* tracepoint.c (trace_save): Call the writer's start method.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
28e7fd62 3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
5f8a3188 37#include "gdb_string.h"
a89aa300 38#include "dis-asm.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
0963b4bd 61 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
0963b4bd
MS
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
8818c391
TR
70
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
8818c391
TR
74/* Constants: prefixed with AVR_ to avoid name space clashes */
75
76enum
2e5ff58c
TR
77{
78 AVR_REG_W = 24,
79 AVR_REG_X = 26,
80 AVR_REG_Y = 28,
81 AVR_FP_REGNUM = 28,
82 AVR_REG_Z = 30,
83
84 AVR_SREG_REGNUM = 32,
85 AVR_SP_REGNUM = 33,
86 AVR_PC_REGNUM = 34,
87
88 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
89 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
90
7d2552b4
TG
91 /* Pseudo registers. */
92 AVR_PSEUDO_PC_REGNUM = 35,
93 AVR_NUM_PSEUDO_REGS = 1,
94
2e5ff58c
TR
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
4add8633 97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 98
0963b4bd 99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
100 AVR_MAX_PUSHES = 18,
101
0963b4bd 102 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
103 AVR_LAST_PUSHED_REGNUM = 17,
104
4add8633
TR
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
2e5ff58c 111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 112 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 119 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
0963b4bd 131 details of actually accessing the eeprom. */
2e5ff58c
TR
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 135#if 1
2e5ff58c
TR
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 138#else
2e5ff58c
TR
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 141#endif
2e5ff58c 142};
8818c391 143
4add8633
TR
144/* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156};
157
8818c391
TR
158/* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
4add8633 169struct avr_unwind_cache
2e5ff58c 170{
4add8633
TR
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 180};
8818c391
TR
181
182struct gdbarch_tdep
2e5ff58c 183{
4e99ad69
TG
184 /* Number of bytes stored to the stack by call instructions.
185 2 bytes for avr1-5, 3 bytes for avr6. */
186 int call_length;
7d2552b4
TG
187
188 /* Type for void. */
189 struct type *void_type;
190 /* Type for a function returning void. */
191 struct type *func_void_type;
192 /* Type for a pointer to a function. Used for the type of PC. */
193 struct type *pc_type;
2e5ff58c 194};
8818c391 195
0963b4bd 196/* Lookup the name of a register given it's number. */
8818c391 197
fa88f677 198static const char *
d93859e2 199avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 200{
4e99ad69 201 static const char * const register_names[] = {
2e5ff58c
TR
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
204 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
205 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
206 "SREG", "SP", "PC2",
207 "pc"
8818c391
TR
208 };
209 if (regnum < 0)
210 return NULL;
211 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
212 return NULL;
213 return register_names[regnum];
214}
215
8818c391
TR
216/* Return the GDB type object for the "standard" data type
217 of data in register N. */
218
219static struct type *
866b76ea 220avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 221{
866b76ea 222 if (reg_nr == AVR_PC_REGNUM)
df4df182 223 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
224 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
225 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 226 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 227 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 228 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
229}
230
0963b4bd 231/* Instruction address checks and convertions. */
8818c391
TR
232
233static CORE_ADDR
234avr_make_iaddr (CORE_ADDR x)
235{
236 return ((x) | AVR_IMEM_START);
237}
238
0963b4bd 239/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
240 devices are already up to 128KBytes of flash space.
241
0963b4bd 242 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
243
244static CORE_ADDR
245avr_convert_iaddr_to_raw (CORE_ADDR x)
246{
247 return ((x) & 0xffffffff);
248}
249
0963b4bd 250/* SRAM address checks and convertions. */
8818c391
TR
251
252static CORE_ADDR
253avr_make_saddr (CORE_ADDR x)
254{
ee143e81
TG
255 /* Return 0 for NULL. */
256 if (x == 0)
257 return 0;
258
8818c391
TR
259 return ((x) | AVR_SMEM_START);
260}
261
8818c391
TR
262static CORE_ADDR
263avr_convert_saddr_to_raw (CORE_ADDR x)
264{
265 return ((x) & 0xffffffff);
266}
267
0963b4bd
MS
268/* EEPROM address checks and convertions. I don't know if these will ever
269 actually be used, but I've added them just the same. TRoth */
8818c391
TR
270
271/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 272 programs in the mega128. */
8818c391
TR
273
274/* static CORE_ADDR */
275/* avr_make_eaddr (CORE_ADDR x) */
276/* { */
277/* return ((x) | AVR_EMEM_START); */
278/* } */
279
280/* static int */
281/* avr_eaddr_p (CORE_ADDR x) */
282/* { */
283/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
284/* } */
285
286/* static CORE_ADDR */
287/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
288/* { */
289/* return ((x) & 0xffffffff); */
290/* } */
291
0963b4bd 292/* Convert from address to pointer and vice-versa. */
8818c391
TR
293
294static void
9898f801
UW
295avr_address_to_pointer (struct gdbarch *gdbarch,
296 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 297{
e17a4113
UW
298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
299
8818c391
TR
300 /* Is it a code address? */
301 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
302 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
303 {
e17a4113 304 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 305 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
306 }
307 else
308 {
309 /* Strip off any upper segment bits. */
e17a4113 310 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 311 avr_convert_saddr_to_raw (addr));
8818c391
TR
312 }
313}
314
315static CORE_ADDR
9898f801
UW
316avr_pointer_to_address (struct gdbarch *gdbarch,
317 struct type *type, const gdb_byte *buf)
8818c391 318{
e17a4113
UW
319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320 CORE_ADDR addr
321 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 322
8818c391
TR
323 /* Is it a code address? */
324 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
325 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 326 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 327 return avr_make_iaddr (addr << 1);
8818c391
TR
328 else
329 return avr_make_saddr (addr);
330}
331
8a1d23b2
TG
332static CORE_ADDR
333avr_integer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
335{
336 ULONGEST addr = unpack_long (type, buf);
337
338 return avr_make_saddr (addr);
339}
340
8818c391 341static CORE_ADDR
61a1198a 342avr_read_pc (struct regcache *regcache)
8818c391 343{
8619218d 344 ULONGEST pc;
61a1198a
UW
345 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
346 return avr_make_iaddr (pc);
8818c391
TR
347}
348
349static void
61a1198a 350avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 351{
61a1198a 352 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
353 avr_convert_iaddr_to_raw (val));
354}
355
05d1431c 356static enum register_status
7d2552b4
TG
357avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359{
360 ULONGEST val;
05d1431c 361 enum register_status status;
7d2552b4
TG
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
366 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 if (status != REG_VALID)
368 return status;
7d2552b4
TG
369 val >>= 1;
370 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 371 return status;
7d2552b4
TG
372 default:
373 internal_error (__FILE__, __LINE__, _("invalid regnum"));
374 }
375}
376
377static void
378avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
379 int regnum, const gdb_byte *buf)
380{
381 ULONGEST val;
382
383 switch (regnum)
384 {
385 case AVR_PSEUDO_PC_REGNUM:
386 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
387 val <<= 1;
388 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
389 break;
390 default:
391 internal_error (__FILE__, __LINE__, _("invalid regnum"));
392 }
8818c391
TR
393}
394
4add8633 395/* Function: avr_scan_prologue
8818c391 396
4add8633 397 This function decodes an AVR function prologue to determine:
8818c391
TR
398 1) the size of the stack frame
399 2) which registers are saved on it
400 3) the offsets of saved regs
4add8633 401 This information is stored in the avr_unwind_cache structure.
8818c391 402
e3d8b004
TR
403 Some devices lack the sbiw instruction, so on those replace this:
404 sbiw r28, XX
405 with this:
406 subi r28,lo8(XX)
407 sbci r29,hi8(XX)
408
409 A typical AVR function prologue with a frame pointer might look like this:
410 push rXX ; saved regs
411 ...
412 push r28
413 push r29
414 in r28,__SP_L__
415 in r29,__SP_H__
416 sbiw r28,<LOCALS_SIZE>
417 in __tmp_reg__,__SREG__
8818c391 418 cli
e3d8b004 419 out __SP_H__,r29
72fab697
TR
420 out __SREG__,__tmp_reg__
421 out __SP_L__,r28
e3d8b004
TR
422
423 A typical AVR function prologue without a frame pointer might look like
424 this:
425 push rXX ; saved regs
426 ...
427
428 A main function prologue looks like this:
429 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
430 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
431 out __SP_H__,r29
432 out __SP_L__,r28
433
434 A signal handler prologue looks like this:
435 push __zero_reg__
436 push __tmp_reg__
437 in __tmp_reg__, __SREG__
438 push __tmp_reg__
439 clr __zero_reg__
440 push rXX ; save registers r18:r27, r30:r31
441 ...
442 push r28 ; save frame pointer
443 push r29
444 in r28, __SP_L__
445 in r29, __SP_H__
446 sbiw r28, <LOCALS_SIZE>
447 out __SP_H__, r29
448 out __SP_L__, r28
449
450 A interrupt handler prologue looks like this:
451 sei
452 push __zero_reg__
453 push __tmp_reg__
454 in __tmp_reg__, __SREG__
455 push __tmp_reg__
456 clr __zero_reg__
457 push rXX ; save registers r18:r27, r30:r31
458 ...
459 push r28 ; save frame pointer
460 push r29
461 in r28, __SP_L__
462 in r29, __SP_H__
463 sbiw r28, <LOCALS_SIZE>
464 cli
465 out __SP_H__, r29
466 sei
467 out __SP_L__, r28
468
469 A `-mcall-prologues' prologue looks like this (Note that the megas use a
470 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
471 32 bit insn and rjmp is a 16 bit insn):
472 ldi r26,lo8(<LOCALS_SIZE>)
473 ldi r27,hi8(<LOCALS_SIZE>)
474 ldi r30,pm_lo8(.L_foo_body)
475 ldi r31,pm_hi8(.L_foo_body)
476 rjmp __prologue_saves__+RRR
477 .L_foo_body: */
8818c391 478
4add8633
TR
479/* Not really part of a prologue, but still need to scan for it, is when a
480 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
481 registers. In this case, all local variables live in registers, so there
482 may be some register saves. This is what it looks like:
4add8633
TR
483 movw rMM, rNN
484 ...
485
0963b4bd
MS
486 There could be multiple movw's. If the target doesn't have a movw insn, it
487 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
488 types. */
489
490static CORE_ADDR
e17a4113 491avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 492 struct avr_unwind_cache *info)
8818c391 493{
e17a4113 494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
495 int i;
496 unsigned short insn;
2e5ff58c 497 int scan_stage = 0;
8818c391 498 struct minimal_symbol *msymbol;
8818c391
TR
499 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
500 int vpc = 0;
4e99ad69
TG
501 int len;
502
503 len = pc_end - pc_beg;
504 if (len > AVR_MAX_PROLOGUE_SIZE)
505 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 506
4add8633 507 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
508 reading in the bytes of the prologue. The problem is that the figuring
509 out where the end of the prologue is is a bit difficult. The old code
4add8633 510 tried to do that, but failed quite often. */
4e99ad69 511 read_memory (pc_beg, prologue, len);
8818c391
TR
512
513 /* Scanning main()'s prologue
514 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
515 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
516 out __SP_H__,r29
517 out __SP_L__,r28 */
518
4e99ad69 519 if (len >= 4)
8818c391
TR
520 {
521 CORE_ADDR locals;
4e99ad69 522 static const unsigned char img[] = {
2e5ff58c
TR
523 0xde, 0xbf, /* out __SP_H__,r29 */
524 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
525 };
526
e17a4113 527 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 528 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
529 if ((insn & 0xf0f0) == 0xe0c0)
530 {
531 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 532 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
533 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
534 if ((insn & 0xf0f0) == 0xe0d0)
535 {
536 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
537 if (vpc + 4 + sizeof (img) < len
538 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 539 {
4add8633
TR
540 info->prologue_type = AVR_PROLOGUE_MAIN;
541 info->base = locals;
4e99ad69 542 return pc_beg + 4;
2e5ff58c
TR
543 }
544 }
545 }
8818c391 546 }
2e5ff58c 547
4add8633
TR
548 /* Scanning `-mcall-prologues' prologue
549 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 550
e3d8b004 551 while (1) /* Using a while to avoid many goto's */
8818c391
TR
552 {
553 int loc_size;
554 int body_addr;
555 unsigned num_pushes;
4add8633 556 int pc_offset = 0;
2e5ff58c 557
4e99ad69
TG
558 /* At least the fifth instruction must have been executed to
559 modify frame shape. */
560 if (len < 10)
561 break;
562
e17a4113 563 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 564 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
565 if ((insn & 0xf0f0) != 0xe0a0)
566 break;
8818c391 567 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 568 pc_offset += 2;
2e5ff58c 569
e17a4113 570 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
571 /* ldi r27,<LOCALS_SIZE> / 256 */
572 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 573 break;
8818c391 574 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 575 pc_offset += 2;
2e5ff58c 576
e17a4113 577 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
578 /* ldi r30,pm_lo8(.L_foo_body) */
579 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 580 break;
8818c391 581 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 582 pc_offset += 2;
8818c391 583
e17a4113 584 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
585 /* ldi r31,pm_hi8(.L_foo_body) */
586 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 587 break;
8818c391 588 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 589 pc_offset += 2;
8818c391 590
8818c391
TR
591 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
592 if (!msymbol)
2e5ff58c 593 break;
8818c391 594
e17a4113 595 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 596 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
597 if ((insn & 0xf000) == 0xc000)
598 {
599 /* Extract PC relative offset from RJMP */
600 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
601 /* Convert offset to byte addressable mode */
602 i *= 2;
603 /* Destination address */
4e99ad69 604 i += pc_beg + 10;
e3d8b004 605
4e99ad69 606 if (body_addr != (pc_beg + 10)/2)
e3d8b004 607 break;
4add8633
TR
608
609 pc_offset += 2;
e3d8b004 610 }
e3d8b004
TR
611 else if ((insn & 0xfe0e) == 0x940c)
612 {
613 /* Extract absolute PC address from JMP */
614 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
615 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
616 & 0xffff));
e3d8b004
TR
617 /* Convert address to byte addressable mode */
618 i *= 2;
619
4e99ad69 620 if (body_addr != (pc_beg + 12)/2)
e3d8b004 621 break;
4add8633
TR
622
623 pc_offset += 4;
e3d8b004
TR
624 }
625 else
626 break;
2e5ff58c 627
4add8633 628 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
629 Which is a pushes count in `-mcall-prologues' mode */
630 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
631
632 if (num_pushes > AVR_MAX_PUSHES)
4add8633 633 {
edefbb7c 634 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
635 num_pushes);
636 num_pushes = 0;
637 }
2e5ff58c 638
8818c391 639 if (num_pushes)
2e5ff58c
TR
640 {
641 int from;
4add8633
TR
642
643 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 644 if (num_pushes >= 2)
4add8633
TR
645 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
646
2e5ff58c
TR
647 i = 0;
648 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
649 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 650 info->saved_regs [from].addr = ++i;
2e5ff58c 651 }
4add8633
TR
652 info->size = loc_size + num_pushes;
653 info->prologue_type = AVR_PROLOGUE_CALL;
654
4e99ad69 655 return pc_beg + pc_offset;
8818c391
TR
656 }
657
4add8633
TR
658 /* Scan for the beginning of the prologue for an interrupt or signal
659 function. Note that we have to set the prologue type here since the
660 third stage of the prologue may not be present (e.g. no saved registered
661 or changing of the SP register). */
8818c391 662
4add8633 663 if (1)
8818c391 664 {
4e99ad69 665 static const unsigned char img[] = {
2e5ff58c
TR
666 0x78, 0x94, /* sei */
667 0x1f, 0x92, /* push r1 */
668 0x0f, 0x92, /* push r0 */
669 0x0f, 0xb6, /* in r0,0x3f SREG */
670 0x0f, 0x92, /* push r0 */
671 0x11, 0x24 /* clr r1 */
8818c391 672 };
4e99ad69
TG
673 if (len >= sizeof (img)
674 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 675 {
4add8633 676 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 677 vpc += sizeof (img);
4add8633
TR
678 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
679 info->saved_regs[0].addr = 2;
680 info->saved_regs[1].addr = 1;
681 info->size += 3;
2e5ff58c 682 }
4e99ad69
TG
683 else if (len >= sizeof (img) - 2
684 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 685 {
4add8633
TR
686 info->prologue_type = AVR_PROLOGUE_SIG;
687 vpc += sizeof (img) - 2;
688 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
689 info->saved_regs[0].addr = 2;
690 info->saved_regs[1].addr = 1;
243e2c5d 691 info->size += 2;
2e5ff58c 692 }
8818c391
TR
693 }
694
695 /* First stage of the prologue scanning.
4add8633 696 Scan pushes (saved registers) */
8818c391 697
4e99ad69 698 for (; vpc < len; vpc += 2)
8818c391 699 {
e17a4113 700 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
701 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
702 {
0963b4bd 703 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
704 int regno = (insn & 0x1f0) >> 4;
705 info->size++;
706 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
707 scan_stage = 1;
708 }
8818c391 709 else
2e5ff58c 710 break;
8818c391
TR
711 }
712
243e2c5d 713 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 714
1bd0bb72
TG
715 /* Handle static small stack allocation using rcall or push. */
716
717 while (scan_stage == 1 && vpc < len)
718 {
719 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
720 if (insn == 0xd000) /* rcall .+0 */
721 {
722 info->size += gdbarch_tdep (gdbarch)->call_length;
723 vpc += 2;
724 }
725 else if (insn == 0x920f) /* push r0 */
726 {
727 info->size += 1;
728 vpc += 2;
729 }
730 else
731 break;
732 }
733
8818c391
TR
734 /* Second stage of the prologue scanning.
735 Scan:
736 in r28,__SP_L__
737 in r29,__SP_H__ */
738
4e99ad69 739 if (scan_stage == 1 && vpc < len)
8818c391 740 {
4e99ad69 741 static const unsigned char img[] = {
2e5ff58c
TR
742 0xcd, 0xb7, /* in r28,__SP_L__ */
743 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 744 };
2e5ff58c 745
4e99ad69
TG
746 if (vpc + sizeof (img) < len
747 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
748 {
749 vpc += 4;
2e5ff58c
TR
750 scan_stage = 2;
751 }
8818c391
TR
752 }
753
0963b4bd 754 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
755 Scan for:
756 sbiw r28,XX or subi r28,lo8(XX)
72fab697 757 sbci r29,hi8(XX)
8818c391
TR
758 in __tmp_reg__,__SREG__
759 cli
e3d8b004 760 out __SP_H__,r29
8818c391 761 out __SREG__,__tmp_reg__
e3d8b004 762 out __SP_L__,r28 */
8818c391 763
4e99ad69 764 if (scan_stage == 2 && vpc < len)
8818c391
TR
765 {
766 int locals_size = 0;
4e99ad69 767 static const unsigned char img[] = {
2e5ff58c
TR
768 0x0f, 0xb6, /* in r0,0x3f */
769 0xf8, 0x94, /* cli */
e3d8b004 770 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 771 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 772 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 773 };
4e99ad69 774 static const unsigned char img_sig[] = {
e3d8b004
TR
775 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
776 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 777 };
4e99ad69 778 static const unsigned char img_int[] = {
2e5ff58c 779 0xf8, 0x94, /* cli */
e3d8b004 780 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 781 0x78, 0x94, /* sei */
e3d8b004 782 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 783 };
2e5ff58c 784
e17a4113 785 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 786 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
787 {
788 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
789 vpc += 2;
790 }
2e5ff58c
TR
791 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
792 {
793 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 794 vpc += 2;
e17a4113 795 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 796 vpc += 2;
1bd0bb72 797 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 798 }
8818c391 799 else
1bd0bb72 800 return pc_beg + vpc;
4add8633 801
0963b4bd 802 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
803 or signal handler functions, which is why we set the prologue type
804 when we saw the beginning of the prologue previously. */
805
4e99ad69
TG
806 if (vpc + sizeof (img_sig) < len
807 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
808 {
809 vpc += sizeof (img_sig);
810 }
4e99ad69
TG
811 else if (vpc + sizeof (img_int) < len
812 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
813 {
814 vpc += sizeof (img_int);
815 }
4e99ad69
TG
816 if (vpc + sizeof (img) < len
817 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
818 {
819 info->prologue_type = AVR_PROLOGUE_NORMAL;
820 vpc += sizeof (img);
821 }
822
823 info->size += locals_size;
824
4e99ad69 825 /* Fall through. */
8818c391 826 }
4add8633
TR
827
828 /* If we got this far, we could not scan the prologue, so just return the pc
829 of the frame plus an adjustment for argument move insns. */
830
4e99ad69
TG
831 for (; vpc < len; vpc += 2)
832 {
e17a4113 833 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
834 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
835 continue;
836 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
837 continue;
838 else
839 break;
840 }
841
842 return pc_beg + vpc;
8818c391
TR
843}
844
4add8633 845static CORE_ADDR
6093d2eb 846avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
847{
848 CORE_ADDR func_addr, func_end;
8c201e54 849 CORE_ADDR post_prologue_pc;
8818c391 850
4add8633 851 /* See what the symbol table says */
8818c391 852
8c201e54
TG
853 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
854 return pc;
2e5ff58c 855
8c201e54
TG
856 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
857 if (post_prologue_pc != 0)
858 return max (pc, post_prologue_pc);
8818c391 859
8c201e54
TG
860 {
861 CORE_ADDR prologue_end = pc;
862 struct avr_unwind_cache info = {0};
863 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 864
8c201e54
TG
865 info.saved_regs = saved_regs;
866
867 /* Need to run the prologue scanner to figure out if the function has a
868 prologue and possibly skip over moving arguments passed via registers
869 to other registers. */
870
871 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
872
873 if (info.prologue_type != AVR_PROLOGUE_NONE)
874 return prologue_end;
875 }
2e5ff58c 876
4e99ad69
TG
877 /* Either we didn't find the start of this function (nothing we can do),
878 or there's no line info, or the line after the prologue is after
0963b4bd 879 the end of the function (there probably isn't a prologue). */
2e5ff58c 880
8c201e54 881 return pc;
4add8633 882}
8818c391 883
0963b4bd
MS
884/* Not all avr devices support the BREAK insn. Those that don't should treat
885 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
886 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 887
4add8633 888static const unsigned char *
0963b4bd
MS
889avr_breakpoint_from_pc (struct gdbarch *gdbarch,
890 CORE_ADDR *pcptr, int *lenptr)
4add8633 891{
4e99ad69 892 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
893 *lenptr = sizeof (avr_break_insn);
894 return avr_break_insn;
8818c391
TR
895}
896
4c8b6ae0
UW
897/* Determine, for architecture GDBARCH, how a return value of TYPE
898 should be returned. If it is supposed to be returned in registers,
899 and READBUF is non-zero, read the appropriate value from REGCACHE,
900 and copy it into READBUF. If WRITEBUF is non-zero, write the value
901 from WRITEBUF into REGCACHE. */
902
63807e1d 903static enum return_value_convention
6a3a010b 904avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
905 struct type *valtype, struct regcache *regcache,
906 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 907{
1bd0bb72
TG
908 int i;
909 /* Single byte are returned in r24.
910 Otherwise, the MSB of the return value is always in r25, calculate which
911 register holds the LSB. */
912 int lsb_reg;
913
914 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
915 || TYPE_CODE (valtype) == TYPE_CODE_UNION
916 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
917 && TYPE_LENGTH (valtype) > 8)
918 return RETURN_VALUE_STRUCT_CONVENTION;
919
920 if (TYPE_LENGTH (valtype) <= 2)
921 lsb_reg = 24;
922 else if (TYPE_LENGTH (valtype) <= 4)
923 lsb_reg = 22;
924 else if (TYPE_LENGTH (valtype) <= 8)
925 lsb_reg = 18;
926 else
f3574227 927 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
928
929 if (writebuf != NULL)
930 {
1bd0bb72
TG
931 for (i = 0; i < TYPE_LENGTH (valtype); i++)
932 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
933 }
934
935 if (readbuf != NULL)
936 {
1bd0bb72
TG
937 for (i = 0; i < TYPE_LENGTH (valtype); i++)
938 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
939 }
940
1bd0bb72 941 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
942}
943
944
4add8633
TR
945/* Put here the code to store, into fi->saved_regs, the addresses of
946 the saved registers of frame described by FRAME_INFO. This
947 includes special registers such as pc and fp saved in special ways
948 in the stack frame. sp is even more special: the address we return
0963b4bd 949 for it IS the sp for the next frame. */
8818c391 950
63807e1d 951static struct avr_unwind_cache *
94afd7a6 952avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 953 void **this_prologue_cache)
8818c391 954{
4e99ad69 955 CORE_ADDR start_pc, current_pc;
4add8633
TR
956 ULONGEST prev_sp;
957 ULONGEST this_base;
958 struct avr_unwind_cache *info;
4e99ad69
TG
959 struct gdbarch *gdbarch;
960 struct gdbarch_tdep *tdep;
4add8633
TR
961 int i;
962
4e99ad69
TG
963 if (*this_prologue_cache)
964 return *this_prologue_cache;
4add8633
TR
965
966 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 967 *this_prologue_cache = info;
94afd7a6 968 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
969
970 info->size = 0;
971 info->prologue_type = AVR_PROLOGUE_NONE;
972
4e99ad69
TG
973 start_pc = get_frame_func (this_frame);
974 current_pc = get_frame_pc (this_frame);
975 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
976 avr_scan_prologue (get_frame_arch (this_frame),
977 start_pc, current_pc, info);
4add8633 978
3b85b0f1
TR
979 if ((info->prologue_type != AVR_PROLOGUE_NONE)
980 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
981 {
982 ULONGEST high_base; /* High byte of FP */
983
984 /* The SP was moved to the FP. This indicates that a new frame
985 was created. Get THIS frame's FP value by unwinding it from
986 the next frame. */
94afd7a6 987 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 988 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
989 this_base += (high_base << 8);
990
991 /* The FP points at the last saved register. Adjust the FP back
992 to before the first saved register giving the SP. */
993 prev_sp = this_base + info->size;
994 }
8818c391 995 else
4add8633
TR
996 {
997 /* Assume that the FP is this frame's SP but with that pushed
998 stack space added back. */
94afd7a6 999 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1000 prev_sp = this_base + info->size;
1001 }
1002
1003 /* Add 1 here to adjust for the post-decrement nature of the push
1004 instruction.*/
4e99ad69 1005 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1006 info->base = avr_make_saddr (this_base);
1007
4e99ad69
TG
1008 gdbarch = get_frame_arch (this_frame);
1009
4add8633 1010 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1011 offsets. */
4e99ad69
TG
1012 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1013 if (info->saved_regs[i].addr > 0)
1014 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1015
1016 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1017 the stack and is at the base of the frame. */
4add8633
TR
1018
1019 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1020 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1021
3b85b0f1
TR
1022 /* The previous frame's SP needed to be computed. Save the computed
1023 value. */
4e99ad69
TG
1024 tdep = gdbarch_tdep (gdbarch);
1025 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1026 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1027
4add8633 1028 return info;
8818c391
TR
1029}
1030
1031static CORE_ADDR
4add8633 1032avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1033{
4add8633
TR
1034 ULONGEST pc;
1035
11411de3 1036 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1037
1038 return avr_make_iaddr (pc);
8818c391
TR
1039}
1040
30244cd8
UW
1041static CORE_ADDR
1042avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1043{
1044 ULONGEST sp;
1045
11411de3 1046 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1047
1048 return avr_make_saddr (sp);
1049}
1050
4add8633
TR
1051/* Given a GDB frame, determine the address of the calling function's
1052 frame. This will be used to create a new GDB frame struct. */
8818c391 1053
4add8633 1054static void
94afd7a6 1055avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1056 void **this_prologue_cache,
1057 struct frame_id *this_id)
8818c391 1058{
4add8633 1059 struct avr_unwind_cache *info
94afd7a6 1060 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1061 CORE_ADDR base;
1062 CORE_ADDR func;
1063 struct frame_id id;
1064
1065 /* The FUNC is easy. */
94afd7a6 1066 func = get_frame_func (this_frame);
4add8633 1067
4add8633
TR
1068 /* Hopefully the prologue analysis either correctly determined the
1069 frame's base (which is the SP from the previous frame), or set
1070 that base to "NULL". */
1071 base = info->prev_sp;
1072 if (base == 0)
1073 return;
1074
1075 id = frame_id_build (base, func);
4add8633 1076 (*this_id) = id;
8818c391
TR
1077}
1078
94afd7a6
UW
1079static struct value *
1080avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1081 void **this_prologue_cache, int regnum)
8818c391 1082{
e17a4113
UW
1083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1084 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1085 struct avr_unwind_cache *info
94afd7a6 1086 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1087
7d2552b4 1088 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1089 {
7d2552b4 1090 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1091 {
94afd7a6
UW
1092 /* Reading the return PC from the PC register is slightly
1093 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1094 but in reality, only two bytes (3 in upcoming mega256) are
1095 stored on the stack.
1096
1097 Also, note that the value on the stack is an addr to a word
1098 not a byte, so we will need to multiply it by two at some
1099 point.
1100
1101 And to confuse matters even more, the return address stored
1102 on the stack is in big endian byte order, even though most
0963b4bd 1103 everything else about the avr is little endian. Ick! */
94afd7a6 1104 ULONGEST pc;
4e99ad69 1105 int i;
e362b510 1106 gdb_byte buf[3];
4e99ad69
TG
1107 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1109
7d2552b4
TG
1110 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1111 buf, tdep->call_length);
94afd7a6 1112
4e99ad69
TG
1113 /* Extract the PC read from memory as a big-endian. */
1114 pc = 0;
1115 for (i = 0; i < tdep->call_length; i++)
1116 pc = (pc << 8) | buf[i];
94afd7a6 1117
7d2552b4
TG
1118 if (regnum == AVR_PC_REGNUM)
1119 pc <<= 1;
1120
1121 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1122 }
94afd7a6
UW
1123
1124 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1125 }
94afd7a6
UW
1126
1127 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1128}
8818c391 1129
4add8633
TR
1130static const struct frame_unwind avr_frame_unwind = {
1131 NORMAL_FRAME,
8fbca658 1132 default_frame_unwind_stop_reason,
4add8633 1133 avr_frame_this_id,
94afd7a6
UW
1134 avr_frame_prev_register,
1135 NULL,
1136 default_frame_sniffer
4add8633
TR
1137};
1138
8818c391 1139static CORE_ADDR
94afd7a6 1140avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1141{
4add8633 1142 struct avr_unwind_cache *info
94afd7a6 1143 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1144
4add8633
TR
1145 return info->base;
1146}
8818c391 1147
4add8633
TR
1148static const struct frame_base avr_frame_base = {
1149 &avr_frame_unwind,
1150 avr_frame_base_address,
1151 avr_frame_base_address,
1152 avr_frame_base_address
1153};
ced15480 1154
94afd7a6
UW
1155/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1156 frame. The frame ID's base needs to match the TOS value saved by
1157 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1158
4add8633 1159static struct frame_id
94afd7a6 1160avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1161{
1162 ULONGEST base;
8818c391 1163
94afd7a6
UW
1164 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1165 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1166}
1167
4add8633 1168/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1169 order. The below implements a FILO (stack) to do this. */
8818c391 1170
4add8633
TR
1171struct stack_item
1172{
1173 int len;
1174 struct stack_item *prev;
1175 void *data;
1176};
8818c391 1177
4add8633 1178static struct stack_item *
0fd88904 1179push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1180{
4add8633
TR
1181 struct stack_item *si;
1182 si = xmalloc (sizeof (struct stack_item));
1183 si->data = xmalloc (len);
1184 si->len = len;
1185 si->prev = prev;
1186 memcpy (si->data, contents, len);
1187 return si;
8818c391
TR
1188}
1189
4add8633
TR
1190static struct stack_item *pop_stack_item (struct stack_item *si);
1191static struct stack_item *
1192pop_stack_item (struct stack_item *si)
8818c391 1193{
4add8633
TR
1194 struct stack_item *dead = si;
1195 si = si->prev;
1196 xfree (dead->data);
1197 xfree (dead);
1198 return si;
8818c391
TR
1199}
1200
8818c391
TR
1201/* Setup the function arguments for calling a function in the inferior.
1202
1203 On the AVR architecture, there are 18 registers (R25 to R8) which are
1204 dedicated for passing function arguments. Up to the first 18 arguments
1205 (depending on size) may go into these registers. The rest go on the stack.
1206
4add8633 1207 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1208 arguments, including char, have one free register above them). For example,
4add8633
TR
1209 an int in arg1 and a char in arg2 would be passed as such:
1210
1211 arg1 -> r25:r24
1212 arg2 -> r22
1213
1214 Arguments that are larger than 2 bytes will be split between two or more
1215 registers as available, but will NOT be split between a register and the
0963b4bd 1216 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1217 similar to the d10v). */
1218
1219/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1220 inaccurate.
8818c391
TR
1221
1222 An exceptional case exists for struct arguments (and possibly other
1223 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1224 not a multiple of WORDSIZE bytes. In this case the argument is never split
1225 between the registers and the stack, but instead is copied in its entirety
1226 onto the stack, AND also copied into as many registers as there is room
1227 for. In other words, space in registers permitting, two copies of the same
1228 argument are passed in. As far as I can tell, only the one on the stack is
1229 used, although that may be a function of the level of compiler
1230 optimization. I suspect this is a compiler bug. Arguments of these odd
1231 sizes are left-justified within the word (as opposed to arguments smaller
1232 than WORDSIZE bytes, which are right-justified).
1233
1234 If the function is to return an aggregate type such as a struct, the caller
1235 must allocate space into which the callee will copy the return value. In
1236 this case, a pointer to the return value location is passed into the callee
1237 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1238 registers R0 to R2. */
8818c391
TR
1239
1240static CORE_ADDR
7d9b040b 1241avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1242 struct regcache *regcache, CORE_ADDR bp_addr,
1243 int nargs, struct value **args, CORE_ADDR sp,
1244 int struct_return, CORE_ADDR struct_addr)
8818c391 1245{
e17a4113 1246 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1247 int i;
e362b510 1248 gdb_byte buf[3];
6d1915d4 1249 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1250 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1251 int regnum = AVR_ARGN_REGNUM;
1252 struct stack_item *si = NULL;
8818c391 1253
4add8633 1254 if (struct_return)
8818c391 1255 {
fd6d6815
TG
1256 regcache_cooked_write_unsigned
1257 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1258 regcache_cooked_write_unsigned
1259 (regcache, regnum--, struct_addr & 0xff);
1260 /* SP being post decremented, we need to reserve one byte so that the
1261 return address won't overwrite the result (or vice-versa). */
1262 if (sp == struct_addr)
1263 sp--;
8818c391
TR
1264 }
1265
4add8633 1266 for (i = 0; i < nargs; i++)
8818c391 1267 {
4add8633
TR
1268 int last_regnum;
1269 int j;
1270 struct value *arg = args[i];
4991999e 1271 struct type *type = check_typedef (value_type (arg));
0fd88904 1272 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1273 int len = TYPE_LENGTH (type);
1274
0963b4bd 1275 /* Calculate the potential last register needed. */
4add8633
TR
1276 last_regnum = regnum - (len + (len & 1));
1277
0963b4bd
MS
1278 /* If there are registers available, use them. Once we start putting
1279 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1280 if ((si == NULL) && (last_regnum >= 8))
1281 {
1282 ULONGEST val;
1283
0963b4bd 1284 /* Skip a register for odd length args. */
4add8633
TR
1285 if (len & 1)
1286 regnum--;
1287
e17a4113 1288 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1289 for (j = 0; j < len; j++)
1290 regcache_cooked_write_unsigned
1291 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1292 }
0963b4bd 1293 /* No registers available, push the args onto the stack. */
4add8633
TR
1294 else
1295 {
0963b4bd 1296 /* From here on, we don't care about regnum. */
4add8633
TR
1297 si = push_stack_item (si, contents, len);
1298 }
8818c391 1299 }
909cd28e 1300
0963b4bd 1301 /* Push args onto the stack. */
4add8633
TR
1302 while (si)
1303 {
1304 sp -= si->len;
0963b4bd 1305 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1306 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1307 si = pop_stack_item (si);
1308 }
3605c34a 1309
4add8633
TR
1310 /* Set the return address. For the avr, the return address is the BP_ADDR.
1311 Need to push the return address onto the stack noting that it needs to be
1312 in big-endian order on the stack. */
6d1915d4
TG
1313 for (i = 1; i <= call_length; i++)
1314 {
1315 buf[call_length - i] = return_pc & 0xff;
1316 return_pc >>= 8;
1317 }
3605c34a 1318
6d1915d4 1319 sp -= call_length;
0963b4bd 1320 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1321 write_memory (sp + 1, buf, call_length);
3605c34a 1322
0963b4bd 1323 /* Finally, update the SP register. */
4add8633
TR
1324 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1325 avr_convert_saddr_to_raw (sp));
3605c34a 1326
6d1915d4
TG
1327 /* Return SP value for the dummy frame, where the return address hasn't been
1328 pushed. */
1329 return sp + call_length;
3605c34a
TR
1330}
1331
53f6a2c9
TG
1332/* Unfortunately dwarf2 register for SP is 32. */
1333
1334static int
1335avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1336{
1337 if (reg >= 0 && reg < 32)
1338 return reg;
1339 if (reg == 32)
1340 return AVR_SP_REGNUM;
1341
1342 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1343
1344 return -1;
1345}
1346
0963b4bd 1347/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1348
1349static struct gdbarch *
2e5ff58c
TR
1350avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1351{
2e5ff58c
TR
1352 struct gdbarch *gdbarch;
1353 struct gdbarch_tdep *tdep;
4e99ad69
TG
1354 struct gdbarch_list *best_arch;
1355 int call_length;
8818c391 1356
4e99ad69 1357 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1358 switch (info.bfd_arch_info->mach)
1359 {
1360 case bfd_mach_avr1:
1361 case bfd_mach_avr2:
1362 case bfd_mach_avr3:
1363 case bfd_mach_avr4:
1364 case bfd_mach_avr5:
4e99ad69
TG
1365 default:
1366 call_length = 2;
1367 break;
1368 case bfd_mach_avr6:
1369 call_length = 3;
8818c391
TR
1370 break;
1371 }
1372
4e99ad69
TG
1373 /* If there is already a candidate, use it. */
1374 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1375 best_arch != NULL;
1376 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1377 {
1378 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1379 return best_arch->gdbarch;
1380 }
1381
0963b4bd 1382 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1383 tdep = XMALLOC (struct gdbarch_tdep);
1384 gdbarch = gdbarch_alloc (&info, tdep);
1385
1386 tdep->call_length = call_length;
1387
7d2552b4
TG
1388 /* Create a type for PC. We can't use builtin types here, as they may not
1389 be defined. */
1390 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1391 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1392 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1393 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1394 TYPE_UNSIGNED (tdep->pc_type) = 1;
1395
8818c391
TR
1396 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1397 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1399 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1400 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1401 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1402
1403 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1406
8da61cc4
DJ
1407 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1408 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1409 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1410
1411 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1412 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1413
1414 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1415
1416 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1417 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1418
1419 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1420 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1421
7d2552b4
TG
1422 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1423 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1424 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1425
4c8b6ae0 1426 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1427 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1428
4add8633 1429 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1430
53f6a2c9
TG
1431 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1432
8818c391
TR
1433 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1434 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1435 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1436
8818c391 1437 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1438 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1439
909cd28e 1440 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1441
94afd7a6 1442 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1443 frame_base_set_default (gdbarch, &avr_frame_base);
1444
94afd7a6 1445 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1446
1447 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1448 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1449
8818c391
TR
1450 return gdbarch;
1451}
1452
1453/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1454 registers. If args parameter is not NULL, then the user has requested info
8818c391 1455 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1456 now]. The query string should be one of these forms:
8818c391
TR
1457
1458 "Ravr.io_reg" -> reply is "NN" number of io registers
1459
1460 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1461 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1462 where, <NAME> is a string, and VV is the hex value of the register.
1463
0963b4bd 1464 All io registers are 8-bit. */
8818c391
TR
1465
1466static void
1467avr_io_reg_read_command (char *args, int from_tty)
1468{
1e3ff5ad 1469 LONGEST bufsiz = 0;
13547ab6 1470 gdb_byte *buf;
001f13d8 1471 const char *bufstr;
2e5ff58c 1472 char query[400];
001f13d8 1473 const char *p;
2e5ff58c
TR
1474 unsigned int nreg = 0;
1475 unsigned int val;
1476 int i, j, k, step;
8818c391 1477
0963b4bd 1478 /* Find out how many io registers the target has. */
13547ab6
DJ
1479 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1480 "avr.io_reg", &buf);
001f13d8 1481 bufstr = (const char *) buf;
8818c391 1482
13547ab6 1483 if (bufsiz <= 0)
8818c391 1484 {
2e5ff58c 1485 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1486 _("ERR: info io_registers NOT supported "
1487 "by current target\n"));
8818c391
TR
1488 return;
1489 }
1490
001f13d8 1491 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1492 {
2e5ff58c 1493 fprintf_unfiltered (gdb_stderr,
edefbb7c 1494 _("Error fetching number of io registers\n"));
13547ab6 1495 xfree (buf);
8818c391
TR
1496 return;
1497 }
1498
13547ab6
DJ
1499 xfree (buf);
1500
2e5ff58c 1501 reinitialize_more_filter ();
8818c391 1502
edefbb7c 1503 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1504
1505 /* only fetch up to 8 registers at a time to keep the buffer small */
1506 step = 8;
1507
2e5ff58c 1508 for (i = 0; i < nreg; i += step)
8818c391 1509 {
91ccbfc1
TR
1510 /* how many registers this round? */
1511 j = step;
1512 if ((i+j) >= nreg)
1513 j = nreg - i; /* last block is less than 8 registers */
8818c391 1514
2e5ff58c 1515 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1516 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1517 query, &buf);
8818c391 1518
001f13d8 1519 p = (const char *) buf;
2e5ff58c
TR
1520 for (k = i; k < (i + j); k++)
1521 {
1522 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1523 {
1524 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1525 while ((*p != ';') && (*p != '\0'))
1526 p++;
1527 p++; /* skip over ';' */
1528 if (*p == '\0')
1529 break;
1530 }
1531 }
13547ab6
DJ
1532
1533 xfree (buf);
8818c391
TR
1534 }
1535}
1536
a78f21af
AC
1537extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1538
8818c391
TR
1539void
1540_initialize_avr_tdep (void)
1541{
1542 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1543
1544 /* Add a new command to allow the user to query the avr remote target for
1545 the values of the io space registers in a saner way than just using
0963b4bd 1546 `x/NNNb ADDR`. */
8818c391
TR
1547
1548 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1549 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1550
1551 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1552 _("query remote avr target for io space register values"),
1553 &infolist);
8818c391 1554}
This page took 1.000855 seconds and 4 git commands to generate.