2012-03-27 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
0b302171 3 Copyright (C) 1996-2012 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
5f8a3188 37#include "gdb_string.h"
a89aa300 38#include "dis-asm.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
0963b4bd 61 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
0963b4bd
MS
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
8818c391
TR
70
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
8818c391
TR
74/* Constants: prefixed with AVR_ to avoid name space clashes */
75
76enum
2e5ff58c
TR
77{
78 AVR_REG_W = 24,
79 AVR_REG_X = 26,
80 AVR_REG_Y = 28,
81 AVR_FP_REGNUM = 28,
82 AVR_REG_Z = 30,
83
84 AVR_SREG_REGNUM = 32,
85 AVR_SP_REGNUM = 33,
86 AVR_PC_REGNUM = 34,
87
88 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
89 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
90
7d2552b4
TG
91 /* Pseudo registers. */
92 AVR_PSEUDO_PC_REGNUM = 35,
93 AVR_NUM_PSEUDO_REGS = 1,
94
2e5ff58c
TR
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
4add8633 97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 98
0963b4bd 99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
100 AVR_MAX_PUSHES = 18,
101
0963b4bd 102 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
103 AVR_LAST_PUSHED_REGNUM = 17,
104
4add8633
TR
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
2e5ff58c 111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 112 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 119 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
0963b4bd 131 details of actually accessing the eeprom. */
2e5ff58c
TR
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 135#if 1
2e5ff58c
TR
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 138#else
2e5ff58c
TR
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 141#endif
2e5ff58c 142};
8818c391 143
4add8633
TR
144/* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156};
157
8818c391
TR
158/* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
4add8633 169struct avr_unwind_cache
2e5ff58c 170{
4add8633
TR
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 180};
8818c391
TR
181
182struct gdbarch_tdep
2e5ff58c 183{
4e99ad69
TG
184 /* Number of bytes stored to the stack by call instructions.
185 2 bytes for avr1-5, 3 bytes for avr6. */
186 int call_length;
7d2552b4
TG
187
188 /* Type for void. */
189 struct type *void_type;
190 /* Type for a function returning void. */
191 struct type *func_void_type;
192 /* Type for a pointer to a function. Used for the type of PC. */
193 struct type *pc_type;
2e5ff58c 194};
8818c391 195
0963b4bd 196/* Lookup the name of a register given it's number. */
8818c391 197
fa88f677 198static const char *
d93859e2 199avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 200{
4e99ad69 201 static const char * const register_names[] = {
2e5ff58c
TR
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
204 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
205 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
206 "SREG", "SP", "PC2",
207 "pc"
8818c391
TR
208 };
209 if (regnum < 0)
210 return NULL;
211 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
212 return NULL;
213 return register_names[regnum];
214}
215
8818c391
TR
216/* Return the GDB type object for the "standard" data type
217 of data in register N. */
218
219static struct type *
866b76ea 220avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 221{
866b76ea 222 if (reg_nr == AVR_PC_REGNUM)
df4df182 223 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
224 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
225 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 226 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 227 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 228 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
229}
230
0963b4bd 231/* Instruction address checks and convertions. */
8818c391
TR
232
233static CORE_ADDR
234avr_make_iaddr (CORE_ADDR x)
235{
236 return ((x) | AVR_IMEM_START);
237}
238
0963b4bd 239/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
240 devices are already up to 128KBytes of flash space.
241
0963b4bd 242 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
243
244static CORE_ADDR
245avr_convert_iaddr_to_raw (CORE_ADDR x)
246{
247 return ((x) & 0xffffffff);
248}
249
0963b4bd 250/* SRAM address checks and convertions. */
8818c391
TR
251
252static CORE_ADDR
253avr_make_saddr (CORE_ADDR x)
254{
ee143e81
TG
255 /* Return 0 for NULL. */
256 if (x == 0)
257 return 0;
258
8818c391
TR
259 return ((x) | AVR_SMEM_START);
260}
261
8818c391
TR
262static CORE_ADDR
263avr_convert_saddr_to_raw (CORE_ADDR x)
264{
265 return ((x) & 0xffffffff);
266}
267
0963b4bd
MS
268/* EEPROM address checks and convertions. I don't know if these will ever
269 actually be used, but I've added them just the same. TRoth */
8818c391
TR
270
271/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 272 programs in the mega128. */
8818c391
TR
273
274/* static CORE_ADDR */
275/* avr_make_eaddr (CORE_ADDR x) */
276/* { */
277/* return ((x) | AVR_EMEM_START); */
278/* } */
279
280/* static int */
281/* avr_eaddr_p (CORE_ADDR x) */
282/* { */
283/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
284/* } */
285
286/* static CORE_ADDR */
287/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
288/* { */
289/* return ((x) & 0xffffffff); */
290/* } */
291
0963b4bd 292/* Convert from address to pointer and vice-versa. */
8818c391
TR
293
294static void
9898f801
UW
295avr_address_to_pointer (struct gdbarch *gdbarch,
296 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 297{
e17a4113
UW
298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
299
8818c391
TR
300 /* Is it a code address? */
301 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
302 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
303 {
e17a4113 304 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 305 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
306 }
307 else
308 {
309 /* Strip off any upper segment bits. */
e17a4113 310 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 311 avr_convert_saddr_to_raw (addr));
8818c391
TR
312 }
313}
314
315static CORE_ADDR
9898f801
UW
316avr_pointer_to_address (struct gdbarch *gdbarch,
317 struct type *type, const gdb_byte *buf)
8818c391 318{
e17a4113
UW
319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320 CORE_ADDR addr
321 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 322
8818c391
TR
323 /* Is it a code address? */
324 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
325 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 326 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 327 return avr_make_iaddr (addr << 1);
8818c391
TR
328 else
329 return avr_make_saddr (addr);
330}
331
8a1d23b2
TG
332static CORE_ADDR
333avr_integer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
335{
336 ULONGEST addr = unpack_long (type, buf);
337
338 return avr_make_saddr (addr);
339}
340
8818c391 341static CORE_ADDR
61a1198a 342avr_read_pc (struct regcache *regcache)
8818c391 343{
8619218d 344 ULONGEST pc;
61a1198a
UW
345 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
346 return avr_make_iaddr (pc);
8818c391
TR
347}
348
349static void
61a1198a 350avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 351{
61a1198a 352 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
353 avr_convert_iaddr_to_raw (val));
354}
355
05d1431c 356static enum register_status
7d2552b4
TG
357avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359{
360 ULONGEST val;
05d1431c 361 enum register_status status;
7d2552b4
TG
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
366 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 if (status != REG_VALID)
368 return status;
7d2552b4
TG
369 val >>= 1;
370 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 371 return status;
7d2552b4
TG
372 default:
373 internal_error (__FILE__, __LINE__, _("invalid regnum"));
374 }
375}
376
377static void
378avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
379 int regnum, const gdb_byte *buf)
380{
381 ULONGEST val;
382
383 switch (regnum)
384 {
385 case AVR_PSEUDO_PC_REGNUM:
386 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
387 val <<= 1;
388 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
389 break;
390 default:
391 internal_error (__FILE__, __LINE__, _("invalid regnum"));
392 }
8818c391
TR
393}
394
4add8633 395/* Function: avr_scan_prologue
8818c391 396
4add8633 397 This function decodes an AVR function prologue to determine:
8818c391
TR
398 1) the size of the stack frame
399 2) which registers are saved on it
400 3) the offsets of saved regs
4add8633 401 This information is stored in the avr_unwind_cache structure.
8818c391 402
e3d8b004
TR
403 Some devices lack the sbiw instruction, so on those replace this:
404 sbiw r28, XX
405 with this:
406 subi r28,lo8(XX)
407 sbci r29,hi8(XX)
408
409 A typical AVR function prologue with a frame pointer might look like this:
410 push rXX ; saved regs
411 ...
412 push r28
413 push r29
414 in r28,__SP_L__
415 in r29,__SP_H__
416 sbiw r28,<LOCALS_SIZE>
417 in __tmp_reg__,__SREG__
8818c391 418 cli
e3d8b004 419 out __SP_H__,r29
72fab697
TR
420 out __SREG__,__tmp_reg__
421 out __SP_L__,r28
e3d8b004
TR
422
423 A typical AVR function prologue without a frame pointer might look like
424 this:
425 push rXX ; saved regs
426 ...
427
428 A main function prologue looks like this:
429 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
430 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
431 out __SP_H__,r29
432 out __SP_L__,r28
433
434 A signal handler prologue looks like this:
435 push __zero_reg__
436 push __tmp_reg__
437 in __tmp_reg__, __SREG__
438 push __tmp_reg__
439 clr __zero_reg__
440 push rXX ; save registers r18:r27, r30:r31
441 ...
442 push r28 ; save frame pointer
443 push r29
444 in r28, __SP_L__
445 in r29, __SP_H__
446 sbiw r28, <LOCALS_SIZE>
447 out __SP_H__, r29
448 out __SP_L__, r28
449
450 A interrupt handler prologue looks like this:
451 sei
452 push __zero_reg__
453 push __tmp_reg__
454 in __tmp_reg__, __SREG__
455 push __tmp_reg__
456 clr __zero_reg__
457 push rXX ; save registers r18:r27, r30:r31
458 ...
459 push r28 ; save frame pointer
460 push r29
461 in r28, __SP_L__
462 in r29, __SP_H__
463 sbiw r28, <LOCALS_SIZE>
464 cli
465 out __SP_H__, r29
466 sei
467 out __SP_L__, r28
468
469 A `-mcall-prologues' prologue looks like this (Note that the megas use a
470 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
471 32 bit insn and rjmp is a 16 bit insn):
472 ldi r26,lo8(<LOCALS_SIZE>)
473 ldi r27,hi8(<LOCALS_SIZE>)
474 ldi r30,pm_lo8(.L_foo_body)
475 ldi r31,pm_hi8(.L_foo_body)
476 rjmp __prologue_saves__+RRR
477 .L_foo_body: */
8818c391 478
4add8633
TR
479/* Not really part of a prologue, but still need to scan for it, is when a
480 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
481 registers. In this case, all local variables live in registers, so there
482 may be some register saves. This is what it looks like:
4add8633
TR
483 movw rMM, rNN
484 ...
485
0963b4bd
MS
486 There could be multiple movw's. If the target doesn't have a movw insn, it
487 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
488 types. */
489
490static CORE_ADDR
e17a4113 491avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 492 struct avr_unwind_cache *info)
8818c391 493{
e17a4113 494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
495 int i;
496 unsigned short insn;
2e5ff58c 497 int scan_stage = 0;
8818c391 498 struct minimal_symbol *msymbol;
8818c391
TR
499 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
500 int vpc = 0;
4e99ad69
TG
501 int len;
502
503 len = pc_end - pc_beg;
504 if (len > AVR_MAX_PROLOGUE_SIZE)
505 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 506
4add8633 507 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
508 reading in the bytes of the prologue. The problem is that the figuring
509 out where the end of the prologue is is a bit difficult. The old code
4add8633 510 tried to do that, but failed quite often. */
4e99ad69 511 read_memory (pc_beg, prologue, len);
8818c391
TR
512
513 /* Scanning main()'s prologue
514 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
515 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
516 out __SP_H__,r29
517 out __SP_L__,r28 */
518
4e99ad69 519 if (len >= 4)
8818c391
TR
520 {
521 CORE_ADDR locals;
4e99ad69 522 static const unsigned char img[] = {
2e5ff58c
TR
523 0xde, 0xbf, /* out __SP_H__,r29 */
524 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
525 };
526
e17a4113 527 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 528 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
529 if ((insn & 0xf0f0) == 0xe0c0)
530 {
531 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 532 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
533 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
534 if ((insn & 0xf0f0) == 0xe0d0)
535 {
536 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
537 if (vpc + 4 + sizeof (img) < len
538 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 539 {
4add8633
TR
540 info->prologue_type = AVR_PROLOGUE_MAIN;
541 info->base = locals;
4e99ad69 542 return pc_beg + 4;
2e5ff58c
TR
543 }
544 }
545 }
8818c391 546 }
2e5ff58c 547
4add8633
TR
548 /* Scanning `-mcall-prologues' prologue
549 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 550
e3d8b004 551 while (1) /* Using a while to avoid many goto's */
8818c391
TR
552 {
553 int loc_size;
554 int body_addr;
555 unsigned num_pushes;
4add8633 556 int pc_offset = 0;
2e5ff58c 557
4e99ad69
TG
558 /* At least the fifth instruction must have been executed to
559 modify frame shape. */
560 if (len < 10)
561 break;
562
e17a4113 563 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 564 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
565 if ((insn & 0xf0f0) != 0xe0a0)
566 break;
8818c391 567 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 568 pc_offset += 2;
2e5ff58c 569
e17a4113 570 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
571 /* ldi r27,<LOCALS_SIZE> / 256 */
572 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 573 break;
8818c391 574 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 575 pc_offset += 2;
2e5ff58c 576
e17a4113 577 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
578 /* ldi r30,pm_lo8(.L_foo_body) */
579 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 580 break;
8818c391 581 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 582 pc_offset += 2;
8818c391 583
e17a4113 584 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
585 /* ldi r31,pm_hi8(.L_foo_body) */
586 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 587 break;
8818c391 588 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 589 pc_offset += 2;
8818c391 590
8818c391
TR
591 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
592 if (!msymbol)
2e5ff58c 593 break;
8818c391 594
e17a4113 595 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 596 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
597 if ((insn & 0xf000) == 0xc000)
598 {
599 /* Extract PC relative offset from RJMP */
600 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
601 /* Convert offset to byte addressable mode */
602 i *= 2;
603 /* Destination address */
4e99ad69 604 i += pc_beg + 10;
e3d8b004 605
4e99ad69 606 if (body_addr != (pc_beg + 10)/2)
e3d8b004 607 break;
4add8633
TR
608
609 pc_offset += 2;
e3d8b004 610 }
e3d8b004
TR
611 else if ((insn & 0xfe0e) == 0x940c)
612 {
613 /* Extract absolute PC address from JMP */
614 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
615 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
616 & 0xffff));
e3d8b004
TR
617 /* Convert address to byte addressable mode */
618 i *= 2;
619
4e99ad69 620 if (body_addr != (pc_beg + 12)/2)
e3d8b004 621 break;
4add8633
TR
622
623 pc_offset += 4;
e3d8b004
TR
624 }
625 else
626 break;
2e5ff58c 627
4add8633 628 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
629 Which is a pushes count in `-mcall-prologues' mode */
630 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
631
632 if (num_pushes > AVR_MAX_PUSHES)
4add8633 633 {
edefbb7c 634 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
635 num_pushes);
636 num_pushes = 0;
637 }
2e5ff58c 638
8818c391 639 if (num_pushes)
2e5ff58c
TR
640 {
641 int from;
4add8633
TR
642
643 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 644 if (num_pushes >= 2)
4add8633
TR
645 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
646
2e5ff58c
TR
647 i = 0;
648 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
649 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 650 info->saved_regs [from].addr = ++i;
2e5ff58c 651 }
4add8633
TR
652 info->size = loc_size + num_pushes;
653 info->prologue_type = AVR_PROLOGUE_CALL;
654
4e99ad69 655 return pc_beg + pc_offset;
8818c391
TR
656 }
657
4add8633
TR
658 /* Scan for the beginning of the prologue for an interrupt or signal
659 function. Note that we have to set the prologue type here since the
660 third stage of the prologue may not be present (e.g. no saved registered
661 or changing of the SP register). */
8818c391 662
4add8633 663 if (1)
8818c391 664 {
4e99ad69 665 static const unsigned char img[] = {
2e5ff58c
TR
666 0x78, 0x94, /* sei */
667 0x1f, 0x92, /* push r1 */
668 0x0f, 0x92, /* push r0 */
669 0x0f, 0xb6, /* in r0,0x3f SREG */
670 0x0f, 0x92, /* push r0 */
671 0x11, 0x24 /* clr r1 */
8818c391 672 };
4e99ad69
TG
673 if (len >= sizeof (img)
674 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 675 {
4add8633 676 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 677 vpc += sizeof (img);
4add8633
TR
678 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
679 info->saved_regs[0].addr = 2;
680 info->saved_regs[1].addr = 1;
681 info->size += 3;
2e5ff58c 682 }
4e99ad69
TG
683 else if (len >= sizeof (img) - 2
684 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 685 {
4add8633
TR
686 info->prologue_type = AVR_PROLOGUE_SIG;
687 vpc += sizeof (img) - 2;
688 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
689 info->saved_regs[0].addr = 2;
690 info->saved_regs[1].addr = 1;
243e2c5d 691 info->size += 2;
2e5ff58c 692 }
8818c391
TR
693 }
694
695 /* First stage of the prologue scanning.
4add8633 696 Scan pushes (saved registers) */
8818c391 697
4e99ad69 698 for (; vpc < len; vpc += 2)
8818c391 699 {
e17a4113 700 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
701 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
702 {
0963b4bd 703 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
704 int regno = (insn & 0x1f0) >> 4;
705 info->size++;
706 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
707 scan_stage = 1;
708 }
8818c391 709 else
2e5ff58c 710 break;
8818c391
TR
711 }
712
243e2c5d 713 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 714
1bd0bb72
TG
715 /* Handle static small stack allocation using rcall or push. */
716
717 while (scan_stage == 1 && vpc < len)
718 {
719 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
720 if (insn == 0xd000) /* rcall .+0 */
721 {
722 info->size += gdbarch_tdep (gdbarch)->call_length;
723 vpc += 2;
724 }
725 else if (insn == 0x920f) /* push r0 */
726 {
727 info->size += 1;
728 vpc += 2;
729 }
730 else
731 break;
732 }
733
8818c391
TR
734 /* Second stage of the prologue scanning.
735 Scan:
736 in r28,__SP_L__
737 in r29,__SP_H__ */
738
4e99ad69 739 if (scan_stage == 1 && vpc < len)
8818c391 740 {
4e99ad69 741 static const unsigned char img[] = {
2e5ff58c
TR
742 0xcd, 0xb7, /* in r28,__SP_L__ */
743 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
744 };
745 unsigned short insn1;
2e5ff58c 746
4e99ad69
TG
747 if (vpc + sizeof (img) < len
748 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
749 {
750 vpc += 4;
2e5ff58c
TR
751 scan_stage = 2;
752 }
8818c391
TR
753 }
754
0963b4bd 755 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
756 Scan for:
757 sbiw r28,XX or subi r28,lo8(XX)
72fab697 758 sbci r29,hi8(XX)
8818c391
TR
759 in __tmp_reg__,__SREG__
760 cli
e3d8b004 761 out __SP_H__,r29
8818c391 762 out __SREG__,__tmp_reg__
e3d8b004 763 out __SP_L__,r28 */
8818c391 764
4e99ad69 765 if (scan_stage == 2 && vpc < len)
8818c391
TR
766 {
767 int locals_size = 0;
4e99ad69 768 static const unsigned char img[] = {
2e5ff58c
TR
769 0x0f, 0xb6, /* in r0,0x3f */
770 0xf8, 0x94, /* cli */
e3d8b004 771 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 772 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 774 };
4e99ad69 775 static const unsigned char img_sig[] = {
e3d8b004
TR
776 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
777 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 778 };
4e99ad69 779 static const unsigned char img_int[] = {
2e5ff58c 780 0xf8, 0x94, /* cli */
e3d8b004 781 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 782 0x78, 0x94, /* sei */
e3d8b004 783 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 784 };
2e5ff58c 785
e17a4113 786 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 787 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
788 {
789 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
790 vpc += 2;
791 }
2e5ff58c
TR
792 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
793 {
794 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 795 vpc += 2;
e17a4113 796 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 797 vpc += 2;
1bd0bb72 798 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 799 }
8818c391 800 else
1bd0bb72 801 return pc_beg + vpc;
4add8633 802
0963b4bd 803 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
804 or signal handler functions, which is why we set the prologue type
805 when we saw the beginning of the prologue previously. */
806
4e99ad69
TG
807 if (vpc + sizeof (img_sig) < len
808 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
809 {
810 vpc += sizeof (img_sig);
811 }
4e99ad69
TG
812 else if (vpc + sizeof (img_int) < len
813 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
814 {
815 vpc += sizeof (img_int);
816 }
4e99ad69
TG
817 if (vpc + sizeof (img) < len
818 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
819 {
820 info->prologue_type = AVR_PROLOGUE_NORMAL;
821 vpc += sizeof (img);
822 }
823
824 info->size += locals_size;
825
4e99ad69 826 /* Fall through. */
8818c391 827 }
4add8633
TR
828
829 /* If we got this far, we could not scan the prologue, so just return the pc
830 of the frame plus an adjustment for argument move insns. */
831
4e99ad69
TG
832 for (; vpc < len; vpc += 2)
833 {
e17a4113 834 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
835 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
836 continue;
837 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
838 continue;
839 else
840 break;
841 }
842
843 return pc_beg + vpc;
8818c391
TR
844}
845
4add8633 846static CORE_ADDR
6093d2eb 847avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
848{
849 CORE_ADDR func_addr, func_end;
8c201e54 850 CORE_ADDR post_prologue_pc;
8818c391 851
4add8633 852 /* See what the symbol table says */
8818c391 853
8c201e54
TG
854 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
855 return pc;
2e5ff58c 856
8c201e54
TG
857 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
858 if (post_prologue_pc != 0)
859 return max (pc, post_prologue_pc);
8818c391 860
8c201e54
TG
861 {
862 CORE_ADDR prologue_end = pc;
863 struct avr_unwind_cache info = {0};
864 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 865
8c201e54
TG
866 info.saved_regs = saved_regs;
867
868 /* Need to run the prologue scanner to figure out if the function has a
869 prologue and possibly skip over moving arguments passed via registers
870 to other registers. */
871
872 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
873
874 if (info.prologue_type != AVR_PROLOGUE_NONE)
875 return prologue_end;
876 }
2e5ff58c 877
4e99ad69
TG
878 /* Either we didn't find the start of this function (nothing we can do),
879 or there's no line info, or the line after the prologue is after
0963b4bd 880 the end of the function (there probably isn't a prologue). */
2e5ff58c 881
8c201e54 882 return pc;
4add8633 883}
8818c391 884
0963b4bd
MS
885/* Not all avr devices support the BREAK insn. Those that don't should treat
886 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
887 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 888
4add8633 889static const unsigned char *
0963b4bd
MS
890avr_breakpoint_from_pc (struct gdbarch *gdbarch,
891 CORE_ADDR *pcptr, int *lenptr)
4add8633 892{
4e99ad69 893 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
894 *lenptr = sizeof (avr_break_insn);
895 return avr_break_insn;
8818c391
TR
896}
897
4c8b6ae0
UW
898/* Determine, for architecture GDBARCH, how a return value of TYPE
899 should be returned. If it is supposed to be returned in registers,
900 and READBUF is non-zero, read the appropriate value from REGCACHE,
901 and copy it into READBUF. If WRITEBUF is non-zero, write the value
902 from WRITEBUF into REGCACHE. */
903
63807e1d 904static enum return_value_convention
c055b101
CV
905avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
906 struct type *valtype, struct regcache *regcache,
907 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 908{
1bd0bb72
TG
909 int i;
910 /* Single byte are returned in r24.
911 Otherwise, the MSB of the return value is always in r25, calculate which
912 register holds the LSB. */
913 int lsb_reg;
914
915 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
916 || TYPE_CODE (valtype) == TYPE_CODE_UNION
917 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
918 && TYPE_LENGTH (valtype) > 8)
919 return RETURN_VALUE_STRUCT_CONVENTION;
920
921 if (TYPE_LENGTH (valtype) <= 2)
922 lsb_reg = 24;
923 else if (TYPE_LENGTH (valtype) <= 4)
924 lsb_reg = 22;
925 else if (TYPE_LENGTH (valtype) <= 8)
926 lsb_reg = 18;
927 else
f3574227 928 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
929
930 if (writebuf != NULL)
931 {
1bd0bb72
TG
932 for (i = 0; i < TYPE_LENGTH (valtype); i++)
933 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
934 }
935
936 if (readbuf != NULL)
937 {
1bd0bb72
TG
938 for (i = 0; i < TYPE_LENGTH (valtype); i++)
939 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
940 }
941
1bd0bb72 942 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
943}
944
945
4add8633
TR
946/* Put here the code to store, into fi->saved_regs, the addresses of
947 the saved registers of frame described by FRAME_INFO. This
948 includes special registers such as pc and fp saved in special ways
949 in the stack frame. sp is even more special: the address we return
0963b4bd 950 for it IS the sp for the next frame. */
8818c391 951
63807e1d 952static struct avr_unwind_cache *
94afd7a6 953avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 954 void **this_prologue_cache)
8818c391 955{
4e99ad69 956 CORE_ADDR start_pc, current_pc;
4add8633
TR
957 ULONGEST prev_sp;
958 ULONGEST this_base;
959 struct avr_unwind_cache *info;
4e99ad69
TG
960 struct gdbarch *gdbarch;
961 struct gdbarch_tdep *tdep;
4add8633
TR
962 int i;
963
4e99ad69
TG
964 if (*this_prologue_cache)
965 return *this_prologue_cache;
4add8633
TR
966
967 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 968 *this_prologue_cache = info;
94afd7a6 969 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
970
971 info->size = 0;
972 info->prologue_type = AVR_PROLOGUE_NONE;
973
4e99ad69
TG
974 start_pc = get_frame_func (this_frame);
975 current_pc = get_frame_pc (this_frame);
976 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
977 avr_scan_prologue (get_frame_arch (this_frame),
978 start_pc, current_pc, info);
4add8633 979
3b85b0f1
TR
980 if ((info->prologue_type != AVR_PROLOGUE_NONE)
981 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
982 {
983 ULONGEST high_base; /* High byte of FP */
984
985 /* The SP was moved to the FP. This indicates that a new frame
986 was created. Get THIS frame's FP value by unwinding it from
987 the next frame. */
94afd7a6 988 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 989 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
990 this_base += (high_base << 8);
991
992 /* The FP points at the last saved register. Adjust the FP back
993 to before the first saved register giving the SP. */
994 prev_sp = this_base + info->size;
995 }
8818c391 996 else
4add8633
TR
997 {
998 /* Assume that the FP is this frame's SP but with that pushed
999 stack space added back. */
94afd7a6 1000 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1001 prev_sp = this_base + info->size;
1002 }
1003
1004 /* Add 1 here to adjust for the post-decrement nature of the push
1005 instruction.*/
4e99ad69 1006 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1007 info->base = avr_make_saddr (this_base);
1008
4e99ad69
TG
1009 gdbarch = get_frame_arch (this_frame);
1010
4add8633 1011 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1012 offsets. */
4e99ad69
TG
1013 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1014 if (info->saved_regs[i].addr > 0)
1015 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1016
1017 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1018 the stack and is at the base of the frame. */
4add8633
TR
1019
1020 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1021 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1022
3b85b0f1
TR
1023 /* The previous frame's SP needed to be computed. Save the computed
1024 value. */
4e99ad69
TG
1025 tdep = gdbarch_tdep (gdbarch);
1026 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1027 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1028
4add8633 1029 return info;
8818c391
TR
1030}
1031
1032static CORE_ADDR
4add8633 1033avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1034{
4add8633
TR
1035 ULONGEST pc;
1036
11411de3 1037 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1038
1039 return avr_make_iaddr (pc);
8818c391
TR
1040}
1041
30244cd8
UW
1042static CORE_ADDR
1043avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1044{
1045 ULONGEST sp;
1046
11411de3 1047 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1048
1049 return avr_make_saddr (sp);
1050}
1051
4add8633
TR
1052/* Given a GDB frame, determine the address of the calling function's
1053 frame. This will be used to create a new GDB frame struct. */
8818c391 1054
4add8633 1055static void
94afd7a6 1056avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1057 void **this_prologue_cache,
1058 struct frame_id *this_id)
8818c391 1059{
4add8633 1060 struct avr_unwind_cache *info
94afd7a6 1061 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1062 CORE_ADDR base;
1063 CORE_ADDR func;
1064 struct frame_id id;
1065
1066 /* The FUNC is easy. */
94afd7a6 1067 func = get_frame_func (this_frame);
4add8633 1068
4add8633
TR
1069 /* Hopefully the prologue analysis either correctly determined the
1070 frame's base (which is the SP from the previous frame), or set
1071 that base to "NULL". */
1072 base = info->prev_sp;
1073 if (base == 0)
1074 return;
1075
1076 id = frame_id_build (base, func);
4add8633 1077 (*this_id) = id;
8818c391
TR
1078}
1079
94afd7a6
UW
1080static struct value *
1081avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1082 void **this_prologue_cache, int regnum)
8818c391 1083{
e17a4113
UW
1084 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1086 struct avr_unwind_cache *info
94afd7a6 1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1088
7d2552b4 1089 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1090 {
7d2552b4 1091 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1092 {
94afd7a6
UW
1093 /* Reading the return PC from the PC register is slightly
1094 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1095 but in reality, only two bytes (3 in upcoming mega256) are
1096 stored on the stack.
1097
1098 Also, note that the value on the stack is an addr to a word
1099 not a byte, so we will need to multiply it by two at some
1100 point.
1101
1102 And to confuse matters even more, the return address stored
1103 on the stack is in big endian byte order, even though most
0963b4bd 1104 everything else about the avr is little endian. Ick! */
94afd7a6 1105 ULONGEST pc;
4e99ad69
TG
1106 int i;
1107 unsigned char buf[3];
1108 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1110
7d2552b4
TG
1111 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1112 buf, tdep->call_length);
94afd7a6 1113
4e99ad69
TG
1114 /* Extract the PC read from memory as a big-endian. */
1115 pc = 0;
1116 for (i = 0; i < tdep->call_length; i++)
1117 pc = (pc << 8) | buf[i];
94afd7a6 1118
7d2552b4
TG
1119 if (regnum == AVR_PC_REGNUM)
1120 pc <<= 1;
1121
1122 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1123 }
94afd7a6
UW
1124
1125 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1126 }
94afd7a6
UW
1127
1128 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1129}
8818c391 1130
4add8633
TR
1131static const struct frame_unwind avr_frame_unwind = {
1132 NORMAL_FRAME,
8fbca658 1133 default_frame_unwind_stop_reason,
4add8633 1134 avr_frame_this_id,
94afd7a6
UW
1135 avr_frame_prev_register,
1136 NULL,
1137 default_frame_sniffer
4add8633
TR
1138};
1139
8818c391 1140static CORE_ADDR
94afd7a6 1141avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1142{
4add8633 1143 struct avr_unwind_cache *info
94afd7a6 1144 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1145
4add8633
TR
1146 return info->base;
1147}
8818c391 1148
4add8633
TR
1149static const struct frame_base avr_frame_base = {
1150 &avr_frame_unwind,
1151 avr_frame_base_address,
1152 avr_frame_base_address,
1153 avr_frame_base_address
1154};
ced15480 1155
94afd7a6
UW
1156/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1157 frame. The frame ID's base needs to match the TOS value saved by
1158 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1159
4add8633 1160static struct frame_id
94afd7a6 1161avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1162{
1163 ULONGEST base;
8818c391 1164
94afd7a6
UW
1165 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1166 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1167}
1168
4add8633 1169/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1170 order. The below implements a FILO (stack) to do this. */
8818c391 1171
4add8633
TR
1172struct stack_item
1173{
1174 int len;
1175 struct stack_item *prev;
1176 void *data;
1177};
8818c391 1178
4add8633 1179static struct stack_item *
0fd88904 1180push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1181{
4add8633
TR
1182 struct stack_item *si;
1183 si = xmalloc (sizeof (struct stack_item));
1184 si->data = xmalloc (len);
1185 si->len = len;
1186 si->prev = prev;
1187 memcpy (si->data, contents, len);
1188 return si;
8818c391
TR
1189}
1190
4add8633
TR
1191static struct stack_item *pop_stack_item (struct stack_item *si);
1192static struct stack_item *
1193pop_stack_item (struct stack_item *si)
8818c391 1194{
4add8633
TR
1195 struct stack_item *dead = si;
1196 si = si->prev;
1197 xfree (dead->data);
1198 xfree (dead);
1199 return si;
8818c391
TR
1200}
1201
8818c391
TR
1202/* Setup the function arguments for calling a function in the inferior.
1203
1204 On the AVR architecture, there are 18 registers (R25 to R8) which are
1205 dedicated for passing function arguments. Up to the first 18 arguments
1206 (depending on size) may go into these registers. The rest go on the stack.
1207
4add8633 1208 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1209 arguments, including char, have one free register above them). For example,
4add8633
TR
1210 an int in arg1 and a char in arg2 would be passed as such:
1211
1212 arg1 -> r25:r24
1213 arg2 -> r22
1214
1215 Arguments that are larger than 2 bytes will be split between two or more
1216 registers as available, but will NOT be split between a register and the
0963b4bd 1217 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1218 similar to the d10v). */
1219
1220/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1221 inaccurate.
8818c391
TR
1222
1223 An exceptional case exists for struct arguments (and possibly other
1224 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1225 not a multiple of WORDSIZE bytes. In this case the argument is never split
1226 between the registers and the stack, but instead is copied in its entirety
1227 onto the stack, AND also copied into as many registers as there is room
1228 for. In other words, space in registers permitting, two copies of the same
1229 argument are passed in. As far as I can tell, only the one on the stack is
1230 used, although that may be a function of the level of compiler
1231 optimization. I suspect this is a compiler bug. Arguments of these odd
1232 sizes are left-justified within the word (as opposed to arguments smaller
1233 than WORDSIZE bytes, which are right-justified).
1234
1235 If the function is to return an aggregate type such as a struct, the caller
1236 must allocate space into which the callee will copy the return value. In
1237 this case, a pointer to the return value location is passed into the callee
1238 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1239 registers R0 to R2. */
8818c391
TR
1240
1241static CORE_ADDR
7d9b040b 1242avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1243 struct regcache *regcache, CORE_ADDR bp_addr,
1244 int nargs, struct value **args, CORE_ADDR sp,
1245 int struct_return, CORE_ADDR struct_addr)
8818c391 1246{
e17a4113 1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1248 int i;
6d1915d4
TG
1249 unsigned char buf[3];
1250 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1251 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1252 int regnum = AVR_ARGN_REGNUM;
1253 struct stack_item *si = NULL;
8818c391 1254
4add8633 1255 if (struct_return)
8818c391 1256 {
fd6d6815
TG
1257 regcache_cooked_write_unsigned
1258 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1259 regcache_cooked_write_unsigned
1260 (regcache, regnum--, struct_addr & 0xff);
1261 /* SP being post decremented, we need to reserve one byte so that the
1262 return address won't overwrite the result (or vice-versa). */
1263 if (sp == struct_addr)
1264 sp--;
8818c391
TR
1265 }
1266
4add8633 1267 for (i = 0; i < nargs; i++)
8818c391 1268 {
4add8633
TR
1269 int last_regnum;
1270 int j;
1271 struct value *arg = args[i];
4991999e 1272 struct type *type = check_typedef (value_type (arg));
0fd88904 1273 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1274 int len = TYPE_LENGTH (type);
1275
0963b4bd 1276 /* Calculate the potential last register needed. */
4add8633
TR
1277 last_regnum = regnum - (len + (len & 1));
1278
0963b4bd
MS
1279 /* If there are registers available, use them. Once we start putting
1280 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1281 if ((si == NULL) && (last_regnum >= 8))
1282 {
1283 ULONGEST val;
1284
0963b4bd 1285 /* Skip a register for odd length args. */
4add8633
TR
1286 if (len & 1)
1287 regnum--;
1288
e17a4113 1289 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1290 for (j = 0; j < len; j++)
1291 regcache_cooked_write_unsigned
1292 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1293 }
0963b4bd 1294 /* No registers available, push the args onto the stack. */
4add8633
TR
1295 else
1296 {
0963b4bd 1297 /* From here on, we don't care about regnum. */
4add8633
TR
1298 si = push_stack_item (si, contents, len);
1299 }
8818c391 1300 }
909cd28e 1301
0963b4bd 1302 /* Push args onto the stack. */
4add8633
TR
1303 while (si)
1304 {
1305 sp -= si->len;
0963b4bd 1306 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1307 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1308 si = pop_stack_item (si);
1309 }
3605c34a 1310
4add8633
TR
1311 /* Set the return address. For the avr, the return address is the BP_ADDR.
1312 Need to push the return address onto the stack noting that it needs to be
1313 in big-endian order on the stack. */
6d1915d4
TG
1314 for (i = 1; i <= call_length; i++)
1315 {
1316 buf[call_length - i] = return_pc & 0xff;
1317 return_pc >>= 8;
1318 }
3605c34a 1319
6d1915d4 1320 sp -= call_length;
0963b4bd 1321 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1322 write_memory (sp + 1, buf, call_length);
3605c34a 1323
0963b4bd 1324 /* Finally, update the SP register. */
4add8633
TR
1325 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1326 avr_convert_saddr_to_raw (sp));
3605c34a 1327
6d1915d4
TG
1328 /* Return SP value for the dummy frame, where the return address hasn't been
1329 pushed. */
1330 return sp + call_length;
3605c34a
TR
1331}
1332
53f6a2c9
TG
1333/* Unfortunately dwarf2 register for SP is 32. */
1334
1335static int
1336avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1337{
1338 if (reg >= 0 && reg < 32)
1339 return reg;
1340 if (reg == 32)
1341 return AVR_SP_REGNUM;
1342
1343 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1344
1345 return -1;
1346}
1347
0963b4bd 1348/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1349
1350static struct gdbarch *
2e5ff58c
TR
1351avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1352{
2e5ff58c
TR
1353 struct gdbarch *gdbarch;
1354 struct gdbarch_tdep *tdep;
4e99ad69
TG
1355 struct gdbarch_list *best_arch;
1356 int call_length;
8818c391 1357
4e99ad69 1358 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1359 switch (info.bfd_arch_info->mach)
1360 {
1361 case bfd_mach_avr1:
1362 case bfd_mach_avr2:
1363 case bfd_mach_avr3:
1364 case bfd_mach_avr4:
1365 case bfd_mach_avr5:
4e99ad69
TG
1366 default:
1367 call_length = 2;
1368 break;
1369 case bfd_mach_avr6:
1370 call_length = 3;
8818c391
TR
1371 break;
1372 }
1373
4e99ad69
TG
1374 /* If there is already a candidate, use it. */
1375 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1376 best_arch != NULL;
1377 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1378 {
1379 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1380 return best_arch->gdbarch;
1381 }
1382
0963b4bd 1383 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1384 tdep = XMALLOC (struct gdbarch_tdep);
1385 gdbarch = gdbarch_alloc (&info, tdep);
1386
1387 tdep->call_length = call_length;
1388
7d2552b4
TG
1389 /* Create a type for PC. We can't use builtin types here, as they may not
1390 be defined. */
1391 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1392 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1393 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1394 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1395 TYPE_UNSIGNED (tdep->pc_type) = 1;
1396
8818c391
TR
1397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1401 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1403
1404 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1406 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1407
8da61cc4
DJ
1408 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1409 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1410 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1411
1412 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1413 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1414
1415 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1416
1417 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1418 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1419
1420 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1421 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1422
7d2552b4
TG
1423 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1424 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1425 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1426
4c8b6ae0 1427 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1428 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1429
4add8633 1430 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1431
53f6a2c9
TG
1432 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1433
8818c391
TR
1434 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1435 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1436 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1437
8818c391 1438 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1440
909cd28e 1441 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1442
94afd7a6 1443 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1444 frame_base_set_default (gdbarch, &avr_frame_base);
1445
94afd7a6 1446 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1447
1448 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1449 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1450
8818c391
TR
1451 return gdbarch;
1452}
1453
1454/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1455 registers. If args parameter is not NULL, then the user has requested info
8818c391 1456 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1457 now]. The query string should be one of these forms:
8818c391
TR
1458
1459 "Ravr.io_reg" -> reply is "NN" number of io registers
1460
1461 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1462 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1463 where, <NAME> is a string, and VV is the hex value of the register.
1464
0963b4bd 1465 All io registers are 8-bit. */
8818c391
TR
1466
1467static void
1468avr_io_reg_read_command (char *args, int from_tty)
1469{
1e3ff5ad 1470 LONGEST bufsiz = 0;
13547ab6 1471 gdb_byte *buf;
2e5ff58c
TR
1472 char query[400];
1473 char *p;
1474 unsigned int nreg = 0;
1475 unsigned int val;
1476 int i, j, k, step;
8818c391 1477
0963b4bd 1478 /* Find out how many io registers the target has. */
13547ab6
DJ
1479 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1480 "avr.io_reg", &buf);
8818c391 1481
13547ab6 1482 if (bufsiz <= 0)
8818c391 1483 {
2e5ff58c 1484 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1485 _("ERR: info io_registers NOT supported "
1486 "by current target\n"));
8818c391
TR
1487 return;
1488 }
1489
2e5ff58c 1490 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1491 {
2e5ff58c 1492 fprintf_unfiltered (gdb_stderr,
edefbb7c 1493 _("Error fetching number of io registers\n"));
13547ab6 1494 xfree (buf);
8818c391
TR
1495 return;
1496 }
1497
13547ab6
DJ
1498 xfree (buf);
1499
2e5ff58c 1500 reinitialize_more_filter ();
8818c391 1501
edefbb7c 1502 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1503
1504 /* only fetch up to 8 registers at a time to keep the buffer small */
1505 step = 8;
1506
2e5ff58c 1507 for (i = 0; i < nreg; i += step)
8818c391 1508 {
91ccbfc1
TR
1509 /* how many registers this round? */
1510 j = step;
1511 if ((i+j) >= nreg)
1512 j = nreg - i; /* last block is less than 8 registers */
8818c391 1513
2e5ff58c 1514 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1515 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1516 query, &buf);
8818c391
TR
1517
1518 p = buf;
2e5ff58c
TR
1519 for (k = i; k < (i + j); k++)
1520 {
1521 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1522 {
1523 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1524 while ((*p != ';') && (*p != '\0'))
1525 p++;
1526 p++; /* skip over ';' */
1527 if (*p == '\0')
1528 break;
1529 }
1530 }
13547ab6
DJ
1531
1532 xfree (buf);
8818c391
TR
1533 }
1534}
1535
a78f21af
AC
1536extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1537
8818c391
TR
1538void
1539_initialize_avr_tdep (void)
1540{
1541 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1542
1543 /* Add a new command to allow the user to query the avr remote target for
1544 the values of the io space registers in a saner way than just using
0963b4bd 1545 `x/NNNb ADDR`. */
8818c391
TR
1546
1547 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1548 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1549
1550 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1551 _("query remote avr target for io space register values"),
1552 &infolist);
8818c391 1553}
This page took 0.723281 seconds and 4 git commands to generate.