Commit | Line | Data |
---|---|---|
8818c391 | 1 | /* Target-dependent code for Atmel AVR, for GDB. |
0fd88904 | 2 | |
28e7fd62 | 3 | Copyright (C) 1996-2013 Free Software Foundation, Inc. |
8818c391 TR |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
8818c391 TR |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8818c391 | 19 | |
de18ac1f | 20 | /* Contributed by Theodore A. Roth, troth@openavr.org */ |
8818c391 TR |
21 | |
22 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
23 | by Denis Chertykov, denisc@overta.ru */ | |
24 | ||
25 | #include "defs.h" | |
4add8633 TR |
26 | #include "frame.h" |
27 | #include "frame-unwind.h" | |
28 | #include "frame-base.h" | |
29 | #include "trad-frame.h" | |
8818c391 TR |
30 | #include "gdbcmd.h" |
31 | #include "gdbcore.h" | |
e6bb342a | 32 | #include "gdbtypes.h" |
8818c391 TR |
33 | #include "inferior.h" |
34 | #include "symfile.h" | |
35 | #include "arch-utils.h" | |
36 | #include "regcache.h" | |
5f8a3188 | 37 | #include "gdb_string.h" |
a89aa300 | 38 | #include "dis-asm.h" |
8818c391 TR |
39 | |
40 | /* AVR Background: | |
41 | ||
42 | (AVR micros are pure Harvard Architecture processors.) | |
43 | ||
44 | The AVR family of microcontrollers have three distinctly different memory | |
0963b4bd MS |
45 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for |
46 | the most part to store program instructions. The sram is 8 bits wide and is | |
47 | used for the stack and the heap. Some devices lack sram and some can have | |
8818c391 TR |
48 | an additional external sram added on as a peripheral. |
49 | ||
50 | The eeprom is 8 bits wide and is used to store data when the device is | |
0963b4bd MS |
51 | powered down. Eeprom is not directly accessible, it can only be accessed |
52 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
8818c391 TR |
53 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is |
54 | not included at this time. | |
55 | ||
56 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
57 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
58 | work, the remote target must be able to handle eeprom accesses and perform | |
59 | the address translation.] | |
60 | ||
0963b4bd | 61 | All three memory spaces have physical addresses beginning at 0x0. In |
8818c391 TR |
62 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit |
63 | bytes instead of the 16 bit wide words used by the real device for the | |
64 | Program Counter. | |
65 | ||
66 | In order for remote targets to work correctly, extra bits must be added to | |
67 | addresses before they are send to the target or received from the target | |
0963b4bd MS |
68 | via the remote serial protocol. The extra bits are the MSBs and are used to |
69 | decode which memory space the address is referring to. */ | |
8818c391 TR |
70 | |
71 | #undef XMALLOC | |
72 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
73 | ||
8818c391 TR |
74 | /* Constants: prefixed with AVR_ to avoid name space clashes */ |
75 | ||
76 | enum | |
2e5ff58c TR |
77 | { |
78 | AVR_REG_W = 24, | |
79 | AVR_REG_X = 26, | |
80 | AVR_REG_Y = 28, | |
81 | AVR_FP_REGNUM = 28, | |
82 | AVR_REG_Z = 30, | |
83 | ||
84 | AVR_SREG_REGNUM = 32, | |
85 | AVR_SP_REGNUM = 33, | |
86 | AVR_PC_REGNUM = 34, | |
87 | ||
88 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
89 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
90 | ||
7d2552b4 TG |
91 | /* Pseudo registers. */ |
92 | AVR_PSEUDO_PC_REGNUM = 35, | |
93 | AVR_NUM_PSEUDO_REGS = 1, | |
94 | ||
2e5ff58c TR |
95 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ |
96 | ||
4add8633 | 97 | AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ |
2e5ff58c | 98 | |
0963b4bd | 99 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ |
2e5ff58c TR |
100 | AVR_MAX_PUSHES = 18, |
101 | ||
0963b4bd | 102 | /* Number of the last pushed register. r17 for current avr-gcc */ |
2e5ff58c TR |
103 | AVR_LAST_PUSHED_REGNUM = 17, |
104 | ||
4add8633 TR |
105 | AVR_ARG1_REGNUM = 24, /* Single byte argument */ |
106 | AVR_ARGN_REGNUM = 25, /* Multi byte argments */ | |
107 | ||
108 | AVR_RET1_REGNUM = 24, /* Single byte return value */ | |
109 | AVR_RETN_REGNUM = 25, /* Multi byte return value */ | |
110 | ||
2e5ff58c | 111 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 |
0963b4bd | 112 | bits? Do these have to match the bfd vma values? It sure would make |
2e5ff58c TR |
113 | things easier in the future if they didn't need to match. |
114 | ||
115 | Note: I chose these values so as to be consistent with bfd vma | |
116 | addresses. | |
117 | ||
118 | TRoth/2002-04-08: There is already a conflict with very large programs | |
0963b4bd | 119 | in the mega128. The mega128 has 128K instruction bytes (64K words), |
2e5ff58c TR |
120 | thus the Most Significant Bit is 0x10000 which gets masked off my |
121 | AVR_MEM_MASK. | |
122 | ||
123 | The problem manifests itself when trying to set a breakpoint in a | |
124 | function which resides in the upper half of the instruction space and | |
125 | thus requires a 17-bit address. | |
126 | ||
127 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
0963b4bd | 128 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, |
2e5ff58c TR |
129 | but could be for some remote targets by just adding the correct offset |
130 | to the address and letting the remote target handle the low-level | |
0963b4bd | 131 | details of actually accessing the eeprom. */ |
2e5ff58c TR |
132 | |
133 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
134 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 135 | #if 1 |
2e5ff58c TR |
136 | /* No eeprom mask defined */ |
137 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 138 | #else |
2e5ff58c TR |
139 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
140 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 141 | #endif |
2e5ff58c | 142 | }; |
8818c391 | 143 | |
4add8633 TR |
144 | /* Prologue types: |
145 | ||
146 | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | |
147 | causes the generation of the CALL type prologues). */ | |
148 | ||
149 | enum { | |
150 | AVR_PROLOGUE_NONE, /* No prologue */ | |
151 | AVR_PROLOGUE_NORMAL, | |
152 | AVR_PROLOGUE_CALL, /* -mcall-prologues */ | |
153 | AVR_PROLOGUE_MAIN, | |
154 | AVR_PROLOGUE_INTR, /* interrupt handler */ | |
155 | AVR_PROLOGUE_SIG, /* signal handler */ | |
156 | }; | |
157 | ||
8818c391 TR |
158 | /* Any function with a frame looks like this |
159 | ....... <-SP POINTS HERE | |
160 | LOCALS1 <-FP POINTS HERE | |
161 | LOCALS0 | |
162 | SAVED FP | |
163 | SAVED R3 | |
164 | SAVED R2 | |
165 | RET PC | |
166 | FIRST ARG | |
167 | SECOND ARG */ | |
168 | ||
4add8633 | 169 | struct avr_unwind_cache |
2e5ff58c | 170 | { |
4add8633 TR |
171 | /* The previous frame's inner most stack address. Used as this |
172 | frame ID's stack_addr. */ | |
173 | CORE_ADDR prev_sp; | |
174 | /* The frame's base, optionally used by the high-level debug info. */ | |
175 | CORE_ADDR base; | |
176 | int size; | |
177 | int prologue_type; | |
178 | /* Table indicating the location of each and every register. */ | |
179 | struct trad_frame_saved_reg *saved_regs; | |
2e5ff58c | 180 | }; |
8818c391 TR |
181 | |
182 | struct gdbarch_tdep | |
2e5ff58c | 183 | { |
4e99ad69 TG |
184 | /* Number of bytes stored to the stack by call instructions. |
185 | 2 bytes for avr1-5, 3 bytes for avr6. */ | |
186 | int call_length; | |
7d2552b4 TG |
187 | |
188 | /* Type for void. */ | |
189 | struct type *void_type; | |
190 | /* Type for a function returning void. */ | |
191 | struct type *func_void_type; | |
192 | /* Type for a pointer to a function. Used for the type of PC. */ | |
193 | struct type *pc_type; | |
2e5ff58c | 194 | }; |
8818c391 | 195 | |
0963b4bd | 196 | /* Lookup the name of a register given it's number. */ |
8818c391 | 197 | |
fa88f677 | 198 | static const char * |
d93859e2 | 199 | avr_register_name (struct gdbarch *gdbarch, int regnum) |
8818c391 | 200 | { |
4e99ad69 | 201 | static const char * const register_names[] = { |
2e5ff58c TR |
202 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
203 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
204 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
205 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
7d2552b4 TG |
206 | "SREG", "SP", "PC2", |
207 | "pc" | |
8818c391 TR |
208 | }; |
209 | if (regnum < 0) | |
210 | return NULL; | |
211 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
212 | return NULL; | |
213 | return register_names[regnum]; | |
214 | } | |
215 | ||
8818c391 TR |
216 | /* Return the GDB type object for the "standard" data type |
217 | of data in register N. */ | |
218 | ||
219 | static struct type * | |
866b76ea | 220 | avr_register_type (struct gdbarch *gdbarch, int reg_nr) |
8818c391 | 221 | { |
866b76ea | 222 | if (reg_nr == AVR_PC_REGNUM) |
df4df182 | 223 | return builtin_type (gdbarch)->builtin_uint32; |
7d2552b4 TG |
224 | if (reg_nr == AVR_PSEUDO_PC_REGNUM) |
225 | return gdbarch_tdep (gdbarch)->pc_type; | |
866b76ea | 226 | if (reg_nr == AVR_SP_REGNUM) |
0dfff4cb | 227 | return builtin_type (gdbarch)->builtin_data_ptr; |
7d2552b4 | 228 | return builtin_type (gdbarch)->builtin_uint8; |
8818c391 TR |
229 | } |
230 | ||
0963b4bd | 231 | /* Instruction address checks and convertions. */ |
8818c391 TR |
232 | |
233 | static CORE_ADDR | |
234 | avr_make_iaddr (CORE_ADDR x) | |
235 | { | |
236 | return ((x) | AVR_IMEM_START); | |
237 | } | |
238 | ||
0963b4bd | 239 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some |
8818c391 TR |
240 | devices are already up to 128KBytes of flash space. |
241 | ||
0963b4bd | 242 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ |
8818c391 TR |
243 | |
244 | static CORE_ADDR | |
245 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
246 | { | |
247 | return ((x) & 0xffffffff); | |
248 | } | |
249 | ||
0963b4bd | 250 | /* SRAM address checks and convertions. */ |
8818c391 TR |
251 | |
252 | static CORE_ADDR | |
253 | avr_make_saddr (CORE_ADDR x) | |
254 | { | |
ee143e81 TG |
255 | /* Return 0 for NULL. */ |
256 | if (x == 0) | |
257 | return 0; | |
258 | ||
8818c391 TR |
259 | return ((x) | AVR_SMEM_START); |
260 | } | |
261 | ||
8818c391 TR |
262 | static CORE_ADDR |
263 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
264 | { | |
265 | return ((x) & 0xffffffff); | |
266 | } | |
267 | ||
0963b4bd MS |
268 | /* EEPROM address checks and convertions. I don't know if these will ever |
269 | actually be used, but I've added them just the same. TRoth */ | |
8818c391 TR |
270 | |
271 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
0963b4bd | 272 | programs in the mega128. */ |
8818c391 TR |
273 | |
274 | /* static CORE_ADDR */ | |
275 | /* avr_make_eaddr (CORE_ADDR x) */ | |
276 | /* { */ | |
277 | /* return ((x) | AVR_EMEM_START); */ | |
278 | /* } */ | |
279 | ||
280 | /* static int */ | |
281 | /* avr_eaddr_p (CORE_ADDR x) */ | |
282 | /* { */ | |
283 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
284 | /* } */ | |
285 | ||
286 | /* static CORE_ADDR */ | |
287 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
288 | /* { */ | |
289 | /* return ((x) & 0xffffffff); */ | |
290 | /* } */ | |
291 | ||
0963b4bd | 292 | /* Convert from address to pointer and vice-versa. */ |
8818c391 TR |
293 | |
294 | static void | |
9898f801 UW |
295 | avr_address_to_pointer (struct gdbarch *gdbarch, |
296 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
8818c391 | 297 | { |
e17a4113 UW |
298 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
299 | ||
8818c391 TR |
300 | /* Is it a code address? */ |
301 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
302 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
303 | { | |
e17a4113 | 304 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
4ea2465e | 305 | avr_convert_iaddr_to_raw (addr >> 1)); |
8818c391 TR |
306 | } |
307 | else | |
308 | { | |
309 | /* Strip off any upper segment bits. */ | |
e17a4113 | 310 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
2e5ff58c | 311 | avr_convert_saddr_to_raw (addr)); |
8818c391 TR |
312 | } |
313 | } | |
314 | ||
315 | static CORE_ADDR | |
9898f801 UW |
316 | avr_pointer_to_address (struct gdbarch *gdbarch, |
317 | struct type *type, const gdb_byte *buf) | |
8818c391 | 318 | { |
e17a4113 UW |
319 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
320 | CORE_ADDR addr | |
321 | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | |
8818c391 | 322 | |
8818c391 TR |
323 | /* Is it a code address? */ |
324 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
325 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
2e5ff58c | 326 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
4ea2465e | 327 | return avr_make_iaddr (addr << 1); |
8818c391 TR |
328 | else |
329 | return avr_make_saddr (addr); | |
330 | } | |
331 | ||
8a1d23b2 TG |
332 | static CORE_ADDR |
333 | avr_integer_to_address (struct gdbarch *gdbarch, | |
334 | struct type *type, const gdb_byte *buf) | |
335 | { | |
336 | ULONGEST addr = unpack_long (type, buf); | |
337 | ||
338 | return avr_make_saddr (addr); | |
339 | } | |
340 | ||
8818c391 | 341 | static CORE_ADDR |
61a1198a | 342 | avr_read_pc (struct regcache *regcache) |
8818c391 | 343 | { |
8619218d | 344 | ULONGEST pc; |
61a1198a UW |
345 | regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); |
346 | return avr_make_iaddr (pc); | |
8818c391 TR |
347 | } |
348 | ||
349 | static void | |
61a1198a | 350 | avr_write_pc (struct regcache *regcache, CORE_ADDR val) |
8818c391 | 351 | { |
61a1198a | 352 | regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, |
7d2552b4 TG |
353 | avr_convert_iaddr_to_raw (val)); |
354 | } | |
355 | ||
05d1431c | 356 | static enum register_status |
7d2552b4 TG |
357 | avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
358 | int regnum, gdb_byte *buf) | |
359 | { | |
360 | ULONGEST val; | |
05d1431c | 361 | enum register_status status; |
7d2552b4 TG |
362 | |
363 | switch (regnum) | |
364 | { | |
365 | case AVR_PSEUDO_PC_REGNUM: | |
05d1431c PA |
366 | status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val); |
367 | if (status != REG_VALID) | |
368 | return status; | |
7d2552b4 TG |
369 | val >>= 1; |
370 | store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); | |
05d1431c | 371 | return status; |
7d2552b4 TG |
372 | default: |
373 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
374 | } | |
375 | } | |
376 | ||
377 | static void | |
378 | avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
379 | int regnum, const gdb_byte *buf) | |
380 | { | |
381 | ULONGEST val; | |
382 | ||
383 | switch (regnum) | |
384 | { | |
385 | case AVR_PSEUDO_PC_REGNUM: | |
386 | val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); | |
387 | val <<= 1; | |
388 | regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); | |
389 | break; | |
390 | default: | |
391 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
392 | } | |
8818c391 TR |
393 | } |
394 | ||
4add8633 | 395 | /* Function: avr_scan_prologue |
8818c391 | 396 | |
4add8633 | 397 | This function decodes an AVR function prologue to determine: |
8818c391 TR |
398 | 1) the size of the stack frame |
399 | 2) which registers are saved on it | |
400 | 3) the offsets of saved regs | |
4add8633 | 401 | This information is stored in the avr_unwind_cache structure. |
8818c391 | 402 | |
e3d8b004 TR |
403 | Some devices lack the sbiw instruction, so on those replace this: |
404 | sbiw r28, XX | |
405 | with this: | |
406 | subi r28,lo8(XX) | |
407 | sbci r29,hi8(XX) | |
408 | ||
409 | A typical AVR function prologue with a frame pointer might look like this: | |
410 | push rXX ; saved regs | |
411 | ... | |
412 | push r28 | |
413 | push r29 | |
414 | in r28,__SP_L__ | |
415 | in r29,__SP_H__ | |
416 | sbiw r28,<LOCALS_SIZE> | |
417 | in __tmp_reg__,__SREG__ | |
8818c391 | 418 | cli |
e3d8b004 | 419 | out __SP_H__,r29 |
72fab697 TR |
420 | out __SREG__,__tmp_reg__ |
421 | out __SP_L__,r28 | |
e3d8b004 TR |
422 | |
423 | A typical AVR function prologue without a frame pointer might look like | |
424 | this: | |
425 | push rXX ; saved regs | |
426 | ... | |
427 | ||
428 | A main function prologue looks like this: | |
429 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
430 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
431 | out __SP_H__,r29 | |
432 | out __SP_L__,r28 | |
433 | ||
434 | A signal handler prologue looks like this: | |
435 | push __zero_reg__ | |
436 | push __tmp_reg__ | |
437 | in __tmp_reg__, __SREG__ | |
438 | push __tmp_reg__ | |
439 | clr __zero_reg__ | |
440 | push rXX ; save registers r18:r27, r30:r31 | |
441 | ... | |
442 | push r28 ; save frame pointer | |
443 | push r29 | |
444 | in r28, __SP_L__ | |
445 | in r29, __SP_H__ | |
446 | sbiw r28, <LOCALS_SIZE> | |
447 | out __SP_H__, r29 | |
448 | out __SP_L__, r28 | |
449 | ||
450 | A interrupt handler prologue looks like this: | |
451 | sei | |
452 | push __zero_reg__ | |
453 | push __tmp_reg__ | |
454 | in __tmp_reg__, __SREG__ | |
455 | push __tmp_reg__ | |
456 | clr __zero_reg__ | |
457 | push rXX ; save registers r18:r27, r30:r31 | |
458 | ... | |
459 | push r28 ; save frame pointer | |
460 | push r29 | |
461 | in r28, __SP_L__ | |
462 | in r29, __SP_H__ | |
463 | sbiw r28, <LOCALS_SIZE> | |
464 | cli | |
465 | out __SP_H__, r29 | |
466 | sei | |
467 | out __SP_L__, r28 | |
468 | ||
469 | A `-mcall-prologues' prologue looks like this (Note that the megas use a | |
470 | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | |
471 | 32 bit insn and rjmp is a 16 bit insn): | |
472 | ldi r26,lo8(<LOCALS_SIZE>) | |
473 | ldi r27,hi8(<LOCALS_SIZE>) | |
474 | ldi r30,pm_lo8(.L_foo_body) | |
475 | ldi r31,pm_hi8(.L_foo_body) | |
476 | rjmp __prologue_saves__+RRR | |
477 | .L_foo_body: */ | |
8818c391 | 478 | |
4add8633 TR |
479 | /* Not really part of a prologue, but still need to scan for it, is when a |
480 | function prologue moves values passed via registers as arguments to new | |
0963b4bd MS |
481 | registers. In this case, all local variables live in registers, so there |
482 | may be some register saves. This is what it looks like: | |
4add8633 TR |
483 | movw rMM, rNN |
484 | ... | |
485 | ||
0963b4bd MS |
486 | There could be multiple movw's. If the target doesn't have a movw insn, it |
487 | will use two mov insns. This could be done after any of the above prologue | |
4add8633 TR |
488 | types. */ |
489 | ||
490 | static CORE_ADDR | |
e17a4113 | 491 | avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, |
4e99ad69 | 492 | struct avr_unwind_cache *info) |
8818c391 | 493 | { |
e17a4113 | 494 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2e5ff58c TR |
495 | int i; |
496 | unsigned short insn; | |
2e5ff58c | 497 | int scan_stage = 0; |
8818c391 | 498 | struct minimal_symbol *msymbol; |
8818c391 TR |
499 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
500 | int vpc = 0; | |
4e99ad69 TG |
501 | int len; |
502 | ||
503 | len = pc_end - pc_beg; | |
504 | if (len > AVR_MAX_PROLOGUE_SIZE) | |
505 | len = AVR_MAX_PROLOGUE_SIZE; | |
8818c391 | 506 | |
4add8633 | 507 | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only |
0963b4bd MS |
508 | reading in the bytes of the prologue. The problem is that the figuring |
509 | out where the end of the prologue is is a bit difficult. The old code | |
4add8633 | 510 | tried to do that, but failed quite often. */ |
4e99ad69 | 511 | read_memory (pc_beg, prologue, len); |
8818c391 TR |
512 | |
513 | /* Scanning main()'s prologue | |
514 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
515 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
516 | out __SP_H__,r29 | |
517 | out __SP_L__,r28 */ | |
518 | ||
4e99ad69 | 519 | if (len >= 4) |
8818c391 TR |
520 | { |
521 | CORE_ADDR locals; | |
4e99ad69 | 522 | static const unsigned char img[] = { |
2e5ff58c TR |
523 | 0xde, 0xbf, /* out __SP_H__,r29 */ |
524 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
525 | }; |
526 | ||
e17a4113 | 527 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 528 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
2e5ff58c TR |
529 | if ((insn & 0xf0f0) == 0xe0c0) |
530 | { | |
531 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
e17a4113 | 532 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
2e5ff58c TR |
533 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
534 | if ((insn & 0xf0f0) == 0xe0d0) | |
535 | { | |
536 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
4e99ad69 TG |
537 | if (vpc + 4 + sizeof (img) < len |
538 | && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
2e5ff58c | 539 | { |
4add8633 TR |
540 | info->prologue_type = AVR_PROLOGUE_MAIN; |
541 | info->base = locals; | |
4e99ad69 | 542 | return pc_beg + 4; |
2e5ff58c TR |
543 | } |
544 | } | |
545 | } | |
8818c391 | 546 | } |
2e5ff58c | 547 | |
4add8633 TR |
548 | /* Scanning `-mcall-prologues' prologue |
549 | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | |
8818c391 | 550 | |
e3d8b004 | 551 | while (1) /* Using a while to avoid many goto's */ |
8818c391 TR |
552 | { |
553 | int loc_size; | |
554 | int body_addr; | |
555 | unsigned num_pushes; | |
4add8633 | 556 | int pc_offset = 0; |
2e5ff58c | 557 | |
4e99ad69 TG |
558 | /* At least the fifth instruction must have been executed to |
559 | modify frame shape. */ | |
560 | if (len < 10) | |
561 | break; | |
562 | ||
e17a4113 | 563 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 564 | /* ldi r26,<LOCALS_SIZE> */ |
2e5ff58c TR |
565 | if ((insn & 0xf0f0) != 0xe0a0) |
566 | break; | |
8818c391 | 567 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 568 | pc_offset += 2; |
2e5ff58c | 569 | |
e17a4113 | 570 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
8818c391 TR |
571 | /* ldi r27,<LOCALS_SIZE> / 256 */ |
572 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 573 | break; |
8818c391 | 574 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 575 | pc_offset += 2; |
2e5ff58c | 576 | |
e17a4113 | 577 | insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); |
8818c391 TR |
578 | /* ldi r30,pm_lo8(.L_foo_body) */ |
579 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 580 | break; |
8818c391 | 581 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 582 | pc_offset += 2; |
8818c391 | 583 | |
e17a4113 | 584 | insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); |
8818c391 TR |
585 | /* ldi r31,pm_hi8(.L_foo_body) */ |
586 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 587 | break; |
8818c391 | 588 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 589 | pc_offset += 2; |
8818c391 | 590 | |
8818c391 TR |
591 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); |
592 | if (!msymbol) | |
2e5ff58c | 593 | break; |
8818c391 | 594 | |
e17a4113 | 595 | insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); |
8818c391 | 596 | /* rjmp __prologue_saves__+RRR */ |
e3d8b004 TR |
597 | if ((insn & 0xf000) == 0xc000) |
598 | { | |
599 | /* Extract PC relative offset from RJMP */ | |
600 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
601 | /* Convert offset to byte addressable mode */ | |
602 | i *= 2; | |
603 | /* Destination address */ | |
4e99ad69 | 604 | i += pc_beg + 10; |
e3d8b004 | 605 | |
4e99ad69 | 606 | if (body_addr != (pc_beg + 10)/2) |
e3d8b004 | 607 | break; |
4add8633 TR |
608 | |
609 | pc_offset += 2; | |
e3d8b004 | 610 | } |
e3d8b004 TR |
611 | else if ((insn & 0xfe0e) == 0x940c) |
612 | { | |
613 | /* Extract absolute PC address from JMP */ | |
614 | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | |
e17a4113 UW |
615 | | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) |
616 | & 0xffff)); | |
e3d8b004 TR |
617 | /* Convert address to byte addressable mode */ |
618 | i *= 2; | |
619 | ||
4e99ad69 | 620 | if (body_addr != (pc_beg + 12)/2) |
e3d8b004 | 621 | break; |
4add8633 TR |
622 | |
623 | pc_offset += 4; | |
e3d8b004 TR |
624 | } |
625 | else | |
626 | break; | |
2e5ff58c | 627 | |
4add8633 | 628 | /* Resolve offset (in words) from __prologue_saves__ symbol. |
8818c391 TR |
629 | Which is a pushes count in `-mcall-prologues' mode */ |
630 | num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2; | |
631 | ||
632 | if (num_pushes > AVR_MAX_PUSHES) | |
4add8633 | 633 | { |
edefbb7c | 634 | fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), |
4add8633 TR |
635 | num_pushes); |
636 | num_pushes = 0; | |
637 | } | |
2e5ff58c | 638 | |
8818c391 | 639 | if (num_pushes) |
2e5ff58c TR |
640 | { |
641 | int from; | |
4add8633 TR |
642 | |
643 | info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; | |
2e5ff58c | 644 | if (num_pushes >= 2) |
4add8633 TR |
645 | info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; |
646 | ||
2e5ff58c TR |
647 | i = 0; |
648 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
649 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
4add8633 | 650 | info->saved_regs [from].addr = ++i; |
2e5ff58c | 651 | } |
4add8633 TR |
652 | info->size = loc_size + num_pushes; |
653 | info->prologue_type = AVR_PROLOGUE_CALL; | |
654 | ||
4e99ad69 | 655 | return pc_beg + pc_offset; |
8818c391 TR |
656 | } |
657 | ||
4add8633 TR |
658 | /* Scan for the beginning of the prologue for an interrupt or signal |
659 | function. Note that we have to set the prologue type here since the | |
660 | third stage of the prologue may not be present (e.g. no saved registered | |
661 | or changing of the SP register). */ | |
8818c391 | 662 | |
4add8633 | 663 | if (1) |
8818c391 | 664 | { |
4e99ad69 | 665 | static const unsigned char img[] = { |
2e5ff58c TR |
666 | 0x78, 0x94, /* sei */ |
667 | 0x1f, 0x92, /* push r1 */ | |
668 | 0x0f, 0x92, /* push r0 */ | |
669 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
670 | 0x0f, 0x92, /* push r0 */ | |
671 | 0x11, 0x24 /* clr r1 */ | |
8818c391 | 672 | }; |
4e99ad69 TG |
673 | if (len >= sizeof (img) |
674 | && memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c | 675 | { |
4add8633 | 676 | info->prologue_type = AVR_PROLOGUE_INTR; |
2e5ff58c | 677 | vpc += sizeof (img); |
4add8633 TR |
678 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; |
679 | info->saved_regs[0].addr = 2; | |
680 | info->saved_regs[1].addr = 1; | |
681 | info->size += 3; | |
2e5ff58c | 682 | } |
4e99ad69 TG |
683 | else if (len >= sizeof (img) - 2 |
684 | && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) | |
2e5ff58c | 685 | { |
4add8633 TR |
686 | info->prologue_type = AVR_PROLOGUE_SIG; |
687 | vpc += sizeof (img) - 2; | |
688 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; | |
689 | info->saved_regs[0].addr = 2; | |
690 | info->saved_regs[1].addr = 1; | |
243e2c5d | 691 | info->size += 2; |
2e5ff58c | 692 | } |
8818c391 TR |
693 | } |
694 | ||
695 | /* First stage of the prologue scanning. | |
4add8633 | 696 | Scan pushes (saved registers) */ |
8818c391 | 697 | |
4e99ad69 | 698 | for (; vpc < len; vpc += 2) |
8818c391 | 699 | { |
e17a4113 | 700 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c TR |
701 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
702 | { | |
0963b4bd | 703 | /* Bits 4-9 contain a mask for registers R0-R32. */ |
4add8633 TR |
704 | int regno = (insn & 0x1f0) >> 4; |
705 | info->size++; | |
706 | info->saved_regs[regno].addr = info->size; | |
2e5ff58c TR |
707 | scan_stage = 1; |
708 | } | |
8818c391 | 709 | else |
2e5ff58c | 710 | break; |
8818c391 TR |
711 | } |
712 | ||
243e2c5d | 713 | gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); |
4add8633 | 714 | |
1bd0bb72 TG |
715 | /* Handle static small stack allocation using rcall or push. */ |
716 | ||
717 | while (scan_stage == 1 && vpc < len) | |
718 | { | |
719 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | |
720 | if (insn == 0xd000) /* rcall .+0 */ | |
721 | { | |
722 | info->size += gdbarch_tdep (gdbarch)->call_length; | |
723 | vpc += 2; | |
724 | } | |
725 | else if (insn == 0x920f) /* push r0 */ | |
726 | { | |
727 | info->size += 1; | |
728 | vpc += 2; | |
729 | } | |
730 | else | |
731 | break; | |
732 | } | |
733 | ||
8818c391 TR |
734 | /* Second stage of the prologue scanning. |
735 | Scan: | |
736 | in r28,__SP_L__ | |
737 | in r29,__SP_H__ */ | |
738 | ||
4e99ad69 | 739 | if (scan_stage == 1 && vpc < len) |
8818c391 | 740 | { |
4e99ad69 | 741 | static const unsigned char img[] = { |
2e5ff58c TR |
742 | 0xcd, 0xb7, /* in r28,__SP_L__ */ |
743 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 | 744 | }; |
2e5ff58c | 745 | |
4e99ad69 TG |
746 | if (vpc + sizeof (img) < len |
747 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
2e5ff58c TR |
748 | { |
749 | vpc += 4; | |
2e5ff58c TR |
750 | scan_stage = 2; |
751 | } | |
8818c391 TR |
752 | } |
753 | ||
0963b4bd | 754 | /* Third stage of the prologue scanning. (Really two stages). |
8818c391 TR |
755 | Scan for: |
756 | sbiw r28,XX or subi r28,lo8(XX) | |
72fab697 | 757 | sbci r29,hi8(XX) |
8818c391 TR |
758 | in __tmp_reg__,__SREG__ |
759 | cli | |
e3d8b004 | 760 | out __SP_H__,r29 |
8818c391 | 761 | out __SREG__,__tmp_reg__ |
e3d8b004 | 762 | out __SP_L__,r28 */ |
8818c391 | 763 | |
4e99ad69 | 764 | if (scan_stage == 2 && vpc < len) |
8818c391 TR |
765 | { |
766 | int locals_size = 0; | |
4e99ad69 | 767 | static const unsigned char img[] = { |
2e5ff58c TR |
768 | 0x0f, 0xb6, /* in r0,0x3f */ |
769 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 770 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 771 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ |
e3d8b004 | 772 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 773 | }; |
4e99ad69 | 774 | static const unsigned char img_sig[] = { |
e3d8b004 TR |
775 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
776 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ | |
8818c391 | 777 | }; |
4e99ad69 | 778 | static const unsigned char img_int[] = { |
2e5ff58c | 779 | 0xf8, 0x94, /* cli */ |
e3d8b004 | 780 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 781 | 0x78, 0x94, /* sei */ |
e3d8b004 | 782 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 783 | }; |
2e5ff58c | 784 | |
e17a4113 | 785 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 786 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
1bd0bb72 TG |
787 | { |
788 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
789 | vpc += 2; | |
790 | } | |
2e5ff58c TR |
791 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ |
792 | { | |
793 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
1bd0bb72 | 794 | vpc += 2; |
e17a4113 | 795 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 796 | vpc += 2; |
1bd0bb72 | 797 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; |
2e5ff58c | 798 | } |
8818c391 | 799 | else |
1bd0bb72 | 800 | return pc_beg + vpc; |
4add8633 | 801 | |
0963b4bd | 802 | /* Scan the last part of the prologue. May not be present for interrupt |
4add8633 TR |
803 | or signal handler functions, which is why we set the prologue type |
804 | when we saw the beginning of the prologue previously. */ | |
805 | ||
4e99ad69 TG |
806 | if (vpc + sizeof (img_sig) < len |
807 | && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | |
4add8633 TR |
808 | { |
809 | vpc += sizeof (img_sig); | |
810 | } | |
4e99ad69 TG |
811 | else if (vpc + sizeof (img_int) < len |
812 | && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | |
4add8633 TR |
813 | { |
814 | vpc += sizeof (img_int); | |
815 | } | |
4e99ad69 TG |
816 | if (vpc + sizeof (img) < len |
817 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
4add8633 TR |
818 | { |
819 | info->prologue_type = AVR_PROLOGUE_NORMAL; | |
820 | vpc += sizeof (img); | |
821 | } | |
822 | ||
823 | info->size += locals_size; | |
824 | ||
4e99ad69 | 825 | /* Fall through. */ |
8818c391 | 826 | } |
4add8633 TR |
827 | |
828 | /* If we got this far, we could not scan the prologue, so just return the pc | |
829 | of the frame plus an adjustment for argument move insns. */ | |
830 | ||
4e99ad69 TG |
831 | for (; vpc < len; vpc += 2) |
832 | { | |
e17a4113 | 833 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
4e99ad69 TG |
834 | if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ |
835 | continue; | |
836 | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | |
837 | continue; | |
838 | else | |
839 | break; | |
840 | } | |
841 | ||
842 | return pc_beg + vpc; | |
8818c391 TR |
843 | } |
844 | ||
4add8633 | 845 | static CORE_ADDR |
6093d2eb | 846 | avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
4add8633 TR |
847 | { |
848 | CORE_ADDR func_addr, func_end; | |
8c201e54 | 849 | CORE_ADDR post_prologue_pc; |
8818c391 | 850 | |
4add8633 | 851 | /* See what the symbol table says */ |
8818c391 | 852 | |
8c201e54 TG |
853 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
854 | return pc; | |
2e5ff58c | 855 | |
8c201e54 TG |
856 | post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); |
857 | if (post_prologue_pc != 0) | |
858 | return max (pc, post_prologue_pc); | |
8818c391 | 859 | |
8c201e54 TG |
860 | { |
861 | CORE_ADDR prologue_end = pc; | |
862 | struct avr_unwind_cache info = {0}; | |
863 | struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | |
8818c391 | 864 | |
8c201e54 TG |
865 | info.saved_regs = saved_regs; |
866 | ||
867 | /* Need to run the prologue scanner to figure out if the function has a | |
868 | prologue and possibly skip over moving arguments passed via registers | |
869 | to other registers. */ | |
870 | ||
871 | prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); | |
872 | ||
873 | if (info.prologue_type != AVR_PROLOGUE_NONE) | |
874 | return prologue_end; | |
875 | } | |
2e5ff58c | 876 | |
4e99ad69 TG |
877 | /* Either we didn't find the start of this function (nothing we can do), |
878 | or there's no line info, or the line after the prologue is after | |
0963b4bd | 879 | the end of the function (there probably isn't a prologue). */ |
2e5ff58c | 880 | |
8c201e54 | 881 | return pc; |
4add8633 | 882 | } |
8818c391 | 883 | |
0963b4bd MS |
884 | /* Not all avr devices support the BREAK insn. Those that don't should treat |
885 | it as a NOP. Thus, it should be ok. Since the avr is currently a remote | |
886 | only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ | |
8818c391 | 887 | |
4add8633 | 888 | static const unsigned char * |
0963b4bd MS |
889 | avr_breakpoint_from_pc (struct gdbarch *gdbarch, |
890 | CORE_ADDR *pcptr, int *lenptr) | |
4add8633 | 891 | { |
4e99ad69 | 892 | static const unsigned char avr_break_insn [] = { 0x98, 0x95 }; |
4add8633 TR |
893 | *lenptr = sizeof (avr_break_insn); |
894 | return avr_break_insn; | |
8818c391 TR |
895 | } |
896 | ||
4c8b6ae0 UW |
897 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
898 | should be returned. If it is supposed to be returned in registers, | |
899 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
900 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
901 | from WRITEBUF into REGCACHE. */ | |
902 | ||
63807e1d | 903 | static enum return_value_convention |
6a3a010b | 904 | avr_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
905 | struct type *valtype, struct regcache *regcache, |
906 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 | 907 | { |
1bd0bb72 TG |
908 | int i; |
909 | /* Single byte are returned in r24. | |
910 | Otherwise, the MSB of the return value is always in r25, calculate which | |
911 | register holds the LSB. */ | |
912 | int lsb_reg; | |
913 | ||
914 | if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
915 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
916 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
917 | && TYPE_LENGTH (valtype) > 8) | |
918 | return RETURN_VALUE_STRUCT_CONVENTION; | |
919 | ||
920 | if (TYPE_LENGTH (valtype) <= 2) | |
921 | lsb_reg = 24; | |
922 | else if (TYPE_LENGTH (valtype) <= 4) | |
923 | lsb_reg = 22; | |
924 | else if (TYPE_LENGTH (valtype) <= 8) | |
925 | lsb_reg = 18; | |
926 | else | |
f3574227 | 927 | gdb_assert_not_reached ("unexpected type length"); |
4c8b6ae0 UW |
928 | |
929 | if (writebuf != NULL) | |
930 | { | |
1bd0bb72 TG |
931 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
932 | regcache_cooked_write (regcache, lsb_reg + i, writebuf + i); | |
4c8b6ae0 UW |
933 | } |
934 | ||
935 | if (readbuf != NULL) | |
936 | { | |
1bd0bb72 TG |
937 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
938 | regcache_cooked_read (regcache, lsb_reg + i, readbuf + i); | |
4c8b6ae0 UW |
939 | } |
940 | ||
1bd0bb72 | 941 | return RETURN_VALUE_REGISTER_CONVENTION; |
4c8b6ae0 UW |
942 | } |
943 | ||
944 | ||
4add8633 TR |
945 | /* Put here the code to store, into fi->saved_regs, the addresses of |
946 | the saved registers of frame described by FRAME_INFO. This | |
947 | includes special registers such as pc and fp saved in special ways | |
948 | in the stack frame. sp is even more special: the address we return | |
0963b4bd | 949 | for it IS the sp for the next frame. */ |
8818c391 | 950 | |
63807e1d | 951 | static struct avr_unwind_cache * |
94afd7a6 | 952 | avr_frame_unwind_cache (struct frame_info *this_frame, |
4add8633 | 953 | void **this_prologue_cache) |
8818c391 | 954 | { |
4e99ad69 | 955 | CORE_ADDR start_pc, current_pc; |
4add8633 TR |
956 | ULONGEST prev_sp; |
957 | ULONGEST this_base; | |
958 | struct avr_unwind_cache *info; | |
4e99ad69 TG |
959 | struct gdbarch *gdbarch; |
960 | struct gdbarch_tdep *tdep; | |
4add8633 TR |
961 | int i; |
962 | ||
4e99ad69 TG |
963 | if (*this_prologue_cache) |
964 | return *this_prologue_cache; | |
4add8633 TR |
965 | |
966 | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | |
4e99ad69 | 967 | *this_prologue_cache = info; |
94afd7a6 | 968 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
4add8633 TR |
969 | |
970 | info->size = 0; | |
971 | info->prologue_type = AVR_PROLOGUE_NONE; | |
972 | ||
4e99ad69 TG |
973 | start_pc = get_frame_func (this_frame); |
974 | current_pc = get_frame_pc (this_frame); | |
975 | if ((start_pc > 0) && (start_pc <= current_pc)) | |
e17a4113 UW |
976 | avr_scan_prologue (get_frame_arch (this_frame), |
977 | start_pc, current_pc, info); | |
4add8633 | 978 | |
3b85b0f1 TR |
979 | if ((info->prologue_type != AVR_PROLOGUE_NONE) |
980 | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | |
4add8633 TR |
981 | { |
982 | ULONGEST high_base; /* High byte of FP */ | |
983 | ||
984 | /* The SP was moved to the FP. This indicates that a new frame | |
985 | was created. Get THIS frame's FP value by unwinding it from | |
986 | the next frame. */ | |
94afd7a6 | 987 | this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); |
4e99ad69 | 988 | high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); |
4add8633 TR |
989 | this_base += (high_base << 8); |
990 | ||
991 | /* The FP points at the last saved register. Adjust the FP back | |
992 | to before the first saved register giving the SP. */ | |
993 | prev_sp = this_base + info->size; | |
994 | } | |
8818c391 | 995 | else |
4add8633 TR |
996 | { |
997 | /* Assume that the FP is this frame's SP but with that pushed | |
998 | stack space added back. */ | |
94afd7a6 | 999 | this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
4add8633 TR |
1000 | prev_sp = this_base + info->size; |
1001 | } | |
1002 | ||
1003 | /* Add 1 here to adjust for the post-decrement nature of the push | |
1004 | instruction.*/ | |
4e99ad69 | 1005 | info->prev_sp = avr_make_saddr (prev_sp + 1); |
4add8633 TR |
1006 | info->base = avr_make_saddr (this_base); |
1007 | ||
4e99ad69 TG |
1008 | gdbarch = get_frame_arch (this_frame); |
1009 | ||
4add8633 | 1010 | /* Adjust all the saved registers so that they contain addresses and not |
3b85b0f1 | 1011 | offsets. */ |
4e99ad69 TG |
1012 | for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) |
1013 | if (info->saved_regs[i].addr > 0) | |
1014 | info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; | |
4add8633 TR |
1015 | |
1016 | /* Except for the main and startup code, the return PC is always saved on | |
0963b4bd | 1017 | the stack and is at the base of the frame. */ |
4add8633 TR |
1018 | |
1019 | if (info->prologue_type != AVR_PROLOGUE_MAIN) | |
4e99ad69 | 1020 | info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; |
4add8633 | 1021 | |
3b85b0f1 TR |
1022 | /* The previous frame's SP needed to be computed. Save the computed |
1023 | value. */ | |
4e99ad69 TG |
1024 | tdep = gdbarch_tdep (gdbarch); |
1025 | trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, | |
1026 | info->prev_sp - 1 + tdep->call_length); | |
3b85b0f1 | 1027 | |
4add8633 | 1028 | return info; |
8818c391 TR |
1029 | } |
1030 | ||
1031 | static CORE_ADDR | |
4add8633 | 1032 | avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
8818c391 | 1033 | { |
4add8633 TR |
1034 | ULONGEST pc; |
1035 | ||
11411de3 | 1036 | pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); |
4add8633 TR |
1037 | |
1038 | return avr_make_iaddr (pc); | |
8818c391 TR |
1039 | } |
1040 | ||
30244cd8 UW |
1041 | static CORE_ADDR |
1042 | avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1043 | { | |
1044 | ULONGEST sp; | |
1045 | ||
11411de3 | 1046 | sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); |
30244cd8 UW |
1047 | |
1048 | return avr_make_saddr (sp); | |
1049 | } | |
1050 | ||
4add8633 TR |
1051 | /* Given a GDB frame, determine the address of the calling function's |
1052 | frame. This will be used to create a new GDB frame struct. */ | |
8818c391 | 1053 | |
4add8633 | 1054 | static void |
94afd7a6 | 1055 | avr_frame_this_id (struct frame_info *this_frame, |
4add8633 TR |
1056 | void **this_prologue_cache, |
1057 | struct frame_id *this_id) | |
8818c391 | 1058 | { |
4add8633 | 1059 | struct avr_unwind_cache *info |
94afd7a6 | 1060 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
4add8633 TR |
1061 | CORE_ADDR base; |
1062 | CORE_ADDR func; | |
1063 | struct frame_id id; | |
1064 | ||
1065 | /* The FUNC is easy. */ | |
94afd7a6 | 1066 | func = get_frame_func (this_frame); |
4add8633 | 1067 | |
4add8633 TR |
1068 | /* Hopefully the prologue analysis either correctly determined the |
1069 | frame's base (which is the SP from the previous frame), or set | |
1070 | that base to "NULL". */ | |
1071 | base = info->prev_sp; | |
1072 | if (base == 0) | |
1073 | return; | |
1074 | ||
1075 | id = frame_id_build (base, func); | |
4add8633 | 1076 | (*this_id) = id; |
8818c391 TR |
1077 | } |
1078 | ||
94afd7a6 UW |
1079 | static struct value * |
1080 | avr_frame_prev_register (struct frame_info *this_frame, | |
4e99ad69 | 1081 | void **this_prologue_cache, int regnum) |
8818c391 | 1082 | { |
e17a4113 UW |
1083 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1084 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4add8633 | 1085 | struct avr_unwind_cache *info |
94afd7a6 | 1086 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
8818c391 | 1087 | |
7d2552b4 | 1088 | if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) |
3b85b0f1 | 1089 | { |
7d2552b4 | 1090 | if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) |
3b85b0f1 | 1091 | { |
94afd7a6 UW |
1092 | /* Reading the return PC from the PC register is slightly |
1093 | abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, | |
1094 | but in reality, only two bytes (3 in upcoming mega256) are | |
1095 | stored on the stack. | |
1096 | ||
1097 | Also, note that the value on the stack is an addr to a word | |
1098 | not a byte, so we will need to multiply it by two at some | |
1099 | point. | |
1100 | ||
1101 | And to confuse matters even more, the return address stored | |
1102 | on the stack is in big endian byte order, even though most | |
0963b4bd | 1103 | everything else about the avr is little endian. Ick! */ |
94afd7a6 | 1104 | ULONGEST pc; |
4e99ad69 | 1105 | int i; |
e362b510 | 1106 | gdb_byte buf[3]; |
4e99ad69 TG |
1107 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1108 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
94afd7a6 | 1109 | |
7d2552b4 TG |
1110 | read_memory (info->saved_regs[AVR_PC_REGNUM].addr, |
1111 | buf, tdep->call_length); | |
94afd7a6 | 1112 | |
4e99ad69 TG |
1113 | /* Extract the PC read from memory as a big-endian. */ |
1114 | pc = 0; | |
1115 | for (i = 0; i < tdep->call_length; i++) | |
1116 | pc = (pc << 8) | buf[i]; | |
94afd7a6 | 1117 | |
7d2552b4 TG |
1118 | if (regnum == AVR_PC_REGNUM) |
1119 | pc <<= 1; | |
1120 | ||
1121 | return frame_unwind_got_constant (this_frame, regnum, pc); | |
3b85b0f1 | 1122 | } |
94afd7a6 UW |
1123 | |
1124 | return frame_unwind_got_optimized (this_frame, regnum); | |
3b85b0f1 | 1125 | } |
94afd7a6 UW |
1126 | |
1127 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
4add8633 | 1128 | } |
8818c391 | 1129 | |
4add8633 TR |
1130 | static const struct frame_unwind avr_frame_unwind = { |
1131 | NORMAL_FRAME, | |
8fbca658 | 1132 | default_frame_unwind_stop_reason, |
4add8633 | 1133 | avr_frame_this_id, |
94afd7a6 UW |
1134 | avr_frame_prev_register, |
1135 | NULL, | |
1136 | default_frame_sniffer | |
4add8633 TR |
1137 | }; |
1138 | ||
8818c391 | 1139 | static CORE_ADDR |
94afd7a6 | 1140 | avr_frame_base_address (struct frame_info *this_frame, void **this_cache) |
8818c391 | 1141 | { |
4add8633 | 1142 | struct avr_unwind_cache *info |
94afd7a6 | 1143 | = avr_frame_unwind_cache (this_frame, this_cache); |
8818c391 | 1144 | |
4add8633 TR |
1145 | return info->base; |
1146 | } | |
8818c391 | 1147 | |
4add8633 TR |
1148 | static const struct frame_base avr_frame_base = { |
1149 | &avr_frame_unwind, | |
1150 | avr_frame_base_address, | |
1151 | avr_frame_base_address, | |
1152 | avr_frame_base_address | |
1153 | }; | |
ced15480 | 1154 | |
94afd7a6 UW |
1155 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1156 | frame. The frame ID's base needs to match the TOS value saved by | |
1157 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
8818c391 | 1158 | |
4add8633 | 1159 | static struct frame_id |
94afd7a6 | 1160 | avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
4add8633 TR |
1161 | { |
1162 | ULONGEST base; | |
8818c391 | 1163 | |
94afd7a6 UW |
1164 | base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
1165 | return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); | |
8818c391 TR |
1166 | } |
1167 | ||
4add8633 | 1168 | /* When arguments must be pushed onto the stack, they go on in reverse |
0963b4bd | 1169 | order. The below implements a FILO (stack) to do this. */ |
8818c391 | 1170 | |
4add8633 TR |
1171 | struct stack_item |
1172 | { | |
1173 | int len; | |
1174 | struct stack_item *prev; | |
1175 | void *data; | |
1176 | }; | |
8818c391 | 1177 | |
4add8633 | 1178 | static struct stack_item * |
0fd88904 | 1179 | push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) |
8818c391 | 1180 | { |
4add8633 TR |
1181 | struct stack_item *si; |
1182 | si = xmalloc (sizeof (struct stack_item)); | |
1183 | si->data = xmalloc (len); | |
1184 | si->len = len; | |
1185 | si->prev = prev; | |
1186 | memcpy (si->data, contents, len); | |
1187 | return si; | |
8818c391 TR |
1188 | } |
1189 | ||
4add8633 TR |
1190 | static struct stack_item *pop_stack_item (struct stack_item *si); |
1191 | static struct stack_item * | |
1192 | pop_stack_item (struct stack_item *si) | |
8818c391 | 1193 | { |
4add8633 TR |
1194 | struct stack_item *dead = si; |
1195 | si = si->prev; | |
1196 | xfree (dead->data); | |
1197 | xfree (dead); | |
1198 | return si; | |
8818c391 TR |
1199 | } |
1200 | ||
8818c391 TR |
1201 | /* Setup the function arguments for calling a function in the inferior. |
1202 | ||
1203 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1204 | dedicated for passing function arguments. Up to the first 18 arguments | |
1205 | (depending on size) may go into these registers. The rest go on the stack. | |
1206 | ||
4add8633 | 1207 | All arguments are aligned to start in even-numbered registers (odd-sized |
0963b4bd | 1208 | arguments, including char, have one free register above them). For example, |
4add8633 TR |
1209 | an int in arg1 and a char in arg2 would be passed as such: |
1210 | ||
1211 | arg1 -> r25:r24 | |
1212 | arg2 -> r22 | |
1213 | ||
1214 | Arguments that are larger than 2 bytes will be split between two or more | |
1215 | registers as available, but will NOT be split between a register and the | |
0963b4bd | 1216 | stack. Arguments that go onto the stack are pushed last arg first (this is |
4add8633 TR |
1217 | similar to the d10v). */ |
1218 | ||
1219 | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | |
1220 | inaccurate. | |
8818c391 TR |
1221 | |
1222 | An exceptional case exists for struct arguments (and possibly other | |
1223 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1224 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1225 | between the registers and the stack, but instead is copied in its entirety | |
1226 | onto the stack, AND also copied into as many registers as there is room | |
1227 | for. In other words, space in registers permitting, two copies of the same | |
1228 | argument are passed in. As far as I can tell, only the one on the stack is | |
1229 | used, although that may be a function of the level of compiler | |
1230 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1231 | sizes are left-justified within the word (as opposed to arguments smaller | |
1232 | than WORDSIZE bytes, which are right-justified). | |
1233 | ||
1234 | If the function is to return an aggregate type such as a struct, the caller | |
1235 | must allocate space into which the callee will copy the return value. In | |
1236 | this case, a pointer to the return value location is passed into the callee | |
1237 | in register R0, which displaces one of the other arguments passed in via | |
0963b4bd | 1238 | registers R0 to R2. */ |
8818c391 TR |
1239 | |
1240 | static CORE_ADDR | |
7d9b040b | 1241 | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
4add8633 TR |
1242 | struct regcache *regcache, CORE_ADDR bp_addr, |
1243 | int nargs, struct value **args, CORE_ADDR sp, | |
1244 | int struct_return, CORE_ADDR struct_addr) | |
8818c391 | 1245 | { |
e17a4113 | 1246 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4add8633 | 1247 | int i; |
e362b510 | 1248 | gdb_byte buf[3]; |
6d1915d4 | 1249 | int call_length = gdbarch_tdep (gdbarch)->call_length; |
4add8633 TR |
1250 | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); |
1251 | int regnum = AVR_ARGN_REGNUM; | |
1252 | struct stack_item *si = NULL; | |
8818c391 | 1253 | |
4add8633 | 1254 | if (struct_return) |
8818c391 | 1255 | { |
fd6d6815 TG |
1256 | regcache_cooked_write_unsigned |
1257 | (regcache, regnum--, (struct_addr >> 8) & 0xff); | |
1258 | regcache_cooked_write_unsigned | |
1259 | (regcache, regnum--, struct_addr & 0xff); | |
1260 | /* SP being post decremented, we need to reserve one byte so that the | |
1261 | return address won't overwrite the result (or vice-versa). */ | |
1262 | if (sp == struct_addr) | |
1263 | sp--; | |
8818c391 TR |
1264 | } |
1265 | ||
4add8633 | 1266 | for (i = 0; i < nargs; i++) |
8818c391 | 1267 | { |
4add8633 TR |
1268 | int last_regnum; |
1269 | int j; | |
1270 | struct value *arg = args[i]; | |
4991999e | 1271 | struct type *type = check_typedef (value_type (arg)); |
0fd88904 | 1272 | const bfd_byte *contents = value_contents (arg); |
4add8633 TR |
1273 | int len = TYPE_LENGTH (type); |
1274 | ||
0963b4bd | 1275 | /* Calculate the potential last register needed. */ |
4add8633 TR |
1276 | last_regnum = regnum - (len + (len & 1)); |
1277 | ||
0963b4bd MS |
1278 | /* If there are registers available, use them. Once we start putting |
1279 | stuff on the stack, all subsequent args go on stack. */ | |
4add8633 TR |
1280 | if ((si == NULL) && (last_regnum >= 8)) |
1281 | { | |
1282 | ULONGEST val; | |
1283 | ||
0963b4bd | 1284 | /* Skip a register for odd length args. */ |
4add8633 TR |
1285 | if (len & 1) |
1286 | regnum--; | |
1287 | ||
e17a4113 | 1288 | val = extract_unsigned_integer (contents, len, byte_order); |
6d1915d4 TG |
1289 | for (j = 0; j < len; j++) |
1290 | regcache_cooked_write_unsigned | |
1291 | (regcache, regnum--, val >> (8 * (len - j - 1))); | |
4add8633 | 1292 | } |
0963b4bd | 1293 | /* No registers available, push the args onto the stack. */ |
4add8633 TR |
1294 | else |
1295 | { | |
0963b4bd | 1296 | /* From here on, we don't care about regnum. */ |
4add8633 TR |
1297 | si = push_stack_item (si, contents, len); |
1298 | } | |
8818c391 | 1299 | } |
909cd28e | 1300 | |
0963b4bd | 1301 | /* Push args onto the stack. */ |
4add8633 TR |
1302 | while (si) |
1303 | { | |
1304 | sp -= si->len; | |
0963b4bd | 1305 | /* Add 1 to sp here to account for post decr nature of pushes. */ |
4e99ad69 | 1306 | write_memory (sp + 1, si->data, si->len); |
4add8633 TR |
1307 | si = pop_stack_item (si); |
1308 | } | |
3605c34a | 1309 | |
4add8633 TR |
1310 | /* Set the return address. For the avr, the return address is the BP_ADDR. |
1311 | Need to push the return address onto the stack noting that it needs to be | |
1312 | in big-endian order on the stack. */ | |
6d1915d4 TG |
1313 | for (i = 1; i <= call_length; i++) |
1314 | { | |
1315 | buf[call_length - i] = return_pc & 0xff; | |
1316 | return_pc >>= 8; | |
1317 | } | |
3605c34a | 1318 | |
6d1915d4 | 1319 | sp -= call_length; |
0963b4bd | 1320 | /* Use 'sp + 1' since pushes are post decr ops. */ |
6d1915d4 | 1321 | write_memory (sp + 1, buf, call_length); |
3605c34a | 1322 | |
0963b4bd | 1323 | /* Finally, update the SP register. */ |
4add8633 TR |
1324 | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, |
1325 | avr_convert_saddr_to_raw (sp)); | |
3605c34a | 1326 | |
6d1915d4 TG |
1327 | /* Return SP value for the dummy frame, where the return address hasn't been |
1328 | pushed. */ | |
1329 | return sp + call_length; | |
3605c34a TR |
1330 | } |
1331 | ||
53f6a2c9 TG |
1332 | /* Unfortunately dwarf2 register for SP is 32. */ |
1333 | ||
1334 | static int | |
1335 | avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
1336 | { | |
1337 | if (reg >= 0 && reg < 32) | |
1338 | return reg; | |
1339 | if (reg == 32) | |
1340 | return AVR_SP_REGNUM; | |
1341 | ||
1342 | warning (_("Unmapped DWARF Register #%d encountered."), reg); | |
1343 | ||
1344 | return -1; | |
1345 | } | |
1346 | ||
0963b4bd | 1347 | /* Initialize the gdbarch structure for the AVR's. */ |
8818c391 TR |
1348 | |
1349 | static struct gdbarch * | |
2e5ff58c TR |
1350 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1351 | { | |
2e5ff58c TR |
1352 | struct gdbarch *gdbarch; |
1353 | struct gdbarch_tdep *tdep; | |
4e99ad69 TG |
1354 | struct gdbarch_list *best_arch; |
1355 | int call_length; | |
8818c391 | 1356 | |
4e99ad69 | 1357 | /* Avr-6 call instructions save 3 bytes. */ |
8818c391 TR |
1358 | switch (info.bfd_arch_info->mach) |
1359 | { | |
1360 | case bfd_mach_avr1: | |
1361 | case bfd_mach_avr2: | |
1362 | case bfd_mach_avr3: | |
1363 | case bfd_mach_avr4: | |
1364 | case bfd_mach_avr5: | |
4e99ad69 TG |
1365 | default: |
1366 | call_length = 2; | |
1367 | break; | |
1368 | case bfd_mach_avr6: | |
1369 | call_length = 3; | |
8818c391 TR |
1370 | break; |
1371 | } | |
1372 | ||
4e99ad69 TG |
1373 | /* If there is already a candidate, use it. */ |
1374 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
1375 | best_arch != NULL; | |
1376 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
1377 | { | |
1378 | if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) | |
1379 | return best_arch->gdbarch; | |
1380 | } | |
1381 | ||
0963b4bd | 1382 | /* None found, create a new architecture from the information provided. */ |
4e99ad69 TG |
1383 | tdep = XMALLOC (struct gdbarch_tdep); |
1384 | gdbarch = gdbarch_alloc (&info, tdep); | |
1385 | ||
1386 | tdep->call_length = call_length; | |
1387 | ||
7d2552b4 TG |
1388 | /* Create a type for PC. We can't use builtin types here, as they may not |
1389 | be defined. */ | |
1390 | tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); | |
1391 | tdep->func_void_type = make_function_type (tdep->void_type, NULL); | |
1392 | tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL); | |
1393 | TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type; | |
1394 | TYPE_UNSIGNED (tdep->pc_type) = 1; | |
1395 | ||
8818c391 TR |
1396 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1397 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1398 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1399 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1400 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1401 | set_gdbarch_addr_bit (gdbarch, 32); | |
8818c391 TR |
1402 | |
1403 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1404 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1405 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1406 | ||
8da61cc4 DJ |
1407 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1408 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1409 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
8818c391 TR |
1410 | |
1411 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1412 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
8818c391 TR |
1413 | |
1414 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1415 | ||
1416 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
8818c391 TR |
1417 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); |
1418 | ||
1419 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
866b76ea | 1420 | set_gdbarch_register_type (gdbarch, avr_register_type); |
8818c391 | 1421 | |
7d2552b4 TG |
1422 | set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); |
1423 | set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); | |
1424 | set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); | |
1425 | ||
4c8b6ae0 | 1426 | set_gdbarch_return_value (gdbarch, avr_return_value); |
8818c391 TR |
1427 | set_gdbarch_print_insn (gdbarch, print_insn_avr); |
1428 | ||
4add8633 | 1429 | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); |
8818c391 | 1430 | |
53f6a2c9 TG |
1431 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); |
1432 | ||
8818c391 TR |
1433 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); |
1434 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
8a1d23b2 | 1435 | set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); |
8818c391 | 1436 | |
8818c391 | 1437 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); |
8818c391 TR |
1438 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
1439 | ||
909cd28e | 1440 | set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); |
8818c391 | 1441 | |
94afd7a6 | 1442 | frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); |
4add8633 TR |
1443 | frame_base_set_default (gdbarch, &avr_frame_base); |
1444 | ||
94afd7a6 | 1445 | set_gdbarch_dummy_id (gdbarch, avr_dummy_id); |
4add8633 TR |
1446 | |
1447 | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | |
30244cd8 | 1448 | set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); |
8818c391 | 1449 | |
8818c391 TR |
1450 | return gdbarch; |
1451 | } | |
1452 | ||
1453 | /* Send a query request to the avr remote target asking for values of the io | |
0963b4bd | 1454 | registers. If args parameter is not NULL, then the user has requested info |
8818c391 | 1455 | on a specific io register [This still needs implemented and is ignored for |
0963b4bd | 1456 | now]. The query string should be one of these forms: |
8818c391 TR |
1457 | |
1458 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1459 | ||
1460 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
0963b4bd | 1461 | registers to be read. The reply should be "<NAME>,VV;" for each io register |
8818c391 TR |
1462 | where, <NAME> is a string, and VV is the hex value of the register. |
1463 | ||
0963b4bd | 1464 | All io registers are 8-bit. */ |
8818c391 TR |
1465 | |
1466 | static void | |
1467 | avr_io_reg_read_command (char *args, int from_tty) | |
1468 | { | |
1e3ff5ad | 1469 | LONGEST bufsiz = 0; |
13547ab6 | 1470 | gdb_byte *buf; |
001f13d8 | 1471 | const char *bufstr; |
2e5ff58c | 1472 | char query[400]; |
001f13d8 | 1473 | const char *p; |
2e5ff58c TR |
1474 | unsigned int nreg = 0; |
1475 | unsigned int val; | |
1476 | int i, j, k, step; | |
8818c391 | 1477 | |
0963b4bd | 1478 | /* Find out how many io registers the target has. */ |
13547ab6 DJ |
1479 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1480 | "avr.io_reg", &buf); | |
001f13d8 | 1481 | bufstr = (const char *) buf; |
8818c391 | 1482 | |
13547ab6 | 1483 | if (bufsiz <= 0) |
8818c391 | 1484 | { |
2e5ff58c | 1485 | fprintf_unfiltered (gdb_stderr, |
13547ab6 DJ |
1486 | _("ERR: info io_registers NOT supported " |
1487 | "by current target\n")); | |
8818c391 TR |
1488 | return; |
1489 | } | |
1490 | ||
001f13d8 | 1491 | if (sscanf (bufstr, "%x", &nreg) != 1) |
8818c391 | 1492 | { |
2e5ff58c | 1493 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1494 | _("Error fetching number of io registers\n")); |
13547ab6 | 1495 | xfree (buf); |
8818c391 TR |
1496 | return; |
1497 | } | |
1498 | ||
13547ab6 DJ |
1499 | xfree (buf); |
1500 | ||
2e5ff58c | 1501 | reinitialize_more_filter (); |
8818c391 | 1502 | |
edefbb7c | 1503 | printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); |
8818c391 TR |
1504 | |
1505 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
1506 | step = 8; | |
1507 | ||
2e5ff58c | 1508 | for (i = 0; i < nreg; i += step) |
8818c391 | 1509 | { |
91ccbfc1 TR |
1510 | /* how many registers this round? */ |
1511 | j = step; | |
1512 | if ((i+j) >= nreg) | |
1513 | j = nreg - i; /* last block is less than 8 registers */ | |
8818c391 | 1514 | |
2e5ff58c | 1515 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
13547ab6 DJ |
1516 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1517 | query, &buf); | |
8818c391 | 1518 | |
001f13d8 | 1519 | p = (const char *) buf; |
2e5ff58c TR |
1520 | for (k = i; k < (i + j); k++) |
1521 | { | |
1522 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1523 | { | |
1524 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1525 | while ((*p != ';') && (*p != '\0')) | |
1526 | p++; | |
1527 | p++; /* skip over ';' */ | |
1528 | if (*p == '\0') | |
1529 | break; | |
1530 | } | |
1531 | } | |
13547ab6 DJ |
1532 | |
1533 | xfree (buf); | |
8818c391 TR |
1534 | } |
1535 | } | |
1536 | ||
a78f21af AC |
1537 | extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ |
1538 | ||
8818c391 TR |
1539 | void |
1540 | _initialize_avr_tdep (void) | |
1541 | { | |
1542 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1543 | ||
1544 | /* Add a new command to allow the user to query the avr remote target for | |
1545 | the values of the io space registers in a saner way than just using | |
0963b4bd | 1546 | `x/NNNb ADDR`. */ |
8818c391 TR |
1547 | |
1548 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
0963b4bd | 1549 | io_registers' to signify it is not available on other platforms. */ |
8818c391 TR |
1550 | |
1551 | add_cmd ("io_registers", class_info, avr_io_reg_read_command, | |
1a966eab AC |
1552 | _("query remote avr target for io space register values"), |
1553 | &infolist); | |
8818c391 | 1554 | } |