Commit | Line | Data |
---|---|---|
8818c391 | 1 | /* Target-dependent code for Atmel AVR, for GDB. |
5b828b6b | 2 | Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
8818c391 TR |
3 | Free Software Foundation, Inc. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
de18ac1f | 22 | /* Contributed by Theodore A. Roth, troth@openavr.org */ |
8818c391 TR |
23 | |
24 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
25 | by Denis Chertykov, denisc@overta.ru */ | |
26 | ||
27 | #include "defs.h" | |
4add8633 TR |
28 | #include "frame.h" |
29 | #include "frame-unwind.h" | |
30 | #include "frame-base.h" | |
31 | #include "trad-frame.h" | |
8818c391 TR |
32 | #include "gdbcmd.h" |
33 | #include "gdbcore.h" | |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "arch-utils.h" | |
37 | #include "regcache.h" | |
5f8a3188 | 38 | #include "gdb_string.h" |
a89aa300 | 39 | #include "dis-asm.h" |
8818c391 TR |
40 | |
41 | /* AVR Background: | |
42 | ||
43 | (AVR micros are pure Harvard Architecture processors.) | |
44 | ||
45 | The AVR family of microcontrollers have three distinctly different memory | |
46 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for | |
47 | the most part to store program instructions. The sram is 8 bits wide and is | |
48 | used for the stack and the heap. Some devices lack sram and some can have | |
49 | an additional external sram added on as a peripheral. | |
50 | ||
51 | The eeprom is 8 bits wide and is used to store data when the device is | |
52 | powered down. Eeprom is not directly accessible, it can only be accessed | |
53 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
54 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is | |
55 | not included at this time. | |
56 | ||
57 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
58 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
59 | work, the remote target must be able to handle eeprom accesses and perform | |
60 | the address translation.] | |
61 | ||
62 | All three memory spaces have physical addresses beginning at 0x0. In | |
63 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit | |
64 | bytes instead of the 16 bit wide words used by the real device for the | |
65 | Program Counter. | |
66 | ||
67 | In order for remote targets to work correctly, extra bits must be added to | |
68 | addresses before they are send to the target or received from the target | |
69 | via the remote serial protocol. The extra bits are the MSBs and are used to | |
70 | decode which memory space the address is referring to. */ | |
71 | ||
72 | #undef XMALLOC | |
73 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
74 | ||
75 | #undef EXTRACT_INSN | |
76 | #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2) | |
77 | ||
78 | /* Constants: prefixed with AVR_ to avoid name space clashes */ | |
79 | ||
80 | enum | |
2e5ff58c TR |
81 | { |
82 | AVR_REG_W = 24, | |
83 | AVR_REG_X = 26, | |
84 | AVR_REG_Y = 28, | |
85 | AVR_FP_REGNUM = 28, | |
86 | AVR_REG_Z = 30, | |
87 | ||
88 | AVR_SREG_REGNUM = 32, | |
89 | AVR_SP_REGNUM = 33, | |
90 | AVR_PC_REGNUM = 34, | |
91 | ||
92 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
93 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
94 | ||
95 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ | |
96 | ||
4add8633 | 97 | AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ |
2e5ff58c TR |
98 | |
99 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ | |
100 | AVR_MAX_PUSHES = 18, | |
101 | ||
102 | /* Number of the last pushed register. r17 for current avr-gcc */ | |
103 | AVR_LAST_PUSHED_REGNUM = 17, | |
104 | ||
4add8633 TR |
105 | AVR_ARG1_REGNUM = 24, /* Single byte argument */ |
106 | AVR_ARGN_REGNUM = 25, /* Multi byte argments */ | |
107 | ||
108 | AVR_RET1_REGNUM = 24, /* Single byte return value */ | |
109 | AVR_RETN_REGNUM = 25, /* Multi byte return value */ | |
110 | ||
2e5ff58c TR |
111 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 |
112 | bits? Do these have to match the bfd vma values?. It sure would make | |
113 | things easier in the future if they didn't need to match. | |
114 | ||
115 | Note: I chose these values so as to be consistent with bfd vma | |
116 | addresses. | |
117 | ||
118 | TRoth/2002-04-08: There is already a conflict with very large programs | |
119 | in the mega128. The mega128 has 128K instruction bytes (64K words), | |
120 | thus the Most Significant Bit is 0x10000 which gets masked off my | |
121 | AVR_MEM_MASK. | |
122 | ||
123 | The problem manifests itself when trying to set a breakpoint in a | |
124 | function which resides in the upper half of the instruction space and | |
125 | thus requires a 17-bit address. | |
126 | ||
127 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
128 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, | |
129 | but could be for some remote targets by just adding the correct offset | |
130 | to the address and letting the remote target handle the low-level | |
131 | details of actually accessing the eeprom. */ | |
132 | ||
133 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
134 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 135 | #if 1 |
2e5ff58c TR |
136 | /* No eeprom mask defined */ |
137 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 138 | #else |
2e5ff58c TR |
139 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
140 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 141 | #endif |
2e5ff58c | 142 | }; |
8818c391 | 143 | |
4add8633 TR |
144 | /* Prologue types: |
145 | ||
146 | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | |
147 | causes the generation of the CALL type prologues). */ | |
148 | ||
149 | enum { | |
150 | AVR_PROLOGUE_NONE, /* No prologue */ | |
151 | AVR_PROLOGUE_NORMAL, | |
152 | AVR_PROLOGUE_CALL, /* -mcall-prologues */ | |
153 | AVR_PROLOGUE_MAIN, | |
154 | AVR_PROLOGUE_INTR, /* interrupt handler */ | |
155 | AVR_PROLOGUE_SIG, /* signal handler */ | |
156 | }; | |
157 | ||
8818c391 TR |
158 | /* Any function with a frame looks like this |
159 | ....... <-SP POINTS HERE | |
160 | LOCALS1 <-FP POINTS HERE | |
161 | LOCALS0 | |
162 | SAVED FP | |
163 | SAVED R3 | |
164 | SAVED R2 | |
165 | RET PC | |
166 | FIRST ARG | |
167 | SECOND ARG */ | |
168 | ||
4add8633 | 169 | struct avr_unwind_cache |
2e5ff58c | 170 | { |
4add8633 TR |
171 | /* The previous frame's inner most stack address. Used as this |
172 | frame ID's stack_addr. */ | |
173 | CORE_ADDR prev_sp; | |
174 | /* The frame's base, optionally used by the high-level debug info. */ | |
175 | CORE_ADDR base; | |
176 | int size; | |
177 | int prologue_type; | |
178 | /* Table indicating the location of each and every register. */ | |
179 | struct trad_frame_saved_reg *saved_regs; | |
2e5ff58c | 180 | }; |
8818c391 TR |
181 | |
182 | struct gdbarch_tdep | |
2e5ff58c TR |
183 | { |
184 | /* FIXME: TRoth: is there anything to put here? */ | |
185 | int foo; | |
186 | }; | |
8818c391 TR |
187 | |
188 | /* Lookup the name of a register given it's number. */ | |
189 | ||
fa88f677 | 190 | static const char * |
8818c391 TR |
191 | avr_register_name (int regnum) |
192 | { | |
2e5ff58c TR |
193 | static char *register_names[] = { |
194 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
195 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
196 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
197 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
198 | "SREG", "SP", "PC" | |
199 | }; | |
200 | if (regnum < 0) | |
201 | return NULL; | |
202 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
203 | return NULL; | |
204 | return register_names[regnum]; | |
205 | } | |
206 | ||
8818c391 TR |
207 | /* Return the GDB type object for the "standard" data type |
208 | of data in register N. */ | |
209 | ||
210 | static struct type * | |
866b76ea | 211 | avr_register_type (struct gdbarch *gdbarch, int reg_nr) |
8818c391 | 212 | { |
866b76ea TR |
213 | if (reg_nr == AVR_PC_REGNUM) |
214 | return builtin_type_uint32; | |
866b76ea TR |
215 | if (reg_nr == AVR_SP_REGNUM) |
216 | return builtin_type_void_data_ptr; | |
217 | else | |
218 | return builtin_type_uint8; | |
8818c391 TR |
219 | } |
220 | ||
221 | /* Instruction address checks and convertions. */ | |
222 | ||
223 | static CORE_ADDR | |
224 | avr_make_iaddr (CORE_ADDR x) | |
225 | { | |
226 | return ((x) | AVR_IMEM_START); | |
227 | } | |
228 | ||
8818c391 TR |
229 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some |
230 | devices are already up to 128KBytes of flash space. | |
231 | ||
232 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ | |
233 | ||
234 | static CORE_ADDR | |
235 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
236 | { | |
237 | return ((x) & 0xffffffff); | |
238 | } | |
239 | ||
240 | /* SRAM address checks and convertions. */ | |
241 | ||
242 | static CORE_ADDR | |
243 | avr_make_saddr (CORE_ADDR x) | |
244 | { | |
245 | return ((x) | AVR_SMEM_START); | |
246 | } | |
247 | ||
8818c391 TR |
248 | static CORE_ADDR |
249 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
250 | { | |
251 | return ((x) & 0xffffffff); | |
252 | } | |
253 | ||
254 | /* EEPROM address checks and convertions. I don't know if these will ever | |
255 | actually be used, but I've added them just the same. TRoth */ | |
256 | ||
257 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
258 | programs in the mega128. */ | |
259 | ||
260 | /* static CORE_ADDR */ | |
261 | /* avr_make_eaddr (CORE_ADDR x) */ | |
262 | /* { */ | |
263 | /* return ((x) | AVR_EMEM_START); */ | |
264 | /* } */ | |
265 | ||
266 | /* static int */ | |
267 | /* avr_eaddr_p (CORE_ADDR x) */ | |
268 | /* { */ | |
269 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
270 | /* } */ | |
271 | ||
272 | /* static CORE_ADDR */ | |
273 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
274 | /* { */ | |
275 | /* return ((x) & 0xffffffff); */ | |
276 | /* } */ | |
277 | ||
278 | /* Convert from address to pointer and vice-versa. */ | |
279 | ||
280 | static void | |
281 | avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) | |
282 | { | |
283 | /* Is it a code address? */ | |
284 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
285 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
286 | { | |
2e5ff58c | 287 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
4ea2465e | 288 | avr_convert_iaddr_to_raw (addr >> 1)); |
8818c391 TR |
289 | } |
290 | else | |
291 | { | |
292 | /* Strip off any upper segment bits. */ | |
2e5ff58c TR |
293 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
294 | avr_convert_saddr_to_raw (addr)); | |
8818c391 TR |
295 | } |
296 | } | |
297 | ||
298 | static CORE_ADDR | |
66140c26 | 299 | avr_pointer_to_address (struct type *type, const void *buf) |
8818c391 | 300 | { |
7c0b4a20 | 301 | CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); |
8818c391 | 302 | |
8818c391 TR |
303 | /* Is it a code address? */ |
304 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
305 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
2e5ff58c | 306 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
4ea2465e | 307 | return avr_make_iaddr (addr << 1); |
8818c391 TR |
308 | else |
309 | return avr_make_saddr (addr); | |
310 | } | |
311 | ||
312 | static CORE_ADDR | |
313 | avr_read_pc (ptid_t ptid) | |
314 | { | |
315 | ptid_t save_ptid; | |
8619218d | 316 | ULONGEST pc; |
8818c391 TR |
317 | CORE_ADDR retval; |
318 | ||
319 | save_ptid = inferior_ptid; | |
320 | inferior_ptid = ptid; | |
8619218d | 321 | regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc); |
8818c391 TR |
322 | inferior_ptid = save_ptid; |
323 | retval = avr_make_iaddr (pc); | |
324 | return retval; | |
325 | } | |
326 | ||
327 | static void | |
328 | avr_write_pc (CORE_ADDR val, ptid_t ptid) | |
329 | { | |
330 | ptid_t save_ptid; | |
331 | ||
332 | save_ptid = inferior_ptid; | |
333 | inferior_ptid = ptid; | |
334 | write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val)); | |
335 | inferior_ptid = save_ptid; | |
336 | } | |
337 | ||
338 | static CORE_ADDR | |
339 | avr_read_sp (void) | |
340 | { | |
8619218d TR |
341 | ULONGEST sp; |
342 | ||
343 | regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp); | |
344 | return (avr_make_saddr (sp)); | |
8818c391 TR |
345 | } |
346 | ||
4add8633 TR |
347 | static int |
348 | avr_scan_arg_moves (int vpc, unsigned char *prologue) | |
8818c391 | 349 | { |
4add8633 | 350 | unsigned short insn; |
866b76ea | 351 | |
4add8633 TR |
352 | for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2) |
353 | { | |
354 | insn = EXTRACT_INSN (&prologue[vpc]); | |
355 | if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ | |
356 | continue; | |
357 | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | |
358 | continue; | |
359 | else | |
360 | break; | |
361 | } | |
362 | ||
363 | return vpc; | |
8818c391 TR |
364 | } |
365 | ||
4add8633 | 366 | /* Function: avr_scan_prologue |
8818c391 | 367 | |
4add8633 | 368 | This function decodes an AVR function prologue to determine: |
8818c391 TR |
369 | 1) the size of the stack frame |
370 | 2) which registers are saved on it | |
371 | 3) the offsets of saved regs | |
4add8633 | 372 | This information is stored in the avr_unwind_cache structure. |
8818c391 | 373 | |
e3d8b004 TR |
374 | Some devices lack the sbiw instruction, so on those replace this: |
375 | sbiw r28, XX | |
376 | with this: | |
377 | subi r28,lo8(XX) | |
378 | sbci r29,hi8(XX) | |
379 | ||
380 | A typical AVR function prologue with a frame pointer might look like this: | |
381 | push rXX ; saved regs | |
382 | ... | |
383 | push r28 | |
384 | push r29 | |
385 | in r28,__SP_L__ | |
386 | in r29,__SP_H__ | |
387 | sbiw r28,<LOCALS_SIZE> | |
388 | in __tmp_reg__,__SREG__ | |
8818c391 | 389 | cli |
e3d8b004 | 390 | out __SP_H__,r29 |
72fab697 TR |
391 | out __SREG__,__tmp_reg__ |
392 | out __SP_L__,r28 | |
e3d8b004 TR |
393 | |
394 | A typical AVR function prologue without a frame pointer might look like | |
395 | this: | |
396 | push rXX ; saved regs | |
397 | ... | |
398 | ||
399 | A main function prologue looks like this: | |
400 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
401 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
402 | out __SP_H__,r29 | |
403 | out __SP_L__,r28 | |
404 | ||
405 | A signal handler prologue looks like this: | |
406 | push __zero_reg__ | |
407 | push __tmp_reg__ | |
408 | in __tmp_reg__, __SREG__ | |
409 | push __tmp_reg__ | |
410 | clr __zero_reg__ | |
411 | push rXX ; save registers r18:r27, r30:r31 | |
412 | ... | |
413 | push r28 ; save frame pointer | |
414 | push r29 | |
415 | in r28, __SP_L__ | |
416 | in r29, __SP_H__ | |
417 | sbiw r28, <LOCALS_SIZE> | |
418 | out __SP_H__, r29 | |
419 | out __SP_L__, r28 | |
420 | ||
421 | A interrupt handler prologue looks like this: | |
422 | sei | |
423 | push __zero_reg__ | |
424 | push __tmp_reg__ | |
425 | in __tmp_reg__, __SREG__ | |
426 | push __tmp_reg__ | |
427 | clr __zero_reg__ | |
428 | push rXX ; save registers r18:r27, r30:r31 | |
429 | ... | |
430 | push r28 ; save frame pointer | |
431 | push r29 | |
432 | in r28, __SP_L__ | |
433 | in r29, __SP_H__ | |
434 | sbiw r28, <LOCALS_SIZE> | |
435 | cli | |
436 | out __SP_H__, r29 | |
437 | sei | |
438 | out __SP_L__, r28 | |
439 | ||
440 | A `-mcall-prologues' prologue looks like this (Note that the megas use a | |
441 | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | |
442 | 32 bit insn and rjmp is a 16 bit insn): | |
443 | ldi r26,lo8(<LOCALS_SIZE>) | |
444 | ldi r27,hi8(<LOCALS_SIZE>) | |
445 | ldi r30,pm_lo8(.L_foo_body) | |
446 | ldi r31,pm_hi8(.L_foo_body) | |
447 | rjmp __prologue_saves__+RRR | |
448 | .L_foo_body: */ | |
8818c391 | 449 | |
4add8633 TR |
450 | /* Not really part of a prologue, but still need to scan for it, is when a |
451 | function prologue moves values passed via registers as arguments to new | |
452 | registers. In this case, all local variables live in registers, so there | |
453 | may be some register saves. This is what it looks like: | |
454 | movw rMM, rNN | |
455 | ... | |
456 | ||
457 | There could be multiple movw's. If the target doesn't have a movw insn, it | |
458 | will use two mov insns. This could be done after any of the above prologue | |
459 | types. */ | |
460 | ||
461 | static CORE_ADDR | |
462 | avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info) | |
8818c391 | 463 | { |
2e5ff58c TR |
464 | int i; |
465 | unsigned short insn; | |
2e5ff58c | 466 | int scan_stage = 0; |
8818c391 | 467 | struct minimal_symbol *msymbol; |
8818c391 TR |
468 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
469 | int vpc = 0; | |
470 | ||
4add8633 TR |
471 | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only |
472 | reading in the bytes of the prologue. The problem is that the figuring | |
473 | out where the end of the prologue is is a bit difficult. The old code | |
474 | tried to do that, but failed quite often. */ | |
475 | read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE); | |
8818c391 TR |
476 | |
477 | /* Scanning main()'s prologue | |
478 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
479 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
480 | out __SP_H__,r29 | |
481 | out __SP_L__,r28 */ | |
482 | ||
4add8633 | 483 | if (1) |
8818c391 TR |
484 | { |
485 | CORE_ADDR locals; | |
2e5ff58c TR |
486 | unsigned char img[] = { |
487 | 0xde, 0xbf, /* out __SP_H__,r29 */ | |
488 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
489 | }; |
490 | ||
8818c391 TR |
491 | insn = EXTRACT_INSN (&prologue[vpc]); |
492 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
2e5ff58c TR |
493 | if ((insn & 0xf0f0) == 0xe0c0) |
494 | { | |
495 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
496 | insn = EXTRACT_INSN (&prologue[vpc + 2]); | |
497 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
498 | if ((insn & 0xf0f0) == 0xe0d0) | |
499 | { | |
500 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
501 | if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
502 | { | |
4add8633 TR |
503 | info->prologue_type = AVR_PROLOGUE_MAIN; |
504 | info->base = locals; | |
505 | return pc + 4; | |
2e5ff58c TR |
506 | } |
507 | } | |
508 | } | |
8818c391 | 509 | } |
2e5ff58c | 510 | |
4add8633 TR |
511 | /* Scanning `-mcall-prologues' prologue |
512 | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | |
8818c391 | 513 | |
e3d8b004 | 514 | while (1) /* Using a while to avoid many goto's */ |
8818c391 TR |
515 | { |
516 | int loc_size; | |
517 | int body_addr; | |
518 | unsigned num_pushes; | |
4add8633 | 519 | int pc_offset = 0; |
2e5ff58c | 520 | |
8818c391 TR |
521 | insn = EXTRACT_INSN (&prologue[vpc]); |
522 | /* ldi r26,<LOCALS_SIZE> */ | |
2e5ff58c TR |
523 | if ((insn & 0xf0f0) != 0xe0a0) |
524 | break; | |
8818c391 | 525 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 526 | pc_offset += 2; |
2e5ff58c | 527 | |
8818c391 TR |
528 | insn = EXTRACT_INSN (&prologue[vpc + 2]); |
529 | /* ldi r27,<LOCALS_SIZE> / 256 */ | |
530 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 531 | break; |
8818c391 | 532 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 533 | pc_offset += 2; |
2e5ff58c | 534 | |
8818c391 TR |
535 | insn = EXTRACT_INSN (&prologue[vpc + 4]); |
536 | /* ldi r30,pm_lo8(.L_foo_body) */ | |
537 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 538 | break; |
8818c391 | 539 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 540 | pc_offset += 2; |
8818c391 TR |
541 | |
542 | insn = EXTRACT_INSN (&prologue[vpc + 6]); | |
543 | /* ldi r31,pm_hi8(.L_foo_body) */ | |
544 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 545 | break; |
8818c391 | 546 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 547 | pc_offset += 2; |
8818c391 | 548 | |
8818c391 TR |
549 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); |
550 | if (!msymbol) | |
2e5ff58c | 551 | break; |
8818c391 | 552 | |
8818c391 TR |
553 | insn = EXTRACT_INSN (&prologue[vpc + 8]); |
554 | /* rjmp __prologue_saves__+RRR */ | |
e3d8b004 TR |
555 | if ((insn & 0xf000) == 0xc000) |
556 | { | |
557 | /* Extract PC relative offset from RJMP */ | |
558 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
559 | /* Convert offset to byte addressable mode */ | |
560 | i *= 2; | |
561 | /* Destination address */ | |
4add8633 | 562 | i += pc + 10; |
e3d8b004 | 563 | |
4add8633 | 564 | if (body_addr != (pc + 10)/2) |
e3d8b004 | 565 | break; |
4add8633 TR |
566 | |
567 | pc_offset += 2; | |
e3d8b004 | 568 | } |
e3d8b004 TR |
569 | else if ((insn & 0xfe0e) == 0x940c) |
570 | { | |
571 | /* Extract absolute PC address from JMP */ | |
572 | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | |
573 | | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff)); | |
574 | /* Convert address to byte addressable mode */ | |
575 | i *= 2; | |
576 | ||
4add8633 | 577 | if (body_addr != (pc + 12)/2) |
e3d8b004 | 578 | break; |
4add8633 TR |
579 | |
580 | pc_offset += 4; | |
e3d8b004 TR |
581 | } |
582 | else | |
583 | break; | |
2e5ff58c | 584 | |
4add8633 | 585 | /* Resolve offset (in words) from __prologue_saves__ symbol. |
8818c391 TR |
586 | Which is a pushes count in `-mcall-prologues' mode */ |
587 | num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2; | |
588 | ||
589 | if (num_pushes > AVR_MAX_PUSHES) | |
4add8633 | 590 | { |
edefbb7c | 591 | fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), |
4add8633 TR |
592 | num_pushes); |
593 | num_pushes = 0; | |
594 | } | |
2e5ff58c | 595 | |
8818c391 | 596 | if (num_pushes) |
2e5ff58c TR |
597 | { |
598 | int from; | |
4add8633 TR |
599 | |
600 | info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; | |
2e5ff58c | 601 | if (num_pushes >= 2) |
4add8633 TR |
602 | info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; |
603 | ||
2e5ff58c TR |
604 | i = 0; |
605 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
606 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
4add8633 | 607 | info->saved_regs [from].addr = ++i; |
2e5ff58c | 608 | } |
4add8633 TR |
609 | info->size = loc_size + num_pushes; |
610 | info->prologue_type = AVR_PROLOGUE_CALL; | |
611 | ||
612 | return pc + pc_offset; | |
8818c391 TR |
613 | } |
614 | ||
4add8633 TR |
615 | /* Scan for the beginning of the prologue for an interrupt or signal |
616 | function. Note that we have to set the prologue type here since the | |
617 | third stage of the prologue may not be present (e.g. no saved registered | |
618 | or changing of the SP register). */ | |
8818c391 | 619 | |
4add8633 | 620 | if (1) |
8818c391 | 621 | { |
2e5ff58c TR |
622 | unsigned char img[] = { |
623 | 0x78, 0x94, /* sei */ | |
624 | 0x1f, 0x92, /* push r1 */ | |
625 | 0x0f, 0x92, /* push r0 */ | |
626 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
627 | 0x0f, 0x92, /* push r0 */ | |
628 | 0x11, 0x24 /* clr r1 */ | |
8818c391 TR |
629 | }; |
630 | if (memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c | 631 | { |
4add8633 | 632 | info->prologue_type = AVR_PROLOGUE_INTR; |
2e5ff58c | 633 | vpc += sizeof (img); |
4add8633 TR |
634 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; |
635 | info->saved_regs[0].addr = 2; | |
636 | info->saved_regs[1].addr = 1; | |
637 | info->size += 3; | |
2e5ff58c | 638 | } |
4add8633 | 639 | else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0) |
2e5ff58c | 640 | { |
4add8633 TR |
641 | info->prologue_type = AVR_PROLOGUE_SIG; |
642 | vpc += sizeof (img) - 2; | |
643 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; | |
644 | info->saved_regs[0].addr = 2; | |
645 | info->saved_regs[1].addr = 1; | |
646 | info->size += 3; | |
2e5ff58c | 647 | } |
8818c391 TR |
648 | } |
649 | ||
650 | /* First stage of the prologue scanning. | |
4add8633 | 651 | Scan pushes (saved registers) */ |
8818c391 | 652 | |
4add8633 | 653 | for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2) |
8818c391 TR |
654 | { |
655 | insn = EXTRACT_INSN (&prologue[vpc]); | |
2e5ff58c TR |
656 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
657 | { | |
658 | /* Bits 4-9 contain a mask for registers R0-R32. */ | |
4add8633 TR |
659 | int regno = (insn & 0x1f0) >> 4; |
660 | info->size++; | |
661 | info->saved_regs[regno].addr = info->size; | |
2e5ff58c TR |
662 | scan_stage = 1; |
663 | } | |
8818c391 | 664 | else |
2e5ff58c | 665 | break; |
8818c391 TR |
666 | } |
667 | ||
4add8633 TR |
668 | if (vpc >= AVR_MAX_PROLOGUE_SIZE) |
669 | fprintf_unfiltered (gdb_stderr, | |
edefbb7c | 670 | _("Hit end of prologue while scanning pushes\n")); |
4add8633 | 671 | |
8818c391 TR |
672 | /* Second stage of the prologue scanning. |
673 | Scan: | |
674 | in r28,__SP_L__ | |
675 | in r29,__SP_H__ */ | |
676 | ||
4add8633 | 677 | if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE) |
8818c391 | 678 | { |
2e5ff58c TR |
679 | unsigned char img[] = { |
680 | 0xcd, 0xb7, /* in r28,__SP_L__ */ | |
681 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 TR |
682 | }; |
683 | unsigned short insn1; | |
2e5ff58c | 684 | |
8818c391 | 685 | if (memcmp (prologue + vpc, img, sizeof (img)) == 0) |
2e5ff58c TR |
686 | { |
687 | vpc += 4; | |
2e5ff58c TR |
688 | scan_stage = 2; |
689 | } | |
8818c391 TR |
690 | } |
691 | ||
692 | /* Third stage of the prologue scanning. (Really two stages) | |
693 | Scan for: | |
694 | sbiw r28,XX or subi r28,lo8(XX) | |
72fab697 | 695 | sbci r29,hi8(XX) |
8818c391 TR |
696 | in __tmp_reg__,__SREG__ |
697 | cli | |
e3d8b004 | 698 | out __SP_H__,r29 |
8818c391 | 699 | out __SREG__,__tmp_reg__ |
e3d8b004 | 700 | out __SP_L__,r28 */ |
8818c391 | 701 | |
4add8633 | 702 | if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE) |
8818c391 TR |
703 | { |
704 | int locals_size = 0; | |
2e5ff58c TR |
705 | unsigned char img[] = { |
706 | 0x0f, 0xb6, /* in r0,0x3f */ | |
707 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 708 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 709 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ |
e3d8b004 | 710 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 711 | }; |
2e5ff58c | 712 | unsigned char img_sig[] = { |
e3d8b004 TR |
713 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
714 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ | |
8818c391 | 715 | }; |
2e5ff58c TR |
716 | unsigned char img_int[] = { |
717 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 718 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 719 | 0x78, 0x94, /* sei */ |
e3d8b004 | 720 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 721 | }; |
2e5ff58c | 722 | |
8818c391 TR |
723 | insn = EXTRACT_INSN (&prologue[vpc]); |
724 | vpc += 2; | |
2e5ff58c TR |
725 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
726 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
727 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ | |
728 | { | |
729 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
730 | insn = EXTRACT_INSN (&prologue[vpc]); | |
731 | vpc += 2; | |
732 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8); | |
733 | } | |
8818c391 | 734 | else |
4add8633 TR |
735 | return pc + vpc; |
736 | ||
737 | /* Scan the last part of the prologue. May not be present for interrupt | |
738 | or signal handler functions, which is why we set the prologue type | |
739 | when we saw the beginning of the prologue previously. */ | |
740 | ||
741 | if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | |
742 | { | |
743 | vpc += sizeof (img_sig); | |
744 | } | |
745 | else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | |
746 | { | |
747 | vpc += sizeof (img_int); | |
748 | } | |
749 | if (memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
750 | { | |
751 | info->prologue_type = AVR_PROLOGUE_NORMAL; | |
752 | vpc += sizeof (img); | |
753 | } | |
754 | ||
755 | info->size += locals_size; | |
756 | ||
757 | return pc + avr_scan_arg_moves (vpc, prologue); | |
8818c391 | 758 | } |
4add8633 TR |
759 | |
760 | /* If we got this far, we could not scan the prologue, so just return the pc | |
761 | of the frame plus an adjustment for argument move insns. */ | |
762 | ||
763 | return pc + avr_scan_arg_moves (vpc, prologue);; | |
8818c391 TR |
764 | } |
765 | ||
4add8633 TR |
766 | static CORE_ADDR |
767 | avr_skip_prologue (CORE_ADDR pc) | |
768 | { | |
769 | CORE_ADDR func_addr, func_end; | |
770 | CORE_ADDR prologue_end = pc; | |
8818c391 | 771 | |
4add8633 | 772 | /* See what the symbol table says */ |
8818c391 | 773 | |
4add8633 TR |
774 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
775 | { | |
776 | struct symtab_and_line sal; | |
777 | struct avr_unwind_cache info = {0}; | |
778 | struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | |
2e5ff58c | 779 | |
4add8633 | 780 | info.saved_regs = saved_regs; |
8818c391 | 781 | |
4add8633 TR |
782 | /* Need to run the prologue scanner to figure out if the function has a |
783 | prologue and possibly skip over moving arguments passed via registers | |
784 | to other registers. */ | |
2e5ff58c | 785 | |
4add8633 | 786 | prologue_end = avr_scan_prologue (pc, &info); |
8818c391 | 787 | |
3b85b0f1 TR |
788 | if (info.prologue_type == AVR_PROLOGUE_NONE) |
789 | return pc; | |
790 | else | |
4add8633 TR |
791 | { |
792 | sal = find_pc_line (func_addr, 0); | |
8818c391 | 793 | |
4add8633 TR |
794 | if (sal.line != 0 && sal.end < func_end) |
795 | return sal.end; | |
796 | } | |
797 | } | |
2e5ff58c | 798 | |
4add8633 TR |
799 | /* Either we didn't find the start of this function (nothing we can do), |
800 | or there's no line info, or the line after the prologue is after | |
801 | the end of the function (there probably isn't a prologue). */ | |
2e5ff58c | 802 | |
4add8633 TR |
803 | return prologue_end; |
804 | } | |
8818c391 | 805 | |
4add8633 TR |
806 | /* Not all avr devices support the BREAK insn. Those that don't should treat |
807 | it as a NOP. Thus, it should be ok. Since the avr is currently a remote | |
808 | only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ | |
8818c391 | 809 | |
4add8633 TR |
810 | static const unsigned char * |
811 | avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) | |
812 | { | |
813 | static unsigned char avr_break_insn [] = { 0x98, 0x95 }; | |
814 | *lenptr = sizeof (avr_break_insn); | |
815 | return avr_break_insn; | |
8818c391 TR |
816 | } |
817 | ||
4add8633 TR |
818 | /* Given a return value in `regbuf' with a type `valtype', |
819 | extract and copy its value into `valbuf'. | |
820 | ||
821 | Return values are always passed via registers r25:r24:... */ | |
8818c391 TR |
822 | |
823 | static void | |
4add8633 TR |
824 | avr_extract_return_value (struct type *type, struct regcache *regcache, |
825 | void *valbuf) | |
8818c391 | 826 | { |
4add8633 TR |
827 | ULONGEST r24, r25; |
828 | ULONGEST c; | |
829 | int len; | |
830 | if (TYPE_LENGTH (type) == 1) | |
8818c391 | 831 | { |
4add8633 TR |
832 | regcache_cooked_read_unsigned (regcache, 24, &c); |
833 | store_unsigned_integer (valbuf, 1, c); | |
8818c391 TR |
834 | } |
835 | else | |
836 | { | |
4add8633 TR |
837 | int i; |
838 | /* The MSB of the return value is always in r25, calculate which | |
839 | register holds the LSB. */ | |
840 | int lsb_reg = 25 - TYPE_LENGTH (type) + 1; | |
8818c391 | 841 | |
4add8633 TR |
842 | for (i=0; i< TYPE_LENGTH (type); i++) |
843 | { | |
844 | regcache_cooked_read (regcache, lsb_reg + i, | |
845 | (bfd_byte *) valbuf + i); | |
4add8633 TR |
846 | } |
847 | } | |
848 | } | |
8818c391 | 849 | |
4add8633 TR |
850 | /* Put here the code to store, into fi->saved_regs, the addresses of |
851 | the saved registers of frame described by FRAME_INFO. This | |
852 | includes special registers such as pc and fp saved in special ways | |
853 | in the stack frame. sp is even more special: the address we return | |
854 | for it IS the sp for the next frame. */ | |
8818c391 | 855 | |
4add8633 TR |
856 | struct avr_unwind_cache * |
857 | avr_frame_unwind_cache (struct frame_info *next_frame, | |
858 | void **this_prologue_cache) | |
8818c391 | 859 | { |
4add8633 TR |
860 | CORE_ADDR pc; |
861 | ULONGEST prev_sp; | |
862 | ULONGEST this_base; | |
863 | struct avr_unwind_cache *info; | |
864 | int i; | |
865 | ||
866 | if ((*this_prologue_cache)) | |
867 | return (*this_prologue_cache); | |
868 | ||
869 | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | |
870 | (*this_prologue_cache) = info; | |
871 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
872 | ||
873 | info->size = 0; | |
874 | info->prologue_type = AVR_PROLOGUE_NONE; | |
875 | ||
876 | pc = frame_func_unwind (next_frame); | |
877 | ||
878 | if ((pc > 0) && (pc < frame_pc_unwind (next_frame))) | |
879 | avr_scan_prologue (pc, info); | |
880 | ||
3b85b0f1 TR |
881 | if ((info->prologue_type != AVR_PROLOGUE_NONE) |
882 | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | |
4add8633 TR |
883 | { |
884 | ULONGEST high_base; /* High byte of FP */ | |
885 | ||
886 | /* The SP was moved to the FP. This indicates that a new frame | |
887 | was created. Get THIS frame's FP value by unwinding it from | |
888 | the next frame. */ | |
889 | frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base); | |
890 | frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base); | |
891 | this_base += (high_base << 8); | |
892 | ||
893 | /* The FP points at the last saved register. Adjust the FP back | |
894 | to before the first saved register giving the SP. */ | |
895 | prev_sp = this_base + info->size; | |
896 | } | |
8818c391 | 897 | else |
4add8633 TR |
898 | { |
899 | /* Assume that the FP is this frame's SP but with that pushed | |
900 | stack space added back. */ | |
901 | frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base); | |
902 | prev_sp = this_base + info->size; | |
903 | } | |
904 | ||
905 | /* Add 1 here to adjust for the post-decrement nature of the push | |
906 | instruction.*/ | |
907 | info->prev_sp = avr_make_saddr (prev_sp+1); | |
908 | ||
909 | info->base = avr_make_saddr (this_base); | |
910 | ||
911 | /* Adjust all the saved registers so that they contain addresses and not | |
3b85b0f1 | 912 | offsets. */ |
4add8633 TR |
913 | for (i = 0; i < NUM_REGS - 1; i++) |
914 | if (info->saved_regs[i].addr) | |
915 | { | |
916 | info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr); | |
917 | } | |
918 | ||
919 | /* Except for the main and startup code, the return PC is always saved on | |
920 | the stack and is at the base of the frame. */ | |
921 | ||
922 | if (info->prologue_type != AVR_PROLOGUE_MAIN) | |
923 | { | |
924 | info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; | |
925 | } | |
926 | ||
3b85b0f1 TR |
927 | /* The previous frame's SP needed to be computed. Save the computed |
928 | value. */ | |
929 | trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1); | |
930 | ||
4add8633 | 931 | return info; |
8818c391 TR |
932 | } |
933 | ||
934 | static CORE_ADDR | |
4add8633 | 935 | avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
8818c391 | 936 | { |
4add8633 TR |
937 | ULONGEST pc; |
938 | ||
939 | frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc); | |
940 | ||
941 | return avr_make_iaddr (pc); | |
8818c391 TR |
942 | } |
943 | ||
4add8633 TR |
944 | /* Given a GDB frame, determine the address of the calling function's |
945 | frame. This will be used to create a new GDB frame struct. */ | |
8818c391 | 946 | |
4add8633 TR |
947 | static void |
948 | avr_frame_this_id (struct frame_info *next_frame, | |
949 | void **this_prologue_cache, | |
950 | struct frame_id *this_id) | |
8818c391 | 951 | { |
4add8633 TR |
952 | struct avr_unwind_cache *info |
953 | = avr_frame_unwind_cache (next_frame, this_prologue_cache); | |
954 | CORE_ADDR base; | |
955 | CORE_ADDR func; | |
956 | struct frame_id id; | |
957 | ||
958 | /* The FUNC is easy. */ | |
959 | func = frame_func_unwind (next_frame); | |
960 | ||
4add8633 TR |
961 | /* Hopefully the prologue analysis either correctly determined the |
962 | frame's base (which is the SP from the previous frame), or set | |
963 | that base to "NULL". */ | |
964 | base = info->prev_sp; | |
965 | if (base == 0) | |
966 | return; | |
967 | ||
968 | id = frame_id_build (base, func); | |
4add8633 | 969 | (*this_id) = id; |
8818c391 TR |
970 | } |
971 | ||
4add8633 TR |
972 | static void |
973 | avr_frame_prev_register (struct frame_info *next_frame, | |
974 | void **this_prologue_cache, | |
975 | int regnum, int *optimizedp, | |
976 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
977 | int *realnump, void *bufferp) | |
8818c391 | 978 | { |
4add8633 TR |
979 | struct avr_unwind_cache *info |
980 | = avr_frame_unwind_cache (next_frame, this_prologue_cache); | |
8818c391 | 981 | |
3b85b0f1 TR |
982 | if (regnum == AVR_PC_REGNUM) |
983 | { | |
984 | if (trad_frame_addr_p (info->saved_regs, regnum)) | |
985 | { | |
986 | *optimizedp = 0; | |
987 | *lvalp = lval_memory; | |
988 | *addrp = info->saved_regs[regnum].addr; | |
989 | *realnump = -1; | |
990 | if (bufferp != NULL) | |
991 | { | |
992 | /* Reading the return PC from the PC register is slightly | |
993 | abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, | |
994 | but in reality, only two bytes (3 in upcoming mega256) are | |
995 | stored on the stack. | |
996 | ||
997 | Also, note that the value on the stack is an addr to a word | |
998 | not a byte, so we will need to multiply it by two at some | |
999 | point. | |
1000 | ||
1001 | And to confuse matters even more, the return address stored | |
1002 | on the stack is in big endian byte order, even though most | |
1003 | everything else about the avr is little endian. Ick! */ | |
1004 | ||
1005 | /* FIXME: number of bytes read here will need updated for the | |
1006 | mega256 when it is available. */ | |
1007 | ||
1008 | ULONGEST pc; | |
1009 | unsigned char tmp; | |
1010 | unsigned char buf[2]; | |
1011 | ||
1012 | read_memory (info->saved_regs[regnum].addr, buf, 2); | |
1013 | ||
1014 | /* Convert the PC read from memory as a big-endian to | |
1015 | little-endian order. */ | |
1016 | tmp = buf[0]; | |
1017 | buf[0] = buf[1]; | |
1018 | buf[1] = tmp; | |
1019 | ||
1020 | pc = (extract_unsigned_integer (buf, 2) * 2); | |
1021 | store_unsigned_integer (bufferp, | |
1022 | register_size (current_gdbarch, regnum), | |
1023 | pc); | |
1024 | } | |
1025 | } | |
1026 | } | |
1027 | else | |
1f67027d AC |
1028 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
1029 | optimizedp, lvalp, addrp, realnump, bufferp); | |
4add8633 | 1030 | } |
8818c391 | 1031 | |
4add8633 TR |
1032 | static const struct frame_unwind avr_frame_unwind = { |
1033 | NORMAL_FRAME, | |
1034 | avr_frame_this_id, | |
1035 | avr_frame_prev_register | |
1036 | }; | |
1037 | ||
1038 | const struct frame_unwind * | |
336d1bba | 1039 | avr_frame_sniffer (struct frame_info *next_frame) |
4add8633 TR |
1040 | { |
1041 | return &avr_frame_unwind; | |
8818c391 TR |
1042 | } |
1043 | ||
1044 | static CORE_ADDR | |
4add8633 | 1045 | avr_frame_base_address (struct frame_info *next_frame, void **this_cache) |
8818c391 | 1046 | { |
4add8633 TR |
1047 | struct avr_unwind_cache *info |
1048 | = avr_frame_unwind_cache (next_frame, this_cache); | |
8818c391 | 1049 | |
4add8633 TR |
1050 | return info->base; |
1051 | } | |
8818c391 | 1052 | |
4add8633 TR |
1053 | static const struct frame_base avr_frame_base = { |
1054 | &avr_frame_unwind, | |
1055 | avr_frame_base_address, | |
1056 | avr_frame_base_address, | |
1057 | avr_frame_base_address | |
1058 | }; | |
ced15480 | 1059 | |
4add8633 TR |
1060 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
1061 | dummy frame. The frame ID's base needs to match the TOS value | |
1062 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
1063 | breakpoint. */ | |
8818c391 | 1064 | |
4add8633 TR |
1065 | static struct frame_id |
1066 | avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1067 | { | |
1068 | ULONGEST base; | |
8818c391 | 1069 | |
4add8633 TR |
1070 | frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base); |
1071 | return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame)); | |
8818c391 TR |
1072 | } |
1073 | ||
4add8633 TR |
1074 | /* When arguments must be pushed onto the stack, they go on in reverse |
1075 | order. The below implements a FILO (stack) to do this. */ | |
8818c391 | 1076 | |
4add8633 TR |
1077 | struct stack_item |
1078 | { | |
1079 | int len; | |
1080 | struct stack_item *prev; | |
1081 | void *data; | |
1082 | }; | |
8818c391 | 1083 | |
4add8633 TR |
1084 | static struct stack_item *push_stack_item (struct stack_item *prev, |
1085 | void *contents, int len); | |
1086 | static struct stack_item * | |
1087 | push_stack_item (struct stack_item *prev, void *contents, int len) | |
8818c391 | 1088 | { |
4add8633 TR |
1089 | struct stack_item *si; |
1090 | si = xmalloc (sizeof (struct stack_item)); | |
1091 | si->data = xmalloc (len); | |
1092 | si->len = len; | |
1093 | si->prev = prev; | |
1094 | memcpy (si->data, contents, len); | |
1095 | return si; | |
8818c391 TR |
1096 | } |
1097 | ||
4add8633 TR |
1098 | static struct stack_item *pop_stack_item (struct stack_item *si); |
1099 | static struct stack_item * | |
1100 | pop_stack_item (struct stack_item *si) | |
8818c391 | 1101 | { |
4add8633 TR |
1102 | struct stack_item *dead = si; |
1103 | si = si->prev; | |
1104 | xfree (dead->data); | |
1105 | xfree (dead); | |
1106 | return si; | |
8818c391 TR |
1107 | } |
1108 | ||
8818c391 TR |
1109 | /* Setup the function arguments for calling a function in the inferior. |
1110 | ||
1111 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1112 | dedicated for passing function arguments. Up to the first 18 arguments | |
1113 | (depending on size) may go into these registers. The rest go on the stack. | |
1114 | ||
4add8633 TR |
1115 | All arguments are aligned to start in even-numbered registers (odd-sized |
1116 | arguments, including char, have one free register above them). For example, | |
1117 | an int in arg1 and a char in arg2 would be passed as such: | |
1118 | ||
1119 | arg1 -> r25:r24 | |
1120 | arg2 -> r22 | |
1121 | ||
1122 | Arguments that are larger than 2 bytes will be split between two or more | |
1123 | registers as available, but will NOT be split between a register and the | |
1124 | stack. Arguments that go onto the stack are pushed last arg first (this is | |
1125 | similar to the d10v). */ | |
1126 | ||
1127 | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | |
1128 | inaccurate. | |
8818c391 TR |
1129 | |
1130 | An exceptional case exists for struct arguments (and possibly other | |
1131 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1132 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1133 | between the registers and the stack, but instead is copied in its entirety | |
1134 | onto the stack, AND also copied into as many registers as there is room | |
1135 | for. In other words, space in registers permitting, two copies of the same | |
1136 | argument are passed in. As far as I can tell, only the one on the stack is | |
1137 | used, although that may be a function of the level of compiler | |
1138 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1139 | sizes are left-justified within the word (as opposed to arguments smaller | |
1140 | than WORDSIZE bytes, which are right-justified). | |
1141 | ||
1142 | If the function is to return an aggregate type such as a struct, the caller | |
1143 | must allocate space into which the callee will copy the return value. In | |
1144 | this case, a pointer to the return value location is passed into the callee | |
1145 | in register R0, which displaces one of the other arguments passed in via | |
1146 | registers R0 to R2. */ | |
1147 | ||
1148 | static CORE_ADDR | |
7d9b040b | 1149 | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
4add8633 TR |
1150 | struct regcache *regcache, CORE_ADDR bp_addr, |
1151 | int nargs, struct value **args, CORE_ADDR sp, | |
1152 | int struct_return, CORE_ADDR struct_addr) | |
8818c391 | 1153 | { |
4add8633 TR |
1154 | int i; |
1155 | unsigned char buf[2]; | |
1156 | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); | |
1157 | int regnum = AVR_ARGN_REGNUM; | |
1158 | struct stack_item *si = NULL; | |
8818c391 | 1159 | |
8818c391 | 1160 | #if 0 |
4add8633 TR |
1161 | /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */ |
1162 | if (struct_return) | |
8818c391 | 1163 | { |
4add8633 TR |
1164 | fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr); |
1165 | write_register (argreg--, struct_addr & 0xff); | |
1166 | write_register (argreg--, (struct_addr >>8) & 0xff); | |
8818c391 | 1167 | } |
4add8633 | 1168 | #endif |
8818c391 | 1169 | |
4add8633 | 1170 | for (i = 0; i < nargs; i++) |
8818c391 | 1171 | { |
4add8633 TR |
1172 | int last_regnum; |
1173 | int j; | |
1174 | struct value *arg = args[i]; | |
4991999e | 1175 | struct type *type = check_typedef (value_type (arg)); |
4add8633 TR |
1176 | char *contents = VALUE_CONTENTS (arg); |
1177 | int len = TYPE_LENGTH (type); | |
1178 | ||
1179 | /* Calculate the potential last register needed. */ | |
1180 | last_regnum = regnum - (len + (len & 1)); | |
1181 | ||
1182 | /* If there are registers available, use them. Once we start putting | |
1183 | stuff on the stack, all subsequent args go on stack. */ | |
1184 | if ((si == NULL) && (last_regnum >= 8)) | |
1185 | { | |
1186 | ULONGEST val; | |
1187 | ||
1188 | /* Skip a register for odd length args. */ | |
1189 | if (len & 1) | |
1190 | regnum--; | |
1191 | ||
1192 | val = extract_unsigned_integer (contents, len); | |
1193 | for (j=0; j<len; j++) | |
1194 | { | |
1195 | regcache_cooked_write_unsigned (regcache, regnum--, | |
1196 | val >> (8*(len-j-1))); | |
1197 | } | |
1198 | } | |
1199 | /* No registers available, push the args onto the stack. */ | |
1200 | else | |
1201 | { | |
1202 | /* From here on, we don't care about regnum. */ | |
1203 | si = push_stack_item (si, contents, len); | |
1204 | } | |
8818c391 | 1205 | } |
909cd28e | 1206 | |
4add8633 TR |
1207 | /* Push args onto the stack. */ |
1208 | while (si) | |
1209 | { | |
1210 | sp -= si->len; | |
1211 | /* Add 1 to sp here to account for post decr nature of pushes. */ | |
1212 | write_memory (sp+1, si->data, si->len); | |
1213 | si = pop_stack_item (si); | |
1214 | } | |
3605c34a | 1215 | |
4add8633 TR |
1216 | /* Set the return address. For the avr, the return address is the BP_ADDR. |
1217 | Need to push the return address onto the stack noting that it needs to be | |
1218 | in big-endian order on the stack. */ | |
1219 | buf[0] = (return_pc >> 8) & 0xff; | |
1220 | buf[1] = return_pc & 0xff; | |
3605c34a | 1221 | |
4add8633 TR |
1222 | sp -= 2; |
1223 | write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */ | |
3605c34a | 1224 | |
4add8633 TR |
1225 | /* Finally, update the SP register. */ |
1226 | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, | |
1227 | avr_convert_saddr_to_raw (sp)); | |
3605c34a | 1228 | |
4add8633 | 1229 | return sp; |
3605c34a TR |
1230 | } |
1231 | ||
8818c391 TR |
1232 | /* Initialize the gdbarch structure for the AVR's. */ |
1233 | ||
1234 | static struct gdbarch * | |
2e5ff58c TR |
1235 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1236 | { | |
2e5ff58c TR |
1237 | struct gdbarch *gdbarch; |
1238 | struct gdbarch_tdep *tdep; | |
8818c391 TR |
1239 | |
1240 | /* Find a candidate among the list of pre-declared architectures. */ | |
1241 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1242 | if (arches != NULL) | |
1243 | return arches->gdbarch; | |
1244 | ||
1245 | /* None found, create a new architecture from the information provided. */ | |
1246 | tdep = XMALLOC (struct gdbarch_tdep); | |
1247 | gdbarch = gdbarch_alloc (&info, tdep); | |
1248 | ||
1249 | /* If we ever need to differentiate the device types, do it here. */ | |
1250 | switch (info.bfd_arch_info->mach) | |
1251 | { | |
1252 | case bfd_mach_avr1: | |
1253 | case bfd_mach_avr2: | |
1254 | case bfd_mach_avr3: | |
1255 | case bfd_mach_avr4: | |
1256 | case bfd_mach_avr5: | |
1257 | break; | |
1258 | } | |
1259 | ||
1260 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1261 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1262 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1263 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1264 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1265 | set_gdbarch_addr_bit (gdbarch, 32); | |
8818c391 TR |
1266 | |
1267 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1268 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1269 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1270 | ||
1271 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); | |
1272 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); | |
1273 | set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little); | |
1274 | ||
1275 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1276 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
8818c391 | 1277 | set_gdbarch_read_sp (gdbarch, avr_read_sp); |
8818c391 TR |
1278 | |
1279 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1280 | ||
1281 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
8818c391 TR |
1282 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); |
1283 | ||
1284 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
866b76ea | 1285 | set_gdbarch_register_type (gdbarch, avr_register_type); |
8818c391 | 1286 | |
3605c34a | 1287 | set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value); |
8818c391 TR |
1288 | set_gdbarch_print_insn (gdbarch, print_insn_avr); |
1289 | ||
4add8633 | 1290 | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); |
8818c391 TR |
1291 | |
1292 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); | |
1293 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
8818c391 | 1294 | |
8818c391 | 1295 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); |
8818c391 TR |
1296 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
1297 | ||
909cd28e | 1298 | set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); |
8818c391 | 1299 | |
336d1bba | 1300 | frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer); |
4add8633 TR |
1301 | frame_base_set_default (gdbarch, &avr_frame_base); |
1302 | ||
1303 | set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id); | |
1304 | ||
1305 | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | |
8818c391 | 1306 | |
8818c391 TR |
1307 | return gdbarch; |
1308 | } | |
1309 | ||
1310 | /* Send a query request to the avr remote target asking for values of the io | |
1311 | registers. If args parameter is not NULL, then the user has requested info | |
1312 | on a specific io register [This still needs implemented and is ignored for | |
1313 | now]. The query string should be one of these forms: | |
1314 | ||
1315 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1316 | ||
1317 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
1318 | registers to be read. The reply should be "<NAME>,VV;" for each io register | |
1319 | where, <NAME> is a string, and VV is the hex value of the register. | |
1320 | ||
1321 | All io registers are 8-bit. */ | |
1322 | ||
1323 | static void | |
1324 | avr_io_reg_read_command (char *args, int from_tty) | |
1325 | { | |
1e3ff5ad | 1326 | LONGEST bufsiz = 0; |
2e5ff58c TR |
1327 | char buf[400]; |
1328 | char query[400]; | |
1329 | char *p; | |
1330 | unsigned int nreg = 0; | |
1331 | unsigned int val; | |
1332 | int i, j, k, step; | |
8818c391 | 1333 | |
1e3ff5ad AC |
1334 | /* Just get the maximum buffer size. */ |
1335 | bufsiz = target_read_partial (¤t_target, TARGET_OBJECT_AVR, | |
1336 | NULL, NULL, 0, 0); | |
1337 | if (bufsiz < 0) | |
8818c391 | 1338 | { |
2e5ff58c | 1339 | fprintf_unfiltered (gdb_stderr, |
edefbb7c AC |
1340 | _("ERR: info io_registers NOT supported " |
1341 | "by current target\n")); | |
8818c391 TR |
1342 | return; |
1343 | } | |
2e5ff58c TR |
1344 | if (bufsiz > sizeof (buf)) |
1345 | bufsiz = sizeof (buf); | |
8818c391 TR |
1346 | |
1347 | /* Find out how many io registers the target has. */ | |
1348 | strcpy (query, "avr.io_reg"); | |
1e3ff5ad AC |
1349 | target_read_partial (¤t_target, TARGET_OBJECT_AVR, query, buf, 0, |
1350 | bufsiz); | |
8818c391 TR |
1351 | |
1352 | if (strncmp (buf, "", bufsiz) == 0) | |
1353 | { | |
2e5ff58c | 1354 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1355 | _("info io_registers NOT supported by target\n")); |
8818c391 TR |
1356 | return; |
1357 | } | |
1358 | ||
2e5ff58c | 1359 | if (sscanf (buf, "%x", &nreg) != 1) |
8818c391 | 1360 | { |
2e5ff58c | 1361 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1362 | _("Error fetching number of io registers\n")); |
8818c391 TR |
1363 | return; |
1364 | } | |
1365 | ||
2e5ff58c | 1366 | reinitialize_more_filter (); |
8818c391 | 1367 | |
edefbb7c | 1368 | printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); |
8818c391 TR |
1369 | |
1370 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
1371 | step = 8; | |
1372 | ||
2e5ff58c | 1373 | for (i = 0; i < nreg; i += step) |
8818c391 | 1374 | { |
91ccbfc1 TR |
1375 | /* how many registers this round? */ |
1376 | j = step; | |
1377 | if ((i+j) >= nreg) | |
1378 | j = nreg - i; /* last block is less than 8 registers */ | |
8818c391 | 1379 | |
2e5ff58c | 1380 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
1e3ff5ad AC |
1381 | target_read_partial (¤t_target, TARGET_OBJECT_AVR, query, buf, |
1382 | 0, bufsiz); | |
8818c391 TR |
1383 | |
1384 | p = buf; | |
2e5ff58c TR |
1385 | for (k = i; k < (i + j); k++) |
1386 | { | |
1387 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1388 | { | |
1389 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1390 | while ((*p != ';') && (*p != '\0')) | |
1391 | p++; | |
1392 | p++; /* skip over ';' */ | |
1393 | if (*p == '\0') | |
1394 | break; | |
1395 | } | |
1396 | } | |
8818c391 TR |
1397 | } |
1398 | } | |
1399 | ||
a78f21af AC |
1400 | extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ |
1401 | ||
8818c391 TR |
1402 | void |
1403 | _initialize_avr_tdep (void) | |
1404 | { | |
1405 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1406 | ||
1407 | /* Add a new command to allow the user to query the avr remote target for | |
1408 | the values of the io space registers in a saner way than just using | |
1409 | `x/NNNb ADDR`. */ | |
1410 | ||
1411 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
1412 | io_registers' to signify it is not available on other platforms. */ | |
1413 | ||
1414 | add_cmd ("io_registers", class_info, avr_io_reg_read_command, | |
edefbb7c | 1415 | _("query remote avr target for io space register values"), &infolist); |
8818c391 | 1416 | } |