a39eb 765arm_scan_prologue (struct frame_info *fi)
c906108c
SS
766{
767 int regno, sp_offset, fp_offset;
16a0f3e7 768 LONGEST return_value;
c906108c
SS
769 CORE_ADDR prologue_start, prologue_end, current_pc;
770
94c30b78 771 /* Check if this function is already in the cache of frame information. */
c906108c
SS
772 if (check_prologue_cache (fi))
773 return;
774
775 /* Assume there is no frame until proven otherwise. */
34e8f22d 776 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
777 fi->extra_info->framesize = 0;
778 fi->extra_info->frameoffset = 0;
c906108c
SS
779
780 /* Check for Thumb prologue. */
781 if (arm_pc_is_thumb (fi->pc))
782 {
783 thumb_scan_prologue (fi);
784 save_prologue_cache (fi);
785 return;
786 }
787
788 /* Find the function prologue. If we can't find the function in
789 the symbol table, peek in the stack frame to find the PC. */
790 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
791 {
2a451106
KB
792 /* One way to find the end of the prologue (which works well
793 for unoptimized code) is to do the following:
794
795 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
796
797 if (sal.line == 0)
798 prologue_end = fi->pc;
799 else if (sal.end < prologue_end)
800 prologue_end = sal.end;
801
802 This mechanism is very accurate so long as the optimizer
803 doesn't move any instructions from the function body into the
804 prologue. If this happens, sal.end will be the last
805 instruction in the first hunk of prologue code just before
806 the first instruction that the scheduler has moved from
807 the body to the prologue.
808
809 In order to make sure that we scan all of the prologue
810 instructions, we use a slightly less accurate mechanism which
811 may scan more than necessary. To help compensate for this
812 lack of accuracy, the prologue scanning loop below contains
813 several clauses which'll cause the loop to terminate early if
814 an implausible prologue instruction is encountered.
815
816 The expression
817
818 prologue_start + 64
819
820 is a suitable endpoint since it accounts for the largest
821 possible prologue plus up to five instructions inserted by
94c30b78 822 the scheduler. */
2a451106
KB
823
824 if (prologue_end > prologue_start + 64)
825 {
94c30b78 826 prologue_end = prologue_start + 64; /* See above. */
2a451106 827 }
c906108c
SS
828 }
829 else
830 {
94c30b78
MS
831 /* Get address of the stmfd in the prologue of the callee;
832 the saved PC is the address of the stmfd + 8. */
16a0f3e7
EZ
833 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
834 return;
835 else
836 {
837 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 838 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 839 }
c906108c
SS
840 }
841
842 /* Now search the prologue looking for instructions that set up the
96baa820 843 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 844
96baa820
JM
845 Be careful, however, and if it doesn't look like a prologue,
846 don't try to scan it. If, for instance, a frameless function
847 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 848 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
849 and other operations that rely on a knowledge of the stack
850 traceback.
851
852 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 853 if we don't see this as the first insn, we will stop.
c906108c 854
f43845b3
MS
855 [Note: This doesn't seem to be true any longer, so it's now an
856 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 857
f43845b3
MS
858 [Note further: The "mov ip,sp" only seems to be missing in
859 frameless functions at optimization level "-O2" or above,
860 in which case it is often (but not always) replaced by
b8d5e71d 861 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 862
f43845b3
MS
863 sp_offset = fp_offset = 0;
864
94c30b78
MS
865 for (current_pc = prologue_start;
866 current_pc < prologue_end;
f43845b3 867 current_pc += 4)
96baa820 868 {
d4473757
KB
869 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
870
94c30b78 871 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3
MS
872 {
873 continue;
874 }
94c30b78 875 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3
MS
876 {
877 /* Function is frameless: extra_info defaults OK? */
878 continue;
879 }
880 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
881 /* stmfd sp!, {..., fp, ip, lr, pc}
882 or
883 stmfd sp!, {a1, a2, a3, a4} */
c906108c 884 {
d4473757 885 int mask = insn & 0xffff;
ed9a39eb 886
94c30b78 887 /* Calculate offsets of saved registers. */
34e8f22d 888 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
889 if (mask & (1 << regno))
890 {
891 sp_offset -= 4;
c3b4394c 892 fi->saved_regs[regno] = sp_offset;
d4473757
KB
893 }
894 }
b8d5e71d
MS
895 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
896 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
897 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
898 {
899 /* No need to add this to saved_regs -- it's just an arg reg. */
900 continue;
901 }
902 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
903 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
904 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
905 {
906 /* No need to add this to saved_regs -- it's just an arg reg. */
907 continue;
908 }
d4473757
KB
909 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
910 {
94c30b78
MS
911 unsigned imm = insn & 0xff; /* immediate value */
912 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
913 imm = (imm >> rot) | (imm << (32 - rot));
914 fp_offset = -imm;
34e8f22d 915 fi->extra_info->framereg = ARM_FP_REGNUM;
d4473757
KB
916 }
917 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
918 {
94c30b78
MS
919 unsigned imm = insn & 0xff; /* immediate value */
920 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
921 imm = (imm >> rot) | (imm << (32 - rot));
922 sp_offset -= imm;
923 }
924 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
925 {
926 sp_offset -= 12;
34e8f22d 927 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
c3b4394c 928 fi->saved_regs[regno] = sp_offset;
d4473757
KB
929 }
930 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
931 {
932 int n_saved_fp_regs;
933 unsigned int fp_start_reg, fp_bound_reg;
934
94c30b78 935 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 936 {
d4473757
KB
937 if ((insn & 0x40000) == 0x40000) /* N1 is set */
938 n_saved_fp_regs = 3;
939 else
940 n_saved_fp_regs = 1;
96baa820 941 }
d4473757 942 else
96baa820 943 {
d4473757
KB
944 if ((insn & 0x40000) == 0x40000) /* N1 is set */
945 n_saved_fp_regs = 2;
946 else
947 n_saved_fp_regs = 4;
96baa820 948 }
d4473757 949
34e8f22d 950 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
951 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
952 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
953 {
954 sp_offset -= 12;
c3b4394c 955 fi->saved_regs[fp_start_reg++] = sp_offset;
96baa820 956 }
c906108c 957 }
d4473757 958 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 959 break; /* Condition not true, exit early */
b8d5e71d 960 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 961 break; /* Don't scan past a block load */
d4473757
KB
962 else
963 /* The optimizer might shove anything into the prologue,
94c30b78 964 so we just skip what we don't recognize. */
d4473757 965 continue;
c906108c
SS
966 }
967
94c30b78
MS
968 /* The frame size is just the negative of the offset (from the
969 original SP) of the last thing thing we pushed on the stack.
970 The frame offset is [new FP] - [new SP]. */
c3b4394c 971 fi->extra_info->framesize = -sp_offset;
34e8f22d 972 if (fi->extra_info->framereg == ARM_FP_REGNUM)
c3b4394c 973 fi->extra_info->frameoffset = fp_offset - sp_offset;
d4473757 974 else
c3b4394c 975 fi->extra_info->frameoffset = 0;
ed9a39eb 976
c906108c
SS
977 save_prologue_cache (fi);
978}
979
ed9a39eb
JM
980/* Find REGNUM on the stack. Otherwise, it's in an active register.
981 One thing we might want to do here is to check REGNUM against the
982 clobber mask, and somehow flag it as invalid if it isn't saved on
983 the stack somewhere. This would provide a graceful failure mode
984 when trying to get the value of caller-saves registers for an inner
985 frame. */
c906108c
SS
986
987static CORE_ADDR
ed9a39eb 988arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c 989{
848cfffb
AC
990 /* NOTE: cagney/2002-05-03: This function really shouldn't be
991 needed. Instead the (still being written) register unwind
992 function could be called directly. */
c906108c 993 for (; fi; fi = fi->next)
848cfffb
AC
994 {
995 if (USE_GENERIC_DUMMY_FRAMES
996 && PC_IN_CALL_DUMMY (fi->pc, 0, 0))
997 {
135c175f 998 return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
848cfffb
AC
999 }
1000 else if (fi->saved_regs[regnum] != 0)
1001 {
1002 /* NOTE: cagney/2002-05-03: This would normally need to
1003 handle ARM_SP_REGNUM as a special case as, according to
1004 the frame.h comments, saved_regs[SP_REGNUM] contains the
1005 SP value not its address. It appears that the ARM isn't
1006 doing this though. */
1007 return read_memory_integer (fi->saved_regs[regnum],
1008 REGISTER_RAW_SIZE (regnum));
1009 }
1010 }
c906108c
SS
1011 return read_register (regnum);
1012}
148754e5
RE
1013/* Function: frame_chain Given a GDB frame, determine the address of
1014 the calling function's frame. This will be used to create a new
1015 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
1016 will be called for the new frame. For ARM, we save the frame size
1017 when we initialize the frame_info. */
c5aa993b 1018
148754e5 1019static CORE_ADDR
ed9a39eb 1020arm_frame_chain (struct frame_info *fi)
c906108c 1021{
848cfffb 1022 CORE_ADDR caller_pc;
c3b4394c 1023 int framereg = fi->extra_info->framereg;
c906108c 1024
848cfffb
AC
1025 if (USE_GENERIC_DUMMY_FRAMES
1026 && PC_IN_CALL_DUMMY (fi->pc, 0, 0))
1027 /* A generic call dummy's frame is the same as caller's. */
1028 return fi->frame;
1029
c906108c
SS
1030 if (fi->pc < LOWEST_PC)
1031 return 0;
1032
1033 /* If the caller is the startup code, we're at the end of the chain. */
1034 caller_pc = FRAME_SAVED_PC (fi);
c906108c
SS
1035
1036 /* If the caller is Thumb and the caller is ARM, or vice versa,
1037 the frame register of the caller is different from ours.
1038 So we must scan the prologue of the caller to determine its
94c30b78 1039 frame register number. */
c3b4394c
RE
1040 /* XXX Fixme, we should try to do this without creating a temporary
1041 caller_fi. */
c906108c
SS
1042 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
1043 {
c3b4394c
RE
1044 struct frame_info caller_fi;
1045 struct cleanup *old_chain;
1046
1047 /* Create a temporary frame suitable for scanning the caller's
1048 prologue. (Ugh.) */
c5aa993b 1049 memset (&caller_fi, 0, sizeof (caller_fi));
c3b4394c
RE
1050 caller_fi.extra_info = (struct frame_extra_info *)
1051 xcalloc (1, sizeof (struct frame_extra_info));
1052 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1053 caller_fi.saved_regs = (CORE_ADDR *)
1054 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1055 make_cleanup (xfree, caller_fi.saved_regs);
1056
1057 /* Now, scan the prologue and obtain the frame register. */
c906108c 1058 caller_fi.pc = caller_pc;
c5aa993b 1059 arm_scan_prologue (&caller_fi);
c3b4394c
RE
1060 framereg = caller_fi.extra_info->framereg;
1061
1062 /* Deallocate the storage associated with the temporary frame
1063 created above. */
1064 do_cleanups (old_chain);
c906108c
SS
1065 }
1066
1067 /* If the caller used a frame register, return its value.
1068 Otherwise, return the caller's stack pointer. */
34e8f22d 1069 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1070 return arm_find_callers_reg (fi, framereg);
1071 else
c3b4394c 1072 return fi->frame + fi->extra_info->framesize;
c906108c
SS
1073}
1074
ed9a39eb
JM
1075/* This function actually figures out the frame address for a given pc
1076 and sp. This is tricky because we sometimes don't use an explicit
1077 frame pointer, and the previous stack pointer isn't necessarily
1078 recorded on the stack. The only reliable way to get this info is
1079 to examine the prologue. FROMLEAF is a little confusing, it means
1080 this is the next frame up the chain AFTER a frameless function. If
1081 this is true, then the frame value for this frame is still in the
1082 fp register. */
c906108c 1083
148754e5 1084static void
ed9a39eb 1085arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1086{
1087 int reg;
f079148d 1088 CORE_ADDR sp;
c906108c 1089
c3b4394c
RE
1090 if (fi->saved_regs == NULL)
1091 frame_saved_regs_zalloc (fi);
1092
1093 fi->extra_info = (struct frame_extra_info *)
1094 frame_obstack_alloc (sizeof (struct frame_extra_info));
1095
1096 fi->extra_info->framesize = 0;
1097 fi->extra_info->frameoffset = 0;
1098 fi->extra_info->framereg = 0;
1099
c906108c
SS
1100 if (fi->next)
1101 fi->pc = FRAME_SAVED_PC (fi->next);
1102
c3b4394c 1103 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
c906108c 1104
da3c6d4a
MS
1105 /* Compute stack pointer for this frame. We use this value for both
1106 the sigtramp and call dummy cases. */
f079148d
KB
1107 if (!fi->next)
1108 sp = read_sp();
848cfffb
AC
1109 else if (USE_GENERIC_DUMMY_FRAMES
1110 && PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
1111 /* For generic dummy frames, pull the value direct from the frame.
1112 Having an unwind function to do this would be nice. */
135c175f
AC
1113 sp = deprecated_read_register_dummy (fi->next->pc, fi->next->frame,
1114 ARM_SP_REGNUM);
f079148d 1115 else
c3b4394c
RE
1116 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1117 + fi->next->extra_info->framesize);
f079148d 1118
d7bd68ca 1119 /* Determine whether or not we're in a sigtramp frame.
5a203e44
AC
1120 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1121 == SIGTRAMP_FRAME) because this value is sometimes set after
1122 invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1123 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1124 determine if we need to use the sigcontext addresses for the
1125 saved registers.
2a451106 1126
d7bd68ca
AC
1127 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1128 against the name of the function, the code below will have to be
1129 changed to first fetch the name of the function and then pass
1130 this name to PC_IN_SIGTRAMP. */
2a451106 1131
5a203e44
AC
1132 /* FIXME: cagney/2002-11-18: This problem will go away once
1133 frame.c:get_prev_frame() is modified to set the frame's type
1134 before calling functions like this. */
1135
3bb04bdd 1136 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
5a203e44 1137 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (fi->pc, (char *)0)))
2a451106 1138 {
2a451106 1139 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c 1140 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
2a451106 1141
94c30b78 1142 /* FIXME: What about thumb mode? */
34e8f22d 1143 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
1144 fi->frame =
1145 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1146 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1147 fi->extra_info->framesize = 0;
1148 fi->extra_info->frameoffset = 0;
2a451106
KB
1149
1150 }
a90c3637
MS
1151 else if (!USE_GENERIC_DUMMY_FRAMES
1152 && PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
f079148d
KB
1153 {
1154 CORE_ADDR rp;
1155 CORE_ADDR callers_sp;
1156
1157 /* Set rp point at the high end of the saved registers. */
1158 rp = fi->frame - REGISTER_SIZE;
1159
1160 /* Fill in addresses of saved registers. */
34e8f22d
RE
1161 fi->saved_regs[ARM_PS_REGNUM] = rp;
1162 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1163 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
f079148d 1164 {
c3b4394c 1165 fi->saved_regs[reg] = rp;
f079148d
KB
1166 rp -= REGISTER_RAW_SIZE (reg);
1167 }
1168
34e8f22d
RE
1169 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1170 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
a90c3637
MS
1171 if (arm_pc_is_thumb (fi->pc))
1172 fi->extra_info->framereg = THUMB_FP_REGNUM;
1173 else
1174 fi->extra_info->framereg = ARM_FP_REGNUM;
c3b4394c
RE
1175 fi->extra_info->framesize = callers_sp - sp;
1176 fi->extra_info->frameoffset = fi->frame - sp;
f079148d 1177 }
2a451106 1178 else
c906108c
SS
1179 {
1180 arm_scan_prologue (fi);
1181
104c1213 1182 if (!fi->next)
94c30b78 1183 /* This is the innermost frame? */
c3b4394c 1184 fi->frame = read_register (fi->extra_info->framereg);
848cfffb
AC
1185 else if (USE_GENERIC_DUMMY_FRAMES
1186 && PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
1187 /* Next inner most frame is a dummy, just grab its frame.
1188 Dummy frames always have the same FP as their caller. */
1189 fi->frame = fi->next->frame;
34e8f22d 1190 else if (fi->extra_info->framereg == ARM_FP_REGNUM
c3b4394c 1191 || fi->extra_info->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1192 {
1193 /* not the innermost frame */
94c30b78 1194 /* If we have an FP, the callee saved it. */
c3b4394c 1195 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
ed9a39eb 1196 fi->frame =
c3b4394c
RE
1197 read_memory_integer (fi->next
1198 ->saved_regs[fi->extra_info->framereg], 4);
ed9a39eb
JM
1199 else if (fromleaf)
1200 /* If we were called by a frameless fn. then our frame is
94c30b78 1201 still in the frame pointer register on the board... */
ed9a39eb
JM
1202 fi->frame = read_fp ();
1203 }
c906108c 1204
ed9a39eb
JM
1205 /* Calculate actual addresses of saved registers using offsets
1206 determined by arm_scan_prologue. */
c906108c 1207 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c
RE
1208 if (fi->saved_regs[reg] != 0)
1209 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1210 - fi->extra_info->frameoffset);
c906108c
SS
1211 }
1212}
1213
1214
34e8f22d 1215/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1216 is saved in the stack anywhere, otherwise we get it from the
1217 registers.
c906108c
SS
1218
1219 The old definition of this function was a macro:
c5aa993b 1220 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1221 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1222
148754e5 1223static CORE_ADDR
ed9a39eb 1224arm_frame_saved_pc (struct frame_info *fi)
c906108c 1225{
848cfffb
AC
1226 /* If a dummy frame, pull the PC out of the frame's register buffer. */
1227 if (USE_GENERIC_DUMMY_FRAMES
1228 && PC_IN_CALL_DUMMY (fi->pc, 0, 0))
135c175f 1229 return deprecated_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
848cfffb 1230
c3b4394c
RE
1231 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1232 fi->frame))
f079148d 1233 {
34e8f22d
RE
1234 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1235 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1236 }
1237 else
c906108c 1238 {
34e8f22d 1239 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1240 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1241 }
1242}
1243
c906108c
SS
1244/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1245 Examine the Program Status Register to decide which state we're in. */
1246
148754e5
RE
1247static CORE_ADDR
1248arm_read_fp (void)
c906108c 1249{
34e8f22d 1250 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1251 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1252 else
34e8f22d 1253 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1254}
1255
148754e5
RE
1256/* Store into a struct frame_saved_regs the addresses of the saved
1257 registers of frame described by FRAME_INFO. This includes special
1258 registers such as PC and FP saved in special ways in the stack
1259 frame. SP is even more special: the address we return for it IS
1260 the sp for the next frame. */
c906108c 1261
148754e5 1262static void
c3b4394c 1263arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1264{
c3b4394c
RE
1265
1266 if (fip->saved_regs)
1267 return;
1268
1269 arm_init_extra_frame_info (0, fip);
c906108c
SS
1270}
1271
848cfffb
AC
1272/* Set the return address for a generic dummy frame. ARM uses the
1273 entry point. */
1274
1275static CORE_ADDR
1276arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1277{
1278 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1279 return sp;
1280}
1281
148754e5
RE
1282/* Push an empty stack frame, to record the current PC, etc. */
1283
1284static void
ed9a39eb 1285arm_push_dummy_frame (void)
c906108c 1286{
34e8f22d 1287 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1288 CORE_ADDR sp = old_sp;
1289 CORE_ADDR fp, prologue_start;
1290 int regnum;
1291
1292 /* Push the two dummy prologue instructions in reverse order,
1293 so that they'll be in the correct low-to-high order in memory. */
1294 /* sub fp, ip, #4 */
1295 sp = push_word (sp, 0xe24cb004);
1296 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1297 prologue_start = sp = push_word (sp, 0xe92ddfff);
1298
ed9a39eb
JM
1299 /* Push a pointer to the dummy prologue + 12, because when stm
1300 instruction stores the PC, it stores the address of the stm
c906108c
SS
1301 instruction itself plus 12. */
1302 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1303
f079148d 1304 /* Push the processor status. */
34e8f22d 1305 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1306
1307 /* Push all 16 registers starting with r15. */
34e8f22d 1308 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1309 sp = push_word (sp, read_register (regnum));
c5aa993b 1310
f079148d 1311 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1312 write_register (ARM_FP_REGNUM, fp);
c906108c 1313 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1314 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1315}
1316
6eb69eab
RE
1317/* CALL_DUMMY_WORDS:
1318 This sequence of words is the instructions
1319
1320 mov lr,pc
1321 mov pc,r4
1322 illegal
1323
1324 Note this is 12 bytes. */
1325
34e8f22d 1326static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1327{
1328 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1329};
1330
3fb4b924
RE
1331/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1332 breakpoint to the proper address in the call dummy, so that
1333 `finish' after a stop in a call dummy works.
1334
d7b486e7
RE
1335 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1336 optimal solution, but the call to arm_fix_call_dummy is immediately
1337 followed by a call to run_stack_dummy, which is the only function
1338 where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1339
1340
1341static void
1342arm_set_call_dummy_breakpoint_offset (void)
1343{
1344 if (caller_is_thumb)
1345 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1346 else
1347 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1348}
1349
c906108c 1350/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1351 in Thumb or ARM mode, and whether the target function is Thumb or
1352 ARM. There are three different situations requiring three
c906108c
SS
1353 different dummies:
1354
1355 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1356 been copied into the dummy parameter to this function.
c906108c 1357 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1358 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1359 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1360 works for calling both ARM and Thumb functions.
c906108c 1361
ed9a39eb
JM
1362 All three call dummies expect to receive the target function
1363 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1364
34e8f22d 1365static void
ed9a39eb 1366arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1367 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1368{
1369 static short thumb_dummy[4] =
1370 {
c5aa993b
JM
1371 0xf000, 0xf801, /* bl label */
1372 0xdf18, /* swi 24 */
1373 0x4720, /* label: bx r4 */
c906108c
SS
1374 };
1375 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1376
94c30b78 1377 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1378 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1379 arm_set_call_dummy_breakpoint_offset ();
c906108c 1380
ed9a39eb
JM
1381 /* If the target function is Thumb, set the low bit of the function
1382 address. And if the CPU is currently in ARM mode, patch the
1383 second instruction of call dummy to use a BX instruction to
1384 switch to Thumb mode. */
c906108c
SS
1385 target_is_thumb = arm_pc_is_thumb (fun);
1386 if (target_is_thumb)
1387 {
1388 fun |= 1;
1389 if (!caller_is_thumb)
1390 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1391 }
1392
1393 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1394 instead of the ARM one that's already been copied. This will
1395 work for both Thumb and ARM target functions. */
1396 if (caller_is_thumb)
1397 {
1398 int i;
1399 char *p = dummy;
1400 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1401
1402 for (i = 0; i < len; i++)
1403 {
1404 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1405 p += sizeof (thumb_dummy[0]);
1406 }
1407 }
1408
ed9a39eb 1409 /* Put the target address in r4; the call dummy will copy this to
94c30b78 1410 the PC. */
c906108c
SS
1411 write_register (4, fun);
1412}
1413
ed9a39eb
JM
1414/* Note: ScottB
1415
1416 This function does not support passing parameters using the FPA
1417 variant of the APCS. It passes any floating point arguments in the
1418 general registers and/or on the stack. */
c906108c 1419
39bbf761 1420static CORE_ADDR
ea7c478f 1421arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1422 int struct_return, CORE_ADDR struct_addr)
c906108c 1423{
6529d2dd
AC
1424 CORE_ADDR fp;
1425 int argnum;
1426 int argreg;
1427 int nstack;
1428 int simd_argreg;
1429 int second_pass;
1430 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
ed9a39eb
JM
1431
1432 /* Walk through the list of args and determine how large a temporary
1433 stack is required. Need to take care here as structs may be
6529d2dd
AC
1434 passed on the stack, and we have to to push them. On the second
1435 pass, do the store. */
1436 nstack = 0;
1437 fp = sp;
1438 for (second_pass = 0; second_pass < 2; second_pass++)
c906108c 1439 {
6529d2dd
AC
1440 /* Compute the FP using the information computed during the
1441 first pass. */
1442 if (second_pass)
1443 fp = sp - nstack;
1444
1445 simd_argreg = 0;
1446 argreg = ARM_A1_REGNUM;
1447 nstack = 0;
1448
1449 /* The struct_return pointer occupies the first parameter
1450 passing register. */
1451 if (struct_return)
c906108c 1452 {
6529d2dd
AC
1453 if (second_pass)
1454 {
1455 if (arm_debug)
1456 fprintf_unfiltered (gdb_stdlog,
1457 "struct return in %s = 0x%s\n",
1458 REGISTER_NAME (argreg),
1459 paddr (struct_addr));
1460 write_register (argreg, struct_addr);
1461 }
1462 argreg++;
c906108c 1463 }
ed9a39eb 1464
6529d2dd
AC
1465 for (argnum = 0; argnum < nargs; argnum++)
1466 {
1467 int len;
1468 struct type *arg_type;
1469 struct type *target_type;
1470 enum type_code typecode;
1471 char *val;
1472
1473 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1474 len = TYPE_LENGTH (arg_type);
1475 target_type = TYPE_TARGET_TYPE (arg_type);
1476 typecode = TYPE_CODE (arg_type);
1477 val = VALUE_CONTENTS (args[argnum]);
1478
1479 /* If the argument is a pointer to a function, and it is a
1480 Thumb function, create a LOCAL copy of the value and set
1481 the THUMB bit in it. */
1482 if (second_pass
1483 && TYPE_CODE_PTR == typecode
1484 && target_type != NULL
1485 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1486 {
6529d2dd
AC
1487 CORE_ADDR regval = extract_address (val, len);
1488 if (arm_pc_is_thumb (regval))
1489 {
1490 val = alloca (len);
1491 store_address (val, len, MAKE_THUMB_ADDR (regval));
1492 }
c906108c 1493 }
6529d2dd
AC
1494
1495 /* Copy the argument to general registers or the stack in
1496 register-sized pieces. Large arguments are split between
1497 registers and stack. */
1498 while (len > 0)
ed9a39eb 1499 {
6529d2dd
AC
1500 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1501
1502 if (argreg <= ARM_LAST_ARG_REGNUM)
1503 {
1504 /* The argument is being passed in a general purpose
1505 register. */
1506 if (second_pass)
1507 {
1508 CORE_ADDR regval = extract_address (val,
1509 partial_len);
1510 if (arm_debug)
1511 fprintf_unfiltered (gdb_stdlog,
1512 "arg %d in %s = 0x%s\n",
1513 argnum,
1514 REGISTER_NAME (argreg),
1515 phex (regval, REGISTER_SIZE));
1516 write_register (argreg, regval);
1517 }
1518 argreg++;
1519 }
1520 else
1521 {
1522 if (second_pass)
1523 {
1524 /* Push the arguments onto the stack. */
1525 if (arm_debug)
1526 fprintf_unfiltered (gdb_stdlog,
1527 "arg %d @ 0x%s + %d\n",
1528 argnum, paddr (fp), nstack);
1529 write_memory (fp + nstack, val, REGISTER_SIZE);
1530 }
1531 nstack += REGISTER_SIZE;
1532 }
1533
1534 len -= partial_len;
1535 val += partial_len;
ed9a39eb
JM
1536 }
1537
c906108c
SS
1538 }
1539 }
c906108c 1540
6529d2dd
AC
1541 /* Return the botom of the argument list (pointed to by fp). */
1542 return fp;
c906108c
SS
1543}
1544
da3c6d4a
MS
1545/* Pop the current frame. So long as the frame info has been
1546 initialized properly (see arm_init_extra_frame_info), this code
1547 works for dummy frames as well as regular frames. I.e, there's no
1548 need to have a special case for dummy frames. */
148754e5 1549static void
ed9a39eb 1550arm_pop_frame (void)
c906108c 1551{
c906108c 1552 int regnum;
8b93c638 1553 struct frame_info *frame = get_current_frame ();
c3b4394c
RE
1554 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1555 + frame->extra_info->framesize);
c906108c 1556
848cfffb
AC
1557 if (USE_GENERIC_DUMMY_FRAMES
1558 && PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1559 {
1560 generic_pop_dummy_frame ();
1561 flush_cached_frames ();
1562 return;
1563 }
1564
f079148d 1565 for (regnum = 0; regnum < NUM_REGS; regnum++)
c3b4394c 1566 if (frame->saved_regs[regnum] != 0)
f079148d 1567 write_register (regnum,
c3b4394c 1568 read_memory_integer (frame->saved_regs[regnum],
f079148d 1569 REGISTER_RAW_SIZE (regnum)));
8b93c638 1570
34e8f22d
RE
1571 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1572 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1573
1574 flush_cached_frames ();
1575}
1576
1577static void
ed9a39eb 1578print_fpu_flags (int flags)
c906108c 1579{
c5aa993b
JM
1580 if (flags & (1 << 0))
1581 fputs ("IVO ", stdout);
1582 if (flags & (1 << 1))
1583 fputs ("DVZ ", stdout);
1584 if (flags & (1 << 2))
1585 fputs ("OFL ", stdout);
1586 if (flags & (1 << 3))
1587 fputs ("UFL ", stdout);
1588 if (flags & (1 << 4))
1589 fputs ("INX ", stdout);
1590 putchar ('\n');
c906108c
SS
1591}
1592
5e74b15c
RE
1593/* Print interesting information about the floating point processor
1594 (if present) or emulator. */
34e8f22d 1595static void
d855c300 1596arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1597 struct frame_info *frame, const char *args)
c906108c 1598{
34e8f22d 1599 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1600 int type;
1601
1602 type = (status >> 24) & 127;
1603 printf ("%s FPU type %d\n",
ed9a39eb 1604 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1605 type);
1606 fputs ("mask: ", stdout);
1607 print_fpu_flags (status >> 16);
1608 fputs ("flags: ", stdout);
1609 print_fpu_flags (status);
c906108c
SS
1610}
1611
34e8f22d
RE
1612/* Return the GDB type object for the "standard" data type of data in
1613 register N. */
1614
1615static struct type *
032758dc
AC
1616arm_register_type (int regnum)
1617{
34e8f22d 1618 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1619 {
d7449b42 1620 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1621 return builtin_type_arm_ext_big;
1622 else
1623 return builtin_type_arm_ext_littlebyte_bigword;
1624 }
1625 else
1626 return builtin_type_int32;
1627}
1628
34e8f22d
RE
1629/* Index within `registers' of the first byte of the space for
1630 register N. */
1631
1632static int
1633arm_register_byte (int regnum)
1634{
1635 if (regnum < ARM_F0_REGNUM)
1636 return regnum * INT_REGISTER_RAW_SIZE;
1637 else if (regnum < ARM_PS_REGNUM)
1638 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1639 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1640 else
1641 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1642 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1643 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1644}
1645
1646/* Number of bytes of storage in the actual machine representation for
1647 register N. All registers are 4 bytes, except fp0 - fp7, which are
1648 12 bytes in length. */
1649
1650static int
1651arm_register_raw_size (int regnum)
1652{
1653 if (regnum < ARM_F0_REGNUM)
1654 return INT_REGISTER_RAW_SIZE;
1655 else if (regnum < ARM_FPS_REGNUM)
1656 return FP_REGISTER_RAW_SIZE;
1657 else
1658 return STATUS_REGISTER_SIZE;
1659}
1660
1661/* Number of bytes of storage in a program's representation
1662 for register N. */
1663static int
1664arm_register_virtual_size (int regnum)
1665{
1666 if (regnum < ARM_F0_REGNUM)
1667 return INT_REGISTER_VIRTUAL_SIZE;
1668 else if (regnum < ARM_FPS_REGNUM)
1669 return FP_REGISTER_VIRTUAL_SIZE;
1670 else
1671 return STATUS_REGISTER_SIZE;
1672}
1673
26216b98
AC
1674/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1675static int
1676arm_register_sim_regno (int regnum)
1677{
1678 int reg = regnum;
1679 gdb_assert (reg >= 0 && reg < NUM_REGS);
1680
1681 if (reg < NUM_GREGS)
1682 return SIM_ARM_R0_REGNUM + reg;
1683 reg -= NUM_GREGS;
1684
1685 if (reg < NUM_FREGS)
1686 return SIM_ARM_FP0_REGNUM + reg;
1687 reg -= NUM_FREGS;
1688
1689 if (reg < NUM_SREGS)
1690 return SIM_ARM_FPS_REGNUM + reg;
1691 reg -= NUM_SREGS;
1692
1693 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1694}
34e8f22d 1695
a37b3cc0
AC
1696/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1697 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1698 It is thought that this is is the floating-point register format on
1699 little-endian systems. */
c906108c 1700
ed9a39eb
JM
1701static void
1702convert_from_extended (void *ptr, void *dbl)
c906108c 1703{
a37b3cc0 1704 DOUBLEST d;
d7449b42 1705 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1706 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1707 else
1708 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1709 ptr, &d);
1710 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
c906108c
SS
1711}
1712
34e8f22d 1713static void
ed9a39eb 1714convert_to_extended (void *dbl, void *ptr)
c906108c 1715{
a37b3cc0
AC
1716 DOUBLEST d;
1717 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
d7449b42 1718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1719 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1720 else
1721 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1722 &d, dbl);
c906108c 1723}
ed9a39eb 1724
c906108c 1725static int
ed9a39eb 1726condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1727{
1728 if (cond == INST_AL || cond == INST_NV)
1729 return 1;
1730
1731 switch (cond)
1732 {
1733 case INST_EQ:
1734 return ((status_reg & FLAG_Z) != 0);
1735 case INST_NE:
1736 return ((status_reg & FLAG_Z) == 0);
1737 case INST_CS:
1738 return ((status_reg & FLAG_C) != 0);
1739 case INST_CC:
1740 return ((status_reg & FLAG_C) == 0);
1741 case INST_MI:
1742 return ((status_reg & FLAG_N) != 0);
1743 case INST_PL:
1744 return ((status_reg & FLAG_N) == 0);
1745 case INST_VS:
1746 return ((status_reg & FLAG_V) != 0);
1747 case INST_VC:
1748 return ((status_reg & FLAG_V) == 0);
1749 case INST_HI:
1750 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1751 case INST_LS:
1752 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1753 case INST_GE:
1754 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1755 case INST_LT:
1756 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1757 case INST_GT:
1758 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1759 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1760 case INST_LE:
1761 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1762 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1763 }
1764 return 1;
1765}
1766
9512d7fd 1767/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1768#define submask(x) ((1L << ((x) + 1)) - 1)
1769#define bit(obj,st) (((obj) >> (st)) & 1)
1770#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1771#define sbits(obj,st,fn) \
1772 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1773#define BranchDest(addr,instr) \
1774 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1775#define ARM_PC_32 1
1776
1777static unsigned long
ed9a39eb
JM
1778shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1779 unsigned long status_reg)
c906108c
SS
1780{
1781 unsigned long res, shift;
1782 int rm = bits (inst, 0, 3);
1783 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1784
1785 if (bit (inst, 4))
c906108c
SS
1786 {
1787 int rs = bits (inst, 8, 11);
1788 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1789 }
1790 else
1791 shift = bits (inst, 7, 11);
c5aa993b
JM
1792
1793 res = (rm == 15
c906108c 1794 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1795 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1796 : read_register (rm));
1797
1798 switch (shifttype)
1799 {
c5aa993b 1800 case 0: /* LSL */
c906108c
SS
1801 res = shift >= 32 ? 0 : res << shift;
1802 break;
c5aa993b
JM
1803
1804 case 1: /* LSR */
c906108c
SS
1805 res = shift >= 32 ? 0 : res >> shift;
1806 break;
1807
c5aa993b
JM
1808 case 2: /* ASR */
1809 if (shift >= 32)
1810 shift = 31;
c906108c
SS
1811 res = ((res & 0x80000000L)
1812 ? ~((~res) >> shift) : res >> shift);
1813 break;
1814
c5aa993b 1815 case 3: /* ROR/RRX */
c906108c
SS
1816 shift &= 31;
1817 if (shift == 0)
1818 res = (res >> 1) | (carry ? 0x80000000L : 0);
1819 else
c5aa993b 1820 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1821 break;
1822 }
1823
1824 return res & 0xffffffff;
1825}
1826
c906108c
SS
1827/* Return number of 1-bits in VAL. */
1828
1829static int
ed9a39eb 1830bitcount (unsigned long val)
c906108c
SS
1831{
1832 int nbits;
1833 for (nbits = 0; val != 0; nbits++)
c5aa993b 1834 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1835 return nbits;
1836}
1837
34e8f22d 1838CORE_ADDR
ed9a39eb 1839thumb_get_next_pc (CORE_ADDR pc)
c906108c 1840{
c5aa993b 1841 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1842 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1843 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1844 unsigned long offset;
1845
1846 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1847 {
1848 CORE_ADDR sp;
1849
1850 /* Fetch the saved PC from the stack. It's stored above
1851 all of the other registers. */
1852 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1853 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1854 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1855 nextpc = ADDR_BITS_REMOVE (nextpc);
1856 if (nextpc == pc)
1857 error ("Infinite loop detected");
1858 }
1859 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1860 {
34e8f22d 1861 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1862 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1863 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1864 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1865 }
1866 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1867 {
1868 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1869 }
1870 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1871 {
1872 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1873 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1874 nextpc = pc_val + offset;
1875 }
1876
1877 return nextpc;
1878}
1879
34e8f22d 1880CORE_ADDR
ed9a39eb 1881arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1882{
1883 unsigned long pc_val;
1884 unsigned long this_instr;
1885 unsigned long status;
1886 CORE_ADDR nextpc;
1887
1888 if (arm_pc_is_thumb (pc))
1889 return thumb_get_next_pc (pc);
1890
1891 pc_val = (unsigned long) pc;
1892 this_instr = read_memory_integer (pc, 4);
34e8f22d 1893 status = read_register (ARM_PS_REGNUM);
c5aa993b 1894 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1895
1896 if (condition_true (bits (this_instr, 28, 31), status))
1897 {
1898 switch (bits (this_instr, 24, 27))
1899 {
c5aa993b 1900 case 0x0:
94c30b78 1901 case 0x1: /* data processing */
c5aa993b
JM
1902 case 0x2:
1903 case 0x3:
c906108c
SS
1904 {
1905 unsigned long operand1, operand2, result = 0;
1906 unsigned long rn;
1907 int c;
c5aa993b 1908
c906108c
SS
1909 if (bits (this_instr, 12, 15) != 15)
1910 break;
1911
1912 if (bits (this_instr, 22, 25) == 0
c5aa993b 1913 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1914 error ("Illegal update to pc in instruction");
1915
1916 /* Multiply into PC */
1917 c = (status & FLAG_C) ? 1 : 0;
1918 rn = bits (this_instr, 16, 19);
1919 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1920
c906108c
SS
1921 if (bit (this_instr, 25))
1922 {
1923 unsigned long immval = bits (this_instr, 0, 7);
1924 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1925 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1926 & 0xffffffff;
c906108c 1927 }
c5aa993b 1928 else /* operand 2 is a shifted register */
c906108c 1929 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1930
c906108c
SS
1931 switch (bits (this_instr, 21, 24))
1932 {
c5aa993b 1933 case 0x0: /*and */
c906108c
SS
1934 result = operand1 & operand2;
1935 break;
1936
c5aa993b 1937 case 0x1: /*eor */
c906108c
SS
1938 result = operand1 ^ operand2;
1939 break;
1940
c5aa993b 1941 case 0x2: /*sub */
c906108c
SS
1942 result = operand1 - operand2;
1943 break;
1944
c5aa993b 1945 case 0x3: /*rsb */
c906108c
SS
1946 result = operand2 - operand1;
1947 break;
1948
c5aa993b 1949 case 0x4: /*add */
c906108c
SS
1950 result = operand1 + operand2;
1951 break;
1952
c5aa993b 1953 case 0x5: /*adc */
c906108c
SS
1954 result = operand1 + operand2 + c;
1955 break;
1956
c5aa993b 1957 case 0x6: /*sbc */
c906108c
SS
1958 result = operand1 - operand2 + c;
1959 break;
1960
c5aa993b 1961 case 0x7: /*rsc */
c906108c
SS
1962 result = operand2 - operand1 + c;
1963 break;
1964
c5aa993b
JM
1965 case 0x8:
1966 case 0x9:
1967 case 0xa:
1968 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1969 result = (unsigned long) nextpc;
1970 break;
1971
c5aa993b 1972 case 0xc: /*orr */
c906108c
SS
1973 result = operand1 | operand2;
1974 break;
1975
c5aa993b 1976 case 0xd: /*mov */
c906108c
SS
1977 /* Always step into a function. */
1978 result = operand2;
c5aa993b 1979 break;
c906108c 1980
c5aa993b 1981 case 0xe: /*bic */
c906108c
SS
1982 result = operand1 & ~operand2;
1983 break;
1984
c5aa993b 1985 case 0xf: /*mvn */
c906108c
SS
1986 result = ~operand2;
1987 break;
1988 }
1989 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1990
1991 if (nextpc == pc)
1992 error ("Infinite loop detected");
1993 break;
1994 }
c5aa993b
JM
1995
1996 case 0x4:
1997 case 0x5: /* data transfer */
1998 case 0x6:
1999 case 0x7:
c906108c
SS
2000 if (bit (this_instr, 20))
2001 {
2002 /* load */
2003 if (bits (this_instr, 12, 15) == 15)
2004 {
2005 /* rd == pc */
c5aa993b 2006 unsigned long rn;
c906108c 2007 unsigned long base;
c5aa993b 2008
c906108c
SS
2009 if (bit (this_instr, 22))
2010 error ("Illegal update to pc in instruction");
2011
2012 /* byte write to PC */
2013 rn = bits (this_instr, 16, 19);
2014 base = (rn == 15) ? pc_val + 8 : read_register (rn);
2015 if (bit (this_instr, 24))
2016 {
2017 /* pre-indexed */
2018 int c = (status & FLAG_C) ? 1 : 0;
2019 unsigned long offset =
c5aa993b 2020 (bit (this_instr, 25)
ed9a39eb 2021 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 2022 : bits (this_instr, 0, 11));
c906108c
SS
2023
2024 if (bit (this_instr, 23))
2025 base += offset;
2026 else
2027 base -= offset;
2028 }
c5aa993b 2029 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 2030 4);
c5aa993b 2031
c906108c
SS
2032 nextpc = ADDR_BITS_REMOVE (nextpc);
2033
2034 if (nextpc == pc)
2035 error ("Infinite loop detected");
2036 }
2037 }
2038 break;
c5aa993b
JM
2039
2040 case 0x8:
2041 case 0x9: /* block transfer */
c906108c
SS
2042 if (bit (this_instr, 20))
2043 {
2044 /* LDM */
2045 if (bit (this_instr, 15))
2046 {
2047 /* loading pc */
2048 int offset = 0;
2049
2050 if (bit (this_instr, 23))
2051 {
2052 /* up */
2053 unsigned long reglist = bits (this_instr, 0, 14);
2054 offset = bitcount (reglist) * 4;
c5aa993b 2055 if (bit (this_instr, 24)) /* pre */
c906108c
SS
2056 offset += 4;
2057 }
2058 else if (bit (this_instr, 24))
2059 offset = -4;
c5aa993b 2060
c906108c 2061 {
c5aa993b
JM
2062 unsigned long rn_val =
2063 read_register (bits (this_instr, 16, 19));
c906108c
SS
2064 nextpc =
2065 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 2066 + offset),
c906108c
SS
2067 4);
2068 }
2069 nextpc = ADDR_BITS_REMOVE (nextpc);
2070 if (nextpc == pc)
2071 error ("Infinite loop detected");
2072 }
2073 }
2074 break;
c5aa993b
JM
2075
2076 case 0xb: /* branch & link */
2077 case 0xa: /* branch */
c906108c
SS
2078 {
2079 nextpc = BranchDest (pc, this_instr);
2080
2081 nextpc = ADDR_BITS_REMOVE (nextpc);
2082 if (nextpc == pc)
2083 error ("Infinite loop detected");
2084 break;
2085 }
c5aa993b
JM
2086
2087 case 0xc:
2088 case 0xd:
2089 case 0xe: /* coproc ops */
2090 case 0xf: /* SWI */
c906108c
SS
2091 break;
2092
2093 default:
97e03143 2094 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
2095 return (pc);
2096 }
2097 }
2098
2099 return nextpc;
2100}
2101
9512d7fd
FN
2102/* single_step() is called just before we want to resume the inferior,
2103 if we want to single-step it but there is no hardware or kernel
2104 single-step support. We find the target of the coming instruction
2105 and breakpoint it.
2106
94c30b78
MS
2107 single_step() is also called just after the inferior stops. If we
2108 had set up a simulated single-step, we undo our damage. */
9512d7fd 2109
34e8f22d
RE
2110static void
2111arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 2112{
b8d5e71d 2113 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
2114 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2115
2116 if (insert_bpt)
2117 {
34e8f22d 2118 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2119 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2120 }
2121 else
80fcf3f0 2122 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2123}
9512d7fd 2124
c906108c
SS
2125#include "bfd-in2.h"
2126#include "libcoff.h"
2127
2128static int
ed9a39eb 2129gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2130{
2131 if (arm_pc_is_thumb (memaddr))
2132 {
c5aa993b
JM
2133 static asymbol *asym;
2134 static combined_entry_type ce;
2135 static struct coff_symbol_struct csym;
2136 static struct _bfd fake_bfd;
2137 static bfd_target fake_target;
c906108c
SS
2138
2139 if (csym.native == NULL)
2140 {
da3c6d4a
MS
2141 /* Create a fake symbol vector containing a Thumb symbol.
2142 This is solely so that the code in print_insn_little_arm()
2143 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2144 the presence of a Thumb symbol and switch to decoding
2145 Thumb instructions. */
c5aa993b
JM
2146
2147 fake_target.flavour = bfd_target_coff_flavour;
2148 fake_bfd.xvec = &fake_target;
c906108c 2149 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2150 csym.native = &ce;
2151 csym.symbol.the_bfd = &fake_bfd;
2152 csym.symbol.name = "fake";
2153 asym = (asymbol *) & csym;
c906108c 2154 }
c5aa993b 2155
c906108c 2156 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2157 info->symbols = &asym;
c906108c
SS
2158 }
2159 else
2160 info->symbols = NULL;
c5aa993b 2161
d7449b42 2162 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2163 return print_insn_big_arm (memaddr, info);
2164 else
2165 return print_insn_little_arm (memaddr, info);
2166}
2167
66e810cd
RE
2168/* The following define instruction sequences that will cause ARM
2169 cpu's to take an undefined instruction trap. These are used to
2170 signal a breakpoint to GDB.
2171
2172 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2173 modes. A different instruction is required for each mode. The ARM
2174 cpu's can also be big or little endian. Thus four different
2175 instructions are needed to support all cases.
2176
2177 Note: ARMv4 defines several new instructions that will take the
2178 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2179 not in fact add the new instructions. The new undefined
2180 instructions in ARMv4 are all instructions that had no defined
2181 behaviour in earlier chips. There is no guarantee that they will
2182 raise an exception, but may be treated as NOP's. In practice, it
2183 may only safe to rely on instructions matching:
2184
2185 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2186 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2187 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2188
2189 Even this may only true if the condition predicate is true. The
2190 following use a condition predicate of ALWAYS so it is always TRUE.
2191
2192 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2193 and NetBSD all use a software interrupt rather than an undefined
2194 instruction to force a trap. This can be handled by by the
2195 abi-specific code during establishment of the gdbarch vector. */
2196
2197
d7b486e7
RE
2198/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2199 override these definitions. */
66e810cd
RE
2200#ifndef ARM_LE_BREAKPOINT
2201#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2202#endif
2203#ifndef ARM_BE_BREAKPOINT
2204#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2205#endif
2206#ifndef THUMB_LE_BREAKPOINT
2207#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2208#endif
2209#ifndef THUMB_BE_BREAKPOINT
2210#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2211#endif
2212
2213static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2214static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2215static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2216static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2217
34e8f22d
RE
2218/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2219 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2220 breakpoint should be used. It returns a pointer to a string of
2221 bytes that encode a breakpoint instruction, stores the length of
2222 the string to *lenptr, and adjusts the program counter (if
2223 necessary) to point to the actual memory location where the
c906108c
SS
2224 breakpoint should be inserted. */
2225
34e8f22d
RE
2226/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2227 breakpoints and storing their handles instread of what was in
2228 memory. It is nice that this is the same size as a handle -
94c30b78 2229 otherwise remote-rdp will have to change. */
34e8f22d 2230
ab89facf 2231static const unsigned char *
ed9a39eb 2232arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2233{
66e810cd
RE
2234 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2235
c906108c
SS
2236 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2237 {
66e810cd
RE
2238 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2239 *lenptr = tdep->thumb_breakpoint_size;
2240 return tdep->thumb_breakpoint;
c906108c
SS
2241 }
2242 else
2243 {
66e810cd
RE
2244 *lenptr = tdep->arm_breakpoint_size;
2245 return tdep->arm_breakpoint;
c906108c
SS
2246 }
2247}
ed9a39eb
JM
2248
2249/* Extract from an array REGBUF containing the (raw) register state a
2250 function return value of type TYPE, and copy that, in virtual
2251 format, into VALBUF. */
2252
34e8f22d 2253static void
ed9a39eb
JM
2254arm_extract_return_value (struct type *type,
2255 char regbuf[REGISTER_BYTES],
2256 char *valbuf)
2257{
2258 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7
RE
2259 {
2260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2261
2262 switch (tdep->fp_model)
2263 {
2264 case ARM_FLOAT_FPA:
2265 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)],
2266 valbuf);
2267 break;
2268
2269 case ARM_FLOAT_SOFT:
2270 case ARM_FLOAT_SOFT_VFP:
2271 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2272 TYPE_LENGTH (type));
2273 break;
2274
2275 default:
2276 internal_error
2277 (__FILE__, __LINE__,
2278 "arm_extract_return_value: Floating point model not supported");
2279 break;
2280 }
2281 }
ed9a39eb 2282 else
34e8f22d
RE
2283 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2284 TYPE_LENGTH (type));
2285}
2286
67255d04
RE
2287/* Extract from an array REGBUF containing the (raw) register state
2288 the address in which a function should return its structure value. */
2289
2290static CORE_ADDR
95f95911 2291arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2292{
95f95911
MS
2293 ULONGEST ret;
2294
2295 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2296 return ret;
67255d04
RE
2297}
2298
2299/* Will a function return an aggregate type in memory or in a
2300 register? Return 0 if an aggregate type can be returned in a
2301 register, 1 if it must be returned in memory. */
2302
2303static int
2304arm_use_struct_convention (int gcc_p, struct type *type)
2305{
2306 int nRc;
2307 register enum type_code code;
2308
2309 /* In the ARM ABI, "integer" like aggregate types are returned in
2310 registers. For an aggregate type to be integer like, its size
2311 must be less than or equal to REGISTER_SIZE and the offset of
2312 each addressable subfield must be zero. Note that bit fields are
2313 not addressable, and all addressable subfields of unions always
2314 start at offset zero.
2315
2316 This function is based on the behaviour of GCC 2.95.1.
2317 See: gcc/arm.c: arm_return_in_memory() for details.
2318
2319 Note: All versions of GCC before GCC 2.95.2 do not set up the
2320 parameters correctly for a function returning the following
2321 structure: struct { float f;}; This should be returned in memory,
2322 not a register. Richard Earnshaw sent me a patch, but I do not
2323 know of any way to detect if a function like the above has been
2324 compiled with the correct calling convention. */
2325
2326 /* All aggregate types that won't fit in a register must be returned
2327 in memory. */
2328 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2329 {
2330 return 1;
2331 }
2332
2333 /* The only aggregate types that can be returned in a register are
2334 structs and unions. Arrays must be returned in memory. */
2335 code = TYPE_CODE (type);
2336 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2337 {
2338 return 1;
2339 }
2340
2341 /* Assume all other aggregate types can be returned in a register.
2342 Run a check for structures, unions and arrays. */
2343 nRc = 0;
2344
2345 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2346 {
2347 int i;
2348 /* Need to check if this struct/union is "integer" like. For
2349 this to be true, its size must be less than or equal to
2350 REGISTER_SIZE and the offset of each addressable subfield
2351 must be zero. Note that bit fields are not addressable, and
2352 unions always start at offset zero. If any of the subfields
2353 is a floating point type, the struct/union cannot be an
2354 integer type. */
2355
2356 /* For each field in the object, check:
2357 1) Is it FP? --> yes, nRc = 1;
2358 2) Is it addressable (bitpos != 0) and
2359 not packed (bitsize == 0)?
2360 --> yes, nRc = 1
2361 */
2362
2363 for (i = 0; i < TYPE_NFIELDS (type); i++)
2364 {
2365 enum type_code field_type_code;
2366 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2367
2368 /* Is it a floating point type field? */
2369 if (field_type_code == TYPE_CODE_FLT)
2370 {
2371 nRc = 1;
2372 break;
2373 }
2374
2375 /* If bitpos != 0, then we have to care about it. */
2376 if (TYPE_FIELD_BITPOS (type, i) != 0)
2377 {
2378 /* Bitfields are not addressable. If the field bitsize is
2379 zero, then the field is not packed. Hence it cannot be
2380 a bitfield or any other packed type. */
2381 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2382 {
2383 nRc = 1;
2384 break;
2385 }
2386 }
2387 }
2388 }
2389
2390 return nRc;
2391}
2392
34e8f22d
RE
2393/* Write into appropriate registers a function return value of type
2394 TYPE, given in virtual format. */
2395
2396static void
2397arm_store_return_value (struct type *type, char *valbuf)
2398{
2399 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2400 {
08216dd7 2401 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7bbcf283 2402 char buf[ARM_MAX_REGISTER_RAW_SIZE];
34e8f22d 2403
08216dd7
RE
2404 switch (tdep->fp_model)
2405 {
2406 case ARM_FLOAT_FPA:
2407
2408 convert_to_extended (valbuf, buf);
73937e03
AC
2409 deprecated_write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2410 FP_REGISTER_RAW_SIZE);
08216dd7
RE
2411 break;
2412
2413 case ARM_FLOAT_SOFT:
2414 case ARM_FLOAT_SOFT_VFP:
73937e03
AC
2415 deprecated_write_register_bytes (ARM_A1_REGNUM, valbuf,
2416 TYPE_LENGTH (type));
08216dd7
RE
2417 break;
2418
2419 default:
2420 internal_error
2421 (__FILE__, __LINE__,
2422 "arm_store_return_value: Floating point model not supported");
2423 break;
2424 }
34e8f22d
RE
2425 }
2426 else
73937e03
AC
2427 deprecated_write_register_bytes (ARM_A1_REGNUM, valbuf,
2428 TYPE_LENGTH (type));
34e8f22d
RE
2429}
2430
2431/* Store the address of the place in which to copy the structure the
94c30b78 2432 subroutine will return. This is called from call_function. */
34e8f22d
RE
2433
2434static void
2435arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2436{
2437 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2438}
2439
9df628e0
RE
2440static int
2441arm_get_longjmp_target (CORE_ADDR *pc)
2442{
2443 CORE_ADDR jb_addr;
2444 char buf[INT_REGISTER_RAW_SIZE];
2445 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2446
2447 jb_addr = read_register (ARM_A1_REGNUM);
2448
2449 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2450 INT_REGISTER_RAW_SIZE))
2451 return 0;
2452
2453 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2454 return 1;
2455}
2456
ed9a39eb 2457/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2458
2459int
ed9a39eb 2460arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2461{
2462 CORE_ADDR start_addr;
2463
ed9a39eb
JM
2464 /* Find the starting address of the function containing the PC. If
2465 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2466 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2467 &start_addr, NULL))
c906108c
SS
2468 return 0;
2469
2470 return strncmp (name, "_call_via_r", 11) == 0;
2471}
2472
ed9a39eb
JM
2473/* If PC is in a Thumb call or return stub, return the address of the
2474 target PC, which is in a register. The thunk functions are called
2475 _called_via_xx, where x is the register name. The possible names
2476 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2477
2478CORE_ADDR
ed9a39eb 2479arm_skip_stub (CORE_ADDR pc)
c906108c 2480{
c5aa993b 2481 char *name;
c906108c
SS
2482 CORE_ADDR start_addr;
2483
2484 /* Find the starting address and name of the function containing the PC. */
2485 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2486 return 0;
2487
2488 /* Call thunks always start with "_call_via_". */
2489 if (strncmp (name, "_call_via_", 10) == 0)
2490 {
ed9a39eb
JM
2491 /* Use the name suffix to determine which register contains the
2492 target PC. */
c5aa993b
JM
2493 static char *table[15] =
2494 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2495 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2496 };
c906108c
SS
2497 int regno;
2498
2499 for (regno = 0; regno <= 14; regno++)
2500 if (strcmp (&name[10], table[regno]) == 0)
2501 return read_register (regno);
2502 }
ed9a39eb 2503
c5aa993b 2504 return 0; /* not a stub */
c906108c
SS
2505}
2506
da3c6d4a
MS
2507/* If the user changes the register disassembly flavor used for info
2508 register and other commands, we have to also switch the flavor used
2509 in opcodes for disassembly output. This function is run in the set
94c30b78 2510 disassembly_flavor command, and does that. */
bc90b915
FN
2511
2512static void
2513set_disassembly_flavor_sfunc (char *args, int from_tty,
2514 struct cmd_list_element *c)
2515{
2516 set_disassembly_flavor ();
2517}
2518\f
966fbf70 2519/* Return the ARM register name corresponding to register I. */
a208b0cb 2520static const char *
34e8f22d 2521arm_register_name (int i)
966fbf70
RE
2522{
2523 return arm_register_names[i];
2524}
2525
bc90b915
FN
2526static void
2527set_disassembly_flavor (void)
2528{
2529 const char *setname, *setdesc, **regnames;
2530 int numregs, j;
2531
94c30b78 2532 /* Find the flavor that the user wants in the opcodes table. */
bc90b915
FN
2533 int current = 0;
2534 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2535 while ((disassembly_flavor != setname)
2536 && (current < num_flavor_options))
2537 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2538 current_option = current;
2539
94c30b78 2540 /* Fill our copy. */
bc90b915
FN
2541 for (j = 0; j < numregs; j++)
2542 arm_register_names[j] = (char *) regnames[j];
2543
94c30b78 2544 /* Adjust case. */
34e8f22d 2545 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2546 {
34e8f22d
RE
2547 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2548 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2549 }
2550 else
2551 {
34e8f22d
RE
2552 arm_register_names[ARM_FPS_REGNUM] = "fps";
2553 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2554 }
2555
94c30b78 2556 /* Synchronize the disassembler. */
bc90b915
FN
2557 set_arm_regname_option (current);
2558}
2559
2560/* arm_othernames implements the "othernames" command. This is kind
2561 of hacky, and I prefer the set-show disassembly-flavor which is
2562 also used for the x86 gdb. I will keep this around, however, in
94c30b78 2563 case anyone is actually using it. */
bc90b915
FN
2564
2565static void
2566arm_othernames (char *names, int n)
2567{
94c30b78 2568 /* Circle through the various flavors. */
bc90b915
FN
2569 current_option = (current_option + 1) % num_flavor_options;
2570
2571 disassembly_flavor = valid_flavors[current_option];
94c30b78 2572 set_disassembly_flavor ();
bc90b915
FN
2573}
2574
a42dd537
KB
2575/* Fetch, and possibly build, an appropriate link_map_offsets structure
2576 for ARM linux targets using the struct offsets defined in <link.h>.
2577 Note, however, that link.h is not actually referred to in this file.
2578 Instead, the relevant structs offsets were obtained from examining
2579 link.h. (We can't refer to link.h from this file because the host
2580 system won't necessarily have it, or if it does, the structs which
94c30b78 2581 it defines will refer to the host system, not the target). */
a42dd537
KB
2582
2583struct link_map_offsets *
2584arm_linux_svr4_fetch_link_map_offsets (void)
2585{
2586 static struct link_map_offsets lmo;
2587 static struct link_map_offsets *lmp = 0;
2588
2589 if (lmp == 0)
2590 {
2591 lmp = &lmo;
2592
2593 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
94c30b78 2594 need. */
a42dd537
KB
2595
2596 lmo.r_map_offset = 4;
2597 lmo.r_map_size = 4;
2598
2599 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
94c30b78 2600 need. */
a42dd537
KB
2601
2602 lmo.l_addr_offset = 0;
2603 lmo.l_addr_size = 4;
2604
2605 lmo.l_name_offset = 4;
2606 lmo.l_name_size = 4;
2607
2608 lmo.l_next_offset = 12;
2609 lmo.l_next_size = 4;
2610
2611 lmo.l_prev_offset = 16;
2612 lmo.l_prev_size = 4;
2613 }
2614
2615 return lmp;
2616}
2617
082fc60d
RE
2618/* Test whether the coff symbol specific value corresponds to a Thumb
2619 function. */
2620
2621static int
2622coff_sym_is_thumb (int val)
2623{
2624 return (val == C_THUMBEXT ||
2625 val == C_THUMBSTAT ||
2626 val == C_THUMBEXTFUNC ||
2627 val == C_THUMBSTATFUNC ||
2628 val == C_THUMBLABEL);
2629}
2630
2631/* arm_coff_make_msymbol_special()
2632 arm_elf_make_msymbol_special()
2633
2634 These functions test whether the COFF or ELF symbol corresponds to
2635 an address in thumb code, and set a "special" bit in a minimal
2636 symbol to indicate that it does. */
2637
34e8f22d 2638static void
082fc60d
RE
2639arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2640{
2641 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2642 STT_ARM_TFUNC). */
2643 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2644 == STT_LOPROC)
2645 MSYMBOL_SET_SPECIAL (msym);
2646}
2647
34e8f22d 2648static void
082fc60d
RE
2649arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2650{
2651 if (coff_sym_is_thumb (val))
2652 MSYMBOL_SET_SPECIAL (msym);
2653}
2654
97e03143 2655\f
70f80edf
JT
2656static enum gdb_osabi
2657arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2658{
70f80edf
JT
2659 unsigned int elfosabi, eflags;
2660 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2661
70f80edf 2662 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2663
70f80edf 2664 switch (elfosabi)
97e03143 2665 {
70f80edf
JT
2666 case ELFOSABI_NONE:
2667 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2668 file are conforming to the base specification for that machine
2669 (there are no OS-specific extensions). In order to determine the
2670 real OS in use we must look for OS notes that have been added. */
2671 bfd_map_over_sections (abfd,
2672 generic_elf_osabi_sniff_abi_tag_sections,
2673 &osabi);
2674 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2675 {
70f80edf
JT
2676 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2677 field for more information. */
2678 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2679 switch (eflags)
97e03143 2680 {
70f80edf
JT
2681 case EF_ARM_EABI_VER1:
2682 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2683 break;
2684
70f80edf
JT
2685 case EF_ARM_EABI_VER2:
2686 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2687 break;
2688
70f80edf
JT
2689 case EF_ARM_EABI_UNKNOWN:
2690 /* Assume GNU tools. */
2691 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2692 break;
2693
70f80edf
JT
2694 default:
2695 internal_error (__FILE__, __LINE__,
2696 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2697 "version 0x%x", eflags);
97e03143
RE
2698 }
2699 }
70f80edf 2700 break;
97e03143 2701
70f80edf
JT
2702 case ELFOSABI_ARM:
2703 /* GNU tools use this value. Check note sections in this case,
2704 as well. */
97e03143 2705 bfd_map_over_sections (abfd,
70f80edf
JT
2706 generic_elf_osabi_sniff_abi_tag_sections,
2707 &osabi);
2708 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2709 {
70f80edf
JT
2710 /* Assume APCS ABI. */
2711 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2712 }
2713 break;
2714
97e03143 2715 case ELFOSABI_FREEBSD:
70f80edf
JT
2716 osabi = GDB_OSABI_FREEBSD_ELF;
2717 break;
97e03143 2718
70f80edf
JT
2719 case ELFOSABI_NETBSD:
2720 osabi = GDB_OSABI_NETBSD_ELF;
2721 break;
97e03143 2722
70f80edf
JT
2723 case ELFOSABI_LINUX:
2724 osabi = GDB_OSABI_LINUX;
2725 break;
97e03143
RE
2726 }
2727
70f80edf 2728 return osabi;
97e03143
RE
2729}
2730
70f80edf 2731\f
da3c6d4a
MS
2732/* Initialize the current architecture based on INFO. If possible,
2733 re-use an architecture from ARCHES, which is a list of
2734 architectures already created during this debugging session.
97e03143 2735
da3c6d4a
MS
2736 Called e.g. at program startup, when reading a core file, and when
2737 reading a binary file. */
97e03143 2738
39bbf761
RE
2739static struct gdbarch *
2740arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2741{
97e03143 2742 struct gdbarch_tdep *tdep;
39bbf761 2743 struct gdbarch *gdbarch;
70f80edf 2744 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
39bbf761 2745
97e03143 2746 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2747
97e03143
RE
2748 if (info.abfd != NULL)
2749 {
70f80edf
JT
2750 osabi = gdbarch_lookup_osabi (info.abfd);
2751 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2752 {
70f80edf
JT
2753 switch (bfd_get_flavour (info.abfd))
2754 {
2755 case bfd_target_aout_flavour:
2756 /* Assume it's an old APCS-style ABI. */
2757 osabi = GDB_OSABI_ARM_APCS;
2758 break;
97e03143 2759
70f80edf
JT
2760 case bfd_target_coff_flavour:
2761 /* Assume it's an old APCS-style ABI. */
2762 /* XXX WinCE? */
2763 osabi = GDB_OSABI_ARM_APCS;
2764 break;
97e03143 2765
70f80edf
JT
2766 default:
2767 /* Leave it as "unknown". */
2768 }
97e03143
RE
2769 }
2770 }
2771
d7afb4c9 2772 /* Find a candidate among extant architectures. */
97e03143
RE
2773 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2774 arches != NULL;
2775 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2776 {
2777 /* Make sure the ABI selection matches. */
2778 tdep = gdbarch_tdep (arches->gdbarch);
70f80edf 2779 if (tdep && tdep->osabi == osabi)
97e03143
RE
2780 return arches->gdbarch;
2781 }
2782
2783 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2784 gdbarch = gdbarch_alloc (&info, tdep);
2785
70f80edf 2786 tdep->osabi = osabi;
39bbf761 2787
08216dd7
RE
2788 /* This is the way it has always defaulted. */
2789 tdep->fp_model = ARM_FLOAT_FPA;
2790
2791 /* Breakpoints. */
67255d04
RE
2792 switch (info.byte_order)
2793 {
2794 case BFD_ENDIAN_BIG:
66e810cd
RE
2795 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2796 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2797 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2798 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2799
67255d04
RE
2800 break;
2801
2802 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2803 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2804 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2805 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2806 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2807
67255d04
RE
2808 break;
2809
2810 default:
2811 internal_error (__FILE__, __LINE__,
2812 "arm_gdbarch_init: bad byte order for float format");
2813 }
2814
d7b486e7
RE
2815 /* On ARM targets char defaults to unsigned. */
2816 set_gdbarch_char_signed (gdbarch, 0);
2817
9df628e0 2818 /* This should be low enough for everything. */
97e03143 2819 tdep->lowest_pc = 0x20;
94c30b78 2820 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2821
848cfffb
AC
2822 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2823 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2824
2825 set_gdbarch_call_dummy_p (gdbarch, 1);
2826 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2827
2828 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2829 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2830 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2831 set_gdbarch_call_dummy_length (gdbarch, 0);
2832
2833 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
848cfffb
AC
2834
2835 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2836 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
39bbf761 2837
39bbf761 2838 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
d7afb4c9
RE
2839 set_gdbarch_coerce_float_to_double (gdbarch,
2840 standard_coerce_float_to_double);
39bbf761 2841
148754e5 2842 /* Frame handling. */
39bbf761 2843 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
148754e5
RE
2844 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2845 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2846 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2847 set_gdbarch_frameless_function_invocation
2848 (gdbarch, arm_frameless_function_invocation);
2849 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2850 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2851 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2852 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2853 set_gdbarch_frame_args_skip (gdbarch, 0);
2854 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
848cfffb 2855 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
148754e5
RE
2856 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2857
34e8f22d
RE
2858 /* Address manipulation. */
2859 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2860 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2861
2862 /* Offset from address of function to start of its code. */
2863 set_gdbarch_function_start_offset (gdbarch, 0);
2864
2865 /* Advance PC across function entry code. */
2866 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2867
2868 /* Get the PC when a frame might not be available. */
2869 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2870
2871 /* The stack grows downward. */
2872 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2873
2874 /* Breakpoint manipulation. */
2875 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2876 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2877
2878 /* Information about registers, etc. */
2879 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
94c30b78 2880 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2881 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2882 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2883 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2884 set_gdbarch_register_bytes (gdbarch,
2885 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2886 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2887 + NUM_SREGS * STATUS_REGISTER_SIZE));
2888 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2889 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2890 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2891 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2892 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2893 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2894
26216b98
AC
2895 /* Internal <-> external register number maps. */
2896 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2897
34e8f22d
RE
2898 /* Integer registers are 4 bytes. */
2899 set_gdbarch_register_size (gdbarch, 4);
2900 set_gdbarch_register_name (gdbarch, arm_register_name);
2901
2902 /* Returning results. */
26e9b323 2903 set_gdbarch_deprecated_extract_return_value (gdbarch, arm_extract_return_value);
ebba8386 2904 set_gdbarch_deprecated_store_return_value (gdbarch, arm_store_return_value);
34e8f22d 2905 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04 2906 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
95f95911 2907 set_gdbarch_extract_struct_value_address (gdbarch,
67255d04 2908 arm_extract_struct_value_address);
34e8f22d
RE
2909
2910 /* Single stepping. */
2911 /* XXX For an RDI target we should ask the target if it can single-step. */
2912 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2913
2914 /* Minsymbol frobbing. */
2915 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2916 set_gdbarch_coff_make_msymbol_special (gdbarch,
2917 arm_coff_make_msymbol_special);
2918
97e03143 2919 /* Hook in the ABI-specific overrides, if they have been registered. */
70f80edf 2920 gdbarch_init_osabi (info, gdbarch, osabi);
97e03143
RE
2921
2922 /* Now we have tuned the configuration, set a few final things,
2923 based on what the OS ABI has told us. */
2924
9df628e0
RE
2925 if (tdep->jb_pc >= 0)
2926 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2927
08216dd7
RE
2928 /* Floating point sizes and format. */
2929 switch (info.byte_order)
2930 {
2931 case BFD_ENDIAN_BIG:
2932 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2933 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2934 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2935
2936 break;
2937
2938 case BFD_ENDIAN_LITTLE:
2939 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2940 if (tdep->fp_model == ARM_FLOAT_VFP
2941 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
2942 {
2943 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2944 set_gdbarch_long_double_format (gdbarch,
2945 &floatformat_ieee_double_little);
2946 }
2947 else
2948 {
2949 set_gdbarch_double_format
2950 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2951 set_gdbarch_long_double_format
2952 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2953 }
2954 break;
2955
2956 default:
2957 internal_error (__FILE__, __LINE__,
2958 "arm_gdbarch_init: bad byte order for float format");
2959 }
2960
97e03143 2961 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
2962 references the old architecture vector, not the one we are
2963 building here. */
2964 if (prologue_cache.saved_regs != NULL)
2965 xfree (prologue_cache.saved_regs);
2966
a0abec03
AC
2967 /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
2968 references the old architecture vector, not the one we are
2969 building here. */
34e8f22d
RE
2970 prologue_cache.saved_regs = (CORE_ADDR *)
2971 xcalloc (1, (sizeof (CORE_ADDR)
29673b29
AC
2972 * (gdbarch_num_regs (gdbarch)
2973 + gdbarch_num_pseudo_regs (gdbarch))));
39bbf761
RE
2974
2975 return gdbarch;
2976}
2977
97e03143
RE
2978static void
2979arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2980{
2981 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2982
2983 if (tdep == NULL)
2984 return;
2985
70f80edf
JT
2986 fprintf_unfiltered (file, "arm_dump_tdep: OS ABI = %s\n",
2987 gdbarch_osabi_name (tdep->osabi));
97e03143
RE
2988
2989 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2990 (unsigned long) tdep->lowest_pc);
2991}
2992
2993static void
2994arm_init_abi_eabi_v1 (struct gdbarch_info info,
2995 struct gdbarch *gdbarch)
2996{
2997 /* Place-holder. */
2998}
2999
3000static void
3001arm_init_abi_eabi_v2 (struct gdbarch_info info,
3002 struct gdbarch *gdbarch)
3003{
3004 /* Place-holder. */
3005}
3006
3007static void
3008arm_init_abi_apcs (struct gdbarch_info info,
3009 struct gdbarch *gdbarch)
3010{
3011 /* Place-holder. */
3012}
3013
c906108c 3014void
ed9a39eb 3015_initialize_arm_tdep (void)
c906108c 3016{
bc90b915
FN
3017 struct ui_file *stb;
3018 long length;
96baa820 3019 struct cmd_list_element *new_cmd;
53904c9e
AC
3020 const char *setname;
3021 const char *setdesc;
3022 const char **regnames;
bc90b915
FN
3023 int numregs, i, j;
3024 static char *helptext;
085dd6e6 3025
39bbf761 3026 if (GDB_MULTI_ARCH)
97e03143
RE
3027 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3028
70f80edf
JT
3029 /* Register an ELF OS ABI sniffer for ARM binaries. */
3030 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3031 bfd_target_elf_flavour,
3032 arm_elf_osabi_sniffer);
3033
97e03143 3034 /* Register some ABI variants for embedded systems. */
70f80edf
JT
3035 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_EABI_V1,
3036 arm_init_abi_eabi_v1);
3037 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_EABI_V2,
3038 arm_init_abi_eabi_v2);
3039 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_APCS,
3040 arm_init_abi_apcs);
39bbf761 3041
c906108c 3042 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 3043
94c30b78 3044 /* Get the number of possible sets of register names defined in opcodes. */
bc90b915
FN
3045 num_flavor_options = get_arm_regname_num_options ();
3046
94c30b78 3047 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3048 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3049
94c30b78 3050 /* Begin creating the help text. */
bc90b915
FN
3051 stb = mem_fileopen ();
3052 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3053The valid values are:\n");
ed9a39eb 3054
94c30b78 3055 /* Initialize the array that will be passed to add_set_enum_cmd(). */
bc90b915
FN
3056 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3057 for (i = 0; i < num_flavor_options; i++)
3058 {
3059 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 3060 valid_flavors[i] = setname;
bc90b915
FN
3061 fprintf_unfiltered (stb, "%s - %s\n", setname,
3062 setdesc);
94c30b78 3063 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
3064 if (!strcmp (setname, "std"))
3065 {
53904c9e 3066 disassembly_flavor = setname;
bc90b915
FN
3067 current_option = i;
3068 for (j = 0; j < numregs; j++)
3069 arm_register_names[j] = (char *) regnames[j];
3070 set_arm_regname_option (i);
3071 }
3072 }
94c30b78 3073 /* Mark the end of valid options. */
bc90b915 3074 valid_flavors[num_flavor_options] = NULL;
c906108c 3075
94c30b78 3076 /* Finish the creation of the help text. */
bc90b915
FN
3077 fprintf_unfiltered (stb, "The default is \"std\".");
3078 helptext = ui_file_xstrdup (stb, &length);
3079 ui_file_delete (stb);
ed9a39eb 3080
94c30b78 3081 /* Add the disassembly-flavor command. */
96baa820 3082 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 3083 valid_flavors,
1ed2a135 3084 &disassembly_flavor,
bc90b915 3085 helptext,
ed9a39eb 3086 &setlist);
9f60d481 3087 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
3088 add_show_from_set (new_cmd, &showlist);
3089
c906108c
SS
3090 /* ??? Maybe this should be a boolean. */
3091 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 3092 var_zinteger, (char *) &arm_apcs_32,
96baa820 3093 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 3094 &showlist);
c906108c 3095
94c30b78 3096 /* Add the deprecated "othernames" command. */
bc90b915
FN
3097
3098 add_com ("othernames", class_obscure, arm_othernames,
3099 "Switch to the next set of register names.");
c3b4394c
RE
3100
3101 /* Fill in the prologue_cache fields. */
34e8f22d 3102 prologue_cache.saved_regs = NULL;
c3b4394c
RE
3103 prologue_cache.extra_info = (struct frame_extra_info *)
3104 xcalloc (1, sizeof (struct frame_extra_info));
6529d2dd
AC
3105
3106 /* Debugging flag. */
3107 add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
3108 &arm_debug, "Set arm debugging.\n\
3109When non-zero, arm specific debugging is enabled.", &setdebuglist),
3110 &showdebuglist);
c906108c 3111}
This page took 0.410348 seconds and 4 git commands to generate.