* dwarf2-frame.c (execute_cfa_program): Move DWA_CFA_nop before
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
51603483 2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
8818c391
TR
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
de18ac1f 22/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
4add8633
TR
28#include "frame.h"
29#include "frame-unwind.h"
30#include "frame-base.h"
31#include "trad-frame.h"
8818c391
TR
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
a89aa300 39#include "dis-asm.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72#undef XMALLOC
73#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75#undef EXTRACT_INSN
76#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77
78/* Constants: prefixed with AVR_ to avoid name space clashes */
79
80enum
2e5ff58c
TR
81{
82 AVR_REG_W = 24,
83 AVR_REG_X = 26,
84 AVR_REG_Y = 28,
85 AVR_FP_REGNUM = 28,
86 AVR_REG_Z = 30,
87
88 AVR_SREG_REGNUM = 32,
89 AVR_SP_REGNUM = 33,
90 AVR_PC_REGNUM = 34,
91
92 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
93 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
4add8633 97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c
TR
98
99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100 AVR_MAX_PUSHES = 18,
101
102 /* Number of the last pushed register. r17 for current avr-gcc */
103 AVR_LAST_PUSHED_REGNUM = 17,
104
4add8633
TR
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
2e5ff58c
TR
111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112 bits? Do these have to match the bfd vma values?. It sure would make
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
119 in the mega128. The mega128 has 128K instruction bytes (64K words),
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
131 details of actually accessing the eeprom. */
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 135#if 1
2e5ff58c
TR
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 138#else
2e5ff58c
TR
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 141#endif
2e5ff58c 142};
8818c391 143
4add8633
TR
144/* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156};
157
8818c391
TR
158/* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
4add8633 169struct avr_unwind_cache
2e5ff58c 170{
4add8633
TR
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 180};
8818c391
TR
181
182struct gdbarch_tdep
2e5ff58c
TR
183{
184 /* FIXME: TRoth: is there anything to put here? */
185 int foo;
186};
8818c391
TR
187
188/* Lookup the name of a register given it's number. */
189
fa88f677 190static const char *
8818c391
TR
191avr_register_name (int regnum)
192{
2e5ff58c
TR
193 static char *register_names[] = {
194 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
196 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
197 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
198 "SREG", "SP", "PC"
199 };
200 if (regnum < 0)
201 return NULL;
202 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
203 return NULL;
204 return register_names[regnum];
205}
206
8818c391
TR
207/* Return the GDB type object for the "standard" data type
208 of data in register N. */
209
210static struct type *
866b76ea 211avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 212{
866b76ea
TR
213 if (reg_nr == AVR_PC_REGNUM)
214 return builtin_type_uint32;
866b76ea
TR
215 if (reg_nr == AVR_SP_REGNUM)
216 return builtin_type_void_data_ptr;
217 else
218 return builtin_type_uint8;
8818c391
TR
219}
220
221/* Instruction address checks and convertions. */
222
223static CORE_ADDR
224avr_make_iaddr (CORE_ADDR x)
225{
226 return ((x) | AVR_IMEM_START);
227}
228
229static int
230avr_iaddr_p (CORE_ADDR x)
231{
232 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
233}
234
235/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
236 devices are already up to 128KBytes of flash space.
237
238 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
239
240static CORE_ADDR
241avr_convert_iaddr_to_raw (CORE_ADDR x)
242{
243 return ((x) & 0xffffffff);
244}
245
246/* SRAM address checks and convertions. */
247
248static CORE_ADDR
249avr_make_saddr (CORE_ADDR x)
250{
251 return ((x) | AVR_SMEM_START);
252}
253
254static int
255avr_saddr_p (CORE_ADDR x)
256{
257 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
258}
259
260static CORE_ADDR
261avr_convert_saddr_to_raw (CORE_ADDR x)
262{
263 return ((x) & 0xffffffff);
264}
265
266/* EEPROM address checks and convertions. I don't know if these will ever
267 actually be used, but I've added them just the same. TRoth */
268
269/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
270 programs in the mega128. */
271
272/* static CORE_ADDR */
273/* avr_make_eaddr (CORE_ADDR x) */
274/* { */
275/* return ((x) | AVR_EMEM_START); */
276/* } */
277
278/* static int */
279/* avr_eaddr_p (CORE_ADDR x) */
280/* { */
281/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
282/* } */
283
284/* static CORE_ADDR */
285/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
286/* { */
287/* return ((x) & 0xffffffff); */
288/* } */
289
290/* Convert from address to pointer and vice-versa. */
291
292static void
293avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
294{
295 /* Is it a code address? */
296 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
297 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
298 {
2e5ff58c 299 store_unsigned_integer (buf, TYPE_LENGTH (type),
4ea2465e 300 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
301 }
302 else
303 {
304 /* Strip off any upper segment bits. */
2e5ff58c
TR
305 store_unsigned_integer (buf, TYPE_LENGTH (type),
306 avr_convert_saddr_to_raw (addr));
8818c391
TR
307 }
308}
309
310static CORE_ADDR
66140c26 311avr_pointer_to_address (struct type *type, const void *buf)
8818c391 312{
7c0b4a20 313 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
8818c391 314
8818c391
TR
315 /* Is it a code address? */
316 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 318 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 319 return avr_make_iaddr (addr << 1);
8818c391
TR
320 else
321 return avr_make_saddr (addr);
322}
323
324static CORE_ADDR
325avr_read_pc (ptid_t ptid)
326{
327 ptid_t save_ptid;
8619218d 328 ULONGEST pc;
8818c391
TR
329 CORE_ADDR retval;
330
331 save_ptid = inferior_ptid;
332 inferior_ptid = ptid;
8619218d 333 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
8818c391
TR
334 inferior_ptid = save_ptid;
335 retval = avr_make_iaddr (pc);
336 return retval;
337}
338
339static void
340avr_write_pc (CORE_ADDR val, ptid_t ptid)
341{
342 ptid_t save_ptid;
343
344 save_ptid = inferior_ptid;
345 inferior_ptid = ptid;
346 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
347 inferior_ptid = save_ptid;
348}
349
350static CORE_ADDR
351avr_read_sp (void)
352{
8619218d
TR
353 ULONGEST sp;
354
355 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
356 return (avr_make_saddr (sp));
8818c391
TR
357}
358
4add8633
TR
359static int
360avr_scan_arg_moves (int vpc, unsigned char *prologue)
8818c391 361{
4add8633 362 unsigned short insn;
866b76ea 363
4add8633
TR
364 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
365 {
366 insn = EXTRACT_INSN (&prologue[vpc]);
367 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
368 continue;
369 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
370 continue;
371 else
372 break;
373 }
374
375 return vpc;
8818c391
TR
376}
377
4add8633 378/* Function: avr_scan_prologue
8818c391 379
4add8633 380 This function decodes an AVR function prologue to determine:
8818c391
TR
381 1) the size of the stack frame
382 2) which registers are saved on it
383 3) the offsets of saved regs
4add8633 384 This information is stored in the avr_unwind_cache structure.
8818c391 385
e3d8b004
TR
386 Some devices lack the sbiw instruction, so on those replace this:
387 sbiw r28, XX
388 with this:
389 subi r28,lo8(XX)
390 sbci r29,hi8(XX)
391
392 A typical AVR function prologue with a frame pointer might look like this:
393 push rXX ; saved regs
394 ...
395 push r28
396 push r29
397 in r28,__SP_L__
398 in r29,__SP_H__
399 sbiw r28,<LOCALS_SIZE>
400 in __tmp_reg__,__SREG__
8818c391 401 cli
e3d8b004 402 out __SP_H__,r29
72fab697
TR
403 out __SREG__,__tmp_reg__
404 out __SP_L__,r28
e3d8b004
TR
405
406 A typical AVR function prologue without a frame pointer might look like
407 this:
408 push rXX ; saved regs
409 ...
410
411 A main function prologue looks like this:
412 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
413 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
414 out __SP_H__,r29
415 out __SP_L__,r28
416
417 A signal handler prologue looks like this:
418 push __zero_reg__
419 push __tmp_reg__
420 in __tmp_reg__, __SREG__
421 push __tmp_reg__
422 clr __zero_reg__
423 push rXX ; save registers r18:r27, r30:r31
424 ...
425 push r28 ; save frame pointer
426 push r29
427 in r28, __SP_L__
428 in r29, __SP_H__
429 sbiw r28, <LOCALS_SIZE>
430 out __SP_H__, r29
431 out __SP_L__, r28
432
433 A interrupt handler prologue looks like this:
434 sei
435 push __zero_reg__
436 push __tmp_reg__
437 in __tmp_reg__, __SREG__
438 push __tmp_reg__
439 clr __zero_reg__
440 push rXX ; save registers r18:r27, r30:r31
441 ...
442 push r28 ; save frame pointer
443 push r29
444 in r28, __SP_L__
445 in r29, __SP_H__
446 sbiw r28, <LOCALS_SIZE>
447 cli
448 out __SP_H__, r29
449 sei
450 out __SP_L__, r28
451
452 A `-mcall-prologues' prologue looks like this (Note that the megas use a
453 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
454 32 bit insn and rjmp is a 16 bit insn):
455 ldi r26,lo8(<LOCALS_SIZE>)
456 ldi r27,hi8(<LOCALS_SIZE>)
457 ldi r30,pm_lo8(.L_foo_body)
458 ldi r31,pm_hi8(.L_foo_body)
459 rjmp __prologue_saves__+RRR
460 .L_foo_body: */
8818c391 461
4add8633
TR
462/* Not really part of a prologue, but still need to scan for it, is when a
463 function prologue moves values passed via registers as arguments to new
464 registers. In this case, all local variables live in registers, so there
465 may be some register saves. This is what it looks like:
466 movw rMM, rNN
467 ...
468
469 There could be multiple movw's. If the target doesn't have a movw insn, it
470 will use two mov insns. This could be done after any of the above prologue
471 types. */
472
473static CORE_ADDR
474avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
8818c391 475{
2e5ff58c
TR
476 int i;
477 unsigned short insn;
2e5ff58c 478 int scan_stage = 0;
8818c391 479 struct minimal_symbol *msymbol;
8818c391
TR
480 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
481 int vpc = 0;
482
4add8633
TR
483 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
484 reading in the bytes of the prologue. The problem is that the figuring
485 out where the end of the prologue is is a bit difficult. The old code
486 tried to do that, but failed quite often. */
487 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
8818c391
TR
488
489 /* Scanning main()'s prologue
490 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
491 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
492 out __SP_H__,r29
493 out __SP_L__,r28 */
494
4add8633 495 if (1)
8818c391
TR
496 {
497 CORE_ADDR locals;
2e5ff58c
TR
498 unsigned char img[] = {
499 0xde, 0xbf, /* out __SP_H__,r29 */
500 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
501 };
502
8818c391
TR
503 insn = EXTRACT_INSN (&prologue[vpc]);
504 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
505 if ((insn & 0xf0f0) == 0xe0c0)
506 {
507 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
508 insn = EXTRACT_INSN (&prologue[vpc + 2]);
509 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
510 if ((insn & 0xf0f0) == 0xe0d0)
511 {
512 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
513 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
514 {
4add8633
TR
515 info->prologue_type = AVR_PROLOGUE_MAIN;
516 info->base = locals;
517 return pc + 4;
2e5ff58c
TR
518 }
519 }
520 }
8818c391 521 }
2e5ff58c 522
4add8633
TR
523 /* Scanning `-mcall-prologues' prologue
524 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 525
e3d8b004 526 while (1) /* Using a while to avoid many goto's */
8818c391
TR
527 {
528 int loc_size;
529 int body_addr;
530 unsigned num_pushes;
4add8633 531 int pc_offset = 0;
2e5ff58c 532
8818c391
TR
533 insn = EXTRACT_INSN (&prologue[vpc]);
534 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
535 if ((insn & 0xf0f0) != 0xe0a0)
536 break;
8818c391 537 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 538 pc_offset += 2;
2e5ff58c 539
8818c391
TR
540 insn = EXTRACT_INSN (&prologue[vpc + 2]);
541 /* ldi r27,<LOCALS_SIZE> / 256 */
542 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 543 break;
8818c391 544 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 545 pc_offset += 2;
2e5ff58c 546
8818c391
TR
547 insn = EXTRACT_INSN (&prologue[vpc + 4]);
548 /* ldi r30,pm_lo8(.L_foo_body) */
549 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 550 break;
8818c391 551 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 552 pc_offset += 2;
8818c391
TR
553
554 insn = EXTRACT_INSN (&prologue[vpc + 6]);
555 /* ldi r31,pm_hi8(.L_foo_body) */
556 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 557 break;
8818c391 558 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 559 pc_offset += 2;
8818c391 560
8818c391
TR
561 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
562 if (!msymbol)
2e5ff58c 563 break;
8818c391 564
8818c391
TR
565 insn = EXTRACT_INSN (&prologue[vpc + 8]);
566 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
567 if ((insn & 0xf000) == 0xc000)
568 {
569 /* Extract PC relative offset from RJMP */
570 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
571 /* Convert offset to byte addressable mode */
572 i *= 2;
573 /* Destination address */
4add8633 574 i += pc + 10;
e3d8b004 575
4add8633 576 if (body_addr != (pc + 10)/2)
e3d8b004 577 break;
4add8633
TR
578
579 pc_offset += 2;
e3d8b004 580 }
e3d8b004
TR
581 else if ((insn & 0xfe0e) == 0x940c)
582 {
583 /* Extract absolute PC address from JMP */
584 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
585 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
586 /* Convert address to byte addressable mode */
587 i *= 2;
588
4add8633 589 if (body_addr != (pc + 12)/2)
e3d8b004 590 break;
4add8633
TR
591
592 pc_offset += 4;
e3d8b004
TR
593 }
594 else
595 break;
2e5ff58c 596
4add8633 597 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
598 Which is a pushes count in `-mcall-prologues' mode */
599 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
600
601 if (num_pushes > AVR_MAX_PUSHES)
4add8633
TR
602 {
603 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
604 num_pushes);
605 num_pushes = 0;
606 }
2e5ff58c 607
8818c391 608 if (num_pushes)
2e5ff58c
TR
609 {
610 int from;
4add8633
TR
611
612 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 613 if (num_pushes >= 2)
4add8633
TR
614 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
615
2e5ff58c
TR
616 i = 0;
617 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
618 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 619 info->saved_regs [from].addr = ++i;
2e5ff58c 620 }
4add8633
TR
621 info->size = loc_size + num_pushes;
622 info->prologue_type = AVR_PROLOGUE_CALL;
623
624 return pc + pc_offset;
8818c391
TR
625 }
626
4add8633
TR
627 /* Scan for the beginning of the prologue for an interrupt or signal
628 function. Note that we have to set the prologue type here since the
629 third stage of the prologue may not be present (e.g. no saved registered
630 or changing of the SP register). */
8818c391 631
4add8633 632 if (1)
8818c391 633 {
2e5ff58c
TR
634 unsigned char img[] = {
635 0x78, 0x94, /* sei */
636 0x1f, 0x92, /* push r1 */
637 0x0f, 0x92, /* push r0 */
638 0x0f, 0xb6, /* in r0,0x3f SREG */
639 0x0f, 0x92, /* push r0 */
640 0x11, 0x24 /* clr r1 */
8818c391
TR
641 };
642 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 643 {
4add8633 644 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 645 vpc += sizeof (img);
4add8633
TR
646 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
647 info->saved_regs[0].addr = 2;
648 info->saved_regs[1].addr = 1;
649 info->size += 3;
2e5ff58c 650 }
4add8633 651 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 652 {
4add8633
TR
653 info->prologue_type = AVR_PROLOGUE_SIG;
654 vpc += sizeof (img) - 2;
655 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
656 info->saved_regs[0].addr = 2;
657 info->saved_regs[1].addr = 1;
658 info->size += 3;
2e5ff58c 659 }
8818c391
TR
660 }
661
662 /* First stage of the prologue scanning.
4add8633 663 Scan pushes (saved registers) */
8818c391 664
4add8633 665 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
8818c391
TR
666 {
667 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
668 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
669 {
670 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
671 int regno = (insn & 0x1f0) >> 4;
672 info->size++;
673 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
674 scan_stage = 1;
675 }
8818c391 676 else
2e5ff58c 677 break;
8818c391
TR
678 }
679
4add8633
TR
680 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
681 fprintf_unfiltered (gdb_stderr,
682 "Hit end of prologue while scanning pushes\n");
683
8818c391
TR
684 /* Second stage of the prologue scanning.
685 Scan:
686 in r28,__SP_L__
687 in r29,__SP_H__ */
688
4add8633 689 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391 690 {
2e5ff58c
TR
691 unsigned char img[] = {
692 0xcd, 0xb7, /* in r28,__SP_L__ */
693 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
694 };
695 unsigned short insn1;
2e5ff58c 696
8818c391 697 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
698 {
699 vpc += 4;
2e5ff58c
TR
700 scan_stage = 2;
701 }
8818c391
TR
702 }
703
704 /* Third stage of the prologue scanning. (Really two stages)
705 Scan for:
706 sbiw r28,XX or subi r28,lo8(XX)
72fab697 707 sbci r29,hi8(XX)
8818c391
TR
708 in __tmp_reg__,__SREG__
709 cli
e3d8b004 710 out __SP_H__,r29
8818c391 711 out __SREG__,__tmp_reg__
e3d8b004 712 out __SP_L__,r28 */
8818c391 713
4add8633 714 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391
TR
715 {
716 int locals_size = 0;
2e5ff58c
TR
717 unsigned char img[] = {
718 0x0f, 0xb6, /* in r0,0x3f */
719 0xf8, 0x94, /* cli */
e3d8b004 720 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 721 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 722 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 723 };
2e5ff58c 724 unsigned char img_sig[] = {
e3d8b004
TR
725 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
726 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 727 };
2e5ff58c
TR
728 unsigned char img_int[] = {
729 0xf8, 0x94, /* cli */
e3d8b004 730 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 731 0x78, 0x94, /* sei */
e3d8b004 732 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 733 };
2e5ff58c 734
8818c391
TR
735 insn = EXTRACT_INSN (&prologue[vpc]);
736 vpc += 2;
2e5ff58c
TR
737 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
738 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
739 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
740 {
741 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
742 insn = EXTRACT_INSN (&prologue[vpc]);
743 vpc += 2;
744 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
745 }
8818c391 746 else
4add8633
TR
747 return pc + vpc;
748
749 /* Scan the last part of the prologue. May not be present for interrupt
750 or signal handler functions, which is why we set the prologue type
751 when we saw the beginning of the prologue previously. */
752
753 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
754 {
755 vpc += sizeof (img_sig);
756 }
757 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
758 {
759 vpc += sizeof (img_int);
760 }
761 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
762 {
763 info->prologue_type = AVR_PROLOGUE_NORMAL;
764 vpc += sizeof (img);
765 }
766
767 info->size += locals_size;
768
769 return pc + avr_scan_arg_moves (vpc, prologue);
8818c391 770 }
4add8633
TR
771
772 /* If we got this far, we could not scan the prologue, so just return the pc
773 of the frame plus an adjustment for argument move insns. */
774
775 return pc + avr_scan_arg_moves (vpc, prologue);;
8818c391
TR
776}
777
4add8633
TR
778static CORE_ADDR
779avr_skip_prologue (CORE_ADDR pc)
780{
781 CORE_ADDR func_addr, func_end;
782 CORE_ADDR prologue_end = pc;
8818c391 783
4add8633 784 /* See what the symbol table says */
8818c391 785
4add8633
TR
786 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
787 {
788 struct symtab_and_line sal;
789 struct avr_unwind_cache info = {0};
790 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
2e5ff58c 791
4add8633 792 info.saved_regs = saved_regs;
8818c391 793
4add8633
TR
794 /* Need to run the prologue scanner to figure out if the function has a
795 prologue and possibly skip over moving arguments passed via registers
796 to other registers. */
2e5ff58c 797
4add8633 798 prologue_end = avr_scan_prologue (pc, &info);
8818c391 799
3b85b0f1
TR
800 if (info.prologue_type == AVR_PROLOGUE_NONE)
801 return pc;
802 else
4add8633
TR
803 {
804 sal = find_pc_line (func_addr, 0);
8818c391 805
4add8633
TR
806 if (sal.line != 0 && sal.end < func_end)
807 return sal.end;
808 }
809 }
2e5ff58c 810
4add8633
TR
811/* Either we didn't find the start of this function (nothing we can do),
812 or there's no line info, or the line after the prologue is after
813 the end of the function (there probably isn't a prologue). */
2e5ff58c 814
4add8633
TR
815 return prologue_end;
816}
8818c391 817
4add8633
TR
818/* Not all avr devices support the BREAK insn. Those that don't should treat
819 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
820 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 821
4add8633
TR
822static const unsigned char *
823avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
824{
825 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
826 *lenptr = sizeof (avr_break_insn);
827 return avr_break_insn;
8818c391
TR
828}
829
4add8633
TR
830/* Given a return value in `regbuf' with a type `valtype',
831 extract and copy its value into `valbuf'.
832
833 Return values are always passed via registers r25:r24:... */
8818c391
TR
834
835static void
4add8633
TR
836avr_extract_return_value (struct type *type, struct regcache *regcache,
837 void *valbuf)
8818c391 838{
4add8633
TR
839 ULONGEST r24, r25;
840 ULONGEST c;
841 int len;
842 if (TYPE_LENGTH (type) == 1)
8818c391 843 {
4add8633
TR
844 regcache_cooked_read_unsigned (regcache, 24, &c);
845 store_unsigned_integer (valbuf, 1, c);
8818c391
TR
846 }
847 else
848 {
4add8633
TR
849 int i;
850 /* The MSB of the return value is always in r25, calculate which
851 register holds the LSB. */
852 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
8818c391 853
4add8633
TR
854 for (i=0; i< TYPE_LENGTH (type); i++)
855 {
856 regcache_cooked_read (regcache, lsb_reg + i,
857 (bfd_byte *) valbuf + i);
4add8633
TR
858 }
859 }
860}
8818c391 861
4add8633
TR
862/* Put here the code to store, into fi->saved_regs, the addresses of
863 the saved registers of frame described by FRAME_INFO. This
864 includes special registers such as pc and fp saved in special ways
865 in the stack frame. sp is even more special: the address we return
866 for it IS the sp for the next frame. */
8818c391 867
4add8633
TR
868struct avr_unwind_cache *
869avr_frame_unwind_cache (struct frame_info *next_frame,
870 void **this_prologue_cache)
8818c391 871{
4add8633
TR
872 CORE_ADDR pc;
873 ULONGEST prev_sp;
874 ULONGEST this_base;
875 struct avr_unwind_cache *info;
876 int i;
877
878 if ((*this_prologue_cache))
879 return (*this_prologue_cache);
880
881 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
882 (*this_prologue_cache) = info;
883 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
884
885 info->size = 0;
886 info->prologue_type = AVR_PROLOGUE_NONE;
887
888 pc = frame_func_unwind (next_frame);
889
890 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
891 avr_scan_prologue (pc, info);
892
3b85b0f1
TR
893 if ((info->prologue_type != AVR_PROLOGUE_NONE)
894 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
895 {
896 ULONGEST high_base; /* High byte of FP */
897
898 /* The SP was moved to the FP. This indicates that a new frame
899 was created. Get THIS frame's FP value by unwinding it from
900 the next frame. */
901 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
902 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
903 this_base += (high_base << 8);
904
905 /* The FP points at the last saved register. Adjust the FP back
906 to before the first saved register giving the SP. */
907 prev_sp = this_base + info->size;
908 }
8818c391 909 else
4add8633
TR
910 {
911 /* Assume that the FP is this frame's SP but with that pushed
912 stack space added back. */
913 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
914 prev_sp = this_base + info->size;
915 }
916
917 /* Add 1 here to adjust for the post-decrement nature of the push
918 instruction.*/
919 info->prev_sp = avr_make_saddr (prev_sp+1);
920
921 info->base = avr_make_saddr (this_base);
922
923 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 924 offsets. */
4add8633
TR
925 for (i = 0; i < NUM_REGS - 1; i++)
926 if (info->saved_regs[i].addr)
927 {
928 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
929 }
930
931 /* Except for the main and startup code, the return PC is always saved on
932 the stack and is at the base of the frame. */
933
934 if (info->prologue_type != AVR_PROLOGUE_MAIN)
935 {
936 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
937 }
938
3b85b0f1
TR
939 /* The previous frame's SP needed to be computed. Save the computed
940 value. */
941 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
942
4add8633 943 return info;
8818c391
TR
944}
945
946static CORE_ADDR
4add8633 947avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 948{
4add8633
TR
949 ULONGEST pc;
950
951 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
952
953 return avr_make_iaddr (pc);
8818c391
TR
954}
955
4add8633
TR
956/* Given a GDB frame, determine the address of the calling function's
957 frame. This will be used to create a new GDB frame struct. */
8818c391 958
4add8633
TR
959static void
960avr_frame_this_id (struct frame_info *next_frame,
961 void **this_prologue_cache,
962 struct frame_id *this_id)
8818c391 963{
4add8633
TR
964 struct avr_unwind_cache *info
965 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
966 CORE_ADDR base;
967 CORE_ADDR func;
968 struct frame_id id;
969
970 /* The FUNC is easy. */
971 func = frame_func_unwind (next_frame);
972
4add8633
TR
973 /* Hopefully the prologue analysis either correctly determined the
974 frame's base (which is the SP from the previous frame), or set
975 that base to "NULL". */
976 base = info->prev_sp;
977 if (base == 0)
978 return;
979
980 id = frame_id_build (base, func);
981
982 /* Check that we're not going round in circles with the same frame
983 ID (but avoid applying the test to sentinel frames which do go
984 round in circles). Can't use frame_id_eq() as that doesn't yet
985 compare the frame's PC value. */
986 if (frame_relative_level (next_frame) >= 0
987 && get_frame_type (next_frame) != DUMMY_FRAME
988 && frame_id_eq (get_frame_id (next_frame), id))
989 return;
990
991 (*this_id) = id;
8818c391
TR
992}
993
4add8633
TR
994static void
995avr_frame_prev_register (struct frame_info *next_frame,
996 void **this_prologue_cache,
997 int regnum, int *optimizedp,
998 enum lval_type *lvalp, CORE_ADDR *addrp,
999 int *realnump, void *bufferp)
8818c391 1000{
4add8633
TR
1001 struct avr_unwind_cache *info
1002 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
8818c391 1003
3b85b0f1
TR
1004 if (regnum == AVR_PC_REGNUM)
1005 {
1006 if (trad_frame_addr_p (info->saved_regs, regnum))
1007 {
1008 *optimizedp = 0;
1009 *lvalp = lval_memory;
1010 *addrp = info->saved_regs[regnum].addr;
1011 *realnump = -1;
1012 if (bufferp != NULL)
1013 {
1014 /* Reading the return PC from the PC register is slightly
1015 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1016 but in reality, only two bytes (3 in upcoming mega256) are
1017 stored on the stack.
1018
1019 Also, note that the value on the stack is an addr to a word
1020 not a byte, so we will need to multiply it by two at some
1021 point.
1022
1023 And to confuse matters even more, the return address stored
1024 on the stack is in big endian byte order, even though most
1025 everything else about the avr is little endian. Ick! */
1026
1027 /* FIXME: number of bytes read here will need updated for the
1028 mega256 when it is available. */
1029
1030 ULONGEST pc;
1031 unsigned char tmp;
1032 unsigned char buf[2];
1033
1034 read_memory (info->saved_regs[regnum].addr, buf, 2);
1035
1036 /* Convert the PC read from memory as a big-endian to
1037 little-endian order. */
1038 tmp = buf[0];
1039 buf[0] = buf[1];
1040 buf[1] = tmp;
1041
1042 pc = (extract_unsigned_integer (buf, 2) * 2);
1043 store_unsigned_integer (bufferp,
1044 register_size (current_gdbarch, regnum),
1045 pc);
1046 }
1047 }
1048 }
1049 else
1050 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1051 optimizedp, lvalp, addrp, realnump, bufferp);
4add8633 1052}
8818c391 1053
4add8633
TR
1054static const struct frame_unwind avr_frame_unwind = {
1055 NORMAL_FRAME,
1056 avr_frame_this_id,
1057 avr_frame_prev_register
1058};
1059
1060const struct frame_unwind *
336d1bba 1061avr_frame_sniffer (struct frame_info *next_frame)
4add8633
TR
1062{
1063 return &avr_frame_unwind;
8818c391
TR
1064}
1065
1066static CORE_ADDR
4add8633 1067avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
8818c391 1068{
4add8633
TR
1069 struct avr_unwind_cache *info
1070 = avr_frame_unwind_cache (next_frame, this_cache);
8818c391 1071
4add8633
TR
1072 return info->base;
1073}
8818c391 1074
4add8633
TR
1075static const struct frame_base avr_frame_base = {
1076 &avr_frame_unwind,
1077 avr_frame_base_address,
1078 avr_frame_base_address,
1079 avr_frame_base_address
1080};
ced15480 1081
4add8633
TR
1082/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1083 dummy frame. The frame ID's base needs to match the TOS value
1084 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1085 breakpoint. */
8818c391 1086
4add8633
TR
1087static struct frame_id
1088avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1089{
1090 ULONGEST base;
8818c391 1091
4add8633
TR
1092 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1093 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
8818c391
TR
1094}
1095
4add8633
TR
1096/* When arguments must be pushed onto the stack, they go on in reverse
1097 order. The below implements a FILO (stack) to do this. */
8818c391 1098
4add8633
TR
1099struct stack_item
1100{
1101 int len;
1102 struct stack_item *prev;
1103 void *data;
1104};
8818c391 1105
4add8633
TR
1106static struct stack_item *push_stack_item (struct stack_item *prev,
1107 void *contents, int len);
1108static struct stack_item *
1109push_stack_item (struct stack_item *prev, void *contents, int len)
8818c391 1110{
4add8633
TR
1111 struct stack_item *si;
1112 si = xmalloc (sizeof (struct stack_item));
1113 si->data = xmalloc (len);
1114 si->len = len;
1115 si->prev = prev;
1116 memcpy (si->data, contents, len);
1117 return si;
8818c391
TR
1118}
1119
4add8633
TR
1120static struct stack_item *pop_stack_item (struct stack_item *si);
1121static struct stack_item *
1122pop_stack_item (struct stack_item *si)
8818c391 1123{
4add8633
TR
1124 struct stack_item *dead = si;
1125 si = si->prev;
1126 xfree (dead->data);
1127 xfree (dead);
1128 return si;
8818c391
TR
1129}
1130
8818c391
TR
1131/* Setup the function arguments for calling a function in the inferior.
1132
1133 On the AVR architecture, there are 18 registers (R25 to R8) which are
1134 dedicated for passing function arguments. Up to the first 18 arguments
1135 (depending on size) may go into these registers. The rest go on the stack.
1136
4add8633
TR
1137 All arguments are aligned to start in even-numbered registers (odd-sized
1138 arguments, including char, have one free register above them). For example,
1139 an int in arg1 and a char in arg2 would be passed as such:
1140
1141 arg1 -> r25:r24
1142 arg2 -> r22
1143
1144 Arguments that are larger than 2 bytes will be split between two or more
1145 registers as available, but will NOT be split between a register and the
1146 stack. Arguments that go onto the stack are pushed last arg first (this is
1147 similar to the d10v). */
1148
1149/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1150 inaccurate.
8818c391
TR
1151
1152 An exceptional case exists for struct arguments (and possibly other
1153 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1154 not a multiple of WORDSIZE bytes. In this case the argument is never split
1155 between the registers and the stack, but instead is copied in its entirety
1156 onto the stack, AND also copied into as many registers as there is room
1157 for. In other words, space in registers permitting, two copies of the same
1158 argument are passed in. As far as I can tell, only the one on the stack is
1159 used, although that may be a function of the level of compiler
1160 optimization. I suspect this is a compiler bug. Arguments of these odd
1161 sizes are left-justified within the word (as opposed to arguments smaller
1162 than WORDSIZE bytes, which are right-justified).
1163
1164 If the function is to return an aggregate type such as a struct, the caller
1165 must allocate space into which the callee will copy the return value. In
1166 this case, a pointer to the return value location is passed into the callee
1167 in register R0, which displaces one of the other arguments passed in via
1168 registers R0 to R2. */
1169
1170static CORE_ADDR
4add8633
TR
1171avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1172 struct regcache *regcache, CORE_ADDR bp_addr,
1173 int nargs, struct value **args, CORE_ADDR sp,
1174 int struct_return, CORE_ADDR struct_addr)
8818c391 1175{
4add8633
TR
1176 int i;
1177 unsigned char buf[2];
1178 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1179 int regnum = AVR_ARGN_REGNUM;
1180 struct stack_item *si = NULL;
8818c391 1181
8818c391 1182#if 0
4add8633
TR
1183 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1184 if (struct_return)
8818c391 1185 {
4add8633
TR
1186 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1187 write_register (argreg--, struct_addr & 0xff);
1188 write_register (argreg--, (struct_addr >>8) & 0xff);
8818c391 1189 }
4add8633 1190#endif
8818c391 1191
4add8633 1192 for (i = 0; i < nargs; i++)
8818c391 1193 {
4add8633
TR
1194 int last_regnum;
1195 int j;
1196 struct value *arg = args[i];
1197 struct type *type = check_typedef (VALUE_TYPE (arg));
1198 char *contents = VALUE_CONTENTS (arg);
1199 int len = TYPE_LENGTH (type);
1200
1201 /* Calculate the potential last register needed. */
1202 last_regnum = regnum - (len + (len & 1));
1203
1204 /* If there are registers available, use them. Once we start putting
1205 stuff on the stack, all subsequent args go on stack. */
1206 if ((si == NULL) && (last_regnum >= 8))
1207 {
1208 ULONGEST val;
1209
1210 /* Skip a register for odd length args. */
1211 if (len & 1)
1212 regnum--;
1213
1214 val = extract_unsigned_integer (contents, len);
1215 for (j=0; j<len; j++)
1216 {
1217 regcache_cooked_write_unsigned (regcache, regnum--,
1218 val >> (8*(len-j-1)));
1219 }
1220 }
1221 /* No registers available, push the args onto the stack. */
1222 else
1223 {
1224 /* From here on, we don't care about regnum. */
1225 si = push_stack_item (si, contents, len);
1226 }
8818c391 1227 }
909cd28e 1228
4add8633
TR
1229 /* Push args onto the stack. */
1230 while (si)
1231 {
1232 sp -= si->len;
1233 /* Add 1 to sp here to account for post decr nature of pushes. */
1234 write_memory (sp+1, si->data, si->len);
1235 si = pop_stack_item (si);
1236 }
3605c34a 1237
4add8633
TR
1238 /* Set the return address. For the avr, the return address is the BP_ADDR.
1239 Need to push the return address onto the stack noting that it needs to be
1240 in big-endian order on the stack. */
1241 buf[0] = (return_pc >> 8) & 0xff;
1242 buf[1] = return_pc & 0xff;
3605c34a 1243
4add8633
TR
1244 sp -= 2;
1245 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
3605c34a 1246
4add8633
TR
1247 /* Finally, update the SP register. */
1248 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1249 avr_convert_saddr_to_raw (sp));
3605c34a 1250
4add8633 1251 return sp;
3605c34a
TR
1252}
1253
8818c391
TR
1254/* Initialize the gdbarch structure for the AVR's. */
1255
1256static struct gdbarch *
2e5ff58c
TR
1257avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1258{
2e5ff58c
TR
1259 struct gdbarch *gdbarch;
1260 struct gdbarch_tdep *tdep;
8818c391
TR
1261
1262 /* Find a candidate among the list of pre-declared architectures. */
1263 arches = gdbarch_list_lookup_by_info (arches, &info);
1264 if (arches != NULL)
1265 return arches->gdbarch;
1266
1267 /* None found, create a new architecture from the information provided. */
1268 tdep = XMALLOC (struct gdbarch_tdep);
1269 gdbarch = gdbarch_alloc (&info, tdep);
1270
1271 /* If we ever need to differentiate the device types, do it here. */
1272 switch (info.bfd_arch_info->mach)
1273 {
1274 case bfd_mach_avr1:
1275 case bfd_mach_avr2:
1276 case bfd_mach_avr3:
1277 case bfd_mach_avr4:
1278 case bfd_mach_avr5:
1279 break;
1280 }
1281
1282 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1283 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1284 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1285 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1286 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1287 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1288
1289 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1290 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1291 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1292
1293 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1294 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1295 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1296
1297 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1298 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391 1299 set_gdbarch_read_sp (gdbarch, avr_read_sp);
8818c391
TR
1300
1301 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1302
1303 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1304 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1305
1306 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1307 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1308
3605c34a 1309 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1310 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1311
4add8633 1312 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391
TR
1313
1314 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1315 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8818c391 1316
8818c391 1317 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
8818c391 1318
8818c391 1319 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1320 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1321
909cd28e 1322 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1323
8818c391 1324 set_gdbarch_frame_args_skip (gdbarch, 0);
4add8633
TR
1325 set_gdbarch_frameless_function_invocation (gdbarch,
1326 frameless_look_for_prologue);
4add8633 1327
336d1bba 1328 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
4add8633
TR
1329 frame_base_set_default (gdbarch, &avr_frame_base);
1330
1331 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1332
1333 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
8818c391 1334
8818c391
TR
1335 return gdbarch;
1336}
1337
1338/* Send a query request to the avr remote target asking for values of the io
1339 registers. If args parameter is not NULL, then the user has requested info
1340 on a specific io register [This still needs implemented and is ignored for
1341 now]. The query string should be one of these forms:
1342
1343 "Ravr.io_reg" -> reply is "NN" number of io registers
1344
1345 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1346 registers to be read. The reply should be "<NAME>,VV;" for each io register
1347 where, <NAME> is a string, and VV is the hex value of the register.
1348
1349 All io registers are 8-bit. */
1350
1351static void
1352avr_io_reg_read_command (char *args, int from_tty)
1353{
1e3ff5ad 1354 LONGEST bufsiz = 0;
2e5ff58c
TR
1355 char buf[400];
1356 char query[400];
1357 char *p;
1358 unsigned int nreg = 0;
1359 unsigned int val;
1360 int i, j, k, step;
8818c391 1361
1e3ff5ad
AC
1362 /* Just get the maximum buffer size. */
1363 bufsiz = target_read_partial (&current_target, TARGET_OBJECT_AVR,
1364 NULL, NULL, 0, 0);
1365 if (bufsiz < 0)
8818c391 1366 {
2e5ff58c 1367 fprintf_unfiltered (gdb_stderr,
98be1e77
TR
1368 "ERR: info io_registers NOT supported by current "
1369 "target\n");
8818c391
TR
1370 return;
1371 }
2e5ff58c
TR
1372 if (bufsiz > sizeof (buf))
1373 bufsiz = sizeof (buf);
8818c391
TR
1374
1375 /* Find out how many io registers the target has. */
1376 strcpy (query, "avr.io_reg");
1e3ff5ad
AC
1377 target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf, 0,
1378 bufsiz);
8818c391
TR
1379
1380 if (strncmp (buf, "", bufsiz) == 0)
1381 {
2e5ff58c
TR
1382 fprintf_unfiltered (gdb_stderr,
1383 "info io_registers NOT supported by target\n");
8818c391
TR
1384 return;
1385 }
1386
2e5ff58c 1387 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1388 {
2e5ff58c
TR
1389 fprintf_unfiltered (gdb_stderr,
1390 "Error fetching number of io registers\n");
8818c391
TR
1391 return;
1392 }
1393
2e5ff58c 1394 reinitialize_more_filter ();
8818c391
TR
1395
1396 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1397
1398 /* only fetch up to 8 registers at a time to keep the buffer small */
1399 step = 8;
1400
2e5ff58c 1401 for (i = 0; i < nreg; i += step)
8818c391 1402 {
91ccbfc1
TR
1403 /* how many registers this round? */
1404 j = step;
1405 if ((i+j) >= nreg)
1406 j = nreg - i; /* last block is less than 8 registers */
8818c391 1407
2e5ff58c 1408 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1e3ff5ad
AC
1409 target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf,
1410 0, bufsiz);
8818c391
TR
1411
1412 p = buf;
2e5ff58c
TR
1413 for (k = i; k < (i + j); k++)
1414 {
1415 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1416 {
1417 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1418 while ((*p != ';') && (*p != '\0'))
1419 p++;
1420 p++; /* skip over ';' */
1421 if (*p == '\0')
1422 break;
1423 }
1424 }
8818c391
TR
1425 }
1426}
1427
a78f21af
AC
1428extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1429
8818c391
TR
1430void
1431_initialize_avr_tdep (void)
1432{
1433 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1434
1435 /* Add a new command to allow the user to query the avr remote target for
1436 the values of the io space registers in a saner way than just using
1437 `x/NNNb ADDR`. */
1438
1439 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1440 io_registers' to signify it is not available on other platforms. */
1441
1442 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1443 "query remote avr target for io space register values", &infolist);
8818c391 1444}
This page took 0.236435 seconds and 4 git commands to generate.